WorldWideScience

Sample records for assembly factor chd1

  1. Mediator coordinates PIC assembly with recruitment of CHD1.

    Science.gov (United States)

    Lin, Justin J; Lehmann, Lynn W; Bonora, Giancarlo; Sridharan, Rupa; Vashisht, Ajay A; Tran, Nancy; Plath, Kathrin; Wohlschlegel, James A; Carey, Michael

    2011-10-15

    Murine Chd1 (chromodomain helicase DNA-binding protein 1), a chromodomain-containing chromatin remodeling protein, is necessary for embryonic stem (ES) cell pluripotency. Chd1 binds to nucleosomes trimethylated at histone 3 Lys 4 (H3K4me3) near the beginning of active genes but not to bivalent domains also containing H3K27me3. To address the mechanism of this specificity, we reproduced H3K4me3- and CHD1-stimulated gene activation in HeLa extracts. Multidimensional protein identification technology (MuDPIT) and immunoblot analyses of purified preinitiation complexes (PICs) revealed the recruitment of CHD1 to naive chromatin but enhancement on H3K4me3 chromatin. Studies in depleted extracts showed that the Mediator coactivator complex, which controls PIC assembly, is also necessary for CHD1 recruitment. MuDPIT analyses of CHD1-associated proteins support the recruitment data and reveal numerous components of the PIC, including Mediator. In vivo, CHD1 and Mediator are recruited to an inducible gene, and genome-wide binding of the two proteins correlates well with active gene transcription in mouse ES cells. Finally, coimmunoprecipitation of CHD1 and Mediator from cell extracts can be ablated by shRNA knockdown of a specific Mediator subunit. Our data support a model in which the Mediator coordinates PIC assembly along with the recruitment of CHD1. The combined action of the PIC and H3K4me3 provides specificity in targeting CHD1 to active genes.

  2. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Science.gov (United States)

    Sebald, Johanna; Willi, Michaela; Schoberleitner, Ines; Krogsdam, Anne; Orth-Höller, Dorothea; Trajanoski, Zlatko; Lusser, Alexandra

    2016-01-01

    The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  3. Impact of the Chromatin Remodeling Factor CHD1 on Gut Microbiome Composition of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Johanna Sebald

    Full Text Available The composition of the intestinal microbiota of Drosophila has been studied in some detail in recent years. Environmental, developmental and host-specific genetic factors influence microbiome composition in the fly. Our previous work has indicated that intestinal bacterial load can be affected by chromatin-targeted regulatory mechanisms. Here we studied a potential role of the conserved chromatin assembly and remodeling factor CHD1 in the shaping of the gut microbiome in Drosophila melanogaster. Using high-throughput sequencing of 16S rRNA gene amplicons, we found that Chd1 deletion mutant flies exhibit significantly reduced microbial diversity compared to rescued control strains. Specifically, although Acetobacteraceae dominated the microbiota of both Chd1 wild-type and mutant guts, Chd1 mutants were virtually monoassociated with this bacterial family, whereas in control flies other bacterial taxa constituted ~20% of the microbiome. We further show age-linked differences in microbial load and microbiota composition between Chd1 mutant and control flies. Finally, diet supplementation experiments with Lactobacillus plantarum revealed that, in contrast to wild-type flies, Chd1 mutant flies were unable to maintain higher L. plantarum titres over time. Collectively, these data provide evidence that loss of the chromatin remodeler CHD1 has a major impact on the gut microbiome of Drosophila melanogaster.

  4. Assembly of methylated KDM1A and CHD1 drives androgen receptor-dependent transcription and translocation.

    Science.gov (United States)

    Metzger, Eric; Willmann, Dominica; McMillan, Joel; Forne, Ignasi; Metzger, Philipp; Gerhardt, Stefan; Petroll, Kerstin; von Maessenhausen, Anne; Urban, Sylvia; Schott, Anne-Kathrin; Espejo, Alexsandra; Eberlin, Adrien; Wohlwend, Daniel; Schüle, Katrin M; Schleicher, Michael; Perner, Sven; Bedford, Mark T; Jung, Manfred; Dengjel, Jörn; Flaig, Ralf; Imhof, Axel; Einsle, Oliver; Schüle, Roland

    2016-02-01

    Prostate cancer evolution is driven by a combination of epigenetic and genetic alterations such as coordinated chromosomal rearrangements, termed chromoplexy. TMPRSS2-ERG gene fusions found in human prostate tumors are a hallmark of chromoplexy. TMPRSS2-ERG fusions have been linked to androgen signaling and depend on androgen receptor (AR)-coupled gene transcription. Here, we show that dimethylation of KDM1A at K114 (to form K114me2) by the histone methyltransferase EHMT2 is a key event controlling androgen-dependent gene transcription and TMPRSS2-ERG fusion. We identified CHD1 as a KDM1A K114me2 reader and characterized the KDM1A K114me2-CHD1 recognition mode by solving the cocrystal structure. Genome-wide analyses revealed chromatin colocalization of KDM1A K114me2, CHD1 and AR in prostate tumor cells. Together, our data link the assembly of methylated KDM1A and CHD1 with AR-dependent transcription and genomic translocations, thereby providing mechanistic insight into the formation of TMPRSS2-ERG gene fusions during prostate-tumor evolution.

  5. Analysis list: Chd1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Chd1 Blood + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Chd1.1.tsv h...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Chd1.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Chd1....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Chd1.Blood.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Blood.gml ...

  6. Transgenic CHD1L expression in mouse induces spontaneous tumors.

    Directory of Open Access Journals (Sweden)

    Muhan Chen

    Full Text Available BACKGROUND: Amplification of 1q21 is the most frequent genetic alteration in hepatocellular carcinoma (HCC, which was detected in 58-78% of primary HCC cases by comparative genomic hybridization (CGH. Using chromosome microdissection/hybrid selection approach we recently isolated a candidate oncogene CHD1L from 1q21 region. Our previous study has demonstrated that CHD1L had strong oncogenic ability, which could be effectively suppressed by siRNA against CHD1L. The molecular mechanism of CHD1L in tumorigenesis has been associated with its role in promoting cell proliferation. METHODOLOGY/PRINCIPAL FINDINGS: To further investigate the in vivo oncogenic role of CHD1L, CHD1L ubiquitous-expression transgenic mouse model was generated. Spontaneous tumor formations were found in 10/41 (24.4% transgenic mice, including 4 HCCs, but not in their 39 wild-type littermates. In addition, alcohol intoxication was used to induce hepatocyte pathological lesions and results found that overexpression of CHD1L in hepatocytes could promote tumor susceptibility in CHD1L-transgenic mice. To address the mechanism of CHD1L in promoting cell proliferation, DNA content between CHD1L-transgenic and wildtype mouse embryo fibroblasts (MEFs was compared by flow cytometry. Flow cytometry results found that CHD1L could facilitate DNA synthesis and G1/S transition through the up-regulation of Cyclin A, Cyclin D1, Cyclin E, CDK2, and CDK4, and down-regulation of Rb, p27(Kip1, and p53. CONCLUSION/SIGNIFICANCE: Taken together, our data strongly support that CHD1L is a novel oncogene and plays an important role in HCC pathogenesis.

  7. Comparative Genomics Reveals Chd1 as a Determinant of Nucleosome Spacing in Vivo.

    Science.gov (United States)

    Hughes, Amanda L; Rando, Oliver J

    2015-07-14

    Packaging of genomic DNA into nucleosomes is nearly universally conserved in eukaryotes, and many features of the nucleosome landscape are quite conserved. Nonetheless, quantitative aspects of nucleosome packaging differ between species because, for example, the average length of linker DNA between nucleosomes can differ significantly even between closely related species. We recently showed that the difference in nucleosome spacing between two Hemiascomycete species-Saccharomyces cerevisiae and Kluyveromyces lactis-is established by trans-acting factors rather than being encoded in cis in the DNA sequence. Here, we generated several S. cerevisiae strains in which endogenous copies of candidate nucleosome spacing factors are deleted and replaced with the orthologous factors from K. lactis. We find no change in nucleosome spacing in such strains in which H1 or Isw1 complexes are swapped. In contrast, the K. lactis gene encoding the ATP-dependent remodeler Chd1 was found to direct longer internucleosomal spacing in S. cerevisiae, establishing that this remodeler is partially responsible for the relatively long internucleosomal spacing observed in K. lactis. By analyzing several chimeric proteins, we find that sequence differences that contribute to the spacing activity of this remodeler are dispersed throughout the coding sequence, but that the strongest spacing effect is linked to the understudied N-terminal end of Chd1. Taken together, our data find a role for sequence evolution of a chromatin remodeler in establishing quantitative aspects of the chromatin landscape in a species-specific manner.

  8. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness

    DEFF Research Database (Denmark)

    Kari, Vijayalakshmi; Mansour, Wael Yassin; Raul, Sanjay Kumar;

    2016-01-01

    The CHD1 gene, encoding the chromo-domain helicase DNA-binding protein-1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double-strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of Ct......IP to chromatin and subsequent end resection during DNA DSB repair. Our data support a role for CHD1 in opening the chromatin around the DSB to facilitate the recruitment of homologous recombination (HR) proteins. Consequently, depletion of CHD1 specifically affects HR-mediated DNA repair but not non......-homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may...

  9. Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density.

    Science.gov (United States)

    Lieleg, Corinna; Ketterer, Philip; Nuebler, Johannes; Ludwigsen, Johanna; Gerland, Ulrich; Dietz, Hendrik; Mueller-Planitz, Felix; Korber, Philipp

    2015-05-01

    Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the Hand-Sant-Slide (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.

  10. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Jenna [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); Ekwall, Karl, E-mail: karl.ekwall@ki.se [Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet (Sweden); School of Life Sciences, University College Sodertorn, NOVUM, Huddinge (Sweden)

    2010-05-01

    Eukaryotic DNA is packaged around octamers of histone proteins into nucleosomes, the basic unit of chromatin. In addition to enabling meters of DNA to fit within the confines of a nucleus, the structure of chromatin has functional implications for cell identity. Covalent chemical modifications to the DNA and to histones, histone variants, ATP-dependent chromatin remodelers, small noncoding RNAs and the level of chromatin compaction all contribute to chromosomal structure and to the activity or silencing of genes. These chromatin-level alterations are defined as epigenetic when they are heritable from mother to daughter cell. The great diversity of epigenomes that can arise from a single genome permits a single, totipotent cell to generate the hundreds of distinct cell types found in humans. Two recent studies in mouse and in fly have highlighted the importance of Chd1 chromatin remodelers for maintaining an open, active chromatin state. Based on evidence from fission yeast as a model system, we speculate that Chd1 remodelers are involved in the disassembly of nucleosomes at promoter regions, thus promoting active transcription and open chromatin. It is likely that these nucleosomes are specifically marked for disassembly by the histone variant H2A.Z.

  11. Linking intronic polymorphism on the CHD1-Z gene with fitness correlates in Black-tailed Godwits Limosa l. limosa

    NARCIS (Netherlands)

    Schroeder, Julia; Kentie, Rosemarie; van der Velde, Marco; Both, Christiaan; Haddrath, Oliver; Baker, Allan J.; Piersma, Theunis; Hooijmeijer, Jos C.E.W.

    2010-01-01

    We show that variation in an intronic length polymorphism in the CHD1-Z gene in Black-tailed Godwits Limosa l. limosa is associated with fitness correlates. This is the second example of the CHDZ-1 gene being correlated with fitness, a previous study having established that Moorhens Gallinula chloro

  12. Local and regional factors influencing bacterial community assembly.

    Science.gov (United States)

    Lindström, Eva S; Langenheder, Silke

    2012-02-01

    The classical view states that microbial biogeography is not affected by dispersal barriers or historical events, but only influenced by the local contemporary habitat conditions (species sorting). This has been challenged during recent years by studies suggesting that also regional factors such as mass effect, dispersal limitation and neutral assembly are important for the composition of local bacterial communities. Here we summarize results from biogeography studies in different environments, i.e. in marine, freshwater and soil as well in human hosts. Species sorting appears to be the most important mechanism. However, this result might be biased since this is the mechanism that is easiest to measure, detect and interpret. Hence, the importance of regional factors may have been underestimated. Moreover, our survey indicates that different assembly mechanisms might be important for different parts of the total community, differing, for example, between generalists and specialists, and between taxa of different dispersal ability and motility. We conclude that there is a clear need for experimental studies, first, to clearly separate regional and local factors in order to study their relative importance, and second, to test whether there are differences in assembly mechanisms depending on different taxonomic or functional groups.

  13. Scattering form factors for self-assembled network junctions

    Science.gov (United States)

    Foster, T.; Safran, S. A.; Sottmann, T.; Strey, R.

    2007-11-01

    The equilibrium microstructures in microemulsions and other self-assembled systems show complex, connected shapes such as symmetric bicontinuous spongelike structures and asymmetric bicontinuous networks formed by cylinders interconnected at junctions. In microemulsions, these cylinder network microstructures may mediate the structural transition from a spherical or globular phase to the bicontinuous microstructure. To understand the structural and statistical properties of such cylinder network microstructures as measured by scattering experiments, models are needed to extract the real-space structure from the scattering data. In this paper, we calculate the scattering functions appropriate for cylinder network microstructures. We focus on such networks that contain a high density of network junctions that connect the cylindrical elements. In this limit, the network microstructure can be regarded as an assembly of randomly oriented, closed packed network junctions (i.e., the cylinder scattering contributions are neglected). Accordingly, the scattering spectrum of the network microstructure can be calculated as the product of the junction number density, the junction form factor, which describes the scattering from the surface of a single junction, and a structure factor, which describes the local correlations of different junctions due to junction interactions (including their excluded volume). This approach is applied to analyze the scattering data from a bicontinuous microemulsion with equal volumes of water and oil. In a second approach, we included the cylinder scattering contribution in the junction form factor by calculating the scattering intensity of Y junctions to which three rods with spherical cross section are attached. The respective theoretical predictions are compared with results of neutron scattering measurements on a water-in-oil microemulsion with a connected microstructure.

  14. Assembling the archaeal ribosome: roles for translation-factor-related GTPases

    NARCIS (Netherlands)

    Blombach, F.; Brouns, S.J.J.; Oost, van der J.

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major typ

  15. A Framework for Geometric Reasoning About Human Figures and Factors in Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    Calton, Terri L.

    1999-07-20

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be perfectly valid operations, but in reality some operations cannot physically be carried out by a human. For example, the use of a ratchet may be reasoned feasible for an assembly operation; however, when a hand is placed on the tool the operation is no longer feasible, perhaps because of inaccessibility, insufficient strength or human interference with assembly components. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications, however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem, HFFMs must be integrated with automated assembly planning which allows engineers to quickly verify that assembly operations are possible and to see ways to make the designs even better. This paper presents a framework for integrating geometry-based assembly planning algorithms with commercially available human figure modeling software packages. Experimental results to selected applications along with lessons learned are presented.

  16. Elucidating biotic factors that influence assembly of fungal endophyte communities

    Science.gov (United States)

    Most plants harbor a diverse assemblage of non-mycorrhizal fungal endophytes. These fungi can directly influence the host plant, and can instigate trophic cascades that affect surrounding communities of herbivores, plants, and animals. Despite this, biotic mechanisms that influence assembly of funga...

  17. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    Science.gov (United States)

    Stupp, Samuel I.; Donners, Jack J. J. M.; Silva, Gabriel A.; Behanna, Heather A.; Anthony, Shawn G.

    2009-06-09

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  18. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, Lev; Gorodkov, Sergey; Mikailov, Eldar; Sukhino-Khomenko, Evgenia [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    Jacketless fuel assemblies change their form in the course of operation. Often they bow lengthwise. Primarily, these fuel assembly (FA) bows threaten to reduce the control rods' fall rate, but at the same time they change (e.g. increase) the amount of moderator in inter-assembly gaps, thus producing additional power surges. Gap sizes vary randomly and their impact is accounted for with the help of engineering margin factors. For VVER-1000, this account of engineering margin factors increases the fuel component of electricity generation cost by 3 - 5 %, and a half of this increase is due to inter- assembly gap variations. This paper discusses the technique used to account for the impact produced by these gaps on fuel rod power; gives numerical values of sensitivity factors for power variations vs. gap sizes depending on the computational model assumed; and discusses the interference of gap effects and the account of power and coolant temperature feedbacks.

  19. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens.

    Science.gov (United States)

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R; Vaishampayan, Parag A

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  20. Assembling the archaeal ribosome: roles for translation-factor-related GTPases.

    Science.gov (United States)

    Blombach, Fabian; Brouns, Stan J J; van der Oost, John

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.

  1. Functional metagenomics of spacecraft assembly cleanrooms: Presence of virulence factors associated with human pathogens.

    Directory of Open Access Journals (Sweden)

    Mina Bashir

    2016-09-01

    Full Text Available Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics’ Multiple Testing Facility during DAWN, the Kennedy Space Center’s Payload Hazardous Servicing Facility (KSC-PHSF during Phoenix, and the Jet Propulsion Laboratory’s Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii

  2. Functional Metagenomics of Spacecraft Assembly Cleanrooms: Presence of Virulence Factors Associated with Human Pathogens

    Science.gov (United States)

    Bashir, Mina; Ahmed, Mahjabeen; Weinmaier, Thomas; Ciobanu, Doina; Ivanova, Natalia; Pieber, Thomas R.; Vaishampayan, Parag A.

    2016-01-01

    Strict planetary protection practices are implemented during spacecraft assembly to prevent inadvertent transfer of earth microorganisms to other planetary bodies. Therefore, spacecraft are assembled in cleanrooms, which undergo strict cleaning and decontamination procedures to reduce total microbial bioburden. We wanted to evaluate if these practices selectively favor survival and growth of hardy microorganisms, such as pathogens. Three geographically distinct cleanrooms were sampled during the assembly of three NASA spacecraft: The Lockheed Martin Aeronautics' Multiple Testing Facility during DAWN, the Kennedy Space Center's Payload Hazardous Servicing Facility (KSC-PHSF) during Phoenix, and the Jet Propulsion Laboratory's Spacecraft Assembly Facility during Mars Science Laboratory. Sample sets were collected from the KSC-PHSF cleanroom at three time points: before arrival of the Phoenix spacecraft, during the assembly and testing of the Phoenix spacecraft, and after removal of the spacecraft from the KSC-PHSF facility. All samples were subjected to metagenomic shotgun sequencing on an Illumina HiSeq 2500 platform. Strict decontamination procedures had a greater impact on microbial communities than sampling location Samples collected during spacecraft assembly were dominated by Acinetobacter spp. We found pathogens and potential virulence factors, which determine pathogenicity in all the samples tested during this study. Though the relative abundance of pathogens was lowest during the Phoenix assembly, potential virulence factors were higher during assembly compared to before and after assembly, indicating a survival advantage. Decreased phylogenetic and pathogenic diversity indicates that decontamination and preventative measures were effective against the majority of microorganisms and well implemented, however, pathogen abundance still increased over time. Four potential pathogens, Acinetobacter baumannii, Acinetobacter lwoffii, Escherichia coli and Legionella

  3. Binding of the Covalent Flavin Assembly Factor to the Flavoprotein Subunit of Complex II.

    Science.gov (United States)

    Maklashina, Elena; Rajagukguk, Sany; Starbird, Chrystal A; McDonald, W Hayes; Koganitsky, Anna; Eisenbach, Michael; Iverson, Tina M; Cecchini, Gary

    2016-02-05

    Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.

  4. Assembly of transcription factor IIB at a promoter in vivo requires contact with RNA polymerase II

    OpenAIRE

    Elsby, Laura M.; O'Donnell, Amanda J M; Green, Laura M.; Sharrocks, Andrew D.; Roberts, Stefan G. E.

    2006-01-01

    The general transcription factor TFIIB has a central role in the assembly of the preinitiation complex at the promoter, providing a platform for the entry of RNA polymerase II/TFIIF. We used an RNA interference (RNAi)-based system in which TFIIB expression is ablated in vivo and replaced with a TFIIB derivative that contains a silent mutation and is refractory to the RNAi. Using this approach, we found that transcriptionally defective TFIIB amino-terminal mutants showed distinct effects on th...

  5. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  6. Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elisa; Møller-Jensen, Jakob;

    2008-01-01

    Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring are regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...

  7. COX assembly factor ccdc56 regulates mitochondrial morphology by affecting mitochondrial recruitment of Drp1.

    Science.gov (United States)

    Ban-Ishihara, Reiko; Tomohiro-Takamiya, Shiho; Tani, Motohiro; Baudier, Jacques; Ishihara, Naotada; Kuge, Osamu

    2015-10-07

    Mitochondria are dynamic organelles that alter their morphology in response to cellular signaling and differentiation through balanced fusion and fission. In this study, we found that the mitochondrial inner membrane ATPase ATAD3A interacted with ccdc56/MITRAC12/COA3, a subunit of the cytochrome oxidase (COX)-assembly complex. Overproduction of ccdc56 in HeLa cells resulted in fragmented mitochondrial morphology, while mitochondria were highly elongated in ccdc56-repressed cells by the defective recruitment of the fission factor Drp1. We also found that mild and chronic inhibition of COX led to mitochondrial elongation, as seen in ccdc56-repressed cells. These results indicate that ccdc56 positively regulates mitochondrial fission via regulation of COX activity and the mitochondrial recruitment of Drp1, and thus, suggest a novel relationship between COX assembly and mitochondrial morphology.

  8. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    Science.gov (United States)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  9. Fabrication of a microresonator-fiber assembly maintaining a high-quality factor by CO2 laser welding

    CERN Document Server

    Fang, Zhiwei; Wang, Min; Liu, Zhengming; Yao, Jinping; Qiao, Lingling; Cheng, Ya

    2015-01-01

    We demonstrate fabrication of a microtoroid resonator of a high-quality (high-Q) factor using femtosecond laser three-dimensional (3D) micromachining. A fiber taper is reliably assembled to the microtoroid using CO2 laser welding. Specifically, we achieve a high Q-factor of 2.12*10^6 in the microresonator-fiber assembly by optimizing the contact position between the fiber taper and the microtoroid.

  10. Self-assembly and DNA binding of the blocking factor in x chromosome inactivation.

    Directory of Open Access Journals (Sweden)

    Mario Nicodemi

    2007-11-01

    Full Text Available X chromosome inactivation (XCI is the phenomenon occurring in female mammals whereby dosage compensation of X-linked genes is obtained by transcriptional silencing of one of their two X chromosomes, randomly chosen during early embryo development. The earliest steps of random X-inactivation, involving counting of the X chromosomes and choice of the active and inactive X, are still not understood. To explain "counting and choice," the longstanding hypothesis is that a molecular complex, a "blocking factor" (BF, exists. The BF is present in a single copy and can randomly bind to just one X per cell which is protected from inactivation, as the second X is inactivated by default. In such a picture, the missing crucial step is to explain how the molecular complex is self-assembled, why only one is formed, and how it binds only one X. We answer these questions within the framework of a schematic Statistical Physics model, investigated by Monte Carlo computer simulations. We show that a single complex is assembled as a result of a thermodynamic process relying on a phase transition occurring in the system which spontaneously breaks the symmetry between the X's. We discuss, then, the BF interaction with X chromosomes. The thermodynamics of the mechanism that directs the two chromosomes to opposite fates could be, thus, clarified. The insights on the self-assembling and X binding properties of the BF are used to derive a quantitative scenario of biological implications describing current experimental evidences on "counting and choice."

  11. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2

    Institute of Scientific and Technical Information of China (English)

    Sung-Bau Lee; Li-Jung Juan; Chung-Fan Lee; Derick S-C Ou; Kalpana Dulal; Liang-Hao Chang; Chen-Han Ma; Chien-Fu Huang; Hua Zhu; Young-Sun Lin

    2011-01-01

    Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.

  12. Force and Influencing Factors Analysis for Bottomhole Assembly with Two Stabilizers and One Bend

    Directory of Open Access Journals (Sweden)

    Wanlong Huang

    2013-10-01

    Full Text Available The aim of this study is to research the force and influencing factors for bottomhole assembly with two stabilizers and one bend. Borehole trajectory control is one of the basic problems in drilling engineering and it is generally paid attention at home and abroad. Experts and scholars at home and abroad have done a lot of research in the drill string mechanics (especially the force and deformation analysis of BHA, interaction of bit and formation, borehole trajectory prediction method. They have obtained many achievements in scientific research, so as to make the hole trajectory control theory and technology constantly develop.

  13. Molecular assembly of the ternary granulocyte-macrophage colony-stimulating factor receptor complex.

    Science.gov (United States)

    McClure, Barbara J; Hercus, Timothy R; Cambareri, Bronwyn A; Woodcock, Joanna M; Bagley, Christopher J; Howlett, Geoff J; Lopez, Angel F

    2003-02-15

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine that stimulates the production and functional activity of granulocytes and macrophages, properties that have encouraged its clinical use in bone marrow transplantation and in certain infectious diseases. Despite the importance of GM-CSF in regulating myeloid cell numbers and function, little is known about the exact composition and mechanism of assembly of the GM-CSF receptor complex. We have now produced soluble forms of the GM-CSF receptor alpha chain (sGMRalpha) and beta chain (sbetac) and utilized GM-CSF, the GM-CSF antagonist E21R (Glu21Arg), and the betac-blocking monoclonal antibody BION-1 to define the molecular assembly of the GM-CSF receptor complex. We found that GM-CSF and E21R were able to form low-affinity, binary complexes with sGMRalpha, each having a stoichiometry of 1:1. Importantly, GM-CSF but not E21R formed a ternary complex with sGMRalpha and sbetac, and this complex could be disrupted by E21R. Significantly, size-exclusion chromatography, analytical ultracentrifugation, and radioactive tracer experiments indicated that the ternary complex is composed of one sbetac dimer with a single molecule each of sGMRalpha and of GM-CSF. In addition, a hitherto unrecognized direct interaction between betac and GM-CSF was detected that was absent with E21R and was abolished by BION-1. These results demonstrate a novel mechanism of cytokine receptor assembly likely to apply also to interleukin-3 (IL-3) and IL-5 and have implications for our molecular understanding and potential manipulation of GM-CSF activation of its receptor.

  14. Upper extremities musculoskeletal disorders: Prevalence and associated ergonomic factors in an electronic assembly factory

    Directory of Open Access Journals (Sweden)

    Somthus Pullopdissakul

    2013-10-01

    Full Text Available Objectives:To determine the magnitude, distribution and associated ergonomic factors of upper extremities musculoskeletal disorders (UEMSD among workers of electronic assembly in Thailand. Material and Methods: This was a cross-sectional study. 591 of 853 workers in an electronic and electrical appliance assembly factory in Bangkok, Thailand, participated in this study. A self-administered questionnaire consisting of demographic data and ergonomic factors was collected from October 2010 to January 2011. Clinical examination of each worker was performed by an occupational physician. The criteria for diagnosis of UEMSD came as a result of a consensus reached by a group of orthopedists. The associated factors were analyzed using a multiple logistic regression. Results: The point prevalence of clinically diagnosed UEMSD was as follows: radial styloid tenosynovitis - 13.03% (95% CI: 10.31-15.75, trigger finger - 9.48% (95% CI: 7.11-11.84, carpal tunnel syndrome - 8.12% (95% CI: 5.91-10.33, lateral epicondylitis - 3.38% (95% CI: 1.92-4.85, and medial epicondylitis - 1.69% (95% CI: 0.65-2.73, respectively. The adjusted odds ratio with statistical significance associated with UEMSD was as follows: high force of wrist - 1.78 (95% CI: 1.06-2.99, awkward posture of wrist - 2.37 (95% CI: 1.28-4.37 and contact stress at wrists - 1.75 (95% CI: 1.02-3.00 to develop radial styloid tenosynovitis. For trigger finger, the ratios were awkward posture of fingers - 2.09 (95% CI: 1.12-3.90 and contact stress on finger - 1.86 (95% CI: 1.04-3.34. For medial epicondylitis, it was an awkward posture of using elbows - 3.14 (95% CI: 1.10-8.95. However, this study did not find any associations between repetitive motion and any UEMSD. Conclusions: UEMSD are most commonly found in electronic assembly workers. The relevant parties should provide comprehensive ergonomic resolution for these workers.

  15. The TALE transcription factor homothorax functions to assemble heterochromatin during Drosophila embryogenesis.

    Directory of Open Access Journals (Sweden)

    Miguel Angel Zaballos

    Full Text Available We have previously identified Homothorax (Hth as an important factor for the correct assembly of the pericentromeric heterochromatin during the first fast syncytial divisions of the Drosophila embryo. Here we have extended our studies to later stages of embryonic development. We were able to show that hth mutants exhibit a drastic overall reduction in the tri-methylation of H3 in Lys9, with no reduction of the previous di-methylation. One phenotypic outcome of such a reduction is a genome instability visualized by the many DNA breaks observed in the mutant nuclei. Moreover, loss of Hth leads to the opening of closed heterochromatic regions, including the rDNA genomic region. Our data show that the satellite repeats get transcribed in wild type embryos and that this transcription depends on the presence of Hth, which binds to them as well as to the rDNA region. This work indicates that there is an important role of transcription of non-coding RNAs for constitutive heterochromatin assembly in the Drosophila embryo, and suggests that Hth plays an important role in this process.

  16. The TALE transcription factor homothorax functions to assemble heterochromatin during Drosophila embryogenesis.

    Science.gov (United States)

    Zaballos, Miguel Angel; Cantero, Walter; Azpiazu, Natalia

    2015-01-01

    We have previously identified Homothorax (Hth) as an important factor for the correct assembly of the pericentromeric heterochromatin during the first fast syncytial divisions of the Drosophila embryo. Here we have extended our studies to later stages of embryonic development. We were able to show that hth mutants exhibit a drastic overall reduction in the tri-methylation of H3 in Lys9, with no reduction of the previous di-methylation. One phenotypic outcome of such a reduction is a genome instability visualized by the many DNA breaks observed in the mutant nuclei. Moreover, loss of Hth leads to the opening of closed heterochromatic regions, including the rDNA genomic region. Our data show that the satellite repeats get transcribed in wild type embryos and that this transcription depends on the presence of Hth, which binds to them as well as to the rDNA region. This work indicates that there is an important role of transcription of non-coding RNAs for constitutive heterochromatin assembly in the Drosophila embryo, and suggests that Hth plays an important role in this process.

  17. The Putative Assembly Factor CcoH Is Stably Associated with the cbb3-Type Cytochrome Oxidase ▿

    Science.gov (United States)

    Pawlik, Grzegorz; Kulajta, Carmen; Sachelaru, Ilie; Schröder, Sebastian; Waidner, Barbara; Hellwig, Petra; Daldal, Fevzi; Koch, Hans-Georg

    2010-01-01

    Cytochrome oxidases are perfect model substrates for analyzing the assembly of multisubunit complexes because the need for cofactor incorporation adds an additional level of complexity to their assembly. cbb3-type cytochrome c oxidases (cbb3-Cox) consist of the catalytic subunit CcoN, the membrane-bound c-type cytochrome subunits CcoO and CcoP, and the CcoQ subunit, which is required for cbb3-Cox stability. Biogenesis of cbb3-Cox proceeds via CcoQP and CcoNO subcomplexes, which assemble into the active cbb3-Cox. Most bacteria expressing cbb3-Cox also contain the ccoGHIS genes, which encode putative cbb3-Cox assembly factors. Their exact function, however, has remained unknown. Here we analyzed the role of CcoH in cbb3-Cox assembly and showed that CcoH is a single spanning-membrane protein with an N-terminus-out-C-terminus-in (Nout-Cin) topology. In its absence, neither the fully assembled cbb3-Cox nor the CcoQP or CcoNO subcomplex was detectable. By chemical cross-linking, we demonstrated that CcoH binds primarily via its transmembrane domain to the CcoP subunit of cbb3-Cox. A second hydrophobic stretch, which is located at the C terminus of CcoH, appears not to be required for contacting CcoP, but deleting it prevents the formation of the active cbb3-Cox. This suggests that the second hydrophobic domain is required for merging the CcoNO and CcoPQ subcomplexes into the active cbb3-Cox. Surprisingly, CcoH does not seem to interact only transiently with the cbb3-Cox but appears to stay tightly associated with the active, fully assembled complex. Thus, CcoH behaves more like a bona fide subunit of the cbb3-Cox than an assembly factor per se. PMID:20952576

  18. Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tomas Grousl

    Full Text Available In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs. Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robust heat shock-induced SGs of S. cerevisiae also contain translation elongation factors eEF3 (Yef3p and eEF1Bγ2 (Tef4p as well as translation termination factors eRF1 (Sup45p and eRF3 (Sup35p. Despite the presence of the yeast prion protein Sup35 in heat shock-induced SGs, we found out that its prion-like domain is not involved in the SGs assembly. Factors eEF3, eEF1Bγ2 and eRF1 were accumulated and co-localized with Dcp2 foci even upon a milder heat shock at 42°C independently of P-bodies scaffolding proteins. We also show that eEF3 accumulations at 42°C determine sites of the genuine SGs assembly at 46°C. We suggest that identification of translation elongation and termination factors in SGs might help to understand the mechanism of the eIF2α factor phosphorylation-independent repression of translation and SGs assembly.

  19. Effects of Topographic and Soil Factors on Woody Species Assembly in a Chinese Subtropical Evergreen Broadleaved Forest

    Directory of Open Access Journals (Sweden)

    Lijuan Zhao

    2015-03-01

    Full Text Available Evergreen broadleaved forests in subtropical China contain a complicated structure of diverse species. The impact of topographic and soil factors on the assembly of woody species in the forest has been poorly understood. We used Ripley’s K(t function to analyze the spatial patterns and associations of dominant species and residual analysis (RDA to quantify the contribution of topography and soil to species assembly. The 1 ha plot investigated had 4797 stems with a diameter at breast height (dbh larger than 1 cm that belong to 73 species, 55 genera, and 38 families. All stems of the entire forest and four late successional species exhibited a reversed J shape for dbh distribution, while two early successional species showed a unimodal shape. Aggregation was the major spatial pattern for entire forests and dominant species across vertical layers. Spatial associations between inter- and intra-species were mostly independent. Topographic and soil factors explained 28.1% of species assembly. The forest was close to late succession and showed the characteristics of diverse woody species, high regeneration capacity, and aggregated spatial patterns. Topographic and soil factors affected species assembly, but together they could only explain a small part of total variance.

  20. Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation.

    Science.gov (United States)

    Sharma, Anil K; Pallesen, Leif J; Spang, Robert J; Walden, William E

    2010-08-27

    FeS cluster biogenesis is an essential process in virtually all forms of life. Complex protein machineries that are conserved from bacteria through higher eukaryotes facilitate assembly of the FeS cofactor in proteins. In the last several years, significant strides have been made in our understanding of FeS cluster assembly and the functional overlap of this process with cellular iron homeostasis. This minireview summarizes the present understanding of the cytosolic iron-sulfur cluster assembly (CIA) system in eukaryotes, with a focus on information gained from studies in budding yeast and mammalian systems.

  1. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development.

    Science.gov (United States)

    Fetherson, Rebecca A; Strock, Stephen B; White, Kristen N; Vaughn, Jack C

    2006-04-26

    The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.

  2. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis

    Science.gov (United States)

    Zhang, Zhengjian; English, Brian P.; Grimm, Jonathan B.; Kazane, Stephanie A.; Hu, Wenxin; Tsai, Albert; Inouye, Carla; You, Changjiang; Piehler, Jacob; Schultz, Peter G.; Lavis, Luke D.; Revyakin, Andrey; Tjian, Robert

    2016-01-01

    Transcription of protein-encoding genes in eukaryotic cells requires the coordinated action of multiple general transcription factors (GTFs) and RNA polymerase II (Pol II). A “step-wise” preinitiation complex (PIC) assembly model has been suggested based on conventional ensemble biochemical measurements, in which protein factors bind stably to the promoter DNA sequentially to build a functional PIC. However, recent dynamic measurements in live cells suggest that transcription factors mostly interact with chromatin DNA rather transiently. To gain a clearer dynamic picture of PIC assembly, we established an integrated in vitro single-molecule transcription platform reconstituted from highly purified human transcription factors and complemented it by live-cell imaging. Here we performed real-time measurements of the hierarchal promoter-specific binding of TFIID, TFIIA, and TFIIB. Surprisingly, we found that while promoter binding of TFIID and TFIIA is stable, promoter binding by TFIIB is highly transient and dynamic (with an average residence time of 1.5 sec). Stable TFIIB–promoter association and progression beyond this apparent PIC assembly checkpoint control occurs only in the presence of Pol II–TFIIF. This transient-to-stable transition of TFIIB-binding dynamics has gone undetected previously and underscores the advantages of single-molecule assays for revealing the dynamic nature of complex biological reactions. PMID:27798851

  3. Modeling and Finite Element Analysis of Load-Carrying Performance of a Wind Turbine Considering the Influence of Assembly Factors

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2017-03-01

    Full Text Available In this work, a wind turbine shrink disk is used as the research object to investigate load-carrying performance of a multi-layer interference fit, and the theoretical model and finite element model are constructed. According to those models, a MW-level turbine shrink disk is designed, and a test device is developed to apply torque to this turbine shrink disk by hydraulic jack. Then, the circumferential slip between the contact surfaces is monitored and the slip of all contact surfaces is zero. This conclusion verifies the reasonability of the proposed models. The effect of the key influencing factors, such as machining deviation, assembly clearance and propel stroke, were analyzed. The contact pressure and load torque of the mating surfaces were obtained by building typical models with different parameters using finite element analysis (FEA. The results show that the minimum assembly clearance and the machining deviation within the machining range have little influence on load-carrying performance of multi-layer interference fit, while having a greater influence on the maximum assembly clearance and the propel stroke. The results also show that the load-carrying performance of a multiple-layer interference fit can be ensured only if the key factors are set within a reasonable design range. To avoid the abnormal operation of equipment caused by insufficient load torque, the propel stroke during practical assembly should be at least 0.95 times the designed propel stroke, which is significant in guiding the design and assembly of the multi-layer interference fit.

  4. Self-perceived depression, anxiety, stress and their relationships with psychosocial job factors in male automotive assembly workers.

    Science.gov (United States)

    Edimansyah, Bin Abdin; Rusli, Bin Nordin; Naing, Lin; Mohamed Rusli, Bin Abdullah; Winn, Than; Tengku Mohamed Ariff, Bin Raja Hussin

    2008-01-01

    Depression, anxiety and stress have been recognized as important mental outcome measures in stressful working settings. The present study explores the prevalence of self-perceived depression, anxiety and stress; and their relationships with psychosocial job factors. A cross-sectional study involving 728 male automotive assembly workers was conducted in two major automotive assembly plants in Malaysia using the validated Malay versions of the Depression Anxiety Stress Scales (DASS) and Job Content Questionnaire (JCQ). Based on the DASS cut-off of > or =78 percentile scores, the prevalence of self-perceived depression, anxiety and stress was 35.4%, 47.2% and 31.1%, respectively. Four (0.5%), 29 (4.0%) and 2 (0.3%) workers, respectively, reported extremely severe self-perceived depression, anxiety and stress. Multiple linear regression analyses, controlling for age, education, salary, duration of work and marital status, revealed that psychological job demand, job insecurity and hazardous condition were positively associated with DASS-Depression, DASS-Anxiety and DASS-Stress; supervisor support was inversely associated with DASS-Depression and DASS-Stress. We suggest that reducing psychological job demand, job insecurity and hazardous condition factors may improve the self-perceived depression, anxiety and stress in male automotive assembly workers. Supervisor support is protective for self-perceived depression and stress.

  5. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    Directory of Open Access Journals (Sweden)

    Steffen Jakob

    Full Text Available Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA. Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins and ribosome precursors (pre-ribosomes are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  6. Enhancement of fill factor in air-processed inverted organic solar cells using self-assembled monolayer of fullerene catechol

    Science.gov (United States)

    Jeon, Il; Ogumi, Keisuke; Nakagawa, Takafumi; Matsuo, Yutaka

    2016-08-01

    [60]Fullerene catechol self-assembled monolayers were prepared and applied to inverted organic solar cells by an immersion method, and their energy conversion properties were measured. By introducing fullerenes at the surface, we improved the hole-blocking capability of electron-transporting metal oxide, as shown by the fill factor enhancement. The fullerene catechol-treated TiO x -containing device gave a power conversion efficiency (PCE) of 2.81% with a fill factor of 0.56 while the non treated device gave a PCE of 2.46% with a fill factor of 0.49. The solar cell efficiency improved by 13% compared with the non treated reference device.

  7. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    exhibited a synthetic sick phenotype and aberrant cell divisions. The crystal structure showed that ZapB exists as a dimer that is 100% coiled-coil. In vitro, ZapB self-assembled into long filaments and bundles. These results raise the possibility that ZapB stimulates Z ring formation directly via its......Formation of the Z ring is the first known event in bacterial cell division. However, it is not yet known how the assembly and contraction of the Z ring is regulated. Here, we identify a novel cell division factor ZapB in Escherichia coli that simultaneously stimulates Z ring assembly and cell...... division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...

  8. The Tomato MIXTA-Like Transcription Factor Coordinates Fruit Epidermis Conical Cell Development and Cuticular Lipid Biosynthesis and Assembly.

    Science.gov (United States)

    Lashbrooke, Justin; Adato, Avital; Lotan, Orfa; Alkan, Noam; Tsimbalist, Tatiana; Rechav, Katya; Fernandez-Moreno, Josefina-Patricia; Widemann, Emilie; Grausem, Bernard; Pinot, Franck; Granell, Antonio; Costa, Fabrizio; Aharoni, Asaph

    2015-12-01

    The epidermis of aerial plant organs is the primary source of building blocks forming the outer surface cuticular layer. To examine the relationship between epidermal cell development and cuticle assembly in the context of fruit surface, we investigated the tomato (Solanum lycopersicum) MIXTA-like gene. MIXTA/MIXTA-like proteins, initially described in snapdragon (Antirrhinum majus) petals, are known regulators of epidermal cell differentiation. Fruit of transgenically silenced SlMIXTA-like tomato plants displayed defects in patterning of conical epidermal cells. They also showed altered postharvest water loss and resistance to pathogens. Transcriptome and cuticular lipids profiling coupled with comprehensive microscopy revealed significant modifications to cuticle assembly and suggested SlMIXTA-like to regulate cutin biosynthesis. Candidate genes likely acting downstream of SlMIXTA-like included cytochrome P450s (CYPs) of the CYP77A and CYP86A subfamilies, LONG-CHAIN ACYL-COA SYNTHETASE2, GLYCEROL-3-PHOSPHATE SN-2-ACYLTRANSFERASE4, and the ATP-BINDING CASSETTE11 cuticular lipids transporter. As part of a larger regulatory network of epidermal cell patterning and L1-layer identity, we found that SlMIXTA-like acts downstream of SlSHINE3 and possibly cooperates with homeodomain Leu zipper IV transcription factors. Hence, SlMIXTA-like is a positive regulator of both cuticle and conical epidermal cell formation in tomato fruit, acting as a mediator of the tight association between fruit cutin polymer formation, cuticle assembly, and epidermal cell patterning.

  9. Efficient small molecule bulk heterojunction solar cells with high fill factors via pyrene-directed molecular self-assembly

    KAUST Repository

    Lee, Olivia P.

    2011-10-21

    Efficient organic photovoltaic (OPV) materials are constructed by attaching completely planar, symmetric end-groups to donor-acceptor electroactive small molecules. Appending C2-pyrene as the small molecule end-group to a diketopyrrolopyrrole core leads to materials with a tight, aligned crystal packing and favorable morphology dictated by π-π interactions, resulting in high power conversion efficiencies and high fill factors. The use of end-groups to direct molecular self-assembly is an effective strategy for designing high-performance small molecule OPV devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis.

    Science.gov (United States)

    Schimmeyer, Joram; Bock, Ralph; Meyer, Etienne H

    2016-01-01

    L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyses the last enzymatic step of the ascorbate biosynthetic pathway in plants. GLDH is localised to mitochondria and several reports have shown that GLDH is associated with complex I of the respiratory chain. In a gldh knock-out mutant, complex I is not detectable, suggesting that GLDH is essential for complex I assembly or stability. GLDH has not been identified as a genuine complex I subunit, instead, it is present in a smaller, lowly abundant version of complex I called complex I*. In addition, GLDH activity has also been detected in smaller protein complexes within mitochondria membranes. Here, we investigated the role of GLDH during complex I assembly. We identified GLDH in complexes co-localising with some complex I assembly intermediates. Using a mutant that accumulates complex I assembly intermediates, we confirmed that GLDH is associated with the complex I assembly intermediates of 400 and 450 kDa. In addition, we detected accumulation of the 200 kDa complex I assembly intermediate in the gldh mutant. Taken together, our data suggest that GLDH is an assembly factor of the membrane arm of complex I. This function appears to be independent of the role of GLDH in ascorbate synthesis, as evidenced by the ascorbate-deficient mutant vtc2-1 accumulating wild-type levels of complex I. Therefore, we propose that GLDH is a dual-function protein that has a second, non-enzymatic function in complex I assembly as a plant-specific assembly factor. We propose an updated model for complex I assembly that includes complex I* as an assembly intermediate.

  11. Assembly of the intrinsic factor domains and oligomerization of the protein in the presence of cobalamin

    DEFF Research Database (Denmark)

    Fedosov, Sergey N; Fedosova, Natalya U; Berglund, Lars;

    2004-01-01

    oligomerized. A mixture of two fragments IF(30) + IF(20) and Cbl produced a firm complex, IF(30+20).Cbl, which could not associate to dimers. In contrast to IF(30+20).Cbl, the saturated full-length monomers IF(50).Cbl dimerized with K(d) approximately 1 microM. We suggest a two-domain organization of the full......-length protein, where two distant units, IF(30) and IF(20), can be assembled only by Cbl. They are connected by a protease-sensitive link, whose native structure is likely to be important for dimerization. However, linkage between two domains is not compulsory for Cbl binding. Advantages of the two...

  12. Platelet-derived growth factor (PDGF) signaling directs cardiomyocyte movement toward the midline during heart tube assembly

    Science.gov (United States)

    Bloomekatz, Joshua; Singh, Reena; Prall, Owen WJ; Dunn, Ariel C; Vaughan, Megan; Loo, Chin-San; Harvey, Richard P; Yelon, Deborah

    2017-01-01

    Communication between neighboring tissues plays a central role in guiding organ morphogenesis. During heart tube assembly, interactions with the adjacent endoderm control the medial movement of cardiomyocytes, a process referred to as cardiac fusion. However, the molecular underpinnings of this endodermal-myocardial relationship remain unclear. Here, we show an essential role for platelet-derived growth factor receptor alpha (Pdgfra) in directing cardiac fusion. Mutation of pdgfra disrupts heart tube assembly in both zebrafish and mouse. Timelapse analysis of individual cardiomyocyte trajectories reveals misdirected cells in zebrafish pdgfra mutants, suggesting that PDGF signaling steers cardiomyocytes toward the midline during cardiac fusion. Intriguingly, the ligand pdgfaa is expressed in the endoderm medial to the pdgfra-expressing myocardial precursors. Ectopic expression of pdgfaa interferes with cardiac fusion, consistent with an instructive role for PDGF signaling. Together, these data uncover a novel mechanism through which endodermal-myocardial communication can guide the cell movements that initiate cardiac morphogenesis. DOI: http://dx.doi.org/10.7554/eLife.21172.001 PMID:28098558

  13. A composite demineralized bone matrix--self assembling peptide scaffold for enhancing cell and growth factor activity in bone marrow.

    Science.gov (United States)

    Hou, Tianyong; Li, Zhiqiang; Luo, Fei; Xie, Zhao; Wu, Xuehui; Xing, Junchao; Dong, Shiwu; Xu, Jianzhong

    2014-07-01

    The need for suitable bone grafts is high; however, there are limitations to all current graft sources, such as limited availability, the invasive harvest procedure, insufficient osteoinductive properties, poor biocompatibility, ethical problems, and degradation properties. The lack of osteoinductive properties is a common problem. As an allogenic bone graft, demineralized bone matrix (DBM) can overcome issues such as limited sources and comorbidities caused by invasive harvest; however, DBM is not sufficiently osteoinductive. Bone marrow has been known to magnify osteoinductive components for bone reconstruction because it contains osteogenic cells and factors. Mesenchymal stem cells (MSCs) derived from bone marrow are the gold standard for cell seeding in tissue-engineered biomaterials for bone repair, and these cells have demonstrated beneficial effects. However, the associated high cost and the complicated procedures limit the use of tissue-engineered bone constructs. To easily enrich more osteogenic cells and factors to DBM by selective cell retention technology, DBM is modified by a nanoscale self-assembling peptide (SAP) to form a composite DBM/SAP scaffold. By decreasing the pore size and increasing the charge interaction, DBM/SAP scaffolds possess a much higher enriching yield for osteogenic cells and factors compared with DBM alone scaffolds. At the same time, SAP can build a cellular microenvironment for cell adhesion, proliferation, and differentiation that promotes bone reconstruction. As a result, a suitable bone graft fabricated by DBM/SAP scaffolds and bone marrow represents a new strategy and product for bone transplantation in the clinic.

  14. Assembly of neuronal connectivity by neurotrophic factors and leucine-rich repeat proteins

    Directory of Open Access Journals (Sweden)

    Fernanda Ledda

    2016-08-01

    Full Text Available Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.

  15. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    Science.gov (United States)

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For

  16. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin.

    Science.gov (United States)

    Jeffery, Daniel C B; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28-1 mutant and to a lesser extent in a cdc7-1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly.

  17. CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor i with chromatin

    Science.gov (United States)

    Jeffery, Daniel CB; Kakusho, Naoko; You, Zhiying; Gharib, Marlene; Wyse, Brandon; Drury, Erin; Weinreich, Michael; Thibault, Pierre; Verreault, Alain; Masai, Hisao; Yankulov, Krassimir

    2015-01-01

    Chromatin Assembly Factor I (CAF-I) plays a key role in the replication-coupled assembly of nucleosomes. It is expected that its function is linked to the regulation of the cell cycle, but little detail is available. Current models suggest that CAF-I is recruited to replication forks and to chromatin via an interaction between its Cac1p subunit and the replication sliding clamp, PCNA, and that this interaction is stimulated by the kinase CDC7. Here we show that another kinase, CDC28, phosphorylates Cac1p on serines 94 and 515 in early S phase and regulates its association with chromatin, but not its association with PCNA. Mutations in the Cac1p-phosphorylation sites of CDC28 but not of CDC7 substantially reduce the in vivo phosphorylation of Cac1p. However, mutations in the putative CDC7 target sites on Cac1p reduce its stability. The association of CAF-I with chromatin is impaired in a cdc28–1 mutant and to a lesser extent in a cdc7–1 mutant. In addition, mutations in the Cac1p-phosphorylation sites by both CDC28 and CDC7 reduce gene silencing at the telomeres. We propose that this phosphorylation represents a regulatory step in the recruitment of CAF-I to chromatin in early S phase that is distinct from the association of CAF-I with PCNA. Hence, we implicate CDC28 in the regulation of chromatin reassembly during DNA replication. These findings provide novel mechanistic insights on the links between cell-cycle regulation, DNA replication and chromatin reassembly. PMID:25602519

  18. Multiple functions of the von Willebrand Factor A domain in matrilins: secretion, assembly, and proteolysis

    Directory of Open Access Journals (Sweden)

    Kanbe Katsuaki

    2008-06-01

    Full Text Available Abstract The von Willebrand Factor A (vWF A domain is one of the most widely distributed structural modules in cell-matrix adhesive molecules such as intergrins and extracellular matrix proteins. Mutations in the vWF A domain of matrilin-3 cause multiple epiphyseal dysplasia (MED, however the pathological mechanism remains to be determined. Previously we showed that the vWF A domain in matrilin-1 mediates formation of a filamentous matrix network through metal-ion dependent adhesion sites in the domain. Here we show two new functions of the vWF A domain in cartilage-specific matrilins (1 and 3. First, vWF A domain regulates oligomerization of matrilins. Insertion of a vWF A domain into matrilin-3 converts the formation of a mixture of matrilin-3 tetramer, trimer, and dimer into a tetramer only, while deletion of a vWF A domain from matrilin-1 converts the formation of the native matrilin-1 trimer into a mixture of trimer and dimer. Second, the vWF A domain protects matrilin-1 from proteolysis. We identified a latent proteolytic site next to the vWF A2 domain in matrilin-1, which is sensitive to the inhibitors of matrix proteases. Deletion of the abutting vWF A domain results in degradation of matrilin-1, presumably by exposing the adjacent proteolytic site. In addition, we also confirmed the vWF A domain is vital for the secretion of matrilin-3. Secretion of the mutant matrilin-3 harbouring a point mutation within the vWF A domain, as occurred in MED patients, is markedly reduced and delayed, resulting from intracellular retention of the mutant matrilin-3. Taken together, our data suggest that different mutations/deletions of the vWF A domain in matrilins may lead to distinct pathological mechanisms due to the multiple functions of the vWF A domain.

  19. A Review of Two Multiscale Methods for the Simulation of Macromolecular Assemblies: Multiscale Perturbation and Multiscale Factorization

    Directory of Open Access Journals (Sweden)

    Stephen Pankavich

    2015-02-01

    Full Text Available Many mesoscopic N-atom systems derive their structural and dynamical properties from processes coupled across multiple scales in space and time. That is, they simultaneously deform or display collective behaviors, while experiencing atomic scale vibrations and collisions. Due to the large number of atoms involved and the need to simulate over long time periods of biological interest, traditional computational tools, like molecular dynamics, are often infeasible for such systems. Hence, in the current review article, we present and discuss two recent multiscale methods, stemming from the N-atom formulation and an underlying scale separation, that can be used to study such systems in a friction-dominated regime: multiscale perturbation theory and multiscale factorization. These novel analytic foundations provide a self-consistent approach to yield accurate and feasible long-time simulations with atomic detail for a variety of multiscale phenomena, such as viral structural transitions and macromolecular self-assembly. As such, the accuracy and efficiency of the associated algorithms are demonstrated for a few representative biological systems, including satellite tobacco mosaic virus (STMV and lactoferrin.

  20. Tissue Microarray-Based Evaluation of Chromatin Assembly Factor-1 (CAF-1/p60 as Tumour Prognostic Marker

    Directory of Open Access Journals (Sweden)

    Stefania Staibano

    2012-09-01

    Full Text Available In this study we aimed to confirm the emerging role of Chromatin Assembly Factor 1 (CAF-1 p60 as a new proliferation and prognostic marker for cancer and to test the usefulness of the tissue microarray technique (TMA for CAF-1 p60 rapid screening in several human malignancies. CAF-1 is a histone chaperone, regulating chromatin dynamics during DNA replication and repair in eukaryotics. TMA is a powerful high-throughput methodology in the study of cancer, allowing simultaneous assessment of different biomarkers within large numbers of tissue specimens. We generated TMA taking 3 mm diameter-core biopsies from oral squamous cell carcinoma, prostate cancer, salivary gland tumours and skin melanoma specimens, which had been previously tested for CAF-1 p60 on routine tissue sections. We also analysed, for the first time, 30 larynx and 30 skin squamous cell carcinomas. CAF-1 p60 resulted over-expressed in both the tissue sections and the TMA specimens, with the highest levels of expression in tumours which were more aggressive and metastasizing. Notably, a high degree of agreement was found between the CAF-1 p60 assessment on TMAs and on routine tissue sections. Our findings confirm the prognostic role of CAF-1 p60 and indicate TMA as a really advantageous method for CAF-1 p60 immunohistochemical screening, allowing savings on both tissue quantity and operator-time.

  1. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli

    OpenAIRE

    2014-01-01

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element–containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishe...

  2. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Science.gov (United States)

    Olcese, Chiara; Patel, Mitali P.; Shoemark, Amelia; Kiviluoto, Santeri; Legendre, Marie; Williams, Hywel J.; Vaughan, Cara K.; Hayward, Jane; Goldenberg, Alice; Emes, Richard D.; Munye, Mustafa M.; Dyer, Laura; Cahill, Thomas; Bevillard, Jeremy; Gehrig, Corinne; Guipponi, Michel; Chantot, Sandra; Duquesnoy, Philippe; Thomas, Lucie; Jeanson, Ludovic; Copin, Bruno; Tamalet, Aline; Thauvin-Robinet, Christel; Papon, Jean- François; Garin, Antoine; Pin, Isabelle; Vera, Gabriella; Aurora, Paul; Fassad, Mahmoud R.; Jenkins, Lucy; Boustred, Christopher; Cullup, Thomas; Dixon, Mellisa; Onoufriadis, Alexandros; Bush, Andrew; Chung, Eddie M. K.; Antonarakis, Stylianos E.; Loebinger, Michael R.; Wilson, Robert; Armengot, Miguel; Escudier, Estelle; Hogg, Claire; Al-Turki, Saeed; Anderson, Carl; Antony, Dinu; Barroso, Inês; Beales, Philip L.; Bentham, Jamie; Bhattacharya, Shoumo; Carss, Keren; Chatterjee, Krishna; Cirak, Sebahattin; Cosgrove, Catherine; Allan, Daly; Durbin, Richard; Fitzpatrick, David; Floyd, Jamie; Foley, A. Reghan; Franklin, Chris; Futema, Marta; Humphries, Steve E.; Hurles, Matt; McCarthy, Shane; Muddyman, Dawn; Muntoni, Francesco; Parker, Victoria; Payne, Felicity; Plagnol, Vincent; Raymond, Lucy; Savage, David B.; Scambler, Peter J.; Schmidts, Miriam; Semple, Robert; Serra, Eva; Stalker, Jim; van Kogelenberg, Margriet; Vijayarangakannan, Parthiban; Walter, Klaudia; Amselem, Serge; Sun, Zhaoxia; Bartoloni, Lucia; Blouin, Jean-Louis; Mitchison, Hannah M.

    2017-01-01

    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins. PMID:28176794

  3. Impact of gain compression factor on modulation characteristics of InGaAs/GaAs self-assembled quantum dot lasers

    Science.gov (United States)

    Kariminezhad, Farzaneh; Rajaei, Esfandiar; Fali, Alireza; Mirzaei, Reyhaneh

    2016-12-01

    This paper investigates the influence of gain compression factor on the modulation response of InGaAs/GaAs self-assembled quantum dot laser based on rate equations. For different gain compression factors the output power-current characteristics, light emissions of quantum dot laser have been simulated and effect of gain compression factor changes on quantum dot laser is illustrated. Also, small and large-signal response of quantum dot lasers is studied and the impact of the gain compression factor is presented. It explains that increase of gain compression factor, decreases small-signal modulation characteristics, nevertheless, improves large-signal response of quantum dot lasers. It helps to generate better laser signal quality, higher eye and smaller jitter. The large-signal behavior of a laser diode determines its capability for digital data transfer. The modulation speed of quantum dot lasers is of specific importance if such lasers are considered for optical communication systems.

  4. Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the Arabidopsis thaliana Transcription Factor NF-Y

    Institute of Scientific and Technical Information of China (English)

    Dieter Hackenberg; Yanfang Wu; Andrea Voigt; Robert Adams; Peter Schramm; Bernhard Grimm

    2012-01-01

    The eukaryotic transcription factor NF-Y consists of three subunits(A,B,and C),which are encoded in Arabidopsis thaliana in multigene families consisting of 10,13,and 13 genes,respectively.In principle,all potential combinations of the subunits are possible for the assembly of the heterotrimeric complex.We aimed at assessing the probability of each subunit to participate in the assembly of NF-Y.The evaluation of physical interactions among all members of the NF-Y subunit families indicate a strong requirement for NF-YB/NF-YC heterodimerization before the entire complex can be accomplished.By means of a modified yeast two-hybrid system assembly of all three subunits to a heterotrimeric complex was demonstrated.Using GFP fusion constructs,NF-YA and NF-YC localization in the nucleus was demonstrated,while NFYB is solely imported into the nucleus as a NF-YC-associated heterodimer NF-YC.This piggyback transport of the two Arabidopsis subunits differs from the import of the NF-Y heterotrimer of heterotrophic organisms.Based on a peptide structure model of the histone-fold-motifs,disulfide bonding among intramolecular conserved cysteine residues of NF-YB,which is responsible for the redox-regulated assembly of NF-YB and NF-YC in human and Aspergillus nidulans,can be excluded for Arabidopsis NF-YB.

  5. Cavity preparation/assembly techniques and impact on Q, realistic Q-factors in a module, review of modules

    Science.gov (United States)

    Kneisel, Peter

    2006-02-01

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO 2 snow cleaning and high temperature heat treatments for hydrogen degassing or post-purification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance ( Q-value and accelerating gradient Eacc) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY (TTF), Jlab (Upgrade) and SNS.

  6. Cavity preparation/assembly techniques and impact on Q, realistic Q-factors in a module, review of modules

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, Peter [Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)]. E-mail: kneisel@jlab.org

    2006-02-01

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or post-purification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q-value and accelerating gradient E {sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY (TTF), Jlab (Upgrade) and SNS.

  7. Cavity Preparation/assembly Techniques and Impact on Q, Realistic Q - Factors in a Module, Review of Modules

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2005-03-19

    This contribution summarizes the surface preparation procedures for niobium cavities presently used both in laboratory experiments and for modules, such as buffered chemical polishing (BCP), electropolishing (EP), high pressure ultrapure water rinsing (HPR), CO{sub 2} snow cleaning and high temperature heat treatments for hydrogen degassing or postpurification. The impact of surface treatments and the degree of cleanliness during assembly procedures on cavity performance (Q - value and accelerating gradient E{sub acc}) will be discussed. In addition, an attempt will be made to summarize the experiences made in module assemblies in different labs/projects such as DESY(TTF), Jlab (Upgrade) and SNS.

  8. Layer by layer assembly of albumin nanoparticles with selective recognition of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Cui, Wei; Wang, Anhe; Zhao, Jie; Yang, Xiaoke; Cai, Peng; Li, Junbai

    2016-03-01

    Crosslinked albumin nanoparticles which loaded with doxorubicin (DOX) were fabricated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and biocompatible polysaccharide, alginate (ALG), using layer-by-layer technique. Albumin nanoparticles exhibited narrow size distribution and fluorescent property. The assembled core/shell structure of the nanoparticles can be internalized more easily with the cancer cells, which attributes to TRAIL binding with death receptors. TRAIL still hold bioactive properties after assembled onto the particles. In addition, after loaded into the albumin core nanoparticles, DOX (as the chemotherapeutics) display a synergistic cytotoxic effect on cytotoxicity in combination with TRAIL in vitro. The core/shell nanostructured nanoparticles realized in this study would be used as a promising candidate for novel drug carriers.

  9. Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus.

    Science.gov (United States)

    Huang, Hsiu-Chen; Lee, Chung-Pei; Liu, Hui-Kang; Chang, Ming-Fu; Lai, Yu-Heng; Lee, Yu-Ching; Huang, Cheng

    2016-12-09

    Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro(205) was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly.

  10. Characterization of the Cytochrome C Oxidase Assembly Factor Cox19 of 'Saccharomyces Cerevisiae'

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, K.; Zhang, L.; Cobine, P.A.; George, G.N.; Winge, D.R.; /Utah U. /Saskatchewan U.

    2007-07-12

    Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX{sub 9}C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.

  11. Integration host factor assembly at the cohesive end site of the bacteriophage lambda genome: implications for viral DNA packaging and bacterial gene regulation.

    Science.gov (United States)

    Sanyal, Saurarshi J; Yang, Teng-Chieh; Catalano, Carlos Enrique

    2014-12-09

    Integration host factor (IHF) is an Escherichia coli protein involved in (i) condensation of the bacterial nucleoid and (ii) regulation of a variety of cellular functions. In its regulatory role, IHF binds to a specific sequence to introduce a strong bend into the DNA; this provides a duplex architecture conducive to the assembly of site-specific nucleoprotein complexes. Alternatively, the protein can bind in a sequence-independent manner that weakly bends and wraps the duplex to promote nucleoid formation. IHF is also required for the development of several viruses, including bacteriophage lambda, where it promotes site-specific assembly of a genome packaging motor required for lytic development. Multiple IHF consensus sequences have been identified within the packaging initiation site (cos), and we here interrogate IHF-cos binding interactions using complementary electrophoretic mobility shift (EMS) and analytical ultracentrifugation (AUC) approaches. IHF recognizes a single consensus sequence within cos (I1) to afford a strongly bent nucleoprotein complex. In contrast, IHF binds weakly but with positive cooperativity to nonspecific DNA to afford an ensemble of complexes with increasing masses and levels of condensation. Global analysis of the EMS and AUC data provides constrained thermodynamic binding constants and nearest neighbor cooperativity factors for binding of IHF to I1 and to nonspecific DNA substrates. At elevated IHF concentrations, the nucleoprotein complexes undergo a transition from a condensed to an extended rodlike conformation; specific binding of IHF to I1 imparts a significant energy barrier to the transition. The results provide insight into how IHF can assemble specific regulatory complexes in the background of extensive nonspecific DNA condensation.

  12. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  13. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    Science.gov (United States)

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  14. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors.

    Science.gov (United States)

    Alfonzo, Juan D; Lukeš, Julius

    2011-06-01

    Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.

  15. Yeast genetic analysis reveals the involvement of chromatin reassembly factors in repressing HIV-1 basal transcription.

    Directory of Open Access Journals (Sweden)

    Manuela Vanti

    2009-01-01

    Full Text Available Rebound of HIV viremia after interruption of anti-retroviral therapy is due to the small population of CD4+ T cells that remain latently infected. HIV-1 transcription is the main process controlling post-integration latency. Regulation of HIV-1 transcription takes place at both initiation and elongation levels. Pausing of RNA polymerase II at the 5' end of HIV-1 transcribed region (5'HIV-TR, which is immediately downstream of the transcription start site, plays an important role in the regulation of viral expression. The activation of HIV-1 transcription correlates with the rearrangement of a positioned nucleosome located at this region. These two facts suggest that the 5'HIV-TR contributes to inhibit basal transcription of those HIV-1 proviruses that remain latently inactive. However, little is known about the cell elements mediating the repressive role of the 5'HIV-TR. We performed a genetic analysis of this phenomenon in Saccharomyces cerevisiae after reconstructing a minimal HIV-1 transcriptional system in this yeast. Unexpectedly, we found that the critical role played by the 5'HIV-TR in maintaining low levels of basal transcription in yeast is mediated by FACT, Spt6, and Chd1, proteins so far associated with chromatin assembly and disassembly during ongoing transcription. We confirmed that this group of factors plays a role in HIV-1 postintegration latency in human cells by depleting the corresponding human orthologs with shRNAs, both in HIV latently infected cell populations and in particular single-integration clones, including a latent clone with a provirus integrated in a highly transcribed gene. Our results indicate that chromatin reassembly factors participate in the establishment of the equilibrium between activation and repression of HIV-1 when it integrates into the human genome, and they open the possibility of considering these factors as therapeutic targets of HIV-1 latency.

  16. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    Science.gov (United States)

    Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; van Bree, J.; Koenraad, P. M.; Averkiev, N. S.; Bayer, M.; Silov, A. Yu.

    2016-08-01

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, from 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.

  17. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum).

    Science.gov (United States)

    Li, Meng-Yao; Tan, Hua-Wei; Wang, Feng; Jiang, Qian; Xu, Zhi-Sheng; Tian, Chang; Xiong, Ai-Sheng

    2014-01-01

    Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  18. De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum.

    Directory of Open Access Journals (Sweden)

    Meng-Yao Li

    Full Text Available Parsley is an important biennial Apiaceae species that is widely cultivated as herb, spice, and vegetable. Previous studies on parsley principally focused on its physiological and biochemical properties, including phenolic compound and volatile oil contents. However, little is known about the molecular and genetic properties of parsley. In this study, 23,686,707 high-quality reads were obtained and assembled into 81,852 transcripts and 50,161 unigenes for the first time. Functional annotation showed that 30,516 unigenes had sequence similarity to known genes. In addition, 3,244 putative simple sequence repeats were detected in curly parsley. Finally, 1,569 of the identified unigenes belonged to 58 transcription factor families. Various abiotic stresses have a strong detrimental effect on the yield and quality of parsley. AP2/ERF transcription factors have important functions in plant development, hormonal regulation, and abiotic response. A total of 88 putative AP2/ERF factors were identified from the transcriptome sequence of parsley. Seven AP2/ERF transcription factors were selected in this study to analyze the expression profiles of parsley under different abiotic stresses. Our data provide a potentially valuable resource that can be used for intensive parsley research.

  19. Expression and purification of a natural N-terminal pre-ligand assembly domain of tumor necrosis factor receptor 1 (TNFR1 PLAD) and preliminary activity determination.

    Science.gov (United States)

    Cao, Jin; Meng, Fang; Gao, Xiangdong; Dong, Hongxia; Yao, Wenbing

    2011-04-01

    A domain at the NH(2) terminal (N-terminal) of tumor necrosis factor receptor (TNFR) termed the pre-ligand binding assembly domain (PLAD). The finding that PLAD can mediate a selective TNFR assembly in previously researches provides a novel target to the prevention of TNFR signaling in immune-mediated inflammatory diseases (IMID). In this study, a natural N-terminal TNFR1 PLAD was obtained for the first time through the methods of GST-tag fusion protein expression and enterokinase cleavage. After purification with a Q Sepharose Fast Flow column, a natural N-terminal TNFR1 PLAD which purity was up to 95%, was obtained and was identified using Nano LC-ECI-MS/MS. Secondary structure analysis of PLAD was carried out using circular dichroism spectra (CD). After that, the TNFR1 PLAD in vitro anti-TNFα activity and the specific TNFR1 affinity were determined. The results proved that the natural N-terminal TNFR1 PLAD can selectively inhibit TNFα bioactivity mainly through TNFR1. It infers an effective and safe strategy for treating variety of IMID with a low risk of side effects in future.

  20. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability.

    Directory of Open Access Journals (Sweden)

    Ya-Huang Luo

    Full Text Available Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA, leaf carbon concentration (LCC, leaf nitrogen concentration (LNC and leaf phosphorus concentration (LPC for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables. Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3% in three other traits (height, LNC and LPC despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.

  1. De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation.

    Science.gov (United States)

    Huang, Ya-Yi; Lee, Chueh-Pai; Fu, Jason L; Chang, Bill Chia-Han; Matzke, Antonius J M; Matzke, Marjori

    2014-09-04

    Coconut palm (Cocos nucifera) is a symbol of the tropics and a source of numerous edible and nonedible products of economic value. Despite its nutritional and industrial significance, coconut remains under-represented in public repositories for genomic and transcriptomic data. We report de novo transcript assembly from RNA-seq data and analysis of gene expression in seed tissues (embryo and endosperm) and leaves of a dwarf coconut variety. Assembly of 10 GB sequencing data for each tissue resulted in 58,211 total unigenes in embryo, 61,152 in endosperm, and 33,446 in leaf. Within each unigene pool, 24,857 could be annotated in embryo, 29,731 could be annotated in endosperm, and 26,064 could be annotated in leaf. A KEGG analysis identified 138, 138, and 139 pathways, respectively, in transcriptomes of embryo, endosperm, and leaf tissues. Given the extraordinarily large size of coconut seeds and the importance of small RNA-mediated epigenetic regulation during seed development in model plants, we used homology searches to identify putative homologs of factors required for RNA-directed DNA methylation in coconut. The findings suggest that RNA-directed DNA methylation is important during coconut seed development, particularly in maturing endosperm. This dataset will expand the genomics resources available for coconut and provide a foundation for more detailed analyses that may assist molecular breeding strategies aimed at improving this major tropical crop.

  2. The Oligomeric Outer Dynein Arm Assembly Factor CCDC103 Is Tightly Integrated within the Ciliary Axoneme and Exhibits Periodic Binding to Microtubules*

    Science.gov (United States)

    King, Stephen M.; Patel-King, Ramila S.

    2015-01-01

    CCDC103 is an ∼29-kDa protein consisting of a central RPAP3_C domain flanked by N- and C-terminal coiled coils. Defects in CCDC103 lead to primary ciliary dyskinesia caused by the loss of outer dynein arms. This protein is present along the entire length of the ciliary axoneme and does not require other dynein or docking complex components for its integration. Unlike other known dynein assembly factors within the axoneme, CCDC103 is not solubilized by 0.6 m NaCl and requires more chaotropic conditions, such as 0.5 m KI. Alternatively, it can be extracted using 0.3% sarkosyl. CCDC103 forms stable dimers and other oligomers in solution through interactions involving the central domain. The smallest particle observed by dynamic light scattering has a hydrodynamic diameter of ∼25 nm. Furthermore, CCDC103 binds microtubules directly, forming ∼9-nm diameter particles that exhibit a 12-nm spacing on the microtubule lattice, suggesting that there may be two CCDC103 units per outer arm dynein repeat. Although the outer dynein arm docking complex is necessary to form arrays of dyneins along microtubules, it is not sufficient to set up a single array in a precise location on each axonemal doublet. We propose that CCDC103 helps generate a high-affinity site on the doublets for outer arm assembly, either through direct interactions or indirectly, perhaps by modifying the underlying microtubule lattice. PMID:25572396

  3. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity.

    Science.gov (United States)

    McNeil, Matthew B; Fineran, Peter C

    2013-10-29

    Succinate dehydrogenase (SDH) is an important respiratory enzyme that plays a critical role in the generation of energy in the majority of eukaryotes, bacteria, and archaea. The activity of SDH is dependent on the covalent attachment of the redox cofactor FAD to the flavoprotein subunit SdhA. In the Gram-negative bacteria Escherichia coli and Serratia sp. ATCC 39006, the covalent attachment of FAD to SdhA is dependent on the FAD assembly factor SdhE (YgfY). Although mechanisms have been proposed, experimental evidence that elucidates the molecular details of SdhE-mediated flavinylation are scarce. In this study, truncation and alanine swap mutagenesis of SdhE identified a highly conserved RGxxE motif that was important for SdhE function. Interestingly, RGxxE site-directed variants were not impaired in terms of protein folding or interactions with SdhA. Purification and analysis of SdhA from different mutant backgrounds demonstrated that SdhE interacts with and flavinylates folded SdhA without a requirement for the assembly of the entire SDH complex. SdhA was also partially active in the absence of SdhE, suggesting that SdhA is able to attach FAD through an inefficient autocatalytic mechanism. The results presented are of widespread relevance because SdhE and SDH are required for bacterial pathogenesis and mutations in the eukaryotic homologues of SdhE and SDH are associated with cancer in humans.

  4. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis.

    Directory of Open Access Journals (Sweden)

    Nancy A Turner

    Full Text Available BACKGROUND: Vascular endothelial cells (ECs express and release protein components of the complement pathways, as well as secreting and anchoring ultra-large von Willebrand factor (ULVWF multimers in long string-like structures that initiate platelet adhesion during hemostasis and thrombosis. The alternative complement pathway (AP is an important non-antibody-requiring host defense system. Thrombotic microangiopathies can be associated with defective regulation of the AP (atypical hemolytic-uremic syndrome or with inadequate cleavage by ADAMTS-13 of ULVWF multimeric strings secreted by/anchored to ECs (thrombotic thrombocytopenic purpura. Our goal was to determine if EC-anchored ULVWF strings caused the assembly and activation of AP components, thereby linking two essential defense mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We quantified gene expression of these complement components in cultured human umbilical vein endothelial cells (HUVECs by real-time PCR: C3 and C5; complement factor (CF B, CFD, CFP, CFH and CFI of the AP; and C4 of the classical and lectin (but not alternative complement pathways. We used fluorescent microscopy, monospecific antibodies against complement components, fluorescent secondary antibodies, and the analysis of >150 images to quantify the attachment of HUVEC-released complement proteins to ULVWF strings secreted by, and anchored to, the HUVECs (under conditions of ADAMTS-13 inhibition. We found that HUVEC-released C4 did not attach to ULVWF strings, ruling out activation of the classical and lectin pathways by the strings. In contrast, C3, FB, FD, FP and C5, FH and FI attached to ULVWF strings in quantitative patterns consistent with assembly of the AP components into active complexes. This was verified when non-functional FB blocked the formation of AP C3 convertase complexes (C3bBb on ULVWF strings. CONCLUSIONS/SIGNIFICANCE: AP components are assembled and activated on EC-secreted/anchored ULVWF multimeric

  5. The dynamic characteristics and linewidth enhancement factor of quasi-supercontinuum self-assembled quantum dot lasers

    KAUST Repository

    Tan, Cheeloon

    2009-09-01

    The theoretical analysis of optical gain and chirp characteristics of a semiconductor quantum dot (Qdot) broadband laser is presented. The model based on population rate equations, has been developed to investigate the multiple states lasing or quasi-supercontinuum lasing in InGaAs/GaAs Qdot laser. The model takes into account factors such as Qdot size fluctuation, finite carrier lifetime in each confined energy states, wetting layer induced nonconfined states and the presence of continuum states. Hence, calculation of the linewidth enhancement factor together with the variation of optical gain and index change across the spectrum of interest becomes critical to yield a basic understanding on the limitation of this new class of lasers. Such findings are important for the design of a practical single broadband laser diode for applications in low coherence interferometry sensing and optical fiber communications. Calculation results show that the linewidth enhancement factor from the ground state of broadband Qdot lasers (α ∼ 3) is slightly larger but in the same order of magnitude as compared to that of conventional Qdot lasers. The gain spectrum of the quasi-supercontinuum lasing system exhibits almost twice the bandwidth than conventional lasers but with comparable material differential gain (∼ 10-16 cm2) and material differential refractive index (∼ 10sup>-20 cm3 ) near current threshold. © 2009 IEEE.

  6. Dynein Light Chain LC8 Is Required for RNA Polymerase I-Mediated Transcription in Trypanosoma brucei, Facilitating Assembly and Promoter Binding of Class I Transcription Factor A.

    Science.gov (United States)

    Kirkham, Justin K; Park, Sung Hee; Nguyen, Tu N; Lee, Ju Huck; Günzl, Arthur

    2016-01-01

    Dynein light chain LC8 is highly conserved among eukaryotes and has both dynein-dependent and dynein-independent functions. Interestingly, LC8 was identified as a subunit of the class I transcription factor A (CITFA), which is essential for transcription by RNA polymerase I (Pol I) in the parasite Trypanosoma brucei. Given that LC8 has never been identified with a basal transcription factor and that T. brucei relies on RNA Pol I for expressing the variant surface glycoprotein (VSG), the key protein in antigenic variation, we investigated the CITFA-specific role of LC8. Depletion of LC8 from mammalian-infective bloodstream trypanosomes affected cell cycle progression, reduced the abundances of rRNA and VSG mRNA, and resulted in rapid cell death. Sedimentation analysis, coimmunoprecipitation of recombinant proteins, and bioinformatic analysis revealed an LC8 binding site near the N terminus of the subunit CITFA2. Mutation of this site prevented the formation of a CITFA2-LC8 heterotetramer and, in vivo, was lethal, affecting assembly of a functional CITFA complex. Gel shift assays and UV cross-linking experiments identified CITFA2 as a promoter-binding CITFA subunit. Accordingly, silencing of LC8 or CITFA2 resulted in a loss of CITFA from RNA Pol I promoters. Hence, we discovered an LC8 interaction that, unprecedentedly, has a basal function in transcription.

  7. The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular iron levels.

    Science.gov (United States)

    Miles, Anna L; Burr, Stephen P; Grice, Guinevere L; Nathan, James A

    2017-03-15

    Hypoxia Inducible transcription Factors (HIFs) are principally regulated by the 2-oxoglutarate and Iron(II) prolyl hydroxylase (PHD) enzymes, which hydroxylate the HIFα subunit, facilitating its proteasome-mediated degradation. Observations that HIFα hydroxylation can be impaired even when oxygen is sufficient emphasise the importance of understanding the complex nature of PHD regulation. Here, we use an unbiased genome-wide genetic screen in near-haploid human cells to uncover cellular processes that regulate HIF1α. We identify that genetic disruption of the Vacuolar H+ ATPase (V-ATPase), the key proton pump for endo-lysosomal acidification, and two previously uncharacterised V-ATPase assembly factors, TMEM199 and CCDC115, stabilise HIF1α in aerobic conditions. Rather than preventing the lysosomal degradation of HIF1α, disrupting the V-ATPase results in intracellular iron depletion, thereby impairing PHD activity and leading to HIF activation. Iron supplementation directly restores PHD catalytic activity following V-ATPase inhibition, revealing important links between the V-ATPase, iron metabolism and HIFs.

  8. Inhibition of N-terminal lysines acetylation and transcription factor assembly by epirubicin induced deranged cell homeostasis.

    Directory of Open Access Journals (Sweden)

    Shahper N Khan

    Full Text Available Epirubicin (EPI, an anthracycline antitumour antibiotic, is a known intercalating and DNA damaging agent. Here, we study the molecular interaction of EPI with histones and other cellular targets. EPI binding with histone core protein was predicted with spectroscopic and computational techniques. The molecular distance r, between donor (histone H3 and acceptor (EPI was estimated using Förster's theory of non-radiation energy transfer and the detailed binding phenomenon is expounded. Interestingly, the concentration dependent reduction in the acetylated states of histone H3 K9/K14 was observed suggesting more repressed chromatin state on EPI treatment. Its binding site near N-terminal lysines is further characterized by thermodynamic determinants and molecular docking studies. Specific DNA binding and inhibition of transcription factor (Tf-DNA complex formation implicates EPI induced transcriptional inhibition. EPI also showed significant cell cycle arrest in drug treated cells. Chromatin fragmentation and loss of membrane integrity in EPI treated cells is suggestive of their commitment to cell death. This study provides an analysis of nucleosome dynamics during EPI treatment and provides a novel insight into its action.

  9. DNA-binding factors assemble in a sequence-specific manner on the maize mitochondrial atpA promoter.

    Science.gov (United States)

    Chang, C C; Stern, D B

    1999-06-01

    The maize mitochondrial atpA promoter has been well-characterized using in vitro transcription. The functional elements of this promoter comprise a central domain extending from -7 to +5 relative to the transcription start site, and an upstream domain of 1-3 bp that is purine-rich and centered around positions -11 to -12. As a first step in characterizing the transcriptional machinery, exonuclease-III mapping (toeprinting) was used to map the borders of DNA-protein interactions using either a 107-bp wild-type template or transcriptionally-inactive templates containing linker-scanning mutations. These experiments revealed that, with a wild-type promoter, protein factors occupy as much as 36 bp, from positions -20 to +16 relative to the transcription initiation site. Protein-binding patterns were altered when the linker-scanning mutants were used, suggesting that either the number or conformation of DNA-binding proteins could account for their inability to promote transcription initiation.

  10. Distinct roles of Ser-764 and Lys-773 at the N terminus of von Willebrand factor in complex assembly with coagulation factor VIII.

    Science.gov (United States)

    Castro-Núñez, Lydia; Bloem, Esther; Boon-Spijker, Mariëtte G; van der Zwaan, Carmen; van den Biggelaar, Maartje; Mertens, Koen; Meijer, Alexander B

    2013-01-04

    Complex formation between coagulation factor VIII (FVIII) and von Willebrand factor (VWF) is of critical importance to protect FVIII from rapid in vivo clearance and degradation. We have now employed a chemical footprinting approach to identify regions on VWF involved in FVIII binding. To this end, lysine amino acid residues of VWF were chemically modified in the presence of FVIII or activated FVIII, which does not bind VWF. Nano-LC-MS analysis showed that the lysine residues of almost all identified VWF peptides were not differentially modified upon incubation of VWF with FVIII or activated FVIII. However, Lys-773 of peptide Ser-766-Leu-774 was protected from chemical modification in the presence of FVIII. In addition, peptide Ser-764-Arg-782, which comprises the first 19 amino acid residues of mature VWF, showed a differential modification of both Lys-773 and the α-amino group of Ser-764. To verify the role of Lys-773 and the N-terminal Ser-764 in FVIII binding, we employed VWF variants in which either Lys-773 or Ser-764 was replaced with Ala. Surface plasmon resonance analysis and competition studies revealed that VWF(K773A) exhibited reduced binding to FVIII and the FVIII light chain, which harbors the VWF-binding site. In contrast, VWF(S764A) revealed more effective binding to FVIII and the FVIII light chain compared with WT VWF. The results of our study show that the N terminus of VWF is critical for the interaction with FVIII and that Ser-764 and Lys-773 have opposite roles in the binding mechanism.

  11. The intrinsic factor-vitamin B12 receptor, cubilin, is assembled into trimers via a coiled-coil alpha-helix.

    Science.gov (United States)

    Lindblom, A; Quadt, N; Marsh, T; Aeschlimann, D; Mörgelin, M; Mann, K; Maurer, P; Paulsson, M

    1999-03-05

    A large protein was purified from bovine kidney, using selective extraction with EDTA to solubilize proteins anchored by divalent cation-dependent interactions. An antiserum raised against the purified protein labeled the apical cell surface of the epithelial cells in proximal tubules and the luminal surface of small intestine. Ten peptide sequences, derived from the protein, all matched the recently published sequences for rat (Moestrup, S. K., Kozyraki, R., Kristiansen, M., Kaysen, J. H., Holm Rasmussen, H., Brault, D., Pontillon, F., Goda, F. O., Christensen, E. I., Hammond, T. G., and Verroust, P. J. (1998) J. Biol. Chem. 273, 5235-5242) and human cubilin, a receptor for intrinsic factor-vitamin B12 complexes, identifying the protein as bovine cubilin. In electron microscopy, a three-armed structure was seen, indicating an oligomerization of three identical subunits. This model was supported by the Mr values of about 1,500,000 for the intact protein and 440,000 for its subunits obtained by analytical ultracentrifugation. In a search for a potential assembly domain, we identified a region of heptad repeats in the N-terminal part of the cubilin sequence. Computer-assisted analysis supported the presence of a coiled-coil alpha-helix between amino acids 103 and 132 of the human cubilin sequence and predicted the formation of a triple coiled-coil. We therefore conclude that cubilin forms a noncovalent trimer of identical subunits connected by an N-terminal coiled-coil alpha-helix.

  12. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli.

    Science.gov (United States)

    Smith, Corey L; Matheson, Timothy D; Trombly, Daniel J; Sun, Xiaoming; Campeau, Eric; Han, Xuemei; Yates, John R; Kaufman, Paul D

    2014-09-15

    Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element-containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus.

  13. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput.

  14. Sabot assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bzorgi, Fariborz

    2016-11-08

    A sabot assembly includes a projectile and a housing dimensioned and configured for receiving the projectile. An air pressure cavity having a cavity diameter is disposed between a front end and a rear end of the housing. Air intake nozzles are in fluid communication with the air pressure cavity and each has a nozzle diameter less than the cavity diameter. In operation, air flows through the plurality of air intake nozzles and into the air pressure cavity upon firing of the projectile from a gun barrel to pressurize the air pressure cavity for assisting in separation of the housing from the projectile upon the sabot assembly exiting the gun barrel.

  15. On Constraints in Assembly Planning

    Energy Technology Data Exchange (ETDEWEB)

    Calton, T.L.; Jones, R.E.; Wilson, R.H.

    1998-12-17

    Constraints on assembly plans vary depending on product, assembly facility, assembly volume, and many other factors. Assembly costs and other measures to optimize vary just as widely. To be effective, computer-aided assembly planning systems must allow users to express the plan selection criteria that appIy to their products and production environments. We begin this article by surveying the types of user criteria, both constraints and quality measures, that have been accepted by assembly planning systems to date. The survey is organized along several dimensions, including strategic vs. tactical criteria; manufacturing requirements VS. requirements of the automated planning process itself and the information needed to assess compliance with each criterion. The latter strongly influences the efficiency of planning. We then focus on constraints. We describe a framework to support a wide variety of user constraints for intuitive and efficient assembly planning. Our framework expresses all constraints on a sequencing level, specifying orders and conditions on part mating operations in a number of ways. Constraints are implemented as simple procedures that either accept or reject assembly operations proposed by the planner. For efficiency, some constraints are supplemented with special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We describe an implementation of the framework in a computer-aided assembly planning system and experiments applying the system to a number of complex assemblies, including one with 472 parts.

  16. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  17. Focal Plane Image Assembly of Subpixel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the scanning assembly principle and construction of scanning assembly sample.The factors that affect assembly accuracy are analyzed.There are two steps in CCD focal plane scanning assembly.The first is rough assembly,and the second is accurate assembly.In this paper,the moiré fringe is introduced in judging assembly accuracy directly and accurately.The equation for optical transmission characteristics of CCD Moiré fringes is presented.The measurement of Moiré fringes can be completed when some conditions are satisfied.2D-assembly error can be obtained by using digital correlation filtering technique.Finally,the result of focal plane scanning assembly is presented.The result is in good accordance with theory.

  18. Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death.

    Science.gov (United States)

    Sedger, Lisa M; Osvath, Sarah R; Xu, Xiao-Ming; Li, Grace; Chan, Francis K-M; Barrett, John W; McFadden, Grant

    2006-09-01

    The poxvirus tumor necrosis factor receptor (TNFR) homologue T2 has immunomodulatory properties; secreted myxoma virus T2 (M-T2) protein binds and inhibits rabbit TNF-alpha, while intracellular M-T2 blocks virus-induced lymphocyte apoptosis. Here, we define the antiapoptotic function as inhibition of TNFR-mediated death via a highly conserved viral preligand assembly domain (vPLAD). Jurkat cell lines constitutively expressing M-T2 were generated and shown to be resistant to UV irradiation-, etoposide-, and cycloheximide-induced death. These cells were also resistant to human TNF-alpha, but M-T2 expression did not alter surface expression levels of TNFRs. Previous studies indicated that T2's antiapoptotic function was conferred by the N-terminal region of the protein, and further examination of this region revealed a highly conserved N-terminal vPLAD, which is present in all poxvirus T2-like molecules. In cellular TNFRs and TNF-alpha-related apoptosis-inducing ligand (TRAIL) receptors (TRAILRs), PLAD controls receptor signaling competency prior to ligand binding. Here, we show that M-T2 potently inhibits TNFR1-induced death in a manner requiring the M-T2 vPLAD. Furthermore, we demonstrate that M-T2 physically associates with and colocalizes with human TNFRs but does not prevent human TNF-alpha binding to cellular receptors. Thus, M-T2 vPLAD is a species-nonspecific dominant-negative inhibitor of cellular TNFR1 function. Given that the PLAD is conserved in all known poxvirus T2-like molecules, we predict that it plays an important function in each of these proteins. Moreover, that the vPLAD confers an important antiapoptotic function confirms this domain as a potential target in the development of the next generation of TNF-alpha/TNFR therapeutics.

  19. Dump assembly

    Science.gov (United States)

    Goldmann, Louis H.

    1986-01-01

    A dump assembly having a fixed conduit and a rotatable conduit provided with overlapping plates, respectively, at their adjacent ends. The plates are formed with openings, respectively, normally offset from each other to block flow. The other end of the rotatable conduit is provided with means for securing the open end of a filled container thereto. Rotation of the rotatable conduit raises and inverts the container to empty the contents while concurrently aligning the conduit openings to permit flow of material therethrough.

  20. United assembly algorithm for optical burst switching

    Institute of Scientific and Technical Information of China (English)

    Jinhui Yu(于金辉); Yijun Yang(杨教军); Yuehua Chen(陈月华); Ge Fan(范戈)

    2003-01-01

    Optical burst switching (OBS) is a promising optical switching technology. The burst assembly algorithm controls burst assembly, which significantly impacts performance of OBS network. This paper provides a new assembly algorithm, united assembly algorithm, which has more practicability than conventional algorithms. In addition, some factors impacting selections of parameters of this algorithm are discussed and the performance of this algorithm is studied by computer simulation.

  1. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  2. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  3. Job Satisfaction and Its Influential Factors in Assembly Line Workers%流水线作业工人工作满意感及其影响因素

    Institute of Scientific and Technical Information of China (English)

    王芳芳; 余善法

    2011-01-01

    目的 探讨流水线作业工人工作满意感与职业应激相关因素的关系.方法采取整群抽样方法对某电器厂流水线178名作业工人进行调查.使用问卷调查人口统计学特征、工作满意感、职业紧张因素、身心健康状况和个性特征.结果 t检验结果显示,初中文化程度者的工作满意感评分比高中及以上文化程度者均较高,工龄≤1.75 a的工人比工龄1.75 a的工人工作满意感得分高,差异有统计学意义(P<0.05).协方差分析结果显示,工作满意感高水平组工作心理需求、工作躯体需求、外在付出、工作心理控制源、抑郁症状、每日紧张感评分低于低水平组,而上级支持、回报、决策自由度、提升机会、组织忠诚度、情绪平衡评分高于低水平组,差异有统计学意义(P<0.05或P<0.01).pearson相关结果显示,工作满意感与工作心理需求、外在付出、工作心理控制源、抑郁症状、每日紧张感呈负相关(P<0.01),与上级支持、同事支持、回报、组织忠诚度、心理卫生、情绪平衡呈正相关(P<0.05或P<0.01).多因素logistic回归结果表明,文化程度与工作满意感有关,上级支持(OR=0.24)、回报(OR=0.25)、情绪平衡(OR=0.31)、组织忠诚度(OR=0.39)是工作满意感的保护因素.结论 文化程度、工龄、职业应激相关因素对工作满意感有较大影响.%Objective To explore the correlation between the job satisfaction and related factors of occupational stress in assembly line workers. Methods 178 assembly line workers were investigated by group sampling method. The questionnaire used in investigation included demographics, job satisfaction,occupational stressors, physical and mental health status, and personalities. Results 1) t tests showed that the job satisfaction scores of workers with junior high school education were higher than those with high school education; the workers with working age≤ 1.75 years had higher job

  4. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  5. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  6. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  7. The Yarrowia lipolytica gene PAY5 encodes a peroxisomal integral membrane protein homologous to the mammalian peroxisome assembly factor PAF-1

    NARCIS (Netherlands)

    Eitzen, Gary A.; Titorenko, Vladimir I.; Smith, Jennifer J.; Veenhuis, Marten; Szilard, Rachel K.; Rachubinski, Richard A.

    1996-01-01

    Pay mutants of the yeast Yarrowia lipolytica fail to assemble functional peroxisomes. One mutant strain, pay5-1, lacks normal peroxisomes and instead contains irregular vesicular structures surrounded by multiple unit membranes. The pay5-1 mutant is not totally deficient in peroxisomal matrix protei

  8. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter.

    Science.gov (United States)

    Paupe, Vincent; Prudent, Julien; Dassa, Emmanuel P; Rendon, Olga Zurita; Shoubridge, Eric A

    2015-01-06

    Mitochondrial calcium is an important modulator of cellular metabolism. CCDC90A was reported to be a regulator of the mitochondrial calcium uniporter (MCU) complex, a selective channel that controls mitochondrial calcium uptake, and hence was renamed MCUR1. Here we show that suppression of CCDC90A in human fibroblasts produces a specific cytochrome c oxidase (COX) assembly defect, resulting in decreased mitochondrial membrane potential and reduced mitochondrial calcium uptake capacity. Fibroblasts from patients with COX assembly defects due to mutations in TACO1 or COX10 also showed reduced mitochondrial membrane potential and impaired calcium uptake capacity, both of which were rescued by expression of the respective wild-type cDNAs. Deletion of fmp32, a homolog of CCDC90A in Saccharomyces cerevisiae, an organism that lacks an MCU, also produces a COX deficiency, demonstrating that the function of CCDC90A is evolutionarily conserved. We conclude that CCDC90A plays a role in COX assembly and does not directly regulate MCU.

  9. Research Progress of Influence Factors on the Preparation of Self-assembled Monolayers on Gold%金电极表面上硫醇自组装的影响因素研究进展

    Institute of Scientific and Technical Information of China (English)

    李志果; 戴建远; 史艳青; 毕树平

    2012-01-01

    本文综述了金表面上硫醇自组装的影响因素研究进展,包含表面预处理、电位控制、外加超声、微波和磁场、金属离子欠电位沉积和组装方式等几个方面.通过金表面上硫醇自组装影响因素的总结探讨,对硫醇单层的快速可控与重现构建具有重要的指导意义.%The research progress of influence factors on the preparation of self-assembled monolayers (SAMs) on gold is reviewed systematically, which includes surface pretreatment, potential control, irradiation( ultrasonic, microwave or magnetic field) , underpotential deposition, assembly method, etc. The summarization and discussion of influence factors is significant for constructing SAMs on gold fast, controllably and reproducibly.

  10. Probe tip heating assembly

    Science.gov (United States)

    Schmitz, Roger William; Oh, Yunje

    2016-10-25

    A heating assembly configured for use in mechanical testing at a scale of microns or less. The heating assembly includes a probe tip assembly configured for coupling with a transducer of the mechanical testing system. The probe tip assembly includes a probe tip heater system having a heating element, a probe tip coupled with the probe tip heater system, and a heater socket assembly. The heater socket assembly, in one example, includes a yoke and a heater interface that form a socket within the heater socket assembly. The probe tip heater system, coupled with the probe tip, is slidably received and clamped within the socket.

  11. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  12. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.

    Science.gov (United States)

    Whisenant, Thomas C; Peralta, Eigen R; Aarreberg, Lauren D; Gao, Nina J; Head, Steven R; Ordoukhanian, Phillip; Williamson, Jamie R; Salomon, Daniel R

    2015-01-01

    Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA

  13. The Role of CHD1 in DNA Rearrangements and Progression of Prostate Cancer

    Science.gov (United States)

    2013-07-01

    inability to reliably distinguish between these two forms of the disease, especially at early stages, has resulted in over-treatment of many and under...prostate cancer PCa is very limited, especially at an early stage, considerable effort has been made to identify molecular markers that can be used to...purchased from OriGene (Rockville, MD) and used for transfection of human cell lines following the manufacturer’s instructions. These shRNAs

  14. Controlled assembly of copper phthalocyanine with 1-iodooctadecane

    Institute of Scientific and Technical Information of China (English)

    LEI Shengbin; WANG Chen; WAN Lijun; BAI Chunli

    2003-01-01

    The binary assembly behavior of 1-iodoocta- decane with substituted phthalocyanine (Pc) is studied using the scanning tunneling microscopy (STM). By altering the substituted alkyl groups attached to the phthalocyanine ring, either uniform assembly or phase separation behavior can be observed. It is suggested that the strength of intermolecular interaction between phthalocyanine molecules is the determining factor for the assembly structure.

  15. Tuning the g-factor of neutral and charged excitons confined to self-assembled (Al,Ga)As shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Corfdir, P., E-mail: corfdir@pdi-berlin.de; Van Hattem, B.; Phillips, R. T. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Fontana, Y.; Russo-Averchi, E.; Heiss, M.; Fontcuberta i Morral, A. [Laboratoire des Matériaux Semiconducteurs, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne (Switzerland)

    2014-12-01

    We study the neutral exciton (X) and charged exciton (CX) transitions from (Al,Ga)As shell quantum dots located in core-shell nanowires, in the presence of a magnetic field. The g-factors and the diamagnetic coefficients of both the X and the CX depend on the orientation of the field with respect to the nanowire axis. The aspect ratio of the X wavefunction is quantified based on the anisotropy of the diamagnetic coefficient. For specific orientations of the magnetic field, it is possible to cancel the g-factor of the bright states of the X and the CX by means of an inversion of the sign of the hole's g-factor, which is promising for quantum information processing applications.

  16. Dgp71WD is required for the assembly of the acentrosomal Meiosis I spindle, and is not a general targeting factor for the γ-TuRC

    Directory of Open Access Journals (Sweden)

    Richard F. Reschen

    2012-03-01

    Dgp71WD/Nedd1 proteins are essential for mitotic spindle formation. In human cells, Nedd1 targets γ-tubulin to both centrosomes and spindles, but in other organisms the function of Dgp71WD/Nedd1 is less clear. In Drosophila cells, Dgp71WD plays a major part in targeting γ-tubulin to spindles, but not centrosomes, while in Xenopus egg extracts, Nedd1 acts as a more general microtubule (MT organiser that can function independently of γ-tubulin. The interpretation of these studies, however, is complicated by the fact that some residual Dgp71WD/Nedd1 is likely present in the cells/extracts analysed. Here we generate a Dgp71WD null mutant lacking all but the last 12 nucleotides of coding sequence. The complete loss of Dgp71WD has no quantifiable effect on γ-tubulin or Centrosomin recruitment to the centrosome in larval brain cells. The recruitment of γ-tubulin to spindle MTs, however, is severely impaired, and spindle MT density is reduced in a manner that is indistinguishable from cells lacking Augmin or γ-TuRC function. In contrast, the absence of Dgp71WD leads to defects in the assembly of the acentrosomal female Meiosis I spindle that are more severe than those seen in Augmin or γ-TuRC mutants, indicating that Dgp71WD has additional functions that are independent of these complexes in oocytes. Moreover, the localisation of bicoid RNA during oogenesis, which requires γ-TuRC function, is unperturbed in Dgp71WD120 mutants. Thus, Dgp71WD is not simply a general cofactor required for γ-TuRC and/or Augmin targeting, and it appears to have a crucial role independent of these complexes in the acentrosomal Meiosis I spindle.

  17. 汽车装配作业工人肌肉骨骼损伤的流行病学调查研究%The epidemiologicai study of work-related musculoskeletal disorders and related factors among automobile assembly workers

    Institute of Scientific and Technical Information of China (English)

    王忠旭; 姜海强; 秦汝莉; 李玉珍; 张雪艳; 贾宁; 张秋玲; 李刚; 赵杰; 李焕焕

    2011-01-01

    Objective To investigate the work-related musculoskeletal disorders among automobile assembly workers, to discusses the related risk factors and their relationship.Method The selected 1508 automobile assembly workers from a north car manufacturing company were regarded as the study object.The hazard zone jobs checklist, Nordic musculoskeletal symptom questionnaire ( NMQ ) and pain questionnaire were used to perform the epidemiological cross-sectional and retrospective survey and study for the General status,awkward ergonomics factors and related influencing factors, and musculoskeletal disorders of workers.Results The predominant body sites of occurring WMSDs among automobile assembly workers were mainly low back,wrist, neck and shoulders, the predominant workshop section of occurring WMSDs were mostly concentrated in engine compartment, interior ornament, door cover, chassis and debugging section.The predominant body site of WMSDs among engine compartment and chassis section workers was low back, interior ornament workers were low back and wrist, door cover workers was wrist, chassis workers was low back, debugging workers were neck and low back.Neck musculoskeletal disorders had the trend with the increase of a body height; Smoking may increase the occurrence of musculoskeletal disorders.Conclusion The WMSDs appears to be a serious ergonomic problem among automobile assembly workers, predominant occurring site of WMSDs is with different workshop section, its characteristics is quite obvious, probably related to its existing awkward work position or activities.The worker height and smoking habits may be important factors which affect musculoskeletal disorders happen.%目的 调查汽车装配作业工人肌肉骨骼疾患的发生情况,探讨可能的相关影响因素.方法 选择北方某汽车制造公司1508名装配作业工人作为调查对象,采用区域工种检查表、北欧标准化肌肉骨骼症状调查表(NMQ)与疼痛问卷,对调查对象的

  18. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  19. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  20. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  1. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  2. STAR: a simple TAL effector assembly reaction using isothermal assembly.

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M

    2016-09-12

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly ('Gibson assembly') that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology.

  3. Specific genomic cues regulate Cajal body assembly.

    Science.gov (United States)

    Sawyer, Iain A; Hager, Gordon L; Dundr, Miroslav

    2016-10-07

    The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB formation and RNA splicing levels in neurons and cancer. The timing and location of these specific molecular events is critical to CB assembly and its contribution to genome function. However, further work is required to explore the emerging biophysical characteristics of CB assembly and the impact upon subsequent genome reorganization.

  4. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  5. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  6. Mitochondrial ribosome assembly in health and disease.

    Science.gov (United States)

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  7. Identifying wrong assemblies in de novo short read primary sequence assembly contigs

    Indian Academy of Sciences (India)

    VANDNA CHAWLA; RAJNISH KUMAR; RAVI SHANKAR

    2016-09-01

    With the advent of short-reads-based genome sequencing approaches, large number of organisms are being sequencedall over the world. Most of these assemblies are done using some de novo short read assemblers and other relatedapproaches. However, the contigs produced this way are prone to wrong assembly. So far, there is a conspicuousdearth of reliable tools to identify mis-assembled contigs. Mis-assemblies could result from incorrectly deleted orwrongly arranged genomic sequences. In the present work various factors related to sequence, sequencing andassembling have been assessed for their role in causing mis-assembly by using different genome sequencing data.Finally, some mis-assembly detecting tools have been evaluated for their ability to detect the wrongly assembledprimary contigs, suggesting a lot of scope for improvement in this area. The present work also proposes a simpleunsupervised learning-based novel approach to identify mis-assemblies in the contigs which was found performingreasonably well when compared to the already existing tools to report mis-assembled contigs. It was observed that theproposed methodology may work as a complementary system to the existing tools to enhance their accuracy.

  8. Perspective: Geometrically frustrated assemblies

    Science.gov (United States)

    Grason, Gregory M.

    2016-09-01

    This perspective will overview an emerging paradigm for self-organized soft materials, geometrically frustrated assemblies, where interactions between self-assembling elements (e.g., particles, macromolecules, proteins) favor local packing motifs that are incompatible with uniform global order in the assembly. This classification applies to a broad range of material assemblies including self-twisting protein filament bundles, amyloid fibers, chiral smectics and membranes, particle-coated droplets, curved protein shells, and phase-separated lipid vesicles. In assemblies, geometric frustration leads to a host of anomalous structural and thermodynamic properties, including heterogeneous and internally stressed equilibrium structures, self-limiting assembly, and topological defects in the equilibrium assembly structures. The purpose of this perspective is to (1) highlight the unifying principles and consequences of geometric frustration in soft matter assemblies; (2) classify the known distinct modes of frustration and review corresponding experimental examples; and (3) describe outstanding questions not yet addressed about the unique properties and behaviors of this broad class of systems.

  9. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz;

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...

  10. Assembly of primary cilia

    DEFF Research Database (Denmark)

    Pedersen, Lotte B; Veland, Iben R; Schrøder, Jacob M

    2008-01-01

    in primary cilia assembly or function have been associated with a panoply of disorders and diseases, including polycystic kidney disease, left-right asymmetry defects, hydrocephalus, and Bardet Biedl Syndrome. Here we provide an up-to-date review focused on the molecular mechanisms involved in the assembly...

  11. Occupational stress in assembly line workers in electronics manufacturing service and related influencing factors%电子制造服务业流水线员工职业应激状况及影响因素分析

    Institute of Scientific and Technical Information of China (English)

    纪玉青; 李霜; 王超; 王瑾; 刘晓曼

    2016-01-01

    Objective To investigate occupational stress in assembly line workers in electronics manufacturing service (EMS) and related influencing factors.Methods From June to October,2015,a crosssectional survey was performed for 5 944 assembly line workers in EMS (observation group) and 6 270 workers from other posts (non-assembly line workers and management personnel;control group) using the self-made questionnaire for basic information,job demand-control(JDC) model questionnaire,and effort-reward imbalance (ERI) model questionnaire to collect respondents' basic information and occupational stress.Results The observation group had significantly lower work autonomy,social support,and work reward scores than the control group (2.72±0.63/3.64±0.68/4.06±0.80 vs 3.00±0.67/3.83±0.68/4.24±0.75,t=23.53,15.41,and 12.70,all P< 0.05),as well as significantly higher work effort and job involvement scores than the control group (2.34±0.78/ 2.48±0.78 vs 2.21±0.80/2.33±0.77,t=-9.08 and-10.90,both P<0.05).The observation group had significantly higher proportions of workers with occupational stress determined by JDC and ERI models than the control group (64.5%/12.7% vs 52.6%/9.9%,x2=182.26 and 23.41,both P<0.05).Female sex,migrant workers,working time >60 hours/week,and sleeping time <7 hours/day were major risk factors for occupational stress in JDC model;education background of Bachelor's degree or above,working time >60 hours/week,and sleeping time< 7 hours/day were major risk factors for occupational stress in ERI model,while female sex and a high monthly income reduced the risk of occupational stress in ERI model.Conclusion Assembly line workers in EMS are a relatively vulnerable group and have a high degree of occupational stress.Working time >60 hours/week and sleeping time <7 hours/day are major risk factors for occupational stress.%目的 了解电子制造服务业(EMS)流水线员工的职业应激状况,初步探讨其影响因素.方法

  12. Assembly: a resource for assembled genomes at NCBI.

    Science.gov (United States)

    Kitts, Paul A; Church, Deanna M; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D; Pruitt, Kim D; Kimchi, Avi

    2016-01-04

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site.

  13. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  14. Constrained space camera assembly

    Science.gov (United States)

    Heckendorn, Frank M.; Anderson, Erin K.; Robinson, Casandra W.; Haynes, Harriet B.

    1999-01-01

    A constrained space camera assembly which is intended to be lowered through a hole into a tank, a borehole or another cavity. The assembly includes a generally cylindrical chamber comprising a head and a body and a wiring-carrying conduit extending from the chamber. Means are included in the chamber for rotating the body about the head without breaking an airtight seal formed therebetween. The assembly may be pressurized and accompanied with a pressure sensing means for sensing if a breach has occurred in the assembly. In one embodiment, two cameras, separated from their respective lenses, are installed on a mounting apparatus disposed in the chamber. The mounting apparatus includes means allowing both longitudinal and lateral movement of the cameras. Moving the cameras longitudinally focuses the cameras, and moving the cameras laterally away from one another effectively converges the cameras so that close objects can be viewed. The assembly further includes means for moving lenses of different magnification forward of the cameras.

  15. STAR: a simple TAL effector assembly reaction using isothermal assembly

    Science.gov (United States)

    Gogolok, Sabine; Garcia-Diaz, Claudia; Pollard, Steven M.

    2016-01-01

    Transcription activator-like effectors (TALEs) contain modular programmable DNA binding domains. Fusing TALEs with effector domains creates synthetic transcription factors (TALE-TFs) or nucleases (TALENs), enabling precise gene manipulations. The construction of TALEs remains challenging due to their repetitive sequences. Here we report a simple TALE assembly reaction (STAR) that enables individual laboratories to generate multiple TALEs in a facile manner. STAR uses an isothermal assembly (‘Gibson assembly’) that is labour- and cost-effective, accessible, rapid and scalable. A small 68-part fragment library is employed, and the specific TALE repeat sequence is generated within ~8 hours. Sequence-verified TALENs or TALE-TF plasmids targeting 17 bp target sequences can be produced within three days, without the need for stepwise intermediate plasmid production. We demonstrate the utility of STAR through production of functional TALE-TFs capable of activating human SOX2 expression. STAR addresses some of the shortcomings of existing Golden Gate or solid-phase assembly protocols and enables routine production of TALE-TFs that will complement emerging CRISPR/Cas9-based reagents across diverse applications in mammalian stem cell and synthetic biology. PMID:27615025

  16. Dynamic nanoparticle assemblies.

    Science.gov (United States)

    Wang, Libing; Xu, Liguang; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2012-11-20

    Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic, and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple levels of hierarchy of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously form superstructures containing more than two inorganic nanoscale particles that display the ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the "bottom-up" fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Superstructures of NPs (and those held together by similar intrinsic forces)are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable super structures with a nearly constant number of NPs or Class 2 where the total number of NPs changes, while the organizational motif in the final superstructure remains the same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of

  17. Modular assembled space telescope

    Science.gov (United States)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-09-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  18. DC source assemblies

    Science.gov (United States)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  19. Designing Assemblies Of Plates

    Science.gov (United States)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  20. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  1. Plant mitochondrial Complex I composition and assembly: A review.

    Science.gov (United States)

    Subrahmanian, Nitya; Remacle, Claire; Hamel, Patrice Paul

    2016-07-01

    In the mitochondrial inner membrane, oxidative phosphorylation generates ATP via the operation of several multimeric enzymes. The proton-pumping Complex I (NADH:ubiquinone oxidoreductase) is the first and most complicated enzyme required in this process. Complex I is an L-shaped enzyme consisting of more than 40 subunits, one FMN molecule and eight Fe-S clusters. In recent years, genetic and proteomic analyses of Complex I mutants in various model systems, including plants, have provided valuable insights into the assembly of this multimeric enzyme. Assisted by a number of key players, referred to as "assembly factors", the assembly of Complex I takes place in a sequential and modular manner. Although a number of factors have been identified, their precise function in mediating Complex I assembly still remains to be elucidated. This review summarizes our current knowledge of plant Complex I composition and assembly derived from studies in plant model systems such as Arabidopsis thaliana and Chlamydomonas reinhardtii. Plant Complex I is highly conserved and comprises a significant number of subunits also present in mammalian and fungal Complexes I. Plant Complex I also contains additional subunits absent from the mammalian and fungal counterpart, whose function in enzyme activity and assembly is not clearly understood. While 14 assembly factors have been identified for human Complex I, only two proteins, namely GLDH and INDH, have been established as bona fide assembly factors for plant Complex I. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  2. Photovoltaic self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  3. In vitro kinetochore assembly

    Science.gov (United States)

    Miell, Matthew D D; Straight, Aaron F

    2016-01-01

    The kinetochore is the primary site of interaction between chromosomes and microtubules of the mitotic spindle during chromosome segregation. The kinetochore is a complex of more than 100 proteins that transiently assemble during mitosis at a single defined region on each chromosome, known as the centromere. Kinetochore assembly and activity must be tightly regulated to ensure proper microtubule interaction and faithful chromosome segregation because perturbation of kinetochores often results in aneuploidy and cell lethality. As such, cell free and reconstituted systems to analyze kinetochore formation and function are invaluable in probing the biochemical activities of kinetochores. In vitro approaches to studying kinetochores have enabled the manipulation of kinetochore protein structure, function, interactions and regulation that are not possible in cells. Here we outline a cell-free approach for the assembly of centromeres and recruitment of functional kinetochores that enables their manipulation and analysis. PMID:27193846

  4. Assembling Sustainable Territories

    DEFF Research Database (Denmark)

    Vandergeest, Peter; Ponte, Stefano; Bush, Simon

    2015-01-01

    The authors show how certification assembles ‘sustainable’ territories through a complex layering of regulatory authority in which both government and nongovernment entities claim rule-making authority, sometimes working together, sometimes in parallel, sometimes competitively. It is argued...... that territorialisation is accomplished not just through (re)defining bounded space, but more broadly through the assembling of four elements: space, subjects, objects, and expertise. Four case studies of sustainability certification in seafood are analyzed to show that ‘green gabbing’ is not necessarily the central...... dynamic in assembling sustainable territories, and that certification always involves state agencies in determining how the key elements that comprise it are defined. Whereas some state agencies have been suspicious of sustainability certification, others have embraced it or even used it to extend...

  5. Power module assembly

    Science.gov (United States)

    Campbell, Jeremy B [Torrance, CA; Newson, Steve [Redondo Beach, CA

    2011-11-15

    A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

  6. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  7. Integrated magnetic transformer assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to an integrated magnetics transformer assembly comprising a first magnetically permeable core forming a first substantially closed magnetic flux path and a second magnetically permeable core forming a second substantially closed magnetic flux path. A first input...... inductor winding is wound around a first predetermined segment of the first magnetically permeable core and a second input inductor winding is wound around a first predetermined segment of the second magnetically permeable core. The integrated magnetics transformer assembly further comprises a first output......-winding of the first output inductor winding and the first half-winding of the second output inductor winding are configured to produce aligned, i.e. in the same direction, magnetic fluxes through the first substantially closed magnetic flux path. The integrated magnetics transformer assembly is well- suited for use...

  8. Assembly planning at the micro scale

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Xavier, P.; Brown, R.

    1998-05-14

    This paper investigates a new aspect of fine motion planning for the micro domain. As parts approach 1--10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. It has been experimentally shown that assembly plans in the micro domain are not reversible, motions required to pick up a part are not the reverse of motions required to release a part. This paper develops the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool.

  9. Self-assembly of small peptidomimetic cyclophanes.

    Science.gov (United States)

    Becerril, Jorge; Burguete, M Isabel; Escuder, Beatriu; Galindo, Francisco; Gavara, Raquel; Miravet, Juan F; Luis, Santiago V; Peris, Gabriel

    2004-08-20

    The self-assembly of a series of small peptidomimetic cyclophanes in organic solvents was studied. X-ray diffraction, NMR spectroscopy, and molecular modelling were used to understand the structural features of these self-assembling compounds both at the molecular and supramolecular level. The factors that could influence the formation of gels rather than crystals were studied and a model for the arrangement of molecules in the gel was proposed. Furthermore, scanning electron microscopy revealed that in some cases these compounds undergo a transcription of chirality when going from organogelator to helicoidal gel fibres.

  10. Self assembling proteins

    Science.gov (United States)

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  11. Low inductance connector assembly

    Science.gov (United States)

    Holbrook, Meghan Ann; Carlson, Douglas S

    2013-07-09

    A busbar connector assembly for coupling first and second terminals on a two-terminal device to first and second contacts on a power module is provided. The first terminal resides proximate the first contact and the second terminal resides proximate the second contact. The assembly comprises a first bridge having a first end configured to be electrically coupled to the first terminal, and a second end configured to be electrically coupled to the second contact, and a second bridge substantially overlapping the first bridge and having a first end electrically coupled to the first contact, and a second end electrically coupled to the second terminal.

  12. An Interactive Assembly Process Planner

    Institute of Scientific and Technical Information of China (English)

    廖华飞; 张林鍹; 肖田元; 曾理; 古月

    2004-01-01

    This paper describes the implementation and performance of the virtual assembly support system (VASS), a new system that can provide designers and assembly process engineers with a simulation and visualization environment where they can evaluate the assemblability/disassemblability of products, and thereby use a computer to intuitively create assembly plans and interactively generate assembly process charts. Subassembly planning and assembly priority reasoning techniques were utilized to find heuristic information to improve the efficiency of assembly process planning. Tool planning was implemented to consider tool requirements in the product design stage. New methods were developed to reduce the computation amount involved in interference checking. As an important feature of the VASS, human interaction was integrated into the whole process of assembly process planning, extending the power of computer reasoning by including human expertise, resulting in better assembly plans and better designs.

  13. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  14. A Method for Designing Assembly Tolerance Networks of Mechanical Assemblies

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available When designing mechanical assemblies, assembly tolerance design is an important issue which must be seriously considered by designers. Assembly tolerances reflect functional requirements of assembling, which can be used to control assembling qualities and production costs. This paper proposes a new method for designing assembly tolerance networks of mechanical assemblies. The method establishes the assembly structure tree model of an assembly based on its product structure tree model. On this basis, assembly information model and assembly relation model are set up based on polychromatic sets (PS theory. According to the two models, the systems of location relation equations and interference relation equations are established. Then, using methods of topologically related surfaces (TTRS theory and variational geometric constraints (VGC theory, three VGC reasoning matrices are constructed. According to corresponding relations between VGCs and assembly tolerance types, the reasoning matrices of tolerance types are also established by using contour matrices of PS. Finally, an exemplary product is used to construct its assembly tolerance networks and meanwhile to verify the feasibility and effectiveness of the proposed method.

  15. Critical role of wettability in assembly of zirconia nanoparticles on a self-assembled monolayer-patterned substrate

    Science.gov (United States)

    Yang, Mi-Sun; Lee, Seung-Hoon; Moon, Byung Kee; Yoo, Seung Ryul; Hwang, Seongpil; Jang, Jae-Won

    2016-08-01

    This study investigated which factors decisively influence colloidal nanoparticle (NP) assembly on a self-assembled monolayer (SAM)-patterned substrate. Zirconia (ZrO2) NP assembly on a poly(dimethylsiloxane) (PDMS)-stamped SAM-patterned Au substrate was carried out while the size and surface charge state of the NPs and the substrate wettability were altered. ZrO2 particles with diameters of 350 nm, 560 nm, and 1100 nm were employed to examine the effect of NP size on the assembly. Bare ZrO2 NPs with a negatively charged surface and ZrO2 NPs with a positively charged surface through 3-aminopropyltriethoxysilane encapsulation were prepared for the NP assembly. Moreover, the substrate wettability effect on the NP assembly was evaluated by comparing the assembly on substrates with the PDMS-patterned SAMs of thiols with polar and non-polar functional groups. From the characterization of the number of NPs in a pattern and the effective area of assembled NPs (Aeff), positively charged ZrO2 NP assembly on negatively charged patterns showed the highest number density of particles in a pattern compared with the other combinations in both 350-nm and 560-nm ZrO2 NPs. This observation can be attributed to negatively charged 16-mercaptohexadecanoic acid SAMs having greater polarity (more polar groups) than positively charged 11-amino-1-undecanethiol SAMs within the condition of the colloidal ZrO2 NP assembly.

  16. [Ergonomic evaluation of assembly line of tractors].

    Science.gov (United States)

    Dellera, L; Buratti, G

    2012-01-01

    In the assembly lines in the engineering sector, ever more guided by the theories of lean production, is increasingly important ergonomic factor working conditions to preserve the health of workers and ensuring the performance. This analysis has focused on the study of biomechanical and postural stress of work tasks of an assembly line of the tractor, characterized by different weights and volumes from that of the car. Comparison with the technical standard of EN 1005-4 has allowed the identification as the machining assembly of small components result in conditions of acceptability, while most of the other processes aren't reliable. The emergence of these problems pushed to find several ergonomic solutions including the development of a special reclining seat to enable a proper posture during the working.

  17. Metaphase Spindle Assembly

    Directory of Open Access Journals (Sweden)

    Tarun M. Kapoor

    2017-02-01

    Full Text Available A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.

  18. Dump valve assembly

    Science.gov (United States)

    Owen, T.J.

    1984-01-01

    A dump valve assembly comprising a body having a bore defined by a tapered wall and a truncated spherical valve member adapted to seat along a spherical surface portion thereof against said tapered wall. Means are provided for pivoting said valve member between a closed position engagable with said tapered wall and an open position disengaged therefrom.

  19. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may require t...

  20. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation et and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly ma...

  1. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may r...

  2. Supramolecular Assemblies in Photosynthesis

    Science.gov (United States)

    Wrachtrup, J.; Tietz, C.; Jelezko, F.; Gerken, U.; Schuler, S.; Götze, B.; Volkmer, A.

    2002-10-01

    The photosynthetic apparatus contains a wealth of supramolecular assemblies that are optimized for charge and energy transfer. Various techniques have been applied to investigate these functions that rely on the electronic interaction among pigment molecules. In this contribution we will present single-molecule studies of pigment protein complexes. They reveal new information about electronic interactions between chlorophyll molecules in light harvesting complexes.

  3. Turbomachine blade assembly

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  4. America's Assembly Line

    DEFF Research Database (Denmark)

    Nye, David Edwin

    A social history of the assembly line, invented in 1913. Both praised as a boon to consumers and as a curse for workers, it has been satirized, imitated, and celebrated for 100 years. It has inspired fiction, comedy, cafeteria layouts, and suburban housing. It transformed industrial labor...

  5. Industrial Assembly Cases

    DEFF Research Database (Denmark)

    Ellekilde, Lars-Peter; Buch, Jacob Pørksen; Iversen, Thorbjørn Mosekjær;

    This technical report presents 13 different industrial assembly tasks, which are composed of 70 different operations. The report is written to provide an overview and do as such not contain product specific information such as object weights, dimensions etc. The operations are classified into a set...

  6. Assembling Sustainable Territories

    DEFF Research Database (Denmark)

    Vandergeest, Peter; Ponte, Stefano; Bush, Simon

    2015-01-01

    that territorialisation is accomplished not just through (re)defining bounded space, but more broadly through the assembling of four elements: space, subjects, objects, and expertise. Four case studies of sustainability certification in seafood are analyzed to show that ‘green gabbing’ is not necessarily the central...

  7. Top-down assembly design using assembly features

    Institute of Scientific and Technical Information of China (English)

    石万凯; DENEUX; Dominique; 等

    2002-01-01

    The primary task of top-down assembly desig is to define a product's detailed physical description satisfying its functional requirements identified during the functional design phase.The implementation of this design process requires two things,that is ,product functional representation and a general assembly model.Product functions are not only the formulation of a customer's needs,but also the input data of assembly design.A general assembly model is to support the evolving process of the elaboration of a product structure.The assembly feature of extended concept is taken as a functional carrier,which is a generic relation among assembly-modeled entities.The model of assembly features describes the link between product functions and form features of parts.On the basis of this link,the propagation of design modifications is discussed so as to preserve the functionality and the coherence of the assembly model.The formal model of assembly design process describes the top-down process of creating an assembly model.This formal model is represented by the combination of assembly feature operations,the assembly model and the evaluation process.A design case study is conducted to verify the applicability of the presented approaches.

  8. Self assembly of interlocked architectures

    CERN Document Server

    Schergna, S

    2002-01-01

    An area of great interest is the synthesis and characterisation of molecules possessing moving parts, with the goal that they can act as 'molecular machine' carrying out tasks that molecules with fixed conventional architectures cannot do. Rotaxanes and catenanes (mechanically interlocked architectures) represent one approach toward achieving these aims as their component wheels and / or threads are connected together but can still move, in certain, controlled directions. This thesis focused on the study of structural rigidity and the preorganisation of thread binding sites as factors of major influence on template efficiency in the synthesis of hydrogen bond assembled supramolecular structures (rotaxanes and catenanes). Chapter One gives a brief outline of the common synthetic approaches to interlocked architectures (catenanes and rotaxanes) that are now being developed to address the problems outlined above. Chapter Two and Chapter Three concerns the synthesis of novel amide-based rotaxanes containing vario...

  9. Optical Space Telescope Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Space Telescope Assembly (OSTA) task is to demonstrate the technology readiness of assembling large space telescopes on orbit in 2015. This task is an...

  10. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  11. Unraveling the complexity of mitochondrial complex I assembly: A dynamic process.

    Science.gov (United States)

    Sánchez-Caballero, Laura; Guerrero-Castillo, Sergio; Nijtmans, Leo

    2016-07-01

    Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  12. Low inductance busbar assembly

    Science.gov (United States)

    Holbrook, Meghan Ann

    2010-09-21

    A busbar assembly for electrically coupling first and second busbars to first and second contacts, respectively, on a power module is provided. The assembly comprises a first terminal integrally formed with the first busbar, a second terminal integrally formed with the second busbar and overlapping the first terminal, a first bridge electrode having a first tab electrically coupled to the first terminal and overlapping the first and second terminals, and a second tab electrically coupled to the first contact, a second bridge electrode having a third tab electrically coupled to the second terminal, and overlapping the first and second terminals and the first tab, and a fourth tab electrically coupled to the second contact, and a fastener configured to couple the first tab to the first terminal, and the third tab to the second terminal.

  13. Fourth Doctoral Student Assembly

    CERN Multimedia

    Ingrid Haug

    2016-01-01

    On 10 May, over 130 PhD students and their supervisors, from both CERN and partner universities, gathered for the 4th Doctoral Student Assembly in the Council Chamber.   The assembly was followed by a poster session, at which eighteen doctoral students presented the outcome of their scientific work. The CERN Doctoral Student Programme currently hosts just over 200 students in applied physics, engineering, computing and science communication/education. The programme has been in place since 1985. It enables students to do their research at CERN for a maximum of three years and to work on a PhD thesis, which they defend at their University. The programme is steered by the TSC committee, which holds two selection committees per year, in June and December. The Doctoral Student Assembly was opened by the Director-General, Fabiola Gianotti, who stressed the importance of the programme in the scientific environment at CERN, emphasising that there is no more rewarding activity than lear...

  14. OH Module Assembly Stand

    Energy Technology Data Exchange (ETDEWEB)

    Bolan, P.J.; /Fermilab

    1990-10-16

    There is an OR module assembly stand in use at IB4. This design has been approved by safety, as presented by Mike Foley, and has been successfully used. Another one is needed at the D-zero assembly building, but some modifications need to be made. This report will show that the new modified design is at least as strong, if not stronger, than the older IB4 design in every aspect. Since the weight distribution of the OR modules on the sling is indeterminate, this report compares three cases of support for the entire assembly: the lowest two beams only, the lowest four beams only, and all six beams. In each of these cases, the new design is stronger than the old design in maximum allowable weight. The ability of the the cradle to support the weight is also shown. For all of the failure conditions except for two, the cradle is stronger than the beams that it supports. In the two excepted situations, the calculated limit of the cradle is less than the beams it supports. This is because no credit is taken for the sling and strongback, which in reality will relieve much of the horizontal load.

  15. IAHS Third Scientific Assembly

    Science.gov (United States)

    The International Association of Hydrological Sciences (IAHS) convened its Third Scientific Assembly in Baltimore, Md., May 10-19, 1989. The Assembly was attended by about 450 scientists and engineers. The attendance was highest from the U.S., as could be expected; 37 were from Canada; 22 each, Netherlands and United Kingdom; 14, Italy; 12, China; 10, Federal Republic of Germany; 8 each from France, the Republic of South Africa, and Switzerland; 7, Austria; 6 each, Finland and Japan; others were scattered among the remainder of 48 countries total.one of the cosponsors and also handled business matters for the Assembly. Other cosponsors included the International Association of Meteorology and Atmospheric Physics (IAMAP), United Nations Environmental Program (UNEP), United Nations Educational, Scientific, and Cultural Organization (UNESCO), World Meteorological Organization (WMO), and U.K. Overseas Development Authority (ODA). U.S. federal agencies serving as cosponsors included the Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, National Weather Service, Department of Agriculture, Department of State, and U.S. Geological Survey.

  16. Ordinary General Assembly

    CERN Multimedia

    Association du personnel

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Modifications to the statutes of the association Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda...

  17. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  18. Chromatin Assembly in a Yeast Whole-Cell Extract

    Science.gov (United States)

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.

    1997-08-01

    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  19. Working mechanism and numerical simulation of assembly coastal building techniques

    Institute of Scientific and Technical Information of China (English)

    陈育民; 刘汉龙; 陈泽

    2008-01-01

    A new coastal technique, named as assembly coastal building, was introduced. The main concept of the technique was the assembling components which could be combined and locked together to form a large caisson. The assembly coastal building technique was used in a sea access road in Zhuanghai 4X1 well, Dagang Oilfield. The design plans and in-situ tests in the sea access road project were introduced in detail. According to the Zhuanghai project, the numerical simulation method of assembly coastal building technique was proposed. 2D numerical simulations were performed in FLAC to analyze the displacement and stability of the technique in the construction process and post-construction period. The settlement calculated is close to the in-situ results, which proves that the proposed numerical method is reasonable. Results show that the assembly coastal building technique has large safety factor under the gravity loading and wave loadings.

  20. Spatially confined assembly of nanoparticles.

    Science.gov (United States)

    Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng

    2014-10-21

    The ability to assemble NPs into ordered structures that are expected to yield collective physical or chemical properties has afforded new and exciting opportunities in the field of nanotechnology. Among the various configurations of nanoparticle assemblies, two-dimensional (2D) NP patterns and one-dimensional (1D) NP arrays on surfaces are regarded as the ideal assembly configurations for many technological devices, for example, solar cells, magnetic memory, switching devices, and sensing devices, due to their unique transport phenomena and the cooperative properties of NPs in assemblies. To realize the potential applications of NP assemblies, especially in nanodevice-related applications, certain key issues must still be resolved, for example, ordering and alignment, manipulating and positioning in nanodevices, and multicomponent or hierarchical structures of NP assemblies for device integration. Additionally, the assembly of NPs with high precision and high levels of integration and uniformity for devices with scaled-down dimensions has become a key and challenging issue. Two-dimensional NP patterns and 1D NP arrays are obtained using traditional lithography techniques (top-down strategies) or interfacial assembly techniques (bottom-up strategies). However, a formidable challenge that persists is the controllable assembly of NPs in desired locations over large areas with high precision and high levels of integration. The difficulty of this assembly is due to the low efficiency of small features over large areas in lithography techniques or the inevitable structural defects that occur during the assembly process. The combination of self-assembly strategies with existing nanofabrication techniques could potentially provide effective and distinctive solutions for fabricating NPs with precise position control and high resolution. Furthermore, the synergistic combination of spatially mediated interactions between nanoparticles and prestructures on surfaces may play

  1. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  2. Failure of granular assemblies

    OpenAIRE

    Welker, Philipp

    2011-01-01

    This work investigates granular assemblies subjected to increasing external forces in the quasi-static limit. In this limit, the system’s evolution depends on static properties of the system, but is independent of the particles’ inertia. At the failure, which occurs at a certain value of the external forces, the particles’ motions increase quickly. In this thesis, the properties of granular systems during the weakening process and at the failure are investigated with the Discrete Element Meth...

  3. Habitat Fragmentation Drives Plant Community Assembly Processes across Life Stages

    Science.gov (United States)

    Hu, Guang; Feeley, Kenneth J.; Yu, Mingjian

    2016-01-01

    Habitat fragmentation is one of the principal causes of biodiversity loss and hence understanding its impacts on community assembly and disassembly is an important topic in ecology. We studied the relationships between fragmentation and community assembly processes in the land-bridge island system of Thousand Island Lake in East China. We focused on the changes in species diversity and phylogenetic diversity that occurred between life stages of woody plants growing on these islands. The observed diversities were compared with the expected diversities from random null models to characterize assembly processes. Regression tree analysis was used to illustrate the relationships between island attributes and community assembly processes. We found that different assembly processes predominate in the seedlings-to-saplings life-stage transition (SS) vs. the saplings-to-trees transition (ST). Island area was the main attribute driving the assembly process in SS. In ST, island isolation was more important. Within a fragmented landscape, the factors driving community assembly processes were found to differ between life stage transitions. Environmental filtering had a strong effect on the seedlings-to-saplings life-stage transition. Habitat isolation and dispersal limitation influenced all plant life stages, but had a weaker effect on communities than area. These findings add to our understanding of the processes driving community assembly and species coexistence in the context of pervasive and widespread habitat loss and fragmentation. PMID:27427960

  4. Mechanics of a crushable pebble assembly using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Annabattula, R.K., E-mail: ratna.annabattula@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany); Gan, Y., E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, University of Sydney, 2006 NSW, Sydney (Australia); Zhao, S. [College of Mechanical and Electronics Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 (China); Kamlah, M., E-mail: marc.kamlah@kit.edu [Institute for Applied Materials (IAM-WBM), Karlsruhe Institute of Technology (KIT), D-76344 Eggenstein-Leopoldshafen (Germany)

    2012-11-15

    The influence of crushing of individual pebbles on the overall strength of a pebble assembly is investigated using discrete element method. An assembly comprising of 5000 spherical pebbles is assigned with random critical failure energies with a Weibull distribution in accordance with the experimental observation. Then, the pebble assembly is subjected to uni-axial compression ({epsilon}{sub 33}=1.5%) with periodic boundary conditions. The crushable pebble assembly shows a significant difference in stress-strain response in comparison to a non-crushable pebble assembly. The analysis shows that a ideal plasticity like behaviour (constant stress with increase in strain) is the characteristic of a crushable pebble assembly with sudden damage. The damage accumulation law plays a critical role in determining the critical stress while the critical number of completely failed pebbles at the onset of critical stress is independent of such a damage law. Furthermore, a loosely packed pebble assembly shows a higher crush resistance while the critical stress is insensitive to the packing factor ({eta}) of the assembly.

  5. Data on the kinetics of in vitro assembled chromatin.

    Science.gov (United States)

    Völker-Albert, Moritz Carl; Pusch, Miriam Caroline; Schmidt, Andreas; Imhof, Axel

    2016-09-01

    Here, we use LC-MS/MS and SWATH-MS to describe the kinetics of in vitro assembled chromatin supported by an embryo extract prepared from preblastoderm Drosophila melanogaster embryos (DREX). This system allows easy manipulation of distinct aspects of chromatin assembly such as post-translational histone modifications, the levels of histone chaperones and the concentration of distinct DNA binding factors. In total, 480 proteins have been quantified as chromatin enriched factors and their binding kinetics have been monitored in the time course of 15 min, 1 h and 4 h of chromatin assembly. The data accompanying the manuscript on this approach, Völker-Albert et al., 2016 "A quantitative proteomic analysis of in vitro assembled chromatin" [1], has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier submission number PRIDE: PXD002537 and PRIDE: PXD003445.

  6. Progress of EMBarrel assembly

    CERN Multimedia

    Chalifour, M

    2002-01-01

    The assembly of the sixteen "M" modules into a vertical axis cylinder has been achieved last Friday, completing the first wheel of the Electromagnetic Barrel Calorimeter (see picture). With this, an important milestone in the construction of the ATLAS detector has been reached. Future steps are the rotation of the cylinder axis into horizontal position, in order to integrate the presamplers and heat exchangers by the end of October. The transportation of the wheel and its insertion into the cryostat is the next major milestone, and is planned for the beginning of 2003. The construction of the modules (the so-called "P" modules) of the second wheel is ongoing at Saclay, Annecy and CERN, and will be completed in the coming months. The assembly of the second wheel should start at CERN in February, and its insertion in the cryostat is scheduled for June 2003. This achievement is the result of a successful collaboration of all institutes involved in the construction of the EM Barrel, namely Annecy, Saclay and CE...

  7. Microchannel heat sink assembly

    Science.gov (United States)

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  8. ULTRASONIC ASSEMBLY [REVIEW

    Directory of Open Access Journals (Sweden)

    PORAV Viorica

    2015-05-01

    Full Text Available The paper exposes the possibility of machine producesers to optimize the costs of clothes assembling. Ultrasonic systems being frequently utilized have many advantages on semi products of synthetic textile and technical textile. First of all, sewing – cutting process can be accomplished under high speeds and rate of losses can be minimized. Cutting seal applications are frequently used for underwear and sportswear. Slicing and unit cutting machines, as well as portable sealing machines are available for labeling sector. Products such as bag, pocket and cover can be sewed in a seamless manner for promotion purposes. All objects in terms of accessories are obtained in same standard. Our quilting machines are preferred in worldwide due to its threadless, high quality sealing. An alternative to the classic sewing assembly, with thread and needles is ultrasonic seaming. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. Ultrasonic is defined as acoustic frequencies above the range audible to the human ear. Ultrasonic frequencies are administered to the fabric from the sonotrode of bonding machine. The high frequency and powerful energy produced, when is release in one special environment, the ultrasound heating this environment. The ability to ultrasonic weld textiles and films depend on their thermoplastic contents and the desired end results. The paper defines the weld ability of more common textiles and films. The welding refers to all types of bonding and sealing, as in point bonding of fabric, or continuous sealing of film.

  9. ANNUAL GENERAL ASSEMBLY

    CERN Multimedia

    2001-01-01

    All members and beneficiaries of the Pension Fund are invited to attend the Annual General Asssembly to be held in the CERN Auditorium on Wednesday 3 October 2001 at 14.30 hrs The Agenda comprises:   Opening Remarks (P. Levaux) Some aspects of risk in a pension fund (C. Cuénoud) Annual Report 2000: Presentation and results (C. Cuénoud) Copies of the Report are available from divisional secretariats. Results of the actuarial reviews (G. Maurin) Questions from members and beneficiaries Persons wishing to ask questions are encouraged to submit them, where possible, in writing in advance, addressed to Mr C. Cuénoud, Administrator of the Fund. Conclusions (P. Levaux) As usual, participants are invited to drinks after the assembly. NB The minutes of the 2000 General Assembly are available from the Administration of the Fund (tel. + 41 22 767 91 94; e-mail Graziella.Praire@cern.ch) The English version will be published next week.

  10. Uncertainties Affecting BOSFN for the Mark 15 Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    2001-08-09

    Technical and transient protection limits are specified on the nominal burnout safety factor, BOSFN, to avoid significant release of fission products caused by local film boiling burnout. The risk of fission product release, BOR, due to film boiling burnout is statistically determined where allowances are made to account for differences between the nominal assembly and the actual assembly. This report describes the calculational model behind BOR and how the specific numerical values were estimated. The data listed in this report enable damage calculations with COBAD to be performed for the Mark 15 assembly.

  11. Self-Assembly of Arbitrary Shapes with RNA and DNA tiles (extended abstract)

    CERN Document Server

    Demaine, Erik D; Schweller, Robert T; Summers, Scott M

    2010-01-01

    Staged self-assembly with RNA removal is a model of tile-based algorithmic self-assembly that was introduced by Abel, Benbernou, Damian, Demaine, Demaine, Flatland, Kominers and Schweller (Shape Replication through Self-Assembly and RNase Enzymes, SODA 2010) and is a model that allows for the periodic removal of all tiles in a given assembly that belong to a specially designated group of (RNA) tiles. In this paper, we study the self-assembly of arbitrary shapes in staged assembly systems with RNA removal. We analyze the performance of our assembly systems with respect to their tile complexity, stage complexity as well as the scale factor, connectivity and addressability of the uniquely produced final assembly.

  12. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  13. Coded nanoscale self-assembly

    Indian Academy of Sciences (India)

    Prathyush Samineni; Debabrata Goswami

    2008-12-01

    We demonstrate coded self-assembly in nanostructures using the code seeded at the component level through computer simulations. Defects or cavities occur in all natural assembly processes including crystallization and our simulations capture this essential aspect under surface minimization constraints for self-assembly. Our bottom-up approach to nanostructures would provide a new dimension towards nanofabrication and better understanding of defects and crystallization process.

  14. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  15. Rocket Assembly and Checkout Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Integrates, tests, and calibrates scientific instruments flown on sounding rocket payloads. The scientific instruments are assembled on an optical bench;...

  16. Geometric reasoning about assembly tools

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, R.H.

    1997-01-01

    Planning for assembly requires reasoning about various tools used by humans, robots, or other automation to manipulate, attach, and test parts and subassemblies. This paper presents a general framework to represent and reason about geometric accessibility issues for a wide variety of such assembly tools. Central to the framework is a use volume encoding a minimum space that must be free in an assembly state to apply a given tool, and placement constraints on where that volume must be placed relative to the parts on which the tool acts. Determining whether a tool can be applied in a given assembly state is then reduced to an instance of the FINDPLACE problem. In addition, the author presents more efficient methods to integrate the framework into assembly planning. For tools that are applied either before or after their target parts are mated, one method pre-processes a single tool application for all possible states of assembly of a product in polynomial time, reducing all later state-tool queries to evaluations of a simple expression. For tools applied after their target parts are mated, a complementary method guarantees polynomial-time assembly planning. The author presents a wide variety of tools that can be described adequately using the approach, and surveys tool catalogs to determine coverage of standard tools. Finally, the author describes an implementation of the approach in an assembly planning system and experiments with a library of over one hundred manual and robotic tools and several complex assemblies.

  17. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Mantha, Pallavi [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  18. Seismic behaviour of fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Heuy Gap; Jhung, Myung Jo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1993-11-01

    A general approach for the dynamic time-history analysis of the reactor core is presented in this paper as a part of the fuel assembly qualification program. Several detailed core models are set up to reflect the placement of the fuel assemblies within the core shroud. Peak horizontal responses are obtained for each model for the motions induced from earthquake. The dynamic responses such as fuel assembly shear force, bending moment and displacement, and spacer grid impact loads are carefully investigated. Also, the sensitivity responses are obtained for the earthquake motions and the fuel assembly non-linear response characteristics are discussed. (Author) 9 refs., 24 figs., 1 tab.

  19. Multi-position photovoltaic assembly

    Science.gov (United States)

    Dinwoodie, Thomas L.

    2003-03-18

    The invention is directed to a PV assembly, for use on a support surface, comprising a base, a PV module, a multi-position module support assembly, securing the module to the base at shipping and inclined-use angles, a deflector, a multi-position deflector support securing the deflector to the base at deflector shipping and deflector inclined-use angles, the module and deflector having opposed edges defining a gap therebetween. The invention permits transport of the PV assemblies in a relatively compact form, thus lowering shipping costs, while facilitating installation of the PV assemblies with the PV module at the proper inclination.

  20. Cilium assembly and disassembly

    Science.gov (United States)

    2016-01-01

    The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention. PMID:27350441

  1. Photovoltaic cell assembly

    Science.gov (United States)

    Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  2. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  3. DNA-bridged Chiroplasmonic Assemblies of Nanoparticles

    Science.gov (United States)

    Kotov, Nicholas

    2015-03-01

    Chirality at nanoscale attracts a lot of attention during the last decade. A number of chiral nanoscale systems had been discovered ranging from individual nanoparticles to helical nanowires and from lithographically defined substrates. DNA bridges make possible in-silico engineering and practical construction of complex assemblies of nanoparticles with of both plasmonic and excitonic nature. In this presentation, expected and unexpected optical effects that we observed in chiral plasmonic and excitonic systems will be demonstrated. Special effort will be placed on the transitioning of theoretical and experimental knowledge about chiral nanoscale systems to applications. The most obvious direction for practical targets was so far, the design of metamaterials for negative refractive index optics. The results describing the 3D materials with the highest experimentally observed chiral anisotropy factor will be presented. It will be followed by the discussion of the recent developments in analytical application of chiral assemblies for detection of cancer and bacterial contamination.

  4. Newnes electronics assembly pocket book

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Produced in association with the Engineering Training Authority with contributions from dozens of people in the electronics industry. The material covers common skills in electrical and electronic engineering and concentrates mainly on wiring and assembly. 'Newnes Electronics Assembly Pocket Book' is for electronics technicians, students and apprentices.

  5. The Bicycle Assembly Line Game

    Science.gov (United States)

    Klotz, Dorothy

    2011-01-01

    "The Bicycle Assembly Line Game" is a team-based, in-class activity that helps students develop a basic understanding of continuously operating processes. Each team of 7-10 students selects one of seven prefigured bicycle assembly lines to operate. The lines are run in real-time, and the team that operates the line that yields the…

  6. Assembly sequencing with toleranced parts

    Energy Technology Data Exchange (ETDEWEB)

    Latombe, J.C. [Stanford Univ., CA (United States). Robotics Lab.; Wilson, R.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Systems and Robotics Center

    1995-02-21

    The goal of assembly sequencing is to plan a feasible series of operations to construct a product from its individual parts. Previous research has thoroughly investigated assembly sequencing under the assumption that parts have nominal geometry. This paper considers the case where parts have toleranced geometry. Its main contribution is an efficient procedure that decides if a product admits an assembly sequence with infinite translations that is feasible for all possible instances of the components within the specified tolerances. If the product admits one such sequence, the procedure can also generate it. For the cases where there exists no such assembly sequence, another procedure is proposed which generates assembly sequences that are feasible only for some values of the toleranced dimensions. If this procedure produces no such sequence, then no instance of the product is assemblable. Finally, this paper analyzes the relation between assembly and disassembly sequences in the presence of toleranced parts. This work assumes a simple, but non-trivial tolerance language that falls short of capturing all imperfections of a manufacturing process. Hence, it is only one step toward assembly sequencing with toleranced parts.

  7. Integrating genome assemblies with MAIA

    NARCIS (Netherlands)

    Nijkamp, J.F.; Winterbach, W.; Van den Broek, M.; Daran, J.M.; Reinders, M.J.T.; De Ridder, D.

    2010-01-01

    De novo assembly of a eukaryotic genome with next-generation sequencing data is still a challenging task. Over the past few years several assemblers have been developed, often suitable for one specific type of sequencing data. The number of known genomes is expanding rapidly, therefore it becomes po

  8. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  9. Moisture Research - Optimizing Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  10. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    B. Gorpani

    2000-06-26

    The Assembly Transfer System (ATS) receives, cools, and opens rail and truck transportation casks from the Carrier/Cask Handling System (CCHS). The system unloads transportation casks consisting of bare Spent Nuclear Fuel (SNF) assemblies, single element canisters, and Dual Purpose Canisters (DPCs). For casks containing DPCs, the system opens the DPCs and unloads the SNF. The system stages the assemblies, transfer assemblies to and from fuel-blending inventory pools, loads them into Disposal Containers (DCs), temporarily seals and inerts the DC, decontaminates the DC and transfers it to the Disposal Container Handling System. The system also prepares empty casks and DPCs for off-site shipment. Two identical Assembly Transfer System lines are provided in the Waste Handling Building (WHB). Each line operates independently to handle the waste transfer throughput and to support maintenance operations. Each system line primarily consists of wet and dry handling areas. The wet handling area includes a cask transport system, cask and DPC preparation system, and a wet assembly handling system. The basket transport system forms the transition between the wet and dry handling areas. The dry handling area includes the dry assembly handling system, assembly drying system, DC preparation system, and DC transport system. Both the wet and dry handling areas are controlled by the control and tracking system. The system operating sequence begins with moving transportation casks to the cask preparation area. The cask preparation operations consist of cask cavity gas sampling, cask venting, cask cool-down, outer lid removal, and inner shield plug lifting fixture attachment. Casks containing bare SNF (no DPC) are filled with water and placed in the cask unloading pool. The inner shield plugs are removed underwater. For casks containing a DPC, the cask lid(s) is removed, and the DPC is penetrated, sampled, vented, and cooled. A DPC lifting fixture is attached and the cask is placed

  11. Tile Calorimete Pre-Assembly Summary and Barrel Assembly Plan

    CERN Document Server

    Proudfoot, J; Liablin, M V; Topilin, N D

    2004-01-01

    The barrel survey results from the pre-assembly in Building 185 are reviewed. From these and the models developed to calculate the cylinder geometry we propose a minimal modification to the shimming plan for the barrel calorimeter assembly in the Atlas cavern. At the precision of this calculation, we expect the tile calorimeter to be almost entirely within it design envelope. The focus of this note is the radial envelope. Based on the pre-assembly experience the tile calorimeter will fit comfortably within its envelope along the beam line.

  12. Selective assemblies of giant tetrahedra via precisely controlled positional interactions

    Science.gov (United States)

    Huang, Mingjun; Hsu, Chih-Hao; Wang, Jing; Mei, Shan; Dong, Xuehui; Li, Yiwen; Li, Mingxuan; Liu, Hao; Zhang, Wei; Aida, Takuzo; Zhang, Wen-Bin; Yue, Kan; Cheng, Stephen Z. D.

    2015-04-01

    Self-assembly of rigid building blocks with explicit shape and symmetry is substantially influenced by the geometric factors and remains largely unexplored. We report the selective assembly behaviors of a class of precisely defined, nanosized giant tetrahedra constructed by placing different polyhedral oligomeric silsesquioxane (POSS) molecular nanoparticles at the vertices of a rigid tetrahedral framework. Designed symmetry breaking of these giant tetrahedra introduces precise positional interactions and results in diverse selectively assembled, highly ordered supramolecular lattices including a Frank-Kasper A15 phase, which resembles the essential structural features of certain metal alloys but at a larger length scale. These results demonstrate the power of persistent molecular geometry with balanced enthalpy and entropy in creating thermodynamically stable supramolecular lattices with properties distinct from those of other self-assembling soft materials.

  13. Histone chaperone-mediated nucleosome assembly process.

    Science.gov (United States)

    Fan, Hsiu-Fang; Liu, Zi-Ning; Chow, Sih-Yao; Lu, Yi-Han; Li, Hsin

    2015-01-01

    A huge amount of information is stored in genomic DNA and this stored information resides inside the nucleus with the aid of chromosomal condensation factors. It has been reported that the repeat nucleosome core particle (NCP) consists of 147-bp of DNA and two copies of H2A, H2B, H3 and H4. Regulation of chromosomal structure is important to many processes inside the cell. In vivo, a group of histone chaperones facilitate and regulate nucleosome assembly. How NCPs are constructed with the aid of histone chaperones remains unclear. In this study, the histone chaperone-mediated nucleosome assembly process was investigated using single-molecule tethered particle motion (TPM) experiments. It was found that Asf1 is able to exert more influence than Nap1 and poly glutamate acid (PGA) on the nucleosome formation process, which highlights Asf1's specific role in tetrasome formation. Thermodynamic parameters supported a model whereby energetically favored nucleosomal complexes compete with non-nucleosomal complexes. In addition, our kinetic findings propose the model that histone chaperones mediate nucleosome assembly along a path that leads to enthalpy-favored products with free histones as reaction substrates.

  14. Molecular mechanism of arenavirus assembly and budding.

    Science.gov (United States)

    Urata, Shuzo; Yasuda, Jiro

    2012-10-10

    Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.

  15. Molecular Mechanism of Arenavirus Assembly and Budding

    Directory of Open Access Journals (Sweden)

    Shuzo Urata

    2012-10-01

    Full Text Available Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.

  16. Directed Assembly of Gold Nanoparticles

    DEFF Research Database (Denmark)

    Westerlund, Axel Rune Fredrik; Bjørnholm, Thomas

    2009-01-01

    As a complement to common "top-down" lithography techniques, "bottom-up" assembly techniques are emerging as promising tools to build nanoscale structures in a predictable way. Gold nanoparticles that are stable and relatively easy to synthesize are important building blocks in many such structures...... due to their useful optical and electronic properties. Programmed assembly of gold nanoparticles in one, two, and three dimensions is therefore of large interest. This review focuses on the progress from the last three years in the field of directed gold nanoparticle and nanorod assembly using...

  17. Illustrating how mechanical assemblies work

    KAUST Repository

    Mitra, Niloy J.

    2010-07-26

    How things work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of individual parts and the interactions between parts based on their geometry and a few user specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences and animation to convey the causal chain of motions and mechanical interactions between parts. We present results for a wide variety of assemblies. © 2010 ACM.

  18. Illustrating how mechanical assemblies work

    KAUST Repository

    Mitra, Niloy J.

    2013-01-01

    How-things-work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of the individual parts and the interactions across the parts based on their geometry and a few user-specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences, and animation to convey the causal chain of motions and mechanical interactions across parts. We demonstrate our system on a wide variety of assemblies. © 2013 ACM 0001-0782/13/01.

  19. Effect of Vi antigen on assembly of colonization factor antigens from enterotoxigenic Escherichia coli on the cell surface of Salmonella typhi%Vi抗原影响产肠毒素大肠杆菌菌毛 在人伤寒沙门菌表面的装配

    Institute of Scientific and Technical Information of China (English)

    韩照中; 张兆山; 李淑琴; 苏国富; 黄翠芬

    2001-01-01

    Objective To study the effects of Vi antigen on assembly ofcolonization factor antigens from enterotoxigenic Escherichia coli on the cell surface of Salmonella typhi. Methods A Salmonella typhi mutant RH108 was constructed by homological recombination in vivo, in which VipR gene was partially deleted and so with low expression level of Vi antigen as compared with the corresponding wild type, RS406. The two bacteria strains were transformed by recombinant plasmids expressing coli surface antigen CFA-I and CS3 from enterotoxigenic Escherichia coli. The concentrations of CFA-I and CS3 expressed and assembled on the surface of RS406 and RH108 were titered by ELISA method. Results CFA-I and CS3 were expressed and assembled better on the cell surface of RH108. Immuno-gold labeled electroscope analysis gave same results. Conclusion Moderation of Vi antigen may boost expression and assembly of coli surface antigens from enterotoxigenic Escherichia coli on the surface of Salmonella typhi. This result may be useful for construction of effective vaccine against enterotoxigenic Escherichia coli with Salmonella typhi as antigens carrier.%目的 观察人伤寒沙门菌Vi抗原对大肠杆菌菌毛抗原装配的影响。方法 利用体内、外同源重组系统,构建了VipR基因缺失突变的人伤寒沙门菌菌株,导致其Vi抗原的表达较相应野生菌株偏低。用包含产肠毒素大肠杆菌菌毛抗原基因的表达质粒分别转化Vi表达弱化菌株和相应野生菌株,对两者表达的菌毛抗原进行含量分析。结果 产肠毒素大肠杆菌CS3、CFA-Ⅰ在VipR突变体菌株表面的含量,均比在相应野生菌株表面的含量高。结论 Vi抗原的表达弱化可能有利于菌毛抗原在人伤寒沙门菌表面的装配。本研究结果对于产肠毒素大肠杆菌基因工程疫苗的构建有指导意义。

  20. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    Science.gov (United States)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called digital materials. We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  1. Direct hierarchical assembly of nanoparticles

    Science.gov (United States)

    Xu, Ting; Zhao, Yue; Thorkelsson, Kari

    2014-07-22

    The present invention provides hierarchical assemblies of a block copolymer, a bifunctional linking compound and a nanoparticle. The block copolymers form one micro-domain and the nanoparticles another micro-domain.

  2. Analysis of Illumina Microbial Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Clum, Alicia; Foster, Brian; Froula, Jeff; LaButti, Kurt; Sczyrba, Alex; Lapidus, Alla; Woyke, Tanja

    2010-05-28

    Since the emerging of second generation sequencing technologies, the evaluation of different sequencing approaches and their assembly strategies for different types of genomes has become an important undertaken. Next generation sequencing technologies dramatically increase sequence throughput while decreasing cost, making them an attractive tool for whole genome shotgun sequencing. To compare different approaches for de-novo whole genome assembly, appropriate tools and a solid understanding of both quantity and quality of the underlying sequence data are crucial. Here, we performed an in-depth analysis of short-read Illumina sequence assembly strategies for bacterial and archaeal genomes. Different types of Illumina libraries as well as different trim parameters and assemblers were evaluated. Results of the comparative analysis and sequencing platforms will be presented. The goal of this analysis is to develop a cost-effective approach for the increased throughput of the generation of high quality microbial genomes.

  3. Multiple complementary gas distribution assemblies

    Science.gov (United States)

    Ng, Tuoh-Bin; Melnik, Yuriy; Pang, Lily L; Tuncel, Eda; Nguyen, Son T; Chen, Lu

    2016-04-05

    In one embodiment, an apparatus includes a first gas distribution assembly that includes a first gas passage for introducing a first process gas into a second gas passage that introduces the first process gas into a processing chamber and a second gas distribution assembly that includes a third gas passage for introducing a second process gas into a fourth gas passage that introduces the second process gas into the processing chamber. The first and second gas distribution assemblies are each adapted to be coupled to at least one chamber wall of the processing chamber. The first gas passage is shaped as a first ring positioned within the processing chamber above the second gas passage that is shaped as a second ring positioned within the processing chamber. The gas distribution assemblies may be designed to have complementary characteristic radial film growth rate profiles.

  4. Assembly delay line pulse generators

    CERN Document Server

    1971-01-01

    Assembly of six of the ten delay line pulse generators that will power the ten kicker magnet modules. One modulator part contains two pulse generators. Capacitors, inductances, and voltage dividers are in the oil tank on the left. Triggered high-pressure spark gap switches are on the platforms on the right. High voltage pulse cables to the kicker magnet emerge under the spark gaps. In the centre background are the assembled master gaps.

  5. Chromatin assembly using Drosophila systems.

    Science.gov (United States)

    Fyodorov, Dmitry V; Levenstein, Mark E

    2002-05-01

    To successfully study chromatin structure and activity in vitro, it is essential to have a chromatin assembly system that will prepare extended nucleosome arrays with highly defined protein content that resemble bulk chromatin isolated from living cell nuclei in terms of periodicity and nucleosome positioning. The Drosophila ATP-dependent chromatin assembly system described in this unit meets these requirements. The end product of the reaction described here has highly periodic extended arrays with physiologic spacing and positioning of the nucleosomes.

  6. Another successful Doctoral Student Assembly

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    On Wednesday 2 April, CERN hosted its third Doctoral Student Assembly in the Council Chamber.   CERN PhD students show off their posters in CERN's Main Building. Speaking to a packed house, Director-General Rolf Heuer gave the assembly's opening speech and introduced the poster session that followed. Seventeen CERN PhD students presented posters on their work, and were greeted by their CERN and University supervisors. It was a very successful event!

  7. Mechanical Characterization of Molecular Assemblies at Oil/Water Interfaces

    Science.gov (United States)

    Yuan, Wa

    The self-assembly of charged molecules in liquid phases and their ability to form functional layers at immiscible interfaces are areas of great interest. However, the implementation of these assemblies is often limited by a lack of understanding of the detailed assembly mechanisms. In order to enhance the performance of interfacial assemblies it is essential to be able to characterize the physical and mechanical properties of assembled layers, as well as develop model systems that will allow us to examine the factors that govern their interaction with the surrounding environment. The key purpose of this thesis is to develop an understanding of some of the important factors influencing interfacial assemblies at immiscible liquid interfaces. The first portion of the work involves mechanical characterization of interfacial layers formed by large amphiphilic molecules. The study of block and gradient copolymers, reveals the effect of copolymer sequence distribution on the ability of these molecules to form interfacial assemblies. Specifically, the unique network structure formed by gradient copolymers at oil/water interfaces enables us to create a robust membrane at the interface by ionic crosslinking. The second part of this thesis explores smaller molecule assemblies at liquid interfaces, including commonly used commercial surfactant (span 80) and nano particles (graphene oxide). Both studies demonstrate an interesting correlation between molecular structure and overall properties of the assembled layers. Factors such as interfacial density, particle sizes and pH can greatly influence the structure of the assembled layers, resulting in interesting phenomena such as spontaneous emulsification, wrinkling and layer collapse. The bulk of the oil/water interface study was performed using axisymmetric drop shape analysis (DSA), which successfully quantifies the mechanical tension in the interfacial layer. This analysis was further extended by a development of a double

  8. Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-09-27

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  9. Stereochemistry in subcomponent self-assembly.

    Science.gov (United States)

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    incorporated in self-assembly reactions to control the stereochemistry of increasingly complex architectures. This strategy has also allowed exploration of the degree to which stereochemical information is propagated through tetrahedral frameworks cooperatively, leading to the observation of stereochemical coupling across more than 2 nm between metal stereocenters and the enantioselective synthesis of a face-capped tetrahedron containing no carbon stereocenters via a stereochemical memory effect. Several studies on the communication of stereochemistry between the configurationally flexible metal centers in tetrahedral metal-organic cages have shed light on the factors governing this process, allowing the synthesis of an asymmetric cage, obtained in racemic form, in which all symmetry elements have been broken. Finally, we discuss how stereochemical diversity leads to structural complexity in the structures prepared through subcomponent self-assembly. Initial use of octahedral metal templates with facial stereochemistry in subcomponent self-assembly, which predictably gave rise to structures of tetrahedral symmetry, was extended to meridional metal centers. These lower-symmetry linkages have allowed the assembly of a series of increasingly intricate 3D architectures of varying functionality. The knowledge gained from investigating different aspects of the stereochemistry of metal-templated assemblies thus not only leads to new means of structural control but also opens pathways toward functions such as stereoselective guest binding and transformation.

  10. Modular assembly of yeast cytochrome oxidase.

    Science.gov (United States)

    McStay, Gavin P; Su, Chen Hsien; Tzagoloff, Alexander

    2013-02-01

    Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high-molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.

  11. PWR and BWR spent fuel assembly gamma spectra measurements

    Science.gov (United States)

    Vaccaro, S.; Tobin, S. J.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Hu, J.; Schwalbach, P.; Sjöland, A.; Trellue, H.; Vo, D.

    2016-10-01

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative-Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. To compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.

  12. Precision Assembly of Systems on Surfaces (PASS)

    Science.gov (United States)

    2015-02-06

    Precision Assembly of Systems on Surfaces ( PASS ) This program was directed at generating functionalized surfaces and assemblies for electronic and...journals: Number of Papers published in non peer-reviewed journals: Final Report: Precision Assembly of Systems on Surfaces ( PASS ) Report Title This...PRECISION ASSEMBLY OF SYSTEMS ON SURFACES ( PASS ) PI: Timothy M. Swager Massachusetts Institute of Technology Final Report: DARPA, Defense

  13. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  14. Product lifecycle-oriented virtual assembly technology

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; NING Ru-xin; YAO Jun; WAN Bi-le

    2006-01-01

    VA (virtual assembly) provides a more efficient,intuitive and convenient method for assembly process modeling,simulation and analysis.Previous researches about VA are almost isolated and dispersive,and have not established the understanding and definition of VA from a macroscopical and integrated view.Based on the analysis of the connotations of VA,a PLO-VATA (product lifecycle-oriented virtual assembly technology architecture) is proposed,in this architecture,VA is decomposed into four basic elements:principles and methodology of DFA (design for assembly),assembly analysis and evaluation,virtual assembly model and virtual assembly toolkits.Immersion,concurrence,integration and collaboration are the four main characteristics of VA being put forward.The key techniques of VA including virtual assembly model,virtual assembly analysis and evaluation,and virtual assembly process planning are discussed.Finally,a prototype system is built to validate the feasibility of the proposed method.

  15. Assembly of lamins in vitro

    Institute of Scientific and Technical Information of China (English)

    MINGUNGWEI; XIANGJUNTONG; 等

    1996-01-01

    After lamins A,B and C were isolated and purified from rat liver,their assembly properties were examined by electron microscopy and scanning tunneling microscopy by electron microscopy and scanning tunneling microscopy using negative staining and the glycerol coating method,respectively.By varying the assembly time or the ionic conditions under which polymerization takes place,we have observed different stages of lamin assembly,which may provide clues on the structure of the 10 nm lamin filaments.At the first level of structural organization,two lamin polypeptides associate laterally into dimers with the two domains being parallel and in register.At the second level of structural organization,two dimers associate in a half-staggered and antiparallel fashion to form a tetramer 75 nm in length.At the third level of structural organization,4-10 lamin tetramers associate laterally in register to form 75 nm long 10nm filaments,which in turn combine head to head into long,fully assembled lamin filaments.The assembled lamin filaments are nonpolar.

  16. Dynamic pathways for viral capsid assembly

    OpenAIRE

    Hagan, Michael F.; Chandler, David

    2006-01-01

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer c...

  17. Dynamics of assembly production flow

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distr...

  18. Assembling of hydrogenated aluminum clusters

    Energy Technology Data Exchange (ETDEWEB)

    Duque, F.; Mananes, A. [Dept. de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Molina, L.M.; Lopez, M.J.; Alonso, J.A. [Dept. de Fisica Teorica, Universidad de Valladolid (Spain)

    2001-09-01

    The electronic and atomic structure of Al{sub 13}H has been studied using Density Functional Theory. Al{sub 13}H has closed electronic shells. This makes the cluster very stable and suggests that it could be a candidate to form cluster assembled solids. The interaction between two Al{sub 13}H clusters was analyzed and we found that the two units preserve their identities in the dimer. A cubic-like solid phase assembled from Al{sub 13}H units was then modeled. In that solid the clusters retain much of their identity. Molecular dynamics runs show that the structure of the assembled solid is stable at least up to 150 K. A favorable relative orientation of the clusters with respect to their neighbors is critical for the stability of that solid. (orig.)

  19. Workload analyse of assembling process

    Science.gov (United States)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  20. FUEL ASSEMBLY SHAKER TEST SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

    2013-05-30

    This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNL’s proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNL’s expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through

  1. Apollo Telescope Mount Spar Assembly

    Science.gov (United States)

    1969-01-01

    The Apollo Telescope Mount (ATM), designed and developed by the Marshall Space Flight Center, served as the primary scientific instrument unit aboard the Skylab. The ATM contained eight complex astronomical instruments designed to observe the Sun over a wide spectrum from visible light to x-rays. This image shows the ATM spar assembly. All solar telescopes, the fine Sun sensors, and some auxiliary systems are mounted on the spar, a cruciform lightweight perforated metal mounting panel that divides the 10-foot long canister lengthwise into four equal compartments. The spar assembly was nested inside a cylindrical canister that fit into the rack, a complex frame, and was protected by the solar shield.

  2. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.;

    2012-01-01

    The design of functional cyclodextrin (CD) nanoparticles is a developing area in the field of nanomedicine. CDs can not only help in the formation of drug carriers but also increase the local concentration of drugs at the site of action. CD monomers form aggregates by self-assembly, a tendency...... that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...... the nanoparticles can be stabilized and tuned to have specific properties....

  3. Ultrasonic Assembly of Thermoplastic Parts

    Energy Technology Data Exchange (ETDEWEB)

    Schurman, W. R.

    1970-03-31

    Four ultrasonic methods were evaluated for assembly of experimental plastic parts for detonators: (1) welding, (2) crimping and staking, (3) insertion, and (4) reactivation of adhesives. For welding, staking and insertion, plastics with low elastic moduli, such as acrylics and polycarbonate, produced the best results. Thermosetting, hot-melt, and solution adhesives could all be activated ultrasonically to form good bonds on plastics and other materials. This evaluation indicated that thermoplastic detonator parts could be assembled ultrasonically in shorter times than by present production techniques with high bond strengths and high product acceptance rates.

  4. Oms1 associates with cytochrome c oxidase assembly intermediates to stabilize newly synthesized Cox1.

    Science.gov (United States)

    Bareth, Bettina; Nikolov, Miroslav; Lorenzi, Isotta; Hildenbeutel, Markus; Mick, David U; Helbig, Christin; Urlaub, Henning; Ott, Martin; Rehling, Peter; Dennerlein, Sven

    2016-05-15

    The mitochondrial cytochrome c oxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle in which translation of COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we isolate a cytochrome c oxidase assembly intermediate in preparatory scale from coa1Δ mutant cells, using Mss51 as bait. We demonstrate that at this stage of assembly, the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we define the protein composition of the assembly intermediate and unexpectedly identify the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochrome c oxidase assembly by stabilizing newly synthesized Cox1.

  5. "Assembling" the Ideal Learner: The School Assembly as Regulatory Ritual

    Science.gov (United States)

    Silbert, Patti; Jacklin, Heather

    2015-01-01

    "School assemblies" are rituals that celebrate and mark the school community. They carry messages of allegiance and belonging that are disseminated both verbally and nonverbally. Although verbal messages are explicitly stated, nonverbal messages are conveyed through subjection to habits, rules, and orders (Foucault 1977) and are…

  6. iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences

    Directory of Open Access Journals (Sweden)

    Zheng Yi

    2011-11-01

    Full Text Available Abstract Background Expressed Sequence Tags (ESTs have played significant roles in gene discovery and gene functional analysis, especially for non-model organisms. For organisms with no full genome sequences available, ESTs are normally assembled into longer consensus sequences for further downstream analysis. However current de novo EST assembly programs often generate large number of assembly errors that will negatively affect the downstream analysis. In order to generate more accurate consensus sequences from ESTs, tools are needed to reduce or eliminate errors from de novo assemblies. Results We present iAssembler, a pipeline that can assemble large-scale ESTs into consensus sequences with significantly higher accuracy than current existing assemblers. iAssembler employs MIRA and CAP3 assemblers to generate initial assemblies, followed by identifying and correcting two common types of transcriptome assembly errors: 1 ESTs from different transcripts (mainly alternatively spliced transcripts or paralogs are incorrectly assembled into same contigs; and 2 ESTs from same transcripts fail to be assembled together. iAssembler can be used to assemble ESTs generated using the traditional Sanger method and/or the Roche-454 massive parallel pyrosequencing technology. Conclusion We compared performances of iAssembler and several other de novo EST assembly programs using both Roche-454 and Sanger EST datasets. It demonstrated that iAssembler generated significantly more accurate consensus sequences than other assembly programs.

  7. Soft Computing in Optimizing Assembly Lines Balancing

    Directory of Open Access Journals (Sweden)

    Muhammad Z. Matondang

    2010-01-01

    Full Text Available As part of manufacturing systems, the assembly line has become one of the most valuable researches to accomplish the real world problems related to them. Many efforts have been made to seek the best techniques in optimizing assembly lines. Problem statement: Since it was published by Salveson in 1955, some methods and techniques have been developed based on mathematical modeling. In recent years, some researches in Assembly Line Balancing (ALB have been conducted using Soft Computing (SC approaches. However, there is no comprehensive survey studies conducted regarding the use of SC in ALB problems, which is became the aim of this study. Approach: This study reviewed published literatures and previous related works that applied SC in solving ALB problems. Main outcomes: This study looks into the suitability of SC approaches in several types of ALB problems. Furthermore, this study provides the classification of ALB problems that can facilitate distinguishing those problems as fields of research. Result: This study found that Genetic Algorithms (GAs are predominantly applied to solve ALB problems compared to other SC approaches. This high suitability in ALB refers to GAs' main characteristics that include its robustness and flexibility. These SC approaches have mostly been applied to simple ALB problems, which are not problems that are covered in a real complex manufacturing environment. Conclusion/Recommendations: This study recommends that future researches in ALB should be conducted with regard to other issues, beyond the simple ALB problems and more practical to the industries. Besides the advantages of GAs, there are still opportunities to use other SC approaches and the hybrid-systems among them that could increase the suitability of these approaches, especially for multi-objective ALB problems. This study also recommends that human involvement in ALB needs to be considered as a problem factor in ALB.

  8. Assembly Sequence Planning for Mechanical Products

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A method for assembly sequence planning is proposed in this paper. First, two methods for assembly sequence planning are compared, which are indirect method and direct method. Then, the limits of the previous assembly planning system are pointed out. On the basis of indirect method, an improved method for assembly sequence planning is put forward. This method is composed of four parts, which are assembly modeling for products, assembly sequence representing, assembly sequence planning, and evaluation and optimization. The assembly model is established by human machine interaction, and the assembly model contains components' information and the assembly relation among the components. The assembly sequence planning is based on the breaking up of the assembly model. And/or graph is used to represent assembly sequence set. Every component which satisfies the disassembly condition is recorded as a node of an and/or graph. After the disassembly sequence and/or graph is generated, heuristic algorithm - AO* algorithm is used to search the disassembly sequence and/or graph, and the optimum assembly sequence planning is realized. This method is proved to be effective in a prototype system which is a sub-project of a state 863/CIMS research project of China - ‘Concurrent Engineering’.

  9. Modular assembly of superstructures from polyphenol-functionalized building blocks

    Science.gov (United States)

    Guo, Junling; Tardy, Blaise L.; Christofferson, Andrew J.; Dai, Yunlu; Richardson, Joseph J.; Zhu, Wei; Hu, Ming; Ju, Yi; Cui, Jiwei; Dagastine, Raymond R.; Yarovsky, Irene; Caruso, Frank

    2016-12-01

    The organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells. This strategy can be used to access a large number of modularly assembled superstructures, including core-satellite, hollow and hierarchically organized supraparticles. Colloidal-probe atomic force microscopy and molecular dynamics simulations provide detailed insights into the role of surface functionalization and how this facilitates superstructure construction. Our work provides a platform for the rapid generation of superstructured assemblies across a wide range of length scales, from nanometres to centimetres.

  10. Genomes correction and assembling: present methods and tools

    Science.gov (United States)

    Wojcieszek, Michał; Pawełkowicz, Magdalena; Nowak, Robert; Przybecki, Zbigniew

    2014-11-01

    Recent rapid development of next generation sequencing (NGS) technologies provided significant impact into genomics field of study enabling implementation of many de novo sequencing projects of new species which was previously confined by technological costs. Along with advancement of NGS there was need for adjustment in assembly programs. New algorithms must cope with massive amounts of data computation in reasonable time limits and processing power and hardware is also an important factor. In this paper, we address the issue of assembly pipeline for de novo genome assembly provided by programs presently available for scientist both as commercial and as open - source software. The implementation of four different approaches - Greedy, Overlap - Layout - Consensus (OLC), De Bruijn and Integrated resulting in variation of performance is the main focus of our discussion with additional insight into issue of short and long reads correction.

  11. Self-assembly of DNA-functionalized colloids

    Directory of Open Access Journals (Sweden)

    P.E. Theodorakis

    2015-06-01

    Full Text Available Colloidal particles grafted with single-stranded DNA (ssDNA chains can self-assemble into a number of different crystalline structures, where hybridization of the ssDNA chains creates links between colloids stabilizing their structure. Depending on the geometry and the size of the particles, the grafting density of the ssDNA chains, and the length and choice of DNA sequences, a number of different crystalline structures can be fabricated. However, understanding how these factors contribute synergistically to the self-assembly process of DNA-functionalized nano- or micro-sized particles remains an intensive field of research. Moreover, the fabrication of long-range structures due to kinetic bottlenecks in the self-assembly are additional challenges. Here, we discuss the most recent advances from theory and experiment with particular focus put on recent simulation studies.

  12. DNA-guided nanoparticle assemblies

    Science.gov (United States)

    Gang, Oleg; Nykypanchuk, Dmytro; Maye, Mathew; van der Lelie, Daniel

    2013-07-16

    In some embodiments, DNA-capped nanoparticles are used to define a degree of crystalline order in assemblies thereof. In some embodiments, thermodynamically reversible and stable body-centered cubic (bcc) structures, with particles occupying nanoparticles linked by nucleic acid sequences and forming an open crystal structure with catalytically active agents attached to the crystal on its surface or in interstices.

  13. Quantum magnetism through atomic assembly

    NARCIS (Netherlands)

    Spinelli, A.

    2015-01-01

    This thesis presents an experimental study of magnetic structures, composed of only a few atoms. Those structures are first built atom-by-atom and then locally probed, both with a low-temperature STM. The technique that we use to assemble them is vertical atom manipulation, while to study their phy

  14. Construction of YBS Critical Assembly

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Qi; LIANG; Shu-hong; ZHU; Qing-fu; ZHANG; Wei; YANG; Li-jun; QUAN; Yan-hui

    2015-01-01

    Supported by the XDA program of CAS,the YBS critical assembly has been constructed for the experimental research of the coupling and influence characteristics of spallation target and reactor in ADS system.This work consists of two parts:one is the conversion of the reactor hall and control room,and the other manufacture,installation and commissioning of the critical

  15. In vitro assembly of catalase.

    Science.gov (United States)

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-10-10

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process.

  16. Automated Solar-Array Assembly

    Science.gov (United States)

    Soffa, A.; Bycer, M.

    1982-01-01

    Large arrays are rapidly assembled from individual solar cells by automated production line developed for NASA's Jet Propulsion Laboratory. Apparatus positions cells within array, attaches interconnection tabs, applies solder flux, and solders interconnections. Cells are placed in either straight or staggered configurations and may be connected either in series or in parallel. Are attached at rate of one every 5 seconds.

  17. Dynamics of assembly production flow

    Science.gov (United States)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  18. ATLAS Assembly Hall Open Day

    CERN Document Server

    Patrice Loiez

    2004-01-01

    To mark the 50th Anniversary of the founding of CERN, a day of tours, displays and presentations was held in October 2004. The assembly halls for the experiments that were waiting to be installed on the LHC, such as ATLAS shown here, were transformed into display areas and cafés.

  19. Anisotropic nanomaterials: structure, growth, assembly, and functions.

    Science.gov (United States)

    Sajanlal, Panikkanvalappil R; Sreeprasad, Theruvakkattil S; Samal, Akshaya K; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  20. Anisotropic nanomaterials: structure, growth, assembly, and functions

    Directory of Open Access Journals (Sweden)

    Panikkanvalappil R. Sajanlal

    2011-02-01

    Full Text Available Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D, two-dimensional (2D, and three-dimensional (3D arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  1. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  2. Research on uncertainty in measurement assisted alignment in aircraft assembly

    Institute of Scientific and Technical Information of China (English)

    Chen Zhehan; Du Fuzhou; Tang Xiaoqing

    2013-01-01

    Operations in assembling and joining large size aircraft components are changed to novel digital and flexible ways by digital measurement assisted alignment. Positions and orientations (P&O) of aligned components are critical characters which assure geometrical positions and rela-tionships of those components. Therefore, evaluating the P&O of a component is considered nec-essary and critical for ensuring accuracy in aircraft assembly. Uncertainty of position and orientation (U-P&O), as a part of the evaluating result of P&O, needs to be given for ensuring the integrity and credibility of the result; furthermore, U-P&O is necessary for error tracing and quality evaluating of measurement assisted aircraft assembly. However, current research mainly focuses on the process integration of measurement with assembly, and usually ignores the uncer-tainty of measured result and its influence on quality evaluation. This paper focuses on the expres-sion, analysis, and application of U-P&O in measurement assisted alignment. The geometrical and algebraical connotations of U-P&O are presented. Then, an analytical algorithm for evaluating the multi-dimensional U-P&O is given, and the effect factors and characteristics of U-P&O are dis-cussed. Finally, U-P&O is used to evaluate alignment in aircraft assembly for quality evaluating and improving. Cases are introduced with the methodology.

  3. DESIGN REUSE METHOD FOR ASSEMBLIES IN CONCEPT DESIGN

    Institute of Scientific and Technical Information of China (English)

    Dong Yan; Tan Jianrong; Xu Jing

    2005-01-01

    Aiming at difficult sorting and retrieving complicated structure assemblies in assembly lib,a method for compartmentalizing assembly design resource by conceptual product structure model is presented. The similar assembly retrieval mechanisms of symbol assembly relation graph matching and symbol assembly relation graph similarity are discussed. The method is validated by taking valve rod assemblies as example.

  4. Minimus: a fast, lightweight genome assembler

    Directory of Open Access Journals (Sweden)

    Salzberg Steven L

    2007-02-01

    Full Text Available Abstract Background Genome assemblers have grown very large and complex in response to the need for algorithms to handle the challenges of large whole-genome sequencing projects. Many of the most common uses of assemblers, however, are best served by a simpler type of assembler that requires fewer software components, uses less memory, and is far easier to install and run. Results We have developed the Minimus assembler to address these issues, and tested it on a range of assembly problems. We show that Minimus performs well on several small assembly tasks, including the assembly of viral genomes, individual genes, and BAC clones. In addition, we evaluate Minimus' performance in assembling bacterial genomes in order to assess its suitability as a component of a larger assembly pipeline. We show that, unlike other software currently used for these tasks, Minimus produces significantly fewer assembly errors, at the cost of generating a more fragmented assembly. Conclusion We find that for small genomes and other small assembly tasks, Minimus is faster and far more flexible than existing tools. Due to its small size and modular design Minimus is perfectly suited to be a component of complex assembly pipelines. Minimus is released as an open-source software project and the code is available as part of the AMOS project at Sourceforge.

  5. Hydraulic Experiment for Simulative Assemblies of Blanket Assembly and Np Transmutation Assembly of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The out-of reactor hydraulic experiment of fast reactor assembly is one of the important experiments in the process of the development of the fast reactor assembly.In this experiment,the size of the throttling element in the foot of the assembly is decided which is fit for the flow division in the reactor and the

  6. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    Mili C Naranthatta; V Ramkumar; Dillip Kumar Chand

    2014-09-01

    A rare variety of self-assembledmolecular triangle [Pd3(bpy)3(imidazolate)3](NO3)3, 1 is prepared by the combination of Pd(bpy)(NO3)2 with imidazole, at 1:1 ratio, in acetonitrile-water. Deprotonation of imidazole happened during the course of the complexation reaction where upon the metallomacrocycle is formed. The bowl-shaped trinuclear architecture of 1 is crafted with three peripheral bpy units capable of - stacking interactions. While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear manner utilizing intermolecular - interactions where upon two out of three bpy units of each molecule participated in the chain formation.

  7. Detonator assembly for oil well perforating gun

    Energy Technology Data Exchange (ETDEWEB)

    Regalbuto, J.A.

    1981-02-18

    A safe/arm detonator assembly for use with an oil well perforating gun assembly has 2 housing members isolated from well-bore fluid which are rotatable from a safe position wherein a detonator and a booster are held out of alignment, to an armed position wherein the detonator and booster are moved into alignment. The detonator assembly is further arranged to be installed in a well perforating gun assembly such that the gun assembly may be transported with the detonator assembly in the safe position, and rotated to the armed position at the well site without disassembling the gun assembly. A safety pin may protrude from one of the housing members across a cavity between the members to cover and protect the booster from accidental detonation when the detonator assembly is in the safe position. The detonator and booster cavities may be held aligned by a detent ball. 16 claims.

  8. Compact MCP assemblies for mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, S. [Hamamatsu Photonics K.K., Shizuoka (Japan). Electron Tube Div.; Umebayashi, S. [Hamamatsu Photonics K.K., Shizuoka (Japan). Electron Tube Div.; Kusuyama, Y. [Hamamatsu Photonics K.K., Shizuoka (Japan). Electron Tube Div.; Natsume, Y. [Hamamatsu Photonics K.K., Shizuoka (Japan). Electron Tube Div.; Oba, K. [Hamamatsu Photonics K.K., Shizuoka (Japan). Electron Tube Div.

    1995-09-01

    We have developed compact microchannel plate (MCP) assemblies which have a high gain, good pulse height resolution and a fast response for MS applications. In this paper, these new assemblies are described referring to their structures, functions and characteristics. (orig.).

  9. Virtual Reality and Haptics for Product Assembly

    Directory of Open Access Journals (Sweden)

    Maria Teresa Restivo

    2012-01-01

    Full Text Available Haptics can significantly enhance the user's sense of immersion and interactivity. An industrial application of virtual reality and haptics for product assembly is described in this paper, which provides a new and low-cost approach for product assembly design, assembly task planning and assembly operation training. A demonstration of the system with haptics device interaction was available at the session of exp.at'11.

  10. Snowball: Strain aware gene assembly of Metagenomes

    OpenAIRE

    Gregor, I.; Schönhuth, A.; McHardy, A. C.

    2015-01-01

    Gene assembly is an important step in functional analysis of shotgun metagenomic data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools often fail to distinguish among strain variants or require closely related reference genomes of the studied species to be available. We have developed Snowball, a novel strain aware and reference-free gene assembler for shotgun metagenomic data. It uses profile hidden Markov models (HMMs) of gene domains of interest to ...

  11. Radiation Effects Simulation of Fuel Assemblies

    Institute of Scientific and Technical Information of China (English)

    CUI; Yao

    2015-01-01

    Due to a large number of photons irradiated by the fuel assemblies after radiation in the reactor,the data acquisition and image reconstruction will be interfered seriously for the nuclear fuel assembly non-destructive testing system.Therefore,in process of the fuel assembly NDT system

  12. 49 CFR 572.186 - Abdomen assembly.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Abdomen assembly. 572.186 Section 572.186... Dummy, 50th Percentile Adult Male § 572.186 Abdomen assembly. (a) The abdomen assembly (175-5000) is...). When subjected to tests procedures specified in paragraph (b) of this section, the abdomen...

  13. Snowball: Strain aware gene assembly of Metagenomes

    NARCIS (Netherlands)

    Gregor, I.; Schönhuth, A.; McHardy, A.C.

    2015-01-01

    Gene assembly is an important step in functional analysis of shotgun metagenomic data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools often fail to distinguish among strain variants or require closely related reference genomes of the studied species to be av

  14. Supramolecular assemblies based on glycoconjugated dyes

    NARCIS (Netherlands)

    Schmidt, Bettina

    2016-01-01

    Supramolecular assemblies of glycoconjugated dyes can be tailored with properties that make them attractive for use in biomedical applications. For example, when assemblies of glycoconjugated dyes are displaying carbohydrates on their periphery in a polyvalent manner, these assemblies can be used to

  15. LHC Magnet Assembly Facility in building 181

    CERN Multimedia

    CERN Video Productions

    2005-01-01

    Hall 181 activities for the LHC machine * Reception of the American magnets : quadrupoles and separation dipoles * Assembly of the string Low-Beta Triplet -Q2-Q3-DFBX-D1 * Insertion quadrupoles cold masses assembly * Magnets reception type MQM, MQY, MCBC et MCBY * Assembly in the shell * Longitudinal welding under the press * Equipment with end covers in the finishing area

  16. Reversibly assembled cellular composite materials.

    Science.gov (United States)

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  17. Linear Logic for Meaning Assembly

    CERN Document Server

    Dalrymple, M; Pereira, F C N; Saraswat, V; Dalrymple, Mary; Lamping, John; Pereira, Fernando; Saraswat, Vijay

    1995-01-01

    Semantic theories of natural language associate meanings with utterances by providing meanings for lexical items and rules for determining the meaning of larger units given the meanings of their parts. Meanings are often assumed to combine via function application, which works well when constituent structure trees are used to guide semantic composition. However, we believe that the functional structure of Lexical-Functional Grammar is best used to provide the syntactic information necessary for constraining derivations of meaning in a cross-linguistically uniform format. It has been difficult, however, to reconcile this approach with the combination of meanings by function application. In contrast to compositional approaches, we present a deductive approach to assembling meanings, based on reasoning with constraints, which meshes well with the unordered nature of information in the functional structure. Our use of linear logic as a `glue' for assembling meanings allows for a coherent treatment of the LFG requ...

  18. Regenerator cross arm seal assembly

    Science.gov (United States)

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  19. Structural Assembly Demonstration Experiment (SADE)

    Science.gov (United States)

    Akin, David L.; Mills, Raymond A.; Bowden, Mary L.

    1987-01-01

    The purpose of the Structural Assembly Demonstration Experiment (SADE) was to create a near-term Shuttle flight experiment focusing on the deployment and erection of structural truss elements. The activities of the MIT Space Systems Laboratory consist of three major areas: preparing and conducting neutral buoyancy simulation test series; producing a formal SADE Experiment plan; and studying the structural dynamics issues of the truss structure. Each of these areas is summarized.

  20. DNA hybridization and ligation for directed colloidal assembly

    Science.gov (United States)

    Shyr, Margaret

    membrane to achieve well-ordered colloidal crystals. Well-ordered hexagonally close-packed polystyrene colloid monolayers could be assembled by sedimentation, hybridization, and ligation. Layer-by-layer assembly is also possible on the sedimented colloidal crystals. Since the drying and liquid-air interface effects experienced during vertical deposition are not a factor for sedimented colloidal crystals, we attempted to use templated substrates, created by imprint and holographic lithography, to assemble non-FCC colloidal crystals.

  1. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Seats, seat belt assemblies, and seat belt... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses... the driver's seat and seat belt assembly anchorages that conform to the location and...

  2. Self-assembled plasmonic metamaterials

    Science.gov (United States)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  3. Automated solar module assembly line

    Science.gov (United States)

    Bycer, M.

    1980-08-01

    The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.

  4. Assembly modes of dragonfly wings.

    Science.gov (United States)

    Zhao, Hong-Xiao; Yin, Ya-Jun; Zhong, Zheng

    2011-12-01

    The assembly modes of dragonfly wings are observed through FEG-ESEM. Different from airplane wings, dragonfly wings are found to be assembled through smooth transition mode and global package mode. First, at the vein/membrane conjunctive site, the membrane is divided into upper and lower portions from the center layer and transited smoothly to the vein. Then the two portions pack the vein around and form the outer surface of the vein. Second, at the vein/spike conjunctive site, the vein and spike are connected smoothly into a triplet. Last, at the vein/membrane/spike conjunctive site, the membrane (i.e., the outer layer of the vein) transits smoothly to the spike, packs it around, and forms its outer layer. In short, the membrane looks like a closed coat packing the wing as a whole. The smooth transition mode and the global package mode are universal assembly modes in dragonfly wings. They provide us the references for better understanding of the functions of dragonfly wings and the bionic manufactures of the wings of flights with mini sizes.

  5. MR-1S Interacts with PET100 and PET117 in Module-Based Assembly of Human Cytochrome c Oxidase.

    Science.gov (United States)

    Vidoni, Sara; Harbour, Michael E; Guerrero-Castillo, Sergio; Signes, Alba; Ding, Shujing; Fearnley, Ian M; Taylor, Robert W; Tiranti, Valeria; Arnold, Susanne; Fernandez-Vizarra, Erika; Zeviani, Massimo

    2017-02-14

    The biogenesis of human cytochrome c oxidase (COX) is an intricate process in which three mitochondrial DNA (mtDNA)-encoded core subunits are assembled in a coordinated way with at least 11 nucleus-encoded subunits. Many chaperones shared between yeast and humans are involved in COX assembly. Here, we have used a MT-CO3 mutant cybrid cell line to define the composition of assembly intermediates and identify new human COX assembly factors. Quantitative mass spectrometry analysis led us to modify the assembly model from a sequential pathway to a module-based process. Each module contains one of the three core subunits, together with different ancillary components, including HIGD1A. By the same analysis, we identified the short isoform of the myofibrillogenesis regulator 1 (MR-1S) as a new COX assembly factor, which works with the highly conserved PET100 and PET117 chaperones to assist COX biogenesis in higher eukaryotes.

  6. AGORA: Assembly Guided by Optical Restriction Alignment

    Directory of Open Access Journals (Sweden)

    Lin Henry C

    2012-08-01

    Full Text Available Abstract Background Genome assembly is difficult due to repeated sequences within the genome, which create ambiguities and cause the final assembly to be broken up into many separate sequences (contigs. Long range linking information, such as mate-pairs or mapping data, is necessary to help assembly software resolve repeats, thereby leading to a more complete reconstruction of genomes. Prior work has used optical maps for validating assemblies and scaffolding contigs, after an initial assembly has been produced. However, optical maps have not previously been used within the genome assembly process. Here, we use optical map information within the popular de Bruijn graph assembly paradigm to eliminate paths in the de Bruijn graph which are not consistent with the optical map and help determine the correct reconstruction of the genome. Results We developed a new algorithm called AGORA: Assembly Guided by Optical Restriction Alignment. AGORA is the first algorithm to use optical map information directly within the de Bruijn graph framework to help produce an accurate assembly of a genome that is consistent with the optical map information provided. Our simulations on bacterial genomes show that AGORA is effective at producing assemblies closely matching the reference sequences. Additionally, we show that noise in the optical map can have a strong impact on the final assembly quality for some complex genomes, and we also measure how various characteristics of the starting de Bruijn graph may impact the quality of the final assembly. Lastly, we show that a proper choice of restriction enzyme for the optical map may substantially improve the quality of the final assembly. Conclusions Our work shows that optical maps can be used effectively to assemble genomes within the de Bruijn graph assembly framework. Our experiments also provide insights into the characteristics of the mapping data that most affect the performance of our algorithm, indicating the

  7. Robust, directed assembly of fluorescent nanodiamonds.

    Science.gov (United States)

    Kianinia, Mehran; Shimoni, Olga; Bendavid, Avi; Schell, Andreas W; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J

    2016-10-27

    Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices.

  8. Robust, directed assembly of fluorescent nanodiamonds

    CERN Document Server

    Kianinia, Mehran; Shimoni, Olga; Randolph, Steven J; Toth, Milos; Aharonovich, Igor; Lobo, Charlene J

    2016-01-01

    Arrays of fluorescent nanoparticles are highly sought after for applications in sensing and nanophotonics. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensing and nanophotonics devices.

  9. Observations and Models of Galaxy Assembly Bias

    Science.gov (United States)

    Campbell, Duncan A.

    2017-01-01

    The assembly history of dark matter haloes imparts various correlations between a halo’s physical properties and its large scale environment, i.e. assembly bias. It is common for models of the galaxy-halo connection to assume that galaxy properties are only a function of halo mass, implicitly ignoring how assembly bias may affect galaxies. Recently, programs to model and constrain the degree to which galaxy properties are influenced by assembly bias have been undertaken; however, the extent and character of galaxy assembly bias remains a mystery. Nevertheless, characterizing and modeling galaxy assembly bias is an important step in understanding galaxy evolution and limiting any systematic effects assembly bias may pose in cosmological measurements using galaxy surveys.I will present work on modeling and constraining the effect of assembly bias in two galaxy properties: stellar mass and star-formation rate. Conditional abundance matching allows for these galaxy properties to be tied to halo formation history to a variable degree, making studies of the relative strength of assembly bias possible. Galaxy-galaxy clustering and galactic conformity, the degree to which galaxy color is correlated between neighbors, are sensitive observational measures of galaxy assembly bias. I will show how these measurements can be used to constrain galaxy assembly bias and the peril of ignoring it.

  10. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  11. Dynamic pathways for viral capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, Michael F.; Chandler, David

    2006-02-09

    We develop a class of models with which we simulate the assembly of particles into T1 capsid-like objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile, while for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.

  12. Model of operating and balancing assembly line in a mass customization environment

    Institute of Scientific and Technical Information of China (English)

    Wei Dong; Jin Ye; Wang Rong; Wang Zheng

    2003-01-01

    The successful implementation of mass customization lies on reengineering technology and management methods to organize the production. Especially in assembly phase, various product con figurations, due-time penalties and order-driven strategy challenge the traditional operation and man agement of assembly lines. The business features and the operation pattern of assembly line based on mass customization are analyzed. And the research emphatically studies various technologic factors to improve customer satisfaction and their corresponding implement methods in operating assembly line.In addition, the models are proposed for operating assembly line under dynamic process environment in mass customization. A genetic approach is developed to provide the optimal solution to the models.The effectiveness of the proposed approach is evaluated with an industrial application.

  13. Introducing Decorated HODs: modeling assembly bias in the galaxy-halo connection

    CERN Document Server

    Hearin, Andrew P; Bosch, Frank C van den; Campbell, Duncan; Tollerud, Erik

    2015-01-01

    The connection between galaxies and dark matter halos is often inferred from data using probabilistic models, such as the Halo Occupation Distribution (HOD). Conventional HOD formulations assume that only halo mass governs the galaxy-halo connection. Violations of this assumption, known as galaxy assembly bias, threaten the HOD program. We introduce decorated HODs, a new, flexible class of models designed to account for assembly bias. Decorated HODs minimally expand the parameter space and maximize the independence between traditional and novel HOD parameters. We use decorated HODs to quantify the influence of assembly bias on clustering and lensing statistics. For SDSS-like samples, the impact of assembly bias on galaxy clustering can be as large as a factor of two on r ~ 200 kpc scales and ~15% in the linear regime. Assembly bias can either enhance or diminish clustering on large scales, but generally increases clustering on scales r <~ 1 Mpc. We performed our calculations with Halotools, an open-source,...

  14. Integrated Virtual Assembly Process Planning System

    Institute of Scientific and Technical Information of China (English)

    LIU Jianhua; HOU Weiwei; HOU Weiwei; SHANG Wei; SHANG Wei; NING Ruxin; NING Ruxin

    2009-01-01

    Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previous studies in VAPP are almost isolated and dispersive, and have not established a whole understanding and discussed key realization techniques of VAPP from a systemic and integrated view. The integrated virtual assembly process planning(IVAPP) system is a new virtual reality based engineering application, which offers engineers an efficient, intuitive, immersive and integrated method for assembly process planning in a virtual environment. Based on analysis the information integration requirement of VAPP, the architecture of IVAPP is proposed. Through the integrated structure, IVAPP system can realize information integration and workflow controlling. In order to model the assembly process in IVAPP, a hierarchical assembly task list(HATL) is presented, in which different assembly tasks for assembling different components are organized into a hierarchical list. A process-oriented automatic geometrical constraint recognition algorithm(AGCR) is proposed, so that geometrical constraints between components can be automatically recognized during the process of interactive assembling. At the same time, a progressive hierarchical reasoning(PHR) model is discussed. AGCR and PHR will greatly reduce the interactive workload. A discrete control node model(DCNM) for cable harness assembly planning in IVAPP is detailed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and designs can realize cable harness planning through controlling those control nodes. Mechanical assemblies (such as transmission case and engine of automobile) are used to illustrate the feasibility of the proposed method and algorithms. The application of IVAPP system reveals advantages over the traditional assembly process planning method

  15. The BAGEL assembler generation library

    Science.gov (United States)

    Boyle, Peter A.

    2009-12-01

    This paper presents two coupled software packages which receive widespread use in the field of numerical simulations of Quantum Chromo-Dynamics. These consist of the BAGEL library and the BAGEL fermion sparse-matrix library, BFM. The Bagel library can generate assembly code for a number of architectures and is configurable - supporting several precision and memory pattern options to allow architecture specific optimisation. It provides high performance on the QCDOC, BlueGene/L and BlueGene/P parallel computer architectures that are popular in the field of lattice QCD. The code includes a complete conjugate gradient implementation for the Wilson and domain wall fermion actions, making it easy to use for third party codes including the Jefferson Laboratory's CHROMA, UKQCD's UKhadron, and the Riken-Brookhaven-Columbia Collaboration's CPS packages. Program summaryProgram title: Bagel Catalogue identifier: AEFE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU Public License V2 No. of lines in distributed program, including test data, etc.: 109 576 No. of bytes in distributed program, including test data, etc.: 892 841 Distribution format: tar.gz Programming language: C++, assembler Computer: Massively parallel message passing. BlueGene/QCDOC/others. Operating system: POSIX, Linux and compatible. Has the code been vectorised or parallelized?: Yes. 16 384 processors used. Classification: 11.5 External routines: QMP, QDP++ Nature of problem: Quantum Chromo-Dynamics sparse matrix inversion for Wilson and domain wall fermion formulations. Solution method: Optimised Krylov linear solver. Unusual features: Domain specific compiler generates optimised assembly code. Running time: 1 h per matrix inversion; multi-year simulations.

  16. Optical orientation in self assembled quantum dots

    CERN Document Server

    Stevens, G C

    2002-01-01

    We examined Zeeman splitting in a series of ln sub x Ga sub ( sub 1 sub - sub x sub ) As/GaAs self assembled quantum dots (SAQD's) with different pump polarisations. All these measurements were made in very low external magnetic fields where direct determination of the Zeeman splitting energy is impossible due to its small value in comparison to the photoluminescence linewidths. The use of a technique developed by M. J. Snelling allowed us to obtain the Zeeman splitting and hence the excitonic g-factors indirectly. We observed a linear low field splitting, becoming increasingly non-linear at higher fields. We attribute this non-linearity to field induced level mixing. It is believed these are the first low field measurements in these structures. A number of apparent nuclear effects in the Zeeman splitting measurements led us onto the examination of nuclear effects in these structures. The transverse and oblique Hanie effects then allowed us to obtain the sign of the electronic g-factors in two of our samples,...

  17. Parallel Assembly of LIGA Components

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, T.R.; Feddema, J.T.

    1999-03-04

    In this paper, a prototype robotic workcell for the parallel assembly of LIGA components is described. A Cartesian robot is used to press 386 and 485 micron diameter pins into a LIGA substrate and then place a 3-inch diameter wafer with LIGA gears onto the pins. Upward and downward looking microscopes are used to locate holes in the LIGA substrate, pins to be pressed in the holes, and gears to be placed on the pins. This vision system can locate parts within 3 microns, while the Cartesian manipulator can place the parts within 0.4 microns.

  18. Types for DSP Assembler Programs

    DEFF Research Database (Denmark)

    Larsen, Ken

    2006-01-01

    for reuse, and a procedure that computes point-wise vector multiplication. The latter uses a common idiom of prefetching memory resulting in out-of-bounds reading from memory. I present two extensions to the baseline type system: The first extension is a simple modification of some type rules to allow out...... the requirements of a procedure. I implement a proof-of-concept type checker for both the baseline type system and the extensions. I get good performance results on a small benchmark suite of programs representative of handwritten DSP assembler code. These empirical results are encouraging and strongly suggest...

  19. Nanoengineered membrane electrode assembly interface

    Science.gov (United States)

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  20. Algorithms for Automated DNA Assembly

    Science.gov (United States)

    2010-01-01

    Published online 23 March 2010 Nucleic Acids Research , 2010, Vol. 38, No. 8 2607–2616 doi:10.1093/nar/gkq165 The Author(s) 2010. Published by Oxford...composite part Pcon.RFP is also called an ‘intermediate part’ since it is constructed as an intermediate step in assembling the 2608 Nucleic Acids Research , 2010...in A–C. We assume part cd is already present in the part library. Nucleic Acids Research , 2010, Vol. 38, No. 8 2609 at M edical Library on S eptem ber

  1. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  2. A multi attribute decision making method for selection of optimal assembly line

    Directory of Open Access Journals (Sweden)

    B. Vijaya Ramnath

    2011-01-01

    Full Text Available With globalization, sweeping technological development, and increasing competition, customers are placing greater demands on manufacturers to increase quality, flexibility, on time delivery of product and less cost. Therefore, manufacturers must develop and maintain a high degree of coherence among competitive priorities, order winning criteria and improvement activities. Thus, the production managers are making an attempt to transform their organization by adopting familiar and beneficial management philosophies like cellular manufacturing (CM, lean manufacturing (LM, green manufacturing (GM, total quality management (TQM, agile manufacturing (AM, and just in time manufacturing (JIT. The main objective of this paper is to propose an optimal assembly method for an engine manufacturer’s assembly line in India. Currently, the Indian manufacturer is following traditional assembly method where the raw materials for assembly are kept along the sideways of conveyor line. It consumes more floor space, more work in process inventory, more operator's walking time and more operator's walking distance per day. In order to reduce the above mentioned wastes, lean kitting assembly is suggested by some managers. Another group of managers suggest JIT assembly as it consumes very less inventory cost compared to other types of assembly processes. Hence, a Multi-attribute decision making model namely analytical hierarchy process (AHP is applied to analyse the alternative assembly methods based on various important factors.

  3. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns

    Science.gov (United States)

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S.; Ma, Zhenqiang; Nealey, Paul F.

    2016-08-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.

  4. A do-it-yourself protocol for simple transcription activator-like effector assembly

    Directory of Open Access Journals (Sweden)

    Uhde-Stone Claudia

    2013-01-01

    Full Text Available Abstract Background TALEs (transcription activator-like effectors are powerful molecules that have broad applications in genetic and epigenetic manipulations. The simple design of TALEs, coupled with high binding predictability and specificity, is bringing genome engineering power to the standard molecular laboratory. Currently, however, custom TALE assembly is either costly or limited to few research centers, due to complicated assembly protocols, long set-up time and specific training requirements. Results We streamlined a Golden Gate-based method for custom TALE assembly. First, by providing ready-made, quality-controlled monomers, we eliminated the procedures for error-prone and time-consuming set-up. Second, we optimized the protocol toward a fast, two-day assembly of custom TALEs, based on four thermocycling reactions. Third, we increased the versatility for diverse downstream applications by providing series of vector sets to generate both TALENs (TALE nucleases and TALE-TFs (TALE-transcription factors under the control of different promoters. Finally, we validated our system by assembling a number of TALENs and TALE-TFs with DNA sequencing confirmation. We further demonstrated that an assembled TALE-TF was able to transactivate a luciferase reporter gene and a TALEN pair was able to cut its target. Conclusions We established and validated a do-it-yourself system that enables individual researchers to assemble TALENs and TALE-TFs within 2 days. The simplified TALE assembly combined with multiple choices of vectors will facilitate the broad use of TALE technology.

  5. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  6. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 1, Activation measurements and comparison with calculations for spent fuel assembly hardware

    Energy Technology Data Exchange (ETDEWEB)

    Luksic, A.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1. 5 refs., 4 figs., 21 tabs.

  7. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 2, Calculated activity profiles of spent nuclear fuel assembly hardware for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Lotz, T.L.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly remains that is also radioactive and requires disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report present a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from Laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volumes 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  8. Spent fuel assembly hardware: Characterization and 10 CFR 61 classification for waste disposal: Volume 3, Calculated activity profiles of spent nuclear fuel assembly hardware for boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Short, S.M.; Luksic, A.T.; Schutz, M.E.

    1989-06-01

    Consolidation of spent fuel is under active consideration as the US Department of Energy plans to dispose of spent fuel as required by the Nuclear Waste Policy Act of 1982. During consolidation, the fuel pins are removed from an intact fuel assembly and repackaged into a more compact configuration. After repackaging, approximately 30 kg of residual spent fuel assembly hardware per assembly that is also radioactive and required disposal. Understanding the nature of this secondary waste stream is critical to designing a system that will properly handle, package, store, and dispose of the waste. This report presents a methodology for estimating the radionuclide inventory in irradiated spent fuel hardware. Ratios are developed that allow the use of ORIGEN2 computer code calculations to be applied to regions that are outside the fueled region. The ratios are based on the analysis of samples of irradiated hardware from spent fuel assemblies. The results of this research are presented in three volumes. In Volume 1, the development of scaling factors that can be used with ORIGEN2 calculations to estimate activation of spent fuel assembly hardware is documented. The results from laboratory analysis of irradiated spent-fuel hardware samples are also presented in Volume 1. In Volume 2 and 3, the calculated flux profiles of spent nuclear fuel assemblies are presented for pressurized water reactors and boiling water reactors, respectively. The results presented in Volumes 2 and 3 were used to develop the scaling factors documented in Volume 1.

  9. Inhibitory actions of Anti-Mullerian Hormone (AMH on ovarian primordial follicle assembly.

    Directory of Open Access Journals (Sweden)

    Eric E Nilsson

    Full Text Available The current study was designed to investigate the actions of Anti-Müllerian Hormone (AMH on primordial follicle assembly. Ovarian primordial follicles develop from the breakdown of oocyte nests during fetal development for the human and immediately after birth in rodents. AMH was found to inhibit primordial follicle assembly and decrease the initial primordial follicle pool size in a rat ovarian organ culture. The AMH expression was found to be primarily in the stromal tissue of the ovaries at this period of development, suggesting a stromal-epithelial cell interaction for primordial follicle assembly. AMH was found to promote alterations in the ovarian transcriptome during primordial follicle assembly with over 200 genes with altered expression. A gene network was identified suggesting a potential central role for the Fgf2/Nudt6 antisense transcript in the follicle assembly process. A number of signal transduction pathways are regulated by AMH actions on the ovarian transcriptome, in particular the transforming growth factor-beta (TGFß signaling process. AMH is the first hormone/protein shown to have an inhibitory action on primordial follicle assembly. Due to the critical role of the primordial follicle pool size for female reproduction, elucidation of factors, such as AMH, that regulate the assembly process will provide insights into potential therapeutics to manipulate the pool size and female reproduction.

  10. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  11. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, J.J.

    1990-12-31

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele`s pivot. The Schiele`s pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele`s pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele`s pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  12. Anisotropic assembly and pattern formation

    Science.gov (United States)

    von Brecht, James H.; Uminsky, David T.

    2017-01-01

    We investigate the role of anisotropy in two classes of individual-based models for self-organization, collective behavior and self-assembly. We accomplish this via first-order dynamical systems of pairwise interacting particles that incorporate anisotropic interactions. At a continuum level, these models represent the natural anisotropic variants of the well-known aggregation equation. We leverage this framework to analyze the impact of anisotropic effects upon the self-assembly of co-dimension one equilibrium structures, such as micelles and vesicles. Our analytical results reveal the regularizing effect of anisotropy, and isolate the contexts in which anisotropic effects are necessary to achieve dynamical stability of co-dimension one structures. Our results therefore place theoretical limits on when anisotropic effects can be safely neglected. We also explore whether anisotropic effects suffice to induce pattern formation in such particle systems. We conclude with brief numerical studies that highlight various aspects of the models we introduce, elucidate their phase structure and partially validate the analysis we provide.

  13. Research on the Application of Life Cycle Cost Management in the Civil Aircraft Assembly Line Project

    Science.gov (United States)

    Dawei, Lian; Xuefeng, Zhao

    Based on the investigation of airplane enterprises, the paper defines the life cycle of the airplane's assembly line in a reasonable way. It takes the model of project list in the stage of bidding to make it more actual. Regarding the airplane's assembly line, it also applies the equipments life cycle management theory into the using stage so that we can control the using cost more effectively. The paper uses the Crystal Ball to analyze the risk factors of the airplane's assembly line and improves the investment budget's accuracy.

  14. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  15. Research on Precision Assembly Robot's Joint Torque Control Based on Current Measurement

    Institute of Scientific and Technical Information of China (English)

    董高云; 许春山; 费燕琼; 赵锡芳

    2003-01-01

    A set of new current sensing device is used to realize joint torque control based on current measurement in a precision assembly robot's third joint. The output torque's model of the joint's brnshless DC motor is founded. Disturbance factors and the compensated effect of the torque's closed loop based on current measurement are analyzed. Related simulations and experiments show that the system has good current tracking and anti-disturbances performance, which improve the force control performance of the robot in assembly.

  16. Design for Un-heterogeneous Critical Assembly

    Institute of Scientific and Technical Information of China (English)

    WANG; Fan; ZHOU; Qi

    2013-01-01

    In order to study the nuclear criticality issues in the dissolving process,a new critical assembly is designed by theoretical calculation to satisfy the heterogeneous critical experimental demands based on the existed YSR assembly(Fig.1).The experiment plans,geometry structure of the assembly,solution contents and fuel rods arrangements are determined.The parameters for each scheme are listed in Table 1.

  17. Optics assembly for high power laser tools

    Science.gov (United States)

    Fraze, Jason D.; Faircloth, Brian O.; Zediker, Mark S.

    2016-06-07

    There is provided a high power laser rotational optical assembly for use with, or in high power laser tools for performing high power laser operations. In particular, the optical assembly finds applications in performing high power laser operations on, and in, remote and difficult to access locations. The optical assembly has rotational seals and bearing configurations to avoid contamination of the laser beam path and optics.

  18. Control model for reconfigurable assembly systems

    Institute of Scientific and Technical Information of China (English)

    Yu Jianfeng; Yin Yuehong; Chen Zhaoneng

    2005-01-01

    This paper proposes knowledge based object-oriented timed colored Petri net, a modeling method for reconfigurable assembly systems. Combining knowledge and object-oriented method into timed colored Petri net, a comprehensive and powerful representation model for control of RAS is obtained. With object-oriented method the whole system can be decomposed into concrete objects explicitly, and their relationships are constructed according to the system assembly requirements. Finally, a simple assembly system modeled by the KTCOPN is presented.

  19. Tablet—next generation sequence assembly visualization

    OpenAIRE

    Milne, Iain; Bayer, Micha; Cardle, Linda; Shaw, Paul; Stephen, Gordon; Wright, Frank; Marshall, David

    2009-01-01

    Summary: Tablet is a lightweight, high-performance graphical viewer for next-generation sequence assemblies and alignments. Supporting a range of input assembly formats, Tablet provides high-quality visualizations showing data in packed or stacked views, allowing instant access and navigation to any region of interest, and whole contig overviews and data summaries. Tablet is both multi-core aware and memory efficient, allowing it to handle assemblies containing millions of reads, even on a 32...

  20. Balancing parallel assembly lines with disabled workers

    OpenAIRE

    Araújo, Felipe F. B.; Costa,Alysson M.; Miralles, Cristóbal

    2013-01-01

    We study an assembly line balancing problem that occurs in sheltered worker centers for the disabled, where workers with very different characteristics are present. We are interested in the situation in which parallel assembly lines are allowed and name the resulting problem as parallel assembly line worker assignment and balancing problem. We present a linear mixed-integer formulation and a four-stage heuristic algorithm. Computational results with a large set of instances recently proposed ...

  1. Henry Ford vs. assembly line balancing

    OpenAIRE

    Wilson, J M

    2014-01-01

    Ford’s Assembly Line at Highland Park is one of the most influential conceptualizations of a production system. New data reveal Ford’s operations were adaptable to strongly increasing and highly variable demand. These analyses show Ford’s assembly line was used differently than modern ones and their production systems were more flexible than previously recognized. Assembly line balancing theory largely ignores earlier practice. It will be shown that Ford used multiple lines flexibly to cope w...

  2. RF/Optical Demonstration: Focal Plane Assembly

    Science.gov (United States)

    Hoppe, D. J.; Chung, S.; Kovalik, J.; Gama, E.; Fernandez, M. M.

    2016-11-01

    In this article, we describe the second-generation focal plane optical assembly employed in the RF/optical demonstration at DSS-13. This assembly receives reflected light from the two mirror segments mounted on the RF primary. The focal plane assembly contains a fast steering mirror (FSM) to stabilize the focal plane spot, a pupil camera to aid in aligning the two segments, and several additional cameras for receiving the optical signal prior to as well as after the FSM loop.

  3. Metagenomic Assembly: Overview, Challenges and Applications

    Science.gov (United States)

    Ghurye, Jay S.; Cepeda-Espinoza, Victoria; Pop, Mihai

    2016-01-01

    Advances in sequencing technologies have led to the increased use of high throughput sequencing in characterizing the microbial communities associated with our bodies and our environment. Critical to the analysis of the resulting data are sequence assembly algorithms able to reconstruct genes and organisms from complex mixtures. Metagenomic assembly involves new computational challenges due to the specific characteristics of the metagenomic data. In this survey, we focus on major algorithmic approaches for genome and metagenome assembly, and discuss the new challenges and opportunities afforded by this new field. We also review several applications of metagenome assembly in addressing interesting biological problems. PMID:27698619

  4. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  5. Development of self-assembling nanowires containing electronically active oligothiophenes

    Science.gov (United States)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the

  6. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I. [Zababakhin Russian Federal Nuclear Center - All-Russian Scientific Researching Institute of Technical Physics (Russian Federation)

    2003-07-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5{sup n}. Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  7. Community assembly in experimental grasslands: suitable environment or timely arrival?

    Science.gov (United States)

    Ejrnaes, Rasmus; Bruun, Hans Henrik; Graae, Bente J

    2006-05-01

    to community assembly. However, our results indicate that variation in asymmetric competition is the key factor determining the richness of the resulting communities, and this is far from neutral.

  8. Ultrasound transducer assembly and method for manufacturing an ultrasound transducer assembly

    NARCIS (Netherlands)

    Dekker, R.; Henneken, V.A.; Louwerse, M.C.; Raganato, M.F.

    2015-01-01

    The present invention relates to an ultrasound transducer assembly (10), in particular for intravascular ultrasound systems. The ultrasound transducer assembly comprises at least one silicon substrate element (30) including an ultrasound transducer element (14) for emitting and receiving ultrasound

  9. Laminins in basement membrane assembly.

    Science.gov (United States)

    Hohenester, Erhard; Yurchenco, Peter D

    2013-01-01

    The heterotrimeric laminins are a defining component of all basement membranes and self-assemble into a cell-associated network. The three short arms of the cross-shaped laminin molecule form the network nodes, with a strict requirement for one α, one β and one γ arm. The globular domain at the end of the long arm binds to cellular receptors, including integrins, α-dystroglycan, heparan sulfates and sulfated glycolipids. Collateral anchorage of the laminin network is provided by the proteoglycans perlecan and agrin. A second network is then formed by type IV collagen, which interacts with the laminin network through the heparan sulfate chains of perlecan and agrin and additional linkage by nidogen. This maturation of basement membranes becomes essential at later stages of embryo development.

  10. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  11. Fellows Celebrated at Joint Assembly

    Science.gov (United States)

    2009-06-01

    The 2009 AGU Fellows were presented at the recent Joint Assembly in Toronto, Ontario, Canada. At a formal ceremony on 26 May 2009, AGU President Timothy L. Grove introduced each Fellow and read a brief statement of the achievements for which each had been selected. The presentations were followed by a reception for meeting attendees and a banquet at which family members and close colleagues further feted the honorees. AGU Fellows are scientists who have attained “acknowledged eminence in the geophysical sciences.” Election to AGU Fellowship is a very high recognition by one's peers. The number of Fellows elected may not exceed 0.1% of the membership in any given year.

  12. Directed actin assembly and motility.

    Science.gov (United States)

    Boujemaa-Paterski, Rajaa; Galland, Rémi; Suarez, Cristian; Guérin, Christophe; Théry, Manuel; Blanchoin, Laurent

    2014-01-01

    The actin cytoskeleton is a key component of the cellular architecture. However, understanding actin organization and dynamics in vivo is a complex challenge. Reconstitution of actin structures in vitro, in simplified media, allows one to pinpoint the cellular biochemical components and their molecular interactions underlying the architecture and dynamics of the actin network. Previously, little was known about the extent to which geometrical constraints influence the dynamic ultrastructure of these networks. Therefore, in order to study the balance between biochemical and geometrical control of complex actin organization, we used the innovative methodologies of UV and laser patterning to design a wide repertoire of nucleation geometries from which we assembled branched actin networks. Using these methods, we were able to reconstitute complex actin network organizations, closely related to cellular architecture, to precisely direct and control their 3D connections. This methodology mimics the actin networks encountered in cells and can serve in the fabrication of innovative bioinspired systems.

  13. Reconfigurable optical assembly of nanostructures

    Science.gov (United States)

    Montelongo, Yunuen; Yetisen, Ali K.; Butt, Haider; Yun, Seok-Hyun

    2016-06-01

    Arrangements of nanostructures in well-defined patterns are the basis of photonic crystals, metamaterials and holograms. Furthermore, rewritable optical materials can be achieved by dynamically manipulating nanoassemblies. Here we demonstrate a mechanism to configure plasmonic nanoparticles (NPs) in polymer media using nanosecond laser pulses. The mechanism relies on optical forces produced by the interference of laser beams, which allow NPs to migrate to lower-energy configurations. The resulting NP arrangements are stable without any external energy source, but erasable and rewritable by additional recording pulses. We demonstrate reconfigurable optical elements including multilayer Bragg diffraction gratings, volumetric photonic crystals and lenses, as well as dynamic holograms of three-dimensional virtual objects. We aim to expand the applications of optical forces, which have been mostly restricted to optical tweezers. Holographic assemblies of nanoparticles will allow a new generation of programmable composites for tunable metamaterials, data storage devices, sensors and displays.

  14. Nanocrystal assembly for tandem catalysis

    Science.gov (United States)

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  15. Low inductance power electronics assembly

    Science.gov (United States)

    Herron, Nicholas Hayden; Mann, Brooks S.; Korich, Mark D.; Chou, Cindy; Tang, David; Carlson, Douglas S.; Barry, Alan L.

    2012-10-02

    A power electronics assembly is provided. A first support member includes a first plurality of conductors. A first plurality of power switching devices are coupled to the first support member. A first capacitor is coupled to the first support member. A second support member includes a second plurality of conductors. A second plurality of power switching devices are coupled to the second support member. A second capacitor is coupled to the second support member. The first and second pluralities of conductors, the first and second pluralities of power switching devices, and the first and second capacitors are electrically connected such that the first plurality of power switching devices is connected in parallel with the first capacitor and the second capacitor and the second plurality of power switching devices is connected in parallel with the second capacitor and the first capacitor.

  16. Hybrid De Novo Genome Assembly Using MiSeq and SOLiD Short Read Data.

    Science.gov (United States)

    Ikegami, Tsutomu; Inatsugi, Toyohiro; Kojima, Isao; Umemura, Myco; Hagiwara, Hiroko; Machida, Masayuki; Asai, Kiyoshi

    2015-01-01

    A hybrid de novo assembly pipeline was constructed to utilize both MiSeq and SOLiD short read data in combination in the assembly. The short read data were converted to a standard format of the pipeline, and were supplied to the pipeline components such as ABySS and SOAPdenovo. The assembly pipeline proceeded through several stages, and either MiSeq paired-end data, SOLiD mate-paired data, or both of them could be specified as input data at each stage separately. The pipeline was examined on the filamentous fungus Aspergillus oryzae RIB40, by aligning the assembly results against the reference sequences. Using both the MiSeq and the SOLiD data in the hybrid assembly, the alignment length was improved by a factor of 3 to 8, compared with the assemblies using either one of the data types. The number of the reproduced gene cluster regions encoding secondary metabolite biosyntheses (SMB) was also improved by the hybrid assemblies. These results imply that the MiSeq data with long read length are essential to construct accurate nucleotide sequences, while the SOLiD mate-paired reads with long insertion length enhance long-range arrangements of the sequences. The pipeline was also tested on the actinomycete Streptomyces avermitilis MA-4680, whose gene is known to have high-GC content. Although the quality of the SOLiD reads was too low to perform any meaningful assemblies by themselves, the alignment length to the reference was improved by a factor of 2, compared with the assembly using only the MiSeq data.

  17. Hybrid De Novo Genome Assembly Using MiSeq and SOLiD Short Read Data.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ikegami

    Full Text Available A hybrid de novo assembly pipeline was constructed to utilize both MiSeq and SOLiD short read data in combination in the assembly. The short read data were converted to a standard format of the pipeline, and were supplied to the pipeline components such as ABySS and SOAPdenovo. The assembly pipeline proceeded through several stages, and either MiSeq paired-end data, SOLiD mate-paired data, or both of them could be specified as input data at each stage separately. The pipeline was examined on the filamentous fungus Aspergillus oryzae RIB40, by aligning the assembly results against the reference sequences. Using both the MiSeq and the SOLiD data in the hybrid assembly, the alignment length was improved by a factor of 3 to 8, compared with the assemblies using either one of the data types. The number of the reproduced gene cluster regions encoding secondary metabolite biosyntheses (SMB was also improved by the hybrid assemblies. These results imply that the MiSeq data with long read length are essential to construct accurate nucleotide sequences, while the SOLiD mate-paired reads with long insertion length enhance long-range arrangements of the sequences. The pipeline was also tested on the actinomycete Streptomyces avermitilis MA-4680, whose gene is known to have high-GC content. Although the quality of the SOLiD reads was too low to perform any meaningful assemblies by themselves, the alignment length to the reference was improved by a factor of 2, compared with the assembly using only the MiSeq data.

  18. High temperature control rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  19. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  20. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, John J. (Bingham County, ID)

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  1. Valve stem and packing assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wordin, J.J.

    1990-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  2. Helicity, assembly, and circularly polarised luminesence of chiral AIEgens

    Science.gov (United States)

    Li, Hongkun; Li, Bing Shi; Tang, Ben Zhong

    2016-09-01

    As opposed to most fluorophores that suffer from aggregation-caused quenching (ACQ), aggregation-induced emissive luminogens (AIEgens) possess very weak fluorescence in solution, but show strong emission upon aggregation due to restriction of intramolecular motion (RIM). Since AIEgens are often comprised of propeller-shaped structures, i.e. polyphenylsiloles or tetraphenylethylene (TPE), the attachment of chiral units has recently proven a powerful tool to fabricate chiral AIEgens exhibiting strong circularly-polarized luminescence (CPL) signal upon aggregation. Different chiral moieties lead to various assembled structures, such as helical nanoribbons, superhelical ropes, hollow and solid micro-/nanospheres. Generally, these structures exhibit enhanced chiroptical properties when compared to their monomeric counterpart. In this context, we report on the tetraphenylsilole and TPE derivatives with side-chains bearing an enantiomerically pure chiral units readily assembled into superhelical ropes upon aggregation, which displayed large CPL dissymmetry factors (gem) of -0.32 - a record for purely organic chiral materials.

  3. A multiple-stage natural gas-powered assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shirokov, V.A.; Bannikov, V.F.; Zhukovskii, A.V.

    1979-01-01

    In 1976, the Volgograd tractor factory produced a furnace-type gas-powered assembly--a dryer. The natural gas combustion products from nonmufflered cement equipment in a heat-treating department, equipped with radiative piping, are directed by exhaust fans into the drying chambers of the painting section of a tractor assembly plant. The total natural gas consumption for one furnace is 120 cubic meters per hour, the utilization factor of the fuel in the furnace is 51%. The amount of heat lost to the exhaust gases (1.35 gigacalories per hour) is enough to satisfy the heat requirement of the drying chambers. The combustion products from these furnaces are automatically fed to individual smoke stacks or dryers. The capital expenditures for incorporating the system amount to 10,000 rubles, and the pay-back period is 7 months. The economic savings from incorporating the system amounted to 2,000 rubles.

  4. Communication: Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, N. Arun; Ganesan, Venkat

    2012-03-01

    We apply the methodology of self-consistent Brownian dynamics simulations to study the self-assembly behavior in melts of semiflexible-flexible diblock copolymers as a function of the persistence length of the semiflexible block. Our results reveal a novel progression of morphologies in transitioning from the case of flexible-coil to rod-coil copolymers. At even moderate persistence lengths, the morphologies in the semiflexible-block rich region of the phase diagram transform to liquid crystalline phases. In contrast, the phases in the flexible-block rich region of the phase diagram persist up to much larger persistence lengths. Our analysis suggests that the development of orientational order in the semiflexible block to be a critical factor influencing the morphologies of self-assembly.

  5. Optical systems fabricated by printing-based assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John; Nuzzo, Ralph; Meitl, Matthew; Menard, Etienne; Baca, Alfred; Motala, Michael; Ahn, Jong-Hyun; Park, Sang-Il; Yu, Chang-Jae; Ko, Heung Cho; Stoykovich, Mark; Yoon, Jongseung

    2017-03-21

    Provided are optical devices and systems fabricated, at least in part, via printing-based assembly and integration of device components. In specific embodiments the present invention provides light emitting systems, light collecting systems, light sensing systems and photovoltaic systems comprising printable semiconductor elements, including large area, high performance macroelectronic devices. Optical systems of the present invention comprise semiconductor elements assembled, organized and/or integrated with other device components via printing techniques that exhibit performance characteristics and functionality comparable to single crystalline semiconductor based devices fabricated using conventional high temperature processing methods. Optical systems of the present invention have device geometries and configurations, such as form factors, component densities, and component positions, accessed by printing that provide a range of useful device functionalities. Optical systems of the present invention include devices and device arrays exhibiting a range of useful physical and mechanical properties including flexibility, shapeability, conformability and stretchablity.

  6. Steady-state thermal-hydraulic analysis of SCWR assembly

    Institute of Scientific and Technical Information of China (English)

    Xiaojing LIU; Xu CHENG

    2008-01-01

    Among the six gen-Ⅳ reactor concepts recom-mended by the gen-Ⅳ international forum (GIF), super-critical water-cooled reactor (SCWR), the only reactor with water as coolant, achieves a high thermal efficiency and, subsequently, has economic advantages over the existing reactors due to its high outlet temperature. A thermal-hydraulic analysis of the SCWR assembly is per-formed in this paper using the modified COBRA-Ⅳ code. Two approaches to reduce the hot channel factor are investigated: decreasing the moderator mass flow and increasing the thermal resistance between moderator channel and its adjacent sub-channels. It is shown that heat transfer deterioration cannot be avoided in SCWR fuel assembly. It is, therefore, highly required to calculate the cladding temperature accurately and to preserve the fuel rod cladding integrity under heat transfer deteriora-tion conditions.

  7. Visual dysfunction among former microelectronics assembly workers.

    Science.gov (United States)

    Mergler, D; Huel, G; Bowler, R; Frenette, B; Cone, J

    1991-01-01

    Although known neurotoxins with potential ophthalmotoxic properties are commonly used in microelectronics assembly, there has been no systematic study of visual disturbances among past or present workers in this industry. The objective of the present study was to compare visual functions, using a matched-pair design, between former workers from a microelectronics plant and a local reference population. From an initial population of 180 former workers and 157 potential referents, 54 pairs were matched for age (+/- 3 y), education (+/- 2 y), sex, ethnic origin, and number of children. Near and far visual acuity, chromatic discrimination, and near contrast sensitivity were assessed monocularly. Paired comparisons (Signed-rank Wilcoxon test) revealed that the former microelectronics workers had significantly lower contrast sensitivity, particularly in the intermediate frequencies, independently of near visual acuity loss. There were no differences for far visual acuity in both eyes. Even though near visual acuity and color vision were compromised among the former workers, the differences were only significant for one eye, as was the prevalence of acquired dyschromatopsia (chi-square for matched pairs, p less than .001). These findings suggest a pattern of contrast sensitivity deficits consistent with impairment to foveal and/or neuro-optic pathways among these former microelectronics workers. Exposure to ophthalmotoxic chemicals is proposed as the most probable risk factor.

  8. The new Sunspot Number: assembling all corrections

    CERN Document Server

    Frédéric,; Lefèvre, Laure

    2015-01-01

    The Sunspot Number, created by R.Wolf in 1849, provides a direct long-term record of solar activity from 1700 to the present. In spite of its central role in multiple studies of the solar dynamo and of the past Sun-Earth relations, it was never submitted to a global critical revision. However, various discrepancies with other solar indices recently motivated a full re-calibration of this series. Based on various diagnostics and corrections established in the framework of several Sunspot Number Workshops and described in Clette et al. 2014, we assembled all corrections in order to produce a new standard version of this reference time series. In this paper, we explain the three main corrections and the criteria used to choose a final optimal version of each correction factor or function, given the available information and published analyses. We then discuss the good agreement obtained with the Group sunspot Number derived from a recent reconstruction. Among the implications emerging from this re-calibrated ser...

  9. Research on Self-Assembling Quantum Dots.

    Science.gov (United States)

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  10. Uracil Excision for Assembly of Complex Pathways

    DEFF Research Database (Denmark)

    Cavaleiro, Mafalda; Nielsen, Morten Thrane; Kim, Se Hyeuk

    2015-01-01

    Despite decreasing prices on synthetic DNA constructs, higher-order assembly of PCR-generated DNA continues to be an important exercise in molecular and synthetic biology. Simplicity and robustness are attractive features met by the uracil excision DNA assembly method, which is one of the most in...

  11. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  12. MTI Focal Plane Assembly Design and Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, M.; Rienstra, J.L.

    1999-06-17

    The focal plane assembly for the Multispectral Thermal Imager (MTI) consists of sensor chip assemblies, optical filters, and a vacuum enclosure. Sensor chip assemblies, composed of linear detector arrays and readout integrated circuits, provide spatial resolution in the cross-track direction for the pushbroom imager. Optical filters define 15 spectral bands in a range from 0.45 {micro}m to 10.7 {micro}m. All the detector arrays are mounted on a single focal plane and are designed to operate at 75 K. Three pairs of sensor chip assemblies (SCAs) are required to provide cross-track coverage in all 15 spectral bands. Each pair of SCAs includes detector arrays made from silicon, iridium antimonide, and mercury cadmium telluride. Read out integrated circuits multiplex the signals from the detectors to 18 separate video channels. Optical filter assemblies defining the spectral bands are mounted over the linear detector arrays. Each filter assembly consists of several filter strips bonded together side-by-side. The MTI focal plane assembly has been integrated with the rest of the payload and has undergone detailed testing and calibration. This paper includes representative test data for the various spectral bands and the overall performance of the focal plane assembly.

  13. Aerodynamic seal assemblies for turbo-machinery

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  14. CT Performance Evaluation Using Multi Material Assemblies

    DEFF Research Database (Denmark)

    Stolfi, Alessandro; De Chiffre, Leonardo

    2015-01-01

    This paper concerns an investigation of the accuracy of Computed Tomography measurements using multi-material assemblies. In this study, assemblies involving similar densities for elementary parts were considered. The investigation includes dimensional and geometrical measurements of two 10 mm hi...

  15. Assembly of the CMS hadronic calorimeter

    CERN Document Server

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  16. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  17. ATLAS: End-cap Toroid assembly

    CERN Multimedia

    2006-01-01

    In building 191 and building 180- assembly of this massive piece.To reach the top of the end-cap the cranes has to be used and during the assembly you can see welding and hear many tools running background.

  18. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  19. Cable Harness Assembly Planning in Virtual Environment

    Institute of Scientific and Technical Information of China (English)

    LIU Jianhua; NING Ruxin; BAI Shuqing; WANG Bile

    2006-01-01

    Based on the analysis of characteristic of cable harness planning in virtual environment, a discrete control node modeling (DCNM) method of cable harness in virtual environment and the cable harness assembly routing technique based on it are proposed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and the design can realize cable harness planning through controlling those control nodes. This method of cable harness routing in the virtual environment breaks the status that virtual assembly process planning is just suitable for the rigid components at present, and impulse the virtual assembly process planning to be more practical. Relation algorithms have been verified in a self-developed system named virtual cable harness assembly planning (VCHAP) system, and this VCHAP system has been applied in assembly process planning of aerospace-related products.

  20. Clean Industrial Room for Drift Tube Assembling

    CERN Document Server

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  1. Quality Assessment of Domesticated Animal Genome Assemblies.

    Science.gov (United States)

    Seemann, Stefan E; Anthon, Christian; Palasca, Oana; Gorodkin, Jan

    2015-01-01

    The era of high-throughput sequencing has made it relatively simple to sequence genomes and transcriptomes of individuals from many species. In order to analyze the resulting sequencing data, high-quality reference genome assemblies are required. However, this is still a major challenge, and many domesticated animal genomes still need to be sequenced deeper in order to produce high-quality assemblies. In the meanwhile, ironically, the extent to which RNAseq and other next-generation data is produced frequently far exceeds that of the genomic sequence. Furthermore, basic comparative analysis is often affected by the lack of genomic sequence. Herein, we quantify the quality of the genome assemblies of 20 domesticated animals and related species by assessing a range of measurable parameters, and we show that there is a positive correlation between the fraction of mappable reads from RNAseq data and genome assembly quality. We rank the genomes by their assembly quality and discuss the implications for genotype analyses.

  2. Human Contamination in Public Genome Assemblies

    Science.gov (United States)

    Kryukov, Kirill; Imanishi, Tadashi

    2016-01-01

    Contamination in genome assembly can lead to wrong or confusing results when using such genome as reference in sequence comparison. Although bacterial contamination is well known, the problem of human-originated contamination received little attention. In this study we surveyed 45,735 available genome assemblies for evidence of human contamination. We used lineage specificity to distinguish between contamination and conservation. We found that 154 genome assemblies contain fragments that with high confidence originate as contamination from human DNA. Majority of contaminating human sequences were present in the reference human genome assembly for over a decade. We recommend that existing contaminated genomes should be revised to remove contaminated sequence, and that new assemblies should be thoroughly checked for presence of human DNA before submitting them to public databases. PMID:27611326

  3. Structural Assembly Demonstration Experiment (SADE) experiment design

    Science.gov (United States)

    Akin, D. L.; Bowden, M. L.

    1982-03-01

    The Structural Assembly Demonstration Experiment concept is to erect a hybrid deployed/assembled structure as an early space experiment in large space structures technology. The basic objectives can be broken down into three generic areas: (1) by performing assembly tasks both in space and in neutral buoyancy simulation, a mathematical basis will be found for the validity conditions of neutral buoyancy, thus enhancing the utility of water as a medium for simulation of weightlessness; (2) a data base will be established describing the capabilities and limitations of EVA crewmembers, including effects of such things as hardware size and crew restraints; and (3) experience of the M.I.T. Space Systems Lab in neutral buoyancy simulation of large space structures assembly indicates that the assembly procedure may create the largest loads that a structure will experience during its lifetime. Data obtained from the experiment will help establish an accurate loading model to aid designers of future space structures.

  4. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S.; Russell, Thomas P.; Dinsmore, Anthony; Skaff, Habib; Lin, Yao

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  5. Hydrodynamically driven colloidal assembly in dip coating.

    Science.gov (United States)

    Colosqui, Carlos E; Morris, Jeffrey F; Stone, Howard A

    2013-05-01

    We study the hydrodynamics of dip coating from a suspension and report a mechanism for colloidal assembly and pattern formation on smooth substrates. Below a critical withdrawal speed where the coating film is thinner than the particle diameter, capillary forces induced by deformation of the free surface prevent the convective transport of single particles through the meniscus beneath the film. Capillary-induced forces are balanced by hydrodynamic drag only after a minimum number of particles assemble within the meniscus. The particle assembly can thus enter the thin film where it moves at nearly the withdrawal speed and rapidly separates from the next assembly. The interplay between hydrodynamic and capillary forces produces periodic and regular structures below a critical ratio Ca(2/3)/sqrt[Bo] particles in suspension. The hydrodynamically driven assembly documented here is consistent with stripe pattern formations observed experimentally in dip coating.

  6. The effect of zinc on amyloid β-protein assembly and toxicity: A mechanistic investigation

    Science.gov (United States)

    Solomonov, Inna; Sagi, Irit

    2014-10-01

    Neurotoxic assemblies of amyloid β-protein (Aβ) are widely believed to be the cause for Alzheimer's disease (AD). Therefore, understanding the factors and mechanisms that control, modulate, and inhibit formation of these assemblies is crucial for the development of therapeutic intervention of AD. This information also can contribute significantly to our understanding of the mechanisms of other amyloidosis diseases, such as Parkinson's disease, Huntington's disease, type 2 diabetes, amyotrophic lateral sclerosis (Lou Gehrig's disease) and prion diseases (e.g. Mad Cow disease). We have developed a multidisciplinary experimental strategy to study structural and dynamic mechanistic aspects that underlie the Aβ assembly process. Utilizing this strategy, we explored the molecular basis leading to the perturbation of the Aβ assembly process by divalent metal ions, mainly Zn2+ ions. Using Zn2+ as reaction physiological relevant probes, it was demonstrated that Zn2+ rapidly (milliseconds) induce self-assembly of Aβ aggregates and stabilize them in a manner that prevents formation of Aβ fibrils. Importantly, the early-formed intermediates are substantially more neurotoxic than fibrils. Our results suggest that relevant Aβ modulators should be targeted against the rapidly evolved intermediate states of Aβ assembly. The design of such modulators is challenging, as they have to compete with different natural mediators (such as Zn2+) of Aβ aggregation, which diverse Aβ assemblies in both specific and nonspecific manners.

  7. Innovation in Layer-by-Layer Assembly.

    Science.gov (United States)

    Richardson, Joseph J; Cui, Jiwei; Björnmalm, Mattias; Braunger, Julia A; Ejima, Hirotaka; Caruso, Frank

    2016-12-14

    Methods for depositing thin films are important in generating functional materials for diverse applications in a wide variety of fields. Over the last half-century, the layer-by-layer assembly of nanoscale films has received intense and growing interest. This has been fueled by innovation in the available materials and assembly technologies, as well as the film-characterization techniques. In this Review, we explore, discuss, and detail innovation in layer-by-layer assembly in terms of past and present developments, and we highlight how these might guide future advances. A particular focus is on conventional and early developments that have only recently regained interest in the layer-by-layer assembly field. We then review unconventional assemblies and approaches that have been gaining popularity, which include inorganic/organic hybrid materials, cells and tissues, and the use of stereocomplexation, patterning, and dip-pen lithography, to name a few. A relatively recent development is the use of layer-by-layer assembly materials and techniques to assemble films in a single continuous step. We name this "quasi"-layer-by-layer assembly and discuss the impacts and innovations surrounding this approach. Finally, the application of characterization methods to monitor and evaluate layer-by-layer assembly is discussed, as innovation in this area is often overlooked but is essential for development of the field. While we intend for this Review to be easily accessible and act as a guide to researchers new to layer-by-layer assembly, we also believe it will provide insight to current researchers in the field and help guide future developments and innovation.

  8. Assembly and melting of DNA nanotubes from single-sequence tiles.

    Science.gov (United States)

    Sobey, T L; Renner, S; Simmel, F C

    2009-01-21

    DNA melting and renaturation studies are an extremely valuable tool to study the kinetics and thermodynamics of duplex dissociation and reassociation reactions. These are important not only in a biological or biotechnological context, but also for DNA nanotechnology which aims at the construction of molecular materials by DNA self-assembly. We here study experimentally the formation and melting of a DNA nanotube structure, which is composed of many copies of an oligonucleotide containing several palindromic sequences. This is done using temperature-controlled UV absorption measurements correlated with atomic force microscopy, fluorescence microscopy and transmission electron microscopy techniques. In the melting studies, important factors such as DNA strand concentration, hierarchy of assembly and annealing protocol are investigated. Assembly and melting of the nanotubes are shown to proceed via different pathways. Whereas assembly occurs in several hierarchical steps related to the formation of tiles, lattices and tubes, melting of DNA nanotubes appears to occur in a single step. This is proposed to relate to fundamental differences between closed, three-dimensional tube-like structures and open, two-dimensional lattices. DNA melting studies can lead to a better understanding of the many factors that affect the assembly process which will be essential for the assembly of increasingly complex DNA nanostructures.

  9. Stepwise and dynamic assembly of the earliest precursors of small ribosomal subunits in yeast.

    Science.gov (United States)

    Zhang, Liman; Wu, Chen; Cai, Gaihong; Chen, She; Ye, Keqiong

    2016-03-15

    The eukaryotic ribosomal RNA (rRNA) is associated cotranscriptionally with numerous factors into an enormous 90S preribosomal particle that conducts early processing of small ribosomal subunits. The assembly pathway and structure of the 90S particle is poorly understood. Here, we affinity-purified and analyzed the constituents of yeast 90S particles that were assembled on a series of plasmid-encoded 3'-truncated pre-18S RNAs. We determined the assembly point of 65 proteins and the U3, U14, and snR30 small nucleolar RNAs (snoRNAs), revealing a stepwise and dynamic assembly map. The 5' external transcribed spacer (ETS) alone can nucleate a large complex. When the 18S rRNA is nearly complete, the 90S structure undergoes a dramatic reorganization, releasing U14, snR30, and 14 protein factors that bind earlier. We also identified a reference state of 90S that is fully assembled yet has not undergone 5'ETS processing. The assembly map present here provides a new framework to understand small subunit biogenesis.

  10. Functional traits and environmental filtering drive community assembly in a species-rich tropical system.

    Science.gov (United States)

    Lebrija-Trejos, Edwin; Pérez-García, Eduardo A; Meave, Jorge A; Bongers, Frans; Poorter, Lourens

    2010-02-01

    Mechanistic models of community assembly state that biotic and abiotic filters constrain species establishment through selection on their functional traits. Predicting this assembly process is hampered because few studies directly incorporate environmental measurements and scale up from species to community level and because the functional traits' significance is environment dependent. We analyzed community assembly by measuring structure, environmental conditions, and species traits of secondary forests in a species-rich tropical system. We found, as hypothesized, that community structure shaped the local environment and that strong relationships existed between this environment and the traits of the most successful species of the regeneration communities. Path and multivariate analyses showed that temperature and leaf traits that regulate it were the most important factors of community differentiation. Comparisons between the trait composition of the forest's regeneration, juvenile, and adult communities showed a consistent community assembly pattern. These results allowed us to identify the major functional traits and environmental factors involved in the assembly of dry-forest communities and demonstrate that environmental filtering is a predictable and fundamental process of community assembly, even in a complex system such as a tropical forest.

  11. Kinetic and thermodynamic assessments of the mediator-template assembly of nanoparticles.

    Science.gov (United States)

    Lim, I-Im Stephanie; Maye, Mathew M; Luo, Jin; Zhong, Chuan-Jian

    2005-02-24

    The understanding of kinetic and thermodynamic factors governing the assembly of nanoparticles is important for the design and control of functional nanostructures. This paper describes a study of the kinetic and thermodynamic factors governing the mediator-template assembly of gold nanoparticles into spherical assemblies in solutions. The study is based on spectrophotometric measurements of the surface plasmon (SP) resonance optical property. Gold nanoparticle cores ( approximately 5 nm) encapsulated with tetraoctylammonium bromide shells were studied as a model system. The mediator-template assembly involves a thioether-based multidentate ligand (e.g., MeSi(CH2SMe)3) which functions as a mediator, whereas the tetraoctylammonium bromide capping molecules function as template agents. On the basis of the temperature dependence of the SP optical property in the mediator-template assembly process, the kinetic and thermodynamic parameters such as the reaction rate constant and reaction enthalpy have been determined. The results led to two important findings. First, the mediator-template assembly of nanoparticles is an enthalpy-driven process. Second, the enthalpy change (-1.3 kcal/mol) is close to the magnitude of the van der Waals interaction energy for alkyl chains and the condensation energy of hydrocarbons. Implications of the findings to the understanding of the interparticle interactions have also been discussed.

  12. The yeast histone chaperone hif1p functions with RNA in nucleosome assembly.

    Directory of Open Access Journals (Sweden)

    Amy R Knapp

    Full Text Available Hif1p is an H3/H4-specific histone chaperone that associates with the nuclear form of the Hat1p/Hat2p complex (NuB4 complex in the yeast Saccharomyces cerevisiae. While not capable of depositing histones onto DNA on its own, Hif1p can act in conjunction with a yeast cytosolic extract to assemble nucleosomes onto a relaxed circular plasmid.To identify the factor(s that function with Hif1p to carry out chromatin assembly, multiple steps of column chromatography were carried out to fractionate the yeast cytosolic extract. Analysis of partially purified fractions indicated that Hif1p-dependent chromatin assembly activity resided in RNA rather than protein. Fractionation of isolated RNA indicated that the chromatin assembly activity did not simply purify with bulk RNA. In addition, the RNA-mediated chromatin assembly activity was blocked by mutations in the human homolog of Hif1p, sNASP, that prevent the association of this histone chaperone with histone H3 and H4 without altering its electrostatic properties.These results suggest that specific RNA species may function in concert with histone chaperones to assemble chromatin.

  13. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers.

    Science.gov (United States)

    Mogilevsky, Alina; Jelinek, Raz

    2011-02-15

    Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.

  14. Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Pedersen, Mette Louise; Krogh, Berit Olsen;

    2012-01-01

    Combinatorial genetic libraries are powerful tools for diversifying and optimizing biomolecules. The process of library assembly is a major limiting factor for library complexity and quality. Gap repair by homologous recombination in Saccharomyces cerevisiae can facilitate in vivo assembly of DNA...... fragments sharing short patches of sequence homology, thereby supporting generation of high-complexity libraries without compromising fidelity. In this study, we have optimized the ordered assembly of three DNA fragments into a gapped vector by in vivo homologous recombination. Assembly is achieved by co......-transformation of the DNA fragments and the gapped vector, using a modified lithium acetate protocol. The optimal gap-repair efficiency is found at a 1:80 molar ratio of gapped vector to each of the three fragments. We measured gap-repair efficiency in different genetic backgrounds and observed increased efficiency...

  15. Contrasting assembly processes in a bacterial metacommunity along a desiccation gradient

    Directory of Open Access Journals (Sweden)

    Angel eValverde

    2014-12-01

    Full Text Available Understanding the relative influence of deterministic and stochastic processes in driving community assembly is a major goal in microbial ecology. Here, we have investigated the influence of these processes on bacterial community assembly in the lateral sediments of a salt pan along a desiccation gradient over a three-year period. We show that the role of deterministic processes increases in communities distant from the water line (shaped by drought, probably as a result of the interplay between abiotic and biotic factors. By contrast, the influence of stochastic processes on bacterial community assembly was higher in the sediments closest to the water line, more likely due to lower levels of abiotic stress. Our results demonstrate that both deterministic and stochastic processes influence bacterial community assembly in salt pan sediments, and that their relative influence varies along a desiccation gradient.

  16. Light-Induced Reversible Self-Assembly of Gold Nanoparticles Surface-Immobilized with Coumarin Ligands.

    Science.gov (United States)

    He, Huibin; Feng, Miao; Chen, Qidi; Zhang, Xinqi; Zhan, Hongbing

    2016-01-18

    A novel light-induced reversible self-assembly (LIRSA) system is based on the reversible photodimerization and photocleavage of coumarin groups on the surface of gold nanoparticles (AuNPs) in THF solution. Facilitated by coumarin groups, light irradiation at 365 nm triggers the stable assembly of monodisperse AuNPs; the resulting self-assembly system can be disassembled back to the disassembled state by a relatively short exposure to benign UV light. The reversible self-assembly cycle can be repeated 4 times. A specific concentration range of coumarin ligand and the THF solvent were identified to be the two predominant factors that contribute to the LIRSA of AuNPs. This is the first successful application of reversible photodimerization based on a coumarin derivative in the field of AuNP LIRSA. This LIRSA system may provide unique opportunities for the photoregulated synthesis of many adjustable nanostructures and devices.

  17. Nanometer-thick hyaluronic acid self-assemblies with strong adhesive properties.

    Science.gov (United States)

    Marais, Andrew; Pendergraph, Samuel; Wågberg, Lars

    2015-07-22

    The adhesive characteristics of poly(allylamine hydrochloride) (PAH)/hyaluronic acid (HA) self-assemblies were investigated using contact adhesion testing. Poly(dimethylsiloxane) spheres and silicon wafers were coated with layer-by-layer (LbL) assemblies of PAH/HA. No increase in adhesion was observed when surfaces covered with dried LbL films were placed in contact. However, bringing the coated surfaces in contact while wet and separating them after drying resulted in an increase by a factor of 100 in the work of adhesion (from one to three bilayers). Herein we discuss the adhesion in PAH/HA and PAH/poly(acrylic acid) assemblies. PAH/HA assemblies have potential application as strong biomedical adhesives.

  18. High temperature control rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vollman, R.E.

    1991-12-24

    This patent describes a control rod assembly for use in nuclear reactor control. It comprises segments, each the segment being made of a graphite composite material, each the segment having a chamber for containing neutron-absorbing material, wherein the chamber compromises a hollow cylindrical sleeve having a first end formed with an opening for receiving the neutron-absorbing material, and having a second end formed with a sleeve bore and an outer sleeve surface; a cylindrical weight-bearing support post positioned substantially centrally of the sleeve, the support post having a first end formed as a ball surface portion and a second end formed as a ball surface portion and a second end formed as a shaft, the shaft being engageable with the sleeve bore for rigidly coupling the support post axially within the hollow sleeve, a hollow cylindrical collar having a socket lip portion correspondingly shaped to receive the ball surface portion of an adjacent support post, and having an inner surface for engaging the outer sleeve surface on the second end of the sleeve to rigidly couple the collar to the sleeve.

  19. Light-structured colloidal assemblies

    Science.gov (United States)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie; Palacci lab Team; Sacanna lab Team

    2016-11-01

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of active colloidal motion on a collective scale through the synchronization of the individual motions of SPP. This work is supported by NSF CAREER DMR 1554724.

  20. Theory of meiotic spindle assembly

    Science.gov (United States)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  1. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  2. Self and directed assembly: people and molecules

    Directory of Open Access Journals (Sweden)

    Tony D. James

    2016-03-01

    Full Text Available Self-assembly and directed-assembly are two very important aspects of supramolecular chemistry. As a young postgraduate student working in Canada with Tom Fyles my introduction to Supramolecular Chemistry was through the self-assembly of phospholipid membranes to form vesicles for which we were developing unimolecular and self-assembling transporter molecules. The next stage of my development as a scientist was in Japan with Seiji Shinkai where in a “Eureka” moment, the boronic acid templating unit (directed-assembly of Wulff was combined with photoinduced electron transfer systems pioneered by De Silva. The result was a turn-on fluorescence sensor for saccharides; this simple result has continued to fuel my research to the present day. Throughout my career as well as assembling molecules, I have enjoyed bringing together researchers in order to develop collaborative networks. This is where molecules meet people resulting in assemblies worth more than the individual “molecule” or “researcher”. My role in developing networks with Japan was rewarded by the award of a Daiwa-Adrian Prize in 2013 and I was recently rewarded for developing networks with China with an Inaugural CASE Prize in 2015.

  3. Assembly design system based on engineering connection

    Science.gov (United States)

    Yin, Wensheng

    2016-12-01

    An assembly design system is an important part of computer-aided design systems, which are important tools for realizing product concept design. The traditional assembly design system does not record the connection information of production on the engineering layer; consequently, the upstream design idea cannot be fully used in the downstream design. An assembly design model based on the relationship of engineering connection is presented. In this model, all nodes are divided into two categories: The component and the connection. Moreover, the product is constructed on the basis of the connection relationship of the components. The model is an And/Or graph and has the ability to record all assembly schemes. This model records only the connection information that has engineering application value in the product design. In addition, this model can significantly reduce the number of combinations, and is very favorable for the assembly sequence planning in the downstream. The system contains a connection knowledge system that can be mapped to the connection node, and the connection knowledge obtained in practice can be returned to the knowledge system. Finally, VC++ 6.0 is used to develop a prototype system called Connect-based Assembly Planning (CAP). The relationship between the CAP system and the commercial assembly design system is also established.

  4. Constraints on Assembly Bias from Galaxy Clustering

    CERN Document Server

    Zentner, Andrew R; Bosch, Frank C van den; Lange, Johannes U; Villarreal, Antonio

    2016-01-01

    We constrain the newly-introduced decorated Halo Occupation Distribution (HOD) model using SDSS DR7 measurements of projected galaxy clustering or r-band luminosity threshold samples. The decorated HOD is a model for the galaxy-halo connection that augments the HOD by allowing for the possibility of galaxy assembly bias: galaxy luminosity may be correlated with dark matter halo properties besides mass, Mvir. We demonstrate that it is not possible to rule out galaxy assembly bias using DR7 measurements of galaxy clustering alone. Moreover, galaxy samples with Mr < -20 and Mr < -20.5 favor strong central galaxy assembly bias. These samples prefer scenarios in which high-concentration are more likely to host a central galaxy relative to low-concentration halos of the same mass. We exclude zero assembly bias with high significance for these samples. Satellite galaxy assembly bias is significant for the faintest sample, Mr < -19. We find no evidence for assembly bias in the Mr < -21 sample. Assembly bi...

  5. Myosin Assembly, Maintenance and Degradation in Muscle: Role of the Chaperone UNC-45 in Myosin Thick Filament Dynamics

    Directory of Open Access Journals (Sweden)

    David B. Pilgrim

    2008-09-01

    Full Text Available Myofibrillogenesis in striated muscle cells requires a precise ordered pathway to assemble different proteins into a linear array of sarcomeres. The sarcomere relies on interdigitated thick and thin filaments to ensure muscle contraction, as well as properly folded and catalytically active myosin head. Achieving this organization requires a series of protein folding and assembly steps. The folding of the myosin head domain requires chaperone activity to attain its functional conformation. Folded or unfolded myosin can spontaneously assemble into short myosin filaments, but further assembly requires the short and incomplete myosin filaments to assemble into the developing thick filament. These longer filaments are then incorporated into the developing sarcomere of the muscle. Both myosin folding and assembly require factors to coordinate the formation of the thick filament in the sarcomere and these factors include chaperone molecules. Myosin folding and sarcomeric assembly requires association of classical chaperones as well as folding cofactors such as UNC-45. Recent research has suggested that UNC-45 is required beyond initial myosin head folding and may be directly or indirectly involved in different stages of myosin thick filament assembly, maintenance and degradation.

  6. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  7. Underfill process development for lead free flip chip assembly

    Science.gov (United States)

    Chaware, Raghunandan

    Underfills are used to enhance the long-term reliability of the flip-chip solder joints. More specifically, the function of the underfill is to couple the chip to the substrate, wherein the shear stresses experienced by the solder joints are converted to bending stresses. The underfill flows under the die due to the influence of strong capillary forces. The flow of the underfill under the chip depends on various factors such as the viscosity of the underfill, contact angle, surface tension, temperature, underfill gap, substrate design, bump pattern, bump density, and size of the chip. The flow of underfill is also influenced by the cleanliness of the substrate, the cleanliness of the underside of the chip, and the flux residues. The interaction between the underfill and the substrate affects not only gap filling, but also the filleting of the underfill. Similarly, the underfill-flux interaction directly affects the quality of underfilling and the reliability of the flip chip assembly. In the case of lead free flip chip assembly, the major concerns vis-a-vis process development for a large chip with a small bump pitch (less than 190 mum) include lower throughput, voiding under the chip, and critical reliability performance. The principal objective of this research endeavor was to investigate the fundamental issues that relate to the process and reliability aspects of underfilling of lead free flip chip assemblies. In order to develop a robust underfilling process, the effect of different process parameters and their interaction with the material properties were studied. In order to improve the compatibility between the underfill and the flux, a new epoxy flux that was compatible with the lead free assembly process was developed. The performance of the epoxy was also compared with the performance of various rosin based fluxes. This study also helped in identifying the critical parameters that can affect the assembly yields. This research endeavor successfully

  8. Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Simon, R.; Polosky, M.; Christenson, T.

    1999-04-01

    This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.

  9. Hierarchical filters determine community assembly of urban species pools.

    Science.gov (United States)

    Aronson, Myla F J; Nilon, Charles H; Lepczyk, Christopher A; Parker, Tommy S; Warren, Paige S; Cilliers, Sarel S; Goddard, Mark A; Hahs, Amy K; Herzog, Cecilia; Katti, Madhusudan; La Sorte, Frank A; Williams, Nicholas S G; Zipperer, Wayne

    2016-11-01

    The majority of humanity now lives in cities or towns, with this proportion expected to continue increasing for the foreseeable future. As novel ecosystems, urban areas offer an ideal opportunity to examine multi-scalar processes involved in community assembly as well as the role of human activities in modulating environmental drivers of biodiversity. Although ecologists have made great strides in recent decades at documenting ecological relationships in urban areas, much remains unknown, and we still need to identify the major ecological factors, aside from habitat loss, behind the persistence or extinction of species and guilds of species in cities. Given this paucity of knowledge, there is an immediate need to facilitate collaborative, interdisciplinary research on the patterns and drivers of biodiversity in cities at multiple spatial scales. In this review, we introduce a new conceptual framework for understanding the filtering processes that mold diversity of urban floras and faunas. We hypothesize that the following hierarchical series of filters influence species distributions in cities: (1) regional climatic and biogeographical factors; (2) human facilitation; (3) urban form and development history; (4) socioeconomic and cultural factors; and (5) species interactions. In addition to these filters, life history and functional traits of species are important in determining community assembly and act at multiple spatial scales. Using these filters as a conceptual framework can help frame future research needed to elucidate processes of community assembly in urban areas. Understanding how humans influence community structure and processes will aid in the management, design, and planning of our cities to best support biodiversity.

  10. Object-Oriented Modeling of Virtual Assembly Process

    Institute of Scientific and Technical Information of China (English)

    ZhengTaixiong; HeYulin; 等

    2002-01-01

    Virtual assembly is a Virtual Reality(VR) based engineering application which allows engineers to evaluate,analyze,and plan the assembly of mechanical systems,To model the virtual assembly process,new methodology must be applied.Based on the idea that the virtual assembly system is an event driven system,the interactive behavior and information model is proposed to describe the dynamic process of virtual assembly.Definition of the objectoriented model of virtual assembly is put forward.

  11. Aerobrake assembly with minimum Space Station accommodation

    Science.gov (United States)

    Katzberg, Steven J.; Butler, David H.; Doggett, William R.; Russell, James W.; Hurban, Theresa

    1991-01-01

    The minimum Space Station Freedom accommodations required for initial assembly, repair, and refurbishment of the Lunar aerobrake were investigated. Baseline Space Station Freedom support services were assumed, as well as reasonable earth-to-orbit possibilities. A set of three aerobrake configurations representative of the major themes in aerobraking were developed. Structural assembly concepts, along with on-orbit assembly and refurbishment scenarios were created. The scenarios were exercised to identify required Space Station Freedom accommodations. Finally, important areas for follow-on study were also identified.

  12. Analysis of Human Communication during Assembly Tasks.

    Science.gov (United States)

    1986-06-01

    AD-A7l 43 ANALYSIS OF HUMAN COMMUNICATION DURING ASSEMBLY TASKS in1(U) CRNEGIE-MELLO UNIY PITTSBURGH PA ROBOTICS INST UNCLSSIIEDK S BARBER ET AL...ao I Dur~~~~IngAbcbyTs; 7c .S:in i lSAo .0. Analysis of Human Communication During Assembly Tasks K. Suzanne Barber and Gerald J. Agin CMU-RI-TR-86-1...TYPE or REPORT & PE-Rioo CevCZaz Analysis of Human Communication During Assembly Inlterim Tasks I . PERFORMING 00RG. REPORT NUMBER 1. £UT~oOR~e) IL

  13. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  14. Irradiated MTR fuel assemblies sipping test

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, J.A.; Terremoto, Luis A.A.; Zeituni, Carlos A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Engenharia do Nucleo

    1997-10-01

    This paper describes the procedure and methodology used to perform sipping test with the IEA-R1 fuel assemblies at the storage pool, and presents the results obtained for Cs-137 sipping water activity for each fuel assembly analyzed. Discussion is made correlating corrosion pits to the activity values measured. A Cs-137 leaking rate is determined which can be compared to the criteria established for canning spent fuel assemblies inside the pool of for shipment abroad. 3 refs., 13 figs., 1 tab.

  15. Mudular Product Families and Assembly Systems

    DEFF Research Database (Denmark)

    Thyssen, Jesper

    of modular product families and the interacting assembly system.   The thesis reviews extant theory and provides various classifications and discussions guided by the overall theme of product modularity and assembly systems. The empirical system analysis, based upon a longitudinal single case study......, articulates a system model incorporating both structural and performance elements. The extensive and detailed case analysis provides the necessary insight into the specific variables associated with the complex configuration of modular products and assembly systems.   Based upon the system model a number...

  16. Seismic response of nuclear fuel assembly

    Directory of Open Access Journals (Sweden)

    Hlaváč Z.

    2014-06-01

    Full Text Available The paper deals with mathematical modelling and computer simulation of the seismic response of fuel assembly components. The seismic response is investigated by numerical integration method in time domain. The seismic excitation is given by two horizontal and one vertical synthetic accelerograms at the level of the pressure vessel seating. Dynamic response of the hexagonal type nuclear fuel assembly is caused by spatial motion of the support plates in the reactor core investigated on the reactor global model. The modal synthesis method with condensation is used for calculation of the fuel assembly component displacements and speeds on the level of the spacer grid cells.

  17. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  18. Fullerene assemblies toward photo-energy conversions.

    Science.gov (United States)

    Shen, Yanfei; Nakanishi, Takashi

    2014-04-28

    Manipulating molecular interaction and assembly for developing various functional nanostructures with controlled dimensionality, morphology and tailored properties is currently a research focus in molecular science and materials chemistry. Particularly, the self-organization of fullerenes (i.e. C60) to form various functional assemblies has received intense interest since it can provide excellent optoelectronic properties for photo-energy conversion-induced applications such as solar cells and field effect transistors (FET). In this perspective, we describe our recent efforts toward the development in the area of fullerene molecular design and assemblies aimed at improving the photoconductivity and photo-energy (electric and thermal) conversion systems.

  19. Lightweight IMM PV Flexible Blanket Assembly

    Science.gov (United States)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  20. Classification of assembly techniques for micro products

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Tosello, Guido; Gegeckaite, Asta

    2005-01-01

    Industrial production of micro products to be introduced in the market has to be reliable, fast, carried out at a reasonable price and in an acceptable quantity. One of the crucial steps in the process chain related to micro product manufacture is the assembly phase. Here components are handled...... of components and level of integration are made. This paper describes a systematic characterization of micro assembly methods. This methodology offers the opportunity of a cross comparison among different techniques to gain a choosing principle of the favourable micro assembly technology in a specific case...

  1. System and method for conveying an assembly

    KAUST Repository

    Eitelhuber, Georg

    2015-01-15

    An apparatus, system, and method for conveying an assembly along a track. A rail can include a first planar side, a second planar side, and a third planar side. The first, second, and third planar sides can be arranged to form at least two acute angles. A carriage assembly can include a drive wheel and at least two roller sets. The drive wheel can be configured to contact the first planar side and is configured to translate the carriage assembly along the rail. The at least two roller sets can be configured to contact the two other sides to maintain the carriage in contact with the rail.

  2. Computer organization and assembly language programming

    CERN Document Server

    Peterson, James L

    1978-01-01

    Computer Organization and Assembly Language Programming deals with lower level computer programming-machine or assembly language, and how these are used in the typical computer system. The book explains the operations of the computer at the machine language level. The text reviews basic computer operations, organization, and deals primarily with the MIX computer system. The book describes assembly language programming techniques, such as defining appropriate data structures, determining the information for input or output, and the flow of control within the program. The text explains basic I/O

  3. Sequence dependent proton conduction in self-assembled peptide nanostructures

    Science.gov (United States)

    Lerner Yardeni, Jenny; Amit, Moran; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-01-01

    The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes. For dehydrated networks long-range order of the assemblies, induced by the aromatic side chains, is shown to be a dominating factor for promoting conductivity. However, for hydrated networks this order of effect is less significant and conductivity can be improved by the introduction of proton donating carboxylic acid peptide side chains in addition to the aromatic side chains despite the lower order of the assemblies. Based on these observations, a novel cyclic peptide that incorporates non-natural naphthyl side chains was designed. Self-assembled nanotubes of this peptide show greatly improved dehydrated conductivity, while maintaining high conductivity under hydrated conditions. We envision that the demonstrated modularity and versatility of these bio inspired nanostructures will make them extremely attractive building blocks for the fabrication of devices for energy conversion and storage applications, as well as other applications that involve proton transport, whether dry or wet conductivity is desired.The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature

  4. Virtual Teaching Simulation for Robot Assembly Accuracy Analysis

    Institute of Scientific and Technical Information of China (English)

    张征; 周宏甫; 刘斌

    2004-01-01

    In this paper, by teaching a 3D robot unit model and playing back to simulate the assembly process in a virtual assembly environment, errors in robot assembly are analyzed. The paper also presents a visualization method for analyzing accuracy of the robot assembly, and studies the influence of the spatial pose of a robot on the success rate of an axis-hole assembly, and accuracy of the robot teaching program in particular. Through integration of various errors and on the basis of assembly accuracy, tolerance of error sources can be reasonably distributed to meet the assembly accuracy requirement, therefore the planning of robot assembly unit can be improved.

  5. Biomolecular Assembly of Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Micheel, Christine Marya [Univ. of California, Berkeley, CA (United States)

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  6. Differential Light Chain Assembly Influences Outer Arm Dynein Motor Function

    Science.gov (United States)

    DiBella, Linda M.; Gorbatyuk, Oksana; Sakato, Miho; Wakabayashi, Ken-ichi; Patel-King, Ramila S.; Pazour, Gregory J.; Witman, George B.; King, Stephen M.

    2005-01-01

    Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum. PMID:16195342

  7. Slipping past the spindle assembly checkpoint.

    Science.gov (United States)

    Subramanian, Radhika; Kapoor, Tarun M

    2013-11-01

    Error-free genome segregation depends on the spindle assembly checkpoint (SAC), a signalling network that delays anaphase onset until chromosomes have established proper spindle attachments. Three reports now quantitatively examine the sensitivity and robustness of the SAC response.

  8. Torsional fluctuations in columnar DNA assemblies

    CERN Document Server

    Lee, D J

    2005-01-01

    In columnar assemblies of helical bio-molecules the azimuthal degrees of freedom, i.e. rotations about the long axes of molecules, may be important in determining the structure of the assemblies especially when the interaction energy between neighbouring molecules explicitly depends on their relative azimuthal orientations. For DNA this leads to a rich variety of mesophases for columnar assemblies, each categorized by a specific azimuthal ordering. In a preceding paper [A. Wynveen, D. J. Lee, and A. A. Kornyshev, Eur. Phys. J. E, 16, 303 (2005)] a statistical mechanical theory was developed for the assemblies of torsionally rigid molecues in order to determine how thermal fluctuations influence the structure of these mesophases. Here we extend this theory by including torsional fluctuations of the molecules, where a DNA molecule may twist about its long axis at the cost of torsional elastic energy. Comparing this with the previous study, we find that inclusion of torsional fluctuations further increases the d...

  9. 2007 General Assembly: Work, decisions, appeal…

    CERN Multimedia

    Association du personnel

    2008-01-01

    The Staff Association General Assembly was held on 11 April in the main auditorium. According to tradition, a report of the activities of the past year was made and everyone was able to assess the extent of the work accomplished.

  10. Fathead minnow genome sequencing and assembly

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset provides the URLs for accessing the genome sequence data and two draft assemblies as well as fathead minnow genotyping data associated with estimating...

  11. Molecular motor assembly of a biomimetic system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Active biological molecules and functional structures can be fabricated into a bio-mimetic system by using molecular assembly method. Such materials can be used for the drug delivery, disease diagnosis and therapy, and new nanodevice construction.

  12. V-GAP: Viral genome assembly pipeline

    KAUST Repository

    Nakamura, Yoji

    2015-10-22

    Next-generation sequencing technologies have allowed the rapid determination of the complete genomes of many organisms. Although shotgun sequences from large genome organisms are still difficult to reconstruct perfect contigs each of which represents a full chromosome, those from small genomes have been assembled successfully into a very small number of contigs. In this study, we show that shotgun reads from phage genomes can be reconstructed into a single contig by controlling the number of read sequences used in de novo assembly. We have developed a pipeline to assemble small viral genomes with good reliability using a resampling method from shotgun data. This pipeline, named V-GAP (Viral Genome Assembly Pipeline), will contribute to the rapid genome typing of viruses, which are highly divergent, and thus will meet the increasing need for viral genome comparisons in metagenomic studies.

  13. Optimal production planning for PCB assembly

    CERN Document Server

    Ho, William

    2006-01-01

    Focuses on the optimization of the Printed circuit board (PCB) assembly lines' efficiency. This book integrates the component sequencing and the feeder arrangement problems together for the pick-and-place machine and the chip shooter machines.

  14. SolidWorks 2011 Assemblies Bible

    CERN Document Server

    Lombard, Matt

    2011-01-01

    A fan of the SolidWorks Bible, but want more detail on assemblies? Here you go. SolidWorks fans have long sought more detail on SolidWorks topics, and now you have it. We took our popular SolidWorks Bible, divided it into two books (SolidWorks 2011 Assemblies Bible and SolidWorks 2011 Parts Bible) and packed each new book with a host of items from your wish lists, such as more extensive coverage of the basics, additional tutorials, and expanded coverage of topics largely ignored by other books. This SolidWorks 2011 Assemblies Bible shows you how to organize parts data to create assemblies or s

  15. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  16. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  17. Magnetically mediated vortexlike assembly of gold nanoshells.

    Science.gov (United States)

    Sun, Jianfei; Dong, Jian; Sun, Dongke; Guo, Zhirui; Gu, Ning

    2012-04-24

    Gold nanoshells currently attract increasing research interests due to the important role in many subjects. For practical applications, random arrangement of the nanoparticles is often unfavored so that the assembly of gold nanoshells is becoming a central issue. We here proposed to utilize time-variant magnetic field to direct the assembly of gold nanoshells. It was discovered that the alternating magnetic field can mediate the vortex-like assembly of gold nanoshells. The mechanism was explored and thought to be relative with the electric field of induction which caused the thermal gradient on the substrate and the electric force. The vortexlike structure as well as the assembly mechanism will play an important role in research and application of gold nanomaterials.

  18. Photonic hybrid assembly through flexible waveguides

    Science.gov (United States)

    Wörhoff, K.; Prak, A.; Postma, F.; Leinse, A.; Wu, K.; Peters, T. J.; Tichem, M.; Amaning-Appiah, B.; Renukappa, V.; Vollrath, G.; Balcells-Ventura, J.; Uhlig, P.; Seyfried, M.; Rose, D.; Santos, R.; Leijtens, X. J. M.; Flintham, B.; Wale, M.; Robbins, D.

    2016-05-01

    Fully automated, high precision, cost-effective assembly technology for photonic packages remains one of the main challenges in photonic component manufacturing. Next to the cost aspect the most demanding assembly task for multiport photonic integrated circuits (PICs) is the high-precision (±0.1 μm) alignment and fixing required for optical I/O in InP PICs, even with waveguide spot size conversion. In a European research initiative - PHASTFlex - we develop and investigate an innovative, novel assembly concept, in which the waveguides in a matching TriPleX interposer PIC are released during fabrication to make them movable. After assembly of both chips by flip-chip bonding on a common carrier, TriPleX based actuators and clamping functions position and fix the flexible waveguides with the required accuracy.

  19. Automated analysis for lifecycle assembly processes

    Energy Technology Data Exchange (ETDEWEB)

    Calton, T.L.; Brown, R.G.; Peters, R.R.

    1998-05-01

    Many manufacturing companies today expend more effort on upgrade and disposal projects than on clean-slate design, and this trend is expected to become more prevalent in coming years. However, commercial CAD tools are better suited to initial product design than to the product`s full life cycle. Computer-aided analysis, optimization, and visualization of life cycle assembly processes based on the product CAD data can help ensure accuracy and reduce effort expended in planning these processes for existing products, as well as provide design-for-lifecycle analysis for new designs. To be effective, computer aided assembly planning systems must allow users to express the plan selection criteria that apply to their companies and products as well as to the life cycles of their products. Designing products for easy assembly and disassembly during its entire life cycle for purposes including service, field repair, upgrade, and disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and constraints (compared to initial assembly) require one to re-visit the significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or applied studies of life cycle assembly processes, which give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for; optimize, and analyze life cycle assembly processes.

  20. Thermal Analysis of a TREAT Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dionissios [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, Arthur E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  1. Establishment of China Nuclear Fuel Assembly Database

    Institute of Scientific and Technical Information of China (English)

    CHENPeng; ZHANGYing-chao; LIUTing-jin; JINYong-li

    2003-01-01

    During researching, designing, manufacturing and post irradiation, a large amount of data on fuel assembly of China nuclear power plants has been accumulated. It is necessary to collect the data together,so that the researchers, designers, manufactures and managers could use the data conveniently. It was proposed to establish a China Nuclear Fuel Assembly Database through the Internet on workstations during the year of 2003 to 2006, so the data would be shared in China nuclear industry.

  2. Heterogeneous assembly for plutonium multi recycling in PWRs: the Corail concept

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, G.; Zaetta, A.; Vasile, A.; Delpech, M. [CEA Cadarach, Dir. de l' Energie Nucleaire, DEN/DER, 13 - Saint Paul lez Durance (France); Rohart, M. [CEA Saclay, Dept. Modelisation des Systemes et Structures, DM2S, 91 - Gif-sur-Yvette (France); Guillet, J.L. [Cogema, DRD, 78 - Saint Quentin en Yvelines (France)

    2001-07-01

    The CORAIL assembly is a standard 17 x 17 PWR fuel assembly containing 180 UO{sub 2} rods and 84 MOX rods located at the periphery to limit the hot-channel factor. After many recycling, the plutonium content stabilizes around 8% and the U{sup 235} enrichment around 4.8% (for a 3 u 15000 MWd/t fuel cycle length). An all-CORAIL park would have a zero plutonium mass balance, and compared with an all-UO{sub 2} park the gain in terms of Separating Work Units and natural uranium would be between 15% and 20%. Detailed calculations of a 1300 MWe PWR loaded with such assemblies show that its control would not require the use of enriched boron. Burnable poison is necessary to limit the hot-channel factor. (author)

  3. Subchannel Analysis of Wire Wrapped SCWR Assembly

    Directory of Open Access Journals (Sweden)

    Jianqiang Shan

    2014-01-01

    Full Text Available Application of wire wrap spacers in SCWR can reduce pressure drop and obtain better mixing capability. As a consequence, the required coolant pumping power is decreased and the coolant temperature profile inside the fuel bundle is flattened which will obviously decrease the peak cladding temperature. The distributed resistance model for wire wrap was developed and implemented in ATHAS subchannel analysis code. The HPLWR wire wrapped assembly was analyzed. The results show that: (1 the assembly with wire wrap can obtain a more uniform coolant temperature profile than the grid spaced assembly, which will result in a lower peak cladding temperature; (2 the pressure drop in a wire wrapped assembly is less than that in a grid spaced assembly, which can reduce the operating power of pump effectively; (3 the wire wrap pitch has significant effect on the flow in the assembly. Smaller Hwire/Drod will result in stronger cross flow a more uniform coolant temperature profile, and also a higher pressure drop.

  4. Self-assembly micro optical filter

    Science.gov (United States)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  5. Traceable assembly of microparts using optical tweezers

    Science.gov (United States)

    Kim, Jung-Dae; Hwang, Sun-Uk; Lee, Yong-Gu

    2012-10-01

    Assembly of components with a size in the order of tens of micrometers or less is difficult because the gravitational forces become smaller than weak forces such as capillary, electrostatic and van der Waals forces. As such, the picked-up components commonly adhere to the manipulator, making the release operation troublesome, and the repeatable supply of components cannot be guaranteed because the magazining and bunkering scheme available in conventional scale assembly cannot be extended to these small objects. Moreover, there are also no effective ways known to deliver the finalized assembly externally. In this paper, we present the manipulation and assembly of microparts using optical tweezers, which by nature do not have stiction problems. Techniques allowing bunkering and finalizing the assembly for exporting are also presented. Finally, we demonstrate an exemplary microassembly formed by assembling two microparts: a movable microring and a microrod fixed on a glass substrate. We believe this traceable microassembly to be an important step forward for micro- and nano-manufacturing.

  6. Spontaneous Assembly of Exopolymers from Phytoplankton

    Directory of Open Access Journals (Sweden)

    Yong-Xue Ding

    2009-01-01

    Full Text Available Phytoplankton exopolymeric substances (EPS contribute significantly to the dissolved organic car bon (DOC pool in the ocean, playing crucial roles in the surface ocean car bon cycle. Recent studies have demonstrated that ~10% of marine DOC can self-assemble as microgels through electro static Ca bonds providing hotspots of enriched microbial substrate. How ever, the question whether EPS can self-assemble and the formation mechanisms for EPS microgels have not been examined. Here were port that EPS from three representative phytoplankton species, Synechococcus, Emiliania huxleyi, and Skeletonema costatum can spontaneously self assemble in artificial sea water (ASW, forming microscopic gels of ~ 3 - 4 _ in diameter. Different from the marine DOC polymers assembly, these EPS samples can self-assemble in Ca2+-free ASW. Further experiments from fluorescence enhancement and chemical composition analysis confirmed the existence of fair amounts of hydrophobic domains in these EPS samples. These results suggest that hydrophobic interactions play a key role in the assembly of EPS from these three species of marine phytoplankton.

  7. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  8. HIV-1 Gag Blocks Selenite-Induced Stress Granule Assembly by Altering the mRNA Cap-Binding Complex

    Directory of Open Access Journals (Sweden)

    Alessandro Cinti

    2016-03-01

    Full Text Available Stress granules (SGs are dynamic accumulations of stalled preinitiation complexes and translational machinery that assemble under stressful conditions. Sodium selenite (Se induces the assembly of noncanonical type II SGs that differ in morphology, composition, and mechanism of assembly from canonical SGs. Se inhibits translation initiation by altering the cap-binding activity of eukaryotic translation initiation factor 4E (eIF4E-binding protein 1 (4EBP1. In this work, we show that human immunodeficiency virus type 1 (HIV-1 Gag is able to block the assembly of type II noncanonical SGs to facilitate continued Gag protein synthesis. We demonstrate that expression of Gag reduces the amount of hypophosphorylated 4EBP1 associated with the 5′ cap potentially through an interaction with its target, eIF4E. These results suggest that the assembly of SGs is an important host antiviral defense that HIV-1 has evolved for inhibition through several distinct mechanisms.

  9. Changes to Irradiation Conditions of VVER-1000 Surveillance Specimens Resulting from Fuel Assemblies with Greater Fuel Height

    Directory of Open Access Journals (Sweden)

    Panferov Pavel

    2016-01-01

    Full Text Available The goal of the work was to obtain experimental data on the influence of newtype fuel assemblies with higher fuel rods on the irradiation conditions of surveillance specimens installed on the baffe of VVER-1000. For this purpose, two surveillance sets with container assemblies of the same design irradiated in reactors with different fuel assemblies in the core were investigated. Measurements of neutron dosimeters from these sets and retrospective measurements of 54Mn activity accumulated in each irradiated specimen allow a detailed distribution of the fast neutron flux in the containers to be obtained. Neutron calculations have been done using 3D discrete ordinate code KATRIN. On the basis of the obtained results, a change of the lead factor due to newtype fuel assemblies was evaluated for all types of VVER-1000 container assemblies.

  10. Changes to Irradiation Conditions of VVER-1000 Surveillance Specimens Resulting from Fuel Assemblies with Greater Fuel Height

    Science.gov (United States)

    Panferov, Pavel; Kochkin, Viacheslav; Erak, Dmitry; Makhotin, Denis; Reshetnikov, Alexandr; Timofeev, Andrey

    2016-02-01

    The goal of the work was to obtain experimental data on the influence of newtype fuel assemblies with higher fuel rods on the irradiation conditions of surveillance specimens installed on the baffe of VVER-1000. For this purpose, two surveillance sets with container assemblies of the same design irradiated in reactors with different fuel assemblies in the core were investigated. Measurements of neutron dosimeters from these sets and retrospective measurements of 54Mn activity accumulated in each irradiated specimen allow a detailed distribution of the fast neutron flux in the containers to be obtained. Neutron calculations have been done using 3D discrete ordinate code KATRIN. On the basis of the obtained results, a change of the lead factor due to newtype fuel assemblies was evaluated for all types of VVER-1000 container assemblies.

  11. SparseAssembler2: Sparse k-mer Graph for Memory Efficient Genome Assembly

    CERN Document Server

    Ye, Chengxi; Ma, Zhanshan Sam; Yu, Douglas W; Pop, Mihai

    2011-01-01

    Motivation: To tackle the problem of huge memory usage associated with de Bruijn graph-based algorithms, upon which some of the most widely used de novo genome assemblers have been built, we released SparseAssembler1. SparseAssembler1 can save as much as 90% memory consumption in comparison with the state-of-art assemblers, but it requires rounds of denoising to accurately assemble genomes. In this paper, we introduce a new general model for genome assembly that uses only sparse k-mers. The new model replaces the idea of the de Bruijn graph from the beginning, and achieves similar memory efficiency and much better robustness compared with our previous SparseAssembler1. Results: Based on the sparse k-mers graph model, we develop SparseAssembler2. We demonstrate that the decomposition of reads of all overlapping k-mers, which is used in existing de Bruijn graph genome assemblers, is overly cautious. We introduce a sparse k-mer graph structure for saving sparse k-mers, which greatly reduces memory space requirem...

  12. Rational design of self-assembly pathways for complex multicomponent structures

    Science.gov (United States)

    Jacobs, William M.; Reinhardt, Aleks; Frenkel, Daan

    2015-01-01

    The field of complex self-assembly is moving toward the design of multiparticle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such “addressable complexity,” we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in nonclassical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate 3D structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity. PMID:25941388

  13. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    Science.gov (United States)

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  14. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I).

    Science.gov (United States)

    Friedrich, Thorsten; Dekovic, Doris Kreuzer; Burschel, Sabrina

    2016-03-01

    Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.

  15. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications

    Directory of Open Access Journals (Sweden)

    Jun Yin

    2016-07-01

    Full Text Available Although a number of tactics towards the fabrication and biomedical exploration of stimuli-responsive polymeric assemblies being responsive and adaptive to various factors have appeared, the controlled preparation of assemblies with well-defined physicochemical properties and tailor-made functions are still challenges. These responsive polymeric assemblies, which are triggered by stimuli, always exhibited reversible or irreversible changes in chemical structures and physical properties. However, simple drug/polymer nanocomplexes cannot deliver or release drugs into the diseased sites and cells on-demand due to the inevitable biological barriers. Hence, utilizing therapeutic or imaging agents-loaded stimuli-responsive block copolymer assemblies that are responsive to tumor internal microenvironments (pH, redox, enzyme, and temperature, etc. or external stimuli (light and electromagnetic field, etc. have emerged to be an important solution to improve therapeutic efficacy and imaging sensitivity through rationally designing as well as self-assembling approaches. In this review, we summarize a portion of recent progress in tumor and intracellular microenvironment responsive block copolymer assemblies and their applications in anticancer drug delivery and triggered release and enhanced imaging sensitivity. The outlook on future developments is also discussed. We hope that this review can stimulate more revolutionary ideas and novel concepts and meet the significant interest to diverse readers.

  16. Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Cun Zhang and Shaohua Chen

    2015-01-01

    Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-con- ductive properties but also for carbon nanotubes with electromagnetic induction characteristics.

  17. COLORFUL-Circuit: a platform for rapid multigene assembly, delivery and expression in plants

    Directory of Open Access Journals (Sweden)

    Hassan eGhareeb

    2016-03-01

    Full Text Available Advancing basic and applied plant research requires the continuous innovative development of the available technology toolbox. Essential components of this toolbox are methods that simplify the assembly, delivery and expression of multiple transgenes of interest. To allow simultaneous and directional multigene assembly on the same plant transformation vector, several strategies based on overlapping sequences or restriction enzymes have recently been developed. However, the assembly of homologous and repetitive DNA sequences can be inefficient and the frequent occurrence of target sequences recognized by commonly used restriction enzymes can be a limiting factor. Here, we noted that recognition sites for the restriction enzyme SfiI are rarely occurring in plant genomes. This fact was exploited to establish a multigene assembly system called COLORFUL-Circuit. To this end, we developed a set of binary vectors which provide a flexible and cost efficient cloning platform. The gene expression cassettes in our system are flanked with unique SfiI sites, which allow simultaneous multi-gene cassette assembly in a hosting binary vector. We used COLORFUL-Circuit to transiently and stably express up to four fluorescent organelle markers in addition to a selectable marker and analyzed the impact of assembly design on coexpression efficiency. Finally, we demonstrate the utility of our optimized COLORFUL-Circuit system in an exemplary case study, in which we monitored simultaneously the subcellular behavior of multiple organelles in a biotrophic plant-microbe interaction by Confocal Laser Scanning Microscopy.

  18. AC loss measurements in HTS coil assemblies with hybrid coil structures

    Science.gov (United States)

    Jiang, Zhenan; Long, Nicholas J.; Staines, Mike; Badcock, Rodney A.; Bumby, Chris W.; Buckley, Robert G.; Amemiya, Naoyuki

    2016-09-01

    Both AC loss and wire cost in coil windings are critical factors for high temperature superconductor (HTS) AC machinery applications. We present AC loss measurement results in three HTS coil assemblies at 77 K and 65 K which have a hybrid coil structure comprising one central winding (CW) and two end windings (EWs) wound with ReBCO and BSCCO wires with different self-field I c values at 77 K. All AC loss results in the coil assemblies are hysteretic and the normalized AC losses in the coil assemblies at different temperatures can be scaled with the I c value of the coil assemblies. The normalised results show that AC loss in a coil assembly with BSCCO CW can be reduced by using EWs wound with high I c ReBCO wires, whilst further AC loss reduction can be achieved by replacing the BSCCO CW with ReBCO CW. The results imply that a flexible hybrid coil structure is possible which considers both AC loss and wire cost in coil assemblies.

  19. The continuous assembly and transfer of nanoelements

    Science.gov (United States)

    Kumar, Arun

    Patterned nanoelements on flexible polymeric substrates at micro/nano scale at high rate, low cost, and commercially viable route offer an opportunity for manufacturing devices with micro/nano scale features. These micro/nano scale now made with various nanoelement can enhance the device functionality in sensing and switching due to their improved conductivity and better mechanical properties. In this research the fundamental understanding of high rate assembly and transfer of nanoelements has been developed. To achieve this objective, three sub topics were made. In the first step, the use of electrophoresis for the controlled assembly of CNT's on interdigitated templates has been shown. The time scale of assembly reported is shorter than the previously reported assembly time (60 seconds). The mass deposited was also predicted using the Hamaker's law. It is also shown that pre-patterned CNT's could be transferred from the rigid templates onto flexible polymeric substrates using a thermoforming process. The time scale of transfer is less than one minute (50 seconds) and was found to be dependent on polymer chemistry. It was found that CNT's preferentially transfer from Au electrode to non-polar polymeric substrates (polyurethane and polyethylene terephalathate glycol) in the thermoforming process. In the second step, a novel process (Pulsed Electrophoresis) has been shown for the first time to assist the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 seconds, assembly resolution of 100 nm). The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to

  20. GIT1 enhances neurite outgrowth by stimulating microtubule assembly

    Directory of Open Access Journals (Sweden)

    Yi-sheng Li

    2016-01-01

    Full Text Available GIT1, a G-protein-coupled receptor kinase interacting protein, has been reported to be involved in neurite outgrowth. However, the neurobiological functions of the protein remain unclear. In this study, we found that GIT1 was highly expressed in the nervous system, and its expression was maintained throughout all stages of neuritogenesis in the brain. In primary cultured mouse hippocampal neurons from GIT1 knockout mice, there was a significant reduction in total neurite length per neuron, as well as in the average length of axon-like structures, which could not be prevented by nerve growth factor treatment. Overexpression of GIT1 significantly promoted axon growth and fully rescued the axon outgrowth defect in the primary hippocampal neuron cultures from GIT1 knockout mice. The GIT1 N terminal region, including the ADP ribosylation factor-GTPase activating protein domain, the ankyrin domains and the Spa2 homology domain, were sufficient to enhance axonal extension. Importantly, GIT1 bound to many tubulin proteins and microtubule-associated proteins, and it accelerated microtubule assembly in vitro. Collectively, our findings suggest that GIT1 promotes neurite outgrowth, at least partially by stimulating microtubule assembly. This study provides new insight into the cellular and molecular pathogenesis of GIT1-associated neurological diseases.

  1. Self-assembling peptide nanofiber scaffolds accelerate wound healing.

    Directory of Open Access Journals (Sweden)

    Aurore Schneider

    Full Text Available Cutaneous wound repair regenerates skin integrity, but a chronic failure to heal results in compromised tissue function and increased morbidity. To address this, we have used an integrated approach, using nanobiotechnology to augment the rate of wound reepithelialization by combining self-assembling peptide (SAP nanofiber scaffold and Epidermal Growth Factor (EGF. This SAP bioscaffold was tested in a bioengineered Human Skin Equivalent (HSE tissue model that enabled wound reepithelialization to be monitored in a tissue that recapitulates molecular and cellular mechanisms of repair known to occur in human skin. We found that SAP underwent molecular self-assembly to form unique 3D structures that stably covered the surface of the wound, suggesting that this scaffold may serve as a viable wound dressing. We measured the rates of release of EGF from the SAP scaffold and determined that EGF was only released when the scaffold was in direct contact with the HSE. By measuring the length of the epithelial tongue during wound reepithelialization, we found that SAP scaffolds containing EGF accelerated the rate of wound coverage by 5 fold when compared to controls without scaffolds and by 3.5 fold when compared to the scaffold without EGF. In conclusion, our experiments demonstrated that biomaterials composed of a biofunctionalized peptidic scaffold have many properties that are well-suited for the treatment of cutaneous wounds including wound coverage, functionalization with bioactive molecules, localized growth factor release and activation of wound repair.

  2. Mechanistic investigation into the spontaneous linear assembly of gold nanospheres

    KAUST Repository

    Yang, Miaoxin

    2010-01-01

    Understanding the mechanism of nanoparticle self-assembly is of critical significance for developing synthetic strategies for complex nanostructures. By encapsulating aggregates of Au nanospheres in shells of polystyrene-block- poly(acrylic acid), we prevent the dissociation and aggregation typically associated with the drying of solution samples on TEM/SEM substrates. In our study of the salt-induced aggregation of 2-naphthalenethiol-functionalized Au nanospheres in DMF, the trapping of the solution species under various experimental conditions permits new insights in the mechanism thereof. We provide evidence that the spontaneous linear aggregation in this system is a kinetically controlled process and hence the long-range charge repulsion at the "transition state" before the actual contact of the Au nanospheres is the key factor. Thus, the charge repulsion potential (i.e. the activation energy) a nanosphere must overcome before attaching to either end of a nanochain is smaller than attaching on its sides, which has been previously established. This factor alone could give rise to the selective end-on attachment and lead to the linear assembly of originally isotropic Au nanospheres. © 2010 the Owner Societies.

  3. Design directed self-assembly of donor-acceptor polymers.

    Science.gov (United States)

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  4. Optimization of fuel rod enrichment distribution for BWR fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Yasushi; Hida, Kazuki; Sakurada, Koichi; Yamamoto, Munenari [Toshiba Corp., Kawasaki, Kanagawa (Japan). Nuclear Engineering Lab.

    1996-09-01

    A practical method was developed for determining the optimum fuel enrichment distribution within a boiling water reactor fuel assembly. The method deals with two different optimization problems, i.e. the combinatorial optimization problem of grouping fuel rods into a given number of rod groups with the same enrichment, and the problem of determining an optimal enrichment for each fuel rod under the resultant rod-grouping pattern. In solving these problems, the primary goal is to minimize a predefined objective function over a given exposure period. The objective function used here is defined by the linear combination C{sub 1}X + C{sub 2}X{sub G}, where X and X{sub G} stand, respectively, for control variables giving constraint to the local power peaking factor and the gadolinium rod power. C{sub 1} and C{sub 2} are user-definable weighting factors to accommodate design preferences. The algorithm for solving this combinatorial optimization problem starts by finding the optimal enrichment vector without any rod-grouping, and promising candidates of rod-grouping patterns are found by exhaustive enumeration based on the resulting fuel enrichment ordering. This latter problem is solved using the method of approximation programming. A practical application is shown for a contemporary 8 x 8 Pu mixed-oxide fuel assembly with 10 gadolinium-poisoned rods. (author)

  5. A thermodynamic model of microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Bernard M A G Piette

    Full Text Available Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  6. A thermodynamic model of microtubule assembly and disassembly.

    Science.gov (United States)

    Piette, Bernard M A G; Liu, Junli; Peeters, Kasper; Smertenko, Andrei; Hawkins, Timothy; Deeks, Michael; Quinlan, Roy; Zakrzewski, Wojciech J; Hussey, Patrick J

    2009-08-11

    Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  7. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  8. 21 CFR 890.3500 - External assembled lower limb prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External assembled lower limb prosthesis. 890.3500... External assembled lower limb prosthesis. (a) Identification. An external assembled lower limb prosthesis... the lower extremity. Examples of external assembled lower limb prostheses are the following:...

  9. The construction of the CMS electromagnetic calorimeter: crystal assembly

    CERN Multimedia

    2005-01-01

    This photogallery describes the whole sequence of crystal assembly up to the so-called supermodules of 1700 PWO crystals each. Figures 1-6: submodule (10 crystals + their APDs) assembly with alveola structures. Figs. 7-11: module assembly. Each module is composed by 400 or 500 crystals. Figs. 13-17: supermodule assembly, thermal screen and monitoring, transport.

  10. Competition between self-assembly and surface adsorption

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-02-01

    We investigate a minimal equilibrium polymerization model for the competition between self-assembly on a boundary and in solution that arises when an assembling system is in the presence of an adsorbing interface. Adsorption generally occurs upon cooling, but assembly (equilibrium polymerization) may arise either upon cooling or heating. Both cases are shown to exhibit a coupling between adsorption and self-assembly. When both assembly and adsorption proceed upon cooling, a change in the ratio of the enthalpy of adsorption to the enthalpy of assembly in solution can switch the system between a predominance of self-assembly in solution to assembly on the substrate. If assembly is promoted by heating and adsorption by cooling, as in many self-assembling proteins in aqueous solution, then a self-assembly analog of a closed loop phase boundary is found. In particular, the order parameter for assembly on the surface exhibits a peak as a function of temperature. As demonstrated by illustrative examples, the coupling between surface adsorption and self-assembly provides a powerful means of switching self-assembly processes on and off. Understanding and controlling this switching phenomenon will be useful in designing and directing self-assembly processes on surfaces for applications to nanomanufacturing and in developing treatments for diseases arising from pathological adsorption-induced assembly.

  11. Templated Self Assemble of Nano-Structures

    Energy Technology Data Exchange (ETDEWEB)

    Suo, Zhigang [Harvard University

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  12. A Structural analysis of M protein in coronavirus assembly and morphology

    DEFF Research Database (Denmark)

    W. Neuman, Benjamin; Kiss, Gabriella; H. Kunding, Andreas

    2011-01-01

    The M protein of coronavirus plays a central role in virus assembly, turning cellular membranes into workshops where virus and host factors come together to make new virus particles. We investigated how M structure and organization is related to virus shape and size using cryo-electron microscopy...

  13. Environmental species sorting dominates forest-bird community assembly across scales

    DEFF Research Database (Denmark)

    Özkan, Korhan; Svenning, J.-C.; Jeppesen, Erik

    2013-01-01

    Environmental species sorting and dispersal are seen as key factors in community assembly, but their relative importance and scale dependence remain uncertain, as the extent to which communities are consistently assembled throughout their biomes. To address these issues, we analysed bird metacomm...... of the Istranca Forest' bird metacommunity was predominantly controlled by environmental species sorting in a manner consistent with the broader WP region. However, variability in local community structure was also linked to purely spatial factors, albeit more weakly.......Environmental species sorting and dispersal are seen as key factors in community assembly, but their relative importance and scale dependence remain uncertain, as the extent to which communities are consistently assembled throughout their biomes. To address these issues, we analysed bird...... metacommunity structure in a 1200-km2 forested landscape (Istranca Forests) in Turkish Thrace at the margin of the Western Palaearctic (WP) temperate-forest biome. First, we used spatial regressions and Mantel tests to assess the relative importance of environmental and spatial factors as drivers of local...

  14. Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Van Straaten, R.

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  15. Expert Meeting Report. Interior Insulation Retrofit of Mass Masonry Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Van Straaten, R. [Building Science Corporation, Somerville, MA (United States)

    2012-02-01

    The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011, at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

  16. Gadolinia-bearing Assembly Design for Reduction of Critical Boron Concentration in APR 1400

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Shakirah; Wan, Abdul Kahar; Hah, Chang Joo [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Seong, Ki Bong; Chang, Do Ik [Korea Nuclear Fuel Company, Daejeon (Korea, Republic of)

    2013-10-15

    The objective of this study is to develop a systematic approach to further reduce CBC at BOC and ultimately making MTC more negative, while maintaining cycle length and keeping pin peaking factor below the 1.55 safety limit. The methodology uses fuel assembly (FA) designs that contain both low and high Gd w/o rods. The APR 1400 fuel assembly and core design for Shin-Kori Unit 3 Cycle 1 (SK3C1), which is of PWR type, is used as reference case. The Gd-bearing assembly types in SK3C1, namely B1, B2, B3, C1, C2, and C3, uses Gd rods with 8 w/o gadolinia (Gd{sub 2}O{sub 3}) admixed in UO{sub 2}, and 2 w/o U-235 enrichment. FA and core depletions are simulated using CASMO 3.0 and MASTER 3.0 design codes, respectively. The methodologies described in Section 2 are applied to assemblies B1, C1 and C3. Interpolation of these assemblies' quadratic model equations is performed using the 0.11 factor to obtain Δk{sub FA} tables for B2, B3 and C2 assemblies. Once the design of all Gd-bearing assemblies are determined, core depletion is simulated. The summary of core depletion results is shown in Table II. It is clear that CBC at BOC is successfully reduced in the optimized core case, as also evident in Fig. 3. The amount of CBC reduction is less than the predicted 300 ppm. This is attributed to neutron leakage in core depletion simulation. The actual Δk{sub FA} computed using results of the optimized core simulation is 0.078, which is well within the 1% error of the quadratic model solutions and close to the analytically calculated value. Thus, the assumption made in Eq. is validated.

  17. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hai-dong [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Cui, Guo-hong; Yang, Jia-jun [Department of Neurology, Shanghai No. 6 People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233 (China); Wang, Cun [Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Jing; Zhang, Li-sheng; Jiang, Jun [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shao, Shui-jin, E-mail: shaoshuijin@163.com [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  18. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  19. A Computer Model for Analyzing Volatile Removal Assembly

    Science.gov (United States)

    Guo, Boyun

    2010-01-01

    A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.

  20. Why Assembling Plant Genome Sequences Is So Challenging

    Directory of Open Access Journals (Sweden)

    Pedro Seoane

    2012-09-01

    Full Text Available In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed.

  1. Why Assembling Plant Genome Sequences Is So Challenging

    Science.gov (United States)

    Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé

    2012-01-01

    In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233

  2. A dual inhibitory mechanism sufficient to maintain cell cycle restricted CENP-A assembly

    Science.gov (United States)

    Stankovic, Ana; Guo, Lucie Y.; Mata, João F.; Bodor, Dani L.; Cao, Xing-Jun; Bailey, Aaron O.; Shabanowitz, Jeffrey; Hunt, Donald F.; Garcia, Benjamin A.; Black, Ben E.; Jansen, Lars E.T

    2017-01-01

    Summary Chromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell cycle control of CENP-A assembly. We uncovered a single phosphorylation site in the licensing factor M18BP1 and a cyclin A binding site in the CENP-A chaperone, HJURP, mediating specific inhibitory phosphorylation. Simultaneous expression of mutant proteins lacking these residues, results in complete uncoupling from the cell cycle. Consequently, CENP-A assembly is fully recapitulated under high Cdk activities, indistinguishable from G1 assembly. We find that Cdk-mediated inhibition is exerted by sequestering active factors away from the centromere. Finally, we show that displacement of M18BP1 from the centromere is critical for the assembly mechanism of CENP-A. PMID:28017591

  3. Bioinspired matrices assembled by polysaccharide-protein interactions

    Science.gov (United States)

    Zhang, Le

    Bioinspired matrices assembled on the basis of noncovalent interactions between proteins and polysaccharides have been proved suitable to deliver therapeutically relevant proteins or DNAs. Our initial efforts were dedicated to the relationship between mechanical properties of hydrogels assembled based on specific interactions between low molecular weight heparin (LMWH) and heparin binding peptides (HBPs) such as HIP, ATIII, and PF4ZIP peptides. The measured differences in affinity and kinetics for LMWH-HBP binding likely lead to observed differences in the phase separation behavior of the poly (ethylene glycol) (PEG)-LMWH/PEG-HIP hydrogels versus the PEG-LMWH/PEG-ATIII hydrogels. More attention has been given to the PF4ZIP peptide employed for the noncovalent assembly of heparinized hydrogels. Multifunctional star PEG-PF4ZIP bioconjugates complexed with star PEG-LMWH form hydrogels that exhibit increasing elastic moduli with increasing mole ratio of PEG-PF4ZIP. The viscoelastic properties of the hydrogels can be controlled via alterations in the ratio between LMWH and PF4ZIP peptide, and comparisons with other PEG-LMWH/PEG-HBP hydrogels suggest the importance of both LMWH/HBP binding kinetics and the binding capacity of LMWH in determining rheological properties in these hydrogels. Characterization of the PEG-LMWH/PEG-PF4ZIP hydrogels suggests that useful moduli for soft tissue engineering applications are obtained at physiological temperatures and after applying high shear. Furthermore, in the basic fibroblast growth factor (bFGF) release, bFGF/vascular endothelial growth factor (VEGF) co-release, and hydrogel erosion results, the combination of growth factor (GF) release profiles and hydrogel erosion profiles suggests that GF delivery from the assembled hydrogels is mainly an erosion-controlled process that may permit co-release of GF with PEG-LMWH and may therefore also improve the bioactivity of GF delivered from these matrices. Hydrogels with such engineered

  4. RESEARCH ON THE CONSTRAINT MAPPING FROM FUNCTION TO ASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    Tan Jianrong; Ji Yangjian; Liu Zhenyu; Chen Hongliang; Yue Xiaoli

    2003-01-01

    Assembly sketch is not only the visualization of abstract function, but also the template of detail design. Two kinds of information are needed to create assembly sketch: structure and assembly constraint. Most researches are aimed at how to obtain structures from function, but the problem of how to obtain assembly constraint from function is ignored. Following the definition of assembly unit and the classification of function, a hierarchical mapping method from function to assembly constraint is put forward, and the mapping method includes two steps. The first step is the mapping from function to assembly semantics which is assembly expression and accordant with engineer's design habit. The second one is the mapping from assembly semantics to basic assembly constraints that are convenient for computer to handle. The mapping method is applied to DDMS (design, drafting and management system) successfully.

  5. Method of making hermetic seals for hermetic terminal assemblies

    Science.gov (United States)

    Hsu, John S.; Marlino, Laura D.; Ayers, Curtis W.

    2010-04-13

    This invention teaches methods of making a hermetic terminal assembly comprising the steps of: inserting temporary stops, shims and jigs on the bottom face of a terminal assembly thereby blocking assembly core open passageways; mounting the terminal assembly inside a vacuum chamber using a temporary assembly perimeter seal and flange or threaded assembly interfaces; mixing a seal admixture and hardener in a mixer conveyor to form a polymer seal material; conveying the polymer seal material into a polymer reservoir; feeding the polymer seal material from the reservoir through a polymer outlet valve and at least one polymer outlet tube into the terminal assembly core thereby filling interstitial spaces in the core adjacent to service conduits, temporary stop, and the terminal assembly casing; drying the polymer seal material at room temperature thereby hermetically sealing the core of the terminal assembly; removing the terminal assembly from the vacuum chamber, and; removing the temporary stops, shims.

  6. Realization Techniques of Virtual Assembly Process Planning System

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; NING Ru-xin; TANG Cheng-tong

    2005-01-01

    The key realization techniques of virtual assembly process planning (VAPP) system are analyzed,including virtual assembly model, real-time collision detection, automatic constraint recognition algorithm, cable harness assembly process planning and visual assembly process plan at the workshop. A virtual assembly model based on hierarchical assembly task list (HATL) is put forward, in which assembly tasks are defined to express component assembling operations and are sequentially and hierarchically organized according to different subassemblies, which can perfectly model the construction process of product. And a multi-layer automatic geometry constraint recognition algorithm of how to identify assembly constraint relations in the virtual environment is proposed, then a four-layer collision detection algorithm is discussed. A VAPP system is built and some simple mechanical assemblies are used to illustrate the feasibility of the proposed method and algorithms.

  7. A Magnetic Assembly, a Fluid-Flow Assembly and an Indicator

    DEFF Research Database (Denmark)

    2011-01-01

    The invention provides a magnetic assembly, the assembly comprising: a magnet (4); and a ferromagnetic component (6) having at least two regions of different Curie temperature, the magnet (4) and the ferromagnetic component being movable with respect to each other in dependence on the temperature...

  8. Nanoparticle Array Assembly Using Chemical Templates

    Science.gov (United States)

    Adams, Sarah Marie

    This dissertation demonstrates chemically-driven self-assembly techniques to produce assemblies of closely-spaced metal nanoparticles from colloidal nanoparticle solution in order to engineer enhanced optical fields. Planar nanoparticle assemblies provide a platform for a multitude of applications and material architectures. With nanoscale inter-particle spacing, metallic nanoparticles enable increased efficiency of photovoltaic devices due to light focusing and enhancement of electromagnetic fields useful for optical sensing of molecules due to coupling of the plasmon resonance in nanoparticle gaps. For molecular sensors, development of self-assembled two-dimensional assemblies of closely-spaced nanoparticles is useful for producing surface plasmon resonance sensors and surface-enhanced Raman spectroscopy (SERS) based sensing. Using chemical self-assembly, monodisperse, colloidal gold nanoparticles were attached on self-organized polymer templates in order to pattern assemblies of nanoparticle clusters with sub-10 nanometer inter-particle spacing. First citrate-stabilized Au nanoparticles were functionalized with thioctic acid ligands in solution. Then poly(methyl methacrylate) domains in phase-separated poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films were chemically modified with surface amine functional groups. Au nanoparticles were preferentially attached to the functionalized PMMA surface domains using cross-linking chemistry. This method allows for versatility of size, shape, and composition. In this dissertation, we demonstrated attachment of 5, 10, and 20 nm Au and 20 nm Ag nanoparticles. PS-b-PMMA thin films also exhibit versatility of domain size and morphology by varying polymer molecular weights. The nanoparticle diameter to PMMA domain size ratio influenced the cluster size. As the ratio decreased, larger clusters were observed on PMMA domains with increased frequency. SERS measurement of nanoparticle assemblies showed uniform signal

  9. The Psychological Importance of Collective Assembly: Development and Validation of the Tendency for Effervescent Assembly Measure (TEAM).

    Science.gov (United States)

    Gabriel, Shira; Valenti, Jennifer; Naragon-Gainey, Kristin; Young, Ariana F

    2017-03-06

    Although previous research suggests that connection to large, mostly anonymous groups is important for the fulfillment of psychological needs and a sense of psychological well-being, no measure exists to assess individual differences in this area. In 5 studies, we developed and provided support for the validity of the Tendency for Effervescent Assembly Measure (TEAM). Utilizing data from student and community samples, we conducted exploratory factor analyses to guide item selection for the scale (Study 1), evaluated the structure of the scale in an independent sample (Study 2), examined the convergent, discriminant, and incremental validity of the scale (Study 3), and assessed measurement invariance of the scale across different demographic groups (Study 4). Study 5 explored the role of social needs fulfillment in effervescent assembly, as well as examined the relationship of the scale with recent collective effervescence experiences. Results revealed that our final 11-item scale was unidimensional, with excellent internal consistency and good test-retest reliability over 2 months. Measurement invariance was established across gender, ethnicity, and religion, providing support for the validity of the measure across demographic subgroups. Importantly, the TEAM predicted decreased loneliness, increased positive feelings, a sense of meaning in one's life, self-awareness, and spiritual transcendence, above and beyond the effects of the big 5 factors of personality and collective and relational interdependence. Furthermore, results suggested that positive outcomes associated with the TEAM are because of social need fulfillment. (PsycINFO Database Record

  10. [INVITED] Self-assembled optical metamaterials

    Science.gov (United States)

    Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe

    2016-08-01

    Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.

  11. Nanopropulsion by biocatalytic self-assembly.

    Science.gov (United States)

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.

  12. Pulsed electric field assisted assembly of polyaniline

    Science.gov (United States)

    Kumar, Arun; Kazmer, David O.; Barry, Carol M. F.; Mead, Joey L.

    2012-08-01

    Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker’s theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

  13. Preparation of the magnet sub-assemblies

    CERN Multimedia

    maximilien Brice

    2001-01-01

    Photo 01: On a rotation bench, preparation of the lower half-yoke with the bus bars and the pre-curved shell. The components are put on a dummy half-yoke in view of being rotated upside down. Photo 02: On a rotation bench, preparation of the lower half-yoke with the bus bars and the pre-curved shell. The components are put on a dummy half-yoke in view of being rotated upside down. Photo 03: The half-yoke assembly is made of short packs that are assembled together and locked with 15-m long tie-rods on a dedicated bench. Photo 04: The collared-coils assembly is equipped with magnetic inserts and special shims on a rotation bench in view of its installation in the yoke, operation that is called "yoking". At that stage of the assembly, the collared-coils assembly is equipped with the end plates and the electrical connections between the poles and between dipole I and dipoe II are made.

  14. Solar central receiver heliostat reflector assembly

    Science.gov (United States)

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  15. Programming biomolecular self-assembly pathways.

    Science.gov (United States)

    Yin, Peng; Choi, Harry M T; Calvert, Colby R; Pierce, Niles A

    2008-01-17

    In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self-assemble into prescribed target structures, rather than on engineering transient system dynamics. To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self-assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization, triggered self-assembly and molecular computation. Here, we program diverse molecular self-assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross-catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.

  16. Assembling and Installing LRUs for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Bonanno, R E

    2003-12-31

    Within the 192 National Ignition Facility (NIF) beamlines, there are over 7000 large (40 x 40 cm) optical components, including laser glass, mirrors, lenses, and polarizers. These optics are held in large opto-mechanical assemblies called line-replaceable units (LRUs). Each LRU has strict specifications with respect to cleanliness, alignment, and wavefront so that once activated, each NIF beamline will meet its performance requirements. NIF LRUs are assembled, tested, and refurbished in on-site cleanroom facilities. The assembled LRUs weigh up to 1800 kilograms, and are about the size of a phone booth. They are transported in portable clean canisters and inserted into the NIF beampath using robotic transporters. This plug and play design allows LRUs to be easily removed from the beampath for maintenance or upgrades. Commissioning of the first NIF quad, an activity known as NIF Early Light (NEL), has validated LRU designs and architecture, as well as demonstrated that LRUs can be assembled and installed as designed. Furthermore, it has served to develop key processes and tools forming the foundation for NIF s long-term LRU production and maintenance strategy. As we look forward to building out the rest of NIF, the challenge lies in scaling up the production rate while maintaining quality, implementing process improvements, and fully leveraging the learning and experience gained from NEL. This paper provides an overview of the facilities, equipment and processes used to assemble and install LRUs in NIF.

  17. Molecular self-assembly at solid surfaces.

    Science.gov (United States)

    Otero, Roberto; Gallego, José María; de Parga, Amadeo L Vázquez; Martín, Nazario; Miranda, Rodolfo

    2011-11-23

    Self-assembly, the process by which objects initially distributed at random arrange into well-defined patterns exclusively due to their local mutual interactions without external intervention, is generally accepted to be the most promising method for large-scale fabrication of functional nanostructures. In particular, the ordering of molecular building-blocks deposited at solid surfaces is relevant for the performance of many organic electronic and optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) or photovoltaic solar cells. However, the fundamental knowledge on the nature and strength of the intermolecular and molecule-substrate interactions that govern the ordering of molecular adsorbates is, in many cases, rather scarce. In most cases, the structure and morphology of the organic-metal interface is not known and it is just assumed to be the same as in the bulk, thereby implicitly neglecting the role of the surface on the assembly. However, this approximation is usually not correct, and the evidence gathered over the last decades points towards an active role of the surface in the assembly, leading to self-assembled structures that only in a few occasions can be understood by considering just intermolecular interactions in solid or gas phases. In this work we review several examples from our recent research demonstrating the apparently endless variety of ways in which the surface might affect the assembly of organic adsorbates.

  18. Self-assembly of smallest magnetic particles.

    Science.gov (United States)

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-11-24

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole-dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained.

  19. RESEARCH OF MOVEMENT NAVIGATION BASED ON ASSEMBLY CONSTRAINT RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The requirements and features of virtual assembly movement navigator are analyzed to help operators flexibly manipulate virtual objects, precisely locate or assemble virtual parts in virtual environment. With the degree-of-freedom analysis, the assembly constraint hierarchical model is constructed and the system's constraints are built dynamically. Thus, all objects in virtual environment can be located reasonally by the navigator. Moreover, the assembly constraint recognition in the process of assembly and movement correction is also discussed.

  20. Whole-Genome Sequence Assembly for Mammalian Genomes: Arachne 2

    OpenAIRE

    Jaffe, David B.; Butler, Jonathan; Gnerre, Sante; Mauceli, Evan; Lindblad-Toh, Kerstin; Jill P. Mesirov; Michael C Zody; Lander, Eric S.

    2003-01-01

    We previously described the whole-genome assembly program Arachne, presenting assemblies of simulated data for small to mid-sized genomes. Here we describe algorithmic adaptations to the program, allowing for assembly of mammalian-size genomes, and also improving the assembly of smaller genomes. Three principal changes were simultaneously made and applied to the assembly of the mouse genome, during a six-month period of development: (1) Supercontigs (scaffolds) were iteratively broken and rej...

  1. CAS-1, a C. elegans cyclase-associated protein, is required for sarcomeric actin assembly in striated muscle

    OpenAIRE

    Nomura, Kazumi; Ono, Kanako; Ono, Shoichiro

    2012-01-01

    Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes. Here, we repo...

  2. NDUFAF5 Hydroxylates NDUFS7 at an Early Stage in the Assembly of Human Complex I.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2016-07-08

    Complex I (NADH ubiquinone oxidoreductase) in mammalian mitochondria is an L-shaped assembly of 45 proteins. One arm lies in the inner membrane, and the other extends about 100 Å into the matrix of the organelle. The extrinsic arm contains binding sites for NADH, the primary electron acceptor FMN, and seven iron-sulfur clusters that form a pathway for electrons linking FMN to the terminal electron acceptor, ubiquinone, which is bound in a tunnel in the region of the junction between the arms. The membrane arm contains four antiporter-like domains, energetically coupled to the quinone site and involved in pumping protons from the matrix into the intermembrane space contributing to the proton motive force. Seven of the subunits, forming the core of the membrane arm, are translated from mitochondrial genes, and the remaining subunits, the products of nuclear genes, are imported from the cytosol. Their assembly is coordinated by at least thirteen extrinsic assembly factor proteins that are not part of the fully assembled complex. They assist in insertion of co-factors and in building up the complex from smaller sub-assemblies. One such factor, NDUFAF5, belongs to the family of seven-β-strand S-adenosylmethionine-dependent methyltransferases. However, similar to another family member, RdmB, it catalyzes the introduction of a hydroxyl group, in the case of NDUFAF5, into Arg-73 in the NDUFS7 subunit of human complex I. This modification occurs early in the pathway of assembly of complex I, before the formation of the juncture between peripheral and membrane arms.

  3. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  4. Microcomponent assembly for efficient contacting of fluid

    Science.gov (United States)

    Drost, Monte K.; Wegeng, Robert S.; Friedrich, Michele; Hanna, William T.; Call, Charles J.; Kurath, Dean E.

    2000-01-01

    The present invention is a fundamental method and apparatus of a microcomponent assembly that overcomes the inherent limitations of state of the art chemical separations. The fundamental element enabling miniaturization is the porous contactor contained within a microcomponent assembly for mass transfer of a working compound from a first medium to a second medium. The porous contactor has a thickness, and a plurality of pores extending through the thickness. The pores are of a geometry cooperating with a boundary tension of one or the other or both of the media thereby preventing migration of one, other or both through the microporous contactor while permitting passage of the working compound. In the microcomponent assembly, the porous contactor is placed between a first laminate such that a first space or first microplenum is formed between the microporous contactor and the first laminate. Additionally, a cover sheet provides a second space or second plenum between the porous contactor and the cover sheet.

  5. Thermal Aspects Related to Power Assemblies

    Directory of Open Access Journals (Sweden)

    PLESCA, A.

    2010-02-01

    Full Text Available In many cases when a power assembly based on power semiconductors is used, catastrophic failure is the result of steep temperature gradient in the localized temperature distribution. Hence, an optimal heatsink design for certain industrial applications has become a real necessity. In this paper, the Pro/ENGINEER software with the thermal simulation integrated tool, Pro/MECHANICA, has been used for thermal study of a specific power semiconductor assembly. A series of steady-state and transient thermal simulations have been performed. The experimental tests have confirmed the simulation results. Therefore, the use of specific 3D modeling and simulation software allows to design special power semiconductor assemblies with a better thermal transfer between its heatsink and power electronic components at given operating conditions.

  6. Finishing of the cold mass assembly

    CERN Multimedia

    Maximilien Brice

    2001-01-01

    Photo 1 The connection-side end of the active part assembly. This view shows the electrical connections between the poles and the curved bus ended with flanges for the connection with the protection diode. Photo 2 The connection-side end of the active part assembly. This view shows the electrical connections between the poles, the auxiliary bus bars and the instrumentation wires. Photo 3 Lyre-side end of the active part assembly. One can see the mechanical support of the corretor magnets that are to be installed around the cold bore tubes. Photo 4 General view of the finishing station showing the special supporting structures (blue and yellow structures) needed for the geometric measurements and for the alignment operations. Around the magnet, there are datum points (on the tripodes) needed to build up the coordinates system for the measurements.

  7. Finishing of the cold mass assembly

    CERN Multimedia

    Maximilien Brice

    2001-01-01

    Photo 1 Zoom of the lyre-side end of the active part assembly. The extremity of the shrinking cylinder has been bevelled in view of welding the end cover. Photo 2 General view of the finishing station showing the special supporting structures (blue and yellow structures) needed for the geometric measurements and for the alignment operations. Photo 3 Zoom of the lyre-side end of the active part assembly. One can also see the auxiliary bus bars needed to power the corrector magnets that are installed in the dipole cold mass assembly. Photo 4 Technicians are putting in order the instrumentation wires. The prototype magnets were equipped with numerous sensors to monitor key parameters during the performance tests at cold conditions.

  8. Patterned self-assembled film guided electrodeposition

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Feng; LI; Bin; XU; Tao; CHEN; Miao; HAO; Jingcheng; LI

    2004-01-01

    The paper describes the fabrication of polypyrrole (PPy) microstructures through patterned self-assembled film guided electrodeposition. Thus the patterned self-assembled monolayer is prepared by microcontact printing (μCP) and used as the template in the electrodeposition of PPy. It has been found that the self-assembled monolayer plays completely different roles on different substrates in directing the deposition of the PPy. Namely, the electrodeposition mainly occurs on the exposed area of the gold substrates patterned with dodecanethiol (DDT) and octadecanelthiol (ODT) and on the indium tin oxide (ITO) substrate patterned with octadecyltrichlorosilane (OTS), while PPy nucleates on the OTS covered area and no deposition is found on the exposed area of a semiconductor substrate (silicon). This is attributed to the cooperative effect between the substrate conductivity and the compatibility of the PPy oligomer with the covered or exposed area of the substrate surface.

  9. S-layer protein self-assembly.

    Science.gov (United States)

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B

    2013-01-25

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.

  10. New inlet nozzle assembly: C Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Calkin, J.F.

    1960-10-19

    The use of self-supported fuel elements in ribless Zircaloy-2 tubes at C-Reactor requires some inlet nozzle modification to allow charging of the larger overall diameter fuel pieces. A new nozzle assembly has been developed (by Equipment Development Operation -- IPD) which will allow use of the new fuel pieces and at the same time increase the reliability of the header-to-tube piping and reduce pumping power losses. Flow test data were requested for the new assembly and the results of these tests are presented herein. This report also presents a comparison of the header to tube energy losses for the various reactor inlet nozzle assemblies which are currently used on the Hanford production reactors.

  11. Hierarchical silica particles by dynamic multicomponent assembly

    DEFF Research Database (Denmark)

    Wu, Z. W.; Hu, Q. Y.; Pang, J. B.;

    2005-01-01

    Abstract: Aerosol-assisted assembly of mesoporous silica particles with hierarchically controllable pore structure has been prepared using cetyltrimethylammonium bromide (CTAB) and poly(propylene oxide) (PPO, H[OCH(CH3)CH2],OH) as co-templates. Addition of the hydrophobic PPO significantly...... influences the delicate hydrophilic-hydrophobic balance in the well-studied CTAB-silicate co-assembling system, resulting in various mesostructures (such as hexagonal, lamellar, and hierarchical structure). The co-assembly of CTAB, silicate clusters, and a low-molecular-weight PPO (average M-n 425) results...... in a uniform lamellar structure, while the use of a high-molecular-weight PPO (average M-n 2000), which is more hydrophobic, leads to the formation of hierarchical pore structure that contains meso-meso or meso-macro pore structure. The role of PPO additives on the mesostructure evolution in the CTAB...

  12. Advances in Multiferroic Nanomaterials Assembled with Clusters

    Directory of Open Access Journals (Sweden)

    Shifeng Zhao

    2015-01-01

    Full Text Available As an entirely new perspective of multifunctional materials, multiferroics have attracted a great deal of attention. With the rapidly developing micro- and nano-electro-mechanical system (MEMS&NEMS, the new kinds of micro- and nanodevices and functionalities aroused extensive research activity in the area of multiferroics. As an ideal building block to assemble the nanostructure, cluster exhibits particular physical properties related to the cluster size at nanoscale, which is efficient in controlling the multiferroic properties for nanomaterials. This review focuses on our recent advances in multiferroic nanomaterials assembled with clusters. In particular, the single phase multiferroic films and compound heterostructured multiferroic films assembled with clusters were introduced detailedly. This technique presents a new and efficient method to produce the nanostructured multiferroic materials for their potential application in NEMS devices.

  13. Self-assembled gelators for organic electronics.

    Science.gov (United States)

    Babu, Sukumaran Santhosh; Prasanthkumar, Seelam; Ajayaghosh, Ayyappanpillai

    2012-02-20

    Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed.

  14. Template Assembly for Detailed Urban Reconstruction

    KAUST Repository

    Nan, Liangliang

    2015-05-04

    We propose a new framework to reconstruct building details by automatically assembling 3D templates on coarse textured building models. In a preprocessing step, we generate an initial coarse model to approximate a point cloud computed using Structure from Motion and Multi View Stereo, and we model a set of 3D templates of facade details. Next, we optimize the initial coarse model to enforce consistency between geometry and appearance (texture images). Then, building details are reconstructed by assembling templates on the textured faces of the coarse model. The 3D templates are automatically chosen and located by our optimization-based template assembly algorithm that balances image matching and structural regularity. In the results, we demonstrate how our framework can enrich the details of coarse models using various data sets.

  15. Pulse detonation assembly and hybrid engine

    Science.gov (United States)

    Rasheed, Adam (Inventor); Dean, Anthony John (Inventor); Vandervort, Christian Lee (Inventor)

    2010-01-01

    A pulse detonation (PD) assembly includes a number of PD chambers adapted to expel respective detonation product streams and a number of barriers disposed between respective pairs of PD chambers. The barriers define, at least in part, a number of sectors that contain at least one PD chamber. A hybrid engine includes a number of PD chambers and barriers. The hybrid engine further includes a turbine assembly having at least one turbine stage, being in flow communication with the PD chambers and being configured to be at least partially driven by the detonation product streams. A segmented hybrid engine includes a number of PD chambers and segments configured to receive and direct the detonation product streams from respective PD chambers. The segmented hybrid engine further includes a turbine assembly configured to be at least partially driven by the detonation product streams.

  16. Advanced DNA assembly technologies in drug discovery.

    Science.gov (United States)

    Tsvetanova, Billyana; Peng, Lansha; Liang, Xiquan; Li, Ke; Hammond, Linda; Peterson, Todd C; Katzen, Federico

    2012-05-01

    Recombinant DNA technologies have had a fundamental impact on drug discovery. The continuous emergence of unique gene assembly techniques resulted in the generation of a variety of therapeutic reagents such as vaccines, cancer treatment molecules and regenerative medicine precursors. With the advent of synthetic biology there is a growing need for precise and concerted assembly of multiple DNA fragments of various sizes, including chromosomes. In this article, we summarize the highlights of the recombinant DNA technology since its inception in the early 1970s, emphasizing on the most recent advances, and underscoring their principles, advantages and shortcomings. Current and prior cloning trends are discussed in the context of sequence requirements and scars left behind. Our opinion is that despite the remarkable progress that has enabled the generation and manipulation of very large DNA sequences, a better understanding of the cell's natural circuits is needed in order to fully exploit the current state-of-the-art gene assembly technologies.

  17. Ecological drivers of community assembly across taxonomic groups and trophic levels

    DEFF Research Database (Denmark)

    Özkan, Korhan

    environmental niche. Furthermore, species abundance and occupancy across both the metacommunity and the whole western Palearctic were significantly related to an independent species specialization index calculated for the French birds. Together these results indicated that forest bird community assembly...... with positive trends in temperature and precipitation as well as negative trends in wind speed, total nitrogen, NO3 and PO4 concentrations. Environmental control was not the only factor determining the plankton assembly in these 17 lakes. There was also significant congruence between phyto- and zooplankton...

  18. Comparing de novo assemblers for 454 transcriptome data

    Directory of Open Access Journals (Sweden)

    Blaxter Mark L

    2010-10-01

    Full Text Available Abstract Background Roche 454 pyrosequencing has become a method of choice for generating transcriptome data from non-model organisms. Once the tens to hundreds of thousands of short (250-450 base reads have been produced, it is important to correctly assemble these to estimate the sequence of all the transcripts. Most transcriptome assembly projects use only one program for assembling 454 pyrosequencing reads, but there is no evidence that the programs used to date are optimal. We have carried out a systematic comparison of five assemblers (CAP3, MIRA, Newbler, SeqMan and CLC to establish best practices for transcriptome assemblies, using a new dataset from the parasitic nematode Litomosoides sigmodontis. Results Although no single assembler performed best on all our criteria, Newbler 2.5 gave longer contigs, better alignments to some reference sequences, and was fast and easy to use. SeqMan assemblies performed best on the criterion of recapitulating known transcripts, and had more novel sequence than the other assemblers, but generated an excess of small, redundant contigs. The remaining assemblers all performed almost as well, with the exception of Newbler 2.3 (the version currently used by most assembly projects, which generated assemblies that had significantly lower total length. As different assemblers use different underlying algorithms to generate contigs, we also explored merging of assemblies and found that the merged datasets not only aligned better to reference sequences than individual assemblies, but were also more consistent in the number and size of contigs. Conclusions Transcriptome assemblies are smaller than genome assemblies and thus should be more computationally tractable, but are often harder because individual contigs can have highly variable read coverage. Comparing single assemblers, Newbler 2.5 performed best on our trial data set, but other assemblers were closely comparable. Combining differently optimal assemblies

  19. An siRNA screen of membrane trafficking genes highlights pathways common to HIV-1 and M-PMV virus assembly and release.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wen

    Full Text Available The assembly and release of retroviruses from the host cells requires a coordinated series of interactions between viral structural proteins and cellular trafficking pathways. Although a number of cellular factors involved in retrovirus assembly have been identified, it is likely that retroviruses utilize additional trafficking factors to expedite their assembly and budding that have not yet been defined. We performed a screen using an siRNA library targeting host membrane trafficking genes in order to identify new host factors that contribute to retrovirus assembly or release. We utilized two retroviruses that follow very distinct assembly pathways, HIV-1 and Mason-Pfizer monkey virus (M-PMV in order to identify host pathways that are generally applicable in retrovirus assembly versus those that are unique to HIV or M-PMV. Here we report the identification of 24 host proteins identified in the screen and subsequently validated in follow-up experiments as contributors to the assembly or release of both viruses. In addition to identifying a number of previously unsuspected individual trafficking factors, we noted multiple hits among proteins involved in modulation of the actin cytoskeleton, clathrin-mediated transport pathways, and phosphoinositide metabolism. Our study shows that distant genera of retroviruses share a number of common interaction strategies with host cell trafficking machinery, and identifies new cellular factors involved in the late stages of retroviral replication.

  20. Quality Experiences in Aerospace Electronic Assembly

    Directory of Open Access Journals (Sweden)

    P.B.V. Rama Murthy

    2006-01-01

    Full Text Available Quality of the electronic assembly depends largely on good quality practices (GQP adoptedduring the process of electronic assembly. Quality experiences gained during working atthe defence and space laboratories have been used to develop good quality practices such asthree- tray method for cleaning of PCBs, use of grommets for cable routing, use of eye-piecelessstereo zoom microscope for visual testinglinspection, pre-tinning of components, desiccatorsfor storage, potting prior to conformal coating, continuity and isolation checks, de-golding ofleads prior to soldering, and use of flux-cored solder wire. The paper also discusses how andwhy these good quality practices were evolved.