WorldWideScience

Sample records for assembly lipid capacity

  1. Apolipoprotein B-containing lipoprotein particle assembly: Lipid capacity of the nascent lipoprotein particle

    Energy Technology Data Exchange (ETDEWEB)

    Manchekar, Medha; Forte, Trudy M.; Datta, Geeta; Richardson, Paul E.; Segrest, Jere P.; Dashti, Nassrin

    2003-12-01

    '' without a structural requirement for MTP; (2) amino acids between 931 to 1000 of apoB-100 are critical for the formation of a nascent lipoprotein particle, and (3) the ''lipid pocket'' created by the first 1000 amino acid residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 70 molecules of lipid. This model is supported by the allatom molecular model of the {beta}{alpha}{sub 1} lipid pocket presented in the accompanying paper.

  2. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  3. Self-assembly between biomacromolecules and lipids

    Science.gov (United States)

    Liang, Hongjun

    Anionic DNA and cationic lipsomes can self-assemble into a multi-lamellar structure where two-dimensional (2-D) lipid sheets confine a periodic one-dimensional (1-D) lattice of parallel DNA chains, between which Cd2+ ions can condense, and be subsequently reacted with H 2S to template CdS nanorods with crystallographic control analogous to biomineralization. The strong electrostatic interactions align the templated CdS (002) polar planes parallel to the negatively charged sugar-phosphate DNA backbone, which indicates that molecular details of the DNA molecule are imprinted onto the inorganic crystal structure. The resultant nanorods have (002) planes tilted by ˜60° with respect to the rod axis, in contrast to all known II-VI semiconductor nanorods. Rational design of the biopolymer-membrane templates is possible, as demonstrated by the self-assembly between anionic M13 virus and cationic membrane. The filamentous virus has diameter ˜3x larger but similar surface charge density as DNA, the self-assembled complexes maintain the multi-lamellar structure, but pore sizes are ˜10x larger in area, which can be used to package and organize large functional molecules. Not only the counter-charged objects can self-assemble, the like-charged biopolymer and membrane can also self-assemble with the help of multivalent ions. We have investigated anionic lipid-DNA complexes induced by a range of divalent ions to show how different ion-mediated interactions are expressed in the self-assembled structures, which include two distinct lamellar phases and an inverted hexagonal phase. DNA can be selectively organized into or expelled out of the lamellar phases depending on membrane charge density and counterion concentration. For a subset of ion (Zn2+ etc.) at high enough concentration, 2-D inverted hexagonal phase can be formed where DNA strands are coated with anionic lipid tubes via interaction with Zn2+ ions. We suggest that the effect of ion binding on lipid's spontaneous

  4. Self-assembly of polar food lipids.

    Science.gov (United States)

    Leser, Martin E; Sagalowicz, Laurent; Michel, Martin; Watzke, Heribert J

    2006-11-16

    Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.

  5. Self-assembly models for lipid mixtures

    Science.gov (United States)

    Singh, Divya; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2006-03-01

    Solutions of mixed long and short (detergent-like) phospholipids referred to as ``bicelle'' mixtures in the literature, are known to form a variety of different morphologies based on their total lipid composition and temperature in a complex phase diagram. Some of these morphologies have been found to orient in a magnetic field, and consequently bicelle mixtures are widely used to study the structure of soluble as well as membrane embedded proteins using NMR. In this work, we report on the low temperature phase of the DMPC and DHPC bicelle mixture, where there is agreement on the discoid structures but where molecular packing models are still being contested. The most widely accepted packing arrangement, first proposed by Vold and Prosser had the lipids completely segregated in the disk: DHPC in the rim and DMPC in the disk. Using data from small angle neutron scattering (SANS) experiments, we show how radius of the planar domain of the disks is governed by the effective molar ratio qeff of lipids in aggregate and not the molar ratio q (q = [DMPC]/[DHPC] ) as has been understood previously. We propose a new quantitative (packing) model and show that in this self assembly scheme, qeff is the real determinant of disk sizes. Based on qeff , a master equation can then scale the radii of disks from mixtures with varying q and total lipid concentration.

  6. Lipid self-assemblies and nanostructured emulsions for cosmetic formulations

    OpenAIRE

    Kulkarni, C

    2016-01-01

    A majority of cosmetic products that we encounter on daily basis contain lipid constituents in solubilized or insolubilized forms. Due to their amphiphilic nature, the lipid molecules spontaneously self-assemble into a remarkable range of nanostructures when mixed with water. This review illustrates the formation and finely tunable properties of self-assembled lipid nanostructures and their hierarchically organized derivatives, as well as their relevance to the development of cosmetic formula...

  7. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  8. Lipid Self-Assemblies and Nanostructured Emulsions for Cosmetic Formulations

    Directory of Open Access Journals (Sweden)

    Chandrashekhar V. Kulkarni

    2016-10-01

    Full Text Available A majority of cosmetic products that we encounter on daily basis contain lipid constituents in solubilized or insolubilized forms. Due to their amphiphilic nature, the lipid molecules spontaneously self-assemble into a remarkable range of nanostructures when mixed with water. This review illustrates the formation and finely tunable properties of self-assembled lipid nanostructures and their hierarchically organized derivatives, as well as their relevance to the development of cosmetic formulations. These lipid systems can be modulated into various physical forms suitable for topical administration including fluids, gels, creams, pastes and dehydrated films. Moreover, they are capable of encapsulating hydrophilic, hydrophobic as well as amphiphilic active ingredients owing to their special morphological characters. Nano-hybrid materials with more elegant properties can be designed by combining nanostructured lipid systems with other nanomaterials including a hydrogelator, silica nanoparticles, clays and carbon nanomaterials. The smart materials reviewed here may well be the future of innovative cosmetic applications.

  9. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  10. Assembly of RNA nanostructures on supported lipid bilayers

    Science.gov (United States)

    Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2014-12-01

    The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of

  11. Anandamide and analogous endocannabinoids: a lipid self-assembly study

    Energy Technology Data Exchange (ETDEWEB)

    Sagnella, Sharon M.; Conn, Charlotte E.; Krodkiewska, Irena; Mulet, Xavier; Drummond, Calum J.

    2014-09-24

    Anandamide, the endogenous agonist of the cannabinoid receptors, has been widely studied for its interesting biological and medicinal properties and is recognized as a highly significant lipid signaling molecule within the nervous system. Few studies have, however, examined the effect of the physical conformation of anandamide on its function. The study presented herein has focused on characterizing the self-assembly behaviour of anandamide and four other endocannabinoid analogues of anandamide, viz., 2-arachidonyl glycerol, arachidonyl dopamine, 2-arachidonyl glycerol ether (noladin ether), and o-arachidonyl ethanolamide (virodhamine). Molecular modeling of the five endocannabinoid lipids indicates that the highly unsaturated arachidonyl chain has a preference for a U or J shaped conformation. Thermal phase studies of the neat amphiphiles showed that a glass transition was observed for all of the endocannabinoids at {approx} -110 C with the exception of anandamide, with a second glass transition occurring for 2-arachidonyl glycerol, 2-arachidonyl glycerol ether, and virodhamine (-86 C, -95 C, -46 C respectively). Both anandamide and arachidonyl dopamine displayed a crystal-isotropic melting point (-4.8 and -20.4 C respectively), while a liquid crystal-isotropic melting transition was seen for 2-arachidonyl glycerol (-40.7 C) and 2-arachidonyl glycerol ether (-71.2 C). No additional transitions were observed for virodhamine. Small angle X-ray scattering and cross polarized optical microscopy studies as a function of temperature indicated that in the presence of excess water, both 2-arachidonyl glycerol and anandamide form co-existing Q{sub II}{sup G} (gyroid) and Q{sub II}{sup D} (diamond) bicontinuous cubic phases from 0 C to 20 C, which are kinetically stable over a period of weeks but may not represent true thermodynamic equilibrium. Similarly, 2-arachidonyl glycerol ether acquired an inverse hexagonal (HII) phase in excess water from 0 C to 40 C, while

  12. Coarse-Grained Molecular Simulation of Lipid Self-Assembly

    Science.gov (United States)

    Shinoda, Wataru

    2013-03-01

    The talk will review our recent work on understanding the behavior of lipid self-assembly using a coarse-grained (CG) force field model developed recently. The CG model is designed to reproduce experimental surface/interfacial properties as well as distribution functions from all-atom (AA) molecular dynamics (MD) simulations. A series of MD simulations has elucidated that the CG model reproduces the phase diagram reasonably and produces the membranes with reasonable elastic moduli, surface and line tensions. With a help of technical development of free energy computation, we have evaluated the stability of liposome. A comparison of CG-MD and a simple continuum theory for the free energy barrier to the vesicle-to-bicelle transformation reveals that the internal structural relaxation in the bilayer membrane plays an important role in lowering the free energy barrier in case of a small unilamellar vesicle. The effects of lipid components and additives are also discussed in this talk. Especially the effect of fullerenes on the membrane properties will be discussed in details. The behavior of fullerenes in the bilayer membrane and the resultant membrane properties depend on the size of fullerene and bilayer thickness quite sensitively. To discuss these details, we need a chemically accurate CG model constructed based on extensive AA-MD results.

  13. [Model systems based on the lipid-porphyrin assemblies and lipoproteins in biochemical studies].

    Science.gov (United States)

    Pikuz, S S; Sebiakin, Iu L

    1996-01-01

    Reviewed are the modern state and prospects of using lipid-porphyrin assemblies and lipoporphyrins to study fine functional mechanisms of complex biological systems and to solve applied problems in biochemistry and medicine. Data on the interaction of porphyrin derivatives with natural and artificial membranes are summarized. Models for electron transfer and oxygen transport via lipid-porphyrin assemblies are discussed.

  14. Chains, Sheets and Droplets: Assemblies of Hydrophobic Gold Nanocrystals with Saturated Phosphatidylcholine Lipid and Squalene

    Science.gov (United States)

    Rasch, Michael R.; Bosoy, Christian; Yu, Yixuan; Korgel, Brian A.

    2012-01-01

    Assemblies of saturated 1,2-diacyl-phosphatidylcholine lipid and hydrophobic dodecanethiol-capped 1.8 nm diameter gold nanocrystals were studied as a function of lipid chain length and the addition of the naturally-occurring oil, squalene. The gold nanocrystals formed various lipid-stabilized agglomerates, sometimes fusing with lipid vesicle bilayers. The nanocrystal assembly structure depended on the hydrocarbon chain length of the lipid fatty acids. Lipid with the shortest fatty acid length studied, dilauroyl-phosphatidylcholine, created extended chains of gold nanocrystals. Lipid with slightly longer fatty acid chains created planar sheets of nanocrystals. Further increases of the fatty acid chain length led to spherical agglomerates. The inclusion of squalene led to lipid- and nanocrystal-coated oil droplets. PMID:23033891

  15. Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles

    DEFF Research Database (Denmark)

    Kulkarni, Chandrashekhar V; Yaghmur, Anan; Steinhart, Milos

    2016-01-01

    We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m......), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk...... samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles...

  16. Lenalidomide induces lipid raft assembly to enhance erythropoietin receptor signaling in myelodysplastic syndrome progenitors.

    Directory of Open Access Journals (Sweden)

    Kathy L McGraw

    Full Text Available Anemia remains the principal management challenge for patients with lower risk Myelodysplastic Syndromes (MDS. Despite appropriate cytokine production and cellular receptor display, erythropoietin receptor (EpoR signaling is impaired. We reported that EpoR signaling is dependent upon receptor localization within lipid raft microdomains, and that disruption of raft integrity abolishes signaling capacity. Here, we show that MDS erythroid progenitors display markedly diminished raft assembly and smaller raft aggregates compared to normal controls (p = 0.005, raft number; p = 0.023, raft size. Because lenalidomide triggers raft coalescence in T-lymphocytes promoting immune synapse formation, we assessed effects of lenalidomide on raft assembly in MDS erythroid precursors and UT7 cells. Lenalidomide treatment rapidly induced lipid raft formation accompanied by EpoR recruitment into raft fractions together with STAT5, JAK2, and Lyn kinase. The JAK2 phosphatase, CD45, a key negative regulator of EpoR signaling, was displaced from raft fractions. Lenalidomide treatment prior to Epo stimulation enhanced both JAK2 and STAT5 phosphorylation in UT7 and primary MDS erythroid progenitors, accompanied by increased STAT5 DNA binding in UT7 cells, and increased erythroid colony forming capacity in both UT7 and primary cells. Raft induction was associated with F-actin polymerization, which was blocked by Rho kinase inhibition. These data indicate that deficient raft integrity impairs EpoR signaling, and provides a novel strategy to enhance EpoR signal fidelity in non-del(5q MDS.

  17. The bearing capacity of the assemblies through compression with intermediate biconical elements

    Science.gov (United States)

    Grigore, N.; Nae, I.

    2016-08-01

    The assemblies through elastic compression are made through forced contact between the mating surfaces of the pieces to be assembled. These assemblies function due to friction force developed between surfaces under pressure contact. If the surfaces in contact present elastic deformations, the assembly is removable, if not, the assembly is non-removable. This research presents the calculus algorithm of the capable torque of an assembly with biconical intermediate elements. To verify the accuracy of the theoretical results this research contains the appliance used to obtain the experimental value of the bearing capacity of the assemblies through compression with intermediate biconical elements.

  18. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles

    Science.gov (United States)

    Shen, Zhiqiang; Loe, David T.; Awino, Joseph K.; Kröger, Martin; Rouge, Jessica L.; Li, Ying

    2016-08-01

    Herein a new multifunctional formulation, referred to as a core-polyethylene glycol-lipid shell (CPLS) nanoparticle, has been proposed and studied in silico via large scale coarse-grained molecular dynamics simulations. A PEGylated core with surface tethered polyethylene glycol (PEG) chains is used as the starting configuration, where the free ends of the PEG chains are covalently bonded with lipid molecules (lipid heads). A complete lipid bilayer is formed at the surface of the PEGylated particle core upon addition of free lipids, driven by the hydrophobic properties of the lipid tails, leading to the formation of a CPLS nanoparticle. The self-assembly process is found to be sensitive to the grafting density and molecular weight of the tethered PEG chains, as well as the amount of free lipids added. At low grafting densities the assembly of CPLS nanoparticles cannot be accomplished. As demonstrated by simulations, a lipid bud/vesicle can be formed on the surface when an excess amount of free lipids is added at high grafting density. Therefore, the CPLS nanoparticles can only be formed under appropriate conditions of both PEG and free lipids. The CPLS nanoparticle has been recognized to be able to store a large quantity of water molecules, particularly with high molecular weight of PEG chains, indicating its capacity for carrying hydrophilic molecules such as therapeutic biomolecules or imaging agents. Under identical size and surface chemistry conditions of a liposome, it has been observed that the CPLS particle can be more efficiently wrapped by the lipid membrane, indicating its potential for a greater efficiency in delivering its hydrophilic cargo. As a proof-of-concept, the experimental realization of CPLS nanoparticles is explicitly demonstrated in this study. To test the capacity of the CPLS to store small molecule cargo a hydrophilic dye was successfully encapsulated in the particles' water soluble layer. The results of this study show the power and

  19. Self-assembly of mixed lipids into bicelles and vesicles: molecular dynamics simulations

    Science.gov (United States)

    Sharma, Hari; Wang, Zilu; Dormidontova, Elena

    Formation of complex supramolecular nanostructures, such as micelles, bicelles, vesicles (liposomes) etc. via self-assembly of simple molecules has provided a new pathway for the design and development of effective drug carriers. Solid nanoparticles or functional biopolymers, such as RNA, DNA, peptides can be encapsulated into these carriers for controlled delivery or selective targeting. We performed coarse grained molecular dynamics simulation using the MARTINI force field to study the self-assembly of a binary surfactant mixture composed of long and short phospholipids, DPPC and DHPC, in the ratio 3:1. We found that at low temperature lipids self-assemble into a bicelle (nanodisc) with the longer lipid mainly forming the interior and short lipid the rim of the bicelle. At higher temperature the nanodisc transforms into a vesicle with homogeneously distributed lipids. The structural changes of these nanodiscs and vesicles imposed by gold nanoparticle encapsulation and pegylation will be addressed.

  20. Modelling phagosomal lipid networks that regulate actin assembly

    Directory of Open Access Journals (Sweden)

    Schwarz Roland

    2008-12-01

    Full Text Available Abstract Background When purified phagosomes are incubated in the presence of actin under appropriate conditions, microfilaments start growing from the membrane in a process that is affected by ATP and the lipid composition of the membrane. Isolated phagosomes are metabolically active organelles that contain enzymes and metabolites necessary for lipid interconversion. Hence, addition of ATP, lipids, and actin to the system alter the steady-state composition of the phagosomal membrane at the same time that the actin nucleation is initiated. Our aim was to model all these processes in parallel. Results We compiled detailed experimental data on the effects of different lipids and ATP on actin nucleation and we investigated experimentally lipid interconversion and ATP metabolism in phagosomes by using suitable radioactive compounds. In a first step, a complex lipid network interconnected by chemical reactions catalyzed by known enzymes was modelled in COPASI (Complex Pathway Simulator. However, several lines of experimental evidence indicated that only the phosphatidylinositol branch of the network was active, an observation that dramatically reduced the number of parameters in the model. The results also indicated that a lipid network-independent ATP-consuming activity should be included in the model. When this activity was introduced, the set of differential equations satisfactorily reproduced the experimental data. On the other hand, a molecular mechanism connecting membrane lipids, ATP, and the actin nucleation process is still missing. We therefore adopted a phenomenological (black-box approach to represent the empirical observations. We proposed that lipids and ATP influence the dynamic interconversion between active and inactive actin nucleation sites. With this simple model, all the experimental data were satisfactorily fitted with a single positive parameter per lipid and ATP. Conclusion By establishing an active 'dialogue' between an

  1. Capacity planning and resource allocation in assembly systems consisting of dedicated and reconfigurable lines

    OpenAIRE

    Gyulai, D.; Kádár, B.; Monostori, L.

    2014-01-01

    Companies with diverse product portfolio often face capacity planning problems due to the diversity of the products and the fluctuation of the order stream. High volume products can be produced cost-efficiently in dedicated assembly lines, but the assembly of low-volume products in such lines involves high idle times and operation costs. Reconfigurable assembly lines offer reasonable solution for the problem; however, it is still complicated to identify the set of products which are worth to ...

  2. Lipid-carbon nanotube self-assembly in aqueous solution.

    Science.gov (United States)

    Qiao, Rui; Ke, Pu Chun

    2006-10-25

    One major drawback associated with single-walled carbon nanotubes (SWNTs) in the liquid phase is their hydrophobicity-induced aggregation, which prevents utilization of the unique physical and chemical properties of single SWNTs. Recently it has been found that lysophospholipids, or single-tailed phospholipids, can readily form supramolecular complexes with SWNTs and the resultant SWNT solubility is superior to that provided by nucleic acids, proteins, and surfactants such as sodium dodecyl sulfate. Using transmission electron microscopy, lysophospholipids were observed forming striations on SWNTs in a vacuum. Although the morphology of the striations seemingly favors the hemimicellular model, serious doubts remain about the arrangement of individual lipids within the striations. Here we present an in silico study of the binding of zwitterionic lysophosphatidylcholine to an SWNT. We present compelling evidence that the binding of lipid surfactants to cylindrical nanostructures in the liquid phase does not obey any of the three popular models in the literature. Understanding the binding of lipid amphiphiles to SWNTs facilitates the bottom-up design of novel nanostructures for supramolecular chemistry and nanotechnology and fuels new field studies of nanotoxicity and nanomedicine.

  3. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition

    Science.gov (United States)

    Palm, Wilhelm; Sampaio, Julio L.; Brankatschk, Marko; Carvalho, Maria; Mahmoud, Ali; Shevchenko, Andrej; Eaton, Suzanne

    2012-01-01

    Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo–synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization. PMID:22844248

  4. Effect of self-assembly of fullerene nano-particles on lipid membrane.

    Science.gov (United States)

    Zhang, Saiqun; Mu, Yuguang; Zhang, John Z H; Xu, Weixin

    2013-01-01

    Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC) model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1) assembly process is completely finished before penetration; 2) assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron) of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.

  5. Effect of self-assembly of fullerene nano-particles on lipid membrane.

    Directory of Open Access Journals (Sweden)

    Saiqun Zhang

    Full Text Available Carbon nanoparticles can penetrate the cell membrane and cause cytotoxicity. The diffusion feature and translocation free energy of fullerene through lipid membranes is well reported. However, the knowledge on self-assembly of fullerenes and resulting effects on lipid membrane is poorly addressed. In this work, the self-assembly of fullerene nanoparticles and the resulting influence on the dioleoylphosphtidylcholine (DOPC model membrane were studied by using all-atom molecular dynamics simulations with explicit solvents. Our simulation results confirm that gathered small fullerene cluster can invade lipid membrane. Simulations show two pathways: 1 assembly process is completely finished before penetration; 2 assembly process coincides with penetration. Simulation results also demonstrate that in the membrane interior, fullerene clusters tend to stay at the position which is 1.0 nm away from the membrane center. In addition, the diverse microscopic stacking mode (i.e., equilateral triangle, tetrahedral pentahedral, trigonal bipyramid and octahedron of these small fullerene clusters are well characterized. Thus our simulations provide a detailed high-resolution characterization of the microscopic structures of the small fullerene clusters. Further, we found the gathered small fullerene clusters have significant adverse disturbances to the local structure of the membrane, but no great influence on the global integrity of the lipid membrane, which suggests the prerequisite of high-content fullerene for cytotoxicity.

  6. Synthesis, self-assembly and lipoplex formulation of two novel cyclic phosphonate lipids

    Directory of Open Access Journals (Sweden)

    JenniferYeh

    2013-05-01

    Full Text Available Background: Synthetic cationic lipids hold much potential as gene packaging and delivery agents for the treatment of inherited and acquired life threatening diseases, such as cancer, AIDS, cardiovascular diseases, and certain autoimmune disorders. Methods: We report the synthesis, self-assembly as characterized by critical micelle concentrations and plasmid DNA gel retardation using two novel cyclic, phosphonate cationic lipids 2a and 2b, which were synthesized by derivatizing two diastereomeric macrocyclic phosphonates 1a and 1b with a 2-carbon hydroxylamine linker, N, N-dimethylethanolamine (3. Results: The production of cyclic phosphonate lipids 2a and 2b in 73% and 60% yields, respectively, was achieved using classical synthetic methods involving nucleophilic substitution at the phosphorus centre. Conclusions: The synthesis, aggregation and DNA binding properties of these novel cyclic phosphonate lipids suggest that they may have utility serving as gene packaging and delivery agents.

  7. Dietary manipulation of the sow milk does not influence the lipid absorption capacity of the progeny

    DEFF Research Database (Denmark)

    Lauridsen, Charlotte; Hedemann, Mette Skou; Pierzynowski, Stefan

    2007-01-01

    A control diet without supplemental fat and four diets containing 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were fed to lactating sows in order to investigate the lipid absorption capacity of their progeny in terms of pancreatic enzyme activity, hormonal regulation, and bile salt...

  8. Molecular Understanding of Aβ-hIAPP Cross-Seeding Assemblies on Lipid Membranes.

    Science.gov (United States)

    Zhang, Mingzhen; Hu, Rundong; Ren, Baiping; Chen, Hong; Jiang, Binbo; Ma, Jie; Zheng, Jie

    2017-03-15

    Amyloid-β (Aβ) and human islet polypeptide (hIAPP) are the causative agents responsible for Alzheimer's disease (AD) and type II diabetes (T2D), respectively. While numerous studies have reported the cross-seeding behavior of Aβ and hIAPP in solution, little effort has been made to examine the cross-seeding of Aβ and hIAPP in the presence of cell membranes, which is more biologically relevant to the pathological link between AD and T2D. In this work, we computationally study the cross-seeding and adsorption behaviors of Aβ and hIAPP on zwitterionic POPC and anionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) mixed bilayers using all-atom molecular dynamics (MD) simulations, particularly aiming to the effects of the initial orientation of the Aβ-hIAPP assembly and the lipid composition of cell membranes on mutual structural and interaction changes in both Aβ-hIAPP assembly and lipid bilayers at the atomic level. Aβ-hIAPP cross-seeding assembly always preferred to adopt a specific orientation and interface to associate with both lipid bilayers strongly via the N-terminal strands of Aβ. Such membrane-bound orientation explains experimental observation that hybrid Aβ-hIAPP fibrils on cell membranes showed similar morphologies to pure hIAPP fibrils. Moreover, Aβ-hIAPP assembly, regardless of its initial orientations, interacted more strongly with POPC/POPG bilayer than POPC bilayer, indicating that electrostatic interactions are the major forces governing peptide-lipid interactions. Strong electrostatic interactions were also attributed to the formation of Ca 2+ bridges connecting both negatively charged Glu of Aβ and PO 4 head groups of lipids, which facilitate the association of Aβ-hIAPP with the POPC/POPG bilayer. It was also found that the strong peptide-lipid binding reduced lipid fluidity. Both facts imply that Aβ-hIAPP assembly may induce cell damage by altering calcium

  9. Effect of the microfiltration process on antioxidant activity and lipid peroxidation protection capacity of blackberry juice

    Directory of Open Access Journals (Sweden)

    Gabriela Azofeifa

    2011-08-01

    Full Text Available Phytochemicals are highly concentrated in berries, especially polyphenols as anthocyanins and ellagitannins. These compounds have been associated with antioxidant capacity, lipid peroxidation protection, anti-inflammatory activity, anti-carcinogenic activity, obesity prevention and others. Blackberries are commonly grown and consumed as juice in Latin-American countries. However, blackberry juice is easily fermented and different industrial techniques are being applied to enable the juice to be stored for longer periods. One important issue required for these techniques is to preserve the health-promoting capacities of blackberries. This study compared the antioxidant activity and the lipid peroxidation protector effect between a fresh blackberry juice (FJ and a microfiltrated blackberry juice (MJ. Chemical analysis of both juices show less polyphenols concentration in the MJ. Despite this difference, values for biological activities, such as protection of lipid peroxidation, was not significantly different between FJ and MJ. These results suggest that the compounds responsible for the antioxidant activity are maintained even after microfiltration and the free radical scavenging capacity of these compounds could protect the initiation of lipid peroxidation. Microfiltration could be used as an industrial technique to produce blackberry juice that maintains biological activities of polyphenols.

  10. Impaired gut lipid absorptive capacity after trauma-hemorrhage and resuscitation.

    Science.gov (United States)

    Kerner, J; Wang, P; Chaudry, I H

    1995-10-01

    Although the barrier function of the intestinal mucosa is impaired after hemorrhage, it remains unclear whether this is associated with a deficit in mucosal function. The aim of this study, therefore, was to determine whether trauma-hemorrhage affects the in vivo lipid absorptive capacity of the gut and, if so, to characterize the uptake process of free fatty acids in isolated enterocytes. To study this, rats were anesthetized, a laparotomy was performed (i.e., trauma was induced), and various blood vessels were cannulated. For in vivo lipid absorption, the main intestinal lymph vessel was cannulated and a jejunostomy feeding tube was inserted. The animals were bled to and maintained at a mean arterial pressure of 40 mmHg until 40% of shed blood volume was returned in the form of Ringer lactate. They were then resuscitated with four times the volume of maximal bleed out with Ringer lactate. The in vivo and in vitro lipid absorptive capacities were assessed by measuring lymph triglyceride output after a fat load and by determining the linoleic acid uptake rates on isolated enterocytes, respectively. The results show that the in vivo lipid absorption capacity of the gut is severely depressed after trauma-hemorrhage and resuscitation. Similarly, in enterocytes isolated from hemorrhaged rats, fatty acid uptake capacity, as reflected by the decreased maximal uptake rates, was significantly reduced: 1.2 +/- 0.2 and 2.6 +/- 0.6 nmol.min-1 x 10(6) cells-1 for hemorrhaged and sham, respectively. Thus gut lipid absorptive function is depressed after trauma-hemorrhage and resuscitation, which is at least partially due to the depressed uptake mechanism of the enterocyte.

  11. Assembling nanoparticle coatings to improve the drug delivery performance of lipid based colloids

    Science.gov (United States)

    Simovic, Spomenka; Barnes, Timothy J.; Tan, Angel; Prestidge, Clive A.

    2012-02-01

    Lipid based colloids (e.g. emulsions and liposomes) are widely used as drug delivery systems, but often suffer from physical instabilities and non-ideal drug encapsulation and delivery performance. We review the application of engineered nanoparticle layers at the interface of lipid colloids to improve their performance as drug delivery systems. In addition we focus on the creation of novel hybrid nanomaterials from nanoparticle-lipid colloid assemblies and their drug delivery applications. Specifically, nanoparticle layers can be engineered to enhance the physical stability of submicron lipid emulsions and liposomes, satbilise encapsulated active ingredients against chemical degradation, control molecular transport and improve the dermal and oral delivery characteristics, i.e. increase absorption, bioavailability and facilitate targeted delivery. It is feasible that hybrid nanomaterials composed of nanoparticles and colloidal lipids are effective encapsulation and delivery systems for both poorly soluble drugs and biological drugs and may form the basis for the next generation of medicines. Additional pre-clinical research including specific animal model studies are required to advance the peptide/protein delivery systems, whereas the silica lipid hybrid systems have now entered human clinical trials for poorly soluble drugs.

  12. Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study

    Science.gov (United States)

    Wallace, E. Jayne; Sansom, Mark S. P.

    2009-01-01

    The dispersion of carbon nanotubes (CNTs) in aqueous media is of potential importance in a number of biomedical applications. CNT solubilization has been achieved via the non-covalent adsorption of lipids and detergent onto the tube surface. We use coarse-grained molecular dynamics to study the self-assembly of CNTs with various amphiphiles, namely a bilayer-forming lipid, dipalmitoylphosphatidylcholine (DPPC), and two species of detergent, dihexanoylphosphatidylcholine (DHPC) and lysophosphatidylcholine (LPC). We find that for a low amphiphile/CNT ratio, DPPC, DHPC and LPC all wrap around the CNT. Upon increasing the number of amphiphiles, a transition in adsorption is observed: DPPC encapsulates the CNT within a cylindrical micelle, whilst both DHPC and LPC adsorb onto CNTs in hemimicelles. This study highlights differences in adsorption mechanism of bilayer-forming lipids and detergents on CNTs which may in the future be exploitable to enable enhancement of CNT solubilization whilst minimizing perturbation of cell membrane integrity.

  13. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes

    DEFF Research Database (Denmark)

    Ries, Oliver; Löffler, Philipp M. G.; Vogel, Stefan

    2015-01-01

    Hydrophobic moieties like lipid membrane anchors are highly demanded modifications for nucleic acid oligomers. Membrane-anchor modified oligonucleotides are applicable in biomedicine leading to new delivery strategies as well as in biophysical investigations towards assembly and fusion of liposom...

  14. Isolation of the Oleaginous Yeasts from the Soil and Studies of Their Lipid-Producing Capacities

    Directory of Open Access Journals (Sweden)

    Li-Xia Pan

    2009-01-01

    Full Text Available D-xylose is one of the most abundant pentose sugars in nature. To isolate oleaginous yeasts that can utilize xylose from diverse soil samples, soils from a litchi orchard, longan orchard, carambola orchard, and woods were collected, yeasts were isolated by the glycerol enrichment and their xylose-assimilating capacities were measured. A subset of these isolates was grown in nitrogen-limited media and then screened for potential oleaginous yeasts by the Sudan Black B staining, after which their lipid-producing capacities were studied. There were 13 strains of oleaginous yeasts identified, and a rapid microbiological assay was provided to exploit microbial lipids that may one day be used as biodiesels or cocoa butter substitute.

  15. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy

    Science.gov (United States)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  16. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  17. Antioxidant capacity of meagre (Argyrossomus regius fed different lipid content and source, with and without selenium

    Directory of Open Access Journals (Sweden)

    Sthelio Braga Fonseca

    2014-06-01

    Meagre (600 animals were kept in 24 tanks (80 L with constant renovation and aeration and maintained at 20.7 ± 0.7ºC and oxygen 8.8 ± 1.7 mg L-1. Fish were fed twice per day, six days per week, with eight different experimental diets for 60 days. Diets were formulated to have two different oil sources (fish or vegetable blend oils with 45% of linseed, 35% of rapeseed and 20% of soybean oil, two lipid levels (12 and 17% and two selenium supplementation (0 and 1 mg/kg diet. Lipid peroxidation (LPO, glutathione reductase (GR, glutathione peroxidase (GPx, total glutathione (TG and catalase (CAT were analyzed in liver of fish. CAT, GPx and GR activities were not significantly altered in fish fed with diets with different oil sources. However, TG in fish fed with fish oil diet was higher than the levels observed in fish fed with vegetable blend oil. Furthermore, fish fed with fish oil diet showed lower lipid peroxidation when compared with fish fed vegetable blend oil diet (Table 1. Concerning the oil level in diet, it was observed that fish fed with a diet of 17% lipids had a higher level of total glutathione when compared to fish fed with a diet of 12% lipids. On the other hand, the fish fed with a diet with 12% lipids showed lower levels of lipid peroxidation when compared to fish fed with a diet of 17% lipids. Fish fed with diets supplemented with selenium showed a significantly increased activity of GPx when compared with fish fed without selenium. Three-way ANOVA analysis showed that dietary lipid level and the presence of selenium have a significant interaction on the activities of CAT and GR, as well as, levels of TG and LPO. A significant interaction between the source of oil and the presence of selenium on GR activities was observed. Interaction on source and level was observed to CAT. In conclusion, the antioxidant capacity of meagre is influenced by the source of oil, the level of lipids and the presence of selenium in their diet.

  18. Improved insulin loading in poly (lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids

    DEFF Research Database (Denmark)

    Garcia Diaz, Maria; Foged, Camilla; Nielsen, Hanne Mørck

    2015-01-01

    of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique...... during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes....

  19. Single-step assembly of polymer-lipid hybrid nanoparticles for mitomycin C delivery

    OpenAIRE

    Yi, Yunfeng; Li, Yang; Wu, Hongjie; Jia, Mengmeng; Yang, Xiangrui; Wei, Heng; Lin, Jinyan; Wu, Shichao; Huang, Yu; Hou, Zhenqing; Xie, Liya

    2014-01-01

    Mitomycin C is one of the most effective chemotherapeutic agents for a wide spectrum of cancers, but its clinical use is still hindered by the mitomycin C (MMC) delivery systems. In this study, the MMC-loaded polymer-lipid hybrid nanoparticles (NPs) were prepared by a single-step assembly (ACS Nano 2012, 6:4955 to 4965) of MMC-soybean phosphatidyhlcholine (SPC) complex (Mol. Pharmaceutics 2013, 10:90 to 101) and biodegradable polylactic acid (PLA) polymers for intravenous MMC delivery. The ad...

  20. Lipid peroxidation, detoxification capacity, and genome damage in mice after transplacental exposure to pharmaceutical drugs

    Directory of Open Access Journals (Sweden)

    D. Markovic

    2013-12-01

    Full Text Available Data on genome damage, lipid peroxidation, and levels of glutathione peroxidase (GPX in newborns after transplacental exposure to xenobiotics are rare and insufficient for risk assessment. The aim of the current study was to analyze, in an animal model, transplacental genotoxicity, lipid peroxidation, and detoxification disturbances caused by the following drugs commonly prescribed to pregnant women: paracetamol, fluconazole, 5-nitrofurantoin, and sodium valproate. Genome damage in dams and their newborn pups transplacentally exposed to these drugs was investigated using the in vivo micronucleus (MN assay. The drugs were administered to dams intraperitoneally in three consecutive daily doses between days 12 and 14 of pregnancy. The results were correlated, with detoxification capacity of the newborn pups measured by the levels of GPX in blood and lipid peroxidation in liver measured by malondialdehyde (HPLC-MDA levels. Sodium valproate and 5-nitrofurantoin significantly increased MN frequency in pregnant dams. A significant increase in the MN frequency of newborn pups was detected for all drugs tested. This paper also provides reference levels of MDA in newborn pups, according to which all drugs tested significantly lowered MDA levels of newborn pups, while blood GPX activity dropped significantly only after exposure to paracetamol. The GPX reduction reflected systemic oxidative stress, which is known to occur with paracetamol treatment. The reduction of MDA in the liver is suggested to be an unspecific metabolic reaction to the drugs that express cytotoxic, in particular hepatotoxic, effects associated with oxidative stress and lipid peroxidation.

  1. Bioadhesive lipid compositions: self-assembly structures, functionality, and medical applications.

    Science.gov (United States)

    Barauskas, Justas; Christerson, Lars; Wadsäter, Maria; Lindström, Fredrick; Lindqvist, Anna-Karin; Tiberg, Fredrik

    2014-03-03

    Lipid-based liquid crystalline compositions of phospholipids and diglycerides have unique bioadhesive properties with several medical applications, as exemplified by a lipid-based medical device indicated for management and relief of intraoral pain. The present paper describes the relation between self-assembly properties of phosphatidyl choline (PC) and glycerol dioleate (GDO) mixtures in the presence of aqueous fluids and functional attributes of the system, including: film formation and bioadhesion, intraoral coverage, acceptance by patients, and potential as a drug delivery system. The phase behavior of PC/GDO was characterized using synchrotron small-angle X-ray scattering. Functional properties, including the presence of study formulations at intraoral surfaces, ease of attachment, taste, and degree of and intraoral pain, were assessed in a crossover clinical pilot study in head and neck cancer patients. An optimum in functional properties was indicated for formulations with a PC/GDO weight ratio of about 35/65, where the lipids form a reversed cubic liquid crystalline micellar phase structure (Fd3m space group) over the relevant temperature range (25-40 °C).

  2. Influence of βS allele in the lipid peroxidation and antioxidant capacity parameters.

    Science.gov (United States)

    Shimauti, E L T; Belini Junior, E; Baracioli, L M da S V; Souza, E M de; Granzotto, D; Almeida, E A de; Silva, D G H; Ricci Junior, O; Bonini-Domingos, C R

    2014-04-01

    The oxidative process plays a fundamental role in the pathophysiology of sickle cell anemia (SCA), and population and environmental characteristics may influence redox balance. The aim of this study was to evaluate lipid peroxidation and antioxidant capacity in Brazilian Hb S carriers undergoing different therapies. Blood samples from 270 individuals were analyzed (Hb SS, n = 68; Hb AS, n = 53, and Hb AA, n = 149). Hemoglobin genotypes were assessed through cytological, electrophoretic, chromatographic, and molecular methods. Plasma lipid peroxidation and antioxidant capacity were measured by spectrophotometric methods. Patients with SCA who used iron-chelating drugs combined with hydroxyurea, associated with regular transfusions, showed lower levels of TBARS (P ≤ 0.05), higher levels of TEAC (P ≤ 0.01), and lower TBARS/TEAC ratio (R = 255.8). The redox profile of Hb AS subjects was not statistically different (P > 0.05) from that of Hb AA subjects. The data suggest that oxidative stress is lower in the patients with SCA who received regular blood transfusions associated with the combined use of HU and iron chelators than the group received only HU. The redox system of the Hb AS carriers is compatible with the control group. © 2013 John Wiley & Sons Ltd.

  3. Effects of adlay seed oil on blood lipids and antioxidant capacity in hyperlipidemic rats.

    Science.gov (United States)

    Yu, Fei; Gao, Jing; Zeng, Yong; Liu, Chang-Xiao

    2011-08-15

    Adlay (Coix lacryma-jobi L. subsp. ma-yuen (Romanet) T. Koyama (family Poaceae)) seed has been used as a dietary supplement for its therapeutic effects for thousands of years. This study was designed to investigate the effects of adlay seed oil, obtained by supercritical CO₂ extraction, on blood lipids and antioxidant capacity in hyperlipidemic rats. Adlay seed oil could reduce the abdominal fat tissue and low-density lipoprotein concentration, and increase the total antioxidant capacity in hyperlipidemic rats. Adlay seed oil also significantly decreased the malondialdehyde content in serum, and increased serum total superoxide dismutase activity in hyperlipidemic rats. Therefore, the antioxidant mechanism might be related to the scavenging effects of adlay seed oil on reactive oxidative species, especially on the superoxide anion free radical. The results showed that adlay seed oil had blood lipid-reducing and antioxidant effects, and could be used as a supplement in healthcare food and drugs for the prevention of chronic diseases (especially artherosclerosis and coronary artery disease). Copyright © 2011 Society of Chemical Industry.

  4. Pectin-Lipid Self-Assembly: Influence on the Formation of Polyhydroxy Fatty Acids Nanoparticles

    Science.gov (United States)

    Guzman-Puyol, Susana; Benítez, José Jesús; Domínguez, Eva; Bayer, Ilker Sefik; Cingolani, Roberto; Athanassiou, Athanassia; Heredia, Antonio; Heredia-Guerrero, José Alejandro

    2015-01-01

    Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin. PMID:25915490

  5. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.

    Directory of Open Access Journals (Sweden)

    Susana Guzman-Puyol

    Full Text Available Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic acid and tomato fruit cutin monomers (a mixture of mainly 9(10,16-dihydroxypalmitic acid (85%, w/w and 16-hydroxyhexadecanoic acid (7.5%, w/w with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM. The structure of these nanoparticles can be described as a lipid core with a pectin shell. Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched chains and favoring the condensation between lipid monomers. Also, pectin determined the self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG surfaces, causing their opening and forming interconnected structures. In the case of cutin monomers, the nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty acids could be related to an initial step in the formation of the plant biopolyester cutin.

  6. Engineering amyloid-like assemblies from unstructured peptides via site-specific lipid conjugation.

    Directory of Open Access Journals (Sweden)

    María Pilar López Deber

    Full Text Available Aggregation of amyloid beta (Aβ into oligomers and fibrils is believed to play an important role in the development of Alzheimer's disease (AD. To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1-2% hexafluoroisopropanol (HFIP in phosphate buffered saline (PBS. Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD, Attenuated Total Reflection InfraRed (ATR-IR, Thioflavin T (ThT fluorescence, Dynamic Light Scattering (DLS, solid-state Nuclear Magnetic Resonance (ssNMR spectroscopy and Electron Microscopy (EM. Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures.

  7. Engineering amyloid-like assemblies from unstructured peptides via site-specific lipid conjugation.

    Science.gov (United States)

    López Deber, María Pilar; Hickman, David T; Nand, Deepak; Baldus, Marc; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Aggregation of amyloid beta (Aβ) into oligomers and fibrils is believed to play an important role in the development of Alzheimer's disease (AD). To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1-2% hexafluoroisopropanol (HFIP) in phosphate buffered saline (PBS). Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD), Attenuated Total Reflection InfraRed (ATR-IR), Thioflavin T (ThT) fluorescence, Dynamic Light Scattering (DLS), solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy and Electron Microscopy (EM). Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures.

  8. Assessment of the antioxidant capacity and oxidative stability of esterified phenolic lipids in selected edible oils.

    Science.gov (United States)

    Aziz, Sarya; Kermasha, Selim

    2014-04-01

    The research work was aimed at the determination of the antioxidant capacity (AOC) and the oxidative stability of phenolic lipids (PLs), obtained by lipase-catalyzed transesterification of phenolic acids (PAs) with selected edible oils (EOs), including flaxseed (FSO), fish liver (FO), and krill (KO) oils. The statistical analyses (Tukey's test at P krill oil (EKO) containing PLs and their control trials of EOs was significant (P oil (EFO) showed a significant difference in its peroxide value, when the esterified EOs were placed in the dark at 25 °C. Overall, the phenolic mono- and diacyglycerols present in the EOs have shown to be potential antioxidants in improving the oxidative stability of the oil and enhancing its AOC. © 2014 Institute of Food Technologists®

  9. Evaluation of free radical scavenging capacity and antioxidative damage effect of resveratrol-nanostructured lipid carriers

    Science.gov (United States)

    Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping

    2016-03-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  10. Prolongation of the lag time preceding peroxidation of serum lipids: a measure of antioxidant capacity.

    Science.gov (United States)

    Pinchuk, Ilya; Lichtenberg, Dov

    2015-01-01

    Antioxidants inhibit oxidation processes and by this affect many biological processes. This, in turn, promotes continuing efforts to synthesize new efficient antioxidants and discover compounds of natural origin capable of preventing peroxidation. Although many assays have been developed to evaluate antioxidants, the search for improved protocols is still actual. The presented protocol is based on the effect of antioxidant on the kinetics of peroxidation of lipids in human blood serum. Specifically, we evaluate the capacity of antioxidant by the relative prolongation of lag phase (delay) of copper-induced peroxidation of lipids in unfractionated serum. The main advantage of the assay is that it implements inhibition of peroxidation in physiologically relevant system. We propose expressing the results of the assay either in terms of the relative prolongation of the lag per 1 μM of antioxidant or as the concentration of antioxidant required to double the lag. To allow for comparing the results with those of other assays, these results may be normalized and expressed in terms of the unitless "TROLOX equivalents."

  11. Structure formation of lipid membranes: Membrane self-assembly and vesicle opening-up to octopus-like micelles

    Science.gov (United States)

    Noguchi, Hiroshi

    2013-02-01

    We briefly review our recent studies on self-assembly and vesicle rupture of lipid membranes using coarse-grained molecular simulations. For single component membranes, lipid molecules self-assemble from random gas states to vesicles via disk-shaped clusters. Clusters aggregate into larger clusters, and subsequently the large disks close into vesicles. The size of vesicles are determined by kinetics than by thermodynamics. When a vesicle composed of lipid and detergent types of molecules is ruptured, a disk-shaped micelle called bicelle can be formed. When both surfactants have negligibly low critical micelle concentration, it is found that bicelles connected with worm-like micelles are also formed depending on the surfactant ratio and spontaneous curvature of the membrane monolayer.

  12. Epidermal growth factor receptor-targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity

    Science.gov (United States)

    Zhai, Jiali; Scoble, Judith A.; Li, Nan; Lovrecz, George; Waddington, Lynne J.; Tran, Nhiem; Muir, Benjamin W.; Coia, Gregory; Kirby, Nigel; Drummond, Calum J.; Mulet, Xavier

    2015-02-01

    Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles were demonstrated to have high affinity for an EGFR target in a ligand binding assay.Next generation drug delivery utilising nanoparticles incorporates active targeting to specific sites. In this work, we combined targeting with the inherent advantages of self-assembled lipid nanoparticles containing internal nano-structures. Epidermal growth factor receptor (EGFR)-targeting, PEGylated lipid nanoparticles using phytantriol and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG-maleimide amphiphiles were created. The self-assembled lipid nanoparticles presented here have internal lyotropic liquid crystalline nano-structures, verified by synchrotron small angle X-ray scattering and cryo-transmission electron microscopy, that offer the potential of high drug loading and enhanced cell penetration. Anti-EGFR Fab' fragments were conjugated to the surface of nanoparticles via a maleimide-thiol reaction at a high conjugation efficiency and retained specificity following conjugation to the nanoparticles. The conjugated nanoparticles

  13. Serogroup-specific interactions of lipopolysaccharides with supported lipid bilayer assemblies

    Science.gov (United States)

    Mendez, Heather M.; Stromberg, Loreen R.; Swingle, Kirstie; Graves, Steven W.; Montano, Gabriel; Mukundan, Harshini

    2017-02-01

    Lipopolysaccharide (LPS) is an amphiphilic lipoglycan that is the primary component of the outer membrane of Gramnegative bacteria. Classified as a pathogen associated molecular pattern (PAMPs), LPS is an essential biomarker for identifying pathogen serogroups. Structurally, LPS is comprised of a hydrophobic lipophilic domain that partitions into the outer membrane of Gram-negative bacteria. Previous work by our team explored biophysical interactions of LPS in supported lipid bilayer assemblies (sLBAs), and demonstrated LPS-induced hole formation in DOPC lipid bilayers. Here, we have incorporated cholesterol and sphingomyelin into sLBAs to evaluate the interaction of LPS in a more physiologically relevant system. The goal of this work was to determine whether increasing membrane complexity of sLBAs, and changing physiological parameters such as temperature, affects LPS-induced hole formation. Integrating cholesterol and sphingomyelin into sLBAs decreased LPS-induced hole formation at lower concentrations of LPS, and bacterial serotype contributed to differences in hole formation as a response to changes in temperature. We also investigated the possibility of LPS-induced hole formation in cellular systems using the cytokine response in both TLR4 (+)/(-) murine macrophages. LPS was presented to each cell line in murine serum, delipidated serum, and buffer (i.e. no serum), and the resulting cytokine levels were measured. Results indicate that the method of LPS presentation directly affects cellular cytokine expression. The two model systems presented in this study provide preliminary insight into the interactions of LPS in the host, and suggest the significance of amphiphile-carrier interactions in regulating host-pathogen biology during infection.

  14. Self-assembled core-polyethylene glycol-lipid shell nanoparticles demonstrate high stability in shear flow.

    Science.gov (United States)

    Shen, Zhiqiang; Ye, Huilin; Kröger, Martin; Li, Ying

    2017-05-24

    A core-polyethylene glycol-lipid shell (CPLS) nanoparticle consists of an inorganic core coated with polyethylene glycol (PEG) polymers, surrounded by a lipid bilayer shell. It can be self-assembled from a PEGylated core with surface-tethered PEG chains, where all the distal ends are covalently bonded to lipid molecules. Upon adding free lipids, a complete lipid bilayer shell can be formed on the surface driven by the hydrophobic nature of lipid tails, leading to the formation of a CPLS nanoparticle. The stability of CPLS nanoparticles in shear flow has been systematically studied through large scale dissipative particle dynamics simulations. CPLS nanoparticles demonstrate higher stability and less deformation in shear flow, compared with lipid vesicles. Burst leakage of drug molecules inside lipid vesicles and CPLS NPs can be induced by the large pores at their tips. These pores are initiated by the maximum stress in the waist region. It further grows along with the tank-treading motion of vesicles or CPLS NPs in shear flow. However, due to the constraints applied by PEG polymers, CPLS NPs are less deformed than vesicles with comparable size under the same flow conditions. Thus, the less deformed CPLS NPs express a smaller maximum stress at waists, demonstrating higher stability. Pore formation at waists, evolving into large pores on vesicles, leads to the burst leakage of drug molecules and complete rupture of vesicles. In contrast, although similar drug leakage in CPLS nanoparticles can occur at high shear rates, pores initiated at moderate shear rates tend to be short-lived and close due to the constraints mediated by PEG polymers. This kind of 'self-healing' capability can be observed over a wide range of shear rates for CPLS nanoparticles. Our results suggest self-assembled CPLS nanoparticles to exhibit high stability during blood circulation without rapid drug leakage. These features make CPLS nanoparticles candidates for a promising drug delivery platform.

  15. The longitudinal relationship between lipid profile and physical capacity in persons with a recent spinal cord injury

    NARCIS (Netherlands)

    de Groot, S.; Dallmeijer, A. J.; Post, M. W. M.; Angenot, E. L. D.; van der Woude, L. H. V.

    Study design: A multicenter prospective cohort study. Objective: To determine the longitudinal relationship between physical capacity and lipid profile in persons with spinal cord injury (SCI) during and 1 year after rehabilitation. Setting: Eight Dutch rehabilitation centers with a specialized SCI

  16. Effect of pomegranate supplementation and aerobic training on total antioxidant capacity and lipid peroxidation in overweight men

    Directory of Open Access Journals (Sweden)

    Soheila Rahimifardin

    2014-11-01

    Results: It was found that MDA index decreased in the pomegranate supplementation group compared to placebo group (P=0.016. But, total antioxidant capacity (TAC index in neither of the groups was significant (P=0.72. Conclusion: Results of the study indicate that pomegranate supplementation can reduce MDA derived from lipid peroxidation after 8 week running training in the obese. .

  17. Diets Containing Shiitake Mushroom Reduce Serum Lipids and Serum Lipophilic Antioxidant Capacity in Rats.

    Science.gov (United States)

    Yu, Shanggong; Wu, Xianli; Ferguson, Matthew; Simmen, Rosalia Cm; Cleves, Mario A; Simmen, Frank A; Fang, Nianbai

    2016-12-01

    We previously reported that dietary intake of shiitake mushroom (SM; Lentinus edodes) decreased serum concentrations of polar lipids in male rats. This study evaluated the dietary effects of SM on serum cholesterol-related and serum antioxidant indexes in rats of both sexes. Sprague-Dawley rats [38 dams and their offspring (20 males and 20 females/diet)] were fed diets containing 0 (control), 1%, 4%, or 10% (wt:wt) SM powder from gestation day 4 through to postnatal day (PND) 126. Biochemical indexes were monitored during the midgrowth phase (PNDs 50-66). The food consumption by offspring fed the control diet and diets supplemented with SM was not different when measured on PND 65. However, the 4% and 10% SM diets resulted in male rats with 7% lower body weights than those of the other 2 groups on PND 66. SM consumption dose-dependently decreased the concentrations of lipidemia-related factors in sera, irrespective of sex. At PND 50, serum concentrations of total cholesterol, HDL cholesterol, and non-HDL cholesterol in SM-fed male and female rats were generally lower (3-27%) than those in the corresponding control groups. Consumption of the 10% SM diet resulted in significantly decreased (55%) serum triglyceride concentrations relative to the control groups for both sexes. The 10% SM diet elicited a 62% reduction of serum leptin concentrations in females but not in males, and this same diet increased serum insulin (137%) and decreased serum glucose (15%) in males compared with controls. Serum lipophilic antioxidant capacity in males and females fed SM diets was generally lower (31-86%) than that in the control groups. SM decreased the concentrations of lipidemia-related factors in rat sera irrespective of sex. The SM-elicited reduction of lipophilic antioxidant capacity irrespective of sex may reflect a lower pro-oxidative state and, hence, improved metabolic profile. © 2016 American Society for Nutrition.

  18. Associations between inflammatory factors, lipid peroxidation and antioxidant capacity in bovine seminal plasma

    Directory of Open Access Journals (Sweden)

    Eva Tvrdá

    2016-05-01

    Full Text Available Oxidative stress and inflammation are cooperative events involved in male reproductive dysfunction.   In   the   present   study, we assessed the associations between the spermatozoa motility, inflammatory factors (C-reactive protein and Interleukin-6, total antioxidant status (TAS and lipid peroxidation expressed as malondialdehyde (MDA concentration in the seminal plasma of breeding bulls. 17 semen samples were included in the study. Computer-aided sperm analysis (CASA system was used to assess the spermatozoa motion characteristics, and seminal plasma was collected for further analyses. Interleukin-6 (IL-6 was quantified using ELISA, while C-reactive protein (CRP and markers of the oxidative balance were evaluated by UV/VIS spectrophotometry. The correlation analysis revealed significantly positive associations between the sperm motility and TAS (P<0.05, while both parameters were in significantly negative correlations with CRP (P<0.05, IL-6 (P<0.05 and MDA (P<0.01. At the same time, the samples were divided according to the motility characteristics into groups of Excellent (Ex and Moderate (Mo quality. CRP, IL-6 as well as MDA concentrations were significantly (P<0.05 higher in the Mo group, while the Ex group exhibited a significantly higher antioxidant capacity (P<0.05.  The relationships between the oxidative balance and inflammatory markers detected in our study suggest their intricate involvement in the resulting semen quality.

  19. Haemozoin (B-haematin) biomineralization occurs by self-assembly near the lipid/water interface

    CSIR Research Space (South Africa)

    Egan, TJ

    2006-09-01

    Full Text Available remained unknown, although lipids or proteins have been suggested to catalyse its formation. We have found that B-haematin (synthetic haemozoin) forms rapidly under physiologically realistic conditions near octanol/water, pentanol/water and lipid...

  20. A Synthetic S6 Segment Derived from KvAP Channel Self-assembles, Permeabilizes Lipid Vesicles, and Exhibits Ion Channel Activity in Bilayer Lipid Membrane*

    Science.gov (United States)

    Verma, Richa; Malik, Chetan; Azmi, Sarfuddin; Srivastava, Saurabh; Ghosh, Subhendu; Ghosh, Jimut Kanti

    2011-01-01

    KvAP is a voltage-gated tetrameric K+ channel with six transmembrane (S1–S6) segments in each monomer from the archaeon Aeropyrum pernix. The objective of the present investigation was to understand the plausible role of the S6 segment, which has been proposed to form the inner lining of the pore, in the membrane assembly and functional properties of KvAP channel. For this purpose, a 22-residue peptide, corresponding to the S6 transmembrane segment of KvAP (amino acids 218–239), and a scrambled peptide (S6-SCR) with rearrangement of only hydrophobic amino acids but without changing its composition were synthesized and characterized structurally and functionally. Although both peptides bound to the negatively charged phosphatidylcholine/phosphatidylglycerol model membrane with comparable affinity, significant differences were observed between these peptides in their localization, self-assembly, and aggregation properties onto this membrane. S6-SCR also exhibited reduced helical structures in SDS micelles and phosphatidylcholine/phosphatidylglycerol lipid vesicles as compared with the S6 peptide. Furthermore, the S6 peptide showed significant membrane-permeabilizing capability as evidenced by the release of calcein from the calcein-entrapped lipid vesicles, whereas S6-SCR showed much weaker efficacy. Interestingly, although the S6 peptide showed ion channel activity in the bilayer lipid membrane, despite having the same amino acid composition, S6-SCR was significantly inactive. The results demonstrated sequence-specific structural and functional properties of the S6 wild type peptide. The selected S6 segment is probably an important structural element that could play an important role in the membrane interaction, membrane assembly, and functional property of the KvAP channel. PMID:21592970

  1. Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels.

    Science.gov (United States)

    Dutt, Meenakshi; Kuksenok, Olga; Nayhouse, Michael J; Little, Steven R; Balazs, Anna C

    2011-06-28

    Via dissipative particle dynamics (DPD), we simulate the self-assembly of end-functionalized, amphiphilic nanotubes and lipids in a hydrophilic solvent. Each nanotube encompasses a hydrophobic stalk and two hydrophilic ends, which are functionalized with end-tethered chains. With a relatively low number of the nanotubes in solution, the components self-assemble into stable lipid-nanotube vesicles. As the number of nanotubes is increased, the system exhibits a vesicle-to-bicelle transition, resulting in stable hybrid bicelle. Moreover, our results reveal that the nanotubes cluster into distinct tripod-like structures within the vesicles and aggregate into a ring-like assembly within the bicelles. For both the vesicles and bicelles, the nanotubes assume trans-membrane orientations, with the tethered hairs extending into the surrounding solution or the encapsulated fluid. Thus, the hairs provide a means of regulating the transport of species through the self-assembled structures. Our findings provide guidelines for creating nanotube clusters with distinctive morphologies that might be difficult to achieve through more conventional means. The results also yield design rules for creating synthetic cell-like objects or microreactors that can exhibit biomimetic functionality.

  2. Native and Heated Hydrolysates of Milk Proteins and Their Capacity to Inhibit Lipid Peroxidation in the Zebrafish Larvae Model.

    Science.gov (United States)

    Carrillo, Wilman; Guzmán, Xavier; Vilcacundo, Edgar

    2017-09-14

    Casein and whey proteins with and without heat treatment were obtained of whole milk and four commercial milks in Ecuador, and were hydrolyzed. Then, their capacity to inhibit the lipid peroxidation using the TBARS method was evaluated at concentrations of 0.02, 0.04, 0.2, and, 0.4 mg/mL. Native and heated hydrolysates of milk proteins present high inhibitions of lipid peroxidation with a dose dependent effect both in vivo and in vitro tests. Casein and whey proteins obtained from whole milk were the ones with the highest anti-oxidant activity in vitro and in vivo test. Native casein hydrolysate at 0.4 mg/mL present a value of 55.55% of inhibition of lipid peroxidation and heated casein hydrolysate at 0.4 mg/mL presents a value of 58.00% of inhibition of lipid peroxidation. Native whey protein at 0.4 mg/mL present a value of 34.84% of inhibition of lipid peroxidation, and heated whey protein at 0.4 mg/mL presents a value of 40.86% of inhibition of lipid peroxidation. Native and heated casein hydrolysates were more active than native and heated whey protein hydrolysates. Heat treatments have an effect of increasing the in vitro inhibition of lipid peroxidation of hydrolysates of milk protein. Casein and whey hydrolysates were able to inhibiting lipid peroxidation in the zebrafish larvae model. Native casein hydrolysate obtained of whole milk presents 48.35% of inhibition TBARS in vivo, this activity was higher in heated casein hydrolysate obtained of whole milk with a value of 56.28% of inhibition TBARS in vivo. Native whey protein hydrolysate obtained of whole milk presents 35.30% of inhibition TBARS, and heated whey protein hydrolysate obtained of whole milk was higher, with a value of 43.60% of inhibition TBARS in vivo.

  3. Salivary total antioxidant capacity and lipid peroxidation in patients with erosive oral lichen planus.

    Science.gov (United States)

    Shirzad, Atena; Pouramir, Mahdi; Seyedmajidi, Maryam; Jenabian, Niloofar; Bijani, Ali; Motallebnejad, Mina

    2014-01-01

    Background and aims. Oral lichen planus is a common chronic inflammatory disease of the oral mucosa with malignant potential, pathogenesis of which is not still well known. Free radicals and reactive oxygen species can play an important role in the pathogenesis of oral lichen planus. The aim of this study was to investigate salivary oxidative stress and antioxidant systems in patients with oral lichen planus. Materials and methods. In this case-control study, 30 patients with oral lichen planus (case group) and 30 age-and gender-matched healthy subjects (control group), referring to Dental School of Babol University of Medical Sciences, were selected using simple sampling method. Unstimulated saliva of the two groups was collected. Salivary total antioxidant capacity (TAC) and lipid peroxidation products were investigated and compared, using ferric reducing antioxidant power (FRAP) and thiobarbituric acid reactive substance (TBARS) methods, respectively. Data were analyzed using Student' t-test. Results. The mean and standard deviation of salivary TAC in patients with oral lichen planus (297.23 ± 149.72 μM) was significantly lower than that in the controls (791.43 ± 183.95 μM; P & 0.0001), and mean and standard deviation of salivary malondialdehyde (MDA) (0.49 ± 0.30 μM) was remarkably higher in oral lichen planus patients compared to the control group (0.15 ± 0.11 μM) (P & 0.0001). TAC was also reduced in both groups in line with an increase in the level of MDA (P & 0.0001, r = -0.48). Conclusion. The results of this study suggested that an increase in oxidative stress and an imbalance in antioxidant defense system in the saliva of oral lichen planus patients may be involved in the pathogenesis of oral lichen planus.

  4. Salivary Total Antioxidant Capacity and Lipid Peroxidation in Patients with Erosive Oral Lichen Planus

    Directory of Open Access Journals (Sweden)

    Atena Shirzad

    2014-03-01

    Full Text Available Background and aims. Oral lichen planus is a common chronic inflammatory disease of the oral mucosa with malignant potential, pathogenesis of which is not still well known. Free radicals and reactive oxygen species can play an important role in the pathogenesis of oral lichen planus. The aim of this study was to investigate salivary oxidative stress and antioxidant systems in patients with oral lichen planus. Materials and methods. In this case-control study, 30 patients with oral lichen planus (case group and 30 age- and gender-matched healthy subjects (control group, referring to Dental School of Babol University of Medical Sciences, were selected using simple sampling method. Unstimulated saliva of the two groups was collected. Salivary total antioxidant capacity (TAC and lipid peroxidation products were investigated and compared, using ferric reducing antioxidant power (FRAP and thiobarbituric acid reactive substance (TBARS methods, respectively. Data were analyzed using Student’s ttest. Results. The mean and standard deviation of salivary TAC in patients with oral lichen planus (297.23 ± 149.72 μM was significantly lower than that in the controls (791.43±183.95 μM; P < 0.0001, and mean and standard deviation of salivary malondialdehyde (MDA (0.49 ± 0.30 μM was remarkably higher in oral lichen planus patients compared to the control group (0.15 ± 0.11 μM (P < 0.0001. TAC was also reduced in both groups in line with an increase in the level of MDA (P < 0.0001, r = −0.48. Conclusion. The results of this study suggested that an increase in oxidative stress and an imbalance in antioxidant defense system in the saliva of oral lichen planus patients may be involved in the pathogenesis of oral lichen planus.

  5. Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions.

    Science.gov (United States)

    Celus, Miete; Salvia-Trujillo, Laura; Kyomugasho, Clare; Maes, Ine; Van Loey, Ann M; Grauwet, Tara; Hendrickx, Marc E

    2018-02-15

    The present work explored the lipid antioxidant capacity of citrus pectin addition to 5%(w/v) linseed/sunflower oil emulsions stabilized with 0.5%(w/v) Tween 80, as affected by pectin molecular characteristics. The peroxide formation in the emulsions, containing tailored pectin structures, was studied during two weeks of storage at 35°C. Low demethylesterified pectin (≤33%) exhibited a higher antioxidant capacity than high demethylesterified pectin (≥58%), probably due to its higher chelating capacity of pro-oxidative metal ions (Fe2+), whereas the distribution pattern of methylesters along the pectin chain only slightly affected the antioxidant capacity. Nevertheless, pectin addition to the emulsions caused emulsion destabilization probably due to depletion or bridging effect, independent of the pectin structural characteristics. These results evidence the potential of structurally modified citrus pectin as a natural antioxidant in emulsions. However, optimal conditions for emulsion stability should be carefully selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The effect of arbutin on lipid peroxidation and antioxidant capacity in the serum of cyclosporine-treated rats

    OpenAIRE

    Khadir, Fatemeh; Pouramir, Mahdi; Joorsaraee, Seyyed Gholamali; Feizi, Farideh; Sorkhi, Hadi; Yousefi, Fatemeh

    2015-01-01

    Background: Cyclosporine A (CsA) is a potent immunosuppressant drug with therapeutic and toxic actions. The use of CsA is limited by its toxicity. Several researchers had proposed that oxidative stress could play an important role in CsA-induced toxicity. Arbutin has recently been shown to possess antioxidative and free radical scavenging abilities. The present study was designed to investigate the in vivo effects of arbutin on lipid peroxidation and antioxidant capacity in the serum of cyclo...

  7. The effect of lipid content on the elemental composition and energy capacity of yeast biomass.

    Science.gov (United States)

    Minkevich, Igor G; Dedyukhina, Emiliya G; Chistyakova, Tat'yana I

    2010-10-01

    Oleaginous yeasts (18 strains) were grown in ethanol media under various cultivation conditions (33 biomass samples). It was found that lipid and lipid-free fractions of dry biomass have elemental composition and biomass reductivity very close to values which can be considered as biological constants. The energy content of dry biomass strongly depended on the total lipid content. When the lipid content was 64%, the energy value of dry biomass reached 73% of diesel oil; therefore, oleaginous microorganisms can be a promising source of biodiesel fuel. The approach used in this work makes it possible to determine the energy value of biomass by its elemental composition without application of laborious and expensive calorimetric measurements of combustion heats.

  8. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage.

    Directory of Open Access Journals (Sweden)

    Diana N D'Ambrosio

    Full Text Available Hepatic stellate cell (HSC lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i increased expression of typical markers of HSC activation; (ii decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT; (iii decreased triglyceride levels; (iv increased expression of genes associated with lipid catabolism; and (v an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1.Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.

  9. Aerobic capacity and hepatic mitochondrial lipid oxidation alters susceptibility for chronic high-fat diet-induced hepatic steatosis.

    Science.gov (United States)

    Morris, E Matthew; Meers, Grace M E; Koch, Lauren G; Britton, Steven L; Fletcher, Justin A; Fu, Xiaorong; Shankar, Kartik; Burgess, Shawn C; Ibdah, Jamal A; Rector, R Scott; Thyfault, John P

    2016-10-01

    Rats selectively bred for high capacity running (HCR) or low capacity running (LCR) display divergence for intrinsic aerobic capacity and hepatic mitochondrial oxidative capacity, both factors associated with susceptibility for nonalcoholic fatty liver disease. Here, we tested if HCR and LCR rats display differences in susceptibility for hepatic steatosis after 16 wk of high-fat diets (HFD) with either 45% or 60% of kcals from fat. HCR rats were protected against HFD-induced hepatic steatosis, whereas only the 60% HFD induced steatosis in LCR rats, as marked by a doubling of liver triglycerides. Hepatic complete fatty acid oxidation (FAO) and mitochondrial respiratory capacity were all lower in LCR compared with HCR rats. LCR rats also displayed lower hepatic complete and incomplete FAO in the presence of etomoxir, suggesting a reduced role for noncarnitine palmitoyltransferase-1-mediated lipid catabolism in LCR versus HCR rats. Hepatic complete FAO and mitochondrial respiration were largely unaffected by either chronic HFD; however, 60% HFD feeding markedly reduced 2-pyruvate oxidation, a marker of tricarboxylic acid (TCA) cycle flux, and mitochondrial complete FAO only in LCR rats. LCR rats displayed lower levels of hepatic long-chain acylcarnitines than HCR rats but maintained similar levels of hepatic acetyl-carnitine levels, further supporting lower rates of β-oxidation, and TCA cycle flux in LCR than HCR rats. Finally, only LCR rats displayed early reductions in TCA cycle genes after the acute initiation of a HFD. In conclusion, intrinsically high aerobic capacity confers protection against HFD-induced hepatic steatosis through elevated hepatic mitochondrial oxidative capacity.

  10. Multiscale modelling to understand the self-assembly mechanism of human β2-adrenergic receptor in lipid bilayer.

    Science.gov (United States)

    Ghosh, Anirban; Sonavane, Uddhavesh; Joshi, Rajendra

    2014-02-01

    The long perceived notion that G-Protein Coupled Receptors (GPCRs) function in monomeric form has recently been changed by the description of a number of GPCRs that are found in oligomeric states. The mechanism of GPCR oligomerization, and its effect on receptor function, is not well understood. In the present study, coarse grained molecular dynamics (CGMD) approach was adopted for studying the self-assembly process of the human GPCR, β2-adrenergic receptor (β2-AR), for which several experimental evidences of the dimerization process and its effect on cellular functions are available. Since the crystal structure of β2-AR lacks the third intracellular loop, initially it was modelled and simulated using restrained MD in order to get a stable starting conformation. This structure was then converted to CG representation and 16 copies of it, inserted into a hydrated lipid bilayer, were simulated for 10 μs using the MARTINI force field. At the end of 10μs, oligomers of β2-AR were found to be formed through the self-assembly mechanism which were further validated through various analyses of the receptors. The lipid bilayer analysis also helped to quantify this assembly mechanism. In order to identify the domains which are responsible for this oligomerization, a reverse transformation of the CG system back to all-atom structure and simulated annealing run were carried out at the end of 10 μs CGMD run. Analysis of the all-atom dimers thus obtained, revealed that TM1/TM1, H8/H8, TM1/TM5 and TM6/TM6 regions formed most of the dimerization surfaces, which is in accordance with some of the experimental observations and recent simulation results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects.

    Science.gov (United States)

    Ouerghi, Nejmeddine; Khammassi, Marwa; Boukorraa, Sami; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2014-01-01

    Data regarding the effect of training on plasma lipids are controversial. Most studies have addressed continuous or long intermittent training programs. The present study evaluated the effect of short-short high-intensity intermittent training (HIIT) on aerobic capacity and plasma lipids in soccer players. The study included 24 male subjects aged 21-26 years, divided into three groups: experimental group 1 (EG1, n=8) comprising soccer players who exercised in addition to regular short-short HIIT twice a week for 12 weeks; experimental group 2 (EG2, n=8) comprising soccer players who exercised in a regular football training program; and a control group (CG, n=8) comprising untrained subjects who did not practice regular physical activity. Maximal aerobic velocity and maximal oxygen uptake along with plasma lipids were measured before and after 6 weeks and 12 weeks of the respective training program. Compared with basal values, maximal oxygen uptake had significantly increased in EG1 (from 53.3±4.0 mL/min/kg to 54.8±3.0 mL/min/kg at 6 weeks [P<0.05] and to 57.0±3.2 mL/min/kg at 12 weeks [P<0.001]). Maximal oxygen uptake was increased only after 12 weeks in EG2 (from 52.8±2.7 mL/min/kg to 54.2±2.6 mL/min/kg, [P<0.05]), but remain unchanged in CG. After 12 weeks of training, maximal oxygen uptake was significantly higher in EG1 than in EG2 (P<0.05). During training, no significant changes in plasma lipids occurred. However, after 12 weeks, total and low-density lipoprotein cholesterol levels had decreased (by about 2%) in EG1 but increased in CG. High-density lipoprotein cholesterol levels increased in EG1 and EG2, but decreased in CG. Plasma triglycerides decreased by 8% in EG1 and increased by about 4% in CG. Twelve weeks of short-short HIIT improves aerobic capacity. Although changes in the lipid profile were not significant after this training program, they may have a beneficial impact on health.

  12. The effect of arbutin on lipid peroxidation and antioxidant capacity in the serum of cyclosporine-treated rats.

    Science.gov (United States)

    Khadir, Fatemeh; Pouramir, Mahdi; Joorsaraee, Seyyed Gholamali; Feizi, Farideh; Sorkhi, Hadi; Yousefi, Fatemeh

    2015-01-01

    Cyclosporine A (CsA) is a potent immunosuppressant drug with therapeutic and toxic actions. The use of CsA is limited by its toxicity. Several researchers had proposed that oxidative stress could play an important role in CsA-induced toxicity. Arbutin has recently been shown to possess antioxidative and free radical scavenging abilities. The present study was designed to investigate the in vivo effects of arbutin on lipid peroxidation and antioxidant capacity in the serum of cyclosporine treated rats. Adult male Wistar rats were divided into six groups (n=8/group): (I) control (no CsA and arbutin administration), (II and III) were treated subcutaneously (Sc) with arbutin (50,100 mg/kg/bw), respectively, (IV) administered CsA (25 mg/kg/bw) intraperitoneally (IP), (V and VI) received the combination of CsA (25 mg/kg/bw) i.p and arbutin (50,100 mg/kg/bw) Sc daily, respectively. At the end of the treatment (after3 weeks), serum lipid peroxidation was measured by thiobarbituric acid-reacting substances (TBARS) and serum total antioxidant capacity (ferric reducing ability of plasma [FRAP]) was assayed based on spectrophotometric method. TBARS had been significantly increased by CsA administration compared with control rats. Arbutin (50mg/kg/bw) completely prevented this effect, but arbutin (100 mg/kg/bw) alone or in combination with CsA significantly increased lipid peroxidation compared with controls. Our data indicate that arbutin (50mg/kg/bw) had protective effect in the CsA-induced toxicity but high concentration of arbutin (100mg/kg/bw) showed meaningful oxidative and lipoperoxidative effects.

  13. Total antioxidant capacity, lipid peroxidation and uric acid of saliva in smokers and non-smokers: a comparative study

    Directory of Open Access Journals (Sweden)

    Atena Shiva

    2016-12-01

    Full Text Available Background: Smoking is a harmful habit and saliva is the first fluid that is exposed to cigarette smoke as a source of oxidant and peroxidant agent. Salivary antioxidant system plays an important role in its anti-cancer potential. Uric acid has a role as antioxidant in the body and could increase plasma antioxidant capacity and has a specific role as inhibitor on radicals and peroxidant agent. Therefore, the aim of this study was to evaluate indicators of oxidative stress or malondialdehyde (MDA as an important parameter of lipid peroxidation and total antioxidants capacity in smokers and non-smoking persons. Methods: In this case-control study which was conducted in clinical biochemistry labratory, Mazandaran University of Medical Sciences on Spring 2016. The sample on salivary fluids was collected by spitting method in tubs from 50 smokers (cases group and nonsmokers (controls group after all night fasting. As soon as saliva was collected, at the first step total whole salivary fluids were centrifuged and the superior parts were transferred in a tub and stored at -80 ℃ until analyzed. Total antioxidant capacity (TCA of their saliva was evaluated by Ferric reducing ability of plasma (FRAP method, lipid peroxidation parameter (MDA with thiobarbituric acid (TBARS and uric acid by calorimetry (uricase methods. The data were analyzed via SPSS software and independent t-test was used to compare the two groups. Results: Indicators of oxidative stress, in the case group was 1.17±0.29 nmol/ml significantly higher than compared to control group with 0.91±0.16 nmol/ml. TCA in the case group was 220.66±39.68 μmol/l compared to control group 272.26±40.64 μmol/l was significantly lower (P< 0.05. Conclusion: The result of this study indicates that smoking can reduce total antioxidant capacity and increase lipid peroxidation parameters. In addition, duration of cigarette using has destructive effects on body that it can lead to several diseases. The

  14. Self-assemblies of lecithin and a-tocopherol as gelators of lipid material

    NARCIS (Netherlands)

    Nikiforidis, C.V.; Scholten, E.

    2014-01-01

    Amongst the different mechanisms that have been proposed and used to structure organogels, self-assembly of the gelators into supramolecular structures linked through non-covalent bonds is the most interesting. The gelator activity of LMGOs is often found most effective when micellar or lamellar

  15. Celastrol suppresses obesity process via increasing antioxidant capacity and improving lipid metabolism.

    Science.gov (United States)

    Wang, Chaoyun; Shi, Chunfeng; Yang, Xiaoping; Yang, Ming; Sun, Hongliu; Wang, Chunhua

    2014-12-05

    High fat diet, as an important risk factor, plays a pivotal role in atherosclerotic process. Celastrol is one of the active triterpenoid compounds with antioxidative and anti-inflammatory characters. The aims of this study were to evaluate the effect of celastrol on weight, blood lipid and oxidative injury induced by high fat emulsion, and investigate its potential pharmacological mechanisms. Male Sprague-Dawley rats were fed with high fat emulsion for 6 wk to mimic high fat mediated oxidative injury. The effects of celastrol on weight and blood lipid were evaluated, and its mechanisms were disclosed by applying western blot, ELISA and assay kits. Long-term consumption of high fat emulsion could significantly increase weight by enhancing total cholesterol (TC), triacylglycerol (TG), apolipoprotein B (Apo B), low-density lipoprotein cholesterol (LDL-c) levels, attenuating ATP-binding cassette transporter A1 (ABCA1) expression, and decreasing the levels of high-density lipoprotein cholesterol (HDL-c) and apolipoprotein A-I (Apo A-I), and inhibit antioxidant enzymes activities, improve nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. Comparing with model group, celastrol was able to effectively suppress weight and attenuate high fat mediated oxidative injury by improving ABCA1 expression, reducing the levels of TC, TG, LDL-c and Apo B in plasma, and increasing antioxidant enzymes activities and inhibiting NADPH oxidase activity, and decreasing the serum levels of Malondialdehyde (MDA) and reactive oxygen species in dose-dependent way. These data demonstrated that celastrol was able to effectively suppress weight and alleviate high-fat mediated cardiovascular injury via mitigating oxidative stress and improving lipid metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The lipid interaction capacity of Sin a 2 and Ara h 1, major mustard and peanut allergens of the cupin superfamily, endorses allergenicity.

    Science.gov (United States)

    Angelina, A; Sirvent, S; Palladino, C; Vereda, A; Cuesta-Herranz, J; Eiwegger, T; Rodríguez, R; Breiteneder, H; Villalba, M; Palomares, O

    2016-09-01

    Sin a 2 (11S globulin) and Ara h 1 (7S globulin) are major allergens from yellow mustard seeds and peanut, respectively. The ability of these two allergens to interact with lipid components remains unknown. To study the capacity of Sin a 2 and Ara h 1 to interact with lipid components and the potential effects of such interaction in their allergenic capacity. Spectroscopic and SDS-PAGE binding assays of Sin a 2 and Ara h 1 with different phospholipid vesicles and gastrointestinal and endolysosomal digestions in the presence or absence of lipids were performed. The capacity of human monocyte-derived dendritic cells (hmoDCs) to capture food allergens in the presence or absence of lipids, the induced cytokine signature, and the effect of allergens and lipids to regulate TLR2-L-induced NF-kB/AP-1 activation in THP1 cells were analyzed. Sin a 2 and Ara h 1 bind phosphatidylglycerol (PG) acid but not phosphatidylcholine (PC) vesicles in a pH-dependent manner. The interaction of these two allergens with lipid components confers resistance to gastrointestinal digestion, reduces their uptake by hmoDCs, and enhances their stability to microsomal degradation. Mustard and peanut lipids favor a proinflammatory environment by increasing the IL-4/IL-10 ratio and IL-1β production by hmoDCs. The presence of mustard lipids and PG vesicles inhibits TLR2-L-induced NF-kB/AP-1 activation in THP1 cells. Sin a 2 and Ara h 1 interact with lipid components, which might well contribute to explain the potent allergenic capacity of these two clinically relevant allergens belonging to the cupin superfamily. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations

    DEFF Research Database (Denmark)

    Simonsson, Carl; Madsen, Jakob Torp; Graneli, Annette

    2011-01-01

    The growing focus on nanotechnology and the increased use of nano-sized structures, e.g. vesicles, in topical formulations has led to safety concerns. We have investigated the sensitizing capacity and penetration properties of a fluorescent model compound, rhodamine B isothiocyanate (RBITC), when...... penetration and increased formation of hapten-protein complexes in epidermis when RBITC is delivered in ethosomal formulations....

  18. Effect of floorball training on blood lipids, body composition, muscle strength, and functional capacity of elderly men.

    Science.gov (United States)

    Vorup, J; Pedersen, M T; Melcher, P S; Dreier, R; Bangsbo, J

    2016-08-03

    Floorball training consists of intense repeated exercise and may offer a motivating and social stimulating team activity in elderly individuals. However, the effect of floorball training in elderly adults on physiological adaptations important for health is not known. Thus, this study examined the effect of floorball training on blood lipids, muscle strength, body composition, and functional capacity of men aged 65-76 years. Thirty-nine recreational active men were randomized into a floorball group (FG; n = 22) or petanque group (PG; n = 17), in which training was performed 1 h twice a week for 12 weeks. In FG and PG, average heart rate (HR) during training was 80% and 57%, respectively, of maximal HR. In FG, plasma low-density lipoprotein (LDL) cholesterol and triglycerides were 11% and 8% lower (P functional capacity tests were better (P training period. No changes were observed in PG. In conclusion, 12 weeks of floorball training resulted in a number of favorable effects important for health and functional capacity, suggesting that floorball training can be used as a health-promoting activity in elderly men. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Cationic Nanoparticles Assembled from Natural-Based Steroid Lipid for Improved Intracellular Transport of siRNA and pDNA

    Directory of Open Access Journals (Sweden)

    Ruilong Sheng

    2016-04-01

    Full Text Available Developing new functional biomaterials from biocompatible natural-based resources for gene/drug delivery has attracted increasing attention in recent years. In this work, we prepared a series of cationic nanoparticles (Diosarg-DOPE NPs by assembly of a natural steroid diosgenin-based cationic lipid (Diosarg with commercially-available helper lipid 1,2-dioleoyl-sn-glycero-3-phosphorethanolamine (DOPE. These cationic Diosarg-DOPE NPs were able to efficiently bind siRNA and plasmid DNA (pDNA via electrostatic interactions to form stable, nano-sized cationic lipid nanoparticles instead of lamellar vesicles in aqueous solution. The average particle size, zeta potentials and morphologies of the siRNA and pDNA complexes of the Diosarg-DOPE NPs were examined. The in vitro cytotoxicity of NPs depends on the dose and assembly ratio of the Diosarg and DOPE. Notably, the intracellular transportation efficacy of the exogenesis siRNA and pDNA could be greatly improved by using the Diosarg-DOPE NPs as the cargoes in H1299 cell line. The results demonstrated that the self-assembled Diosarg-DOPE NPs could achieve much higher intracellular transport efficiency for siRNA or pDNA than the cationic lipid Diosarg, indicating that the synergetic effect of different functional lipid components may benefit the development of high efficiency nano-scaled gene carriers. Moreover, it could be noted that the traditional “lysosome localization” involved in the intracellular trafficking of the Diosarg and Diosarg-DOPE NPs, indicating the co-assembly of helper lipid DOPE, might not significantly affect the intracellular localization features of the cationic lipids.

  20. Self-Assembly and Drug Release Capacities of Organogels via Some Amide Compounds with Aromatic Substituent Headgroups

    Directory of Open Access Journals (Sweden)

    Lexin Zhang

    2016-07-01

    Full Text Available In this work, some amide compounds with different aromatic substituent headgroups were synthesized and their gelation self-assembly behaviors in 22 solvents were characterized as new gelators. The obtained results indicated that the size of aromatic substituent headgroups in molecular skeletons in gelators showed crucial effect in the gel formation and self-assembly behavior of all compounds in the solvents used. Larger aromatic headgroups in molecular structures in the synthesized gelator molecules are helpful to form various gel nanostructures. Morphological investigations showed that the gelator molecules can self-assembly and stack into various organized aggregates with solvent change, such as wrinkle, belt, rod, and lamella-like structures. Spectral characterizations suggested that there existed various weak interactions including π-π stacking, hydrogen bonding, and hydrophobic forces due to aromatic substituent headgroups and alkyl substituent chains in molecular structures. In addition, the drug release capacities experiments demonstrated that the drug release rate in present obtained gels can be tuned by adjusting the concentrations of dye. The present work would open up enormous insight to design and investigate new kind of soft materials with designed molecular structures and tunable drug release performance.

  1. Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Tiago J Dantas

    Full Text Available Centrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC, stabilising it, and its presence slightly increases nucleotide excision repair (NER activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities. Here, we explore how centrin2 controls NER. In the centrin null cells, we expressed centrin2 mutants that cannot bind calcium or that lack sites for phosphorylation by regulatory kinases. Expression of any of these mutants restored the UV sensitivity of centrin null cells to normal as effectively as expression of wild-type centrin. However, calcium-binding-deficient and T118A mutants showed greatly compromised localisation to centrosomes. XPC recruitment to laser-induced UV-like lesions was only slightly slower in centrin-deficient cells than in controls, and levels of XPC and its partner HRAD23B were unaffected by centrin deficiency. Interestingly, we found that overexpression of the centrin interactor POC5 leads to the assembly of linear, centrin-dependent structures that recruit other centrosomal proteins such as PCM-1 and NEDD1. Together, these observations suggest that assembly of centrins into complex structures requires calcium binding capacity, but that such assembly is not required for centrin activity in NER.

  2. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects

    Directory of Open Access Journals (Sweden)

    Ouerghi N

    2014-10-01

    Full Text Available Nejmeddine Ouerghi,1,2 Marwa Khammassi,1 Sami Boukorraa,1 Moncef Feki,2 Naziha Kaabachi,2 Anissa Bouassida,1,3 1Research Unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education of Kef, University of Jendouba, Kef, Tunisia, 2Laboratory of Biochemistry, Rabta Hospital, Faculty of Medicine of Tunis, El Manar University, Tunis, 3Physiology Laboratory, Faculty of Medicine Ibn el Jazzar, Sousse, Tunisia Background: Data regarding the effect of training on plasma lipids are controversial. Most studies have addressed continuous or long intermittent training programs. The present study evaluated the effect of short-short high-intensity intermittent training (HIIT on aerobic capacity and plasma lipids in soccer players. Methods: The study included 24 male subjects aged 21–26 years, divided into three groups: experimental group 1 (EG1, n=8 comprising soccer players who exercised in addition to regular short-short HIIT twice a week for 12 weeks; experimental group 2 (EG2, n=8 comprising soccer players who exercised in a regular football training program; and a control group (CG, n=8 comprising untrained subjects who did not practice regular physical activity. Maximal aerobic velocity and maximal oxygen uptake along with plasma lipids were measured before and after 6 weeks and 12 weeks of the respective training program. Results: Compared with basal values, maximal oxygen uptake had significantly increased in EG1 (from 53.3±4.0 mL/min/kg to 54.8±3.0 mL/min/kg at 6 weeks [P<0.05] and to 57.0±3.2 mL/min/kg at 12 weeks [P<0.001]. Maximal oxygen uptake was increased only after 12 weeks in EG2 (from 52.8±2.7 mL/min/kg to 54.2±2.6 mL/min/kg, [P<0.05], but remain unchanged in CG. After 12 weeks of training, maximal oxygen uptake was significantly higher in EG1 than in EG2 (P<0.05. During training, no significant changes in plasma lipids occurred. However, after 12 weeks, total and low-density lipoprotein

  3. Transmembrane Complexes of DAP12 Crystallized in Lipid Membranes Provide Insights into Control of Oligomerization in Immunoreceptor Assembly

    Directory of Open Access Journals (Sweden)

    Konstantin Knoblich

    2015-05-01

    Full Text Available The membrane-spanning α helices of single-pass receptors play crucial roles in stabilizing oligomeric structures and transducing biochemical signals across the membrane. Probing intermolecular transmembrane interactions in single-pass receptors presents unique challenges, reflected in a gross underrepresentation of their membrane-embedded domains in structural databases. Here, we present two high-resolution structures of transmembrane assemblies from a eukaryotic single-pass protein crystallized in a lipidic membrane environment. Trimeric and tetrameric structures of the immunoreceptor signaling module DAP12, determined to 1.77-Å and 2.14-Å resolution, respectively, are organized by the same polar surfaces that govern intramembrane assembly with client receptors. We demonstrate that, in addition to the well-studied dimeric form, these trimeric and tetrameric structures are made in cells, and their formation is competitive with receptor association in the ER. The polar transmembrane sequences therefore act as primary determinants of oligomerization specificity through interplay between charge shielding and sequestration of polar surfaces within helix interfaces.

  4. Effect of floorball training on blood lipids, body composition, muscle strength, and functional capacity of elderly men

    DEFF Research Database (Denmark)

    Vorup Petersen, Jacob; Pedersen, Mogens Theisen; Melcher, Pia Grethe Sandfeld

    2017-01-01

    the effect of floorball training on blood lipids, muscle strength, body composition, and functional capacity of men aged 65-76 years. Thirty-nine recreational active men were randomized into a floorball group (FG; n = 22) or petanque group (PG; n = 17), in which training was performed 1 h twice a week for 12......Floorball training consists of intense repeated exercise and may offer a motivating and social stimulating team activity in elderly individuals. However, the effect of floorball training in elderly adults on physiological adaptations important for health is not known. Thus, this study examined...... weeks. In FG and PG, average heart rate (HR) during training was 80% and 57%, respectively, of maximal HR. In FG, plasma low-density lipoprotein (LDL) cholesterol and triglycerides were 11% and 8% lower (P

  5. Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity.

    Science.gov (United States)

    Serra, M C; Ryan, A S; Goldberg, A P

    2017-03-01

    This study examines the hypothesis that lower adipose tissue lipoprotein lipase (LPL) activity and a limited capacity for subcutaneous adipocyte expansion will be associated with metabolic syndrome (MSyn) in postmenopausal women who are overweight and obese. Women (N = 150; age 60 ± 1 year; BMI: 31.5 ± 0.3 kg m-2; mean ± standard errors of the means [SEM]) with and without MSyn had dual-energy X-ray absorptiometry scans for total body fat, CT scans for visceral and subcutaneous abdominal adipose tissue areas, lipid and glucose metabolic profiles, and abdominal and gluteal fat aspirations for subcutaneous fat cell weight (FCW; N = 150) and LPL activity (N = 100). Women with MSyn had similar total body fat, but 15% larger abdominal and 11% larger gluteal FCWs and more visceral fat (179 ± 7 vs. 134 ± 6 cm2) than women without MSyn (P's women with than without MSyn and correlated with abdominal FCW (r = 0.49, P independent of total body fat. These results show that women with MSyn have lower LPL activity, limited capacity for subcutaneous adipocyte lipid storage and greater ectopic fat accumulation in viscera than women without MSyn of comparable obesity. This suggests that the development of novel therapies that would enhance adipocyte expandability might prevent the accumulation of ectopic fat and reduce the risk for MSyn in postmenopausal women with obesity.

  6. A new adaptive burst assembly algorithm for OBS networks considering capacity of control plane

    OpenAIRE

    Çırak, İsmail

    2008-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2008. Thesis (Master's) -- Bilkent University, 2008. Includes bibliographical references leaves 55-57. Recent developments in wavelength-division multiplexing (WDM) technology increase the amount of bandwidth available in fiber links by many orders of magnitude. However, this increase in link capacities is limited by the conventional electron...

  7. Liquid crystalline phases of dendritic lipid-DNA self-assemblies: lamellar, hexagonal, and DNA bundles.

    Science.gov (United States)

    Zidovska, Alexandra; Evans, Heather M; Ewert, Kai K; Quispe, Joel; Carragher, Bridget; Potter, Clinton S; Safinya, Cyrus R

    2009-03-26

    The prospects of gene therapy have generated unprecedented interest in the properties and structures of complexes of nucleic acids (NAs) with cationic liposomes (CLs), which are used as nonviral NA carriers in worldwide clinical trials. An improved understanding of the mechanisms of action of CL-NA complexes is required to enable their widespread therapeutic use. In prior studies of CL-mediated DNA delivery, membrane charge density (sigma(M)) was identified as a key parameter for transfection efficiency (TE) of lamellar (L(alpha)(C)) CL-DNA complexes. The TE of CL-DNA complexes containing cationic lipids with headgroup valencies from 1+ to 5+ follows a universal bell-shaped curve as a function of sigma(M). As we report here, the TE of CL-DNA complexes containing new multivalent lipids with dendritic headgroups (DLs) strongly deviates from this curve at high sigma(M). We have investigated four DLs, MVLG2 (4+), MVLG3 (8+), MVLBisG1 (8+), and MVLBisG2 (16+), in mixtures with neutral 1,2-dioleoyl-sn-glycerophosphatidyl-choline (DOPC). To understand the TE behavior, we have performed X-ray diffraction (XRD), optical microscopy, and cryo-TEM studies of the DL/DOPC mixtures and their DNA complexes. XRD reveals a complex phase behavior of DL-DNA complexes which strongly depends on the headgroup charge. MVLG2(4+)/DOPC-DNA complexes exhibit the lamellar phase at all molar fractions of DL, Phi(DL). In stark contrast, MVLBisG2(16+)/ DOPC-DNA complexes remain lamellar only for Phi(DL) phase H(I)(C), consisting of a hexagonal lattice of cylindrical lipid micelles and a DNA honeycomb lattice, is formed. At Phi(DL) > 0.3, XRD suggests formation of a distorted H(I)(C) phase. For Phi(DL) > or = 0.5 under high salt conditions, this phase coexists with a bundle phase of DNA condensed by the depletion-attraction effect of DL micelles. The transitions at high sigma(M) from the lamellar phase to the new hexagonal phases of DL-DNA complexes coincide with the deviation from the universal

  8. Self-assembly of a chiral lipid gelator controlled by solvent and speed of gelation.

    Science.gov (United States)

    Xue, Pengchong; Lu, Ran; Yang, Xinchun; Zhao, Li; Xu, Defang; Liu, Yan; Zhang, Hanzhuang; Nomoto, Hiroyuki; Takafuji, Makoto; Ihara, Hirotaka

    2009-09-28

    Glutamine derivative 1 with two-photon absorbing units has been synthesized and was found to show gelation ability in some solvents. Its self-assembly in the gel phase could be controlled by the solvent and speed of gelation. For example, in DMSO the organogelator self-assembled into H-aggregates with weak exciton coupling between the aromatic moieties. On the other hand, in DMSO/diphenyl ether (1:9, v/v) the molecules formed 1D aggregates, but with strong exciton coupling due to the small distance between the chromophores. Moreover, the formation of these two kinds of aggregates could be adjusted by the ratio of DMSO to diphenyl ether. In DMSO/toluene, DMSO/butanol, DMSO/butyl acetate, and DMSO/acetic acid systems similar results were observed. Therefore, conversion of the packing model occurs irrespective of the nature of the solvent. Notably, a unique sign inversion in the CD spectra could be realized by controlling the speed of gelation in the DMSO/diphenyl ether (1:9, v/v) system. It was found that a low speed of gelation induces the gelator to adopt a packing model with strong pi-pi interactions between the aromatic units. Moreover, the gels, when excited at 800 nm, emit strong green fluorescence and the quantum chemical calculations suggest that intramolecular charge transfer leads to two-photon absorption of the gelator molecule.

  9. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  10. The assembly of lipid droplets and its relation to cellular insulin sensitivity

    DEFF Research Database (Denmark)

    Boström, Pontus; Andersson, Linda; Li, Lu

    2009-01-01

    to be transported on microtubules. Lipid droplets grow in size by fusion, which is dependent on dynein and the transfer on microtubules, and is catalysed by the SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins SNAP-23 (23 kDa synaptosome-associated protein), syntaxin-5...... and VAMP-4 (vesicle-associated protein 4). SNAP-23 is also involved in the insulin-dependent translocation of the glucose transporter GLUT4 to the plasma membrane. Fatty acids induce a missorting of SNAP-23, from the plasma membrane to the interior of the cell, resulting in cellular insulin resistance...... that can be overcome by increasing the levels of SNAP-23. The same missorting of SNAP-23 occurs in vivo in skeletal-muscle biopsies from patients with T2D (Type 2 diabetes). Moreover, there was a linear relation between the amount of SNAP-23 in the plasma membrane from human skeletal-muscles biopsies...

  11. Self-assembling complexes between binary mixtures of lipids with different linkers and nucleic acids promote universal mRNA, DNA and siRNA delivery.

    Science.gov (United States)

    Colombani, Thibault; Peuziat, Pauline; Dallet, Laurence; Haudebourg, Thomas; Mével, Mathieu; Berchel, Mathieu; Lambert, Olivier; Habrant, Damien; Pitard, Bruno

    2017-03-10

    Protein expression and RNA interference require efficient delivery of DNA or mRNA and small double stranded RNA into cells, respectively. Although cationic lipids are the most commonly used synthetic delivery vectors, a clear need still exists for a better delivery of various types of nucleic acids molecules to improve their biological activity. To optimize the transfection efficiency, a molecular approach consisting in modifying the chemical structure of a given cationic lipid is usually performed, but an alternative strategy could rely on modulating the supramolecular assembly of lipidic lamellar phases sandwiching the nucleic acids molecules. To validate this new concept, we synthesized on one hand two paromomycin-based cationic lipids, with either an amide or a phosphoramide linker, and on the other hand two imidazole-based neutral lipids, having as well either an amide or a phosphoramide function as linker. Combinations of cationic and helper lipids containing the same amide or phosphoramide linkers led to the formation of homogeneous lamellar phases, while hybrid lamellar phases were obtained when the linkers on the cationic and helper lipids were different. Cryo-transmission electron microscopy and fluorescence experiments showed that liposomes/nucleic acids complexes resulting from the association of nucleic acids with hybrid lamellar phases led to complexes that were more stable in the extracellular compartment compared to those obtained with homogeneous systems. In addition, we observed that the most active supramolecular assemblies for the delivery of DNA, mRNA and siRNA were obtained when the cationic and helper lipids possess linkers of different natures. The results clearly show that this supramolecular strategy modulating the property of the lipidic lamellar phase constitutes a new approach for increasing the delivery of various types of nucleic acid molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fundamental Studies of Assembly and Mechanical Properties of Lipid Bilayer Membranes and Unilamellar Vesicles

    Science.gov (United States)

    Wang, Xi

    This dissertation work focuses on: (i) obtaining a phospholipid bilayer membrane (LBM)/conducting electrode system with low defect density and optimized rigidity; (ii) investigating vesicle stability and mechanical properties. LBM is a simplified yet representative cell membrane model. LBMs assembled on conductive surfaces can probe protein-LBM interactions activities electrochemically. Sterically stabilized vesicles could be used as cell models or for drug delivery. The main challenges for LBM assembly on gold are vesicles do not spontaneously rupture to form LBMs on gold and the roughness of the gold substrate has considerable influence on molecular film defect density. In this study, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles were functionalized with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine- N-poly(ethylene glycol)-2000-N-[3-(2-pyridyldithio)propionate] (DSPE-PEG-PDP) to yield stable LBMs on gold without surface modification. A template-stripping method was used to obtain atomically flat and pristine gold surfaces. The critical force to initiate vesicle rupture decreases with increasing DSPE-PEG-PDP concentration, indicating that gold-thiolate bonding between DSPE-PEG-PDP and gold substrates promotes LBM formation. Mechanical properties of LBMs and vesicles were investigated as a function of DSPE-PEG-PDP concentration via Atomic Force Microscopy. The elastic moduli of LBMs were determined with DSPE-PEG-PDP concentration ranging from 0mol% to 24mol% and were found to depend on PEG chain conformation. Incorporating DSPE-PEG-PDP molecules with PEG in mushroom conformation results in a decrease of LBM rigidity, while incorporating PEG in brush conformation leads to LBM stiffening. Contrarily, mechanical properties of functionalized vesicles did not vary significantly by varying DSPE-PEG-PDP concentration. LBM with tunable rigidity by adjusting DSPE-PEG-PDP concentration provides a versatile cell membrane model for studying protein or

  13. Dietary total antioxidant capacity and incidence of chronic kidney disease in subjects with dysglycemia: Tehran Lipid and Glucose Study.

    Science.gov (United States)

    Asghari, Golaleh; Yuzbashian, Emad; Shahemi, Sahar; Gaeini, Zahra; Mirmiran, Parvin; Azizi, Fereidoun

    2017-07-24

    We aimed to investigate the association of dietary total antioxidant capacity (TAC) with incidence of CKD in subjects with dysglycemia. We followed-up 1179 subjects aged ≥30 years with dysglycemia from the Tehran Lipid and Glucose Study (TLGS) for 3 years, who were initially free of CKD. Dietary intakes of TAC, vitamin C, vitamin E, and β-carotene were assessed by a food-frequency questionnaire at the baseline. Dietary TAC was estimated using the oxygen radical absorbance capacity method. Estimated glomerular filtration rate (eGFR) was calculated, using the Modification of Diet in Renal Disease Study equation and CKD was defined as eGFR intake, the top tertile of dietary TAC compared to the bottom was associated with 39% [95% confidence interval (CI) = 0.40-0.93] lower risk of incident CKD (P for trend = 0.025). Furthermore, the highest tertile of vitamin C intake compared to the lowest risk of incident CKD was decreased (OR 0.60; 95% CI 0.38-0.93, P trend 0.023). Intakes of vitamin E and β-carotene were not significantly associated with incident CKD risk. Our findings suggest that diets high in TAC are associated with a lower risk of incident CKD among subjects with hyperglycemia after 3 years of follow-up.

  14. Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kW e capacity

    Science.gov (United States)

    Giddey, S.; Ciacchi, F. T.; Badwal, S. P. S.

    Polymer electrolyte membrane (PEM) fuel cell stacks to 1 kW e capacity, with an active area of 225 cm 2 per cell, have been constructed and operated to investigate the fuel quality issues (one of the major barriers for commercialization of this technology), and start/stop, thermal cycling and load following capabilities. The stacks were assembled and tested in stages of 2-, 4-, 8- and 15-cell configurations. This paper describes the design and assembly of the stacks tested, analysis of the results and problems encountered during operation. Though the 1 kW e stack showed a large variation in the temperature of the interconnect plates due to uneven cooling, the individual cell voltages were found to be within 86 mV (under full load). The average power produced by each cell for the 1 kW e stack operating on air/H 2 was 67.5 W (300 mW cm -2). The stack has undergone more than 40 cold start/shut down thermal cycles in the power output range of 0.6-1 kW e over an accumulated operation of ˜300 h with a small degradation in its performance. The electrical efficiency of the stack varied from 39 to 41%. The recoverable combined heat and power (CHP) efficiency of the stack was 65% without external thermal insulation and 80% with external thermal insulation.

  15. Decreased blood antioxidant capacity and increased lipid peroxidation in young cigarette smokers compared to nonsmokers: Impact of dietary intake

    Directory of Open Access Journals (Sweden)

    Bloomer Richard J

    2007-11-01

    Full Text Available Abstract Background Blood of cigarette smokers routinely displays decreased antioxidant capacity and increased oxidized lipids compared to nonsmokers. This is thought to be due to both chronic exposure to cigarette smoke in addition to low intake of dietary antioxidants, and is a routine finding in veteran smokers. No study to date has determined the independent and combined impact of dietary intake and cigarette smoking on blood antioxidant capacity and oxidative stress in a sample of young, novice smokers. Methods We compared resting plasma antioxidant reducing capacity (ARC; expressed in uric acid equivalents, serum trolox-equivalent antioxidant capacity (TEAC, whole blood total glutathione, plasma malondialdehyde (MDA, and plasma oxidized low density lipoprotein (oxLDL between 15 young (24 ± 4 years, novice smokers (pack-year history: 3 ± 2 and 13 nonsmokers of similar age (24 ± 5 years. Detailed dietary records were maintained during a seven-day period for analysis of total energy, macro- and micronutrient intake. Results ARC (0.0676 ± 0.0352 vs. 0.1257 ± 0.0542 mmol·L-1; mean ± SD, p = 0.019, TEAC (0.721 ± 0.120 vs. 0.765 ± 0.130 mmol·L-1, p = 0.24 and glutathione (835 ± 143 vs. 898 ± 168 μmol·L-1, p = 0.28 were lower in smokers compared to nonsmokers, with only the former being statistically significant. MDA (0.919 ± 0.32 vs. 0.647 ± 0.16 μmol·L-1, p = 0.05 and oxLDL were both higher in smokers compared to nonsmokers (229 ± 94 vs. 110 ± 62 ng·mL-1, p = 0.12, although only the MDA comparison was of statistical significance. Interestingly, these findings existed despite no differences in dietary intake, including antioxidant micronutrient consumption, between both smokers and nonsmokers. Conclusion These data, with specificity to young, novice cigarette smokers, underscore the importance of smoking abstinence. Future studies with larger sample sizes, inclusive of smokers of different ages and smoking histories, are

  16. Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT

    NARCIS (Netherlands)

    Ajat, Mokrish; Molenaar, Martijn; Brouwers, Jos F H M; Vaandrager, Arie B.; Houweling, Martin; Helms, J. Bernd

    2017-01-01

    Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol

  17. Antioxidant capacity, radical scavenger activity, lipid oxidation protection analysis and antimicrobial activity of red grape extracts from different varieties cultivated in Portugal.

    Science.gov (United States)

    Correia, Ana C; Jordão, António M

    2015-01-01

    The aim of this study was to investigate the antioxidant capacity, radical scavenger activity, lipid oxidation protection and antimicrobial activity of grape extracts from 12 different red grape varieties cultivated in Portugal. The mean values of total phenolic content quantified in grape extracts varied from 833.7 to 2005.6 mg/L gallic acid. Antioxidant capacity results showed different values for each grape variety ranging from 3.96 to 32.96 mm/L Fe(II). The scavenger activity values ranged from 15.99% to 54.82% for the superoxide radical and from 11.79% to 29.67% for the hydroxyl radical. The grape extracts with the highest antioxidant capacity had a positive effect on the lipid oxidation protection and induced low peroxide values in butter samples. Finally, concerning antimicrobial activity, grape extracts from Touriga Nacional and Tinta Roriz grape varieties had significant antimicrobial activity, especially notable for total mesophilic aerobics.

  18. Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles

    Science.gov (United States)

    Gupta, Raju Kumar; Krishnamoorthy, Sivashankar; Kusuma, Damar Yoga; Lee, Pooi See; Srinivasan, M. P.

    2012-03-01

    We demonstrate the controlled fabrication of aggregates of gold nanoparticles as a means of enhancing the charge-storage capacity of metal-insulator-semiconductor (MIS) devices by up to 300% at a low biasing voltage of +/-4 V. Aggregates of citrate stabilized gold nanoparticles were obtained by directed electrostatic self-assembly onto an underlying nanopattern of positively charged centers. The underlying nanopatterns consist of amine functionalized gold nanoparticle arrays formed using amphiphilic diblock copolymer reverse micelles as templates. The hierarchical self-organization leads to a twelve-fold increase in the number density of the gold nanoparticles and therefore significantly increases the charge storage centers for the MIS device. The MIS structure showed counterclockwise C-V hysteresis curves indicating a good memory effect. A memory window of 1 V was obtained at a low biasing voltage of +/-4 V. Furthermore, C-t measurements conducted after applying a charging bias of 4 V showed that the charge was retained beyond 20 000 s. The proposed strategy can be readily adapted for fabricating next generation solution processible non-volatile memory devices.We demonstrate the controlled fabrication of aggregates of gold nanoparticles as a means of enhancing the charge-storage capacity of metal-insulator-semiconductor (MIS) devices by up to 300% at a low biasing voltage of +/-4 V. Aggregates of citrate stabilized gold nanoparticles were obtained by directed electrostatic self-assembly onto an underlying nanopattern of positively charged centers. The underlying nanopatterns consist of amine functionalized gold nanoparticle arrays formed using amphiphilic diblock copolymer reverse micelles as templates. The hierarchical self-organization leads to a twelve-fold increase in the number density of the gold nanoparticles and therefore significantly increases the charge storage centers for the MIS device. The MIS structure showed counterclockwise C-V hysteresis curves

  19. Protein-protein and protein-lipid interactions in domain-assembly : Lessons from giant unilamellar vesicles

    NARCIS (Netherlands)

    Kahya, Nicoletta

    Giant Unilamellar Vesicles (GUVs) provide a key model membrane system to study lipid-lipid and lipid-protein interactions, which are relevant to vital cellular processes, by (single-molecule) optical microscopy. Here, we review the work on reconstitution techniques for membrane proteins and other

  20. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Directory of Open Access Journals (Sweden)

    Naoki Takizawa

    2016-09-01

    Full Text Available The influenza glycoproteins, hemagglutinin (HA and neuraminidase (NA, which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1 in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  1. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1) and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    Science.gov (United States)

    Amaro, Helena M.; Fernandes, Fátima; Valentão, Patrícia; Andrade, Paula B.; Sousa-Pinto, I.; Malcata, F. Xavier; Guedes, A. Catarina

    2015-01-01

    Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA), well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+•)) and biological reactive species (O2•− and •NO−). A eukaryotic microalga (Scenedesmus obliquus (M2-1)) and a prokaryotic one (Gloeothece sp.) were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2) and acetone extracts of Sc. obliquus (M2-1) were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•−, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2) extracts were the most interesting ones in •NO− assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs. PMID:26492257

  2. Effect of Solvent System on Extractability of Lipidic Components of Scenedesmus obliquus (M2-1 and Gloeothece sp. on Antioxidant Scavenging Capacity Thereof

    Directory of Open Access Journals (Sweden)

    Helena M. Amaro

    2015-10-01

    Full Text Available Microalgae are well known for their biotechnological potential, namely with regard to bioactive lipidic components—especially carotenoids and polyunsaturated fatty acids (PUFA, well-known for therapeutic applications based on their antioxidant capacity. The aim of this work was to evaluate the influence of four distinct food-grade solvents upon extractability of specific lipidic components, and on the antioxidant capacity exhibited against both synthetic (2,2-diphenyl-1-picrylhydrazyl (DPPH• and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+• and biological reactive species (O2•- and •NO-. A eukaryotic microalga (Scenedesmus obliquus (M2-1 and a prokaryotic one (Gloeothece sp. were used as case studies. Concerning total antioxidant capacity, the hexane:isopropanol (3:2 and acetone extracts of Sc. obliquus (M2-1 were the most effective against DPPH• and ABTS+•, respectively. Gloeothece sp. ethanol extracts were the most interesting scavengers of O2•-, probably due the high content of linolenic acid. On the other hand, acetone and hexane:isopropanol (3:2 extracts were the most interesting ones in •NO- assay. Acetone extract exhibited the best results for the ABTS assay, likely associated to its content of carotenoids, in both microalgae. Otherwise, ethanol stood out in PUFA extraction. Therefore, profiles of lipidic components extracted are critical for evaluating the antioxidant performance—which appears to hinge, in particular, on the balance between carotenoids and PUFAs.

  3. Lipid profile and levels of homocysteine and total antioxidant capacity in plasma of rats with experimental thyroid disorders

    Directory of Open Access Journals (Sweden)

    Afaf Abbass Sayed Saleh

    2015-10-01

    There was a significant (p < 0.05 elevation in serum levels of lipid profile (cholesterol, triglyceride and LDL in hypothyroidism. Significant (p < 0.05 reduction occurred in the levels of cholesterol and triglyceride in hyperthyroidism. The association of hyperhomocysteinemia and lipid abnormalities occurring in hypothyroidism may represent a dynamic atherogenic state.

  4. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: Enhanced gene silencing and reduced adversed effects in vitro

    DEFF Research Database (Denmark)

    Zeng, Xianghui; de Groot, A. M.; Sijts, Alice

    2015-01-01

    Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study...... a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids...... not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA–peptidomimetic nanocomplex core...

  5. Effect of curcumin on kidney histopathological changes, lipid peroxidation and total antioxidant capacity of serum in sodium arsenite-treated mice.

    Science.gov (United States)

    Momeni, Hamid Reza; Eskandari, Najmeh

    2017-02-01

    Sodium arsenite is an environmental pollutant with the ability to generate free radicals and curcumin acts as a potent antioxidant. This study investigates the effect of curcumin on kidney histopathology, lipid peroxidation and antioxidant capacity of serum in the mice treated with sodium arsenite. Adult male mice were divided into four groups: control, sodium arsenite, curcumin and curcumin+sodium arsenite. The treatments were delivered for 5 weeks. After the treatment period, blood samples were collected and the concentrations of malondialdehyde (MDA) and total antioxidant capacity of serum were determined. Left kidney was dissected, weighed and used for histopathological and histomorphometrical studies. Sodium arsenite-treated mice showed a significant decrease in the diameter of glomerulus and proximal tubule, glomerular area, total antioxidant capacity of serum as well as a significant increase in serum concentration of MDA compared to the control group. However, no significant difference was found in kidney weight, area and diameter of Bowman's capsule as well as the diameter of distal tubule in mice treated with sodium arsenite compared to the control. In curcumin+sodium arsenite group, curcumin significantly reversed the adverse effects of sodium arsenite on the diameter of glomerulus and proximal tubule, glomerular area, total antioxidant capacity of serum and serum concentration of MDA compared to the sodium arsenite group. The application of curcumin alone significantly increased the total antioxidant capacity of serum compared to the control. Curcumin compensated the adverse effects of sodium arsenite on kidney tissue, lipid peroxidation and total antioxidant capacity of serum. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Fish Oil Contaminated with Persistent Organic Pollutants Reduces Antioxidant Capacity and Induces Oxidative Stress without Affecting Its Capacity to Lower Lipid Concentrations and Systemic Inflammation in Rats.

    Science.gov (United States)

    Hong, Mee Young; Lumibao, Jan; Mistry, Prashila; Saleh, Rhonda; Hoh, Eunha

    2015-05-01

    Numerous studies have investigated the benefits of fish, fish oil, and ω-3 (n-3) polyunsaturated fatty acids against cardiovascular diseases. However, concern surrounding contamination with persistent organic pollutants (POPs) prompts caution in the recommendation to consume fish and fish oil. The present study compared the effects of fish oil contaminated with polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCs) on serum lipid profiles, inflammation, and oxidative stress. Twenty eight-day-old male Sprague-Dawley rats (n = 30) consumed diets of unmodified fish oil (FO) consisting of 15% fat by weight, persistent organic pollutant-contaminated fish oil (POP FO) (PCBs at 2.40 μg/g; OCs at 3.80 μg/g FO), or corn oil (control; CO) for 9 wk. Lipid profiles and C-reactive protein concentrations were assessed. Hepatic gene expression related to lipid metabolism was determined by real time quantitative polymerase chain reaction analysis. After 9 wk of feeding, accumulation of PCBs and OCs in the fat tissue of the POP FO group compared with the other 2 groups was confirmed (P oil groups showed greater HDL cholesterol (FO 53 ± 5.3 and POP FO 55 ± 7.7 vs. CO 34 ± 2.3 mg/dL), but lower triglycerides (24 ± 2.8 and 22 ± 3.0 vs. 43 ± 5.6 mg/dL), LDL cholesterol (38 ± 14 and 34 ± 9.2 vs. 67 ± 4.4 mg/dL), and C-reactive protein (113 ± 20 and 120 ± 26 vs. 189 ± 22 μg/dL) compared with the CO group (P oil groups was also less than in the CO group (P oils of varying composition to advise on dietary consumption of fish and fish oil. © 2015 American Society for Nutrition.

  7. Transfer of lipid and phase reorganisation in self-assembled liquid crystal nanostructured particles based on phytantriol.

    Science.gov (United States)

    Tilley, Adam; Dong, Yao-Da; Amenitsch, Heinz; Rappolt, Michael; Boyd, Ben J

    2011-02-28

    The internal structure of dispersed liquid crystal nanostructured particles of the V(2) and H(2) phases, termed cubosomes and hexosomes respectively, is integral to their application in the pharmaceutical, agricultural and food industries. However the nanostructure is susceptible to change upon incorporation of other lipids and hence it is important to understand the potential for interparticle lipid transfer for such particles when they encounter a particle of dissimilar lipid content. Using time resolved synchrotron small angle X-ray scattering, we have investigated the transfer of material between cubosomes composed of phytantriol with three different particle types of dissimilar composition, (i) hexosomes and (ii) emulsified microemulsion composed of phytantriol and vitamin E acetate, and (iii) cubosomes prepared from glycerol monooleate. It was found that material was transferred between the different dispersed nanostructured particles, with the transfer being caused by compositional ripening. Somewhat counter-intuitively the transfer was bidirectional with phytantriol being more rapidly transferred than the minor component vitamin E acetate. The greater lipophilicity of vitamin E acetate supports previous studies suggesting greater mobility for the less lipophilic components, regardless of the more efficient transfer route to achieve uniform composition. When particles comprising lipids with similar lipophilicities were mixed, the transfer was limited and did not achieve completion; a phase change between cubic nanostructures required to achieve complete mixing provides an apparent barrier to further compositional ripening. The conclusions from this study provide additional support to lipid transfer mechanisms, and highlight some subtleties in using dissimilar lipid mixtures in e.g. food applications.

  8. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Jung Kyoo Lee

    2013-09-01

    Full Text Available Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g−1, high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assembly between negatively charged graphene oxide (GO sheets and positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyltrimethoxysilane (APTMS] in an acidic solution (pH = 2 followed by in situ chemical reduction. Thus prepared Fe3O4/GS composite showed an excellent rate capability as well as much enhanced cycling stability compared with Fe3O4 electrode. The superior electrochemical responses of Fe3O4/GS composite disks assure the advantages of: (1 electrostatic self-assembly between high storage-capacity materials with GO; and (2 incorporation of GS in the Fe3O4/GS composite for high capacity lithium-ion battery application.

  9. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid...... of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...

  10. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    compartments and lipid-bilayer lattices. Another kind of media is represented by self-assembled phases in the reaction medium, e.g., in water-ice matrices that are formed by two co-existing aqueous phases (a solid phase and a concentrated liquid phase) when an aqueous solution is cooled below its freezing...... point, but above the eutectic point. These media have the capacity to assemble chemical molecules or complex catalytic assemblies into unique configurations that are unstable or unavailable in bulk aqueous phases. Reactions can then proceed which do not readily occur in homogeneous solutions. To gauge...

  11. Dietary exposure to shiitake mushroom confers reductions in serum glucose, lipids, leptin and antioxidant capacity in rats

    Science.gov (United States)

    Previously, we showed that dietary intake of shiitake mushroom (Lentinus edodes) decreased serum levels of polar lipids in rats. This study evaluated the effects of lifelong consumption of shiitake on body composition and serum cholesterol-related- and anti-oxidant indices in rats. Rat dams and th...

  12. Surface coating of siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers: enhanced gene silencing and reduced adverse effects in vitro

    Science.gov (United States)

    Zeng, Xianghui; de Groot, Anne Marit; Sijts, Alice J. A. M.; Broere, Femke; Oude Blenke, Erik; Colombo, Stefano; van Eden, Willem; Franzyk, Henrik; Nielsen, Hanne Mørck; Foged, Camilla

    2015-11-01

    Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine

  13. Smart polymer brush nanostructures guide the self-assembly of pore-spanning lipid bilayers with integrated membrane proteins

    NARCIS (Netherlands)

    de Groot, G.W.; Demarche, S.; Santonicola, M.G.; Tiefenauer, L.; Vancso, Gyula J.

    2014-01-01

    Nanopores in arrays on silicon chips are functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes and used as supports for pore-spanning lipid bilayers with integrated membrane proteins. Robust platforms are created by the covalent grafting of polymer brushes using surface-initiated

  14. Coffee Consumption Increases the Antioxidant Capacity of Plasma and Has No Effect on the Lipid Profile or Vascular Function in Healthy Adults in a Randomized Controlled Trial.

    Science.gov (United States)

    Agudelo-Ochoa, Gloria M; Pulgarín-Zapata, Isabel C; Velásquez-Rodriguez, Claudia M; Duque-Ramírez, Mauricio; Naranjo-Cano, Mauricio; Quintero-Ortiz, Mónica M; Lara-Guzmán, Oscar J; Muñoz-Durango, Katalina

    2016-03-01

    Coffee, a source of antioxidants, has controversial effects on cardiovascular health. We evaluated the bioavailability of chlorogenic acids (CGAs) in 2 coffees and the effects of their consumption on the plasma antioxidant capacity (AC), the serum lipid profile, and the vascular function in healthy adults. Thirty-eight men and 37 women with a mean ± SD age of 38.5 ± 9 y and body mass index of 24.1 ± 2.6 kg/m(2) were randomly assigned to 3 groups: a control group that did not consume coffee or a placebo and 2 groups that consumed 400 mL coffee/d for 8 wk containing a medium (MCCGA; 420 mg) or high (HCCGA; 780 mg) CGA content. Both were low in diterpenes (0.83 mg/d) and caffeine (193 mg/d). Plasma caffeic and ferulic acid concentrations were measured by GC, and the plasma AC was evaluated with use of the ferric-reducing antioxidant power method. The serum lipid profile, nitric oxide (NO) plasma metabolites, vascular endothelial function (flow-mediated dilation; FMD), and blood pressure (BP) were evaluated. After coffee consumption (1 h and 8 wk), caffeic and ferulic acid concentrations increased in the coffee-drinking groups, although the values of the 2 groups were significantly different (P consumption, the plasma AC in the control group was significantly lower than the baseline value (-2%) and significantly increased in the MCCGA (6%) and HCCGA (5%) groups (P coffees, which contained CGAs and were low in diterpenes and caffeine, provided bioavailable CGAs and had a positive acute effect on the plasma AC in healthy adults and no effect on blood lipids or vascular function. The group that did not drink coffee showed no improvement in serum lipid profile, FMD, BP, or NO plasma metabolites. This trial was registered at registroclinico.sld.cu as RPCEC00000168. © 2016 American Society for Nutrition.

  15. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I. (Nanyang); (NWU)

    2017-06-01

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  16. Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females.

    Science.gov (United States)

    Mazurek, Krzystof; Krawczyk, Krzysztof; Zmijewski, Piotr; Norkowski, Henryk; Czajkowska, Anna

    2014-01-01

    Regular physical activity has many positive health benefits, including reducing the risk of cardiovascular diseases, metabolic diseases and some cancers, as well as improving the quality of life. objectives. The aim of the study was to examine the effects of 8-week aerobic interval cycle exercise training (AIT) compared to continuous cycle exercises of moderate intensity (CME) on the aerobic and anaerobic capacity, somatic features and lipid profile. The research was conducted in 88 volunteers aged 19.5±0.6 years, who were randomized to three groups of organized physical activity (OPA), who exercised 3 times per week in 47 min sessions: (I) AIT (n=24) comprising 2 series of 6x10 s sprinting with maximal pedalling cadence and active rest pedalling with intensity 65%-75% HRmax, (II) CME (n=22) corresponding to 65%-75% HRmax, (III) regular collegiate physical education classes of programmed exercises (CON; n=42). Before and after OPA anthropometrics, aero- and anaerobic capacity and lipid profile indices were measured. In AIT, a significantly greater decrease of waist circumference and WHR was noted when compared to CON, and a significantly greater reduction of sum of skinfolds than in CON and CME. Improvement in relative and absolute VO2max (L/min and ml/kg/min) was significantly higher in AIT than CON. Work output and peak power output in the anaerobic test improved significantly in AIT, CME and CON, but independently of training type. OPA was effective only in reducing triglyceride concentrations in CME and CON groups, without interaction effects in relation to training type. It was found that 8 weeks of OPA was beneficial in improving somatic and aerobic capacity indices, but AIT resulted in the greatest improvement in somatic indices (waist circumference, WHR, sum of skinfolds) and in VO2max, compared to CME and CON programmes.

  17. Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females

    Directory of Open Access Journals (Sweden)

    Krzystof Mazurek

    2014-11-01

    Full Text Available introduction. Regular physical activity has many positive health benefits, including reducing the risk of cardiovascular diseases, metabolic diseases and some cancers, as well as improving the quality of life. objectives. The aim of the study was to examine the effects of 8-week aerobic interval cycle exercise training (AIT compared to continuous cycle exercises of moderate intensity (CME on the aerobic and anaerobic capacity, somatic features and lipid profile. material and methods. The research was conducted in 88 volunteers aged 19.5±0.6 years, who were randomized to three groups of organized physical activity (OPA, who exercised 3 times per week in 47 min sessions: (I AIT (n=24 comprising 2 series of 6x10 s sprinting with maximal pedalling cadence and active rest pedalling with intensity 65%–75% HRmax, (II CME (n=22 corresponding to 65%-75% HRmax, (III regular collegiate physical education classes of programmed exercises (CON; n=42. Before and after OPA anthropometrics, aero- and anaerobic capacity and lipid profile indices were measured. results. In AIT, a significantly greater decrease of waist circumference and WHR was noted when compared to CON, and a significantly greater reduction of sum of skinfolds than in CON and CME. Improvement in relative and absolute VO2max (L/min and ml/kg/min was significantly higher in AIT than CON. Work output and peak power output in the anaerobic test improved significantly in AIT, CME and CON, but independently of training type. OPA was effective only in reducing triglyceride concentrations in CME and CON groups, without interaction effects in relation to training type. conclusion. It was found that 8 weeks of OPA was beneficial in improving somatic and aerobic capacity indices, but AIT resulted in the greatest improvement in somatic indices (waist circumference, WHR, sum of skinfolds and in VO[sub]2[/sub]max, compared to CME and CON programmes.

  18. Correlation between lipid and carotenoid synthesis and photosynthetic capacity in Haematococcus pluvialis grown under high light and nitrogen deprivation stress

    Directory of Open Access Journals (Sweden)

    Liang, C.

    2015-06-01

    Full Text Available Recently, H. pluvialis has been demonstrated to have significant potential for biofuel production. To explore the correlation between total lipid content and other physiological parameters under s tress conditions, the responses of H. pluvialis to high light intensity (HL, nitrogen deprivation (-N, and high light intensity with nitrogen deprivation (HL-N were investigated. The total lipid content in the control cells was 12.01% dw, whereas that of the cells exposed to HL, -N, and HL-N conditions was 56.92, 46.71, and 46.87% dw, respectively. The fatty acid profile was similar under all conditions, with the main components including palmitic acid, linoleic acid, and linolenic acid. A good correlation was found between individual carotenoid and total lipids, regardless of culture conditions. P hotosynthetic parameters and lipid content were also found to be well-correlated.Recientemente, H. pluvialis ha demostrado tener un gran potencial para la producción de biocombustibles. Para explorar la correlación entre el contenido total de lípidos y otros parámetros fisiológicos en condiciones de estrés, se investigaron las respuestas de H. pluvialis a una alta intensidad de luz (HL, una privación de nitrógeno (-N, y ambos, alta intensidad de la luz con privación de nitrógeno (HL-N. El contenido total de lípidos de las células control fue de 12,01% dw, mientras que el de las células expuestas a HL, N, y condiciones de HL-N fue de 56,92, 46,71, y 46,87% dw, respectivamente. El perfil de ácidos grasos fue similar para todas las condiciones, cuyos componentes principales fueron los ácidos palmítico, linoleico y linolénico. Se encontró una buena correlación entre carotenoides y lípidos totales individuales, independientemente de las condiciones de cultivo. También se encontró una buena correlación entre los parámetros fotosintéticos y el contenido de lípidos.

  19. In vitro bile acid-binding capacity of dietary fibre sources and their effects with bile acid on broiler chicken performance and lipid digestibility.

    Science.gov (United States)

    Hemati Matin, H R; Shariatmadari, F; Karimi Torshizi, M A; Chiba, L I

    2016-06-01

    A 4 × 2 factorial experiment was conducted to study the effect of feeding diets-containing dietary fibre (DF) sources and a source of bile acid (BA) on growth performance and lipid metabolism. In addition, in vitro BA-binding capacity of fibre sources was investigated. A total of 256 one-d-old male broiler chickens (Ross 308) were assigned to DF sources [maize-soybean meal (control, C), or 30 g/kg of wheat bran (WB), barley bran (BB) or soybean hulls (SH)] and BA (with or without 1.5 g Na-deoxycholate/kg). Each treatment was replicated 4 times with 8 broiler chickens per cage. The highest in vitro BA-binding capacity was observed with BB (8.76 mg/g BB). From 0 to 21 d, with the addition of BA, the average daily feed intake (ADFI) decreased in broiler chickens fed on the C, WB or BB diets, while there was no difference with the SH diet. With added BA, the average daily gain decreased in broiler chickens fed on the C or SH diets, but it did not change in those fed on the other diets. The addition of BA decreased feed conversion ratio (FCR) in broiler chickens fed on the BB or WB diets, but it increased in those fed on the C or SH diets. Interaction results indicated that the apparent ileal digestibility of lipid increased in broiler chickens fed the C and other DF diets with BA compared to those fed the diets without BA. The addition of BA decreased the pancreas lipase activity (PLA) in broiler chickens fed on the C diet compared to those fed the C diet without BA, while no changes observed in those fed the DF diets with or without BA. No interaction was observed in total liver bile acid (TLBA). The WB, BB and SH with little Na-deoxycholate-binding capacity (broiler chickens. The magnitude of improvement in digestibility of lipid with the addition of BA depends on the source of fibre used and the addition of BA in DF diets had little effect on growth performance in young broiler chicken diets.

  20. Dual-layered nanogel-coated hollow lipid/polypeptide conjugate assemblies for potential pH-triggered intracellular drug release.

    Directory of Open Access Journals (Sweden)

    Wen-Hsuan Chiang

    Full Text Available To achieve effective intracellular anticancer drug delivery, the polymeric vesicles supplemented with the pH-responsive outlayered gels as a delivery system of doxorubicin (DOX were developed from self-assembly of the lipid/polypeptide adduct, distearin grafted poly(γ-glutamic acid (poly(γ-GA, followed by sequential deposition of chitosan and poly(γ-GA-co-γ-glutamyl oxysuccinimide-g-monomethoxy poly(ethylene glycol in combination with in situ covalent cross-linking on assembly surfaces. The resultant gel-caged polymeric vesicles (GCPVs showed superior performance in regulating drug release in response to the external pH change. Under typical physiological conditions (pH 7.4 and 37 °C at which the γ-GA/DOX ionic pairings remained mostly undisturbed, the dense outlayered gels of GCPVs significantly reduced the premature leakage of the uncomplexed payload. With the environmental pH being reduced from pH 7.4 to 4.7, the drug liberation was appreciably promoted by the massive disruption of the ionic γ-GA/DOX complexes along with the significant swelling of nanogel layers upon the increased protonation of chitosan chain segments. After being internalized by HeLa cells via endocytosis, GCPVs exhibited cytotoxic effect comparable to free DOX achieved by rapidly releasing the payload in intracellular acidic endosomes and lysosomes. This strongly implies the great promise of such unique GCPVs as an intracellular drug delivery carrier for potential anticancer treatment.

  1. Mismatch discrimination of lipidated DNA and LNA-probes (LiNAs) in hybridization-controlled liposome assembly

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Vogel, Stefan

    2016-01-01

    Assays for mismatch discrimination and detection of single nucleotide variations by hybridization-controlled assembly of liposomes, which do not require tedious surface chemistry, are versatile for both DNA and RNA targets. We report herein a comprehensive study on different DNA and LNA (locked...... assay in the context of mismatch discrimination and SNP detection are presented. The advantages of membrane-anchored LiNA-probes compared to chemically attached probes on solid nanoparticles (e.g. gold nanoparticles) are described. Key functionalities such as non-covalent attachment of LiNA probes...

  2. The Effect of Colostrum along with Aerobic and Anaerobic Exercise on Lipid Peroxidation and Total Antioxidant Capacity of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    M Mogharnasi

    2016-06-01

    Full Text Available Background & aim: The consumption of food supplements in order to eliminate oxidative damages induced by exercise are common among athletes. Previous studies have shown that bovine colostrum has antioxidant properties, but no study has ever been done to evaluate its effectiveness on Oxidative stress and antioxidant capacity. The aim of study was to investigate the effects of bovine colostrum along with aerobic and anaerobic exercise on Lipid peroxidation and antioxidant capacity in male Wistar rats.   Methods: In the present experimental study, 48 male Wistar rats were randomly divided into six groups (control, colostrum supplement, aerobic exercise, anaerobic exercise, colostrum supplements and aerobic exercise, colostrum supplements and anaerobic exercise. Colostrum group received daily for ten weeks dosing 300 mg /kg bovine colostrum powder orally. Exercising groups worked out three times a week for a period of 10 weeks on a custom-made treadmill for rodents. Blood samples were taken before and 24 hours after the last exercise session on an empty stomach. Data were analyzed using Kolmogorov-Smirnov tests, One Way ANOVA and post hoc Tukey at α<0.05.   Results: The plasma levels of oxidative stress index (MDA in all groups except colostrum supplement and anaerobic exercise compared with the control group was significantly reduced (p<0.05. The antioxidant capacity in all groups except anaerobic exercise group compared with the control group was significant increased (p<0.05.   Conclusions: The results indicated that colostrum supplementation with ten weeks of aerobic exercise had better effect on the control of oxidative stress and antioxidant capacity compared to anaerobic exercise.    

  3. Effects of supplementation with acai ( Euterpe oleracea Mart. berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study

    Directory of Open Access Journals (Sweden)

    E Sadowska-Krępa

    2015-05-01

    Full Text Available The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood samples were taken before and immediately after the test and after 1 h of recovery. Blood antioxidant status was evaluated based on activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], glutathione reductase [GR], concentrations of non-enzymatic antioxidants (reduced glutathione [GSH], uric acid, total plasma polyphenols, ferric reducing ability of plasma (FRAP, thiobarbituric acid reactive substances (TBARS and activities of creatine kinase (CK and lactate dehydrogenase (LDH as muscle damage markers. In order to evaluate potential health benefits of the acai berry, the post-treatment changes in lipid profile parameters (triglycerides, cholesterol and its fractions were analysed. Six weeks’ consumption of acai berry-based juice blend had no effect on sprint performance, but it led to a marked increase in the total antioxidant capacity of plasma, attenuation of the exercise-induced muscle damage, and a substantial improvement of serum lipid profile. These findings strongly support the view of the health benefits of supplementation with the acai berry-based juice blend, mainly attributed to its high total polyphenol content and the related high in vivo antioxidant and hypocholesterolaemic activities of this supplement.

  4. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study.

    Science.gov (United States)

    Sadowska-Krępa, E; Kłapcińska, B; Podgórski, T; Szade, B; Tyl, K; Hadzik, A

    2015-06-01

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years) taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood samples were taken before and immediately after the test and after 1 h of recovery. Blood antioxidant status was evaluated based on activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], glutathione reductase [GR]), concentrations of non-enzymatic antioxidants (reduced glutathione [GSH], uric acid), total plasma polyphenols, ferric reducing ability of plasma (FRAP), thiobarbituric acid reactive substances (TBARS) and activities of creatine kinase (CK) and lactate dehydrogenase (LDH) as muscle damage markers. In order to evaluate potential health benefits of the acai berry, the post-treatment changes in lipid profile parameters (triglycerides, cholesterol and its fractions) were analysed. Six weeks' consumption of acai berry-based juice blend had no effect on sprint performance, but it led to a marked increase in the total antioxidant capacity of plasma, attenuation of the exercise-induced muscle damage, and a substantial improvement of serum lipid profile. These findings strongly support the view of the health benefits of supplementation with the acai berry-based juice blend, mainly attributed to its high total polyphenol content and the related high in vivo antioxidant and hypocholesterolaemic activities of this supplement.

  5. Effect of thyme extract supplementation on lipid peroxidation, antioxidant capacity, PGC-1α content and endurance exercise performance in rats.

    Science.gov (United States)

    Khani, Mostafa; Motamedi, Pezhman; Dehkhoda, Mohammad Reza; Dabagh Nikukheslat, Saeed; Karimi, Pouran

    2017-01-01

    Athletes have a large extent of oxidant agent production. In the current study, we aimed to determine the influence of thyme extract on the endurance exercise performance, mitochondrial biogenesis, and antioxidant status in rats. Twenty male Wistar rats were randomly divided into two groups receiving either normal drinking water (non-supplemented group, n  = 10) or thyme extract, 400 mg/kg, (supplemented group, n  = 10). Rats in both groups were subjected to endurance treadmill training (27 m/min, 10% grade, 60 min, and 5 days/week for 8 weeks). Finally, to determine the endurance capacity, time to exhaustion treadmill running at 36 m/min speed was assessed. At the end of the endurance capacity test, serum and soleus muscle samples were collected and their superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity, as well as malondialdehyde (MDA) concentration were measured. Protein expression of PGC-1α, as a marker of mitochondrial biogenesis, was also determined in the soleus muscle tissue by immunoblotting assay. Findings revealed that the exhaustive running time in the treatment group was significantly ( p  thyme extract supplemented group (t 18  = 8.11, p  thyme supplementation significantly ( p  Thyme extract supplementation increased endurance exercise tolerance in intact animals, although decrease of oxidative stress and regulation of the PGC-1α protein expression are not considered as underlying molecular mechanisms.

  6. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Science.gov (United States)

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  7. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products.

    Science.gov (United States)

    Devraj, Ravi; Williams, Hywel D; Warren, Dallas B; Mullertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2013-01-30

    In vitro digestion testing is of practical importance to predict the fate of drugs administered in lipid-based delivery systems. Calcium ions are often added to digestion media to increase the extent of digestion of long-chain triglycerides (LCTs), but the effects they have on phase behaviour of the products of digestion, and consequent drug solubilization, are not well understood. This study investigates the effect of calcium and bile salt concentrations on the rate and extent of in vitro digestion of soybean oil, as well as the solubilizing capacity of the digestion products for two poorly water-soluble drugs, fenofibrate and danazol. In the presence of higher concentrations of calcium ions, the solubilization capacities of the digests were reduced for both drugs. This effect is attributed to the formation of insoluble calcium soaps, visible as precipitates during the digestions. This reduces the availability of liberated fatty acids to form mixed micelles and vesicles, thereby reducing drug solubilization. The use of high calcium concentrations does indeed force in vitro digestion of LCTs but may overestimate the extent of drug precipitation that occurs within the intestinal lumen. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet.

    Science.gov (United States)

    Adjoumani, Jean-Jacques Yao; Wang, Kaizhou; Zhou, Man; Liu, Wenbin; Zhang, Dingdong

    2017-12-01

    An 8-week feeding experiment was conducted to determine the effect of dietary betaine levels on the growth performance, antioxidant capacity, and lipid metabolism in high-fat diet-fed blunt snout bream (Megalobrama amblycephala) with initial body weight 4.3 ± 0.1 g [mean ± SEM]. Five practical diets were formulated to contain normal-fat diet (NFD), high-fat diet (HFD), and high-fat diet with betaine addition (HFB) at difference levels (0.6, 1.2, 1.8%), respectively. The results showed that the highest final body weight (FBW), weight gain ratio (WGR), specific growth rate (SGR), condition factor (CF), and feed intake (FI) (P high in fat group compared to the lowest in NDF and 1.2% betaine supplementation, while VSI and survival rate (SR) were not affected by dietary betaine supplementation. Significantly higher (P high-density lipoprotein (HDL) content were observed in HFD but were improved when supplemented with 1.2% betaine. In addition, increase in superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH) in 1.2% betaine inclusion could reverse the increasing malondialdehyde (MDA) level induced by HFD. Based on the second-order polynomial analysis, the optimum growth of blunt snout bream was observed in fish fed HFD supplemented with 1.2% betaine. HFD upregulated fatty acid synthase messenger RNA (mRNA) expression and downregulated carnitine palmitoyltransferase 1, peroxisome proliferator-activated receptor α, and microsomal triglyceride transfer protein mRNA expression; nevertheless, 1.2% betaine supplementation significantly reversed these HFD-induced effects, implying suppression of fatty acid synthesis, β-oxidation, and lipid transport. This present study indicated that inclusion of betaine (1.2%) can significantly improve growth performance and antioxidant defenses, as well as reduce fatty acid synthesis and enhance mitochondrial β-oxidation and lipid transportation in high-fat diet-fed blunt snout bream, thus effectively

  9. Characterization of lipids and antioxidant capacity of novel nutraceutical egg products developed with omega-3-rich oils.

    Science.gov (United States)

    Kassis, Nissan M; Gigliotti, Joseph C; Beamer, Sarah K; Tou, Janet C; Jaczynski, Jacek

    2012-01-15

    Cardiovascular disease has had an unquestioned status of the number one cause of death in the US since 1921. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have cardio-protective benefits. However, egg is typically a poor source of ω-3 PUFAs and, in general, the American diet is low in these cardio-protective fatty acids. Novel, nutritionally enhanced egg products were developed by substituting yolk with ω-3 PUFA-rich flaxseed, menhaden, algae, or krill oil. Experimental egg products matched composition of hen egg (whole egg). The experimental egg products, mixed whole egg, and a liquid egg product (Egg Beaters) were microwave-cooked and compared. Although fat, protein, and moisture contents of experimental egg products matched (P > 0.05) mixed whole egg, experimental egg products had more (P oil added, a higher (P krill oil, which had even more phospholipids than mixed whole egg. Analysis of thiobarbituric acid reactive substances showed that lipid oxidation of experimental egg products was lower (P 0.05) to mixed whole egg, except for experimental egg products with krill oil. However, peroxide value showed that all egg samples had minimal oxidation. Experimental egg products developed with menhaden or flaxseed oil had the highest (P krill oil likely contained a natural antioxidant, astaxanthin. This study demonstrated an alternative approach to developing novel, nutraceutical egg products. Instead of dietary modification of chicken feed, yolk substitution with ω-3 PUFAs oils resulted in enhancement of ω-3 PUFAs beyond levels possible to achieve by modifying chicken feed. Copyright © 2011 Society of Chemical Industry.

  10. Dietary flavonoid intake, total antioxidant capacity and lipid oxidative damage: A cross-sectional study of Iranian women.

    Science.gov (United States)

    Alipour, Beitolah; Rashidkhani, Bahram; Edalati, Sareh

    2016-05-01

    Although strong evidence supports the antioxidant potential of flavonoids in vitro, the effect of flavonoids at physiological concentrations on the overall antioxidant status in humans is inconsistent. The aim of this study was to examine cross-sectional associations between total flavonoid consumption, serum total antioxidant capacity (TAC), and malondialdehyde (MDA) levels in apparently healthy women. Through a multistage cluster sampling, 170 women ages 20 to 48 y were recruited. The usual dietary flavonoid intake was estimated using a semiquantitive food frequency questionnaire (FFQ) by matching food items with the US Department of Agriculture flavonoid databases. General linear models were used to compare the biochemical parameters across tertiles of flavonoid intakes. As dietary anthocyanin intake rose from the lowest to the highest tertile, the multivariate-adjusted mean TAC concentrations significantly increased from 1.08 to 1.28 (Ptrend = 0.01). This association was still significant after adjustment for fruit and vegetable intake and antioxidant vitamins (Ptrend = 0.03). The highest tertile of total flavonoid intake and theaflavins had higher mean concentrations of TAC than did the lowest tertile, but there was no linear trend (P flavonoids intakes (P > 0.05). The findings of the present study support the attribution of anthocyanins to overall antioxidant status. However, further research is needed to confirm these observed associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

    Directory of Open Access Journals (Sweden)

    Marco Salerno

    2017-01-01

    Full Text Available Thin anodic porous alumina (tAPA was fabricated from a 500 nm thick aluminum (Al layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm gold (Au layer. The as obtained tAPA–Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA and aminothiol (AT, and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB. At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×. The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA–Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS biosensors on living cells. In the future, these tAPA–Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.

  12. All-Aqueous Directed Assembly Strategy for Forming High-Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yanjing; Xu, Mengqing; Zhang, Yuzi; Pan, Yue; Lucht, Brett L; Bose, Arijit

    2015-09-30

    Silicon (Si) particles have emerged as a promising active material for next-generation lithium-ion battery anodes. However, the large volume changes during lithiation/delithiation cycles result in fracture and pulverization of Si, leading to rapid fading of performance. Here, we report a simple, all-aqueous, directed assembly-based strategy to fabricate Si-based anodes that show capacity and capacity retention that are comparable or better than other more complex methods for forming anodes. We use a cationic surfactant, cetyltrimethylammonium bromide (CTAB), to stabilize Si nanoparticles (SiNPs) in water. This suspension is added to an aqueous suspension of para-amino benzoic acid-terminated carbon black (CB), pH 7. Charge interactions cause the well-dispersed SiNP to bind to the CB, allowing most of the SiNP to be available for lithiation and charge transfer. The CB forms a conducting network when the suspension pH is lowered. The dried SiNP/CTAB/CB anode exhibits a capacity of 1580 mAh g(-1) and efficiency of 97.3% after 50 cycles at a rate of 0.1C, and stable performance at cycling rates up to 5C. The directed spatial organization of the SiNP and CB using straightforward colloidal principles allows good contact between the well-dispersed active material and the electrically conducting network. The pore space in the CB network accommodates volume changes in the SiNPs. When CTAB is not used, the SiNPs form aggregates in the suspension, and do not contact the CB effectively. Therefore, the electrochemical performance of the SiNP/CB anode is inferior to that of the SiNP/CTAB/CB anode. This aqueous-based, room temperature, directed assembly technique is a new, but simple, low-cost scalable method to fabricate stable Si-based anodes for lithium-ion batteries with performance characteristics that match those made by other more sophisticated techniques.

  13. Reduced surfactant uptake in three dimensional assemblies of VO{sub x} nanotubes improves reversible Li{sup +} intercalation and charge capacity

    Energy Technology Data Exchange (ETDEWEB)

    O' Dwyer, Colm [Department of Physics, University of Limerick (Ireland); Materials and Surface Science Institute, University of Limerick Limerick (Ireland); Lavayen, Vladimir [Departamento de Fisica, Universidad Tecnica Federico Santa Maria Avenida Espana, Valparaiso (Chile); Area de Ciencias Naturais e Tecnologicas, Centro Universitario Franciscano 97010-032, Santa Maria - RS (Brazil); Tanner, David A. [Materials and Surface Science Institute, University of Limerick Limerick (Ireland); Department of Manufacturing and Operations Engineering, University of Limerick Limerick (Ireland); Newcomb, Simon B. [Glebe Scientific Limited Newport, Co., Tipperary (Ireland); Benavente, Eglantina [Department of Chemistry, Universidad Tecnologica Metropolitana, Santiago (Chile); Gonzalez, Guillermo [Department of Chemistry, Universidad de Chile, Santiago (Chile); Torres, Clivia M.S. [Institute for Research and Advanced Studies, ICREA 08010 Barcelona (Spain); Catalan Institute of Nanotechnology Edifici CM7, Campus Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2009-06-09

    The relationship between the nanoscale structure of vanadium pentoxide nanotubes and their ability to accommodate Li{sup +} during intercalation/deintercalation is explored. The nanotubes are synthesized using two different precursors through a surfactant-assisted templating method, resulting in standalone VO{sub x} (vanadium oxide) nanotubes and also ''nano-urchin''. Under highly reducing conditions, where the interlaminar uptake of primary alkylamines is maximized, standalone nanotubes exhibit near-perfect scrolled layers and long-range structural order even at the molecular level. Under less reducing conditions, the degree of amine uptake is reduced due to a lower density of V{sup 4+} sites and less V{sub 2}O{sub 5} is functionalized with adsorbed alkylammonium cations. This is typical of the nano-urchin structure. High-resolution TEM studies revealed the unique observation of nanometer-scale nanocrystals of pristine unreacted V{sub 2}O{sub 5} throughout the length of the nanotubes in the nano-urchin. Electrochemical intercalation studies revealed that the very well ordered xerogel-based nanotubes exhibit similar specific capacities (235 mA h g{sup -1}) to Na{sup +}-exchange nanorolls of VO{sub x} (200 mA h g{sup -1}). By comparison, the theoretical maximum value is reported to be 240 mA h g{sup -1}. The VOTPP-based nanotubes of the nano-urchin 3D assemblies, however, exhibit useful charge capacities exceeding 437 mA h g{sup -1}, which is a considerable advance for VO{sub x} based nanomaterials and one of the highest known capacities for Li{sup +} intercalated laminar vanadates. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  14. Solid phase microbial fuel cell (SMFC) for harnessing bioelectricity from composite food waste fermentation: influence of electrode assembly and buffering capacity.

    Science.gov (United States)

    Mohan, S Venkata; Chandrasekhar, K

    2011-07-01

    Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Solid State NMR Structure Analysis of the Antimicrobial Peptide Gramicidin S in Lipid Membranes: Concentration-Dependent Re-alignment and Self-Assembly as a β-Barrel

    Science.gov (United States)

    Afonin, Sergii; Dürr, Ulrich H. N.; Wadhwani, Parvesh; Salgado, Jesus; Ulrich, Anne S.

    Antimicrobial peptides can kill bacteria by permeabilizing their cell membrane, as these amphiphilic molecules interact favourably with lipid bilayers. This mechanism of action is attributed either to the formation of a peptide “carpet” on the membrane surface, or to a transmembrane pore. However, the structure of such a pore has not yet been resolved under relevant conditions. Gramicidin S is a symmetrical cyclic β-sheet decapeptide, which has been previously shown by solid state NMR to lie flat on the membrane surface at low peptide:lipid ratios (≤ 1:80). Using highly sensitive 19F-NMR, supported by 15N-labelling, we found that gramicidin S can flip into an upright transmembrane alignment at high peptide:lipid ratios (≥ 1:40). Orientational NMR constraints suggest that the peptide may self-assemble as an oligomeric β-barrel pore, which is stabilized by intermolecular hydrogen bonds. Comparison of different model membranes shows that the observed re-alignment is favoured in thin bilayers with short-chain lipids, especially near the chain melting temperature, whereas long-chain lipids suppress pore formation. Based on the oligomeric structural model and the conditions of pore formation, guidelines may now be derived for rationally designing peptide analogues as antibiotics with improved selectivity and reduced side effects.

  16. NADPH-dependent lipid peroxidation capacity in unfixed tissue sections: characterization of the pro-oxidizing conditions and optimization of the histochemical detection

    NARCIS (Netherlands)

    Thomas, M.; Frederiks, W. M.; van Noorden, C. J.; Bosch, K. S.; Pompella, A.

    1994-01-01

    Factors which influence the iron-stimulated lipid peroxidation in rat liver have been studied by incubating unfixed cryostat sections with a pro-oxidant system and using an optimized histochemical detection method for lipid peroxidation products with 3-hydroxy-2-naphthoic acid hydrazide and Fast

  17. Lamellar crystalline self-assembly behaviour and solid lipid nanoparticles of a palmityl prodrug analogue of Capecitabine—A chemotherapy agent

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J. [CSIRO/MSE

    2014-09-24

    An amphiphile prodrug, 5'-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5'-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ~115 °C followed quickly by degradation beginning at ~120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ~700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.

  18. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  19. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study

    National Research Council Canada - National Science Library

    Sadowska-Krępa, E; Kłapcińska, B; Podgórski, T; Szade, B; Tyl, K; Hadzik, A

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes...

  20. Cellular capacities for high-light acclimation and changing lipid profiles across life cycle stages of the green alga Haematococcus pluvialis.

    Directory of Open Access Journals (Sweden)

    Baobei Wang

    Full Text Available The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress conditions (high light or nutrient starvation; however, productivity of biomass and bioproducts are compromised due to the susceptibility of motile cells to stress. This study revealed that the Photosystem II (PSII reaction center D1 protein, the manganese-stabilizing protein PsbO, and several major membrane glycerolipids (particularly for chloroplast membrane lipids monogalactosyldiacylglycerol and phosphatidylglycerol, decreased dramatically in motile cells under high light (HL. In contrast, palmella cells, which are transformed from motile cells after an extended period of time under favorable growth conditions, have developed multiple protective mechanisms--including reduction in chloroplast membrane lipids content, downplay of linear photosynthetic electron transport, and activating nonphotochemical quenching mechanisms--while accumulating triacylglycerol. Consequently, the membrane lipids and PSII proteins (D1 and PsbO remained relatively stable in palmella cells subjected to HL. Introducing palmella instead of motile cells to stress conditions may greatly increase astaxanthin and lipid production in H. pluvialis culture.

  1. Mechanisms of Virus Assembly

    Science.gov (United States)

    Perlmutter, Jason D.; Hagan, Michael F.

    2015-01-01

    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  2. Dietary DHA/EPA ratio affected tissue fatty acid profiles, antioxidant capacity, hematological characteristics and expression of lipid-related genes but not growth in juvenile black seabream (Acanthopagrus schlegelii).

    Science.gov (United States)

    Jin, Min; Monroig, Óscar; Lu, You; Yuan, Ye; Li, Yi; Ding, Liyun; Tocher, Douglas R; Zhou, Qicun

    2017-01-01

    An 8-week feeding trial was conducted to investigate the effects of dietary docosahexaenoic to eicosapentaenoic acid ratio (DHA/EPA) on growth performance, fatty acid profiles, antioxidant capacity, hematological characteristics and expression of some lipid metabolism related genes of juvenile black seabream (Acanthopagrus schlegelii) of initial weight 9.47 ± 0.03 g. Five isonitrogenous and isolipidic diets (45% crude protein and 14% crude lipid) were formulated to contain graded DHA/EPA ratios of 0.65, 1.16, 1.60, 2.03 and 2.67. There were no differences in growth performance and feed utilization among treatments. Fish fed higher DHA/EPA ratios had higher malondialdehyde (MDA) contents in serum than lower ratios. Serum triacylglycerol (TAG) content was significantly higher in fish fed the lowest DHA/EPA ratio. Tissue fatty acid profiles reflected the diets despite down-regulation of LC-PUFA biosynthesis genes, fatty acyl desaturase 2 (fads2) and elongase of very long-chain fatty acids 5 (elovl5), by high DHA/EPA ratios. Expression of acetyl-CoA carboxylase alpha (accα) and carnitine palmitoyl transferase 1A (cpt1a) were up-regulated by high DHA/EPA ratio, whereas sterol regulatory element-binding protein-1 (srebp-1) and hormone-sensitive lipase (hsl) were down-regulated. Fatty acid synthase (fas), 6-phosphogluconate dehydrogenase (6pgd) and peroxisome proliferator-activated receptor alpha (pparα) showed highest expression in fish fed intermediate (1.16) DHA/EPA ratio. Overall, this study indicated that dietary DHA/EPA ratio affected fatty acid profiles and significantly influenced lipid metabolism including LC-PUFA biosynthesis and other anabolic and catabolic pathways, and also had impacts on antioxidant capacity and hematological characteristics.

  3. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study

    OpenAIRE

    Sadowska-Kr?pa, E; K?apci?ska, B; Podg?rski, T; Szade, B; Tyl, K; Hadzik, A

    2015-01-01

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years) taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood sam...

  4. Fine tuning by human CD1e of lipid-specific immune responses.

    Science.gov (United States)

    Facciotti, Federica; Cavallari, Marco; Angénieux, Catherine; Garcia-Alles, Luis F; Signorino-Gelo, François; Angman, Lena; Gilleron, Martine; Prandi, Jacques; Puzo, Germain; Panza, Luigi; Xia, Chengfeng; Wang, Peng George; Dellabona, Paolo; Casorati, Giulia; Porcelli, Steven A; de la Salle, Henri; Mori, Lucia; De Libero, Gennaro

    2011-08-23

    CD1e is a member of the CD1 family that participates in lipid antigen presentation without interacting with the T-cell receptor. It binds lipids in lysosomes and facilitates processing of complex glycolipids, thus promoting editing of lipid antigens. We find that CD1e may positively or negatively affect lipid presentation by CD1b, CD1c, and CD1d. This effect is caused by the capacity of CD1e to facilitate rapid formation of CD1-lipid complexes, as shown for CD1d, and also to accelerate their turnover. Similar results were obtained with antigen-presenting cells from CD1e transgenic mice in which lipid complexes are assembled more efficiently and show faster turnover than in WT antigen-presenting cells. These effects maximize and temporally narrow CD1-restricted responses, as shown by reactivity to Sphingomonas paucimobilis-derived lipid antigens. CD1e is therefore an important modulator of both group 1 and group 2 CD1-restricted responses influencing the lipid antigen availability as well as the generation and persistence of CD1-lipid complexes.

  5. Effects of Lateral and Terminal Chains of X-Shaped Bolapolyphiles with Oligo(phenylene ethynylene Cores on Self-Assembly Behavior. Part 2: Domain Formation by Self-Assembly in Lipid Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Stefan Werner

    2017-09-01

    Full Text Available Supramolecular self-assembly of membrane constituents within a phospholipid bilayer creates complex functional platforms in biological cells that operate in intracellular signaling, trafficking and membrane remodeling. Synthetic polyphilic compounds of macromolecular or small size can be incorporated into artificial phospholipid bilayers. Featuring three or four moieties of different philicities, they reach beyond ordinary amphiphilicity and open up avenues to new functions and interaction concepts. Here, we have incorporated a series of X-shaped bolapolyphiles into DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine bilayers of giant unilamellar vesicles. The bolapolyphiles consist of a rod-like oligo(phenylene ethynylene (OPE core, hydrophilic glycerol-based headgroups with or without oligo(ethylene oxide expansions at both ends and two lateral alkyl chains attached near the center of the OPE core. In the absence of DPPC and water, the compounds showed thermotropic liquid-crystalline behavior with a transition between polyphilic and amphiphilic assembly (see part 1 in this issue. In DPPC membranes, various trends in the domain morphologies were observed upon structure variations, which entailed branched alkyl chains of various sizes, alkyl chain semiperfluorination and size expansion of the headgroups. Observed effects on domain morphology are interpreted in the context of the bulk behavior (part 1 and of a model that was previously developed based on spectroscopic and physicochemical data.

  6. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model

    Science.gov (United States)

    Bordner, Andrew J.; Zorman, Barry; Abagyan, Ruben

    2011-10-01

    Membrane proteins comprise a significant fraction of the proteomes of sequenced organisms and are the targets of approximately half of marketed drugs. However, in spite of their prevalence and biomedical importance, relatively few experimental structures are available due to technical challenges. Computational simulations can potentially address this deficit by providing structural models of membrane proteins. Solvation within the spatially heterogeneous membrane/solvent environment provides a major component of the energetics driving protein folding and association within the membrane. We have developed an implicit solvation model for membranes that is both computationally efficient and accurate enough to enable molecular mechanics predictions for the folding and association of peptides within the membrane. We derived the new atomic solvation model parameters using an unbiased fitting procedure to experimental data and have applied it to diverse problems in order to test its accuracy and to gain insight into membrane protein folding. First, we predicted the positions and orientations of peptides and complexes within the lipid bilayer and compared the simulation results with solid-state NMR structures. Additionally, we performed folding simulations for a series of host-guest peptides with varying propensities to form alpha helices in a hydrophobic environment and compared the structures with experimental measurements. We were also able to successfully predict the structures of amphipathic peptides as well as the structures for dimeric complexes of short hexapeptides that have experimentally characterized propensities to form beta sheets within the membrane. Finally, we compared calculated relative transfer energies with data from experiments measuring the effects of mutations on the free energies of translocon-mediated insertion of proteins into lipid bilayers and of combined folding and membrane insertion of a beta barrel protein.

  7. Biocatalytic Route to Surface Active Lipid

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Xu, Xuebing

    Lipid can be structurally modified in order to attain improved functional properties. This work look into the possibilities of developing surface active lipids with improved functional properties through biocatalytic route. Biocatalytic route to surface active lipid are usually complex involving ...... distinct self assembling property and find useful application in surfactant industry....

  8. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodan, E-mail: xiaodan_li@yeah.net [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Wu, Gaoxiang, E-mail: wgxjimmy@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chen, Jiewei, E-mail: kzscjw@126.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Chongqing Materials Research Institute, Chongqing 400707 (China); Li, Wei, E-mail: wei.li@inl.int [International Iberian Nanotechnology Laboratory (INL), Braga 4715-330 (Portugal); Wang, Tianyue, E-mail: 1355796015@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Jiang, Bing, E-mail: BingJiang@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); He, Yue, E-mail: 947667748@qq.com [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China ElectricPower University, Beijing, 102206 (China); Mai, Liqiang, E-mail: mlq518@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2017-01-15

    Highlights: • Low-crystallinity molybdenum sulfide coated on carbon nanotubes were synthesized. • This anode material has unusual electrochemical behaviors compared to typical MoS{sub 2}. • It exhibits noticable ascending trends in capacity and superior rate performance. • The ascending performance can effectively extend the circulation life of batteries. - Abstract: Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS{sub 2} layers mixed with amorphous MoS{sub 3}, which leads to an unusual electrochemical process for lithium storage compared to typical MoS{sub 2} anode. The existence of MoS{sub 3} and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS{sub 3} rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g{sup −1} to 1350 mA h g{sup −1} at 100 mA g{sup −1} during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS{sub 3}, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  9. Protective role of α-tocopherol on two Vicia faba cultivars against seawater-induced lipid peroxidation by enhancing capacity of anti-oxidative system

    Directory of Open Access Journals (Sweden)

    Salwa A. Orabi

    2016-06-01

    Full Text Available To examine the effect of seawater stress on growth, yield, physiological and antioxidant responses of faba bean plant and whether the exogenous application with vitamin E could mitigate the adverse effect of salinity stress or not, a pot experiment was carried out during 2011/12 winter season under green house of the National Research Centre, Dokki, Cairo, Egypt. Two faba bean cultivars (Giza 3 and Giza 843 irrigated with diluted seawater (Tap water, 3.13 or 6.25 dS m−1 and α-tocopherol (0, 50 or 100 mg L−1 were used. At 75 days after sowing, growth sample was taken for vegetative growth measurement, proline, carotenoids, antioxidant enzyme activities (SOD, CAT, POX and PAL, lipid peroxidation, and inorganic ions as well as seed yield and yield attributes were determined. The results revealed that seawater triggered significant inhibitory effects on faba bean growth and yield especially for Giza 3 cultivar with obvious increments in MDA and Na+ ion contents. Foliar application with α-tocopherol at rate of 100 mg L−1 followed by 50 mg L−1 on faba bean plants exerted certain alleviative effects on these indices in particular on Giza 843. α-Tocopherol could play an important role in alleviation of injury of faba bean irrigated with diluted seawater through the enhancement of the protective parameters such as antioxidant enzymes, proline, carotenoids, and inorganic ions (K+ and Ca2+ to be effective in decreasing MDA content, lessening the harmful effect of salinity, and improving faba bean growth, seed yield and seed yield quality.

  10. Low-crystallinity molybdenum sulfide nanosheets assembled on carbon nanotubes for long-life lithium storage: Unusual electrochemical behaviors and ascending capacities

    Science.gov (United States)

    Li, Xiaodan; Wu, Gaoxiang; Chen, Jiewei; Li, Meicheng; Li, Wei; Wang, Tianyue; Jiang, Bing; He, Yue; Mai, Liqiang

    2017-01-01

    Low-crystallinity molybdenum sulfide (LCMS, Mo:S = 1:2.75) nanosheets synthesized by a facile and low temperature solvothermal method is now reported. The as-prepared LCMS anode material is composited of MoS2 layers mixed with amorphous MoS3, which leads to an unusual electrochemical process for lithium storage compared to typical MoS2 anode. The existence of MoS3 and Mo (VI) provide strong adsorption and binding sites for polar polysulphides, which compels abundant sulfur to turn into new-formed MoS3 rather than diffuse into electrolyte. To fully utilize this novel electrochemical process, LCMS is decorated on carbon nanotubes, obtaining well-dispersed CNTs@LCMS. As electrode material for lithium storage, CNTs@LCMS exhibits a noticable ascending trend in capacity from 820 mA h g-1 to 1350 mA h g-1 at 100 mA g-1 during 130 cycles. The persistent ascending capacity is ascribed to the increasing lithium storage caused by new-formed MoS3, combined with the reduced volume change benifiting from well-dispersed CNTs@LCMS. Furthermore, the ascending performance is proved to be able to effectively extend the circulation life (up to 200%) for lithium-ion batteries by mathematical modeling and calculation. Accordingly, the CNTs@LCMS composite is a promising anode material for long-life lithium-ion batteries.

  11. The Role of Diglycosyl Lipids in Photosynthesis and Membrane Lipid Homeostasis in Arabidopsis1[OA

    Science.gov (United States)

    Hölzl, Georg; Witt, Sandra; Gaude, Nicole; Melzer, Michael; Schöttler, Mark Aurel; Dörmann, Peter

    2009-01-01

    The galactolipid digalactosyldiacylglycerol (DGD) is an abundant thylakoid lipid in chloroplasts. The introduction of the bacterial lipid glucosylgalactosyldiacylglycerol (GGD) from Chloroflexus aurantiacus into the DGD-deficient Arabidopsis (Arabidopsis thaliana) dgd1 mutant was previously shown to result in complementation of growth, but photosynthetic efficiency was only partially restored. Here, we demonstrate that GGD accumulation in the double mutant dgd1dgd2, which is totally devoid of DGD, also complements growth at normal and high-light conditions, but photosynthetic efficiency in the GGD-containing dgd1dgd2 line remains decreased. This is attributable to an increased susceptibility of photosystem II to photodamage, resulting in reduced photosystem II accumulation already at normal light intensities. The chloroplasts of dgd1 and dgd1dgd2 show alterations in thylakoid ultrastructure, a phenotype that is restored in the GGD-containing lines. These data suggest that the strong growth retardation of the DGD-deficient lines dgd1 and dgd1dgd2 can be primarily attributed to a decreased capacity for chloroplast membrane assembly and proliferation and, to a smaller extent, to photosynthetic deficiency. During phosphate limitation, GGD increases in plastidial and extraplastidial membranes of the transgenic lines to an extent similar to that of DGD in the wild type, indicating that synthesis and transport of the bacterial lipid (GGD) and of the authentic plant lipid (DGD) are subject to the same mechanisms of regulation. PMID:19403724

  12. The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis.

    Science.gov (United States)

    Hölzl, Georg; Witt, Sandra; Gaude, Nicole; Melzer, Michael; Schöttler, Mark Aurel; Dörmann, Peter

    2009-07-01

    The galactolipid digalactosyldiacylglycerol (DGD) is an abundant thylakoid lipid in chloroplasts. The introduction of the bacterial lipid glucosylgalactosyldiacylglycerol (GGD) from Chloroflexus aurantiacus into the DGD-deficient Arabidopsis (Arabidopsis thaliana) dgd1 mutant was previously shown to result in complementation of growth, but photosynthetic efficiency was only partially restored. Here, we demonstrate that GGD accumulation in the double mutant dgd1dgd2, which is totally devoid of DGD, also complements growth at normal and high-light conditions, but photosynthetic efficiency in the GGD-containing dgd1dgd2 line remains decreased. This is attributable to an increased susceptibility of photosystem II to photodamage, resulting in reduced photosystem II accumulation already at normal light intensities. The chloroplasts of dgd1 and dgd1dgd2 show alterations in thylakoid ultrastructure, a phenotype that is restored in the GGD-containing lines. These data suggest that the strong growth retardation of the DGD-deficient lines dgd1 and dgd1dgd2 can be primarily attributed to a decreased capacity for chloroplast membrane assembly and proliferation and, to a smaller extent, to photosynthetic deficiency. During phosphate limitation, GGD increases in plastidial and extraplastidial membranes of the transgenic lines to an extent similar to that of DGD in the wild type, indicating that synthesis and transport of the bacterial lipid (GGD) and of the authentic plant lipid (DGD) are subject to the same mechanisms of regulation.

  13. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Purpose: To prepare solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) of loratadine (LRT) for the treatment of allergic skin reactions. Methods: SLN and NLC were prepared by high pressure homogenization method. Their entrapment efficiency (EE) and loading capacity (LC) were determined.

  14. Lipid domains in model membranes: a brief historical perspective.

    Science.gov (United States)

    Mouritsen, Ole G; Bagatolli, Luis A

    2015-01-01

    All biological membranes consist of a complex composite of macromolecules and macromolecular assemblies, of which the fluid lipid-bilayer component is a core element with regard to cell encapsulation and barrier properties. The fluid lipid bilayer also supports the functional machinery of receptors, channels and pumps that are associated with the membrane. This bilayer is stabilized by weak physical and colloidal forces, and its nature is that of a self-assembled system of amphiphiles in water. Being only approximately 5 nm in thickness and still encapsulating a cell that is three orders of magnitude larger in diameter, the lipid bilayer as a material has very unusual physical properties, both in terms of structure and dynamics. Although the lipid bilayer is a fluid, it has a distinct and structured trans-bilayer profile, and in the plane of the bilayer the various molecular components, viz different lipid species and membrane proteins, have the capacity to organize laterally in terms of differentiated domains on different length and time scales. These elements of small-scale structure and order are crucial for the functioning of the membrane. It has turned out to be difficult to quantitatively study the small-scale structure of biological membranes. A major part of the insight into membrane micro- and nano-domains and the concepts used to describe them have hence come from studies of simple lipid bilayers as models of membranes, by use of a wide range of theoretical, experimental and simulational approaches. Many questions remain to be answered as to which extent the result from model studies can carry over to real biological membranes.

  15. Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress.

    Science.gov (United States)

    Al Ghamdi, Ahmad A; Badr, Gamal; Hozzein, Wael N; Allam, Ahmed; Al-Waili, Noori S; Al-Wadaan, Mohammed A; Garraud, Olivier

    2015-09-15

    Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease caused by the selective destruction of pancreatic β cells, followed by hyperglycemia, oxidative stress and the subsequent extensive impairment of immune cell functions, a phenomenon responsible for the development of chronic diabetic complications. Propolis, a natural bee product that is extensively used in foods and beverages, significantly benefits human health. Specifically, propolis exerts antioxidant, anti-inflammatory and analgesic effects that may improve diabetic complications. To further elucidate the potential benefits of propolis, the present study investigated the effect of dietary supplementation with propolis on the plasma cytokine profiles, free radical levels, lipid profile and lymphocyte proliferation and chemotaxis in a streptozotocin (STZ)-induced type I diabetic mouse model. Thirty male mice were equally distributed into 3 experimental groups: group 1, non-diabetic control mice; group 2, diabetic mice; and group 3, diabetic mice supplemented daily with an ethanol-soluble derivative of propolis (100 mg/kg body weight) for 1 month. First, the induction of diabetes in mice was associated with hyperglycemia and significant decreases in the insulin level and the lymphocyte count. In this context, diabetic mice exhibited severe diabetic complications, as demonstrated by a significant decrease in the levels of IL-2, IL-4 and IL-7, prolonged elevation of the levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and reactive oxygen species (ROS) and altered lipid profiles compared with control non-diabetic mice. Moreover, antigen stimulation of B and T lymphocytes markedly reduced the proliferative capacity and chemotaxis of these cells towards CCL21 and CXCL12 in diabetic mice compared with control mice. Interestingly, compared with diabetes induction alone, treatment of diabetic mice with propolis significantly restored the plasma cytokine and ROS levels and the lipid profile to

  16. Lipid mobility in supported lipid bilayers by single molecule tracking

    Science.gov (United States)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  17. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies...... and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  18. The cellular and biochemical rules of lipid antigen presentation.

    Science.gov (United States)

    De Libero, Gennaro; Collmann, Anthony; Mori, Lucia

    2009-10-01

    The recognition of both protein and lipid antigens follows similar strategies that rely on different molecular mechanisms. APC present lipid antigens exploiting the same mechanisms implicated in lipid translocation, lipoprotein assembly and lipid degradation. An important issue is how the lipid structure contributes to antigenicity. Lipid hydrophobicity influences the modes of internalization by APC, the trafficking through different membrane compartments, the binding to CD1 molecules and the stability of antigenic complexes. Some glycolipids with large hydrophilic parts require processing of the sugar moieties exerted by lysosomal hydrolases. Finally, extraction of lipids from membranes, their solubilization and loading on CD1 molecules are facilitated by the same lysosomal lipid-binding proteins that are also instrumental in lipid catabolism. More recent investigations reveal how lipid-specific immunity is regulated during infections. In this review we describe the main cellular and biochemical rules of lipid antigen presentation and discuss their implications in anti-microbial and autoimmune responses.

  19. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore......, this paper presents methods to analyze station capacity. Four methods to analyze station capacity are developed. The first method is an adapted UIC 406 capacity method that can be used to analyze switch zones and platform tracks at stations that are not too complex. The second method examines the need...... the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station...

  20. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground...

  1. Lipid intolerance in smokers.

    Science.gov (United States)

    Axelsen, M; Eliasson, B; Joheim, E; Lenner, R A; Taskinen, M R; Smith, U

    1995-05-01

    Smokers have recently been shown to be insulin resistant and to exhibit several characteristics of the insulin resistance syndrome (IRS). In this study, we assessed fasting and postprandial lipid levels in healthy, normolipidaemic, chronic smokers and a matched group of non-smoking individuals. A standardized mixed meal (containing 3.78 MJ and 51 g of fat) was given in the morning after an overnight fast. The smokers were either abstinent from tobacco for 48 h or were allowed to smoke freely, including being allowed to smoke six cigarettes during the study. Twenty-two middle-aged, healthy male subjects, nine habitual smokers and 13 non-smoking control subjects, were recruited to the study. The smokers had all been smoking at least 10 cigarettes per day for at least 10 years. The smokers exhibited a lipid intolerance in that their postprandial increase in triglyceride levels was more than 50% higher than in the non-smokers' group. This lipid intolerance could not be discerned in the postabsorptive state because the fasting triglyceride levels were the same in both groups, while the smokers had significantly lower high-density lipoprotein (HDL) cholesterol. The peak postprandial triglyceride level correlated closely and negatively with fasting HDL cholesterol, indicating an impaired lipolytic removal capacity in smokers. Healthy, normotriglyceridaemic smokers exhibit an abnormal postprandial lipid metabolism consistent with lipid intolerance. It is suggested that postprandial hyperlipidaemia is a characteristic trait of the insulin resistance syndrome and that the defect in lipid removal is related to the low HDL cholesterol in this syndrome. The insulin resistance syndrome is likely to be an important reason for the increased propensity for cardiovascular disease in smokers.

  2. Lipid membranes on nanostructured silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Slade, Andrea Lynn; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Ista, Linnea K. (University of New Mexico, Albuquerque, NM); O' Brien, Michael J. (University of New Mexico, Albuquerque, NM); Sasaki, Darryl Yoshio; Bisong, Paul (University of New Mexico, Albuquerque, NM); Zeineldin, Reema R. (University of New Mexico, Albuquerque, NM); Last, Julie A.; Brueck, Stephen R. J. (University of New Mexico, Albuquerque, NM)

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  3. Dynamic Nanoparticles Assemblies

    Science.gov (United States)

    WANG, LIBING; XU, LIGUANG; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.

    2012-01-01

    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  4. Dynamic nanoparticle assemblies.

    Science.gov (United States)

    Wang, Libing; Xu, Liguang; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2012-11-20

    Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic, and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple levels of hierarchy of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously form superstructures containing more than two inorganic nanoscale particles that display the ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the "bottom-up" fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Superstructures of NPs (and those held together by similar intrinsic forces)are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable super structures with a nearly constant number of NPs or Class 2 where the total number of NPs changes, while the organizational motif in the final superstructure remains the same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of

  5. Biologic Activity of Porphyromonas endodontalis complex lipids

    Science.gov (United States)

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  6. Computer Simulations of Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  7. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  8. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  9. Layer-by-layer cell membrane assembly

    Science.gov (United States)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  10. Charge-reversal Lipids, Peptide-based Lipids, and Nucleoside-based Lipids for Gene Delivery

    Science.gov (United States)

    LaManna, Caroline M.; Lusic, Hrvoje; Camplo, Michel; McIntosh, Thomas J.; Barthélémy, Philippe; Grinstaff, Mark W.

    2013-01-01

    Conspectus Twenty years after gene therapy was introduced in the clinic, advances in the technique continue to garner headlines as successes pique the interest of clinicians, researchers, and the public. Gene therapy’s appeal stems from its potential to revolutionize modern medical therapeutics by offering solutions to a myriad of diseases by tailoring the treatment to a specific individual’s genetic code. Both viral and non-viral vectors have been used in the clinic, but the low transfection efficiencies when utilizing non-viral vectors have lead to an increased focus on engineering new gene delivery vectors. To address the challenges facing non-viral or synthetic vectors, specifically lipid-based carriers, we have focused on three main themes throughout our research: 1) that releasing the nucleic acid from the carrier will increase gene transfection; 2) that utilizing biologically inspired designs, such as DNA binding proteins, to create lipids with peptide-based headgroups will improve delivery; and 3) that mimicking the natural binding patterns observed within DNA, by using lipids having a nucleoside headgroup, will give unique supramolecular assembles with high transfection efficiency. The results presented in this Account demonstrate that cellular uptake and transfection efficacy can be improved by engineering the chemical components of the lipid vectors to enhance nucleic acid binding and release kinetics. Specifically, our research has shown that the incorporation of a charge-reversal moiety to initiate change of the lipid from positive to negative net charge during the transfection process improves transfection. In addition, by varying the composition of the spacer (rigid, flexible, short, long, and aromatic) between the cationic headgroup and the hydrophobic chains, lipids can be tailored to interact with different nucleic acids (DNA, RNA, siRNA) and accordingly affect delivery, uptake outcomes, and transfection efficiency. Introduction of a peptide

  11. Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion

    Science.gov (United States)

    Beilstein, Frauke; Bouchoux, Julien; Rousset, Monique; Demignot, Sylvie

    2013-01-01

    In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity. PMID:23301014

  12. Model Answers to Lipid Membrane Questions

    DEFF Research Database (Denmark)

    Mouritsen, O. G.

    2011-01-01

    Ever since it was discovered that biological membranes have a core of a bimolecular sheet of lipid molecules, lipid bilayers have been a model laboratory for investigating physicochemical and functional properties of biological membranes. Experimental and theoretical models help the experimental ...... to pursue. Here we review some membrane models for lipid self-assembly, monolayers, bilayers, liposomes, and lipid-protein interactions and illustrate how such models can help answering questions in modern lipid cell biology....... scientist to plan experiments and interpret data. Theoretical models are the theoretical scientist's preferred toys to make contact between membrane theory and experiments. Most importantly, models serve to shape our intuition about which membrane questions are the more fundamental and relevant ones...

  13. Supported lipid bilayers as templates to design manganese oxide ...

    Indian Academy of Sciences (India)

    dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a water- based medium at room ... Keywords. Manganese oxide; supported lipid bilayers; nanoparticles; organized assemblies. 1. Introduction .... before coating with two layers of the lipid DOMA,. DOMA+DPPC or ...

  14. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  15. Antibacterial and Antioxidant Capacities and Attenuation of Lipid Accumulation in 3T3-L1 Adipocytes by Low-Molecular-Weight Fucoidans Prepared from Compressional-Puffing-Pretreated Sargassum Crassifolium

    Directory of Open Access Journals (Sweden)

    Chun-Yung Huang

    2018-01-01

    Full Text Available In this study, we extracted fucoidan from compressional-puffing-pretreated Sargassum crassifolium by hot water. The crude extract of fucoidan (SC was degraded by various degradation reagents and four low-molecular-weight (LMW fucoidans, namely SCO (degradation by hydrogen peroxide, SCA (degradation by ascorbic acid, SCOA (degradation by hydrogen peroxide + ascorbic acid, and SCH (degradation by hydrogen chloride were obtained. The degradation reagents studied could effectively degrade fucoidan into LMW fucoidans, as revealed by intrinsic viscosity, agarose gel electrophoresis, and molecular weight analyses. These LMW fucoidans had higher uronic acid content and sulfate content than those of SC. It was found that SCOA exhibited antibacterial activity. All LMW fucoidans showed antioxidant activities as revealed by DPPH (2,2-diphenyl-1-picrylhydrazyl, ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid diammonium salt, and FRAP (ferric reducing antioxidant power methods. Biological experiments showed that SC and SCOA had relatively high activity for the reversal of H2O2-induced cell death in 3T3-L1 adipocytes, and SCOA showed the highest effect on attenuation of lipid accumulation in 3T3-L1 adipocytes. Therefore, for the LMW fucoidans tested, SCOA showed antibacterial activity and had a high fucose content, high sulfate content, high activity for the reversal of H2O2-induced cell death, and a marked effect on attenuation of lipid accumulation. It can thus be recommended as a natural and safe antibacterial and anti-adipogenic agent for food, cosmetic, and nutraceutical applications.

  16. DNA nanostructures interacting with lipid bilayer membranes.

    Science.gov (United States)

    Langecker, Martin; Arnaut, Vera; List, Jonathan; Simmel, Friedrich C

    2014-06-17

    CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on

  17. Lipid nanoscaffolds in carbon nanotube arrays

    Science.gov (United States)

    Paukner, Catharina; Koziol, Krzysztof K. K.; Kulkarni, Chandrashekhar V.

    2013-09-01

    We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields.We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields. Electronic supplementary information (ESI) available: Additional wide angle X-ray scattering (WAXS) data on the alignment of lipid nanostructures, control and time resolved 2-d images of egg ovalbumin encapsulation and a summary picture of the present work. See DOI: 10.1039/c3nr02068a

  18. Lipid Metabolism Disorders

    Science.gov (United States)

    ... metabolic disorder, something goes wrong with this process. Lipid metabolism disorders, such as Gaucher disease and Tay-Sachs disease, involve lipids. Lipids are fats or fat-like substances. They ...

  19. How the immune system detects lipid antigens.

    Science.gov (United States)

    De Libero, Gennaro; Mori, Lucia

    2010-04-01

    T lymphocytes are the cells of the immune system that may recognize glycolipids as antigens. T cells recognize lipids associated with the non-polymorphic molecules of the CD1 family present on the membrane of antigen-presenting cells. CD1 molecules contain hydrophobic pockets, which bind a large variety of lipid molecules in various manners. Lipid antigenicity is determined by their mode of uptake, membrane trafficking properties, degradation within endosomal compartments and capacity to form stable complexes with CD1. Extracellular and intracellular lipid binding proteins participate in lipid handling and loading on CD1 molecules within antigen-presenting cells. Recent crystal structures have disclosed how the T cell receptor contacts CD1-lipid complexes, revealing the contribution of both CD1 and lipid residues in making functionally relevant contacts. Lipid-specific T cells are important in autoimmunity, cancer surveillance, protection during infections, and in immunoregulation. The immunogenicity of lipids is being exploited in novel approaches to immunotherapy, including inhibition of autoimmunity and anti-cancer and bacterial vaccines. Copyright 2009. Published by Elsevier Ltd.

  20. Peptide amphiphile self-assembly

    Science.gov (United States)

    Iscen, Aysenur; Schatz, George C.

    2017-08-01

    Self-assembly is a process whereby molecules organize into structures with hierarchical order and complexity, often leading to functional materials. Biomolecules such as peptides, lipids and DNA are frequently involved in self-assembly, and this leads to materials of interest for a wide variety of applications in biomedicine, photonics, electronics, mechanics, etc. The diversity of structures and functions that can be produced provides motivation for developing theoretical models that can be used for a molecular-level description of these materials. Here we overview recently developed computational methods for modeling the self-assembly of peptide amphiphiles (PA) into supramolecular structures that form cylindrical nanoscale fibers using molecular-dynamics simulations. Both all-atom and coarse-grained force field methods are described, and we emphasize how these calculations contribute insight into fiber structure, including the importance of β-sheet formation. We show that the temperature at which self-assembly takes place affects the conformations of PA chains, resulting in cylindrical nanofibers with higher β-sheet content as temperature increases. We also present a new high-density PA model that shows long network formation of β-sheets along the long axis of the fiber, a result that correlates with some experiments. The β-sheet network is mostly helical in nature which helps to maintain strong interactions between the PAs both radially and longitudinally. Contribution to Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  1. LIPID MAPS online tools for lipid research

    OpenAIRE

    Fahy, Eoin; Sud, Manish; Cotter, Dawn; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS consortium has developed a number of online tools for performing tasks such as drawing lipid structures and predicting possible structures from mass spectrometry (MS) data. A simple online interface has been developed to enable an end-user to rapidly generate a variety of lipid chemical structures, along with corresponding systematic names and ontological information. The structure-drawing tools are available for six categories of lipids: (i) fatty acyls, (ii) glycerolipids, (i...

  2. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  3. Amyloids of Alpha-Synuclein Affect the Structure and Dynamics of Supported Lipid Bilayers

    NARCIS (Netherlands)

    Iyer, A.S.; Petersen, N.O.; Claessens, Mireille Maria Anna Elisabeth; Subramaniam, Vinod

    2014-01-01

    Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios

  4. Amyloids of alpha-synuclein affect the structure and dynamics of supported lipid bilayers

    NARCIS (Netherlands)

    Iyer, Aditya; Petersen, Nils O; Claessens, Mireille M A E; Subramaniam, Vinod

    2014-01-01

    Interactions of monomeric alpha-synuclein (αS) with lipid membranes have been suggested to play an important role in initiating aggregation of αS. We have systematically analyzed the distribution and self-assembly of monomeric αS on supported lipid bilayers. We observe that at protein/lipid ratios

  5. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  6. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  7. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  8. General Assembly

    CERN Multimedia

    Staff Association

    2017-01-01

    Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 avril 2016. Présentation et approbation du rapport d’activités 2016. Présentation et approbation du rapport financier 2016. Présentation et approbation du rapport des vérificateurs aux comptes pour 2016. Programme de travail 2017. Présentation et approbation du projet de budget 2017 Approbation du taux de cotisation pour 2018. Modifications aux Statuts de l'Association du personnel proposées. Élections des membres de la Commission électorale. Élections des vérifica...

  9. The role of the kidney in lipid metabolism

    DEFF Research Database (Denmark)

    Moestrup, Søren K; Nielsen, Lars Bo

    2005-01-01

    proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid......PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma......-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential...

  10. Coalescence Kinetics of Lipid Based Bicelles

    Science.gov (United States)

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-03-01

    Uniform nanodisc can be self-assembled from lipid mixtures of dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), and dihexanoyl phosphatidylcholine (DHPC). This study focuses on the theoretical and experimental growth kinetics of phospholipid based nanodiscs. Motivation for this project comes from the nanodisc's small size and their potential use as a carrier for drug delivery. It was observed that at high total lipid concentration the nanodiscs are stable at approximately 10 nm. However, growth of these nanodiscs is observed at relatively low total lipid concentrations. Dynamic light scattering (DLS) is used to monitor the size and growth rate of these nanodiscs at different solution conditions. The growth at low concentrations is caused by to the transfer of charged lipid (DMPG) from the discs to the solution, reducing the Columbic interaction. The growth of nanodisc as a function of size and surface potential is modeled using the Smoluchowski transport equation with transport-limited boundary conditions.

  11. Self-Assembled 3D Hierarchical Porous Bi2MoO6 Microspheres toward High Capacity and Ultra-Long-Life Anode Material for Li-Ion Batteries.

    Science.gov (United States)

    Yuan, Shuang; Zhao, Yue; Chen, Weibin; Wu, Chun; Wang, Xiaoyang; Zhang, Lina; Wang, Qiang

    2017-07-05

    Three-dimensional (3D) hierarchical porous Bi2MoO6 microspheres (HPBMs) were successfully prepared and used as the anode material in Li-ion batteries (LIBs) for the first time. The HPBMs showed a high capacity (>830 mAh·g(-1), 734.5 mAh·cm(-2)), high rate capability (20 A·g(-1), 177.7 mAh·g(-1)), and superior long cycle life (>2700 cycles) in the temperature range 5-55 °C without adding any other conductive carbon materials, such as graphene and carbon nanotubes. This can be reasonably attributed to their substantially high surface area, 3D hierarchical porous structure, and homogeneous conductive matrix composed of metallic nanoparticles. HPBMs surprisingly showed a high reversible discharge capacity of 537.2 mAh·g(-1) (475.4 mAh·cm(-2)) and an average discharge voltage >3.0 V even when coupled with LiCoO2 in a full cell. The results highlight the feasibility of HPBMs as anode material for LIBs.

  12. Differences between Lipids Extracted from Five Species Are Not Sufficient To Explain Biomagnification of Nonpolar Organic Chemicals

    DEFF Research Database (Denmark)

    Jahnke, Annika; Holmbäck, Jan; Andersson, Rina Argelia

    2015-01-01

    headspace from spiked olive oil to determine their sorptive capacities. Lipids from seal blubber and pork bacon solely composed of triglycerides had capacities similar to that of olive oil; lipids from mussels, herring, and guillemot egg had quantifiable fractions of phospholipids and cholesterol and showed...... capacities reduced by factors of up to 2.3-fold. Generally, the sorptive capacities of the lipids were not elevated relative to the olive oil controls and are unlikely to explain a substantial part of biomagnification....

  13. ``Bicellar'' Lipid Mixtures as used in Biochemical and Biophysical Studies

    Science.gov (United States)

    Katsaras, John; Harroun, Thad A.; Pencer, Jeremy; Nieh, Mu-Ping

    2005-08-01

    Over the past decade “bicellar” lipid mixtures composed of the long-chain dimyristoyl phosphatidylcholine (DMPC) and the short-chain dihexanoyl PC (DHPC) molecules have emerged as a powerful medium for studying membrane associated, biologically relevant macromolecules and assemblies. Depending on temperature, lipid concentration and composition these lipid mixtures can assume a variety of morphologies, some of them alignable in the presence of a magnetic field. This article will examine the biophysical studies that have elucidated the various morphologies assumed by these lipid mixtures, and their use in the biochemical studies of biomolecules.

  14. Chemoselective approaches to glycoprotein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2001-02-23

    Oligosaccharides on proteins and lipids play central roles in human health and disease. The molecular analysis of glycoconjugate function has benefited tremendously from new methods for their chemical synthesis, which provides homogeneous material not attainable from biosynthetic systems. Still, glycoconjugate synthesis requires the manipulation of multiple stereocenters and protecting groups and remains the domain of a few expert laboratories around the world. This account summarizes chemoselective approaches for assembling homogeneous glycoconjugates that attempt to reduce the barriers to their synthesis. The objective of these methods is to make glycoconjugate synthesis accessible to a broader community, thereby accelerating progress in glycobiology.

  15. De-novo assembly and characterization of Chlorella minutissima UTEX2341 transcriptome by paired-end sequencing and the identification of genes related to the biosynthesis of lipids for biodiesel.

    Science.gov (United States)

    Yu, Mingjia; Yang, Shanjun; Lin, Xiangzhi

    2016-02-01

    Chlorella minutissima is considered to be one of the promising feedstocks for biofuels in the future. In this study, the transcriptome from the oil-rich strain UTEX2341 of C. minutissima was generated based on Illumina paired-end sequencing. Through de-novo assembly, a total of 14,905 isogenes were obtained and compacted into 6216 unigenes. A total of 80% of the unigenes were assigned with GO terms and were further subdivided into 55 sub-categories. KEGG analysis demonstrated that 37.2% of the unigenes could be accessed and mapped into 278 pathways. Interestingly, the genes that encoded key enzymes that are involved in the biosynthesis, elongation, and metabolism of fatty acids were identified, including malonyl-CoA-ACP transacylase, 3-ketoacyl-ACP synthase, 3-ketoacyl-ACP reductase, and others. Moreover, the genes that are involved in triacylglycerol (TAG) biosynthesis and metabolism were also observed. Therefore, the transcriptome analysis of C. minutissima UTEX2341 not only supplies comprehensive insight into the molecular pathway that is involved in the biosynthesis of biofuel precursors but also provides substantial valuable genomic resources to accelerate the further development and utilization of biofuels. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Virus assembly and plasma membrane domains: which came first?

    Science.gov (United States)

    Kerviel, A; Thomas, A; Chaloin, L; Favard, C; Muriaux, D

    2013-02-01

    Viral assembly is a key step in the virus life cycle. In this review, we focus mainly on the ability of retroviruses, especially HIV-1, to assemble at the plasma membrane of their host cells. The assembly process of RNA enveloped viruses necessitates a fine orchestration between the different viral components and specific interactions between viral proteins and lipids of the host cell membrane. Searching for a comparison with another RNA enveloped virus, we refer to influenza virus to show how it could share (or not) some common features with HIV-1 assembly since both viruses are believed to assemble mainly in raft microdomains. We also discuss the role of RNA and the cellular actin cytoskeleton in enhancing these viral assembly processes. Finally, based on the literature and on new results we have obtained by molecular docking, we propose another mechanism for HIV-1 assembly in membrane domains. This mechanism involves the trapping of acidic lipids by the viral Gag protein by means of ionic protein-lipid interactions, inducing thereby formation of acidic lipid-enriched microdomains (ALEM). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Lipid Signaling in Tumorigenesis

    OpenAIRE

    Liu, Renyan; Huang, Ying

    2014-01-01

    Lipids are important cellular building blocks and components of signaling cascades. Deregulation of lipid metabolism or signaling is frequently linked to a variety of human diseases such as diabetes, cardiovascular diseases, and cancer. It is widely believed that lipid molecules or their metabolic products are involved in tumorigenic inflammation and thus, lipids are implicated as significant contributors or even primary triggers of tumorigenesis. Lipids are believed to directly or indirectly...

  18. Screening of oleaginous yeast with xylose assimilating capacity for ...

    African Journals Online (AJOL)

    ... in industrial-scale production. In our preliminary study, 57 oleaginous yeast with xylose assimilating capacity were isolated from 13 soil samples, 16 strains were identified as potential lipid biomass producer. Four strains which showed higher lipid content were used for further ethanol fermentation at different conditions.

  19. Effect of thiols on lipid peroxidation in rat liver microsomes

    NARCIS (Netherlands)

    Haenen, G R; Vermeulen, N P; Timmerman, H; Bast, A

    1989-01-01

    The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and

  20. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  1. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    Science.gov (United States)

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  2. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.

    Directory of Open Access Journals (Sweden)

    Andreas I Andreou

    Full Text Available Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.

  3. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.

    Science.gov (United States)

    Andreou, Andreas I; Nakayama, Naomi

    2018-01-01

    Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid) render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.

  4. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  5. Lipids, lysosomes, and autophagy.

    Science.gov (United States)

    Jaishy, Bharat; Abel, E Dale

    2016-09-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. Parenteral Nutrition and Lipids.

    Science.gov (United States)

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-04-14

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.

  7. Bos taurus genome assembly.

    Science.gov (United States)

    Liu, Yue; Qin, Xiang; Song, Xing-Zhi Henry; Jiang, Huaiyang; Shen, Yufeng; Durbin, K James; Lien, Sigbjørn; Kent, Matthew Peter; Sodeland, Marte; Ren, Yanru; Zhang, Lan; Sodergren, Erica; Havlak, Paul; Worley, Kim C; Weinstock, George M; Gibbs, Richard A

    2009-04-24

    We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  8. Bos taurus genome assembly

    Directory of Open Access Journals (Sweden)

    Sodergren Erica

    2009-04-01

    Full Text Available Abstract Background We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS only assembly used for many other animal genomes including the rhesus macaque. Results The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information. Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5% of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. Conclusion The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  9. Anesthetics interacting with lipid rafts.

    Science.gov (United States)

    Bandeiras, Cátia; Serro, Ana Paula; Luzyanin, Konstantin; Fernandes, Anabela; Saramago, Benilde

    2013-01-23

    The exact mechanism by which anesthetics induce cell membrane-mediated modifications is still an open question. Although the fluidization effect of the anesthetic molecules on the cellular membrane is widely recognized, it is not known if anesthetics show any preference for specific membrane domains, namely the lipid rafts. The importance of these membrane micro-domains derives from the fact that they have been associated with cell signaling pathways, as well as with specific drug interactions. The objective of this work is to contribute for the elucidation of this question through the comparison of the anesthetic interactions with membranes of various lipid compositions. Liposomes prepared with an equimolar mixture of POPC, sphingomyelin and cholesterol, were chosen as models for lipid rafts. The interactions of these liposomes with two local anesthetics, tetracaine and lidocaine, and one general anesthetic, propofol, were studied. The effect of cholesterol was investigated by comparing anesthetic interactions with POPC/SM liposomes and POPC/SM/CHOL liposomes. The following experimental techniques were used: quartz crystal microbalance with dissipation, differential scanning calorimetry and phosphorus nuclear magnetic resonance. Although the liposomes investigated by the different techniques are not in the same conditions, it is possible to assemble the information obtained from all experimental techniques employed to reach a general conclusion. Tetracaine interacts more with raftlike domains, lidocaine induces stronger modifications on POPC/SM liposomes and the results for propofol are not fully conclusive but it seems to be the least prone to lipid interactions. The results were compared with those obtained with DMPC-containing liposomes, reported in a previous work. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  11. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii.

    Science.gov (United States)

    Nolan, Sabrina J; Romano, Julia D; Coppens, Isabelle

    2017-06-01

    Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite's capability in scavenging neutral lipids from host LD.

  12. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  13. Tilt assembly for tracking solar collector assembly

    Science.gov (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  14. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  15. Nutrients and neurodevelopment: lipids.

    Science.gov (United States)

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. Sociedad Argentina de Pediatría.

  16. Carbon nanotubes for stabilization of nanostructured lipid particles

    Science.gov (United States)

    Gaunt, Nicholas P.; Patil-Sen, Yogita; Baker, Matthew J.; Kulkarni, Chandrashekhar V.

    2014-12-01

    Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development of combination therapies employing both CNTs and nanostructured lipid self-assembly together as carriers of different drugs.Carbon nanotubes (CNTs) are increasingly studied for innovative biotechnological applications particularly where they are combined with essential biological materials like lipids. Lipids have been used earlier for enhancing the dispersibility of CNTs in aqueous solutions. Here we report a novel application of CNTs for stabilization of internally self-assembled nanostructured lipid particles of 2-5 μm size. Single-walled (pristine) as well as -OH and -COOH functionalized multi-walled CNTs were employed to produce nanostructured emulsions which stayed stable for months and could be re-dispersed after complete dehydration. Concentrations of CNTs employed for stabilization were very low; moreover CNTs were well-decorated with lipid molecules. These features contribute towards reducing their toxicity and improving biocompatibility for biomedical and pharmaceutical applications. Our approach paves the way for future development

  17. On the Importance of Hydrodynamic Interactions in Lipid Membrane Formation

    Science.gov (United States)

    Ando, Tadashi; Skolnick, Jeffrey

    2013-01-01

    Hydrodynamic interactions (HI) give rise to collective motions between molecules, which are known to be important in the dynamics of random coil polymers and colloids. However, their role in the biological self-assembly of many molecule systems has not been investigated. Here, using Brownian dynamics simulations, we evaluate the importance of HI on the kinetics of self-assembly of lipid membranes. One-thousand coarse-grained lipid molecules in periodic simulation boxes were allowed to assemble into stable bilayers in the presence and absence of intermolecular HI. Hydrodynamic interactions reduce the monomer-monomer association rate by 50%. In contrast, the rate of association of lipid clusters is much faster in the presence of intermolecular HI. In fact, with intermolecular HI, the membrane self-assembly rate is 3–10 times faster than that without intermolecular HI. We introduce an analytical model to describe the size dependence of the diffusive encounter rate of particle clusters, which can qualitatively explain our simulation results for the early stage of the membrane self-assembly process. These results clearly suggest that HI greatly affects the kinetics of self-assembly and that simulations without HI will significantly underestimate the kinetic parameters of such processes. PMID:23332062

  18. Conservation of lipid functions in cytochrome bc complexes.

    Science.gov (United States)

    Hasan, S Saif; Yamashita, Eiki; Ryan, Christopher M; Whitelegge, Julian P; Cramer, William A

    2011-11-18

    Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b(6)f and bc(1) complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b(6)f complex with those in bc(1) shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b(6)f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc(1) complex. The specific identity of lipids is different in b(6)f and bc(1) complexes: b(6)f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc(1) complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b(6)f, as well as eicosane in C. reinhardtii, are unique to the b(6)f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b(6)f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Analysis of reconfigurable assembly system framing systems in automotive industry

    Directory of Open Access Journals (Sweden)

    Md Zain Mohamad Zamri

    2017-01-01

    Full Text Available Current trend in automotive industry shows increasing demand for multiple models with lean production. Prior to that, automotive manufacturing systems evolved from mass production to flexible automation. Material handling systems and equipment in a single assembly line with multiple models require high investment but with low throughput thus making production cost relatively high. Current assembly process of side structure and undercarriage with downtime occurrence during assembly process affecting production performance (quality, cost and delivery. Manufacturing facilities should allow more flexibility and increase intelligence evolving toward novel reconfigurable assembly systems (RAS. RAS is envisaged capable of increasing factor flexibility and responsiveness by incorporating assembly jig, robot and framing, which could be next generation of world class automotive assembly systems. This project research proposes a new methodology of framework reconfigurable assembly systems principles in automotive framing systems i.e. enhance assembly process between side structure assembly and undercarriage assembly which a new RAS is capable to reconfigure the assembly processes of multiple model on a single assembly line. Simulation software (Witness will be used to simulate and validate current and proposed assembly process. RAS is expected to be a solution for rapid change in structure and for a responsively adjustable production capacity. Quality, cost and delivery are production key parameters that can be achieved by implementing RAS.

  20. Autonomous electrochromic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne

    2015-03-10

    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  1. Firearm trigger assembly

    Science.gov (United States)

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  2. Homeoviscous adaptation and the regulation of membrane lipids

    DEFF Research Database (Denmark)

    Ernst, Robert; Ejsing, Christer S; Antonny, Bruno

    2016-01-01

    Biological membranes are complex and dynamic assemblies of lipids and proteins. Poikilothermic organisms including bacteria, fungi, reptiles, and fish do not control their body temperature and must adapt their membrane lipid composition in order to maintain membrane fluidity in the cold....... This adaptive response was termed homeoviscous adaptation and has been frequently studied with a specific focus on the acyl chain composition of membrane lipids. Massspectrometry-based lipidomics can nowadays provide more comprehensive insights into the complexity of lipid remodeling during adaptive responses....... Eukaryotic cells compartmentalize biochemical processes in organelles with characteristic surface properties, and the lipid composition of organelle membranes must be tightly controlled in order to maintain organelle function and identity during adaptive responses. Some highly differentiated cells...

  3. Amphiphilic lipids in solution: a simulational study of lipid bilayer formation

    Science.gov (United States)

    Vogel, Thomas; Landau, David P.; Gai, Lili; Maerzke, Katie A.; Iacovella, Christopher R.; McCabe, Clare M.; Cummings, Peter T.

    2013-03-01

    Amphiphilic molecules consisting of hydrophilic head and hydrophobic tail groups self-assemble into a wide variety of structures, such as bilayers (membranes), micelles, or vesicles (liposomes) when mixed with a suitable solvent. The understanding of this lipid self-assembly is essential for industrial, biological, or medical applications, but computer simulations are generally challenging due to the complex structure of the energy landscape. We show results for the lipid bilayer formation process obtained by newly developed parallel Wang-Landau Monte Carlo and statistical temperature molecular dynamics simulations. By applying those methods to a generic coarse-grained model for amphiphilic molecules in solution, we were able to obtain the thermodynamical data over the whole relevant temperature and energy range and to unravel the membrane formation process including all structural sub-transitions between different fluid and gel-phase bilayers. Research supported by NSF

  4. A new look at lipid-membrane structure in relation to drug research

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Jørgensen, Kent

    1998-01-01

    and theoretical studies. Special attention is paid to trans-bilayer structure, lateral molecular organization of the lipid bilayer, lipid-mediated protein assembly, and lipid-bilayer permeability. It is argued that lipids play a major role in lipid membrane-organization and functionality.......Lipid-bilayer membranes are key objects in drug research in relation to (i) interaction of drugs with membrane-bound receptors, (ii) drug targeting, penetration, and permeation of cell membranes, and (iii) use of liposomes in micro-encapsulation technologies for drug delivery. Rational design...... of new drugs and drug-delivery systems therefore requries insight into the physical properties of lipid-bilayer membranes. This mini-review provides a perspective on the current view of lipid-bilayer structure and dynamics based on information obtained from a variety of recent experimental...

  5. Cooperative assembly in targeted drug delivery

    Science.gov (United States)

    Auguste, Debra

    2012-02-01

    Described as cell analogues, liposomes are self-assembled lipid bilayer spheres that encapsulate aqueous volumes. Liposomes offer several drug delivery advantages due to their structural versatility related to size, composition, bilayer fluidity, and ability to encapsulate a large variety of compounds non-covalently. However, liposomes lack the structural information embedded within cell membranes. Partitioning of unsaturated and saturated lipids into liquid crystalline (Lα) and gel phase (Lβ) domains, respectively, affects local molecular diffusion and elasticity. Liposome microdomains may be used to pattern molecules, such as antibodies, on the liposome surface to create concentrated, segregated binding regions. We have synthesized, characterized, and evaluated a series of homogeneous and heterogeneous liposomal vehicles that target inflamed endothelium. These drug delivery vehicles are designed to complement the heterogeneous presentation of lipids and receptors on endothelial cells (ECs). EC surfaces are dynamic; they segregate receptors within saturated lipid microdomains on the cell surface to regulate binding and signaling events. We have demonstrated that cooperative binding of two antibodies enhances targeting by multiple fold. Further, we have shown that organization of these antibodies on the surface can further enhance cell uptake. The data suggest that EC targeting may be enhanced by designing liposomes that mirror the segregated structure of lipid and receptor molecules involved in neutrophil-EC adhesion. This strategy is employed in an atherosclerotic mouse model in vivo.

  6. Amyloids of alpha-synuclein affect the structure and dynamics of supported lipid bilayers

    NARCIS (Netherlands)

    Iyer, A.; Petersen, N.O.; Claessens, M.M.B.; Subramaniam, V.

    2014-01-01

    Interactions of monomeric alpha-synuclein (alphaS) with lipid membranes have been suggested to play an important role in initiating aggregation of alphaS. We have systematically analyzed the distribution and self-assembly of monomeric alphaS on supported lipid bilayers. We observe that at

  7. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  8. Customer Driven Capacity Setting

    OpenAIRE

    Hübl, Alexander; Altendorfer, Klaus; Jodlbauer, Herbert; Pilstl, Josef

    2010-01-01

    International audience; The purpose of this article is to develop a method for short and medium term capacity setting decisions for providing a market oriented level of available capacity for the investigated machine groups. An MTO (make to order) production system is considered. The basic concept is that the cumulative available capacity of the machine group has to be greater than or equal to the cumulative needed capacity influenced by the customer orders. The cumulative needed capacity is ...

  9. Computer simulation of cytoskeleton-induced blebbing in lipid membranes

    DEFF Research Database (Denmark)

    Spangler, E. J.; Harvey, C. W.; Revalee, J. D.

    2011-01-01

    Blebs are balloon-shaped membrane protrusions that form during many physiological processes. Using computer simulation of a particle-based model for self-assembled lipid bilayers coupled to an elastic meshwork, we investigated the phase behavior and kinetics of blebbing. We found that blebs form...

  10. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  11. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  12. The Assembly of DNA Amphiphiles at Liquid Crystal-Aqueous Interface

    Directory of Open Access Journals (Sweden)

    Jingsheng Zhou

    2016-12-01

    Full Text Available In this article, we synthesized a type of DNA amphiphiles (called DNA-lipids and systematically studied its assembly behavior at the liquid crystal (LC—aqueous interface. It turned out that the pure DNA-lipids at various concentrations cannot trigger the optical transition of liquid crystals from planar anchoring to homeotropic anchoring at the liquid crystal—aqueous interface. The co-assembly of DNA-lipid and l-dilauroyl phosphatidylcholine (l-DLPC indicated that the DLPC assembled all over the LC-aqueous interface, and DNA-lipids prefer to couple with LC in certain areas, particularly in polarized and fluorescent image, forming micron sized net-like structures. The addition of DNA complementary to DNA-lipids forming double stranded DNA-lipids caused de-assembly of DNA-lipids from LC-aqueous interface, resulting in the disappearance of net-like structures, which can be visualized through polarized microscope. The optical changes combined with DNA unique designable property and specific interaction with wide range of target molecules, the DNA-lipids decorated LC-aqueous interface would provide a new platform for biological sensing and diagnosis.

  13. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.

    Science.gov (United States)

    Savarala, Sushma; Monson, Frederick; Ilies, Marc A; Wunder, Stephanie L

    2011-05-17

    Control of the stabilization/destabilization of supported lipid bilayers (SLBs) on nanoparticles is important for promotion of their organized assembly and for their use as delivery vehicles. At the same time, understanding the mechanism of these processes can yield insight into nanoparticle-cell interactions and nanoparticle toxicity. In this study, the suspension/precipitation process of zwitterionic lipid/SiO(2) nanosystems was analyzed as a function of ionic strength and as a function of the ratio of lipid/SiO(2) surface areas, at pH = 7.6. Salt is necessary to induce supported lipid bilayer (SLB) formation for zwitterionic lipids on silica (SiO(2)) (Seantier, B.; Kasemo, B., Influence of Mono- and Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption. Langmuir 2009, 25 (10), 5767-5772). However, for zwitterionic SLBs on SiO(2) nanoparticles, addition of salt can cause precipitation of the SLBs, due to electrostatic shielding by both the lipid and the salt and to the suppression of thermal undulation/protrusion repulsive forces for lipids on solid surfaces. At ionic strengths that cause precipitation of SLBs, it was found that addition of excess SUVs, at ratios where there were equal populations of SUVs and SLBs, restored the undulation/protrusion repulsive forces and restabilized the suspensions. We suggest that SUVs separate SLBs in the suspension, as observed by TEM, and that SLB-SLB interactions are replaced by SLB-SUV interactions. Decreasing the relative amount of lipid, to the extent that there was less lipid available than the amount required for complete bilayer coverage of the SiO(2), resulted in precipitation of the nanosystem by a process of nanoparticle lipid bridging. For this case, we postulate a process in which lipid bilayer patches on one nanoparticle collide with bare silica patches on another SiO(2) nanoparticle, forming a single bilayer bridge between them. TEM data confirmed these findings, thus

  14. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  15. Lipid bilayers and interfaces

    NARCIS (Netherlands)

    Kik, R.A.

    2007-01-01

    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  16. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  17. Silk Biomaterials with Vascularization Capacity.

    Science.gov (United States)

    Han, Hongyan; Ning, Hongyan; Liu, Shanshan; Lu, Qiang; Fan, Zhihai; Lu, Haijun; Lu, Guozhong; Kaplan, David L

    2016-01-20

    Functional vascularization is critical for the clinical regeneration of complex tissues such as kidney, liver or bone. The immobilization or delivery of growth factors has been explored to improve vascularization capacity of tissue engineered constructs, however, the use of growth factors has inherent problems such as the loss of signaling capability and the risk of complications such as immunological responses and cancer. Here, a new method of preparing water-insoluble silk protein scaffolds with vascularization capacity using an all aqueous process is reported. Acid was added temporally to tune the self-assembly of silk in lyophilization process, resulting in water insoluble scaffold formation directly. These biomaterials are mainly noncrystalline, offering improved cell proliferation than previously reported silk materials. These systems also have appropriate softer mechanical property that could provide physical cues to promote cell differentiation into endothelial cells, and enhance neovascularization and tissue ingrowth in vivo without the addition of growth factors. Therefore, silk-based degradable scaffolds represent an exciting biomaterial option, with vascularization capacity for soft tissue engineering and regenerative medicine.

  18. Mauve assembly metrics.

    Science.gov (United States)

    Darling, Aaron E; Tritt, Andrew; Eisen, Jonathan A; Facciotti, Marc T

    2011-10-01

    High-throughput DNA sequencing technologies have spurred the development of numerous novel methods for genome assembly. With few exceptions, these algorithms are heuristic and require one or more parameters to be manually set by the user. One approach to parameter tuning involves assembling data from an organism with an available high-quality reference genome, and measuring assembly accuracy using some metrics. We developed a system to measure assembly quality under several scoring metrics, and to compare assembly quality across a variety of assemblers, sequence data types, and parameter choices. When used in conjunction with training data such as a high-quality reference genome and sequence reads from the same organism, our program can be used to manually identify an optimal sequencing and assembly strategy for de novo sequencing of related organisms. GPL source code and a usage tutorial is at http://ngopt.googlecode.com aarondarling@ucdavis.edu Supplementary data is available at Bioinformatics online.

  19. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are compose...

  20. Lipophilic DNA-conjugates: DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla

    2009-01-01

    DNA detection systems based on encoded solid particles have been reported but require often tedious and not generally applicable surface chemistry. In the present study a system comprised of a lipid-modified DNA probe sequence and unmodified DNA target sequences is used to non-covalently assemble...

  1. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  2. Torque Induced on Lipid Microtubules with Optical Tweezers

    Science.gov (United States)

    wichean, T. Na; Charrunchon, S.; Pattanaporkratana, A.; Limtrakul, J.; Chattham, N.

    2017-09-01

    Chiral Phospholipids are found self-assembled into cylindrical tubules of 500 nm in diameter by helical winding of bilayer stripes under cooling in ethanol and water solution. Theoretical prediction and experimental evidence reported so far confirmed the modulated tilt direction in a helical striped pattern of the tubules. This molecular orientation morphology results in optically birefringent tubules. We investigate an individual lipid microtubule under a single optical trap of 532 nm linearly polarized laser. Spontaneous rotation of a lipid tubule induced by radiation torque was observed with only one sense of rotation caused by chirality of a lipid tubule. Rotation discontinued once the high refractive index axis of a lipid tubule aligned with a polarization axis of the laser. We further explored a lipid tubule under circularly polarized optical trap. It was found that a lipid tubule was continuously rotated confirming the tubule birefringent property. We modified the shape of optical trap by cylindrical lens obtaining an elliptical profile optical trap. A lipid tubule can be aligned along the elongated length of optical trap. We reported an investigation of competition between polarized light torque on a birefringent lipid tubule versus torque from intensity gradient of an elongated optical trap.

  3. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    Science.gov (United States)

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  4. Challenges and advances in the field of self-assembled membranes

    NARCIS (Netherlands)

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Boeker, Alexander

    2013-01-01

    Self-assembled membranes are of vital importance in biological systems e. g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More

  5. Evidence for condensed complexes of cholesterol in lipid membranes

    Science.gov (United States)

    Ratajczak, Maria K.

    Although cholesterol is a predominant lipid in the eukaryotic plasma membrane, its interactions with other lipids are still not well understood. Insights into the nature of lipid assembly can be gained from examining lipid-cholesterol interaction using model systems. A key observation was the discovery of liquid-liquid phase diagrams with two critical points in the binary mixtures of cholesterol and lipids. The shape of the phase diagrams can be explained by a thermodynamic model of "condensed complexes". In our quest to characterize cholesterol-lipid interactions, we determined phase diagrams of cholesterol and phospholipids that point to the existence of condensed complexes. This complex formation hypothesis was further supported by experiments involving cholesterol removal by cyclodextrin, grazing x-ray diffraction and x-ray reflectivity studies and isothermal calorimetry. Our study aimed at establishing a correlation (or the lack of) between domain formation and complex formation, as well as determining the mode of cholesterol association with different lipids based on their structural and physical properties. We established a displacement assay by which we were able to probe cholesterol-lipid interactions by perturbing them in the presence of an intercalator that competes with cholesterol for association with lipids. Our data support the condensed complex model between cholesterol and lipids, and cholesterol when complexed with lipids shows low activity whereas free, uncomplexed cholesterol exhibits high activity. We were successful in modulating cholesterol activity by varying the level of intercalator while keeping the cholesterol content fixed. In this thesis, not only have we shown that cholesterol can be displaced by intercalators in model systems, we have further established that such displacement can take place in membranes of live cell.

  6. Interactions of surfactants with lipid membranes.

    Science.gov (United States)

    Heerklotz, Heiko

    2008-01-01

    Surfactants are surface-active, amphiphilic compounds that are water-soluble in the micro- to millimolar range, and self-assemble to form micelles or other aggregates above a critical concentration. This definition comprises synthetic detergents as well as amphiphilic peptides and lipopeptides, bile salts and many other compounds. This paper reviews the biophysics of the interactions of surfactants with membranes of insoluble, naturally occurring lipids. It discusses structural, thermodynamic and kinetic aspects of membrane-water partitioning, changes in membrane properties induced by surfactants, membrane solubilisation to micelles and other phases formed by lipid-surfactant systems. Each section defines and derives key parameters, mentions experimental methods for their measurement and compiles and discusses published data. Additionally, a brief overview is given of surfactant-like effects in biological systems, technical applications of surfactants that involve membrane interactions, and surfactant-based protocols to study biological membranes.

  7. Wrinkled1 accelerates flowering and regulates lipid homeostasis between oil accumulation and membrane lipid anabolism in Brassica napus

    Directory of Open Access Journals (Sweden)

    Qing eLi

    2015-11-01

    Full Text Available Wrinkled1 (WRI1 belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid synthesis and lipid assembly. The overexpression (OE of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, fatty acid synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipid monogalactosyldiacylglycerol (MGDG, digalactosyldiacylglycerol (DGDG, and phosphatidylcholine (PC in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide (PE, and oil (triacylglycerol, TAG in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  8. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus.

    Science.gov (United States)

    Li, Qing; Shao, Jianhua; Tang, Shaohua; Shen, Qingwen; Wang, Tiehu; Chen, Wenling; Hong, Yueyun

    2015-01-01

    Wrinkled1 (WRI1) belongs to the APETALA2 transcription factor family; it is unique to plants and is a central regulator of oil synthesis in Arabidopsis. The effects of WRI1 on comprehensive lipid metabolism and plant development were unknown, especially in crop plants. This study found that BnWRI1 in Brassica napus accelerated flowering and enhanced oil accumulation in both seeds and leaves without leading to a visible growth inhibition. BnWRI1 decreased storage carbohydrates and increased soluble sugars to facilitate the carbon flux to lipid anabolism. BnWRI1 is localized to the nucleus and directly binds to the AW-box at proximal upstream regions of genes involved in fatty acid (FA) synthesis and lipid assembly. The overexpression (OE) of BnWRI1 resulted in the up-regulation of genes involved in glycolysis, FA synthesis, lipid assembly, and flowering. Lipid profiling revealed increased galactolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and phosphatidylcholine (PC) in the leaves of OE plants, whereas it exhibited a reduced level of the galactolipids DGDG and MGDG and increased levels of PC, phosphatidylethanolamide, and oil [triacylglycerol (TAG)] in the siliques of OE plants during the early seed development stage. These results suggest that BnWRI1 is important for homeostasis among TAG, membrane lipids and sugars, and thus facilitates flowering and oil accumulation in B. napus.

  9. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  10. Lipid Production from Nannochloropsis.

    Science.gov (United States)

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-03-25

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed.

  11. Lake Superior lipids

    Science.gov (United States)

    Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069??2077 DOI: 10.1002/rcm.7367This dataset is associated with the following publication:Hoffman , J., M. Sierszen , and A. Cotter. Fish tissue lipid-C:N relationships for correcting ä13C values and estimating lipid content in aquatic food web studies. Rapid Communications in Mass Spectrometry. Wiley InterScience, Silver Spring, MD, USA, 29(21): 2069–2077, (2015).

  12. Responsibility and Capacities

    DEFF Research Database (Denmark)

    Ryberg, Jesper

    2014-01-01

    That responsible moral agency presupposes certain mental capacities, constitutes a widely accepted view among theorists. Moreover, it is often assumed that degrees in the development of the relevant capacities co-vary with degrees of responsibility. In this article it is argued that, the move from...... the view that responsibility requires certain mental capacities to the position that degrees of responsibility co-vary with degrees of the development of the mental capacities, is premature....

  13. CDMA systems capacity engineering

    CERN Document Server

    Kim, Kiseon

    2004-01-01

    This new hands-on resource tackles capacity planning and engineering issues that are crucial to optimizing wireless communication systems performance. Going beyond the system physical level and investigating CDMA system capacity at the service level, this volume is the single-source for engineering and analyzing systems capacity and resources.

  14. Perspectives on marine zooplankton lipids

    DEFF Research Database (Denmark)

    Kattner, G.; Hagen, W.; Lee, R.F.

    2007-01-01

    We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...

  15. Using bicellar mixtures to form supported and suspended lipid bilayers on silicon chips.

    Science.gov (United States)

    Zeineldin, Reema; Last, Julie A; Slade, Andrea L; Ista, Linnea K; Bisong, Paul; O'Brien, Michael J; Brueck, S R J; Sasaki, Darryl Y; Lopez, Gabriel P

    2006-09-12

    Bicellar mixtures, planar lipid bilayer assemblies comprising long- and short-chain phosphatidylcholine lipids in suspension, were used to form supported lipid bilayers on flat silicon substrate and on nanotextured silicon substrates containing arrays of parallel troughs (170 nm wide, 380 nm deep, and 300 nm apart). Confocal fluorescence and atomic force microscopies were used to characterize the resulting lipid bilayer. Formation of a continuous biphasic undulating lipid bilayer membrane, where the crests and troughs corresponded to supported and suspended lipid bilayer regions, is demonstrated. The use of interferometric lithography to fabricate nanotexured substrates provides an advantage over other nanotextured substrates such as nanoporous alumina by offering flexibility in designing different geometries for suspending lipid bilayers.

  16. Fats and function: protein lipid modifications in plant cell signalling.

    Science.gov (United States)

    Turnbull, Dionne; Hemsley, Piers A

    2017-12-01

    The post-translational lipid modifications N-myristoylation, prenylation and S-acylation are traditionally associated with increasing protein membrane affinity and localisation. However this is an over-simplification, with evidence now implicating these modifications in a variety of roles such as membrane microdomain partitioning, protein trafficking, protein complex assembly and polarity maintenance. Evidence for a regulatory role is also emerging, with changes or manipulation of lipid modifications offering a means of directly controlling various aspects of protein function. Proteomics advances have revealed an enrichment of signalling proteins in the lipid-modified proteome, potentially indicating an important role for these modifications in responding to stimuli. This review highlights some of the key themes and possible functions of lipid modification during signalling processes in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  18. Peptide Self-Assembled Nanostructures for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Taotao Fan

    2017-01-01

    Full Text Available Peptide self-assembled nanostructures are very popular in many biomedical applications. Drug delivery is one of the most promising applications among them. The tremendous advantages for peptide self-assembled nanostructures include good biocompatibility, low cost, tunable bioactivity, high drug loading capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery at disease sites. Peptide self-assembled nanostructures such as nanoparticles, nanotubes, nanofibers, and hydrogels have been investigated by many researchers for drug delivery applications. In this review, the underlying mechanisms for the self-assembled nanostructures based on peptides with different types and structures are introduced and discussed. Peptide self-assembled nanostructures associated promising drug delivery applications such as anticancer drug and gene drug delivery are highlighted. Furthermore, peptide self-assembled nanostructures for targeted and stimuli responsive drug delivery applications are also reviewed and discussed.

  19. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment.

    Directory of Open Access Journals (Sweden)

    Veerle W Daniëls

    Full Text Available Increased lipogenesis is a hallmark of a wide variety of cancers and is under intense investigation as potential antineoplastic target. Although brisk lipogenesis is observed in the presence of exogenous lipids, evidence is mounting that these lipids may adversely affect the efficacy of inhibitors of lipogenic pathways. Therefore, to fully exploit the therapeutic potential of lipid synthesis inhibitors, a better understanding of the interrelationship between de novo lipid synthesis and exogenous lipids and their respective role in cancer cell proliferation and therapeutic response to lipogenesis inhibitors is of critical importance. Here, we show that the proliferation of various cancer cell lines (PC3M, HepG2, HOP62 and T24 is attenuated when cultured in lipid-reduced conditions in a cell line-dependent manner, with PC3M being the least affected. Interestingly, all cell lines--lipogenic (PC3M, HepG2, HOP62 as well as non-lipogenic (T24--raised their lipogenic activity in these conditions, albeit to a different degree. Cells that attained the highest lipogenic activity under these conditions were best able to cope with lipid reduction in term of proliferative capacity. Supplementation of the medium with very low density lipoproteins, free fatty acids and cholesterol reversed this activation, indicating that the mere lack of lipids is sufficient to activate de novo lipogenesis in cancer cells. Consequently, cancer cells grown in lipid-reduced conditions became more dependent on de novo lipid synthesis pathways and were more sensitive to inhibitors of lipogenic pathways, like Soraphen A and Simvastatin. Collectively, these data indicate that limitation of access to exogenous lipids, as may occur in intact tumors, activates de novo lipogenesis is cancer cells, helps them to thrive under these conditions and makes them more vulnerable to lipogenesis inhibitors. These observations have important implications for the design of new antineoplastic

  20. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  1. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  2. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  3. Metabolism. Part III: Lipids.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  4. Doxorubicin Lipid Complex Injection

    Science.gov (United States)

    ... lipid complex is also in combination with another chemotherapy drug to treat multiple myeloma (a type of cancer of the bone marrow) that has not improved or that has worsened after treatment with other ...

  5. Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases.

    Science.gov (United States)

    Rui, Longfei; Liu, Jiaojiao; Li, Jingliang; Weng, Yuyan; Dou, Yujiang; Yuan, Bing; Yang, Kai; Ma, Yuqiang

    2015-05-01

    The response of cell membranes to the local physical environment significantly determines many biological processes and the practical applications of biomaterials. A better understanding of the dynamic assembly and environmental response of lipid membranes can help understand these processes and design novel nanomaterials for biomedical applications. The present work demonstrates the directed assembly of lipid monolayers, in both liquid and gel phases, on the surface of a monolayered reduced graphene oxide (rGO). The results from atomic force microscopy indicate that the hydrophobic aromatic plane and the defect holes due to reduction of GO sheets, along with the phase state and planar surface pressure of lipids, corporately determine the morphology and lateral structure of the assembled lipid monolayers. The DOPC molecules, in liquid phase, probably spread over the rGO surface with their tails associating closely with the hydrophobic aromatic plane, and accumulate to form circles of high area surrounding the defect holes on rGO sheets. However, the DPPC molecules, in gel phase, prefer to form a layer of continuous membrane covering the whole rGO sheet including defect holes. The strong association between rGO sheets and lipid tails further influences the melting behavior of lipids. This work reveals a dramatic effect of the local structure and surface property of rGO sheets on the substrate-directed assembly and subsequent phase behavior of the supported lipid membranes. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  7. Cancer Nanomedicines Stabilized by π-π Stacking between Heterodimeric Prodrugs Enable Exceptionally High Drug Loading Capacity and Safer Delivery of Drug Combinations.

    Science.gov (United States)

    Wang, Hangxiang; Chen, Jianmei; Xu, Chang; Shi, Linlin; Tayier, Munire; Zhou, Jiahui; Zhang, Jun; Wu, Jiaping; Ye, Zhijian; Fang, Tao; Han, Weidong

    2017-01-01

    Combination therapy using distinct mode-of-action drugs has sparked a rapidly growing interest because this paradigm holds promise for improving the therapeutic efficacy of anticancer therapy. However, the current drug combination therapy refers to administering individual drugs together, which is far from a perfect regimen for cancer patients. The aim of this work was to demonstrate that synergistic delivery of two chemotherapeutic drugs in a single nanoparticle reservoir could be achieved through the rational chemical ligation of the drugs followed by supramolecular nano-assembly via blending of the drugs with a minimal amount of matrix. Choosing 7-ethyl-10-hydroxycamptothecin and taxanes, which are rich in aromatic structures, as model compounds, we show that the heterodimeric conjugates of the two agents are miscible with lipids to form systemically injectable nanomedicines. The compatibility between the prodrug conjugates and lipid carriers is substantially augmented by the intermolecular π-π stacking and alleviated polarity, thus enabling an exceptionally high drug loading (DL) capacity (~92%) and a gratifyingly long drug retention time within the micellar core. We further observed superior therapeutic outcomes in a mouse tumor model without detecting accompanying systemic toxicity. This structure-based, self-assembled cancer nanomedicine increased the potency and drug tolerability in animals and thus offers a robust strategy for simultaneously formulating two or more drugs in single nanovehicles.

  8. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  9. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...... and updated data reporting formats are also required....

  10. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2013-09-01

    Full Text Available The chemical composition and antioxidant capacity of five seeds, chia, golden flax, brown flax, white perilla, and brown perilla, were determined. The chemical properties analyzed included moisture, ash, crude protein, carbohydrates, total lipids, fatty acids, and antioxidant capacity (ABTS•+, DPPH•, and FRAP. The results showed the highest amounts of protein and total lipids in brown and white perilla. Perilla and chia showed higher amounts of alpha-linolenic fatty acid than those of flaxseed varieties, ranging between 531.44 mg g-1 of lipids in brown perilla, 539.07 mg g-1 of lipids in white perilla, and 544.85 mg g-1 of lipis in chia seed. The antioxidant capacity of the seeds, evaluated with ABTS•+, DPPH• , and FRAP methods, showed that brown perilla had greater antioxidant capacity when compared with white perilla, flax, and chia seeds.

  11. Blocked muscle fat oxidation during exercise in neutral lipid storage disease

    DEFF Research Database (Denmark)

    Laforêt, Pascal; Ørngreen, Mette; Preisler, Nicolai

    2012-01-01

    To determine whether impaired exercise capacity in neutral lipid storage disease with myopathy is solely caused by muscle weakness or whether a defect in energy metabolism (blocked fat oxidation) may also play a role....

  12. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  13. Modeling Viral Capsid Assembly

    Science.gov (United States)

    2014-01-01

    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  14. Mechanisms of virus assembly on membranes

    Science.gov (United States)

    Lazaro, Guillermo; Hagan, Michael

    We present a computational model motivated by icosahedral enveloped viruses, which consist of nucleocapsid (a protein shell encasing the genome) and an outer envelope composed of a lipid membrane and transmembrane glycoproteins. Viruses acquire their envelope by budding through a host cell membrane. Despite extensive experimental efforts, it remains an open question whether the nucleocapsid is necessary for budding (nucleocapsid-driven assembly), or whether interactions between glycoproteins are sufficient to simultaneously drive membrane deformation and assembly of an icosahedral structure (glycoprotein-driven assembly). To study this question, we use a coarse-grained computational model for the nucleocapsid, glycoproteins, and the membrane. Our simulations demonstrate that glycoproteins alone are sufficient to drive budding; however, barriers due to membrane elasticity can lead to malformed capsids lacking icosahedral symmetry. In contrast, with a nucleocapsid present, icosahedral structures form over a broad range of parameter values. Our simulations also identify a key role for glycoprotein geometry in reshaping the membrane and avoiding membrane deformations that frustrate assembly. Supported by the NIH (R01GM108021) and NSF Brandeis MRSEC (DMR-1420382).

  15. Assembly: a resource for assembled genomes at NCBI

    Science.gov (United States)

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  16. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.).

    Science.gov (United States)

    Gu, Min; Kortner, Trond M; Penn, Michael; Hansen, Anne Kristine; Krogdahl, Åshild

    2014-02-01

    Altered lipid metabolism has been shown in fish fed plant protein sources. The present study aimed to gain further insights into how intestinal and hepatic lipid absorption and metabolism are modulated by plant meal (PM) and soya-saponin (SA) inclusion in salmon feed. Post-smolt Atlantic salmon were fed for 10 weeks one of four diets based on fishmeal or PM, with or without 10 g/kg SA. PM inclusion resulted in decreased growth performance, excessive lipid droplet accumulation in the pyloric caeca and liver, and reduced plasma cholesterol levels. Intestinal and hepatic gene expression profiling revealed an up-regulation of the expression of genes involved in lipid absorption and lipoprotein (LP) synthesis (apo, fatty acid transporters, microsomal TAG transfer protein, acyl-CoA cholesterol acyltransferase, choline kinase and choline-phosphate cytidylyltransferase A), cholesterol synthesis (3-hydroxy-3-methylglutaryl-CoA reductase) and associated transcription factors (sterol regulatory element-binding protein 2 and PPARγ). SA inclusion resulted in reduced body pools of cholesterol and bile salts. The hepatic gene expression of the rate-limiting enzyme in bile acid biosynthesis (cytochrome P450 7A1 (cyp7a1)) as well as the transcription factor liver X receptor and the bile acid transporter abcb11 (ATP-binding cassette B11) was down-regulated by SA inclusion. A significant interaction was observed between PM inclusion and SA inclusion for plasma cholesterol levels. In conclusion, gene expression profiling suggested that the capacity for LP assembly and cholesterol synthesis was up-regulated by PM exposure, probably as a compensatory mechanism for excessive lipid droplet accumulation and reduced plasma cholesterol levels. SA inclusion had hypocholesterolaemic effects on Atlantic salmon, accompanied by decreased bile salt metabolism.

  17. Aluminum induces lipid peroxidation and aggregation of human blood platelets

    Directory of Open Access Journals (Sweden)

    Neiva T.J.C.

    1997-01-01

    Full Text Available Aluminum (Al3+ intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA (100 µM and n-propyl gallate (NPG (100 µM, inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA (100 µM, an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

  18. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla

    OpenAIRE

    Sheisa Cyléia Sargi; Beatriz Costa Silva; Hevelyse Munise Celestino Santos; Paula Fernandes Montanher; Joana Schuelter Boeing; Oscar de Oliveira Santos Júnior; Nilson Evelázio de Souza; Jesuí Vergílio Visentainer

    2013-01-01

    The chemical composition and antioxidant capacity of five seeds, chia, golden flax, brown flax, white perilla, and brown perilla, were determined. The chemical properties analyzed included moisture, ash, crude protein, carbohydrates, total lipids, fatty acids, and antioxidant capacity (ABTS•+, DPPH•, and FRAP). The results showed the highest amounts of protein and total lipids in brown and white perilla. Perilla and chia showed higher amounts of alpha-linolenic fatty acid than those of flaxse...

  19. Capacity Statement for Railways

    DEFF Research Database (Denmark)

    Landex, Alex

    2007-01-01

    The subject “Railway capacity” is a combination of the capacity consumption and how the capacity is utilized. The capacity utilization of railways can be divided into 4 core elements: The number of trains; the average speed; the heterogeneity of the operation; and the stability. This article...... trains. This is due to network effects in the railway system and due to the fact that more trains results in lower punctuality....

  20. Thyroid and lipid metabolism.

    Science.gov (United States)

    Pucci, E; Chiovato, L; Pinchera, A

    2000-06-01

    Thyroid hormones influence all major metabolic pathways. Their most obvious and well-known action is an increase in basal energy expenditure obtained acting on protein, carbohydrate and lipid metabolism. With specific regard to lipid metabolism, thyroid hormones affect synthesis, mobilization and degradation of lipids, although degradation is influenced more than synthesis. The main and best-known effects on lipid metabolism include: (a) enhanced utilization of lipid substrates; (b) increase in the synthesis and mobilization of triglycerides stored in adipose tissue; (c) increase in the concentration of non-esterified fatty acids (NEFA); and (d) increase of lipoprotein-lipase activity. While severe hypothyroidism is usually associated with an increased serum concentration of total cholesterol and atherogenic lipoproteins, the occurrence of acute myocardial infarction (AMI) in hypothyroid patients is not frequent. However, hypothyroid patients appear to have an increased incidence of residual myocardial ischemia following AMI. Even in subclinical hypothyroidism, which is characterized by raised serum TSH levels with normal serum thyroid hormone concentrations, mild hyperlipidemia is present and may contribute to an increased risk of atherogenesis. Prudent substitution therapy with L-thyroxine is indicated in patients with both overt and subclinical hypothyroidism, with or without angina, to counteract the cardiovascular risk resulting from hyper-dyslipidemia.

  1. Visual attention capacity

    DEFF Research Database (Denmark)

    Habekost, Thomas; Starrfelt, Randi

    2009-01-01

    Psychophysical studies have identified two distinct limitations of visual attention capacity: processing speed and apprehension span. Using a simple test, these cognitive factors can be analyzed by Bundesen's Theory of Visual Attention (TVA). The method has strong specificity and sensitivity...... to patient testing, and review existing TVA-based patient studies organized by lesion anatomy. Lesions in three anatomical regions affect visual capacity: The parietal lobes, frontal cortex and basal ganglia, and extrastriate cortex. Visual capacity thus depends on large, bilaterally distributed anatomical...... networks that include several regions outside the visual system. The two visual capacity parameters are functionally separable, but seem to rely on largely overlapping brain areas....

  2. In vitro collagen fibril assembly: thermodynamic studies.

    Science.gov (United States)

    Na, G C; Phillips, L J; Freire, E I

    1989-09-05

    The in vitro fibril assembly of calf skin collagen was examined as a function of ionic strength and temperature. In a 0.03 M NaPi, pH 7.0, buffer, fibril assembly required a minimum critical concentration of collagen. At nearly physiological ionic strengths and temperatures, the critical concentration was less than 1 microgram/mL and required a very sensitive method for measurement. Raising the ionic strength of the buffer resulted first in higher and then lower critical concentrations. Raising the temperature led to lower critical concentrations. A van't Hoff plot of the fibril growth constant calculated from the critical concentration gave positive enthalpy changes and positive heat capacity changes which indicate that the fibril growth is driven by both hydrophobic and ionic inter-collagen interactions. Sedimentation equilibrium studies showed the collagen to be monomeric at subcritical concentrations. Differential scanning microcalorimetric studies showed only one very sharp heat absorption peak for the fibril assembly which coincided with the appearance of solution turbidity. Within experimental error, the enthalpy changes of the fibril assembly measured with the microcalorimeter were of the same magnitude as the van't Hoff enthalpy changes. These results are discussed in light of a cooperative nucleation-growth mechanism of collagen fibril assembly proposed earlier.

  3. Improvement effect of green tea on hepatic dysfunction, lipid ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... effects against cancers. The present study was designed to assess the pro- tective effect of green tea infusion by evaluating the free radicals scavenging capacity using the DPPH and NBT / riboflavin in vitro. In vivo, the liver dysfunction paramet- ers rate, lipid peroxidation, and antioxidant enzymes acti-.

  4. Golden rain tree leaf extracts as potential inhibitor of lipid ...

    African Journals Online (AJOL)

    This study was designed to evaluate the peroxyl radical scavenging capacity and deoxyribonucleic acid (DNA) protective effect of extract/fractions of Koelreuteria paniculata Laxm. (Golden rain tree) in lipid peroxidation assay and calf thymus DNA protection assay. The leaves of the plant were extracted with different ...

  5. High-sensitivity C-reactive protein, lipid profile, malondialdehyde ...

    African Journals Online (AJOL)

    High-sensitivity C-reactive protein, lipid profile, malondialdehyde and total antioxidant capacity in psoriasis. ... Abstract. Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation and lymphocytic infiltration. The ongoing inflammatory process in psoriasis affects the arterial wall promoting ...

  6. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  7. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  8. Epicuticular lipids induce aggregation in Chagas disease vectors

    Directory of Open Access Journals (Sweden)

    Juárez M Patricia

    2009-01-01

    Full Text Available Abstract Background The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. Results We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0, the major fatty acid component. Octadecanoic acid (C18:0 showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents. The very long chain hexacosanoic acid (C26:0 was significantly attractant at low doses (≤ 1 equivalent, although a repellent effect was observed at higher doses. Conclusion The detection of contact aggregation pheromones has practical

  9. Epicuticular lipids induce aggregation in Chagas disease vectors.

    Science.gov (United States)

    Figueiras, Alicia N Lorenzo; Girotti, Juan R; Mijailovsky, Sergio J; Juárez, M Patricia

    2009-01-27

    The triatomine bugs are vectors of the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. Aggregation behavior plays an important role in their survival by facilitating the location of refuges and cohesion of aggregates, helping to keep them safely assembled into shelters during daylight time, when they are vulnerable to predators. There are evidences that aggregation is mediated by thigmotaxis, by volatile cues from their faeces, and by hexane-extractable contact chemoreceptive signals from their cuticle surface. The epicuticular lipids of Triatoma infestans include a complex mixture of hydrocarbons, free and esterified fatty acids, alcohols, and sterols. We analyzed the response of T. infestans fifth instar nymphs after exposure to different amounts either of total epicuticular lipid extracts or individual lipid fractions. Assays were performed in a circular arena, employing a binary choice test with filter papers acting as aggregation attractive sites; papers were either impregnated with a hexane-extract of the total lipids, or lipid fraction; or with the solvent. Insects were significantly aggregated around papers impregnated with the epicuticular lipid extracts. Among the lipid fractions separately tested, only the free fatty acid fraction promoted significant bug aggregation. We also investigated the response to different amounts of selected fatty acid components of this fraction; receptiveness varied with the fatty acid chain length. No response was elicited by hexadecanoic acid (C16:0), the major fatty acid component. Octadecanoic acid (C18:0) showed a significant assembling effect in the concentration range tested (0.1 to 2 insect equivalents). The very long chain hexacosanoic acid (C26:0) was significantly attractant at low doses (higher doses. The detection of contact aggregation pheromones has practical application in Chagas disease vector control. These data may be used to help design new tools against triatomine bugs.

  10. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking.

    Science.gov (United States)

    Hang, Howard C; Wilson, John P; Charron, Guillaume

    2011-09-20

    Protein lipidation and lipid trafficking control many key biological functions in all kingdoms of life. The discovery of diverse lipid species and their covalent attachment to many proteins has revealed a complex and regulated network of membranes and lipidated proteins that are central to fundamental aspects of physiology and human disease. Given the complexity of lipid trafficking and the protein targeting mechanisms involved with membrane lipids, precise and sensitive methods are needed to monitor and identify these hydrophobic molecules in bacteria, yeast, and higher eukaryotes. Although many analytical methods have been developed for characterizing membrane lipids and covalently modified proteins, traditional reagents and approaches have limited sensitivity, do not faithfully report on the lipids of interest, or are not readily accessible. The invention of bioorthogonal ligation reactions, such as the Staudinger ligation and azide-alkyne cycloadditions, has provided new tools to address these limitations, and their use has begun to yield fresh insight into the biology of protein lipidation and lipid trafficking. In this Account, we discuss how these new bioorthogonal ligation reactions and lipid chemical reporters afford new opportunities for exploring the biology of lipid-modified proteins and lipid trafficking. Lipid chemical reporters from our laboratory and several other research groups have enabled improved detection and large-scale proteomic analysis of fatty-acylated and prenylated proteins. For example, fatty acid and isoprenoid chemical reporters in conjunction with bioorthogonal ligation methods have circumvented the limited sensitivity and hazards of radioactive analogues, allowing rapid and robust fluorescent detection of lipidated proteins in all organisms tested. These chemical tools have revealed alterations in protein lipidation in different cellular states and are beginning to provide unique insights in mechanisms of regulation. Notably, the

  11. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lipid-peptide-polymer conjugates and nanoparticles thereof

    Science.gov (United States)

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  13. Evaluation of railway capacity

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.; Schittenhelm, Bernd

    2006-01-01

    This paper describes the relatively new UIC 406 method for calculating capacity consumption on railway lines. The UIC 406 method is an easy and effective way of calculating the capacity consumption, but it is possible to expound the UIC 406 method in different ways which can lead to different cap...

  14. Value for railway capacity

    DEFF Research Database (Denmark)

    Sameni, Melody Khadem; Preston, John M.

    2012-01-01

    Growth in rail traffic has not been matched by increases in railway infrastructure. Given this capacity challenge and the current restrictions on public spending, the allocation and the utilization of existing railway capacity are more important than ever. Great Britain has had the greatest growth...... in rail passenger kilometers of European countries since 1996. However, costs are higher and efficiency is lower than European best practice. This paper provides an innovative methodology for assessing the efficiency of passenger operators in capacity utilization. Data envelopment analysis (DEA) is used...... to analyze the efficiency of operators in transforming inputs of allocated capacity of infrastructure and franchise payments into valuable passenger service outputs while avoiding delays. By addressing operational and economic aspects of capacity utilization simultaneously, the paper deviates from existing...

  15. How proteins move lipids and lipids move proteins

    NARCIS (Netherlands)

    Sprong, H.|info:eu-repo/dai/nl/222364815; van der Sluijs, P.; van Meer, G.|info:eu-repo/dai/nl/068570368

    2001-01-01

    Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations

  16. Microtubule Self- Assembly

    Science.gov (United States)

    Jho, Yongseok; Choi, M. C.; Farago, O.; Kim, Mahnwon; Pincus, P. A.

    2008-03-01

    Microtubules are important structural elements for neurons. Microtubles are cylindrical pipes that are self-assembled from tubulin dimers, These structures are intimately related to the neuron transport system. Abnormal microtubule disintegration contributes to neuro-disease. For several decades, experimentalists investigated the structure of the microtubules using TEM and Cryo-EM. However, the detailed structure at a molecular level remain incompletely understood. . In this presentation, we report numerically studies of the self-assembly process using a toy model for tubulin dimers. We investigate the nature of the interactions which are essential to stabilize such the cylindrical assembly of protofilaments. We use Monte Carlo simulations to suggest the pathways for assembly and disassembly of the microtubules.

  17. Flexseal Insulator Test Assembly

    Science.gov (United States)

    Buchanan, Eric

    1995-01-01

    Small-scale version of solid-fuel rocket motor flexseal nozzle bearing assembly instrumented and tested in compression-testing fixture simulating conditions during rocket motor operation described in report.

  18. Biocompatible pillararene-assembly-based carriers for dual bioimaging.

    Science.gov (United States)

    Zhang, Huacheng; Ma, Xing; Nguyen, Kim Truc; Zhao, Yanli

    2013-09-24

    Present research provides a successful example to use biocompatible pillararene-based assemblies for delivering mixed dyes in dual bioimaging. A series of tadpole-like and bola amphiphilic pillararenes 1-4 were synthesized by selectively employing water-soluble ethylene glycols and hydrophobic alkyl units as the starting materials. In comparison with their monomers, these amphiphilic pillararenes not only show improved biocompatibility to cells but also could form homogeneous supramolecular self-assemblies. Interestingly, different types of amphiphilic pillararene-based assemblies exhibit various performances on the delivery of dyes with different aqueous solubility. All assemblies can deliver water-soluble rhodamine B to cells, while only tadpole-like amphiphilic pillararene-based assemblies performed better on delivering hydrophobic fluorescein isothiocyanate for imaging. In addition, pillararene derivatives 1, 3, and 4 could complex with a viologen guest, further forming stable assemblies for bioimaging. In such cases, the assembly formed from the complex of tadpole-like amphiphile pillararene 1 with the viologen guest performed better in delivering mixed dyes. Finally, an anticancer drug, doxorubicin, was successfully delivered to cells by using the pillararene-based assemblies. The current research has determined the capacities of pillararene-based assemblies to deliver different dyes for bioimaging and paves the way for using these biocompatible carriers toward combined cancer therapy.

  19. Assembling Sustainable Territories

    DEFF Research Database (Denmark)

    Vandergeest, Peter; Ponte, Stefano; Bush, Simon

    2015-01-01

    The authors show how certification assembles ‘sustainable’ territories through a complex layering of regulatory authority in which both government and nongovernment entities claim rule-making authority, sometimes working together, sometimes in parallel, sometimes competitively. It is argued...... dynamic in assembling sustainable territories, and that certification always involves state agencies in determining how the key elements that comprise it are defined. Whereas some state agencies have been suspicious of sustainability certification, others have embraced it or even used it to extend...

  20. Lipids in Cryptomonas CR-1. I. Occurrence of Betaine Lipids

    OpenAIRE

    Naoki, Sato; Department of Botany, Faculty of Science, University of Tokyo

    1991-01-01

    Polar lipids of the cryptophyte Cryptomonas CR-1 were analyzed in detail. In addition to glycolipids and phospholipids, three Dragendorff-positive lipids were found. Two of these lipids were identified as diacylglyceryltrimethylhomoserine (DGTS) and diacylglycerylhydroxymethyltrimethyl-β-alanine (DGTA), a recently discovered isomer of DGTS, while the least abundant lipid remains to be identified. The presence of both DGTS and DGTA, which have been widely found in green algae and brown algae, ...

  1. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  2. Lipids in cheese

    Science.gov (United States)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  3. Salivary lipids: A review.

    Science.gov (United States)

    Matczuk, Jan; Żendzian-Piotrowska, Małgorzata; Maciejczyk, Mateusz; Kurek, Krzysztof

    2017-09-01

    Saliva is produced by both large and small salivary glands and may be considered one of the most important factors influencing the behavior of oral cavity homeostasis. Secretion of saliva plays an important role in numerous significant biological processes. Saliva facilitates chewing and bolus formation as well as performs protective functions and determines the buffering and antibacterial prosperities of the oral environment. Salivary lipids appear to be a very important component of saliva, as their qualitative and quantitative composition can be changed in various pathological states and human diseases. It has been shown that disturbances in salivary lipid homeostasis are involved in periodontal diseases as well as various systemic disorders (e.g. cystic fibrosis, diabetes and Sjögren's syndrome). However, little is known about the role and composition of salivary lipids and their interaction with other important ingredients of human saliva, including proteins, glycoproteins and salivary mucins. The purpose of this review paper is to present the latest knowledge on salivary lipids in healthy conditions and in oral and systemic diseases.

  4. Bio-inspired nanocomposite assemblies as smart skin components.

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Gabriel A.; Xiao, Xiaoyin; Achyuthan, Komandoor E.; Allen, Amy; Brozik, Susan Marie; Edwards, Thayne L.; Frischknecht, Amalie Lucile; Wheeler, David Roger

    2011-09-01

    There is national interest in the development of sophisticated materials that can automatically detect and respond to chemical and biological threats without the need for human intervention. In living systems, cell membranes perform such functions on a routine basis, detecting threats, communicating with the cell, and triggering automatic responses such as the opening and closing of ion channels. The purpose of this project was to learn how to replicate simple threat detection and response functions within artificial membrane systems. The original goals toward developing 'smart skin' assemblies included: (1) synthesizing functionalized nanoparticles to produce electrochemically responsive systems within a lipid bilayer host matrices, (2) calculating the energetics of nanoparticle-lipid interactions and pore formation, and (3) determining the mechanism of insertion of nanoparticles in lipid bilayers via imaging and electrochemistry. There are a few reports of the use of programmable materials to open and close pores in rigid hosts such as mesoporous materials using either heat or light activation. However, none of these materials can regulate themselves in response to the detection of threats. The strategies we investigated in this project involve learning how to use programmable nanomaterials to automatically eliminate open channels within a lipid bilayer host when 'threats' are detected. We generated and characterized functionalized nanoparticles that can be used to create synthetic pores through the membrane and investigated methods of eliminating the pores either through electrochemistry, change in pH, etc. We also focused on characterizing the behavior of functionalized gold NPs in different lipid membranes and lipid vesicles and coupled these results to modeling efforts designed to gain an understanding of the interaction of nanoparticles within lipid assemblies.

  5. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    , studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  6. Coprecipitation of DNA-lipid complexes with apatite and comparison with superficial adsorption for gene transfer applications.

    Science.gov (United States)

    Yazaki, Yushin; Oyane, Ayako; Tsurushima, Hideo; Araki, Hiroko; Sogo, Yu; Ito, Atsuo; Yamazaki, Atsushi

    2014-02-01

    Apatite can mediate gene transfer into cells by serving as a safe and biocompatible immobilization matrix for DNA and transfection reagents. Recently, an apatite layer that immobilized DNA-lipid complexes was prepared by a coprecipitation process in a supersaturated calcium phosphate solution. This composite layer (DNA-lipid-apatite layer) showed a higher gene transfer capability than an apatite layer with superficially adsorbed DNA-lipid complexes (DNA-lipid-adsorbed apatite layer). In this study, the DNA-lipid-apatite layer and the DNA-lipid-adsorbed apatite layer were compared for their physicochemical properties and gene transfer capabilities. The higher gene transfer capability of the DNA-lipid-apatite layer compared with that of the DNA-lipid-adsorbed apatite layer was reconfirmed by a luciferase assay using epithelial-like CHO-K1 cells. Physicochemical structure analyses showed that the DNA-lipid-apatite layer possessed a larger capacity for DNA-lipid complexes than the DNA-lipid-adsorbed apatite layer. The DNA-lipid-apatite layer released DNA-lipid complexes in a slow and sustained manner, whereas the DNA-lipid-adsorbed apatite layer released them in short bursts. Consequently, the release of DNA-lipid complexes from the DNA-lipid-apatite layer was larger in amount and longer in duration than release from the DNA-lipid-adsorbed apatite layer. This difference in release profiles may be responsible for the higher gene transfer capability of the DNA-lipid-apatite layer compared with that of the DNA-lipid-adsorbed apatite layer. The coprecipitation process and the resulting DNA-lipid-apatite layer have many applications in tissue engineering.

  7. Lipid-hydrogel nanoparticles: Synthesis methods and characterization

    Science.gov (United States)

    Hong, Jennifer S.

    This dissertation focuses on the directed self-assembly of nanoscale soft matter particles using methods based on liposome-templating. Nanoscale liposomes, nano-sized hydrogel particles ("nanogels"), and hybrids of the two have enormous potential as carriers in drug delivery and nanotoxicity studies, and as nanovials for enzyme encapsulation and single molecule studies. Our goal is to develop assembly methods that produce stable nanogels or hybrid lipid-polymer nanoparticles, using liposomes as size and shape templates. First we describe a bulk method that employs liposomes to template relatively monodisperse nanogels composed of the biopolymer, alginate, which is a favorable material for nanogel formation because it uses a gentle ionic crosslinking mechanism that is suitable for the encapsulation of cells and biomolecules. Liposomes encapsulating sodium alginate are suspended in aqueous buffer containing calcium chloride, and thermal permeabilization of the lipid membrane facilitates transmembrane diffusion of Ca2+ ions from the surrounding buffer into the intraliposomal space, ionically crosslinking the liposome core. Subsequent lipid removal results in bare calcium alginate nanogels with a size distribution consistent with that of their liposome template. The second part of our study investigates the potential for microfluidic-directed formation of lipid-alginate hybrid nanoparticles by adapting the above bulk self-assembly procedure within a microfluidic device. Specifically we investigated the size control of alginate nanogel self-assembly under different flow conditions and concentrations. Finally, we investigate the microfluidic directed self-assembly of lipid-polymer hybrid nanoparticles, using phospholipids and an N-isopropylacrylamide monomer as the liposome and hydrogel precursors, respectively. Microfluidic hydrodynamic focusing is used to control the convective-diffusive mixing of the two miscible nanoparticle precursor solutions to form nanoscale

  8. Cubic Phase Formation in Phospholipid and PEG-Lipid Mixtures

    Science.gov (United States)

    Murley, Kimberly; Cunningham, Beth; Wolfe, David; Williams, Patrick

    2005-03-01

    Lipid systems modeling cell membranes are capable of self-assembling into various liquid crystal mesophases with varying geometry and dimensions. We have suggested that it is possible to engineer the lipid systems through the incorporation of covalently attached polymer lipids to produce unique effects. The results of this engineering process include both the stabilization of lipid phases that normally exist over very limited temperature ranges and the induction of novel phases that are not normally present in the parent lipid. In this study, we used x-ray diffraction and NMR to investigate the phase behavior of the DOPE:PEG:MO and MO:PEG:D2O systems with varying molar ratios and PEG sizes. The phase diagram which we have generated indicates the conditions necessary to induce specific phase structures and sizes into three-dimensional cubic lipid systems. This information may be useful to create nanostructures which will be valuable in applications such as protein crystallization and protein biochip development.

  9. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  10. Effect of fullerene on the dispersibility of nanostructured lipid particles and encapsulation in sterically stabilized emulsions.

    Science.gov (United States)

    Kulkarni, Chandrashekhar V; Moinuddin, Zeinab; Agarwal, Yash

    2016-10-15

    We report on the effect of fullerenes (C60) on the stability of nanostructured lipid emulsions. These (oil-in-water) emulsions are essentially aqueous dispersions of lipid particles exhibiting self-assembled nanostructures at their cores. The majority of previous studies on fullerenes were focused on planar and spherical lipid bilayer systems including pure lipids and liposomes. In this work, fullerenes were interacted with a lipid that forms nanostructured dispersions of non-lamellar self-assemblies. A range of parameters including the composition of emulsions and sonication parameters were examined to determine the influence of fullerenes on in-situ and pre-stabilized lipid emulsions. We found that fullerenes mutually stabilize very low concentrations of lipid molecules, while other concentration emulsions struggle to stay stable or even to form at first instance; we provide hypotheses to support these observations. Interestingly though, we were able to encapsulate varying amounts of fullerenes in sterically stabilized emulsions. This step has a significant positive impact, as we could effectively control an inherent aggregation tendency of fullerenes in aqueous environments. These novel hybrid nanomaterials may open a range of avenues for biotechnological and biomedical applications exploiting properties of both lipid and fullerene nanostructures. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Optimal composition of intravenous lipids

    African Journals Online (AJOL)

    Optimal composition of intravenous lipids. The composition of an intravenous (IV) lipid emulsion is of great importance in parenteral nutrition (PN) therapy, as most of its effects depend on the kind of fatty acids included and their respective ratio to each other. Today´s lipid emulsions may include four classes of different fatty ...

  12. CLINDAMYCIN: EFFECTS ON PLASMA LIPID PROFILE AND PEROXIDATION PARAMETERS IN RABBIT BLOOD PLASMA.

    Science.gov (United States)

    Devbhuti, Pritesh; Saha, Achintya; Sengupta, Chandana

    2015-01-01

    Alteration of plasma lipid profile and induction of lipid peroxidation may take place due to drug effect, which may be correlated with adverse drug reactions and drug-induced toxicity. Considering this fact, the present in vivo study was carried out to evaluate the effect of clindamycin on plasma lipid profile and peroxidation parameters alone and in combination with ascorbic acid, a promising antioxidant. After administering drug and antioxidant alone and in combination in rabbit, it was found that clindamycin had mild lipid peroxidation induction and profile alteration capacity, which can be arrested on co-administration of ascorbic acid.

  13. Building capacity in Benin

    International Development Research Centre (IDRC) Digital Library (Canada)

    sigp1. Building capacity in. Benin. Training of technical staff of municipalities in the Okpara Basin of Benin in the use of GIS tools for water management, hydrological modeling and soil conservation. Introduction. A training workshop was ...

  14. Effects of Ferulago angulata Extract on Serum Lipids and Lipid Peroxidation.

    Science.gov (United States)

    Rafieian-Kopaei, Mahmoud; Shahinfard, Najmeh; Rouhi-Boroujeni, Hojjat; Gharipour, Mojgan; Darvishzadeh-Boroujeni, Pariya

    2014-01-01

    Background. Nowadays, herbs they are considered to be the main source of effective drugs for lowering serum lipids and lipid peroxidation. The present experimental animal study aimed to assess the impact of Ferulago angulata on serum lipid profiles, and on levels of lipid peroxidation. Methods. Fifty male Wistar rats, weighing 250-300 g, were randomly divided into five equal groups (ten rats in each). The rat groups received different diets as follows: Group I: fat-rich diet; Group II: fat-rich diet plus hydroalcoholic extracts of Ferulago angulata at a dose of 400 mg/kg; Group III: fat-rich diet plus hydroalcoholic extracts of Ferulago angulata at a dose of 600 mg/kg; Group IV: fat-rich diet plus atorvastatin; Group V: common stock diet. The levels of serum glucose and lipids and the atherogenic index were measured. In addition, malondialdehyde (MDA), thiol oxidation, carbonyl concentrations, C-reactive proteins, and antioxidant capacity were evaluated in each group of rats. Results. Interestingly, by adding a hydroalcoholic extract of Ferulago angulata to the high-fat diet, the levels of total cholesterol and low-density lipoproteins (LDL) in the high-fat diet rats were both significantly reduced. This result was considerably greater compared to when atorvastatin was added as an antilipid drug. The beneficial effects of the Ferulago angulata extract on lowering the level of triglycerides was observed only when a high dosage of this plant extraction was added to a high fat diet. Furthermore, the level of malondialdehyde, was significantly affected by the use of the plant extract in a high-fat diet, compared with a normal regimen or high-fat diet alone. Conclusion. Administration of a hydroalcoholic extract of Ferulago angulata can reduce serum levels of total cholesterol, triglycerides, and LDL. It can also inhibit lipid peroxidation.

  15. Phase transition process in DDAB supported lipid bilayer

    Science.gov (United States)

    Isogai, Takumi; Nakada, Sakiko; Yoshida, Naoya; Sumi, Hayato; Tero, Ryugo; Harada, Shunta; Ujihara, Toru; Tagawa, Miho

    2017-06-01

    We report the results of microscope measurements examining the phase transition process of a cationic lipid, Dimethyldioctadecylammonium bromide (DDAB) supported lipid bilayer (SLB). Due to lateral fluidity and strong electrostatic interaction with DNA, SLB serves as a fluid substrate for assembling 2D lattices of DNA functionalized nanoparticles (DNA-NPs): lipid molecules work as carriers for transporting DNA-NPs. By fluorescence microscopy and atomic force microscopy (AFM), two types of phase transitions, which correspond to liquid crystalline-gel and liquid crystalline-interdigitated gel (LβI) ones, were observed in DDAB SLB during cooling. In thermal equilibrium at room temperature both gel and LβI phases have enough adsorbed amounts of DNA-NPs which indicate that both domains have enough surface charge densities for adsorbing DNA-NPs, however, during phase transition DNA-NPs preferably distributed into LβI phase.

  16. Lipid domains in bicelles containing unsaturated lipids and cholesterol.

    Science.gov (United States)

    Cho, Hyo Soon; Dominick, Johnna L; Spence, Megan M

    2010-07-22

    We have created a stable bicelle system capable of forming micrometer-scale lipid domains that orient in a magnetic field, suitable for structural biology determination in solid-state NMR. The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid (POPC), a mixture commonly used to create domains in model membranes, along with a short chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the components on bicelle stability. Using (31)P solid-state NMR, we observed that unsaturated lipids (POPC) greatly destabilized the alignment of the membranes in the magnetic field, while cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the bicelles, we created membranes aligning uniformly in the magnetic field, despite very high concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural biology, but aligned over a wider temperature range (291-314 K). Domains were observed by measuring time-dependent diffusion constants reflecting restricted diffusion of the lipids within micrometer-scale regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their counterparts in vesicles, and that bilayers in bicelles favor domain formation.

  17. Hormones regulating lipid metabolism and plasma lipids in childhood obesity.

    Science.gov (United States)

    Gil-Campos, M; Cañete, R; Gil, A

    2004-11-01

    To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children. Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children. Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides. Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.

  18. Measurement of the specific heat capacity of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Picard, S.; Burns, D.T.; Roger, P

    2006-01-15

    With the objective of implementing graphite calorimetry at the BIPM to measure absorbed dose, an experimental assembly has recently been constructed to measure the specific heat capacity of graphite. A status description of the apparatus and results from the first measurements are given. The outcome is discussed and the experimental uncertainty is reviewed. (authors)

  19. The COSPAR Capacity Building Initiative - past, present, future, and highlights

    NARCIS (Netherlands)

    Gabriel, Carlos; Mendez, Mariano; D'Amicis, Raffaella; Santolik, Ondrej; Mathieu, Pierre-Philippe; Smith, Randall

    2014-01-01

    At the time of the COSPAR General Assembly in Moscow, the 21st workshop of the Programme for Capacity Building will have taken place. We have started in 2001 with the aim of: i) increasing the knowledge and use of public archives of space data in developing countries, ii) providing highly-practical

  20. Photovoltaic self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  1. Effects of dietary lipid levels on growth, body composition and antioxidants of clamworm (Perinereis aibuhitensis

    Directory of Open Access Journals (Sweden)

    Fu Lv

    2017-05-01

    Full Text Available To determine the effects of dietary lipid levels on growth performance, body composition and antioxidant parameters of clamworm (Perinereis aibuhitensis, 1050 clamworms were fed diets with seven lipid levels (2.37%, 4.35%, 6.29%, 8.41%, 10.31%, 12.29% and 14.33%, named L2.37, L4.35, L6.29, L8.41, L10.31, L12.29 and L14.33, respectively for 10 weeks. Each diet was randomly assigned to triplicate groups of 50 clamworms. The results showed that the growth performance and protein efficiency ratio were significantly affected by the lipid levels. Clamworms fed L8.41 diet exhibited higher growth performance than others and the maximum specific growth rate can be possibly obtained when the diets were supplemented with 7.54% lipid level. The dietary lipid levels had significant influences on the whole body crude protein, crude lipid, moisture contents and ash profile of P. aibuhitensis. The eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA were also enhanced with increasing dietary lipid levels in whole body analyses. The contents of malonaldehyde (MDA and lipid peroxidation (LPO in clamworms increased significantly with increasing dietary lipid levels. Meanwhile, the activities of superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GPX and total autioxidative capacity (T-AOC tended to strengthen with dietary lipid levels increasing from 2.37% to 10.31% (except the GPX with 12.29% dietary lipid levels, and weaken with dietary lipid levels increasing from 10.31% to 14.33%. These results demonstrated that a proper dietary lipid level of 7.54%–10.31% could maintain solid growth performance and antioxidant capacity of juvenile P. aibuhitensis.

  2. Polar lipids of Burkholderia pseudomallei induce different host immune responses.

    Directory of Open Access Journals (Sweden)

    Mercedes Gonzalez-Juarrero

    Full Text Available Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4(+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4(+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster.

  3. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Marcelo Bispo de, E-mail: dejesusmb@gmail.com; Radaic, Allan [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil); Zuhorn, Inge S. [University of Groningen, Department of Membrane Cell Biology, University Medical Center (Netherlands); Paula, Eneida de [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil)

    2013-10-15

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  4. Polar Lipids of Burkholderia pseudomallei Induce Different Host Immune Responses

    Science.gov (United States)

    Gonzalez-Juarrero, Mercedes; Mima, Naoko; Trunck, Lily A.; Schweizer, Herbert P.; Bowen, Richard A.; Dascher, Kyle; Mwangi, Waithaka; Eckstein, Torsten M.

    2013-01-01

    Melioidosis is a disease in tropical and subtropical regions of the world that is caused by Burkholderia pseudomallei. In endemic regions the disease occurs primarily in humans and goats. In the present study, we used the goat as a model to dissect the polar lipids of B. pseudomallei to identify lipid molecules that could be used for adjuvants/vaccines or as diagnostic tools. We showed that the lipidome of B. pseudomallei and its fractions contain several polar lipids with the capacity to elicit different immune responses in goats, namely rhamnolipids and ornithine lipids which induced IFN-γ, whereas phospholipids and an undefined polar lipid induced strong IL-10 secretion in CD4+ T cells. Autologous T cells co-cultured with caprine dendritic cells (cDCs) and polar lipids of B. pseudomallei proliferated and up-regulated the expression of CD25 (IL-2 receptor) molecules. Furthermore, we demonstrated that polar lipids were able to up-regulate CD1w2 antigen expression in cDCs derived from peripheral blood monocytes. Interestingly, the same polar lipids had only little effect on the expression of MHC class II DR antigens in the same caprine dendritic cells. Finally, antibody blocking of the CD1w2 molecules on cDCs resulted in decreased expression for IFN-γ by CD4+ T cells. Altogether, these results showed that polar lipids of B. pseudomallei are recognized by the caprine immune system and that their recognition is primarily mediated by the CD1 antigen cluster. PMID:24260378

  5. Dynamics of human adipose lipid turnover in health and metabolic disease.

    Science.gov (United States)

    Arner, Peter; Bernard, Samuel; Salehpour, Mehran; Possnert, Göran; Liebl, Jakob; Steier, Peter; Buchholz, Bruce A; Eriksson, Mats; Arner, Erik; Hauner, Hans; Skurk, Thomas; Rydén, Mikael; Frayn, Keith N; Spalding, Kirsty L

    2011-09-25

    Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring (14)C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.

  6. Sensing Lipids with Mincle: Structure and Function

    Directory of Open Access Journals (Sweden)

    Spencer J. Williams

    2017-11-01

    Full Text Available Mincle is a C-type lectin receptor that has emerged as an important player in innate immunity through its capacity to recognize a wide range of lipidic species derived from damaged/altered self and foreign microorganisms. Self-ligands include sterols (e.g., cholesterol, and β-glucosylceramides, and the protein SAP130, which is released upon cell death. Foreign lipids comprise those from both microbial pathogens and commensals and include glycerol, glucose and trehalose mycolates, and glycosyl diglycerides. A large effort has focused on structural variation of these ligands to illuminate the structure–activity relationships required for the agonism of signaling though Mincle and has helped identify key differences in ligand recognition between human and rodent Mincle. These studies in turn have helped identify new Mincle ligands, further broadening our understanding of the diversity of organisms and lipidic species recognized by Mincle. Finally, progress toward the development of Mincle agonists as vaccine adjuvants providing humoral and cell-mediated immunity with reduced toxicity is discussed.

  7. Wrist joint assembly

    Science.gov (United States)

    Kersten, L.; Johnson, J. D. (Inventor)

    1978-01-01

    A wrist joint assembly is provided for use with a mechanical manipulator arm for finely positioning an end-effector carried by the wrist joint on the terminal end of the manipulator arm. The wrist joint assembly is pivotable about a first axis to produce a yaw motion, a second axis is to produce a pitch motion, and a third axis to produce a roll motion. The wrist joint assembly includes a disk segment affixed to the terminal end of the manipulator arm and a first housing member, a second housing member, and a third housing member. The third housing member and the mechanical end-effector are moved in the yaw, pitch, and roll motion. Drive means are provided for rotating each of the housings about their respective axis which includes a cluster of miniature motors having spur gears carried on the output drive shaft which mesh with a center drive gear affixed on the housing to be rotated.

  8. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  9. Power module assembly

    Science.gov (United States)

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  10. Interplay between cigarette smoking and pulmonary reverse lipid transport.

    Science.gov (United States)

    Jubinville, Éric; Talbot, Maude; Bérubé, Jean-Christophe; Hamel-Auger, Mélanie; Maranda-Robitaille, Michaël; Beaulieu, Marie-Josée; Aubin, Sophie; Paré, Marie-Ève; Kallend, David G; Arsenault, Benoit; Bossé, Yohan; Morissette, Mathieu C

    2017-09-01

    Reverse lipid transport is critical to maintain homeostasis. Smoking causes lipid accumulation in macrophages, therefore suggesting suboptimal reverse lipid transport mechanisms. In this study, we investigated the interplay between smoking and reverse lipid transport and the consequences on smoking-induced lung and peripheral alterations.To investigate the relationship between smoking and reverse lipid transport, we used a clinical lung gene expression dataset and a mouse model of cigarette smoke exposure. We also used ApoA-1(-/-) mice, with reduced reverse lipid transport capacity, and a recombinant ApoA-1 Milano/phospholipid complex (MDCO-216) to boost reverse lipid transport. Cellular and functional analyses were performed on the lungs and impact on body composition was also assessed.Smoking affects pulmonary expression of abca1, abcg1, apoe and scarb1 in both mice and humans, key genes involved in reverse lipid transport. In mice, the capacity of bronchoalveolar lavage fluid and serum to stimulate cholesterol efflux in macrophages was increased after a single exposure to cigarette smoke. ApoA-1(-/-) mice showed increased lung neutrophilia, larger macrophages and greater loss in lean mass in response to smoking, whereas treatment with MDCO-216 reduced the size of macrophages and increased the lean mass of mice exposed to cigarette smoke.Altogether, this study shows a functional interaction between smoking and reverse lipid transport, and opens new avenues for better understanding the link between metabolic and pulmonary diseases related to smoking. Copyright ©ERS 2017.

  11. Tear Film Lipids

    Science.gov (United States)

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  12. Low inductance connector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  13. Phylogenetic Comparative Assembly

    Science.gov (United States)

    Husemann, Peter; Stoye, Jens

    Recent high throughput sequencing technologies are capable of generating a huge amount of data for bacterial genome sequencing projects. Although current sequence assemblers successfully merge the overlapping reads, often several contigs remain which cannot be assembled any further. It is still costly and time consuming to close all the gaps in order to acquire the whole genomic sequence. Here we propose an algorithm that takes several related genomes and their phylogenetic relationships into account to create a contig adjacency graph. From this a layout graph can be computed which indicates putative adjacencies of the contigs in order to aid biologists in finishing the complete genomic sequence.

  14. Hand Controller Assembly

    Science.gov (United States)

    Bandera, Pablo (Inventor); Buchele, Paul (Inventor)

    2015-01-01

    A user input device for a vehicular electrical system is provided. The user input device includes a handle sized and shaped to be gripped by a human hand and a gimbal assembly within the handle. The gimbal assembly includes a first gimbal component, a second gimbal component coupled to the first gimbal component such that the second gimbal component is rotatable relative to the first gimbal component about a first axis, and a third gimbal component coupled to the second gimbal component such that the third gimbal component is rotatable relative to the second gimbal component about a second axis.

  15. Assembling an aesthetic.

    Science.gov (United States)

    Candela, Emily

    2012-12-01

    Recent research informing and related to the study of three-dimensional scientific models is assembled here in a way that explores an aesthetic, specifically, of touch. I concentrate on the materiality of models, drawing on insights from the history and philosophy of science, design and metaphysics. This article chronicles the ways in which touch, or material interactions, operate in the world of 3D models, and its role in what models mean and do. I end with a call for greater attention to scientific process, described as assembly of and within science, which is revealed by this focus on touch. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. To assemble or fold?

    Science.gov (United States)

    Das, Anindita; Ghosh, Suhrit

    2014-10-11

    This communication reports an elegant structure formation by an amide functionalized donor (D)-acceptor (A) dyad by stepwise folding and assembly. It adopts a folded conformation by intra-chain CT-interaction that subsequently dimerizes by inter-molecular H-bonding to produce a folded dimer (FD) with a DAAD stacking sequence. Incompatibility of the aromatic stacked face with MCH triggers macroscopic assembly by solvophobically driven edge-to-edge stacking of the FD with concomitant growth in the orthogonal direction by D-D π-stacking leading to the formation of a reverse-vesicle.

  17. Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40.

    Science.gov (United States)

    Wijesinghe, Kaveesha J; Stahelin, Robert V

    2015-12-30

    Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  19. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment

    DEFF Research Database (Denmark)

    Larsen, Jannik B.; Kennard, Celeste; Pedersen, Søren L.

    2017-01-01

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We...... recently showed that membrane shape/curvature can in itself mediate the recruitment of lipidated proteins. However, exactly how membrane curvature and composition synergize remains largely unexplored. Here we investigated how three critical structural parameters of lipids, namely acyl chain saturation......, headgroup size, and acyl chain length, modulate the capacity of membrane curvature to recruit lipidated proteins. As a model system we used the lipidated minimal membrane anchor of the GTPase, N-Ras (tN-Ras). Our data revealed complex synergistic effects, whereby tN-Ras binding was higher on planar DOPC...

  20. A Method for Designing Assembly Tolerance Networks of Mechanical Assemblies

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available When designing mechanical assemblies, assembly tolerance design is an important issue which must be seriously considered by designers. Assembly tolerances reflect functional requirements of assembling, which can be used to control assembling qualities and production costs. This paper proposes a new method for designing assembly tolerance networks of mechanical assemblies. The method establishes the assembly structure tree model of an assembly based on its product structure tree model. On this basis, assembly information model and assembly relation model are set up based on polychromatic sets (PS theory. According to the two models, the systems of location relation equations and interference relation equations are established. Then, using methods of topologically related surfaces (TTRS theory and variational geometric constraints (VGC theory, three VGC reasoning matrices are constructed. According to corresponding relations between VGCs and assembly tolerance types, the reasoning matrices of tolerance types are also established by using contour matrices of PS. Finally, an exemplary product is used to construct its assembly tolerance networks and meanwhile to verify the feasibility and effectiveness of the proposed method.

  1. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  2. Capacity Maximizing Constellations

    Science.gov (United States)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  3. Capacity at Railway Stations

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    special focus when conducting UIC 406 capacity analyses.This paper describes how the UIC 406 capacity method can be expounded for stations. Commonly for the analyses of the stations it is recommended to include the entire station including the switch zone(s) and all station tracks. By including the switch...... zone(s) the possible conflicts with other trains (also in the opposite direction) are taken into account leading to more trustworthy results. Although the UIC 406 methodology proposes that the railway network should be divided into line sections when trains turn around and when the train order...... is changed, this paper recommends that the railway lines are not always be divided. In case trains turn around on open (single track) line, the capacity consumption may be too low if a railway line is divided. The same can be the case if only few trains are overtaken at an overtaking station. For dead end...

  4. Enhanced lipid extraction from microalgae in biodiesel production

    Directory of Open Access Journals (Sweden)

    Kim Myung-Gyun

    2017-01-01

    Full Text Available In order to secure more effective lipid extraction method, this research investigated new lipid extraction method using laser with absorbent and sought its optimum operation control. In addition, this study compared lipid extraction efficiency and FAME conversion rate between laser extraction method at optimum condition and existing extraction method. Results from experiments for optimizing lipid extraction method using laser showed that the maximum extraction efficiency (81.8% was attained when using laser with an output capacity of 75Wh/L. Extraction efficiency increased up to 90.8% when microwave treatment as pretreatment process was conducted. Addition of absorbents during lipid extraction process with laser showed higher extraction efficiency than laser and chemical method. It was also found that laser extraction method with absorbent had higher total fatty acid content (853.7 mg/g oil in extracted lipid than chemical extraction method (825.4 mg/g oil. Furthermore, it had the highest FAME conversion rate (94.2%.

  5. Dengue virus infection perturbs lipid homeostasis in infected mosquito cells.

    Directory of Open Access Journals (Sweden)

    Rushika Perera

    Full Text Available Dengue virus causes ∼50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  6. Dengue Virus Infection Perturbs Lipid Homeostasis in Infected Mosquito Cells

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Rushika M.; Riley, Catherine; Isaac, Georgis; Hopf- Jannasch, Amber; Moore, Ronald J.; Weitz, Karl K.; Pasa-Tolic, Ljiljana; Metz, Thomas O.; Adamec, Jiri; Kuhn, Richard J.

    2012-03-22

    Dengue virus causes {approx}50-100 million infections per year and thus is considered one of the most aggressive arthropod-borne human pathogen worldwide. During its replication, dengue virus induces dramatic alterations in the intracellular membranes of infected cells. This phenomenon is observed both in human and vector-derived cells. Using high-resolution mass spectrometry of mosquito cells, we show that this membrane remodeling is directly linked to a unique lipid repertoire induced by dengue virus infection. Specifically, 15% of the metabolites detected were significantly different between DENV infected and uninfected cells while 85% of the metabolites detected were significantly different in isolated replication complex membranes. Furthermore, we demonstrate that intracellular lipid redistribution induced by the inhibition of fatty acid synthase, the rate-limiting enzyme in lipid biosynthesis, is sufficient for cell survival but is inhibitory to dengue virus replication. Lipids that have the capacity to destabilize and change the curvature of membranes as well as lipids that change the permeability of membranes are enriched in dengue virus infected cells. Several sphingolipids and other bioactive signaling molecules that are involved in controlling membrane fusion, fission, and trafficking as well as molecules that influence cytoskeletal reorganization are also up regulated during dengue infection. These observations shed light on the emerging role of lipids in shaping the membrane and protein environments during viral infections and suggest membrane-organizing principles that may influence virus-induced intracellular membrane architecture.

  7. Driving nucleolar assembly.

    Science.gov (United States)

    McCann, Kathleen L; Baserga, Susan J

    2014-02-01

    In this issue of Genes & Development, Grob and colleagues (pp. 220-230) identify the minimal molecular requirements to assemble a fully functional nucleolus in human cells and demonstrate the importance of the nucleolar transcription factor upstream binding factor (UBF) as a mitotic bookmark at the ribosomal DNA (rDNA).

  8. Nanoparticle assemblies and superstructures

    National Research Council Canada - National Science Library

    Kotov, Nicholas A

    2006-01-01

    ... building blocks of larger and more complex systems. Therefore, the present challenge of nanoscale science is to shift from making certain building blocks to organizing them in one-, two-, and three-dimensional structures. Such assemblies and superstructures are the next logical step in the development of nanoscience and nanotechnology. In this re...

  9. Turbomachine blade assembly

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  10. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation et and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly ma...

  11. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may require t...

  12. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may r...

  13. Industrial Assembly Cases

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Buch, Jacob Pørksen; Iversen, Thorbjørn Mosekjær

    This technical report presents 13 different industrial assembly tasks, which are composed of 70 different operations. The report is written to provide an overview and do as such not contain product specific information such as object weights, dimensions etc. The operations are classified into a set...

  14. Multidimensional constrained test assembly

    NARCIS (Netherlands)

    Veldkamp, Bernard P.

    2002-01-01

    Two mathematical programming approaches are presented for the assembly of ability tests from item pools calibrated under a multidimensional item response theory model. Item selection is based on Fisher information matrix. Several criteria can be used to optimize this matrix. In this article, the

  15. Constrained multidimensional test assembly

    NARCIS (Netherlands)

    Veldkamp, Bernard P.

    2000-01-01

    Two mathematical programming approaches are presented for the assembly of ability test from item pools calibrated under a multidimensional item response theory model. Item selection is based on Fisher's Information matrix. Several criteria can be used to optimize this matrix. In this paper, the

  16. Nanotechnology: A molecular assembler

    Science.gov (United States)

    Kelly, T. Ross; Snapper, Marc L.

    2017-09-01

    The idea of nanometre-scale machines that can assemble molecules has long been thought of as the stuff of science fiction. Such a machine has now been built -- and might herald a new model for organic synthesis. See Letter p.374

  17. Rotary shaft sealing assembly

    Science.gov (United States)

    Dietle, Lannie L.; Schroeder, John E.; Kalsi, Manmohan S.; Alvarez, Patricio D.

    2010-09-21

    A rotary shaft sealing assembly in which a first fluid is partitioned from a second fluid in a housing assembly having a rotary shaft located at least partially within. In one embodiment a lip seal is lubricated and flushed with a pressure-generating seal ring preferably having an angled diverting feature. The pressure-generating seal ring and a hydrodynamic seal may be used to define a lubricant-filled region with each of the seals having hydrodynamic inlets facing the lubricant-filled region. Another aspect of the sealing assembly is having a seal to contain pressurized lubricant while withstanding high rotary speeds. Another rotary shaft sealing assembly embodiment includes a lubricant supply providing a lubricant at an elevated pressure to a region between a lip seal and a hydrodynamic seal with a flow control regulating the flow of lubricant past the lip seal. The hydrodynamic seal may include an energizer element having a modulus of elasticity greater than the modulus of elasticity of a sealing lip of the hydrodynamic seal.

  18. America's Assembly Line

    DEFF Research Database (Denmark)

    Nye, David Edwin

    A social history of the assembly line, invented in 1913. Both praised as a boon to consumers and as a curse for workers, it has been satirized, imitated, and celebrated for 100 years. It has inspired fiction, comedy, cafeteria layouts, and suburban housing. It transformed industrial labor...

  19. Lipids and lipid modifications in the regulation of membrane traffic.

    Science.gov (United States)

    Haucke, Volker; Di Paolo, Gilbert

    2007-08-01

    Lipids play a multitude of roles in intracellular protein transport and membrane traffic. While a large body of data implicates phosphoinositides in these processes, much less is known about other glycerophospholipids such as phosphatidic acid, diacylglycerol, and phosphatidylserine. Growing evidence suggests that these lipids may also play an important role, either by mediating protein recruitment to membranes or by directly affecting membrane dynamics. Although membrane lipids are believed to be organized in microdomains, recent advances in cellular imaging methods paired with sophisticated reporters and proteomic analysis have led to the formulation of alternative ideas regarding the characteristics and putative functions of lipid microdomains and their associated proteins. In fact, the traditional view that membrane proteins may freely diffuse in a large 'sea of lipids' may need to be revised. Lastly, modifications of proteins by lipids or related derivatives have surprisingly complex roles on regulated intracellular transport of a wide range of molecules.

  20. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design.

    Science.gov (United States)

    Polizzotti, Brian D; Thomson, Lindsay M; O'Connell, Daniel W; McGowan, Francis X; Kheir, John N

    2014-08-01

    Tissue hypoxia is a final common pathway that leads to cellular injury and death in a number of critical illnesses. Intravenous injections of self-assembling, lipid-based oxygen microbubbles (LOMs) can be used to deliver oxygen gas, preventing organ injury and death from systemic hypoxemia. However, current formulations exhibit high polydispersity indices (which may lead to microvascular obstruction) and poor shelf-lives, limiting the translational capacity of LOMs. In this study, we report our efforts to optimize LOM formulations using a mixture response surface methodology (mRSM). We study the effect of changing excipient proportions (the independent variables) on microbubble diameter and product loss (the dependent variables). By using mRSM analysis, the experimental data were fit using a reduced Scheffé linear mixture model. We demonstrate that formulations manufactured from 1,2-distearoyl-sn-glycero-3-phosphocholine, corn syrup, and water produce micron-sized microbubbles with low polydispersity indices, and decreased product loss (relative to previously described formulations) when stored at room temperature over a 30-day period. Optimized LOMs were subsequently tested for their oxygen-releasing ability and found to have similar release kinetics as prior formulations. © 2014 Wiley Periodicals, Inc.

  1. Inner/Outer Nuclear Membrane Fusion in Nuclear Pore Assembly

    Science.gov (United States)

    Fichtman, Boris; Ramos, Corinne; Rasala, Beth; Harel, Amnon

    2010-01-01

    Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment. PMID:20926687

  2. Mechanisms of formation and function of eosinophil lipid bodies: inducible intracellular sites involved in arachidonic acid metabolism

    Directory of Open Access Journals (Sweden)

    Bozza Patricia T

    1997-01-01

    Full Text Available Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.

  3. Probing DNA-lipid membrane interactions with a lipopeptide nanopore.

    Science.gov (United States)

    Bessonov, Andrey; Takemoto, Jon Y; Simmel, Friedrich C

    2012-04-24

    Association of DNA molecules with lipid bilayer membranes is of considerable interest for a large variety of applications in biotechnology. Here we introduce syringomycin E (SRE), a small pore-forming lipopeptide produced by the bacterium Pseudomonas syringae, as a facile sensor for the detection of DNA interactions with lipid membranes. SRE forms highly reproducible pores in cellular and artificial membranes. The pore structure involves bilayer lipids, which have a pronounced influence on open channel conductance and gating. SRE channels act as ionic diodes that serve as current rectifiers sensitive to the charge of the bilayer. We employ this intrinsic property to electronically monitor the association of DNA molecules with the membrane in a variety of different settings. We show that SRE can be used for quantitatively probing electrostatic interactions of DNA and DNA-cholesterol conjugates with a lipid membrane. Furthermore, we demonstrate that SRE channels allow monitoring of hybridization reactions between lipid-anchored probe strands and complementary strands in solution. In the presence of double-stranded DNA, SRE channels display a particularly high degree of rectification. Finally, the formation of multilayered structures assembled from poly-(L)-lysine and DNA oligonucleotides on the membrane was precisely monitored with SRE.

  4. Internal lipid architecture of the hetero-oligomeric cytochrome b6f complex.

    Science.gov (United States)

    Hasan, S Saif; Cramer, William A

    2014-07-08

    The role of lipids in the assembly, structure, and function of hetero-oligomeric membrane protein complexes is poorly understood. The dimeric photosynthetic cytochrome b6f complex, a 16-mer of eight distinct subunits and 26 transmembrane helices, catalyzes transmembrane proton-coupled electron transfer for energy storage. Using a 2.5 Å crystal structure of the dimeric complex, we identified 23 distinct lipid-binding sites per monomer. Annular lipids are proposed to provide a connection for super-complex formation with the photosystem-I reaction center and the LHCII kinase enzyme for transmembrane signaling. Internal lipids mediate crosslinking to stabilize the domain-swapped iron-sulfur protein subunit, dielectric heterogeneity within intermonomer and intramonomer electron transfer pathways, and dimer stabilization through lipid-mediated intermonomer interactions. This study provides a complete structure analysis of lipid-mediated functions in a multi-subunit membrane protein complex and reveals lipid sites at positions essential for assembly and function. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Shedding light on the role of lipid flippases in the secretory pathway

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    flippases, play an essential role in this transport process. We have recently characterized several members of the P4 subfamily of P-type ATPases as prime candidate lipid flippases in the secretory pathway of several eukaryotic cells. Our studies in yeast, plants and mammalian cells uncovered......A fundamental feature of eukaryotic cells is the presence of distinct organelles surrounded by lipid bilayers. Assembly and maintenance of the various organellar membranes requires translocation of lipids from one leaflet of the bilayer to the other. Specific membrane proteins, termed lipid...... biophysical approaches based on giant vesicles and several advanced bioimaging methods. The limitations and future perspectives of these techniques for the characterization of lipid translocases will be discussed in the light of our recent results....

  6. Neil3-dependent base excision repair regulates lipid metabolism and prevents atherosclerosis in Apoe-deficient mice

    DEFF Research Database (Denmark)

    Skarpengland, Tonje; Holm, Sverre; Scheffler, Katja

    2016-01-01

    an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe-/- Neil3-/- mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation...... of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage....

  7. Markets and Institutional Capacity

    DEFF Research Database (Denmark)

    Ingemann, Jan Holm

    2010-01-01

    Adequate explanations concerning the introduction of production and consumption of organic food in Denmark imply the necessity to engage a certain understanding of markets. Markets should subsequently not be seen as entities nor places but as complex relations between human actors. Further......, the establishment, maintenance and development of markets are depending on the capacity of the actors to enter into continuous and enhancing interplay....

  8. Vedr.: Military capacity building

    DEFF Research Database (Denmark)

    Larsen, Josefine Kühnel; Struwe, Lars Bangert

    2013-01-01

    Kühnel Larsen and researcher Lars Bangert Struwe of CMS had organized a seminar in collaboration with Royal Danish Defense Colleg and the East African Security Governance Network. The seminar focused on some of the risks involved in Military capacity building and how these risks are dealt with from...

  9. Testamentary capacity and delirium.

    Science.gov (United States)

    Liptzin, Benjamin; Peisah, Carmelle; Shulman, Kenneth; Finkel, Sanford

    2010-09-01

    With the aging of the population there will be a substantial transfer of wealth in the next 25 years. The presence of delirium can complicate the evaluation of an older person's testamentary capacity and susceptibility to undue influence but has not been well examined in the existing literature. A subcommittee of the IPA Task Force on Testamentary Capacity and Undue Influence undertook to review how to assess prospectively and retrospectively testamentary capacity and susceptibility to undue influence in patients with delirium. The subcommittee identified questions that should be asked in cases where someone changes their will or estate plan towards the end of their life in the presence of delirium. These questions include: was there consistency in the patient's wishes over time? Were these wishes expressed during a "lucid interval" when the person was less confused? Were the patient's wishes clearly expressed in response to open-ended questions? Is there clear documentation of the patient's mental status at the time of the discussion? This review with some case examples provides guidance on how to consider the question of testamentary capacity or susceptibility to undue influence in someone undergoing an episode of delirium.

  10. Associative Pattern Recognition Through Macro-molecular Self-Assembly

    Science.gov (United States)

    Zhong, Weishun; Schwab, David J.; Murugan, Arvind

    2017-05-01

    We show that macro-molecular self-assembly can recognize and classify high-dimensional patterns in the concentrations of N distinct molecular species. Similar to associative neural networks, the recognition here leverages dynamical attractors to recognize and reconstruct partially corrupted patterns. Traditional parameters of pattern recognition theory, such as sparsity, fidelity, and capacity are related to physical parameters, such as nucleation barriers, interaction range, and non-equilibrium assembly forces. Notably, we find that self-assembly bears greater similarity to continuous attractor neural networks, such as place cell networks that store spatial memories, rather than discrete memory networks. This relationship suggests that features and trade-offs seen here are not tied to details of self-assembly or neural network models but are instead intrinsic to associative pattern recognition carried out through short-ranged interactions.

  11. Lipid peroxidation in cell death.

    Science.gov (United States)

    Gaschler, Michael M; Stockwell, Brent R

    2017-01-15

    Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Chlorosome lipids from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Sørensen, Peder Grove; Cox, Raymond Pickett; Miller, Mette

    2008-01-01

    We have extracted polar lipids and waxes from isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum and determined the fatty acid composition of each lipid class. Polar lipids amounted to 4.8 mol per 100 mol bacteriochlorophyll in the chlorosomes, while non-polar lipids (waxes......) were present at a ratio of 5.9 mol per 100 mol bacteriochlorophyll. Glycolipids constitute 60 % of the polar lipids while phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and an aminoglycosphingolipid make up respectively 15, 3, 8 and 12 %. A novel glycolipid was identified...... as a rhamnose derivative of monogalactosyldiacylglycerol, while the other major glycolipid was monogalactosyldiacylglycerol. Tetradecanoic acid was the major fatty acid in the aminoglycosphingolipid, while the other polar lipids contained predominantly hexandecanoic acid. The chlorosome waxes are esters...

  13. Enzymatic synthesis of designer lipids

    Directory of Open Access Journals (Sweden)

    Devi B.L.A. Prabhavathi

    2008-05-01

    Full Text Available Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (interesterification reactions and genetic engineering of oilseed crops. This review gives a general idea about the enzymatic modifications of natural lipids and their derivatives for the preparation of designer lipids. The commercialization outlook, food, nutritional and pharmaceutical applications of designer lipids are also briefly discussed.

  14. Lipids and membrane lateral organization.

    Science.gov (United States)

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word "lipid rafts" returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, "ceramide" returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as "lipid raft-dependent." However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  15. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  16. Enzymatic synthesis of designer lipids

    OpenAIRE

    Devi B.L.A. Prabhavathi; Zhang Hong; Damstrup Marianne L.; Guo Zheng; Zhang Long; Lue Bena-Marie; Xu Xuebing

    2008-01-01

    Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (inter)esterification reactions ...

  17. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  18. Assembling large, complex environmental metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, A. C. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Jansson, J. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Malfatti, S. A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, S. G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tiedje, J. M. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Brown, C. T. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Computer Science and Engineering

    2012-12-28

    The large volumes of sequencing data required to sample complex environments deeply pose new challenges to sequence analysis approaches. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires significant computational resources. We apply two pre-assembly filtering approaches, digital normalization and partitioning, to make large metagenome assemblies more computationaly tractable. Using a human gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes from matched Iowa corn and native prairie soils. The predicted functional content and phylogenetic origin of the assembled contigs indicate significant taxonomic differences despite similar function. The assembly strategies presented are generic and can be extended to any metagenome; full source code is freely available under a BSD license.

  19. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  20. Spatio-temporal Dynamics and Mechanisms of Stress Granule Assembly.

    Directory of Open Access Journals (Sweden)

    Daisuke Ohshima

    2015-06-01

    Full Text Available Stress granules (SGs are non-membranous cytoplasmic aggregates of mRNAs and related proteins, assembled in response to environmental stresses such as heat shock, hypoxia, endoplasmic reticulum (ER stress, chemicals (e.g. arsenite, and viral infections. SGs are hypothesized as a loci of mRNA triage and/or maintenance of proper translation capacity ratio to the pool of mRNAs. In brain ischemia, hippocampal CA3 neurons, which are resilient to ischemia, assemble SGs. In contrast, CA1 neurons, which are vulnerable to ischemia, do not assemble SGs. These results suggest a critical role SG plays in regards to cell fate decisions. Thus SG assembly along with its dynamics should determine the cell fate. However, the process that exactly determines the SG assembly dynamics is largely unknown. In this paper, analyses of experimental data and computer simulations were used to approach this problem. SGs were assembled as a result of applying arsenite to HeLa cells. The number of SGs increased after a short latent period, reached a maximum, then decreased during the application of arsenite. At the same time, the size of SGs grew larger and became localized at the perinuclear region. A minimal mathematical model was constructed, and stochastic simulations were run to test the modeling. Since SGs are discrete entities as there are only several tens of them in a cell, commonly used deterministic simulations could not be employed. The stochastic simulations replicated observed dynamics of SG assembly. In addition, these stochastic simulations predicted a gamma distribution relative to the size of SGs. This same distribution was also found in our experimental data suggesting the existence of multiple fusion steps in the SG assembly. Furthermore, we found that the initial steps in the SG assembly process and microtubules were critical to the dynamics. Thus our experiments and stochastic simulations presented a possible mechanism regulating SG assembly.

  1. Studies on lipid artificial tears

    OpenAIRE

    Torrent Burgués, Juan

    2017-01-01

    Report-review sobre llàgrima artificial, llàgrima lipídica. The use of artificial tears is related with dry eye problems or ocular irritations. It exist different types of artificial tears. One type of them is the lipid artificial tears which tray to repair or improve the lipid layer present in the outermostpart of the tear film. Several lipid artificial tears are present in the market and commercialised by several companies. In the composition of some of these lipid tears occurs as a prin...

  2. New worldwide lipid guidelines.

    Science.gov (United States)

    Saraf, Smriti; Ray, Kausik K

    2015-07-01

    Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of morbidity and mortality in most countries. Modification of common risk factors such as dyslipidaemia can result in significant reduction of ASCVD incidence in the population and improve clinical outcomes. The purpose of this review is to discuss and compare the latest worldwide lipid guidelines, and to demonstrate the variation in practice in different parts of the world. The lipid guidelines have recently been updated in different countries. The National Institute for Health and Care Excellence (NICE) guidelines in the United Kingdom were issued in July 2014, are risk based and are broadly similar to the American College of Cardiology/American Heart Association task force guidelines that were published in November 2013. Both these guidelines are in variance with both the Canadian Guidelines and the European Society of Cardiology/European Atherosclerosis Society guidelines 2011, which are target based and have different risk scoring systems, which results in significant variation in practice and increased healthcare costs in certain countries. The difference in guidelines in different countries makes it difficult for the clinician to standardize the treatment provided to individuals. The variance in risk scoring systems makes it difficult to compare risk prediction tools across countries and hence the optimum treatment available for a given population. Standardization of guidelines based on randomized controlled trial data and validation and calibration of various risk scoring systems could help improve clinical outcomes in this high-risk group of individuals at risk of ASCVD within individual countries.

  3. Assembly 6: occupation and epidemiology

    OpenAIRE

    Christer Janson

    2016-01-01

    Assembly 6 is an interdisciplinary assembly that gathers together pneumologists, epidemiologists, clinicians, statisticians, occupational doctors, air pollution scientists and health educators. The assembly now has almost 500 members and has seen a steady growth in membership. Assembly 6 comprises four different groups that complement each other and often work together in joint activities. The groups are: 6.1) epidemiology; 6.2) occupational and environmental health; 6.3) tobacco, smoking con...

  4. Scarless assembly of unphosphorylated DNA fragments with a simplified DATEL method.

    Science.gov (United States)

    Ding, Wenwen; Weng, Huanjiao; Jin, Peng; Du, Guocheng; Chen, Jian; Kang, Zhen

    2017-05-04

    Efficient assembly of multiple DNA fragments is a pivotal technology for synthetic biology. A scarless and sequence-independent DNA assembly method (DATEL) using thermal exonucleases has been developed recently. Here, we present a simplified DATEL (sDATEL) for efficient assembly of unphosphorylated DNA fragments with low cost. The sDATEL method is only dependent on Taq DNA polymerase and Taq DNA ligase. After optimizing the committed parameters of the reaction system such as pH and the concentration of Mg2+ and NAD+, the assembly efficiency was increased by 32-fold. To further improve the assembly capacity, the number of thermal cycles was optimized, resulting in successful assembly 4 unphosphorylated DNA fragments with an accuracy of 75%. sDATEL could be a desirable method for routine manual and automated assembly.

  5. Preparation and Optimization OF Palm-Based Lipid Nanoparticles Loaded with Griseofulvin.

    Science.gov (United States)

    Huei Lim, Wen; Jean Tan, Yann; Sin Lee, Choy; Meng Er, Hui; Fung Wong, Shew

    2017-01-01

    Palm-based lipid nanoparticle formulation loaded with griseofulvin was prepared by solvent-free hot homogenization method. The griseofulvin loaded lipid nanoparticles were prepared via stages of optimisation, by altering the high pressure homogenisation (HPH) parameters, screening on palm-based lipids and Tween series surfactants and selection of lipid to surfactant ratios. A HPLC method has been validated for the drug loading capacity study. The optimum HPH parameter was determined to be 1500 bar with 5 cycles and among the palm-based lipid materials; Lipid C (triglycerides) was selected for the preparation of lipid nanoparticles. Tween 80 was chosen from the Tween series surfactants for its highest saturated solubility of griseofulvin at 53.1 ± 2.16 µg/mL. The optimum formulation of the griseofulvin loaded lipid nanoparticles demonstrated nano-range of particle size (179.8 nm) with intermediate distribution index (PDI) of 0.306, zeta potential of -27.9 mV and drug loading of 0.77%. The formulation was stable upon storage for 1 month at room temperature (25 °C) and 45 °C with consistent drug loading capacity.

  6. Dehulling capacity and storability of naked oat

    Directory of Open Access Journals (Sweden)

    A-M. KIRKKARI

    2008-12-01

    Full Text Available Harvested naked oat is not completely hulless. Hull content of various cultivars ranged between one and six percent. Genotype and environment control expression of nakedness. Using different threshing settings at different grain moisture contents, it was investigated whether grain moisture at threshing and combine harvester settings affected hull content and its relationship to germination capacity. Naked groats were stored at room temperature and analysed for protein content and fatty acid composition to determine storability. Grain moisture content at threshing had contrary effects on hull content and degree of hull retention in different years. Small grains tended to retain hulls more tightly during threshing. Grain filling capacity appears to be the dominant factor determining degree of nakedness rather than stage of maturity. The postulated protective nature of hulls was confirmed only for cultivar Lisbeth. Highly viable samples of grain of cv. Lisbeth, threshed at normal settings, contained a higher percentage of hulls than those with low germination capacity, while for cv. Bullion, a protective effect of the hulls was not evident. Grain moisture content at threshing did not affect protein content of naked cultivars, but some differences in fatty acid composition were recorded. Changes in lipid composition and volatile oxidation products during storage of groats were relatively moderate, indicating no major problems related to storage when naked oat was dried well.;

  7. Ingestion resistant seal assembly

    Science.gov (United States)

    Little, David A [Chuluota, FL

    2011-12-13

    A seal assembly limits gas leakage from a hot gas path to one or more disc cavities in a gas turbine engine. The seal assembly includes a seal apparatus associated with a blade structure including a row of airfoils. The seal apparatus includes an annular inner shroud associated with adjacent stationary components, a wing member, and a first wing flange. The wing member extends axially from the blade structure toward the annular inner shroud. The first wing flange extends radially outwardly from the wing member toward the annular inner shroud. A plurality of regions including one or more recirculation zones are defined between the blade structure and the annular inner shroud that recirculate working gas therein back toward the hot gas path.

  8. Low inductance busbar assembly

    Science.gov (United States)

    Holbrook, Meghan Ann

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  9. Hearing Aid Assembly

    Science.gov (United States)

    Grugel, Richard N. (Inventor)

    2002-01-01

    Progress in hearing aids has come a long way. Yet despite such progress hearing aids are not the perfect answer to many hearing problems. Some adult ears cannot accommodate tightly fitting hearing aids. Mouth movements such as chewing, talking, and athletic or other active endeavors also lead to loosely fitting ear molds. It is well accepted that loosely fitting hearing aids are the cause of feedback noise. Since feedback noise is the most common complaint of hearing aid wearers it has been the subject of various patents. Herein a hearing aid assembly is provided eliminating feedback noise. The assembly includes the combination of a hearing aid with a headset developed to constrict feedback noise.

  10. Turbine seal assembly

    Science.gov (United States)

    Little, David A.

    2013-04-16

    A seal assembly that limits gas leakage from a hot gas path to one or more disc cavities in a turbine engine. The seal assembly includes a seal apparatus that limits gas leakage from the hot gas path to a respective one of the disc cavities. The seal apparatus comprises a plurality of blade members rotatable with a blade structure. The blade members are associated with the blade structure and extend toward adjacent stationary components. Each blade member includes a leading edge and a trailing edge, the leading edge of each blade member being located circumferentially in front of the blade member's corresponding trailing edge in a direction of rotation of the turbine rotor. The blade members are arranged such that a space having a component in a circumferential direction is defined between adjacent circumferentially spaced blade members.

  11. Types for DSP Assembler Programs

    DEFF Research Database (Denmark)

    Larsen, Ken

    2006-01-01

    in assembler language. However, programming in assembler causes numerous problems, such as memory corruption, for instance. To test the thesis I define a model assembler language called Featherweight DSP which captures some of the essential features of a real custom DSP used in the industrial partner's digital...

  12. Composite airfoil assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose

    2015-03-03

    A composite blade assembly for mounting on a turbine wheel includes a ceramic airfoil and an airfoil platform. The ceramic airfoil is formed with an airfoil portion, a blade shank portion and a blade dovetail tang. The metal platform includes a platform shank and a radially inner platform dovetail. The ceramic airfoil is captured within the metal platform, such that in use, the ceramic airfoil is held within the turbine wheel independent of the metal platform.

  13. Capacity Utilization in European Railways

    DEFF Research Database (Denmark)

    Khadem Sameni, Melody; Landex, Alex

    2013-01-01

    railways are facing a capacity challenge which is caused by passenger and freight demand exceeding the track capacity supply. In the absence of a comprehensive railway capacity manual, methodologies are needed to assess how well railways use their track capacity. This paper presents a novel...

  14. Fourth Doctoral Student Assembly

    CERN Multimedia

    Ingrid Haug

    2016-01-01

    On 10 May, over 130 PhD students and their supervisors, from both CERN and partner universities, gathered for the 4th Doctoral Student Assembly in the Council Chamber.   The assembly was followed by a poster session, at which eighteen doctoral students presented the outcome of their scientific work. The CERN Doctoral Student Programme currently hosts just over 200 students in applied physics, engineering, computing and science communication/education. The programme has been in place since 1985. It enables students to do their research at CERN for a maximum of three years and to work on a PhD thesis, which they defend at their University. The programme is steered by the TSC committee, which holds two selection committees per year, in June and December. The Doctoral Student Assembly was opened by the Director-General, Fabiola Gianotti, who stressed the importance of the programme in the scientific environment at CERN, emphasising that there is no more rewarding activity than lear...

  15. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  16. IAHS Third Scientific Assembly

    Science.gov (United States)

    The International Association of Hydrological Sciences (IAHS) convened its Third Scientific Assembly in Baltimore, Md., May 10-19, 1989. The Assembly was attended by about 450 scientists and engineers. The attendance was highest from the U.S., as could be expected; 37 were from Canada; 22 each, Netherlands and United Kingdom; 14, Italy; 12, China; 10, Federal Republic of Germany; 8 each from France, the Republic of South Africa, and Switzerland; 7, Austria; 6 each, Finland and Japan; others were scattered among the remainder of 48 countries total.one of the cosponsors and also handled business matters for the Assembly. Other cosponsors included the International Association of Meteorology and Atmospheric Physics (IAMAP), United Nations Environmental Program (UNEP), United Nations Educational, Scientific, and Cultural Organization (UNESCO), World Meteorological Organization (WMO), and U.K. Overseas Development Authority (ODA). U.S. federal agencies serving as cosponsors included the Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, National Weather Service, Department of Agriculture, Department of State, and U.S. Geological Survey.

  17. Ordinary General Assembly

    CERN Multimedia

    Association du personnel

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Modifications to the statutes of the association Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda...

  18. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Solid Lipid Nanoparticles and Nanostructured Lipid. Carriers of Loratadine for Topical Application: Physicochemical Stability and Drug Penetration through. Rat Skin. Melike Üner1*, Ecem Fatma Karaman1 and Zeynep Aydoğmuş2. Istanbul University, Faculty of Pharmacy, 1Department of Pharmaceutical Technology, ...

  19. Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts

    NARCIS (Netherlands)

    Celis Ramirez, A.M.

    2017-01-01

    Malassezia yeasts are lipid-dependent fungal species that are common members of the human and animal skin microbiota. The lipid-dependency is a crucial trait in the adaptation process to grow on the skin but also plays a role in their pathogenic life style. Malassezia species can cause several skin

  20. Study of antioxidant enzymes, lipid peroxidation, lipid profile and ...

    African Journals Online (AJOL)

    McRoy

    Study of antioxidant enzymes, lipid peroxidation, lipid profile and immunologic factor in coronary artery disease in East Azarbijan. Khaki-khatibi F1*, Yaghoubi A.R2, Rahbani N.M1. 1Department of Clinical Biochemistry, 2Cardiovascular Research Center, Faculty of Medicine, Tabriz. University of Medical Sciences. Tabriz ...

  1. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    Science.gov (United States)

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  2. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes.

    Science.gov (United States)

    Schrauwen, Patrick; Hesselink, Matthijs K C

    2004-06-01

    Recent evidence points toward decreased oxidative capacity and mitochondrial aberrations as a major contributor to the development of insulin resistance and type 2 diabetes. In this article we will provide an integrative view on the interrelation between decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations in type 2 diabetes. Type 2 diabetes is characterized by disturbances in fatty acid metabolism and is accompanied by accumulation of fatty acids in nonadipose tissues. In metabolically active tissues, such as skeletal muscle, fatty acids are prone to so-called oxidative damage. In addition to producing energy, mitochondria are also a major source of reactive oxygen species, which can lead to lipid peroxidation. In particular, the mitochondrial matrix, which contains DNA, RNA, and numerous enzymes necessary for substrate oxidation, is sensitive to peroxide-induced oxidative damage and needs to be protected against the formation and accumulation of lipids and lipid peroxides. Recent evidence reports that mitochondrial uncoupling is involved in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Disturbances in this protection mechanism can contribute to the development of type 2 diabetes.

  3. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis

    DEFF Research Database (Denmark)

    Wolk, Robert; Armstrong, Ehrin J; Hansen, Peter R

    2017-01-01

    BACKGROUND: Psoriasis is a systemic inflammatory disease associated with increased cardiovascular (CV) risk and altered lipid metabolism. Tofacitinib is an oral Janus kinase inhibitor. OBJECTIVE: The aim of the study was to investigate the effects of tofacitinib on traditional and nontraditional...... cholesterol levels, triglycerides, lipoproteins, lipid particles, lipid-related parameters/CV risk markers, and high-density lipoprotein (HDL) function analyses. RESULTS: At week 16, small concurrent increases in mean low-density lipoprotein cholesterol (LDL-C) and HDL cholesterol (HDL-C) levels were observed......, and HDL-associated serum amyloid A, which reduces the anti-atherogenic potential of HDL, decreased. HDL capacity to promote cholesterol efflux from macrophages did not change. Lecithin-cholesterol acyltransferase activity, which is associated with reverse cholesterol transport, increased. Markers...

  4. Molecular self-assembly into one-dimensional nanostructures.

    Science.gov (United States)

    Palmer, Liam C; Stupp, Samuel I

    2008-12-01

    Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod-coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron-rod-coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that appear as nanofiber

  5. Comprehensive Lipidome-Wide Profiling Reveals Dynamic Changes of Tea Lipids during Manufacturing Process of Black Tea.

    Science.gov (United States)

    Li, Jia; Hua, Jinjie; Zhou, Qinghua; Dong, Chunwang; Wang, Jinjin; Deng, Yuliang; Yuan, Haibo; Jiang, Yongwen

    2017-11-22

    As important biomolecules in Camellia sinensis L., lipids undergo substantial changes during black tea manufacture, which is considered to contribute to tea sensory quality. However, limited by analytical capacity, detailed lipid composition and its dynamic changes during black tea manufacture remain unclear. Herein, we performed tea lipidome profiling using high resolution liquid chromatography coupled to mass spectrometry (LC-MS), which allows simultaneous and robust analysis of 192 individual lipid species in black tea, covering 17 (sub)classes. Furthermore, dynamic changes of tea lipids during black tea manufacture were investigated. Significant alterations of lipid pattern were revealed, involved with chlorophyll degradation, metabolic pathways of glycoglycerolipids, and other extraplastidial membrane lipids. To our knowledge, this report presented most comprehensive coverage of lipid species in black tea. This study provides a global and in-depth metabolic map of tea lipidome during black tea manufacture.

  6. Food processing and lipid oxidation.

    Science.gov (United States)

    German, J B

    1999-01-01

    Food lipids are principally triacylglycerides, phospholipids and sterols found naturally in most biological materials consumed as food and added as functional ingredients in many processed foods. As nutrients, lipids, especially triglycerides, are a concentrated caloric source, provide essential fatty acids and are a solvent and absorption vehicle for fat-soluble vitamins and other nutrients. The presence of fat significantly enhances the organoleptic perception of foods, which partly explains the strong preference and market advantage of fat-rich foods. As a class, lipids contribute many desirable qualities to foods, including attributes of texture, structure, mouthfeel, flavor and color. However, lipids are also one of the most chemically unstable food components and will readily undergo free-radical chain reactions that not only deteriorate the lipids but also: (a) produce oxidative fragments, some of which are volatile and are perceived as the off-flavors of rancidity, (b) degrade proteins, vitamins and pigments and (c) cross-link lipids and other macromolecules into non-nutritive polymers. Free-radical chain reactions are thermodynamically favorable, and as a result, evolutionary selection has strongly influenced the chemistry, metabolism and structure of biological cells to prevent these reactions kinetically. However, the loss of native structure and the death of cells can dramatically accelerate the deteriorative reactions of lipid oxidation. The effects of all processing steps, including raw product selection, harvesting, storage, refining, manufacturing and distribution, on the quality of lipids in the final commodity are considerable. Certain key variables now known to influence oxidative processes can be targeted to increase food lipid stability during and after processing. Retention of or addition of exogenous antioxidants is a well-known consideration, but the presence and activity of catalysts, the integrity of tissues and cells, the quantity of

  7. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary ...... processes, with emphasis on exploitative learning. Before concluding, the paper addresses implications for theory and practice and limitations of this study....

  8. Capacity building in Nepal*

    OpenAIRE

    Dawe, Russell; Stobbe, Karl; Pokharel, Yagya Raj; Shrestha, Shrijana

    2016-01-01

    Healthcare providers from high-income countries often want to help underserved populations, but providing clinical care is not always a sustainable approach. Patan Academy of Health Sciences (PAHS), in Nepal, has taken an innovative approach to capacity building in healthcare. PAHS has partnered with rural family doctors from Canada to provide clinical bedside teaching to medical students in PAHS’s rural program, thereby making a sustainable contribution to healthcare in Nepal.

  9. Capacity building in Nepal

    Directory of Open Access Journals (Sweden)

    Russell Eric Dawe

    2016-12-01

    Full Text Available Healthcare providers from high-income countries often want to help underserved populations, but providing clinical care is not always a sustainable approach. Patan Academy of Health Sciences (PAHS, in Nepal, has taken an innovative approach to capacity building in healthcare. PAHS has partnered with rural family doctors from Canada to provide clinical bedside teaching to medical students in PAHS’s rural program, thereby making a sustainable contribution to healthcare in Nepal.

  10. Weather and road capacity

    OpenAIRE

    Jensen, Thomas Christian

    2014-01-01

    The paper presents estimations of the effect of bad weather on the observed speed on a Danish highway section; Køge Bugt Motorvejen. The paper concludes that weather, primarily precipitation and snow, has a clear negative effect on speed when the road is not in hypercongestion mode. Furthermore, the capacity of the highway seems to be reduced in bad weather and there are indications that travel time variability is also increased, at least in free-flow conditions. Heavy precipitation reduces s...

  11. CSTI High Capacity Power

    Science.gov (United States)

    Winter, Jerry M.

    1989-01-01

    The SP-100 program was established in 1983 by DOD, DOE, and NASA as a joint program to develop the technology necessary for space nuclear power systems for military and civil application. During FY-86 and 87, the NASA SP-100 Advanced Technology Program was devised to maintain the momentum of promising technology advancement efforts started during Phase 1 of SP-100 and to strengthen, in key areas, the chances for successful development and growth capability of space nuclear reactor power systems for future space applications. In FY-88, the Advanced Technology Program was incorporated into NASA's new Civil Space Technology Initiative (CSTI). The CSTI Program was established to provide the foundation for technology development in automation and robotics, information, propulsion, and power. The CSTI High Capacity Power Program builds on the technology efforts of the SP-100 program, incorporates the previous NASA SP-100 Advanced Technology project, and provides a bridge to NASA Project Pathfinder. The elements of CSTI High Capacity Power development include Conversion Systems, Thermal Management, Power Management, System Diagnostics, and Environmental Interactions. Technology advancement in all areas, including materials, is required to assure the high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall program will develop and demonstrate the technology base required to provide a wide range of modular power systems as well as allowing mission independence from solar and orbital attitude requirements. Several recent advancements in CSTI High Capacity power development will be discussed.

  12. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  13. [The Assembly and the national priorities ].

    Science.gov (United States)

    1997-12-01

    Social participation and attention to the actions of government have increased dramatically in Ecuador. It is crucial that political debate be broadened concerning the functioning of the National Assembly, thereby opening greater public opportunities for participation. All social groups should be guaranteed access to the debate; expansion of the public sphere is essential for development of effective mechanisms of social inclusion. Those with no capacity to defend their own interests must have a voice. The National Assembly, in addition to reforming the Constitution, must reinforce the role of public men and statesmen at all levels of government. Statesmen place the common interest over special interests and create coalitions to effect necessary changes. The National Assembly must reorient the emphasis of government activities to give all sectors equal opportunity and access to basic public services. The role of the government must be redefined, which includes being equipped with better tools for management and control and with mechanisms for accountability at a time when many believe that globalization and market forces by themselves should dictate the rhythms of political, economic, and social life. Diversity should be respected. Nongovernmental organizations can be of great assistance in fostering dialogue, cooperation, solidarity, and consensus. Ecuadorians must support the goal of human and sustainable development.

  14. Lipid Mediators in Acne

    Directory of Open Access Journals (Sweden)

    Monica Ottaviani

    2010-01-01

    Full Text Available Multiple factors are involved in acne pathogenesis, and sebum secretion is one of the main ones. The role sebum plays in acne development has not been completely elucidated yet; however, increasing amounts of data seem to confirm the presence of alterations in sebum from acne patients. Altered ratio between saturated and unsaturated fatty acids has been indicated as an important feature to be considered in addition to the altered amount of specific fatty acids such as linoleic acid. Furthermore, particular attention has been focused on squalene peroxide that seems to be able to induce an inflammatory response beyond cytotoxicity and comedones formation. Moreover, recent data suggest that lipid mediators are able to interfere with sebocytes differentiation and sebogenesis through the activation of pathways related to peroxisome proliferators-activated receptors. Understanding the factors and mechanisms that regulate sebum production is needed in order to identify novel therapeutic strategies for acne treatment.

  15. Blood lipids and prostate cancer

    DEFF Research Database (Denmark)

    Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P

    2016-01-01

    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...

  16. Fasting and nonfasting lipid levels

    DEFF Research Database (Denmark)

    Langsted, Anne; Freiberg, Jacob J; Nordestgaard, Børge G

    2008-01-01

    Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events.......Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events....

  17. Lipids in liver transplant recipients

    Science.gov (United States)

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-01-01

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  18. The Flexibility of Ectopic Lipids.

    Science.gov (United States)

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-09-14

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  19. Tomato spotted wilt virus particle assembly : studying the role of the structural proteins in vivo

    NARCIS (Netherlands)

    Snippe, M.

    2006-01-01

    Members of the Bunyaviridae have spherical, enveloped virus particles that acquire their lipid membrane at the Golgi complex. For the animal-infecting bunyaviruses, virus assembly involves budding of ribonucleoprotein particles (RNPs) into vacuolised lumen of the Golgi complex, after which the

  20. Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells

    DEFF Research Database (Denmark)

    Stavru, Fabrizia; Nautrup-Pedersen, Gitte; Cordes, Volker C

    2006-01-01

    So far, POM121 and gp210 are the only known anchoring sites of vertebrate nuclear pore complexes (NPCs) within the lipid bilayer of the nuclear envelope (NE) and, thus, are excellent candidates for initiating the NPC assembly process. Indeed, we demonstrate that POM121 can recruit several nucleop...

  1. Improvability of assembly systems II: Improvability indicators and case study

    Directory of Open Access Journals (Sweden)

    S.-Y. Chiang

    2000-01-01

    Full Text Available Based on the performance analysis technique developed in Part I, this paper presents improvability indicators for assembly lines with unreliable machines. In particular, it shows that assembly lines are unimprovable with respect to workforce re-distribution if each buffer is, on the average, close to being half full. These lines are unimprovable with respect to buffer capacity re-distribution if each machine is starved and blocked with almost equal frequency. In addition, the paper provides indicators for identification of bottleneck machines and bottleneck buffers. Finally, the paper reports on an application of these improvability indicators in a case study at an automotive components plant.

  2. Preparation and phase behaviour of surface-active pharmaceuticals: self-assembly of DNA and surfactants with membranes. Differential adiabatic scanning microcalorimetric study.

    Science.gov (United States)

    Süleymanoğlu, Erhan

    2005-08-01

    Some energetics issues relevant to preparation and surface characterization of zwitterionic phospholipid-DNA self-assemblies, as alternative models of the currently used problematic lipoplexes are presented. Nucleic acid compaction capacities of Mg(2+) and N-alkyl-N,N,N-trimetylammonium ions (C(n)TMA, n=12) were compared, with regard to surface interaction with unilamellar vesicles. Differential adiabatic scanning microcalorimetric measurements of synthetic phosphatidylcholine liposomes and calf thymus DNA and their ternary complexes with Mg(2+) and C(12)TMA, were employed for deduction of the thermodynamic model describing their structural transitions. Small monodisperce and highly stable complexes are established after precompaction of DNA with detergent, followed by addition of liposomes. In contrast, divalent metal cation-mediated aggregation of vesicles either leads to heterogeneous multilamellar DNA-lipid arrangements, or to DNA-induced bilayer destabilization and lipid fusion. Possible dependence of the cellular internalization and gene transfection efficiency on the structure and physicochemical properties of DNA-Mg(2+)-liposomes or DNA-cationic surfactant-liposome systems is emphasized by proposing the structure of their molecular self-organizations with further implications in gene transfer research.

  3. Effect of Maternal Obesity on Placental Lipid Metabolism.

    Science.gov (United States)

    Calabuig-Navarro, Virtu; Haghiac, Maricela; Minium, Judi; Glazebrook, Patricia; Ranasinghe, Geraldine Cheyana; Hoppel, Charles; Hauguel de-Mouzon, Sylvie; Catalano, Patrick; O'Tierney-Ginn, Perrie

    2017-08-01

    Obese women, on average, give birth to babies with high fat mass. Placental lipid metabolism alters fetal lipid delivery, potentially moderating neonatal adiposity, yet how it is affected by maternal obesity is poorly understood. We hypothesized that fatty acid (FA) accumulation (esterification) is higher and FA β-oxidation (FAO) is lower in placentas from obese, compared with lean women. We assessed acylcarnitine profiles (lipid oxidation intermediates) in mother-baby-placenta triads, in addition to lipid content, and messenger RNA (mRNA)/protein expression of key regulators of FA metabolism pathways in placentas of lean and obese women with normal glucose tolerance recruited at scheduled term Cesarean delivery. In isolated trophoblasts, we measured [3H]-palmitate metabolism. Placentas of obese women had 17.5% (95% confidence interval: 6.1, 28.7%) more lipid than placentas of lean women, and higher mRNA and protein expression of FA esterification regulators (e.g., peroxisome proliferator-activated receptor γ, acetyl-CoA carboxylase, steroyl-CoA desaturase 1, and diacylglycerol O-acyltransferase-1). [3H]-palmitate esterification rates were increased in trophoblasts from obese compared with lean women. Placentas of obese women had fewer mitochondria and a lower concentration of acylcarnitines, suggesting a decrease in mitochondrial FAO capacity. Conversely, peroxisomal FAO was greater in placentas of obese women. Altogether, these changes in placental lipid metabolism may serve to limit the amount of maternal lipid transferred to the fetus, restraining excess fetal adiposity in this population of glucose-tolerant women. Copyright © 2017 Endocrine Society.

  4. Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women.

    Science.gov (United States)

    Jensen, Jeffrey T; Addis, Ilana B; Hennebold, Jon D; Bogan, Randy L

    2017-09-01

    The premenopausal circulating lipid profile may be linked to the hormonal profile and ovarian lipid metabolism. Assess how estradiol, progesterone, and ovarian lipid metabolism contributes to the premenopausal lipid profile; and evaluate the acute effects of a common hormonal oral contraceptive (OC) on circulating lipids. Experimental crossover with repeated measures. Academic hospitals. Eight healthy, regularly menstruating women. Participants underwent periodic serum sampling during a normal menstrual cycle; a standard 21-day, monophasic combined hormonal OC cycle (30 µg of ethinyl estradiol and 150 µg of levonorgestrel per day); menopause simulated by leuprolide acetate (22.5-mg depot); and an artificial menstrual cycle achieved via transdermal estradiol (50 to 300 µg/d) and vaginal micronized progesterone (100 to 300 mg/d). Primary outcomes included evaluation of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, triglycerides, and the total cholesterol to HDL cholesterol ratio. To estimate the effect of estradiol, progesterone, and ovarian lipid metabolism, all specimens except those from the OC cycle were analyzed. Subgroup analysis was conducted on the follicular and luteal phases. In a separate analysis, the effect of the OC was evaluated relative to the normal menstrual cycle. Estradiol was significantly associated with increased levels of HDL cholesterol throughout the menstrual cycle and in the follicular phase. Ovarian effects were associated with reduced lipid levels, especially during the luteal phase. The OC was associated with an increased total cholesterol to HDL cholesterol ratio and triglycerides. Previously unappreciated factors including ovarian lipid metabolism may contribute to the premenopausal lipid profile.

  5. America's Assembly Line

    DEFF Research Database (Denmark)

    Nye, David Edwin

    A social history of the assembly line, invented in 1913. Both praised as a boon to consumers and as a curse for workers, it has been satirized, imitated, and celebrated for 100 years. It has inspired fiction, comedy, cafeteria layouts, and suburban housing. It transformed industrial labor...... and provoked strikes and union drives in the 1930s, but became a symbol of victory in the Second World War and Cold War. Reinvented by Japan as "lean production" and then increasingly automated after 1990, it remains a cornerstone of production but no longer employs many workers, even as it evolves toward...

  6. Effect of Amphotericin B antibiotic on the properties of model lipid membrane

    Science.gov (United States)

    Kiryakova, S.; Dencheva-Zarkova, M.; Genova, J.

    2014-12-01

    Model membranes formed from natural and synthetic lipids are an interesting object for scientific investigations due to their similarity to biological cell membrane and their simple structure with controlled composition and properties. Amphotericin B is an important polyene antifungal antibiotic, used for treatment of systemic fungal infections. It is known from the literature that the studied antibiotic has a substantial effect on the transmembrane ionic channel structures. When applied to the lipid membranes it has the tendency to create pores and in this way to affect the structure and the properties of the membrane lipid bilayer. In this work the thermally induced shape fluctuations of giant quasi-spherical liposomes have been used to study the influence of polyene antibiotic amphotericin B on the elastic properties of model lipid membranes. It have been shown experimentally that the presence of 3 mol % of AmB in the lipid membrane reduces the bending elasticity of the lipid membrane for both studied cases: pure SOPC membrane and mixed SOPC-Cholesterol membrane. Interaction of the amphotericin B with bilayer lipid membranes containing channels have been studied in this work. Model membranes were self-assembled using the patch-clamp and tip-dip patch clamp technique. We have found that amphotericin B is an ionophore and reduces the resistance of the lipid bilayer.

  7. Rapid Induction of Lipid Droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A

    Science.gov (United States)

    Ko, Donghwi; Yamaoka, Yasuyo; Otsuru, Masumi; Kawai-Yamada, Maki; Ishikawa, Toshiki; Oh, Hee-Mock; Nishida, Ikuo; Li-Beisson, Yonghua; Lee, Youngsook

    2013-01-01

    Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA), a chemical inducer of ER stress, rapidly triggers lipid droplet (LD) formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs). The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS), a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae. PMID:24349166

  8. Characteristics of fatty acid composition of lipids in higher plant vacuolar membranes.

    Science.gov (United States)

    Makarenko, S P; Konenkina, T A; Salyaev, R K

    2000-01-01

    The fatty acid composition of vacuolar membrane lipids from plant storage tissues and their genesis have been studied. A high content of unsaturated fatty acids (up to 77%) was observed in lipids of these membranes. Linoleic acid prevailed in vacuolar lipids of carrot and red beet (54.2 and 44.2%, respectively). Linolenic acid prevailed in vacuolar lipids of garden radish and turnip (39.7 and 33.9%, respectively). Regarding saturated fatty acids, vacuolar lipids of garden radish, carrot, and red beet contained predominantly palmitic acid (up to 20-24%). Unsaturated fatty acids, petroselinic (C18: 1omega12), cis-vaccenic (C18: 1omega7), hexatrien-7,-10,-13-oic (C16:3omega3) and others, were observed in vacuolar lipids of roots. These acids are usually synthesized in chloroplasts, and their presence in vacuolar lipids can be associated either with the transport of metabolites to the vacuole, or with endocytosis during vacuolar formation in the plant cell. The specific features of fatty acid composition of tonoplast lipids apparently are closely related to the tonoplast unique fluidity and mobility required for running osmotic processes in the cell and for forming transport protein assemblies.

  9. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A.

    Directory of Open Access Journals (Sweden)

    Sangwoo Kim

    Full Text Available Algal lipids are the focus of intensive research because they are potential sources of biodiesel. However, most algae produce neutral lipids only under stress conditions. Here, we report that treatment with Brefeldin A (BFA, a chemical inducer of ER stress, rapidly triggers lipid droplet (LD formation in two different microalgal species, Chlamydomonas reinhardtii and Chlorella vulgaris. LD staining using Nile red revealed that BFA-treated algal cells exhibited many more fluorescent bodies than control cells. Lipid analyses based on thin layer chromatography and gas chromatography revealed that the additional lipids formed upon BFA treatment were mainly triacylglycerols (TAGs. The increase in TAG accumulation was accompanied by a decrease in the betaine lipid diacylglyceryl N,N,N-trimethylhomoserine (DGTS, a major component of the extraplastidic membrane lipids in Chlamydomonas, suggesting that at least some of the TAGs were assembled from the degradation products of membrane lipids. Interestingly, BFA induced TAG accumulation in the Chlamydomonas cells regardless of the presence or absence of an acetate or nitrogen source in the medium. This effect of BFA in Chlamydomonas cells seems to be due to BFA-induced ER stress, as supported by the induction of three homologs of ER stress marker genes by the drug. Together, these results suggest that ER stress rapidly triggers TAG accumulation in two green microalgae, C. reinhardtii and C. vulgaris. A further investigation of the link between ER stress and TAG synthesis may yield an efficient means of producing biofuel from algae.

  10. Lyotropic liquid crystal engineering-ordered nanostructured small molecule amphiphile self-assembly materials by design.

    Science.gov (United States)

    Fong, Celesta; Le, Tu; Drummond, Calum J

    2012-02-07

    Future nanoscale soft matter design will be guided to a large extent by the teachings of amphiphile (lipid or surfactant) self-assembly. Ordered nanostructured lyotropic liquid crystalline mesophases may form in select mixtures of amphiphile and solvent. To reproducibly engineer the low energy amphiphile self-assembly of materials for the future, we must first learn the design principles. In this critical review we discuss the evolution of these design rules and in particular discuss recent key findings regarding (i) what drives amphiphile self-assembly, (ii) what governs the self-assembly structures that are formed, and (iii) how can amphiphile self-assembly materials be used to enhance product formulations, including drug delivery vehicles, medical imaging contrast agents, and integral membrane protein crystallisation media. We focus upon the generation of 'dilutable' lyotropic liquid crystal phases with two- and three-dimensional geometries from amphiphilic small molecules (225 references). This journal is © The Royal Society of Chemistry 2012

  11. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  13. Spatially confined assembly of nanoparticles.

    Science.gov (United States)

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  14. Association of lipid metabolism with ovarian cancer

    OpenAIRE

    Tania, M.; Khan, M A; Y. Song

    2010-01-01

    Defects in lipid metabolism have been found to be linked to several diseases, among which atherosclerosis, hypertension, obesity, and diabetes are the most important. Although cancer is chiefly a genetic disease, dietary lipid intake and metabolism are related to some cancer risks, including the risk for ovarian cancer. Higher intake of dietary lipids, systemic lipid metabolism malfunction, and abnormal serum lipid levels are somehow related to ovarian cancer. Overexpression of some lipid met...

  15. Variabilidade da frequência cardíaca, lípides e capacidade física de crianças obesas e não-obesas Variabilidad de la frecuencia cardiaca, lípidos y capacidad física de niños obesos y no obesos Heart rate variability, blood lipids and physical capacity of obese and non-obese children

    Directory of Open Access Journals (Sweden)

    Mário Augusto Paschoal

    2009-09-01

    Full Text Available FUNDAMENTO: A obesidade pode afetar a modulação autonômica cardíaca, os lípides do sangue e a capacidade física. OBJETIVO: Estudar a interferência da obesidade sobre a variabilidade da frequência cardíaca (VFC, os lípides do sangue e a capacidade física de crianças obesas. MÉTODOS: Foram estudadas 30 crianças com idades entre 9 a 11 anos, divididas em dois grupos: a 15 crianças obesas (O com 10,2 ± 0,7 anos de idade e índice de massa corporal (IMC no percentil entre 95 e 97; b 15 crianças não-obesas (NO com 9,8 ± 0,7 anos de idade e IMC no percentil entre 5 e 85. Todas foram submetidas a avaliação antropométrica e clínica, análise da VFC ao repouso e a um protocolo de esforço (PE. Utilizaram-se testes não-paramétricos para comparar as variáveis entre os grupos, e o nível de significância aplicado foi de p FUNDAMENTO: La obesidad puede afectar la modulación autonómica cardiaca, los lípidos de la sangre y la capacidad física. OBJETIVO: Estudiar la interferencia de la obesidad sobre la variabilidad de la frecuencia cardiaca (VFC, los lípidos de la sangre y la capacidad física de niños obesos. MÉTODOS: Se estudiaron a 30 niños con edades entre 9 y 11 años, divididos en dos grupos: a 15 niños obesos (O con 10,2 ± 0,7 años de edad e índice de masa corporal (IMC en el percentil entre 95 y 97; b 15 niños no obesos (NO con 9,8 ± 0,7 años de edad e IMC en el percentil entre 5 y 85. Todos se sometieron a evaluación antropométrica y clínica, análisis de la VFC al reposo y a un protocolo de esfuerzo (PE. Se utilizaron pruebas no paramétricas para comparar las variables entre los grupos, y el nivel de significancia aplicado fue de p BACKGROUND: Obesity can affect the cardiac autonomic modulation, blood lipid levels and the physical capacity. OBJECTIVE: To study the effect of obesity on the heart rate variability (HRV, blood lipid levels and physical capacity of obese children. METHODS: Thirty children aged

  16. On Constraints in Assembly Planning

    Energy Technology Data Exchange (ETDEWEB)

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  17. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high...... amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine...... in ether lipid metabolism and intracellular ether lipid trafficking....

  18. Progress of EMBarrel assembly

    CERN Multimedia

    Chalifour, M

    2002-01-01

    The assembly of the sixteen "M" modules into a vertical axis cylinder has been achieved last Friday, completing the first wheel of the Electromagnetic Barrel Calorimeter (see picture). With this, an important milestone in the construction of the ATLAS detector has been reached. Future steps are the rotation of the cylinder axis into horizontal position, in order to integrate the presamplers and heat exchangers by the end of October. The transportation of the wheel and its insertion into the cryostat is the next major milestone, and is planned for the beginning of 2003. The construction of the modules (the so-called "P" modules) of the second wheel is ongoing at Saclay, Annecy and CERN, and will be completed in the coming months. The assembly of the second wheel should start at CERN in February, and its insertion in the cryostat is scheduled for June 2003. This achievement is the result of a successful collaboration of all institutes involved in the construction of the EM Barrel, namely Annecy, Saclay and CE...

  19. ANNUAL GENERAL ASSEMBLY

    CERN Multimedia

    2001-01-01

    All members and beneficiaries of the Pension Fund are invited to attend the Annual General Asssembly to be held in the CERN Auditorium on Wednesday 3 October 2001 at 14.30 hrs The Agenda comprises:   Opening Remarks (P. Levaux) Some aspects of risk in a pension fund (C. Cuénoud) Annual Report 2000: Presentation and results (C. Cuénoud) Copies of the Report are available from divisional secretariats. Results of the actuarial reviews (G. Maurin) Questions from members and beneficiaries Persons wishing to ask questions are encouraged to submit them, where possible, in writing in advance, addressed to Mr C. Cuénoud, Administrator of the Fund. Conclusions (P. Levaux) As usual, participants are invited to drinks after the assembly. NB The minutes of the 2000 General Assembly are available from the Administration of the Fund (tel. + 41 22 767 91 94; e-mail Graziella.Praire@cern.ch) The English version will be published next week.

  20. Microchannel heat sink assembly

    Science.gov (United States)

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  1. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  2. Deficiency of employability capacity

    Directory of Open Access Journals (Sweden)

    Pelse I.

    2012-10-01

    Full Text Available Young unemployed people have comprised one of the significantly largest groups of the unemployed people in Latvia in recent years. One of the reasons why young people have difficulty integrating into the labour market is the “expectation gap” that exists in the relations between employers and the new generation of workers. Employers focus on capacity-building for employability such individual factors as strength, patience, self-discipline, self-reliance, self-motivation, etc., which having a nature of habit and are developed in a long-term work socialization process, which begins even before the formal education and will continue throughout the life cycle. However, when the socialization is lost, these habits are depreciated faster than they can be restored. Currently a new generation is entering the labour market, which is missing the succession of work socialization. Factors, such as rising unemployment and poverty in the background over the past twenty years in Latvia have created a very unfavourable employability background of “personal circumstances” and “external factors”, which seriously have impaired formation of the skills and attitudes in a real work environment. The study reveals another paradox – the paradox of poverty. Common sense would want to argue that poverty can be overcome by the job. However, the real state of affairs shows that unfavourable coincidence of the individual, personal circumstances and external factors leads to deficit of employability capacity and possibility of marked social and employment deprivation.

  3. Early hominin auditory capacities.

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G; Thackeray, J Francis; Arsuaga, Juan Luis

    2015-09-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats.

  4. Early hominin auditory capacities

    Science.gov (United States)

    Quam, Rolf; Martínez, Ignacio; Rosa, Manuel; Bonmatí, Alejandro; Lorenzo, Carlos; de Ruiter, Darryl J.; Moggi-Cecchi, Jacopo; Conde Valverde, Mercedes; Jarabo, Pilar; Menter, Colin G.; Thackeray, J. Francis; Arsuaga, Juan Luis

    2015-01-01

    Studies of sensory capacities in past life forms have offered new insights into their adaptations and lifeways. Audition is particularly amenable to study in fossils because it is strongly related to physical properties that can be approached through their skeletal structures. We have studied the anatomy of the outer and middle ear in the early hominin taxa Australopithecus africanus and Paranthropus robustus and estimated their auditory capacities. Compared with chimpanzees, the early hominin taxa are derived toward modern humans in their slightly shorter and wider external auditory canal, smaller tympanic membrane, and lower malleus/incus lever ratio, but they remain primitive in the small size of their stapes footplate. Compared with chimpanzees, both early hominin taxa show a heightened sensitivity to frequencies between 1.5 and 3.5 kHz and an occupied band of maximum sensitivity that is shifted toward slightly higher frequencies. The results have implications for sensory ecology and communication, and suggest that the early hominin auditory pattern may have facilitated an increased emphasis on short-range vocal communication in open habitats. PMID:26601261

  5. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition.

    Science.gov (United States)

    Hussain, Sunyia; Bernstein, Harris D

    2018-01-08

    Most proteins that reside in the bacterial outer membrane (OM) have a distinctive "β-barrel" architecture, but the assembly of these proteins is poorly understood. The spontaneous assembly of OM proteins (OMPs) into pure lipid vesicles has been studied extensively, but often requires non-physiological conditions and time scales and is strongly influenced by properties of the lipid bilayer including surface charge, thickness, and fluidity. Furthermore, the membrane insertion of OMPs in vivo is catalyzed by a heterooligomer called the β-barrel assembly machinery (Bam) complex. To determine the role of lipids in the assembly of OMPs under more physiological conditions, we exploited an assay in which the Bam complex mediates their insertion into membrane vesicles. After reconstituting the Bam complex into vesicles that contain a variety of different synthetic lipids, we found that two model OMPs, EspP and OmpA, folded efficiently regardless of the lipid composition. Most notably, both proteins folded into membranes composed of a gel phase lipid that mimics the rigid bacterial OM. Interestingly, we found that EspP, OmpA and another model protein (OmpG) folded at significantly different rates and that an α-helix embedded inside the EspP β-barrel accelerates folding. Our results show that the Bam complex largely overcomes effects that lipids exert on OMP assembly and suggest that specific interactions between the Bam complex and an OMP influence its rate of folding. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Chemical and physical requirements for lipid extraction by bovine binder of sperm BSP1.

    Science.gov (United States)

    Therrien, Alexandre; Manjunath, Puttaswamy; Lafleur, Michel

    2013-02-01

    The bovine seminal plasma contains phosphocholine-binding proteins, which associate to sperm membranes upon ejaculation. These binder-of-sperm (BSP) proteins then induce a phospholipid and cholesterol efflux from these membranes. In this work, we determined physical and chemical parameters controlling this efflux by characterizing the lipid extraction induced by BSP1, the most abundant of BSP protein in bull seminal plasma, from model membranes with different composition. The model membranes were formed from binary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso-PC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) or cholesterol. The modulation of BSP1-induced lipid extraction from membranes by their chemical composition and their physical properties brings us to propose a 3-step extraction mechanism. First, the protein associates with membranes via specific binding to phosphocholine groups. Second, BSP1 penetrates in the membrane, essentially in the external lipid leaflet. Third, BSP1 molecules solubilize a lipid patch coming essentially from the outer lipid leaflet, without any lipid specificity, to ultimately form small lipid/protein auto-assemblies. The stoichiometry of these complexes corresponds to 10-15 lipids per protein. It is also shown that fluid-phase membranes are more prone to BSP1-induced lipid extraction than gel-phase ones. The inhibition of the lipid extraction in this case appears to be related to the inhibition of the protein penetration in the membrane (step 2) and not to the protein association with PC head groups (step 1). These findings contribute to our understanding of the mechanism by which BSP1 modify the lipid composition of sperm membranes, a key event in sperm capacitation. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Synthetic lipid membrane channels formed by designed DNA nanostructures.

    Science.gov (United States)

    Langecker, Martin; Arnaut, Vera; Martin, Thomas G; List, Jonathan; Renner, Stephan; Mayer, Michael; Dietz, Hendrik; Simmel, Friedrich C

    2012-11-16

    We created nanometer-scale transmembrane channels in lipid bilayers by means of self-assembled DNA-based nanostructures. Scaffolded DNA origami was used to create a stem that penetrated and spanned a lipid membrane, as well as a barrel-shaped cap that adhered to the membrane, in part via 26 cholesterol moieties. In single-channel electrophysiological measurements, we found similarities to the response of natural ion channels, such as conductances on the order of 1 nanosiemens and channel gating. More pronounced gating was seen for mutations in which a single DNA strand of the stem protruded into the channel. Single-molecule translocation experiments show that the synthetic channels can be used to discriminate single DNA molecules.

  8. Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-09-27

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  9. Workshop on moisture buffer capacity

    DEFF Research Database (Denmark)

    2003-01-01

    Summary report of a Nordtest workshop on moisture buffer capacity held at Copenhagen August 21-22 2003......Summary report of a Nordtest workshop on moisture buffer capacity held at Copenhagen August 21-22 2003...

  10. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.).

    Science.gov (United States)

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Panico, Anna Maria; Cardile, Venera; Crascì, Lucia; Carducci, Federica; Graziano, Adriana Carol Eleonora; Cortesi, Rita; Puglia, Carmelo

    2017-02-01

    Crocin, a potent antioxidant obtained from saffron, shows anticancer activity in in vivo models. Unfortunately unfavorable physicochemical features compromise its use in topical therapy. The present study describes the preparation and characterization of nanostructured lipid dispersions as drug delivery systems for topical administration of crocin and the evaluation of antioxidant and antiproliferative effects of crocin once encapsulated into nanostructured lipid dispersions. Nanostructured lipid dispersions based on monoolein in mixture with sodium cholate and sodium caseinate have been characterized by cryo-TEM and PCS. Crocin permeation was evaluated in vitro by Franz cells, while the oxygen radical absorbance capacity assay was used to evaluate the antioxidant activity. Furthermore, the antiproliferative activity was tested in vitro by the MTT test using a human melanoma cell line. The emulsification of monoolein with sodium cholate and sodium caseinate led to dispersions of cubosomes, hexasomes, sponge systems and vesicles, depending on the employed emulsifiers. Permeation and shelf life studies demonstrated that nanostructured lipid dispersions enabled to control both rate of crocin diffusion through the skin and crocin degradation. The oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of crocin while the MTT test showed an increase of crocin cytotoxic effect after incorporation in nanostructured lipid dispersions. This work has highlighted that nanostructured lipid dispersions can protect the labile molecule crocin from degradation, control its skin diffusion and prolong antioxidant activity, therefore suggesting the suitability of nanostructured lipid dispersions for crocin topical administration. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Lipid effects of endocrine medications.

    Science.gov (United States)

    Mihailescu, Dan V; Vora, Avni; Mazzone, Theodore

    2011-02-01

    Various alterations of lipid homeostasis have a significant role in the pathophysiology of the artherosclerotic process. The effects of usual lipid-lowering agents such as statins, fibrates, or niacin are well known, but other endocrine therapeutic agents could also affect the blood levels of various lipoproteins and, in turn, influence atheroma formation. In this review, we attempt to summarize the effect of several hormonal and non-hormonal endocrine agents on lipid metabolism, including insulin, thyroid hormone, sex hormones, glucocorticoids, growth hormone, and several anti-diabetic agents.

  12. Assembly of Fibronectin Extracellular Matrix

    Science.gov (United States)

    Singh, Purva; Carraher, Cara; Schwarzbauer, Jean E.

    2013-01-01

    In the process of matrix assembly, multivalent extracellular matrix (ECM) proteins are induced to self-associate and to interact with other ECM proteins to form fibrillar networks. Matrix assembly is usually initiated by ECM glycoproteins binding to cell surface receptors, such as fibronectin (FN) dimers binding to α5β1 integrin. Receptor binding stimulates FN self-association mediated by the N-terminal assembly domain and organizes the actin cytoskeleton to promote cell contractility. FN conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. Once assembled, the FN matrix impacts tissue organization by contributing to the assembly of other ECM proteins. Here, we describe the major steps, molecular interactions, and cellular mechanisms involved in assembling FN dimers into fibrillar matrix while highlighting important issues and major questions that require further investigation. PMID:20690820

  13. Ribosome Assembly as Antimicrobial Target

    Directory of Open Access Journals (Sweden)

    Rainer Nikolay

    2016-05-01

    Full Text Available Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.

  14. Gas separation membrane module assembly

    Science.gov (United States)

    Wynn, Nicholas P [Palo Alto, CA; Fulton, Donald A [Fairfield, CA

    2009-03-31

    A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membranes, arranged within a housing. The housing contains a tube sheet that divides the space within the housing into two gas-tight spaces. A permeate collection system within the housing gathers permeate gas from the tubes for discharge from the housing.

  15. y Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts

    Directory of Open Access Journals (Sweden)

    Yamanishi Koichi

    2009-08-01

    Full Text Available Abstract In general, enveloped viruses are highly dependent on their lipid envelope for entry into host cells. Here, we demonstrated that during the course of virus maturation, a significant proportion of human herpesvirus 6 (HHV-6 envelope proteins were selectively concentrated in the detergent-resistant glycosphingolipid- and cholesterol-rich membranes (rafts in HHV-6-infected cells. In addition, the ganglioside GM1, which is known to partition preferentially into lipid rafts, was detected in purified virions, along with viral envelope glycoproteins, gH, gL, gB, gQ1, gQ2 and gO indicating that at least one raft component was included in the viral particle during the assembly process.

  16. Landfill Construction and Capacity Expansion

    NARCIS (Netherlands)

    Andre, F.J.; Cerda, E.

    2003-01-01

    We study the optimal capacity and lifetime of landfills taking into account their sequential nature.Such an optimal capacity is characterized by the so-called Optimal Capacity Condition.Particular versions of this condition are obtained for two alternative settings: first, if all the landfills are

  17. Research projects and capacity building

    African Journals Online (AJOL)

    driniev

    2004-10-04

    Oct 4, 2004 ... and capacity to adapt to change (Senge, 1990; Barth and Bartenstein,. 1998; Davenport et al., 1998; Senge et al., ... ing catchment management through enhanced stakeholder participa- tion. The special emphasis on capacity .... Change and resistance to change. Building capacity involves change and ...

  18. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  19. Airfoil nozzle and shroud assembly

    Science.gov (United States)

    Shaffer, James E.; Norton, Paul F.

    1997-01-01

    An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

  20. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  1. Seismic behaviour of fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heuy Gap; Jhung, Myung Jo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab.

  2. Geometric reasoning about assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  3. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  4. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis.

    Science.gov (United States)

    Bates, Philip D

    2016-09-01

    Plant oil biosynthesis involves a complex metabolic network with multiple subcellular compartments, parallel pathways, cycles, and pathways that have a dual function to produce essential membrane lipids and triacylglycerol. Modern molecular biology techniques provide tools to alter plant oil compositions through bioengineering, however with few exceptions the final composition of triacylglycerol cannot be predicted. One reason for limited success in oilseed bioengineering is the inadequate understanding of how to control the flux of fatty acids through various fatty acid modification, and triacylglycerol assembly pathways of the lipid metabolic network. This review focuses on the mechanisms of acyl flux through the lipid metabolic network, and highlights where uncertainty resides in our understanding of seed oil biosynthesis. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reconfigurable assembly work station

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yhu-Tin; Abell, Jeffrey A.; Spicer, John Patrick

    2017-11-14

    A reconfigurable autonomous workstation includes a multi-faced superstructure including a horizontally-arranged frame section supported on a plurality of posts. The posts form a plurality of vertical faces arranged between adjacent pairs of the posts, the faces including first and second faces and a power distribution and position reference face. A controllable robotic arm suspends from the rectangular frame section, and a work table fixedly couples to the power distribution and position reference face. A plurality of conveyor tables are fixedly coupled to the work table including a first conveyor table through the first face and a second conveyor table through the second face. A vision system monitors the work table and each of the conveyor tables. A programmable controller monitors signal inputs from the vision system to identify and determine orientation of the component on the first conveyor table and control the robotic arm to execute an assembly task.

  6. Optimising Magnetostatic Assemblies

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Smith, Anders

    theorem. This theorem formulates an energy equivalence principle with several implications concerning the optimisation of objective functionals that are linear with respect to the magnetic field. Linear functionals represent different optimisation goals, e.g. maximising a certain component of the field...... magnetic material can be optimised within this framework. Since in the practice most structures are realized by assembling uniformly magnetized pieces of permanent magnet, it is relevant to address the question of how a given region of space is best subdivided. This problem is investigated here within...... investigates some of the effects on the performance of magnetic systems, due to non-linear magnetic phenomena. In particular, the non-linear demagnetization effects caused by the finite coercivity of the permanent magnet material will be examined. All the optmisation techniques will be illustrated with example...

  7. Interaction patterns and diversity in assembled ecological communities

    CERN Document Server

    Bunin, Guy

    2016-01-01

    The assembly of ecological communities from a pool of species is central to ecology, but the effect of this process on properties of community interaction networks is still largely unknown. Here, we use a systematic analytical framework to describe how assembly from a species pool gives rise to community network properties that differ from those of the pool: Compared to the pool, the community shows a bias towards higher carrying capacities, weaker competitive interactions and stronger beneficial interactions. Moreover, even if interactions between all pool species are completely random, community networks are more structured, with correlations between interspecies interactions, and between interactions and carrying capacities. Nonetheless, we show that these properties are not sufficient to explain the coexistence of all community species, and that it is a simple relation between interactions and species abundances that is responsible for the diversity within a community.

  8. Membrane lipid segregation in endocytosis

    Science.gov (United States)

    Nowak, Sarah A.; Chou, Tom

    2008-08-01

    We explore the equilibrium mechanics of a binary lipid membrane that wraps around a spherical or cylindrical particle. One of the lipid membrane components induces a positive spontaneous curvature, while the other induces a negative local curvature. Using a Hamiltonian approach, we derive the equations governing the membrane shape and lipid concentrations near the wrapped object. Asymptotic expressions and numerical solutions for membrane shapes are presented. We determine the regimes of bending rigidity, surface tension, intrinsic lipid curvature, and effective receptor binding energies that lead to efficient wrapping and endocytosis. Our model is directly applicable to the study of invagination of clathrin-coated pits and receptor-induced wrapping of colloids such as spherical virus particles.

  9. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    which correlates with the phase state of the membrane. This is quantified by the generalized polarization (GP) function, and we demonstrate that a GP analysis can be performed on supported membranes. The results show that although the gel domains have heterogeneous texture, the membrane phase state does......We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...

  10. The lipids of Agaricus bisporus.

    Science.gov (United States)

    Byrne, P F; Brennan, P J

    1975-08-01

    A comparison of the lipid composition of the vegetative and reproductive stages of Agaricus bisporus revealed no major qualitative differences, although quantitative divergence exist. The glycolipids consisted of acylglucoses, acylmannitol, acyltrehalose and a glucosyloxyfatty acid. Two of the acylglucoses corresponded to a tetra-acylglucose and to either a di- or a triacylglucose. The phospholipids were distinctive in that phosphatidylcholine could not be detected. Phosphatidylethanolamine and phosphatidylserine were the major phosphoglycerides. Examination of the neutral lipids revealed the expected array of acylglycerols, free and esterified sterols, and free fatty acids. A substantial amount (26 to 33%) of the fatty acids of the neutral lipids from both sporophore and mycelium were apparently of chain length greater than C18. Linoleic acid was a minor component of the total neutral-lipid fatty acids but comprised about one-half of the total free fatty acids.

  11. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  12. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Directory of Open Access Journals (Sweden)

    Øystein Stakkestad

    2017-07-01

    Full Text Available Ameloblastin (AMBN, an important component of the self-assembled enamel extra cellular matrix, contains several in silico predicted phosphorylation sites. However, to what extent these sites actually are phosphorylated and the possible effects of such post-translational modifications are still largely unknown. Here we report on in vitro experiments aimed at investigating what sites in AMBN are phosphorylated by casein kinase 2 (CK2 and protein kinase A (PKA and the impact such phosphorylation has on self-assembly and calcium binding. All predicted sites in AMBN can be phosphorylated by CK2 and/or PKA. The experiments show that phosphorylation, especially in the exon 5 derived part of the molecule, is inversely correlated with AMBN self-assembly. These results support earlier findings suggesting that AMBN self-assembly is mostly dependent on the exon 5 encoded region of the AMBN gene. Phosphorylation was significantly more efficient when the AMBN molecules were in solution and not present as supramolecular assemblies, suggesting that post-translational modification of AMBN must take place before the enamel matrix molecules self-assemble inside the ameloblast cell. Moreover, phosphorylation of exon 5, and the consequent reduction in self-assembly, seem to reduce the calcium binding capacity of AMBN suggesting that post-translational modification of AMBN also can be involved in control of free Ca2+ during enamel extra cellular matrix biomineralization. Finally, it is speculated that phosphorylation can provide a functional crossroad for AMBN either to be phosphorylated and act as monomeric signal molecule during early odontogenesis and bone formation, or escape phosphorylation to be subsequently secreted as supramolecular assemblies that partake in enamel matrix structure and mineralization.

  13. Gene therapy for lipid disorders

    OpenAIRE

    Rader Daniel J; Kawashiri Masa-aki

    2000-01-01

    Abstract Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysi...

  14. Serum lipids and diabetic retinopathy

    OpenAIRE

    Shoja; Mahdavi M; Manaviat MR

    2007-01-01

    Background: Diabetes Mellitus is the most common endocrinologic disease in human and retinopathy is one of the most common complications. Etiology of this complication is yet unknown but one of the factors that can be effective on its production or progression is serum lipid. We aim to study the relationship between different degrees of diabetic retinopathy and serum lipids levels. Methods: An observational cross-sectional study designed to study over 37 patients with diabetes mellitus type o...

  15. Lipids and Membrane Lateral Organization

    OpenAIRE

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid...

  16. Endurance neuromuscular electrical stimulation training improves skeletal muscle oxidative capacity in individuals with motor-complete spinal cord injury.

    Science.gov (United States)

    Erickson, Melissa L; Ryan, Terence E; Backus, Deborah; McCully, Kevin K

    2017-05-01

    Spinal cord injury (SCI) results in skeletal muscle atrophy, increases in intramuscular fat, and reductions in skeletal muscle oxidative capacity. Endurance training elicited with neuromuscular electrical stimulation (NMES) may reverse these changes and lead to improvement in muscle metabolic health. Fourteen participants with complete SCI performed 16 weeks of home-based endurance NMES training of knee extensor muscles. Skeletal muscle oxidative capacity, muscle composition, and blood metabolic and lipid profiles were assessed pre- and post-training. There was an increase in number of contractions performed throughout the duration of training. The average improvement in skeletal muscle oxidative capacity was 119%, ranging from -14% to 387% (P = 0.019). There were no changes in muscle composition or blood metabolic and lipid profiles. Endurance training improved skeletal muscle oxidative capacity, but endurance NMES of knee extensor muscles did not change blood metabolic and lipid profiles. Muscle Nerve 55: 669-675, 2017. © 2016 Wiley Periodicals, Inc.

  17. Directing the assembly of nanostructured films with living cells

    Science.gov (United States)

    Brinker, C. Jeffrey

    2007-03-01

    This talk describes our recent discovery of the ability of living cells to organize extended nanostructures and nano-objects in a manner that creates a unique, highly biocompatible nano//bio interface (Science 313, 337-340, 2006). We find that, using short chain phospholipids to direct the formation of thin film silica mesophases during evaporation-induced self-assembly, the introduction of cells (so far yeast and bacteria) alters profoundly the inorganic self-assembly pathway. Cells actively organize around themselves an ordered, multilayered lipid-membrane that interfaces coherently with a lipid-templated silica mesophase. This bio/nano interface is unique in that it withstands drying (even evacuation) without cracking or the development of tensile stresses -- yet it maintains accessibility to molecules, proteins/antibodies, plasmids, etc - introduced into the 3D silica host. Additionally cell viability is preserved for weeks to months in the absence of buffer, making these constructs useful as standalone cell-based sensors. The bio/nano interfaces we describe do not form `passively' -- rather they are a consequence of the cell's ability to sense and actively respond to external stimuli. During EISA, solvent evaporation concentrates the extracellular environment in osmolytes. In response to this hyperosmotic stress, the cells release water, creating a gradient in pH, which is maintained within the adjoining nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and a variety of other components at the cellular surface. This active organization of the bio/nano interface can be accomplished during ink-jet printing or selective wetting -- processes allowing patterning of cellular arrays - and even spatially-defined genetic modification.

  18. Self-assembly of free-standing RNA membranes

    Science.gov (United States)

    Han, Daehoon; Park, Yongkuk; Kim, Hyejin; Lee, Jong Bum

    2014-07-01

    RNA has emerged as a promising material for nanostructure and microstructure engineering. Although rare, some macroscopic RNA structures have also been constructed using lipid or polymer materials. Here, we report the first example of an enzymatically generated RNA membrane. This robust and free-standing RNA membrane has a macroscopic structure and is generated without any polymer support or complexation. Our RNA membrane is fabricated following two sequential processes, complementary rolling circle transcription and evaporation-induced self-assembly, and its structural and functional properties are rationally controlled by adjusting RNA base pairing. In this study, three types of RNA membranes are fabricated and are used to demonstrate potential applications.

  19. Capacity building for HIA

    Directory of Open Access Journals (Sweden)

    Gabriel Gulis PhD

    2007-09-01

    Full Text Available

    Background: To integrate health impact assessment (HIA into existing decision-making processes requires not only methods and procedures but also well-trained experts, aware policy makers and appropriate institutions. Capacity building is the assistance which is provided to entities, which have a need to develop a certain skill or competence, or for general upgrading of performance ability. If a new technique is planned to be introduced there is a need for capacity building with no respect to levels (local, regional, national, international or sectors (health, environment, finance, social care, education, etc.. As such, HIA is a new technique for most of the new Member States and accession countries of the European Union.

    Methods: To equip individuals with the understanding and skills needed to launch a HIA or be aware of the availability of this methodology and to access information, knowledge and training, we focused on the organization of workshops in participating countries. The workshops served also as pilot events to test a “curriculum” for HIA; a set of basic topics and presentations had been developed to be tested during workshops. In spite of classical in-class workshops we aimed to organize e-learning events as a way to over come the “busyness” problem of decision makers.

    Results: Throughout March – October 2006 we organized and ran 7 workshops in Denmark, Turkey, Lithuania, Poland, Bulgaria, Slovak Republic and Hungary. Participants came from the public health sector (141, non-public health decision makers (113 and public health students (100. A concise curriculum was developed and tested during these workshops. Participants developed a basic understanding of HIA, skills to develop and use their own screening tools as well as scoping.Within the workshop in Denmark we tested an online, real-time Internet based training method; participants highly welcomed this

  20. Assembly sequencing with toleranced parts

    Energy Technology Data Exchange (ETDEWEB)

    Latombe, J.C. [Stanford Univ., CA (United States). Robotics Lab.; Wilson, R.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1995-02-21

    The goal of assembly sequencing is to plan a feasible series of operations to construct a product from its individual parts. Previous research has thoroughly investigated assembly sequencing under the assumption that parts have nominal geometry. This paper considers the case where parts have toleranced geometry. Its main contribution is an efficient procedure that decides if a product admits an assembly sequence with infinite translations that is feasible for all possible instances of the components within the specified tolerances. If the product admits one such sequence, the procedure can also generate it. For the cases where there exists no such assembly sequence, another procedure is proposed which generates assembly sequences that are feasible only for some values of the toleranced dimensions. If this procedure produces no such sequence, then no instance of the product is assemblable. Finally, this paper analyzes the relation between assembly and disassembly sequences in the presence of toleranced parts. This work assumes a simple, but non-trivial tolerance language that falls short of capturing all imperfections of a manufacturing process. Hence, it is only one step toward assembly sequencing with toleranced parts.

  1. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  2. Chaperoning 5S RNA assembly

    National Research Council Canada - National Science Library

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-01-01

    ...—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP...

  3. The Bicycle Assembly Line Game

    Science.gov (United States)

    Klotz, Dorothy

    2011-01-01

    "The Bicycle Assembly Line Game" is a team-based, in-class activity that helps students develop a basic understanding of continuously operating processes. Each team of 7-10 students selects one of seven prefigured bicycle assembly lines to operate. The lines are run in real-time, and the team that operates the line that yields the…

  4. What was the Assembly Line?

    DEFF Research Database (Denmark)

    Nye, David

    2010-01-01

    The assembly line is still evolving a century after its invention, and it was not a distinct historical stage, nor was it part of an inevitable sequence that followed "Taylorism."......The assembly line is still evolving a century after its invention, and it was not a distinct historical stage, nor was it part of an inevitable sequence that followed "Taylorism."...

  5. Newnes electronics assembly pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Produced in association with the Engineering Training Authority with contributions from dozens of people in the electronics industry. The material covers common skills in electrical and electronic engineering and concentrates mainly on wiring and assembly. 'Newnes Electronics Assembly Pocket Book' is for electronics technicians, students and apprentices.

  6. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply

    Science.gov (United States)

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L−1 d−1 urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L−1 d−1 urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  7. Life as a matter of fat : lipids in a membrane biophysics perspective

    CERN Document Server

    Mouritsen, Ole G

    2016-01-01

    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being...

  8. Development of self-assembling nanowires containing electronically active oligothiophenes

    Science.gov (United States)

    Tsai, Wei-Wen

    modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without

  9. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations

    Science.gov (United States)

    La Rosa, Carmelo; Scalisi, Silvia; Lolicato, Fabio; Pannuzzo, Martina; Raudino, Antonio

    2016-05-01

    The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.

  10. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  11. Effects of anionic surfactants on the water permeability of a model stratum corneum lipid membrane.

    Science.gov (United States)

    Lee, Sang-Wook; Tettey, Kwadwo E; Yarovoy, Yury; Lee, Daeyeon

    2014-01-14

    The stratum corneum (SC) is the ourtermost layer of the epidermis and has a brick-and-mortar-like structure, in which multilamellar lipid bilayers surround flattened dead cells known as corneocytes. The SC lipid membranes provide the main pathway for the transport of water and other substances through the SC. While the physicochemical properties of the SC can be affected by exogenous materials such as surfactants, little is known about how the water barrier function of the SC lipid membranes is compromised by common surfactants. Here, we study the effect of common anionic surfactants on the water permeability of a model SC lipid membrane using a quartz crystal microbalance with dissipation monitoring (QCM-D). Particularly, the effect of sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) is compared. These two surfactants share commonality in their molecular structure: sulfate in the polar headgroup and the same apolar tail. The mass of the lipid membranes increases after the surfactant treatment at or above the critical micelle concentration (CMC) of the surfactants due to their absorption into the membranes. The incorporation of the surfactants into the lipid membranes is also accompanied by partial dissolution of the lipids from the model SC lipid membranes as confirmed by Fourier-transform infrared (FT-IR) spectroscopy. Although the water sorption of pure SDS is much lower than that of pure SLES, the water sorption of SDS-treated membranes increases significantly similar to that of SLES-treated membranes. By combining QCM-D and FT-IR spectroscopy, we find that the chain conformational order and stiffness of the lipid membranes decrease after SDS treatment, resulting in the increased water sorption and diffusivity. In contrast, the conformational order and stiffness of the SLES-treated lipid membranes increase, suggesting that the increased water sorption capacity of SLES-treated lipid membranes is due to the hygroscopic nature of SLES.

  12. Differential effects of Mycobacterium bovis - derived polar and apolar lipid fractions on bovine innate immune cells

    Directory of Open Access Journals (Sweden)

    Pirson Chris

    2012-06-01

    Full Text Available Abstract Mycobacterial lipids have long been known to modulate the function of a variety of cells of the innate immune system. Here, we report the extraction and characterisation of polar and apolar free lipids from Mycobacterium bovis AF 2122/97 and identify the major lipids present in these fractions. Lipids found included trehalose dimycolate (TDM and trehalose monomycolate (TMM, the apolar phthiocerol dimycocersates (PDIMs, triacyl glycerol (TAG, pentacyl trehalose (PAT, phenolic glycolipid (PGL, and mono-mycolyl glycerol (MMG. Polar lipids identified included glucose monomycolate (GMM, diphosphatidyl glycerol (DPG, phenylethanolamine (PE and a range of mono- and di-acylated phosphatidyl inositol mannosides (PIMs. These lipid fractions are capable of altering the cytokine profile produced by fresh and cultured bovine monocytes as well as monocyte derived dendritic cells. Significant increases in the production of IL-10, IL-12, MIP-1β, TNFα and IL-6 were seen after exposure of antigen presenting cells to the polar lipid fraction. Phenotypic characterisation of the cells was performed by flow cytometry and significant decreases in the expression of MHCII, CD86 and CD1b were found after exposure to the polar lipid fraction. Polar lipids also significantly increased the levels of CD40 expressed by monocytes and cultured monocytes but no effect was seen on the constitutively high expression of CD40 on MDDC or on the levels of CD80 expressed by any of the cells. Finally, the capacity of polar fraction treated cells to stimulate alloreactive lymphocytes was assessed. Significant reduction in proliferative activity was seen after stimulation of PBMC by polar fraction treated cultured monocytes whilst no effect was seen after lipid treatment of MDDC. These data demonstrate that pathogenic mycobacterial polar lipids may significantly hamper the ability of the host APCs to induce an appropriate immune response to an invading pathogen.

  13. Unsaturated lipid bodies as a hallmark of inflammation studied by Raman 2D and 3D microscopy

    Science.gov (United States)

    Czamara, K.; Majzner, K.; Selmi, A.; Baranska, M.; Ozaki, Y.; Kaczor, A.

    2017-01-01

    Endothelial HMEC-1 cells incubated with pro-inflammatory cytokine TNF-α for 6 and 24 hours were studied as a model of inflammation using Raman imaging. Striking changes in distribution, composition and concentration of cellular lipids were observed after exposure to TNF-α compared to the control. In particular, 3D Raman imaging revealed a significant increase in the amount of lipid entities formed under inflammation. Lipid bodies were randomly distributed in the cytoplasm and two types of droplets were assembled: more saturated one, in spectral characteristics resembling phosphatidylcholine and saturated cholesteryl esters, observed also in the control, and highly unsaturated one, containing also cholesterols, being a hallmark of inflamed cells. The statistical analysis showed that the number of lipid bodies was significantly dependent on the exposure time to TNF-α. Overall, observed formation of unsaturated lipid droplets can be directly correlated with the increase in production of prostacyclins - endogenous inflammation mediators.

  14. 49 CFR 572.193 - Neck assembly.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Neck assembly. 572.193 Section 572.193... Dummy, Small Adult Female § 572.193 Neck assembly. (a) The neck assembly consists of parts shown in drawing 180-2000. For purposes of this test, the neck assembly is mounted within the headform assembly...

  15. 19 CFR 10.16 - Assembly abroad.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Assembly abroad. 10.16 Section 10.16 Customs... with United States Components § 10.16 Assembly abroad. (a) Assembly operations. The assembly operations..., accompanied, or followed by operations incidental to the assembly as illustrated in paragraph (b) of this...

  16. Functional CD1a is stabilized by exogenous lipids.

    Science.gov (United States)

    Manolova, Vania; Kistowska, Magdalena; Paoletti, Samantha; Baltariu, Gabriel M; Bausinger, Huguette; Hanau, Daniel; Mori, Lucia; De Libero, Gennaro

    2006-05-01

    Self-glycosphingolipids bind to surface CD1 molecules and are readily displaced by other CD1 ligands. This capacity to exchange antigens at the cell surface is not common to other antigen-presenting molecules and its physiological importance is unclear. Here we show that a large pool of cell-surface CD1a, but not CD1b molecules, is stabilized by exogenous lipids present in serum. Under serum deprivation CD1a molecules are altered and functionally inactive, as they are unable to present lipid antigens to T cells. Glycosphingolipids and phospholipids bind to, and restore functionality to CD1a without the contribution of newly synthesized and recycling CD1a molecules. The dependence of CD1a stability on exogenous lipids is not related to its intracellular traffic and rather to its antigen-binding pockets. These results indicate a functional dichotomy between CD1a and CD1b molecules and provide new information on how the lipid antigenic repertoire is immunologically sampled.

  17. Lipid anthropometric and physical condition profile of university athlete students

    Directory of Open Access Journals (Sweden)

    Diana María García Cardona

    2017-08-01

    Full Text Available Introduction: Recognizing aspects such as lipid profile, body composition and physical composition of athletes can avoid recurrent errors in sports training. Objective: To establish the lipid, anthropometric and physical condition profile of students belonging to the sports teams of the University of Quindío. Materials and methods: Members of 14 sports teams were valued in their anthropometric measurements according to the guidelines of the International Society for the Advancement in Kinanthropometric (ISAK. For this, different tests were applied to determine strength, speed, resistance and flexibility and commercial kits were used to establish the lipid profile. Results: The population has normal ranges of lipid profile. Regarding the anthropometric profile, averages of fat percentage were found above those that are considered normal for athletes, although they correspond to the normality of the population in general. On a conditional level, flexibility was the capacity with lower averages from those considered as acceptable ranks. Conclusions: It is necessary to look for strategies to improve aspects such as: levels of fatty percentage and flexibility, which in some participants are not in line with the established ranges for performance athletes.

  18. Specific Uptake of Lipid-Antibody-Functionalized LbL Microcarriers by Cells.

    Science.gov (United States)

    Göse, Martin; Scheffler, Kira; Reibetanz, Uta

    2016-11-14

    The modular construction of Layer-by-Layer biopolymer microcarriers facilitates a highly specific design of drug delivery systems. A supported lipid bilayer (SLB) contributes to biocompatibility and protection of sensitive active agents. The addition of a lipid anchor equipped with PEG (shielding from opsonins) and biotin (attachment of exchangeable outer functional molecules) enhances the microcarrier functionality even more. However, a homogeneously assembled supported lipid bilayer is a prerequisite for a specific binding of functional components. Our investigations show that a tightly packed SLB improves the efficiency of functional components attached to the microcarrier's surface, as illustrated with specific antibodies in cellular application. Only a low quantity of antibodies is needed to obtain improved cellular uptake rates independent from cell type as compared to an antibody-functionalized loosely packed lipid bilayer or directly assembled antibody onto the multilayer. A fast disassembly of the lipid bilayer within endolysosomes exposing the underlying drug delivering multilayer structure demonstrates the suitability of LbL-microcarriers as a multifunctional drug delivery system.

  19. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  20. Flexible Foot Test Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, C.H.; /Fermilab

    1987-04-27

    A test model of the flexible foot support was constructed early in the design stages to check its reactions to applied loads. The prototype was made of SS 304 and contained four vertical plates as opposed to the fourteen Inconel 718 plates which comprise the actual structure. Due to the fact that the prototype was built before the design of the support was finalized, the plate dimensions are different from those of the actual proposed design (i.e. model plate thickness is approximately one-half that of the actual plates). See DWG. 3740.210-MC-222376 for assembly details of the test model and DWG. 3740.210-MB-222377 for plate dimensions. This stanchion will be required to not only support the load of the inner vessel of the cryostat and its contents, but it must also allow for the movement of the vessel due to thermal contraction. Assuming that each vertical plate acts as a column, then the following formula from the Manual of Steel Construction (American Institute of Steel Construction, Inc., Eigth edition, 1980) can be applied to determine whether or not such columns undergoing simultaneous axial compression and transverse loading are considered safe for the given loading. The first term is representative of the axially compressive stress, and the second term, the bending stress. If the actual compressive stress is greater than 15% of the allowable compressive stress, then there are additional considerations which must be accounted for in the bending stress term.