WorldWideScience

Sample records for asphaltene

  1. The Asphaltenes

    Science.gov (United States)

    Mullins, Oliver C.

    2011-07-01

    Asphaltenes, the most aromatic of the heaviest components of crude oil, are critical to all aspects of petroleum utilization, including reservoir characterization, production, transportation, refining, upgrading, paving, and coating materials. The asphaltenes, which are solid, have or impart crucial and often deleterious attributes in fluids such as high viscosity, emulsion stability, low distillate yields, and inopportune phase separation. Nevertheless, fundamental uncertainties had precluded a first-principles approach to asphaltenes until now. Recently, asphaltene science has undergone a renaissance; many basic molecular and nanocolloidal properties have been resolved and codified in the modified Yen model (also known as the Yen-Mullins model), thereby enabling predictive asphaltene science. Advances in analytical chemistry, especially mass spectrometry, enable the identification of tens of thousands of distinct chemical species in crude oils and asphaltenes. These and other powerful advances in asphaltene science fall under the banner of petroleomics, which incorporates predictive petroleum science and provides a framework for future developments.

  2. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.; Yang, Yang

    2012-01-01

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  3. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  4. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  5. Asphaltene Aggregation and Fouling Behavior

    Science.gov (United States)

    Derakhshesh, Marzie

    This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 °C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano-aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant

  6. Sans study of asphaltene aggregration

    Energy Technology Data Exchange (ETDEWEB)

    Overfield, R.E.; (Esso Resources Canada Ltd., Alberta); Sheu, E.Y.; Sinha, S.K.; Liang, K.S. (Exxon Research and Engineering Co., Annandale, NJ (USA))

    1988-06-01

    The colloidal properties of asphaltenes have long been recognized from peculiarities in their solubility and colligative properties. A layered micellar model for asphaltenes was proposed by Pfeiffer and Saal in 1940, in which a highly condensed alkyl aromatic formed the central part, and molecules of decreasingly aromatic character (resins) clustered around them. Numerous studies, based on a variety of techniques such as ultracentrifugation and electron microscopy indicated a particulate nature for asphaltenes with size 20-40 {angstrom} diameter. T.F. Yen and co-workers proposed a refined model based on x-ray diffraction and small angle scattering. In this model, interactions between flat sheets of condensed aromatic rings form the central crystallite part of a spherical particle with the outer part being comprised of the aliphatic positions of the same molecules. These particles are bunched together with some degree of entanglement into micelles. Concentration and solvent dependent radii of gyration, ranging from 30-50 {angstrom} were reported. The aggregation creates a good deal of uncertainty as to the true molecular size of weight of asphaltenes. Neutron scattering offers novel contrast relative to light scattering (refractive index) and x-ray scattering (electron density). This is because the scattering length of proton is negative, whereas that from deuterium and other nuclei such as C, S, O, and N are positive. Thus by replacing hydrogen with deuterium in either the solvent or the scatterer the contrast can be varied, and different parts of the molecule can be highlighted.

  7. Sans study of asphaltene aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Overfield, R.E.; Sheu, E.Y.; Sinha, S.K.; Liang, K.S. (Esso Resources Canada Ltd., 339-50 Avenue S.E., Calgary, Alberta T2G 2B3 (CA))

    1988-06-01

    The colloidal properties of asphaltenes have long been recognized from peculiarities in their solubility and colligative properties. A layered micellar model or asphaltenes was proposed by others in which a highly condensed alkyl aromatic formed the central part, and molecules of decreasingly aromatic character (resins) clustered around them. Numerous studies, based on a variety of techniques such as ultracentrifugation and electron microscopy indicated a particulate nature for asphaltenes with size 20-40 A diameter. Others have proposed a refined model based on x-ray diffraction and small angle scattering. In this model, interactions between flat sheets of condensed aromatic rings form the central ''crystallite'' part of a spherical particle with the outer part being comprised of the aliphatic positions of the same molecules. These particles are bunched together with some degree of entanglement into ''micelles''. Concentration and solvent dependent radii of gyration, ranging from 30-50 A were reported. The aggregation creates a good deal of uncertainty as to the true molecular size or weight of asphaltenes. Neutron scattering offers novel contrast relative to light scattering (refractive index) and x-ray scattering (electron density). This is because the scattering length of proton is negative, whereas that from deuterium and other nuclei such as C, S, O, and N are positive. Thus by replacing hydrogen with deuterium in either the solvent or the scatterer the contrast can be varied, and different parts of the molecule can be highlighted.

  8. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li; Yang, Guo-hua; Wang, Ji-Qian; Li, Yan; Li, Li; Yang, Chao-he

    2014-01-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes

  9. Thermogravimetric assessment of thermal degradation in asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Barneto, Agustín García, E-mail: agustin.garcia@diq.uhu.es [Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Huelva (Spain); Carmona, José Ariza [Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Huelva (Spain); Garrido, María José Franco [CEPSA, RDI Centre, Madrid (Spain)

    2016-03-20

    Graphical abstract: - Highlights: • Asphaltenes content of visbreaking streams in oil refinery can be measured by using TGA. • Deconvoluting TGA curves allows the thermal-based composition of asphaltenes to be elucidated. • Asphaltenes cracking involves acceleratory stages compatible with autocatalytic kinetic. • Activation energy during asphaltenes pyrolysis increased with increasing temperature. • Activation energy remained almost constant at 200–225 kJ/mol during oxidative cracking. - Abstract: Monitoring asphaltenes is very important with a view to optimizing visbreaking units in oil refineries. Current analyses based on selective dissolution in different solvents are slow, so new, more expeditious methods for measuring asphaltenes are required to facilitate fuel-oil production. In this work, we studied the thermal degradation of asphaltenes as the potential basis for a thermogravimetric method for their monitoring in visbreaking streams. The thermal degradation of asphaltenes occurs largely from 400 to 500 °C; the process is quite smooth in an inert environment but involves several fast mass loss events in the air. Kinetic parameters for characterizing the process were determined by using two model-free methods and the modified Prout–Tompkins kinetic equation to examine asphaltene thermolysis. Both types of methods showed the activation energy to increase during pyrolysis but to remain almost constant during cracking in the presence of oxygen or even diminish during char oxidation. Deconvoluting the thermogravimetric profiles revealed that asphaltene thermolysis in the air cannot be accurately described in terms of an nth order kinetic model because it involves some acceleratory phases. Also, thermogravimetric analyses of visbreaking streams revealed that char production in them is proportional to their asphaltene content. This relationship enables the thermogravimetric measurement of asphaltenes.

  10. Thermogravimetric assessment of thermal degradation in asphaltenes

    International Nuclear Information System (INIS)

    Barneto, Agustín García; Carmona, José Ariza; Garrido, María José Franco

    2016-01-01

    Graphical abstract: - Highlights: • Asphaltenes content of visbreaking streams in oil refinery can be measured by using TGA. • Deconvoluting TGA curves allows the thermal-based composition of asphaltenes to be elucidated. • Asphaltenes cracking involves acceleratory stages compatible with autocatalytic kinetic. • Activation energy during asphaltenes pyrolysis increased with increasing temperature. • Activation energy remained almost constant at 200–225 kJ/mol during oxidative cracking. - Abstract: Monitoring asphaltenes is very important with a view to optimizing visbreaking units in oil refineries. Current analyses based on selective dissolution in different solvents are slow, so new, more expeditious methods for measuring asphaltenes are required to facilitate fuel-oil production. In this work, we studied the thermal degradation of asphaltenes as the potential basis for a thermogravimetric method for their monitoring in visbreaking streams. The thermal degradation of asphaltenes occurs largely from 400 to 500 °C; the process is quite smooth in an inert environment but involves several fast mass loss events in the air. Kinetic parameters for characterizing the process were determined by using two model-free methods and the modified Prout–Tompkins kinetic equation to examine asphaltene thermolysis. Both types of methods showed the activation energy to increase during pyrolysis but to remain almost constant during cracking in the presence of oxygen or even diminish during char oxidation. Deconvoluting the thermogravimetric profiles revealed that asphaltene thermolysis in the air cannot be accurately described in terms of an nth order kinetic model because it involves some acceleratory phases. Also, thermogravimetric analyses of visbreaking streams revealed that char production in them is proportional to their asphaltene content. This relationship enables the thermogravimetric measurement of asphaltenes.

  11. Electrodeposition of Asphaltenes. 2. Effect of Resins and Additives

    DEFF Research Database (Denmark)

    Khvostichenko, Daria S; Andersen, Simon Ivar

    2010-01-01

    Electrodeposition of asphaltenes from oil/heptane, asphaltene/heptane, and asphaltene/heptane/additive mixtures has been investigated. Toluene, native petroleum resins, and a synthetic asphaltene dispersant, p-nonylphenol, were used as additives. The addition of these components led to partial...... dissolution of asphaltenes in heptane. The charge of asphaltenic particles was found to be negative in oil/heptane mixtures and positive in asphaltene/heptane mixtures. In asphaltene/heptane/toluene systems, the charge of the deposit varied from positive to neutral to negative, depending upon the method...

  12. Hydrodynamic perspective on asphaltene agglomeration and deposition

    NARCIS (Netherlands)

    Schutte, K.C.J.; Portela, L.M.; Twerda, A.; Henkes, R.A.W.M.

    2015-01-01

    In this work, we propose a detailed numerical model for asphaltene agglomeration and deposition, as induced by a resolved turbulent liquid carrier phase flow, in which transport, breakup, and re-entrainment are also taken into account. Asphaltene phase separation is represented by the appearance of

  13. Modeling of asphaltene and wax precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.; Sarathi, P.; Jones, R.

    1991-01-01

    This research project was designed to focus on the development of a predictive technique for organic deposition during gas injection for petroleum EOR. A thermodynamic model has been developed to describe the effects of temperature, pressure, and composition on asphaltene precipitation. The proposed model combines regular solution theory with Flory-Huggins polymer solutions theory to predict maximum volume fractions of asphaltene dissolved in oil. The model requires evaluation of vapor-liquid equilibria, first using an equation of state followed by calculations of asphaltene solubility in the liquid-phase. A state-of-the-art technique for C{sub 7+} fraction characterization was employed in developing this model. The preliminary model developed in this work was able to predict qualitatively the trends of the effects of temperature, pressure, and composition. Since the mechanism of paraffinic wax deposition is different from that of asphaltene deposition, another thermodynamic model based on the solid-liquid solution theory was developed to predict the wax formation. This model is simple and can predict the wax appearance temperature with reasonable accuracy. Accompanying the modeling work, experimental studies were conducted to investigate the solubility of asphaltene in oil land solvents and to examine the effects of oil composition, CO{sub 2}, and solvent on asphaltene precipitation and its properties. This research focused on the solubility reversibility of asphaltene in oil and the precipitation caused by CO{sub 2} injection at simulated reservoir temperature and pressure conditions. These experiments have provided many observations about the properties of asphaltenes for further improvement of the model, but more detailed information about the properties of asphaltenes in solution is needed for the development of more reliable asphaltene characterization techniques. 50 refs., 8 figs., 7 tabs.

  14. Separation and characterization of asphaltenic subfractions

    Energy Technology Data Exchange (ETDEWEB)

    Honse, Siller O.; Ferreira, Silas R.; Mansur, Claudia R. E.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano; Gonzalez, Gaspar, E-mail: elucas@ima.ufrj.br [Centro de Pesquisas da PETROBRAS (CENPES), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The structure of the various asphaltenic subfractions found in crude oil was evaluated. For this purpose, C5 asphaltenes were extracted from an asphaltic residue using n-pentane as the flocculant solvent. The different subfractions were isolated from the C5 asphaltenes by the difference in solubility in different solvents. These were characterized by infrared spectroscopy, nuclear magnetic resonance, X-ray fluorescence, elementary analysis and mass spectrometry. The results confirmed that the subfractions extracted with higher alkanes had greater aromaticity and molar mass. However, small solubility variations between the subfractions were attributed mainly to the variation in the concentrations of cyclical hydrocarbon compounds and metals (author)

  15. Characterization of asphaltenes by nonaqueous capillary electrophoresis

    NARCIS (Netherlands)

    Kok, W.T.; Tüdös, A.J.; Grutters, M.; Shepherd, A.G.

    2011-01-01

    Nonaqueous capillary electrophoresis was used for the separation and characterization of asphaltene samples from different sources. For the separation medium (background electrolyte), mixtures of tetrahydrofuran and a high-permittivity organic solvent could be used. The best results were obtained

  16. On the Mass Balance of Asphaltene Precipitation

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lira-Galeana, C.; Stenby, Erling Halfdan

    2001-01-01

    In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments are pe......, and that the material in the second precipitation step was often of higher apparent molecular weight anti had an increased overall absorbance coefficient.......In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments...... indicates that in temperature experiments as well as in solvent series experiments the precipitation of heavy asphaltenes affects the following precipitation of lighter asphaltenes. In both cases the mass balance using standard separation techniques cannot be closed, as less material is precipitated...

  17. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  18. Investigating Asphaltenes Composition in Crude Oil Samples using ...

    African Journals Online (AJOL)

    MBI

    2015-12-22

    Dec 22, 2015 ... composition of asphaltenes by Iatroscan TLC-FID method was compared with the weight% of asphaltenes precipitated. ... SARA in the crude oil samples were determined in this work ..... Fractionation and characterization of.

  19. The Critical Micelle Concentration of Asphaltenes as Measured by Calorimetry

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Christensen, S. D.

    2000-01-01

    Micellization of asphaltenes in solution has been investigated using a micro calorimetric titration procedure (Andersen, S. I.; Birdi, K. S. J Colloid Interface Sci. 1991, 142, 497). The method uses the analysis of heat of dissociation and dilution of asphaltene micelles when a pure solvent (or...... solvent mixture) is titrated with a solution of asphaltene in the same solvent. The asphaltene concentration of the injected solution is at a level above the critical micelle concentration (CMC). In the present paper the procedure is applied in investigation of asphaltenes as well as subfractions...

  20. Investigation of Asphaltene Precipitation at Elevated Temperature

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lindeloff, Niels; Stenby, Erling Halfdan

    1998-01-01

    In order to obtain quantitative data on the asphaltene precipitation induced by the addition of n-alkane (heptane) at temperatures above the normal boiling point of the precipitant, a high temperature/high pressure filtration apparatus has been constructed. Oil and alkane are mixed...

  1. Isolation of Asphaltene-Degrading Bacteria from Sludge Oil

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2015-03-01

    Full Text Available Sludge oil contains 30%–50% hydrocarbon fractions that comprise saturated fractions, aromatics, resins, and asphaltene. Asphaltene fraction is the most persistent fraction. In this research, the indigenous bacteria that can degrade asphaltene fractions from a sludge oil sample from Balikpapan that was isolated using BHMS medium (Bushnell-Hass Mineral Salt with 0.01% (w/v yeast extract, 2% (w/v asphaltene extract, and 2% (w/v sludge oil. The ability of the four isolates to degrade asphaltene fractions was conducted by the biodegradation asphaltene fractions test using liquid cultures in a BHMS medium with 0.01% (w/v yeast extract and 2% (w/v asphaltene extract as a carbon source. The parameters measured during the process of biodegradation of asphaltene fractions include the quantification of Total Petroleum Hydrocarbon (g, log total number of bacteria (CFU/ml, and pH. There are four bacteria (isolates 1, 2, 3, and 4 that have been characterized to degrade asphaltic fraction and have been identified as Bacillus sp. Lysinibacillus fusiformes, Acinetobacter sp., and Mycobacterium sp., respectively. The results showed that the highest ability to degrade asphaltene fractions is that of Bacillus sp. (isolate 1 and Lysinibacillus fusiformes (Isolate 2, with biodegradation percentages of asphaltene fractions being 50% and 55%, respectively, and growth rate at the exponential phase is 7.17x107 CFU/mL.days and 4.21x107 CFU/mL.days, respectively.

  2. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R [Texaco Technology Ghent (Belgium)

    1998-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  3. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  4. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David

    2007-01-01

    Can calorimetry bring new input to the Current understanding of asphaltene precipitation? In this work, two types of precipitation were studied by means of calorimetry: addition of n-heptane into asphaltene solutions and temperature/pressure variations on a recombined live oil. The first series...... of experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused...... by T and P variations is exothermic for this system. Furthermore, the temperature-induced precipitation is accompanied by an increase in the apparent thermal expansivity. Therefore, it seems that these two phase transitions exhibit different calorimetric behaviours and they may not be as similar...

  5. Surface characterization of adsorbed asphaltene on a stainless steel surface

    International Nuclear Information System (INIS)

    Abdallah, W.A.; Taylor, S.D.

    2007-01-01

    X-ray photoelectron spectroscopy was used to characterize a single layer of adsorbed asphaltene on a metallic surface. The deposits were created by immersing a stainless steel disc into a dilute asphaltene solution with either toluene or dichloromethane as the solvent, although the toluene solution allowed for better control of the adsorbed asphaltene layer and less atmospheric oxygen contamination. The analyses for C 1s, S 2p 3/2 , N 1s and O 1s photoemission peaks indicated that different functional groups are present in the asphaltene layer including carboxylic, pyrrolic, pyridininc, thiophenic and sulfite, with slight differences in their binding energies

  6. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar

    1997-01-01

    In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... phase. The asphaltenes were analysed using FTir, Elemental analysis, and HPLC-SEC with a diode array detector. With increasing content of toluene in the methanol the molecular weight distribution of the asphaltenes significantly move to higher molecular weights. The content of nitrogen and sulfur...

  7. Investigation of Asphaltene Adsorption onto Zeolite Beta Nanoparticles to Reduce Asphaltene Deposition in a Silica Sand Pack

    Directory of Open Access Journals (Sweden)

    Kashefi Sepideh

    2018-01-01

    Full Text Available Zeolite beta nanoparticles were used as a new asphaltene adsorbent for reducing asphaltene deposition during fluid injection into a silica sand pack. At first, the asphaltene adsorption efficiency and capacity of zeolite beta nanoparticles were determined by UV-Vis spectrophotometer. It was found that the proper concentration of nanoparticles for asphaltene adsorption was 10 g/L and the maximum asphaltene adsorption onto zeolite beta was 1.98 mg/m2. Second, two dynamic experiments including co-injection of crude oil and n-heptane (as an asphaltene precipitant with and without use of zeolite beta nanoparticles in the sand pack was carried out. The results showed that the use of zeolite beta nanoparticles increased the permeability ratio and outlet fluid's asphaltene content about 22% and 40% compared to without use of nanoparticles, respectively. Moreover, a model based on monolayer asphaltene adsorption onto nanoparticles and asphaltene deposition mechanisms including surface deposition, entrainment and pore throat plugging was developed to determine formation damage during co-injection of crude oil and n-heptane into the sand pack. The proposed model presented good prediction of permeability and porosity ratios with AAD% of 1.07 and 0.07, respectively.

  8. Test methods for determining asphaltene stability in crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Asomaning, S. [Baker Petrolite, Sugar Land, TX (United States)

    2001-07-01

    The development of test methods for the determination of the stability of asphaltenes in crude oils was rendered necessary, due to the high cost of remediating asphaltene deposition in harsh production environments, namely the underwater systems in offshore deepwater. The Oliensis Spot Test, two saturates, aromatics, resins and asphaltenes (SARA)-based screens (the Colloidal Instability Index and Asphaltene-Resin ratio), a solvent titration method with near infrared radiation (NIR) solids detection, and live oil depressurization were used for the purposes of this study, to predict the stability of asphaltenes in crude oils with different API gravity. A complete description of the test methods was provided, and the experimental data obtained as a result was presented. Correlation with data on the deposition histories of the oils was used to validate the experimental stability data. The author discussed the effectiveness of the different tests for the prediction of the stability of asphaltenes in crude oils. The prediction of a crude oil's propensity towards asphaltene precipitation was more accurate with the Colloidal Instability Index and the solvent titration method. Live oil depressurization proved to be very effective for the prediction of the stability of asphaltenes for light oils, where most stability tests fail. tabs., 31 figs.

  9. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield s...

  10. Pyrolysis of petroleum asphaltenes from different geological origins ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 33; Issue 4. Pyrolysis of petroleum asphaltenes from different geological origins and use of methylnaphthalenes and methylphenanthrenes as maturity indicators for asphaltenes. Manoj Kumar Sarmah Arun Borthakur Aradhana Dutta. Fuel Cells Volume 33 Issue 4 ...

  11. Pyrolysis of petroleum asphaltenes from different geological origins

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 2. Pyrolysis of petroleum asphaltenes from different geological origins and use of methylnaphthalenes and methylphenanthrenes as maturity indicators for asphaltenes. Manoj Kumar Sarmah Arun Borthakur Aradhana Dutta. Volume 36 Issue 2 April 2013 pp ...

  12. Sizes of vanadyl petroporphyrins and asphaltene aggregates in toluene

    Energy Technology Data Exchange (ETDEWEB)

    Dechaine, Greg Paul; Gray, Murray R. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], email: gpd@ualberta.ca

    2010-07-01

    This work focuses on the importance of removing vanadyl porphyrins components from crude oils and the methodology for doing it. The diffusion of asphaltene and vanadium components in diluted toluene was measured using a stirred diaphragm diffusion cell, which was equipped with a number of different cellulosic membranes of different pore size. In-situ UV/visible spectroscopy was used to observe filtrates of the process. The effective diffusivity of asphaltene structures was plotted for different pore sized membranes. It was noticed that asphaltene concentrations increased with increased pore sizes; particularly increasing at pore diameter of 5 nm. Moreover the effects of temperature and mass concentration were also investigated in this study. It was shown that increasing the temperature of the toluene causes the mobility of asphaltene to increase as well. Nevertheless, decreasing the concentration of asphaltene does not affect its mobility. It was shown that toluene samples from different sources showed different mobility.

  13. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  14. Structural Study of Asphaltenes from Iranian Heavy Crude Oil

    Directory of Open Access Journals (Sweden)

    Davarpanah L.

    2015-11-01

    Full Text Available In the present study, asphaltene precipitation from Iranian heavy crude oil (Persian Gulf off-shore was performed using n-pentane (n-C5 and n-heptane (n-C7 as light alkane precipitants. Several analytical techniques, each following different principles, were then used to structurally characterize the precipitated asphaltenes. The yield of asphaltene obtained using n-pentane precipitant was higher than asphaltene precipitated with the use of n-heptane. The asphaltene removal affected the n-C5 and n-C7 maltene fractions at temperatures below 204°C, as shown by the data obtained through the simulated distillation technique. Viscosity of heavy oil is influenced by the asphaltene content and behavior. The viscosity dependence of the test heavy oil on the shear rate applied was determined and the flow was low at y. above 25 s-1 . The reconstituted heavy oil samples were prepared by adding different amounts of asphaltenes to the maltenes (deasphalted heavy oil and asphaltene effects were more pronounced at the low temperature of 25°C as compared with those at the higher temperatures. According to the power law model used in this study the flowability of the test heavy oil exhibited a pseudoplastic character. Structural results obtained from Fourier Transform InfraRed (FTIR spectroscopy showed the presence of the different functional groups in the precipitated asphaltenes. For instance, the presence of different hydrocarbons (aliphatic, aromatic and alicyclic based on their characteristics in the FTIR spectra was confirmed. Resins are effective dispersants, and removal of this fraction from the crude oil is disturbing to the colloidal nature of heavy oil; asphaltene flocculation and precipitation eventually occur. Appearance of pores in the Scanning Electron Microscopy (SEM images was used as an indicator of the resin detachment. With the use of 1H and 13C Nuclear Magnetic Resonance (NMR spectroscopy, two important structural parameters of the

  15. A theory of phase separation in asphaltene-micellar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco Sanchez, Juan H. [Instituto Mexicano del Petroleo, Mexico D.F. (Mexico)

    2001-08-01

    A theory of phase separation in micellar solutions of asphaltene in aromatic hydrocarbons was reported in this paper, based on both the approach of the phase behavior of amphiphile/water micelles, and the self-association of asphaltene in aromatic core. Several experimental techniques have been used by different investigators showing the existence of some kind of critical micellar concentration (CMC) on asphaltenes in aromatic solutions. So, at least asphaltene-monomer and asphaltene-micellar phases are experimentally demonstrated facts. These two phases are the main purpose in this report on a theoretical model. Some results show the temperature versus asphaltene concentration phase diagram. The phase diagram is examined against the limited critical micelle concentration data for asphaltenes-in-toluene systems. Such phase diagram is also qualitatively examined against an experimental demonstration of phase separation. The asphaltene-micelle growth depends on the parameter K responsible for the shape and size of it. At the same time, parameter K depends on both the number of asphaltene-monomer associated in the asphaltene-micelle, and the chemical potentials in the interior and in the periphery of the micelle. An expression for getting the number of asphaltene-monomers self-associated in the asphaltene-micelle was obtained. [Spanish] Se reporta una teoria de separacion de fases en soluciones micelares de asfalteno en hidrocarburos aromaticos, basada tanto en la conducta de fase de micelas formadas por anififilos en agua como en la autoasociacion de asfaltenos en nucleos aromaticos. Se han usado diversas tecnicas experimentales por diferentes investigadores que demuestran la existancia de algun tipo de concentracion micelar critica (CMC) de soluciones de asfaltenos en aromaticos. Entonces, al menos las fases de asfalteno-monomerico y de asfalteno-micelar son hechos experimentalmente demostrados. Esta dos fases son el principal proposito de este reporte en un modelo

  16. Pyrolysis of petroleum asphaltenes from different geological origins ...

    Indian Academy of Sciences (India)

    terrestrial nature of the organic matter. Keywords. ... well as being of high molecular weight (Nali et al 1995). .... tially found in the organic matter of terrestrial source rocks, ..... Bunger J W and Li N C 1984 Chemistry of asphaltenes (Washington.

  17. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    Science.gov (United States)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  18. Asphaltene laboratory assessment of a heavy onshore reservoir during pressure, temperature and composition variations to predict asphaltene onset pressure

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Peyman; Ahmadi, Yaser [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kharrat, Riyaz [Petroleum University of Technology, Tehran (Iran, Islamic Republic of); Mahdavi, Sedigheh; James, Lesley [Memorial University of Newfoundland, Saint John' s (Canada)

    2015-02-15

    An Iranian heavy oil reservoir recently encountered challenges in oil production rate, and further investigation has proven that asphaltene precipitation was the root cause of this problem. In addition, CO{sub 2} gas injection could be an appropriate remedy to enhance the production of heavy crudes. In this study, high pressure-high temperature asphaltene precipitation experiments were performed at different temperatures and pressures to investigate the asphaltene phase behavior during the natural depletion process and CO{sub 2} gas injection. Compositional modeling of experimental data predicted onset points at different temperatures which determine the zone of maximum probability of asphaltene precipitation for the studied heavy oil reservoir. Also, the effect of CO{sub 2} gas injection was investigated as a function of CO{sub 2} concentration and pressure. It was found that a CO{sub 2}-oil ratio of 40% is the optimum for limiting precipitation to have the least formation damage and surface instrument contamination.

  19. Comparisons Between Asphaltenes from the Dead and Live-Oil Samples of the Same Crude Oils

    DEFF Research Database (Denmark)

    Aquino-Olivos, M.A.; Andersen, Simon Ivar; Lira-Galeana, C.

    2003-01-01

    extracted and analyzed. These pressure-driven asphaltenes found on the filter were found to make up in the range between 50 and 100 ppm of the whole crude oil. Opening of the cell did not reveal asphaltenes retained due to wall adhesion. Size exclusion chromatography tests performed on both the live......-oil-derived asphaltenes and the standard asphaltenes as precipitated by atmospheric titration on the same crude oil, revealed that the live-oil asphaltenes had apparent smaller hydrodynamic volume and narrower distributions than the standard asphaltenes for two oils. Further FTIR tests also showed large differences...

  20. Molecular-weight distributions of coal and petroleum asphaltenes from laser desorption/ionization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ana R. Hortal; Paola Hurtado; Bruno Martinez-Haya; Oliver C. Mullins [Universidad Pablo de Olavide, Seville (Spain). Departamento de Sistemas Fisicos, Quimicos y Naturales

    2007-09-15

    Molecular-weight distributions (MWDs) of asphaltenes extracted from coal and petroleum have been measured in laser desorption/ionization (LDI) mass spectrometric experiments. The dried-droplet and solvent-free sample preparation methods are compared. The coal asphaltenes have a relatively narrow MWD (full width 150 amu) with an average molecular weight of 340 amu. The petroleum asphaltenes display a broader MWD (full width 300 amu) and are heavier on average (680 amu). The LDI spectra also provide evidence for the formation of noncovalent clusters of the two types of asphaltenes during the desorption process. Petroleum and coal asphaltenes exhibit aggregation as do large model polycyclic aromatic hydrocarbons (PAHs) with five or more fused rings also included in the study. Smaller PAHs (pyrene) exhibit less aggregation, especially when alkane-chain substituents are incorporated to the molecular structure. This indicates that asphaltenes possess large PAHs and, according to the relatively small molecular weights observed, that there is a preponderance of asphaltene molecules with only a single fused ring system. The coal asphaltenes present a significantly smaller propensity toward aggregation than their crude oil counterparts. This finding, coupled with the fact that (1) alkanes inhibit aggregation in LDI and (2) petroleum asphaltenes possess much more alkane carbon, indicates that coal asphaltenes have smaller PAHs on average than petroleum asphaltenes. This is further corroborated by the stronger ultraviolet absorbance of the coal asphaltenes at wavelengths shorter than 400 nm. 32 refs., 8 figs.

  1. Structural characterization of asphaltenes from vacuum residue distillation

    International Nuclear Information System (INIS)

    Silva, Ronaldo C.; Seidl, Peter R.; Menezes, Sonia M.C. de; Teixeira, Marco A.G.

    2001-01-01

    The aim of this work was to do structural characterization of asphaltenes from different vacuum residues distillation. Several average molecular parameters using some analytical techniques were obtained and these techniques were: nuclear magnetic resonance ( 1 H and 13 C NMR), elemental analysis (C,H,N,O and S content), Fourier transform infrared (FT-IR), vapor pressure osmometry and gel permeation chromatography. Particularly from NMR, some important molecular parameters were obtained, such as aromatic carbon fraction, aliphatic carbons fraction, alkyl substituted aromatic carbons, unsubstituted aromatic carbons, etc. Molecular modeling will be employed to build the structure of asphaltenes using the experimental data. (author)

  2. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  3. Enhanced oil recovery (EOR) by miscible CO{sub 2} and water flooding of asphaltenic and non-asphaltenic oils

    Energy Technology Data Exchange (ETDEWEB)

    Chukwudeme, E. A.; Hamouda, A. A. [Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger (Norway)

    2009-07-01

    An EOR study has been performed applying miscible CO{sub 2} flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane), model oil (n-C10, SA, toluene and 0.35 wt % asphaltene) and crude oil (10 wt % asphaltene) obtained from the Middle East. Stearic acid (SA) is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO{sub 2} flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years) it is shown that there is almost no difference between the recovered oils by water and CO{sub 2}, after which (> 3 years) oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO{sub 2} flooding of asphaltenic oil at combined temperatures and pressures of 50 {sup o}C/90 bar and 70 {sup o}C/120 bar (no significant difference between the two cases, about 1%) compared to 80 {sup o}C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO{sub 2} flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure. (author)

  4. Aluminum Oxide Nanoparticles for Highly Efficient Asphaltene Separation from Crude Oil Using Ceramic Membrane Technology

    Directory of Open Access Journals (Sweden)

    Rezakazemi Mashallah

    2017-11-01

    Full Text Available The effects of aluminum oxide nanoparticles on the removal of asphaltenes from an Iranian crude oil (Soroush using a ceramic membrane with pore size of 0.2 µm were investigated. In order to achieve superior asphaltene separation by ultrafiltration, it is essential to make some changes for destabilizing asphaltene in crude oil. The asphaltene destabilization was done using crude oil contact with an acid containing dissolved metal ions. Metal oxide nanoparticles adsorbed asphaltene molecules and increased their molecular size. The nanoparticle of aluminum oxide was applied to alter precipitation and peptization properties of asphaltenes. Dynamic Light Scattering (DLS was used to measurement of the asphaltene molecular size dissolved in toluene. Raman spectroscopy and the Tuinstra equation were used to determine the aromatic sheet diameter (La via the integrated intensities of the G and D1 modes. This revealed that the asphaltene particles react with nano aluminum oxide and the average molecular size of asphaltene was raised from 512.754 to 2949.557 nm and La from 5.482 to 13.787. The obtained results showed that using nano aluminum oxides, asphaltene separation increased from 60–85 wt% to 90–97 wt% based on the asphaltene content of crude oil.

  5. A Thermodynamic Mixed-Solid Asphaltene Precipitation Model

    DEFF Research Database (Denmark)

    Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar

    1998-01-01

    A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...

  6. Extraction and characterization of crude oil asphaltenes sub fractions

    International Nuclear Information System (INIS)

    Ferreira, Silas R.; Calado, Lucas S.; Honse, Siller O.; Mansur, Claudia R.E.; Lucas, Elizabete F.

    2011-01-01

    Asphaltenes from crude oil have been studied for a long time. However, until today their chemical structures and physical-chemical properties are not well established. Nowadays, it is accepted that asphaltenes are dispersed in the crude oil as macro structures, which are mainly constituted of some condensed aromatic rings (about 6-20), containing aliphatic or naphthenic groups. The asphaltenes are also defined as the crude oil fraction that is insoluble in low molar mass n-alkanes and soluble in aromatic solvents, like benzene and toluene In order to investigate the molecular structure, in this work the asphaltenes were separated by using a different procedure as that normally described in the literature and characterized by infrared spectrometry, nuclear magnetic resonance, x-ray fluorescence, elemental analyses and particle size and size distribution. The difference in subfractions polarity can be attributed not only to the aromaticity changes but also to the content of elements, such as N, O, Fe, V, Si e Ni. (author)

  7. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  8. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  9. Behavior of asphaltene model compounds at w/o interfaces.

    Science.gov (United States)

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces.

  10. Influence of asphaltene aggregation and pressure on crude oil emulsion stability

    Energy Technology Data Exchange (ETDEWEB)

    Auflem, Inge Harald

    2002-07-01

    Water-in-crude oil emulsions stabilised by various surface-active components are one of the major problems in relation to petroleum production. This thesis presents results from high-pressure separation experiments on ''live'' crude oil and model oil emulsions, as well as studies of Interactions between various indigenous stabilising materials in crude oil. A high-pressure separation rig was used to study the influence of gas and gas bubbles on the separation of water-in-crude oil emulsions. The results were interpreted as a flotation effect from rising gas bubbles, which led to increased separation efficiency. The separation properties of a ''live'' crude oil were compared to crude oil samples recombined with various gases. The results showed that water-in-oil emulsions produced from the ''live'' crude oil samples, generally separated faster and more complete, than emulsions based on recombined samples of the same crude oil. Adsorption of asphaltenes and resins onto a hydrophilic surface from solutions with varying aromatic/aliphatic character was investigated by a quarts crystal microbalance. The results showed that asphaltenes adsorbed to a larger degree than the resins. The resins were unable to desorb pre-adsorbed asphaltenes from the surface, and neither did they adsorb onto the asphaltene-coated surface. In solutions of both of resins and asphaltenes the two constituents associated in bulk liquid and adsorbed to the surface in the form of mixed aggregates. Near infrared spectroscopy and pulsed field gradient spin echo nuclear magnetic resonance were used to study asphaltene aggregation and the influence of various amphiphiles on the asphaltene aggregate size. The results showed Interactions between the asphaltenes and various chemicals, which were proposed to be due to acid-base interactions. Among the chemicals used were various naphthenic acids. Synthesised monodisperse acids gave a reduction of size of the asphaltene aggregates, whereas polydisperse

  11. Influence of asphaltene aggregation and pressure on crude oil emulsion stability

    Energy Technology Data Exchange (ETDEWEB)

    Auflem, Inge Harald

    2002-07-01

    Water-in-crude oil emulsions stabilised by various surface-active components are one of the major problems in relation to petroleum production. This thesis presents results from high-pressure separation experiments on ''live'' crude oil and model oil emulsions, as well as studies of Interactions between various indigenous stabilising materials in crude oil. A high-pressure separation rig was used to study the influence of gas and gas bubbles on the separation of water-in-crude oil emulsions. The results were interpreted as a flotation effect from rising gas bubbles, which led to increased separation efficiency. The separation properties of a ''live'' crude oil were compared to crude oil samples recombined with various gases. The results showed that water-in-oil emulsions produced from the ''live'' crude oil samples, generally separated faster and more complete, than emulsions based on recombined samples of the same crude oil. Adsorption of asphaltenes and resins onto a hydrophilic surface from solutions with varying aromatic/aliphatic character was investigated by a quarts crystal microbalance. The results showed that asphaltenes adsorbed to a larger degree than the resins. The resins were unable to desorb pre-adsorbed asphaltenes from the surface, and neither did they adsorb onto the asphaltene-coated surface. In solutions of both of resins and asphaltenes the two constituents associated in bulk liquid and adsorbed to the surface in the form of mixed aggregates. Near infrared spectroscopy and pulsed field gradient spin echo nuclear magnetic resonance were used to study asphaltene aggregation and the influence of various amphiphiles on the asphaltene aggregate size. The results showed Interactions between the asphaltenes and various chemicals, which were proposed to be due to acid-base interactions. Among the chemicals used were various naphthenic acids. Synthesised monodisperse acids gave a reduction of

  12. Modeling of Asphaltene Precipitation from Crude Oil with the Cubic Plus Association Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; Liang, Xiaodong; von Solms, Nicolas

    2017-01-01

    In this study, different modeling approaches using the Cubic Plus Association (CPA) equation of state (EoS) are developed to calculate the asphaltene precipitation onset condition and asphaltene yield from degassed crude oil during the addition of n-paraffin. A single model parameter is fitted...

  13. The use of stability indices in predicting asphaltene problems in upstream and downstream oil operations

    Energy Technology Data Exchange (ETDEWEB)

    Asomaning, S. [Baker Petrolite, Sugar Land, TX (United States)

    2003-07-01

    A series of test methods have been developed to determine the stability of asphaltenes in crude oils. They were developed due to the high cost of remediating asphaltene deposition in offshore operations. This study described the characteristics of the Oliensis Spot Test, two saturates, aromatics, resins and asphaltenes (SARA)-based screens (the Colloidal Instability Index and Asphaltene-Resin ratio), a solvent titration method with near infrared radiation (NIR) solids detection, and live oil depressurization. Each method is used to predict the stability of asphaltenes in crude oils with different API gravity. A complete description of the test methods was provided along with experimental data. The effectiveness of the different tests in predicting the stability of asphaltenes in crude oils was also assessed. Results indicate that the prediction of a crude oil's tendency towards asphaltene precipitation was more accurate with the Colloidal Instability Index and the solvent titration method. Live oil depressurization proved to be very effective in predicting the stability of asphaltenes for light oils, where most stability tests fail. tabs., figs.

  14. Asphaltene self-association: Modeling and effect of fractionation with a polar solvent

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Murgich, J; Andersen, Simon Ivar

    2004-01-01

    of DeltaH(a) obtained suggest that a fraction of asphaltenes is not active in the calorimetric experiments. Asphaltenes from Venezuela (LM1) and Mexico (KU) have been fractionated by precipitation with a mixture of acetone and toluene. It is considered that the most polar compounds are collected...

  15. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation; FINAL

    International Nuclear Information System (INIS)

    Deo, Milind D.

    2002-01-01

    This project was undertaken to understand fundamental aspects of carbon dioxide (CO2) induced asphaltene precipitation. Oil and asphaltene samples from the Rangely field in Colorado were used for most of the project. The project consisted of pure component and high-pressure, thermodynamic experiments, thermodynamic modeling, kinetic experiments and modeling, targeted corefloods and compositional modeling

  16. Calorimetric Evidence about the Application of the Concept of CMC to Asphaltene Self-Association

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Andersen, Simon Ivar

    2005-01-01

    that asphaltenes may also have a concentration at which self-association occurs (CMC). This article presents evidence found by calorimetry and spectroscopic techniques, that suggest that this concept may not be adequate for asphaltene self-association in toluene solutions. Isothermal titration calorimetry has been...

  17. Diagnosis of asphaltene stability in crude oil through “two parameters” SVM model

    DEFF Research Database (Denmark)

    Chamkalani, Ali; Mohammadi, Amir H.; Eslamimanesh, Ali

    2012-01-01

    Asphaltene precipitation/deposition and its imposing difficulties are drastic issues in petroleum industry. Monitoring the asphaltene stability conditions in crude oil systems is still a challenge and has been subject of many studies. In this work, the Refractive Index (RI) of several oil samples...... and previously-presented empirical correlations available in open literature. © 2012 Elsevier Ltd....

  18. Phase Behavior Modeling of Asphaltene Precipitation for Heavy Crudes: A Promising Tool Along with Experimental Data

    Science.gov (United States)

    Tavakkoli, M.; Kharrat, R.; Masihi, M.; Ghazanfari, M. H.; Fadaei, S.

    2012-12-01

    Thermodynamic modeling is known as a promising tool for phase behavior modeling of asphaltene precipitation under different conditions such as pressure depletion and CO2 injection. In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, while the oil and gas phases are modeled with an equation of state. The PR-EOS was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on an improved solid model has been developed and used for predicting asphaltene precipitation data for one of Iranian heavy crudes, under pressure depletion and CO2 injection conditions. A significant improvement has been observed in predicting the asphaltene precipitation data under gas injection conditions. Especially for the maximum value of asphaltene precipitation and for the trend of the curve after the peak point, good agreement was observed. For gas injection conditions, comparison of the thermodynamic micellization model and the improved solid model showed that the thermodynamic micellization model cannot predict the maximum of precipitation as well as the improved solid model. The non-isothermal improved solid model has been used for predicting asphaltene precipitation data under pressure depletion conditions. The pressure depletion tests were done at different levels of temperature and pressure, and the parameters of a non-isothermal model were tuned using three onset pressures at three different temperatures for the considered crude. The results showed that the model is highly sensitive to the amount of solid molar volume along with the interaction coefficient parameter between the asphaltene component and light hydrocarbon components. Using a non-isothermal improved solid model, the asphaltene phase envelope was developed. It has been revealed that at high temperatures, an

  19. An experimental study of asphaltene particle sizes in n-heptane-toluene mixtures by light scattering

    Directory of Open Access Journals (Sweden)

    Rajagopal K.

    2004-01-01

    Full Text Available The particle size of asphaltene flocculates has been the subject of many recent studies because of its importance in the control of deposition in petroleum production and processing. We measured the size of asphaltene flocculates in toluene and toluene - n-heptane mixtures, using the light-scattering technique. The asphaltenes had been extracted from Brazilian oil from the Campos Basin, according to British Standards Method IP-143/82. The asphaltene concentration in solution ranged between 10-6 g/ml and 10-7 g/ml. Sizes was measured for a period of about 10000 minutes at a constant temperature of 20°C. We found that the average size of the particles remained constant with time and increase with an increase in amount of n-heptane. The correlation obtained for size with concentration will be useful in asphaltene precipitation models.

  20. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  1. Adsorption and wettability study of methyl ester sulphonate on precipitated asphaltene

    International Nuclear Information System (INIS)

    Okafor, H E; Gholami, R; Sukirman, Y

    2016-01-01

    Asphaltene precipitation from crude oil and its subsequent aggregation forms solid, which preferentially deposit on rock surfaces causing formation damage and wettability changes leading to loss of crude oil production. To resolve this problem, asphaltene inhibitor has been injected into the formation to prevent the precipitation of asphaltene. Asphaltene inhibitors that are usually employed are generally toxic and non-biodegradable. This paper presents a new environmentally friendly asphaltene inhibitor (methyl ester sulphonate), an anionic surfactant, which has excellent sorption on formation rock surfaces. Result from adsorption study validated by Langmuir and Freundlich models indicate a favourable adsorption. At low volumes injected, methyl ester sulphonate is capable of reverting oil-wet sandstone surface to water-wet surface. Biodegradability test profile shows that for concentrations of 100-5000ppm it is biodegradable by 65-80%. (paper)

  2. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza Junior, F.G.

    2013-01-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  3. Mesoscale Simulation and Machine Learning of Asphaltene Aggregation Phase Behavior and Molecular Assembly Landscapes.

    Science.gov (United States)

    Wang, Jiang; Gayatri, Mohit A; Ferguson, Andrew L

    2017-05-11

    Asphaltenes constitute the heaviest fraction of the aromatic group in crude oil. Aggregation and precipitation of asphaltenes during petroleum processing costs the petroleum industry billions of dollars each year due to downtime and production inefficiencies. Asphaltene aggregation proceeds via a hierarchical self-assembly process that is well-described by the Yen-Mullins model. Nevertheless, the microscopic details of the emergent cluster morphologies and their relative stability under different processing conditions remain poorly understood. We perform coarse-grained molecular dynamics simulations of a prototypical asphaltene molecule to establish a phase diagram mapping the self-assembled morphologies as a function of temperature, pressure, and n-heptane:toluene solvent ratio informing how to control asphaltene aggregation by regulating external processing conditions. We then combine our simulations with graph matching and nonlinear manifold learning to determine low-dimensional free energy surfaces governing asphaltene self-assembly. In doing so, we introduce a variant of diffusion maps designed to handle data sets with large local density variations, and report the first application of many-body diffusion maps to molecular self-assembly to recover a pseudo-1D free energy landscape. Increasing pressure only weakly affects the landscape, serving only to destabilize the largest aggregates. Increasing temperature and toluene solvent fraction stabilizes small cluster sizes and loose bonding arrangements. Although the underlying molecular mechanisms differ, the strikingly similar effect of these variables on the free energy landscape suggests that toluene acts upon asphaltene self-assembly as an effective temperature.

  4. Study on the dipole moment of asphaltene molecules through dielectric measuring

    KAUST Repository

    Zhang, Long Li; Yang, Chao He; Wang, Ji Qian; Yang, Guo Hua; Li, Li; Li, Yan Vivian; Cathles, Lawrence

    2015-01-01

    The polarity of asphaltenes influences production, transportation, and refining of heavy oils. However, the dipole moment of asphaltene molecules is difficult to measure due to their complex composition and electromagnetic opaqueness. In this work, we present a convenient and efficient way to determine the dipole moment of asphaltene in solution by dielectric measurements alone without measurement of the refractive index. The dipole moment of n-heptane asphaltenes of Middle East atmospheric residue (MEAR) and Ta-He atmospheric residue (THAR) are measured within the temperature range of -60°C to 20°C. There is one dielectric loss peak in the measured solutions of the two types of asphaltene at the temperatures of -60°C or -40°C, indicating there is one type of dipole in the solution. Furthermore, there are two dielectric loss peaks in the measured solutions of the two kinds of asphaltene when the temperature rises above -5°C, indicating there are two types of dipoles corresponding to the two peaks. This phenomenon indicates that as the temperature increases above -5°C, the asphaltene molecules aggregate and present larger dipole moment values. The dipole moments of MEAR C7-asphaltene aggregates are up to 5 times larger than those before aggregation. On the other hand, the dipole moments of the THAR C7-asphaltene aggregates are only 3 times larger than those before aggregation. It will be demonstrated that this method is capable of simultaneously measuring multi dipoles in one solution, instead of obtaining only the mean dipole moment. In addition, this method can be used with a wide range of concentrations and temperatures.

  5. Synthesis and characterization of the polystyrene - asphaltene graft copolymer BY FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Leo, Adan Yovani; Salazar Ramiro

    2008-01-01

    The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheological characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer

  6. Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily

    Science.gov (United States)

    Scirè, Salvatore; Ciliberto, Enrico; Crisafulli, Carmelo; Scribano, Vittorio; Bellatreccia, Fabio; Ventura, Giancarlo Della

    2011-08-01

    Microscopic blebs of sulfur-bearing organic matter (OM) commonly occur between the secondary calcite grains and fibrous phyllosilicates in extensively serpentinized and carbonated mantle-derived ultramafic xenoliths from Hyblean nephelinite diatremes, Sicily, Italy. Rarely, coarse bituminous patches give the rock a blackish color. Micro Fourier transform infrared spectra (μ-FTIR) point to asphaltene-like structures in the OM, due to partially condensed aromatic rings with aliphatic tails consisting of a few C atoms. X-ray photoelectron spectroscopy (XPS) analysis indicates the occurrence of minor S═O (either sulphonyl or sulphoxide) functional groups in the OM. Solubility tests in toluene, thermo-gravimetric (TGA) and differential thermal (DTA) analyses confirm the presence of asphaltene structures. It is proposed that asphaltenes derive from the in situ aromatization (with decrease in H/C ratio) of previous light aliphatic hydrocarbons. Field evidence excludes that hydrocarbon from an external source percolated through the xenolith bearing tuff-breccia. The discriminating presence of hydrocarbon in a particular type of xenolith only and the lack of hydrocarbon in the host breccia matrix, are also inconsistent with an interaction between the ascending eruptive system and a supposed deep-seated oil reservoir. Assuming that the Hyblean unexposed basement consists of mantle ultramafics and mafic intrusive rocks having hosted an early abyssal-type hydrothermal system, one can put forward the hypothesis that the hydrocarbon production was related to hydrothermal activity in a serpentinite system. Although a bacteriogenesis or thermogenesis cannot be ruled out, the coexisting serpentine, Ni-Fe ores and hydrocarbon strongly suggest a Fischer-Tropsch-type (FTT) synthesis. Subsequent variations in the chemical and physical conditions of the system, for example an increase in the water/rock ratio, gave rise to partial oxidation and late carbonation of the serpentinite

  7. Effect on molecular interactions of chemical alteration of petroleum asphaltenes. I

    DEFF Research Database (Denmark)

    Juyal, Priyanka; Garcia, Daniel Merino; Andersen, Simon Ivar

    2005-01-01

    Asphaltenes are naturally occurring components of crude oil and have been the subject of many studies that have involved a variety of methods to determine their complex structure, their association in crude oil with resins, and their agglomeration phenomena. Yet, the molecular structures of aspha......Asphaltenes are naturally occurring components of crude oil and have been the subject of many studies that have involved a variety of methods to determine their complex structure, their association in crude oil with resins, and their agglomeration phenomena. Yet, the molecular structures...... of asphaltenes have not been fully elucidated. It is especially important to characterize the polar functionalities of these fractions, because they participate in the intermolecular aggregation by means of hydrogen bonds. The chemical derivatization of asphaltenes has been used, in combination with suitable...

  8. Screening of inhibitors for remediation of asphaltene deposits: Experimental and modeling study

    Directory of Open Access Journals (Sweden)

    Mehdi Madhi

    2018-06-01

    Full Text Available One of the most severe problems during production from heavy crude oil reservoirs is the formation of asphaltene precipitation and as a result deposition in the tubing, surface facilities and near wellbore region which causes oil production and permeability reduction in addition to rock wettability alteration in the reservoir. So one of the economical ways to prevent such incidents is using the chemicals which are called asphaltene inhibitor.In this study, the influence of three commercial inhibitors, namely; Cetyl Terimethyl Ammonium Bromide (CTAB, Sodium Dodecyl Sulfate (SDS, Triton X-100 and four non-commercial (Benzene, Benzoic Acid, Salicylic Acid, Naphthalene inhibitors on two Iranian crude oils were investigated. This study extends previous works and contributes toward the better understanding of interactions between asphaltene and inhibitor. Effect of functional groups and structure of inhibitors on asphaltene precipitation were studied and it seems clear that the nature and polarity of asphaltene (structure and amount of impurities presented has a significant impact on the selection of inhibitors. asphaltene dispersant tests and Core flood tests were designed for evaluation of inhibitors in static and dynamic conditions. The results revealed distinguished mechanisms for asphaltene solubilization/dispersion (such as hydrogen bonding, π–π interaction and acid-base interaction and influence of additional side group (OH on inhibition power of inhibitor.During the experiments, it was found that increasing inhibitor concentration may lead to the self-assembly of inhibitor and declining of asphaltene stabilization. So, finding optimum concentration of inhibitor with high efficiency and available at a reasonable price is very important. The results suggest that 600 ppm of CTAB and 300 ppm of SDS were approximately optimum concentrations for the studied crude oils. One of the most important findings that differ from previous studies is the

  9. EPR spectroscopy in the asphaltenes photodegradation study in petroleum

    International Nuclear Information System (INIS)

    Mauro, Eduardo di; Nakaema, Marcelo Kiyoshi Kian; Melo, Fernando Alves de; Turini, Marilene; Guedes, Carmen Luisa Barbosa; Nascimento, Otaciro Rangel

    2003-01-01

    Full text: The knowledge of the photochemistry transformation that occurs in the petroleum, when it is exposed to the environment has already been proved. In tropical climates, where the solar intensity is high and biological processes are hindered by the lack of nutrients, photochemical processes can be the one that most contribute for the degradation of oil. Moreover, photochemical processes can be important for subsequent biological consumption of oil (Nicodem et al., 1997). We have used EPR with the purpose of getting information of the photodegradation of the asphaltenes concerning the molecular structure. The EPR spectra of petroleum presented a single sign for organic free radicals. The present work basically consists of showing a new assignment of the EPR spectra to organic free radical. The sign observed in the EPR spectra in the Q-band for Arabian and Colombian oils was simulated mathematically. In contrast to the hypothesis postulated until now, that the sign corresponding to the free radical is interpreted as resulting from the superposition of the signs of different species of radicals in petroleum asphaltenes, the hypothesis that the asymmetrical line is the result of the components of the g tensor for a single radical species was proposed. The performed simulation was perfectly adjusted to the sign of the radical, confirming that this sign is the representation of a single species of free radical. Although the sign of the radical is due to a single species in each oil, the species responsible for the sign in Arabian petroleum is different from that responsible for the sign in Colombian petroleum. Nicodem, D.E., Fernandes, M.C.Z., Guedes, C.L.B., Correia, R.J., 1997. Biogeochemistry 39, 121-138. (author)

  10. Distribution of metals in vacuum residuums, asphaltenes and maltenes by PIXE

    International Nuclear Information System (INIS)

    Romero G, E.T.; Camacho M, V.; Sanchez B, A.C.; Lopez M, J.; Ramirez T, J.J.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    The PIXE technique for determining directly the distribution and abundance of trace metals in vacuum residuum, asphaltenes and maltenes separated with n-alkanes (C 5 -C 8 ) is used. The metal content of petroleum derivatives revealed that the vacuum residuum contains iron, aluminium, vanadium and nickel mainly, while that the asphaltenes and maltenes maintain inside of their composition only preferably the vanadium and nickel as majority elements. (Author)

  11. Analysis of metals in asphaltenes of KU-46 by PIXE analysis

    International Nuclear Information System (INIS)

    Navidad G, P.; Pina L, L.I.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.A.; Romero G, E.T.

    2002-01-01

    The content of metals of the asphaltenes obtained from the KU-46 mexican crude with n-heptane was evaluated. The found metals in higher concentration are transition metals as well as the vanadium, nickel, copper and zinc. Moreover the sulfur in high concentrations was quantified. The metallic content of the asphaltenes revealed that the crude contains a lower quantity of metals unlike the vacuum residue previously analysed. (Author)

  12. Prediction of the Gas Injection Effect on the Asphaltene Phase Envelope

    Directory of Open Access Journals (Sweden)

    Bahrami Peyman

    2015-11-01

    Full Text Available Asphaltene instability may occur when pressure, temperature and compositional variations affect the reservoir oil. Permeability reduction, wettability alteration, and plugging of wells and flow lines are the consequences of this phenomenon. Therefore, it is crucial to investigate the asphaltene behavior in different thermodynamic conditions by knowing the Asphaltene Precipitation Envelope (APE in a preventive way rather than the costly clean-up procedures. The selected reservoir oil has faced a remarkable decline in production due to several years of extraction, and Enhanced Oil Recovery (EOR has been considered as a solution. Therefore, in this paper, a comprehensive study was carried out to predict the effects of different injected gases on asphaltene onset and to prevent future asphaltene precipitation based on the laboratory data. The Advanced Redlich-Kwong-Soave (RKSA equation of state was considered to develop APE using Multiflash (Infochem Co.. For the selected reservoir oil, with temperature reduction at low temperatures, asphaltene precipitation weakened and made the onset pressure decrease, so this behavior is different from the results obtained in other published reports. On the basis of this model, several sensitivity analyses were performed with different gases (i.e., methane, CO2, N2 and associated gases to compare the risk of each gas for future EOR strategies. APE tend to expand as the amount of injected gases increases, except for CO2 gas injection, that showed another unconventional behavior for this crude oil. It was observed that for CO2 gas injection below a certain temperature, asphaltene stability increased, which can be considered as a good inhibitor of asphaltene precipitation.

  13. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  14. Colloidal Asphaltene Deposition and Aggregation in Capillary Flow: Experiments and Mesoscopic Simulation

    Science.gov (United States)

    Boek, Edo S.; Ladva, Hemant K.; Crawshaw, John P.; Padding, Johan T.

    2008-07-01

    The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment and simulation. For the simulation, we have used the stochastic rotation dynamics (SRD) method, in which the solvent hydrodynamic emerges from the collisions between the solvent particles, while the Brownian motion emerges naturally from the interactions between the colloidal asphaltene particles and the solvent. The asphaltene colloids interact through a screened Coulomb potential. We vary the well depth ɛ∝ and the flow rate v to obtain Peflow≫1 (hydrodynamic interactions dominate) and Re≪1 (Stokes flow). In the simulations, we impose a pressure drop over the capillary length and measure the corresponding solvent flow rate. We observe that the transient solvent flow rate decreases when the asphaltene particles become more "sticky". For a well depth ɛ∝ = 2kBT, a monolayer deposits on the capillary wall. With an increasing well depth, the capillary becomes totally blocked. The clogging is transient for ɛ∝ = 5kBT, but appears to be permanent for ɛ∝ = 10-20 kBT. We compare our simulation results with flow experiments in glass capillaries, where we use extracted asphaltenes in toluene, reprecipitated with n-heptane. In the experiments, the dynamics of asphaltene precipitation and deposition were monitored in a slot capillary using optical microscopy under flow conditions similar to those used in the simulation. Maintaining a constant flow rate of 5 μL min-1, we found that the pressure drop across the capillary first increased slowly, followed by a sharp increase, corresponding to a complete local blockage of the capillary. Doubling the flow rate to 10 μL min-1, we observe that the initial deposition occurs faster but the deposits are subsequently entrained by the flow. We

  15. Molecular Dynamics Simulation to Investigate the Interaction of Asphaltene and Oxide in Aggregate

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The asphalt-aggregate interface interaction (AAI plays a significant role in the overall performances of asphalt mixture, which is caused due to the complicated physicochemical processes and is influenced by various factors, including the acid-base property of aggregates. In order to analyze the effects of the chemical constitution of aggregate on the AAI, the average structure C65H74N2S2 is selected to represent the asphaltene in asphalt and magnesium oxide (MgO, calcium oxide (CaO, aluminium sesquioxide (Al2O3, and silicon dioxide (SiO2 are selected to represent the major oxides in aggregate. The molecular models are established for asphaltene and the four oxides, respectively, and the molecular dynamics (MD simulation was conducted for the four kinds of asphaltene-oxide system at different temperatures. The interfacial energy in MD simulation is calculated to evaluate the AAI, and higher value means better interaction. The results show that interfacial energy between asphaltene and oxide reaches the maximum value at 25°C and 80°C and the minimum value at 40°C. In addition, the interfacial energy between asphaltene and MgO was found to be the greatest, followed by CaO, Al2O3, and SiO2, which demonstrates that the AAI between asphalt and alkaline aggregates is better than acidic aggregates.

  16. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  17. Determination of trace elements in GPC fractions of oil-sand asphaltenes by INAA

    International Nuclear Information System (INIS)

    Jacobs, F.S.; Bachelor, F.W.; Filby, R.H.

    1984-01-01

    Asphaltene samples precipitated from Athabasca and Cold Lake oil-sand bitumens were separated into 12 fractions of varying molecular weight by preparative gel permeation chromatography (GPC). Each fraction was then analyzed by analytical GPC and visible spectrometry. Concentrations of As, Ce, Co, Cr, Eu, Ga, Hf, Hg, La, Ni, Sb, Sc, Se, Sm, Tb, Th, U, V, Zn, and Zr in the fractions were determined by neutron activation analysis. Molecular weights of the Athabasca fractions are generally higher than the corresponding Cold Lake fractions. Between 58% and 90% of the metal contents occur in the high molecular weight fractions of both asphaltenes. Except for V and Cr, which show biomodel distributions, all the elements have decreasing concentrations as the molecular weight of the fraction decreases. High molecular weight fractions, constituting about 55% of the whole asphaltenes, contain nonporphyrin bound vanadium compounds. It is estimated that 27% and 31% of V present in Athabasca and Cold Lake asphaltenes respectively occur as porphyrin type compounds, including vanadyl prophyrins released from the asphaltene micelle during the separation and vanadyl porphyrins bearing high-molecular-weight substituents

  18. Using the fluorescence of DBO to study the aggregation of asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zixin; Bohne, Cornelia [Department of Chemistry, University of Victoria (Canada)], email: xyang@uvic.ca

    2010-07-01

    Asphaltene, operationally defined as the fraction of bitumen that is insoluble in heptane but soluble in toluene, is the least characterized component of crude oil. It can aggregate at low concentrations, causing problems in the reservoir and during transport and processing. Fluorescence techniques have been employed to characterize asphaltenes, e.g. by adding external probes. DBO (2,3-diazabicyclo [2.2.2]oct-2-ene), a fluorescence probe molecule with a long fluorescence lifetime, was made sensitive to the presence of aliphatic C-H bonds. DBO was used as an external fluorescent probe to characterize the aggregation of Athabasca asphaltene. The lifetime of DBO was measured using single photon counting. Preliminary lifetime measurements show that AA-5 quenches the emission of DBO, leading to a shortening of the DBO lifetime. The abrupt decrease in lifetime may be related to the interaction of DBO with the AA-5 aggregate; further studies are being performed to test this hypothesis. In conclusion, DBO interacts with asphaltene components and has the potential for being used as a probe to study the asphaltene aggregation.

  19. Prediction of Gas Injection Effect on Asphaltene Precipitation Onset Using the Cubic and Cubic-Plus-Association Equations of State

    DEFF Research Database (Denmark)

    Arya, Alay; Liang, Xiaodong; von Solms, Nicolas

    2017-01-01

    Gas injection is a proven enhanced oil recovery technique. The gas injection changes the reservoir oil composition, temperature, and pressure conditions, which may result in asphaltene precipitation. In this work, we have used a modeling approach from the literature in order to predict asphaltene...

  20. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions

    DEFF Research Database (Denmark)

    Murgich, J.; Lira-Galeana, C.; Garcia, Daniel Merino

    2002-01-01

    The interaction of two model asphaltene molecules from the Athabasca sand oil with a water molecule in a toluene solution was studied by means of molecular mechanics calculations. It was found that water forms bridging H bonds between the heteroatoms of asphaltenes with a considerable span...... in energies. The stronger H bond found has energies higher than those corresponding to the stacking of the aromatic areas of the same asphaltene molecules. This shows that the water molecule may generate additional mechanisms of aggregation of asphaltenes in toluene solution, as found experimentally. The H...... by titration calorimetry. A simple dimer dissociation model was used to derive the information about the heat and the constant of dissociation from asphaltenes of Mexico and Alaska obtained from the calorimetric data. The association enthalpies calculated were found to be in excellent agreement with those...

  1. Influence of containing of asphaltenes and naphthenic acids over organic deposition inhibitor performance

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Geiza E.; Mansur, Claudia R.E.; Pires, Renata V.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Alvares, Dellyo R.S.; Gonzalez, Gaspar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Organic deposition is a serious problem confronted by the petroleum industry in Brazil and worldwide. Among the main petroleum components that may cause deposition problems are waxes and asphaltenes. This work aims at evaluating the influence of petroleum fractions (asphaltenes and naphthenic acids) on the organic deposition phenomenon as well as on organic deposition inhibitors performance. The influence of the organic fractions was evaluated by their ability to change wax crystals, to lower the pour point and to alter the initial wax appearance temperature. The efficiency of the additives was tested by pour point measurements. The results show that asphaltenes seem to act as organic deposition inhibitors, while naphthenic acids do not significantly change the system. Moreover, employing both of them produces no synergic effect. Among polymeric inhibitors, all of the chemically modified EVA copolymer presented better results than the non-modified commercial EVA copolymer. The best result was observed for EVA28C{sub 16}. (author)

  2. Asphaltene-laden interfaces form soft glassy layers in contraction experiments: a mechanism for coalescence blocking.

    Science.gov (United States)

    Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy

    2014-11-04

    In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in

  3. Interfacial rheology of asphaltenes at oil-water interfaces and interpretation of the equation of state.

    Science.gov (United States)

    Rane, Jayant P; Pauchard, Vincent; Couzis, Alexander; Banerjee, Sanjoy

    2013-04-16

    In an earlier study, oil-water interfacial tension was measured by the pendant drop technique for a range of oil-phase asphaltene concentrations and viscosities. The interfacial tension was found to be related to the relative surface coverage during droplet expansion. The relationship was independent of aging time and bulk asphaltenes concentration, suggesting that cross-linking did not occur at the interface and that only asphaltene monomers were adsorbed. The present study extends this work to measurements of interfacial rheology with the same fluids. Dilatation moduli have been measured using the pulsating droplet technique at different frequencies, different concentrations (below and above CNAC), and different aging times. Care was taken to apply the technique in conditions where viscous and inertial effects are small. The elastic modulus increases with frequency and then plateaus to an asymptotic value. The asymptotic or instantaneous elasticity has been plotted against the interfacial tension, indicating the existence of a unique relationship, between them, independent of adsorption conditions. The relationship between interfacial tension and surface coverage is analyzed with a Langmuir equation of state. The equation of state also enabled the prediction of the observed relationship between the instantaneous elasticity and interfacial tension. The fit by a simple Langmuir equation of state (EOS) suggests minimal effects of aging and of nanoaggregates or gel formation at the interface. Only one parameter is involved in the fit, which is the surface excess coverage Γ∞ = 3.2 molecules/nm(2) (31.25 Å(2)/molecule). This value appears to agree with flat-on adsorption of monomeric asphaltene structures consisting of aromatic cores composed of an average of six fused rings and supports the hypothesis that nanoaggregates do not adsorb on the interface. The observed interfacial effects of the adsorbed asphaltenes, correlated by the Langmuir EOS, are consistent with

  4. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.

  5. Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples

    Directory of Open Access Journals (Sweden)

    Jafari Behbahani T.

    2015-11-01

    Full Text Available In this work, experimental studies were conducted to determine the effect of asphaltene deposition on the permeability reduction and porosity reduction of carbonate, sandstone and dolomite rock samples using an Iranian bottom hole live oil sample which is close to reservoir conditions, whereas in the majority of previous work, a mixture of recombined oil (a mixture of dead oil and associated gas was injected into a core sample which is far from reservoir conditions. The effect of the oil injection rate on asphaltene deposition and permeability reduction was studied. The experimental results showed that an increase in the oil injection flow rate can result in an increase in asphaltene deposition and permeability reduction. Also, it can be observed that at lower injection flow rates, a monotonic decrease in permeability of the rock samples can be attained upon increasing the injection flow rate, while at higher injection rates, after a decrease in rock permeability, an increasing trend is observed before a steady-state condition can be reached. The experimental results also showed that the rock type can affect the amount of asphaltene deposition, and the asphaltene deposition has different mechanisms in sandstone and carbonate core samples. It can be seen that the adsorption and plugging mechanisms have a more important role in asphaltene deposition in carbonate core samples than sandstone core samples. From the results, it can be observed that the pore volumes of the injected crude oil are higher for sandstone cores compared with the carbonate cores. Also, it can be inferred that three depositional types may take place during the crude oil injection, i.e., continuous deposition for low-permeability cores, slow, steady plugging for high-permeability cores and steady deposition for medium-permeability cores. It can be seen from the experimental results that damage to the core samples was found to increase when the production pressures were

  6. Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control.

    Science.gov (United States)

    Rezaei Dehshibi, Reza; Mohebbi, Ali; Riazi, Masoud; Niakousari, Mehrdad

    2018-07-01

    A well-known complication in the oil reservoir during oil production is asphaltene deposition in and around the production wellbore. Deposition of asphaltene around the production wellbore may cause a significant pressure drop and in turn loss of efficiency in the production process. Various mechanical and chemical methods have been employed in order to reduce asphaltene formation or to eliminate the precipitate. A novel technique which presented a great potential for prevention or elimination of asphaltene is spreading out the high energy ultrasound wave within the oil reservoir. In this study, in a glass micro-model, asphaltene precipitation was first simulated in a transparent porous medium and its removal by application of high energy ultrasound wave was then investigated. To simulate asphaltene precipitation, the micro-model was first saturated with oil and then a normal-pentane was injected. This was followed by flooding the porous media with brine while propagating ultrasound waves (30 kHz and 100 W) to eliminate asphaltene precipitation. The experiment setup was equipped with a temperature controller. The results indicate a significant reduction in asphaltene precipitation in the oil reservoir may be achieved by application of ultrasound energy. Asphaltene particle deposition has been solved reversibly in the oil layer of porous medium and with the oil layering mechanism, the rate of oil production has been increased. In some spots, water/oil emulsion has been formed because of the ultrasonic vibration on the wall. Both the crude and synthetic oils were examined. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Determination of asphaltene onset conditions using the cubic plus association equation of state

    DEFF Research Database (Denmark)

    Arya, Alay; von Solms, Nicolas; Kontogeorgis, Georgios M.

    2015-01-01

    The cubic-plus-association (CPA) equation of state (EoS) has already been proven to be a successful model for phase equilibrium calculations for systems containing associating components and has already been applied for asphaltene modeling by few researchers. In the present work, we apply the CPA...

  8. Recent developments in the deposition of colloidal asphaltene in capillary flow : experiments and mesoscopic simulation

    NARCIS (Netherlands)

    Wilson, A.D.; Boek, E.S.; Ladva, H.K.; Crawshaw, J.; Padding, J.T.

    2009-01-01

    The aggregation and deposition of asphaltenic material in reservoir rock are significant problems in the oil industry and can adversely affect the producibility of a given reservoir. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal

  9. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow

    NARCIS (Netherlands)

    Boek, E.S.; Wilson, A.D.; Padding, J.T.; Headen, T.F.; Crawshaw, J.P.

    2010-01-01

    Asphaltenes are known as the "cholesterol" of crude oil. They form nanoaggregates, precipitate, adhere to surfaces, block rock pores, and may alter the wetting characteristics of mineral surfaces within the reservoir, hindering oil recovery efficiency. Despite a significant research effort, the

  10. Determination of asphaltenes in heavy oils using an on-column method

    Energy Technology Data Exchange (ETDEWEB)

    Rogel, E.; Ovalles, C.; Moir, M. [Chevron Energy Technology Co., Richmond, CA (United States); Schabron, J.F. [Western Research Inst., Laramie, WY (United States)

    2009-07-01

    An improved analytical method for determining the asphaltene content in crude oil and petroleum samples was presented. The method used an on-column precipitation technique coupled with an evaporative light scattering detector (ELSD). The column has an inert packing material where the asphaltene was precipitated and re-dissolved using a solvent. Heavy crude oils with asphaltene contents ranging from 5 to 25 per cent w/w were tested. A blend of 90:10 dichloromethane and methanol was used to decrease the influence of hydrocarbon adsorption mechanisms from the polymeric liquid chromatographic phases. A series of laboratory experiments were conducted to compare results obtained using the method with results obtained using traditional gravimetric methods. Regression analysis was used to determine the calibration constants. The study showed that the method can be used as replacement for conventional gravimetric methods when faster results are needed or when sample sizes are small. It was concluded that the method was able to accurately quantify asphaltene contents as low as 120 ppm. 8 refs., 1 tab., 3 figs.

  11. Separation and characterization of resins and asphaltenes coming from Castilla crude Evaluation of their molecular interaction

    International Nuclear Information System (INIS)

    Navarro, Lina; Alvarez, Mario; Grosso, Jorge Luis; Navarro, Uriel

    2004-01-01

    The study of resins and asphaltenes, the heaviest fractions of oil, has become an area of interest due to the abundance of heavy crude oils in Colombia and Latin America. We studied the chemical composition of the heavy fractions of Castilla crude oil, evaluated some of its molecular parameters and found evidence of the interaction between the resins extracted from the crude with the asphaltenes of the original crude. With this objective, we carried out at the pilot plant level precipitation of the resin-asphaltene (R-A) aggregate by adding and mixing under controlled conditions, a paraffin solvent, from the Apiay refinery, called Apiasol. By extracting Soxhlet with the same solvent, resin 1 of aggregate R-A was separated. Resin ll defined as the soluble fraction that is part of the maltenes, was separated from the deasphalted crude by open column chromatography, using alumina as support, according to the SAR method (Saturated, Aromatics, Resins). The fractions of resins and the asphaltenes obtained, were characterized by: Nuclear Magnetic Resonance (NMR), FT-lR, DRX, elementary analysis (C, H, N, S), metal content (Ni and V), distribution of molecular weight by GPC, and average molecular weight by VPO. The results obtained show evidence that resin l which is part of the aggregate has less average molecular weight than resin ll which is present in the fraction of maltenes. In addition, some changes were found in the elementary analysis of among the resins. On the one hand, and taking into account the existing theories of molecular interactions among these fractions, it was found that the resins l separated from the R-A aggregate, when added to the crude, they stabilize their asphaltenes. This evaluation was carried out by analyzing the flocculation point of the crude and its mixtures with 1,9% and 3,8% of resin l, when they are titrated with a precipitating agent in an NIR cell that works with high pressure and temperature

  12. Investigation of the Gas Injection Effect on Asphaltene Onset Precipitation Using the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; von Solms, Nicolas; Kontogeorgis, Georgios M.

    2016-01-01

    Miscible and immiscible gas flooding is one of the enhanced oil recovery (EOR) techniques that has been widely used to increase the oil production. One of the critical problems with gas flooding is that it generally aggravates the asphaltene precipitation, which further creates a flow assurance...... dependency upon the saturates, aromatics, resins, and asphaltenes (SARA) analysis or molecular weight (MW) of asphaltene is also analyzed. In addition, a unique characteristic of the model for the given stock tank oil (STO) is identified, which does not change with different types and amounts of gas...... injections and also remains the same at upper and lower onset pressure boundaries. On the basis of this unique characteristic, a simple procedure to predict asphaltene phase envelope (APE) for the reservoir oil with relatively simple and few experimental data, performed on STO with n...

  13. Compositional thermodynamic model of asphaltenes flocculation out of crudes; Modelisation thermodynamique compositionnelle de la floculation des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, V

    1997-12-02

    The aim of this work is to propose to the oil industry a compositional thermodynamic model able to predict the operating conditions which induce asphaltenes flocculation out of crudes. In this study, various analytical methods (calorimetry, elemental analysis, {sup 13}C nuclear magnetic resonance, neutron diffusion,...) have been used in order to get a better description of the asphaltene fraction to infer its flocculation mechanism. The proposed model describes this flocculation as a thermodynamic transition inducing the formation of a new liquid phase with a high asphaltene content and formed by all the components initially in the crude: the asphaltene deposit. Asphaltenes are represented as a pseudo-component essentially made of carbon and hydrogen. The analytical modelling of the F11-F20 light fraction is the one proposed by Jaubert (1993). The F20+ heavy fraction is represented by four pseudo-components, their physical properties are calculated using the group contribution methods of Avaullee (1995) and of Rogalski and Neau (1990). The Peng-Robinson equation of state (1976) combined with the Abdoul and Peneloux group contribution mixing rules (1989) is used in order to restitute the gas-liquid-asphaltene deposit phase equilibria. This model not being able to compute flocculation conditions on a predictive manner, the method consists in fitting some physical properties of the pseudo-components introduced in the analytical representation of the asphaltene crudes. he obtained results show results show that the proposed flocculation model is then well adapted to the description of the thermodynamic properties (saturation pressures, relative volumes, flocculation curves) of asphaltene crudes within a relatively large range of temperature (30-150 deg C) and pressure (0.1-50 MPa), covering the majority of conditions met in oil production. (author) 109 refs.

  14. Molecular Dynamics Simulation: The Behavior of Asphaltene in Crude Oil and at the Oil/Water Interface

    KAUST Repository

    Gao, Fengfeng

    2014-12-18

    Carboxyl asphaltene is commonly discussed in the petroleum industry. In most conditions, electroneutral carboxyl asphaltene molecules can be deprotonated to become carboxylate asphaltenes. Both in crude oil and at the oil/water interface, the characteristics of anionic carboxylate asphaltenes are different than those of the carboxyl asphaltenes. In this paper, molecular dynamics (MD) simulations are utilized to study the structural features of different asphaltene molecules, namely, C5 Pe and anionic C5 Pe, at the molecular level. In crude oil, the electroneutral C5 Pe molecules prefer to form a steady face-to-face stacking, while the anionic C5 Pe molecules are inclined to form face-to-face stacking and T-shaped II stacking because of the repulsion of the anionic headgroups. Anionic C5 Pe has a distinct affinity to the oil/water interface during the simulation, while the C5 Pe molecules persist in the crude oil domain. A three-stage model of anionic C5 Pe molecules adsorbed at the oil/water interface is finally developed.

  15. The influence of petroleum asphaltenic sub fractions on the demulsifiers performance; Influencia de subfracoes asfaltenicas de petroleo sobre a acao de desemulsificantes

    Energy Technology Data Exchange (ETDEWEB)

    Honse, Siller O.; Mansur, Claudia R.E.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mail: celias@ima.ufrj.br

    2011-07-01

    The aim of this work is to evaluate the influence of asphaltene fractions and subfractions on the stabilization of petroleum emulsions, as well as on the efficiency of demulsifiers based on poly(ethylene oxide-b-propylene oxide) (PEO-PPO). Asphaltenes were extracted from an asphaltic residue using n-heptane (C5 asphaltenes) and n-decane (asphaltenes C10). Intermediate subfractions were also obtained. Model emulsions, consisted of water and dispersions of the asphaltene in toluene were prepared, with and without adding demulsifier. The stability of the emulsions was higher when adding more polar fractions. However, asphaltenes presenting a broad distribution of polarity cause higher emulsion stability than that presenting very narrow distribution of intermediate polarity. The efficiency of PEO-PPO copolymer on emulsions separation is related to the original stability of the emulsions. In this work, it was confirmed that branched surfactant presents higher efficiency than the linear. (author)

  16. Syngas obtainment from the gasification of asphaltenes of the San Fernando crude oil

    International Nuclear Information System (INIS)

    Moreno A, Laura; Rodriguez C, Fabio; Afanador R, Luz E; Grosso V, Jorge

    2010-01-01

    In this work, we developed the first study in Colombia to obtain and evaluate syngas compositions derived from asphaltenes gasification. These asphaltenes came from the implementation of a Deasphalting process to San Fernando crude oil, with the purpose of looking for technological options for their utilization. We performed the design, installation and commissioning of facilities for the gasification of asphaltenes at laboratory scale, it following an experimental methodology, performing nine tests and considering temperature and agent gasification quantity (oxygen) as independent variables. The syngas derived from gasification was analyzed by two chromatographic techniques, which reported the presence of refinery gases and sulfur. We evidenced a growth tendency of CO, H 2 and sulfur composition and a decrease in CH 4 and CO 2 composition with temperature. The composition of the syngas was evaluated with different quantities of gasification agent (33%, 40% and 47% the amount of oxygen theoretically required for complete combustion) at each temperature levels operated. It was established that when using a 40% of gasification agent, you get greater average content of CO and H 2 , which are the interest gases in the gasification process.

  17. Developing grey-box model to diagnose asphaltene stability in crude oils: Application of refractive index

    Directory of Open Access Journals (Sweden)

    Mahdi Zeinali Hasanvand

    2016-12-01

    Full Text Available Asphaltene precipitation can cause serious problems in petroleum industry while diagnosing the asphaltene stability conditions in crude oil system is still a challenge and has been subject of many investigations. To monitor and diagnose asphaltene stability, high performance intelligent approaches based bio-inspired science like artificial neural network which have been optimized by various optimization techniques have been carried out. The main purpose of the implemented optimization algorithms is to decide high accurate interconnected weights of proposed neural network model. The proposed intelligent approaches are examined by using extensive experimental data reported in open literature. Moreover, to highlight robustness and precision of the addressed approaches, two different regression models have been developed and results obtained from the aforementioned intelligent models and regression approaches are compared with the corresponding refractive index data measured in laboratory. Based on the results, hybrid of genetic algorithm and particle swarm optimization have high performance and average relative absolute deviation between the model outputs and the relevant experimental data was found to be less than 0.2%. Routs from this work indicate that implication of HGAPSO-ANN in monitoring refractive index can lead to more reliable estimation of addressed issue which can lead to design of more reliable phase behavior simulation and further plans of oil production.

  18. Syngas obtainment from the gasification of asphaltenes of the San Fernando crude oil

    International Nuclear Information System (INIS)

    Moreno Arciniegas, Laura Smith; Rodriguez Corredor, Fabio Ernesto; Afanador Rey, Luz Edelmira; Grosso Vargas, Jorge Luis

    2009-01-01

    In this work, we developed the first study in Colombia to obtain and evaluate syngas compositions derived from asphaltenes gasification. These asphaltenes came from the implementation of a Deasphalting process to San Fernando crude oil, with the purpose of looking for technological options for their utilization. We performed the design, installation and commissioning of facilities for the gasification of asphaltenes at laboratory scale, it following an experimental methodology, performing nine tests and considering temperature and agent gasification quantity (oxygen) as independent variables. The syngas derived from gasification was analyzed by two chromatographic techniques, which reported the presence of refinery gases and sulfur. We evidenced a growth tendency of CO, H 2 and sulfur composition and a decrease in CH 4 and CO 2 composition with temperature. The composition of the syngas was evaluated with different quantities of gasification agent (33%, 40% and 47% the amount of oxygen theoretically required for complete combustion) at each temperature levels operated. It was established that when using a 40% of gasification agent, you get greater average content of CO and H 2 , which are the interest gases in the gasification process.

  19. Biological marker distribution in coexisting kerogen, bitumen and asphaltenes in Monterey Formation diatomite, California

    Science.gov (United States)

    Tannenbaum, E.; Ruth, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Organic-rich (18.2%) Monterey Formation diatomite from California was studied. The organic matter consist of 94% bitumen and 6% kerogen. Biological markers from the bitumen and from pyrolysates of the coexisting asphaltenes and kerogen were analyzed in order to elucidate the relationship between the various fractions of the organic matter. While 17 alpha(H), 18 alpha(H), 21 alpha(H)-28,30-bisnorhopane was present in the bitumen and in the pryolysate of the asphaltenes, it was not detected in the pyrolysates of the kerogen. A C40-isoprenoid with "head to head" linkage, however, was present in pyrolysates of both kerogen and asphaltenes, but not in the bitumen from the diatomite. The maturation level of the bitumen, based on the extent of isomerization of steranes and hopanes, was that of a mature oil, whereas the pyrolysate from the kerogen showed a considerably lower maturation level. These relationships indicate that the bitumen may not be indigenous to the diatomite and that it is a mature oil that migrated into the rock. We consider the possibility, however, that some of the 28,30-bisnorhopane-rich Monterey Formation oils have not been generated through thermal degradation of kerogen, but have been expelled from the source rock at an early stage of diagenesis.

  20. Characterisation of crude oil components, asphaltene aggregation and emulsion stability by means of near infrared spectroscopy and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aske, Narve

    2002-06-01

    Effective separation of water-in-crude oil emulsions is a central challenge for the oil industry on the Norwegian Continental Shelf, especially with the future increase in subsea and even down-hole processing of well fluids. The mechanisms and properties governing emulsion stability are far from fully understood but the indigenous surface active crude oil components are believed to play a major role. In this work a thorough physico-chemical characterisation of a set of crude oils originating from a variety of production fields has been performed. Crude oil properties responsible for emulsion stability were identified by use of multivariate analysis techniques like partial least squares regression (PLS) and principal component analysis (PCA). Interfacial elasticity along with both asphaltene content and asphaltene aggregation state were found to be main contributors to emulsion stability. Information on a crude oils ability to form elastic crude oil-water interfaces was found to be especially crucial when discussing emulsion stability. However, measured values of interfacial elasticity were highly dependent on asphaltene aggregation state. Several experimental techniques was utilised and partly developed for the crude oil characterisation. A high-pressure liquid chromatography (HPLC) scheme was developed for SARA-fractionation of crude oils and an oscillating pendant drop tensiometer was used for characterisation of interfacial rheological properties. For emulsion stability a cell for determining the stability as a function of applied electric fields was used. In addition, near infrared spectroscopy (NIR) was used throughout the work both for chemical and physical characterisation of crude oils and model systems. High pressure NIR was used to study the aggregation of asphaltenes by pressure depletion. A new technique for detection of asphaltene aggregation onset pressures based on NIR combined with PCA was developed. It was also found that asphaltene aggregation is

  1. Chemistry and structure of coal-derived asphaltenes, Phase III. Quarterly progress report, April--June 1978

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1978-01-01

    Solubility parameters may be calculated for coal liquid derived products by use of a semi-empirical relationship between solubility parameter and refractive index. Thermal treatment of Synthoil coal liquid oil + resin solvent fraction at 235 to 300/sup 0/C resulted in the transformation of oil and resin into asphaltene. Further support of structural characterizations was obtained by use of a combined x-ray and NMR structural characterization procedure which relies on the important x-ray structural parameter L/sub a/ (average layer diameter of the aromatic sheet). L/sub a/ values of approx. = 8 to 10 A for asphaltenes, approx. = 13.4 to 14 A for carbenes, and approx. = 14 to 16.5 A for carboids were obtained by the x-ray procedure. These data were used to calculate C/sub Au/ (aromatic carbons per structural unit) and N (number of structural units per molecule) values. For asphaltenes the results agree with those previously deduced from NMR and other techniques. The C/sub Au/ values are generally close to 14 which is the number of aromatic carbons present in a 3-ring kata-system such as anthracene or phenanthrene. The number of structural units per molecule is close to two for all the asphaltenes. Additional data were used to improve the correlation equation between weight percent OH, determined by the silylation method, and the absorbance of the monomeric OH infrared stretching band at 3600 cm/sup -1/ for asphaltenes. A similar correlation between weight percent NH, from elemental analysis of asphaltene samples containing essentially all nitrogen as pyrrolic N-H, and the infrared absorbance of the N-H stretching band at 3470 cm/sup -1/ was developed for asphaltenes.

  2. Synthesis and evaluation of copolymer based on cardanol and styrene on the stability of asphaltenes; Sintese e avaliacao de copolimero a base de cardanol e estireno sobre a estabilidade dos asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Tatiana S.; Spinelli, Luciana S., E-mail: tatianaloureiro@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2015-07-01

    The destabilization of asphaltenes in crude oil mainly happens due to variations in pressure, temperature and oil composition, causing significant losses. Polymers containing specific groups can be used as asphaltenes stabilizers and thus, avoid your precipitation, or as asphaltenes flocculants to assist the removal of suspended particles in a particular oil. The monitoring of asphaltenes precipitation is usually evaluated by tests with variation in stability of asphaltenes in function of adding a flocculant solvent. In this work, it was evaluated the influence of a synthesized copolymer based on cardanol and styrene on the stability of asphaltenes. The stability of asphaltenes was monitored by precipitation tests induced by a flocculant agent (n-heptane), using an ultraviolet-visible (UV-Vis) spectrometer. The structural characterization of copolymer was performed by FTIR and {sup 1}H NMR. The results showed that copolymer can act as asphaltene flocculant. (author)

  3. Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State

    DEFF Research Database (Denmark)

    Arya, Alay; Liang, Xiaodong; von Solms, Nicolas

    2016-01-01

    using various equations of state and empirical models. In the past few years, association models based on CPA and SAFT equations of state have been found to be promising models for studies of asphaltene precipitation. In this work, we compare asphaltene precipitation results obtained from different...

  4. Effect of resins of heat exchanger fouling by asphaltene-containing oils

    Energy Technology Data Exchange (ETDEWEB)

    Al-Atar, E.; Watkinson, A.P. [British Columbia Univ., Dept. of Chemical and Bio-Resource Engineering, Vancouver, BC (Canada)

    1999-07-01

    The effects of resins on the thermal fouling of asphaltene containing oils in heat exchangers was investigated as well as the nature of the deposits. Building on previous research, a sample of de-asphalted vacuum bottoms (DAO), serving as a source of natural resins, heavy oil (HO) and fuel oil was used to investigate the effects of resin concentration on the rate of thermal fouling. The conditions of the study included: fluid circulation through the UBC annular fouling test section for up to 30 hour periods, monitoring of thermal fouling by measurement, and nitrogen atmospheres at a bulk temperature of 85 degrees C, a bulk velocity of 0.85 am/s, and a pressure of 410 kPa. Physical and chemical characterization of the deposits was affected, and filtration at the bulk temperature before and after a run was used to determine the occurrence of fine solids in the fluid. The rate of fouling generally decreased tending generally towards asymptotic behavior in the limit, and after one day Rf values up to 0.3 m2K/kW occurred with severe fouling. An increase in the fouling rate occurred with increased DAO concentration in the mixture, at a fixed heavy oil concentration of 5 weight percent, and the relation between Asomaning's colloidal instability index and the trends in fouling rate was not observed, although there were some indications of reduced fouling as there was an increase in the ratio of resins to asphaltenes, however, blends of the DAO-HO-FO helped to control the concentration of asphaltenes and resins that are possible. (Abstract only).

  5. Isothermal Titration Calorimetry and Fluorescence Spectroscopy Study Of Asphaltene Self-Association In Toluene And Interaction With A Model Resin

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Andersen, Simon Ivar

    2002-01-01

    This article collects the work performed by Isothermal Titration Caloritnetry (ITC) in the study of the self-association of asphaltenes in toluene solutions. Calorimetric experiments show that asphaltenes, start self-associating at very low concentrations and that the existence of a Critical...... with the results of the titration of three model molecules: nonylphenol, which associates by means of hydrogen bond formation, and coronene and pyrene, which associates by stacking. The results obtained leave open the question about the model-stacking molecules, as it was not possible to elucidate whether they do...

  6. Synthesis of boron, nitrogen co-doped porous carbon from asphaltene for high-performance supercapacitors

    Science.gov (United States)

    Zhou, Ying; Wang, Dao-Long; Wang, Chun-Lei; Jin, Xin-Xin; Qiu, Jie-Shan

    2014-08-01

    Oxidized asphaltene (OA), a thermosetting material with plenty of functional groups, is synthesized from asphaltene (A) using HNO3/H2SO4 as the oxidizing agent. Boron, nitrogen co-doped porous carbon (BNC—OA) is prepared by carbonization of the mixture of boric acid and OA at 1173 K in an argon atmosphere. X-ray photoelectron spectroscopy (XPS) characterization reveals that the BNC—OA has a nitrogen content of 3.26 at.% and a boron content of 1.31 at.%, while its oxidation-free counterpart (BNC—SA) has a nitrogen content of 1.61 at.% and a boron content of 3.02 at.%. The specific surface area and total pore volume of BNC—OA are 1103 m2·g-1 and 0.921 cm3·g-1, respectively. At a current density of 0.1 A·g-1, the specific capacitance of BNC-OA is 335 F·g-1 and the capacitance retention can still reach 83% at 1 A·g-1. The analysis shows that the superior electrochemical performance of the BNC—OA is attributed to the pseudocapacitance behavior of surface heteroatom functional groups and an abundant pore-structure. Boron, nitrogen co-doped porous carbon is a promising electrode material for supercapacitors.

  7. Adsorption of petroleum resins and asphaltenes onto reservoir rock sands studied by near infrared (NIR) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syunyaev, R.Z.; Balabin, R.M. [Russian State Univ. of Oil and Gas, Moscow (Russian Federation). Dept. of Physics; Akhatov, I.S. [North Dakota State Univ., Fargo, ND (United States). Dept. of Mechanical Engineering and Center for Nanoscale Science and Engineering

    2008-07-01

    The presence of asphaltene and resin in crude oil is known to cause well bore plugging and pipeline deposition; stabilization of water/oil emulsions; sedimentation and plugging during crude oil storage; adsorption on refining equipment and coke formation. Kinetic and thermodynamic parameters of adsorption are also known to influence wettability and the capillary number. In this study, adsorption parameters of petroleum resins and asphaltenes were evaluated by Near Infrared (NIR) spectroscopy. Fractioned quartz, dolomite, mica and kaolinite sands were used as adsorbent. The particle size distribution was evaluated using an optical microscope. Porosity and permeability of each fraction were designed and benzene was used as the solvent. Various approaches for calibrating NIR spectra-macromolecules concentration were discussed. In this study, the partial least squares (PLS) regression method was used and the Langmuir model was chosen for experimental data fitting. Kinetic and isothermic data was used to evaluate the maximal adsorbed mass density, the equilibrium constant of adsorption, and the rate constants of adsorption and desorption. The rate constants of resins adsorption and desorption depended on the concentration. A numerical algorithm was developed to estimate the diffusion coefficient and relaxation time from the experimental data.

  8. Study of flow properties of asphaltenic oils in a porous medium; Etude des proprietes d`ecoulement des bruts asphalteniques en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Petrova-Bensalem, R.

    1998-06-30

    Deposits of asphaltenes during production can adversely affect the exploitation of certain fields, that of Hassi Messaoud is a known example. The objective of this study is essentially focused on the damage aspects due to formation of this deposits. A methodology has been developed which makes it possible to determine the flow properties of asphaltenic oils in a porous medium under conditions close to those of a reservoir and to detect the formation of organic deposits in situ. Several types of rocks with different morphology were selected along with a number of asphaltenic oils having varied geographic origins. It was shown with these that it was possible to evaluate, in laboratory, the reduction in permeability to the oil resulting from an asphaltene deposit during the circulation of crude oil in the samples. It was observed that the variation in blocking the cores as a function of the volume of injected fluid is similar to the blocking kinetics ascertained for the retention of solid suspended particles in injection water. This similarity in the phenomena led to using particle damage models developed for the latter case. Several experiments involving blocking by asphaltenes could thus be satisfactory simulated, showing that this approach is worth developing despite the differences between the two types of colloidal suspension. The method using injection or `squeeze` of co- solvents was studied with the same systems (rock/crude oil) as a possible remedy for asphaltene deposition. To select suitable solvents and additives. A methodology was established based on application of Hansen`s theory for adjusting the polarity of solvent to the chemical properties of the asphaltene to be eliminated. This was combined with a series of in vitro tests with separated asphaltenes and the minerals of the reservoir rock. The efficiency of the co-solvents thus selected was verified by slug injection in to cores which has been damaged by asphaltenes. This approach may well help the

  9. Time-resolved small angle neutron scattering measurements of asphaltene nanoparticle aggregation kinetics in incompatible crude oil mixtures

    International Nuclear Information System (INIS)

    Mason, Thomas G.; Lin, Min Y.

    2003-01-01

    We use time-resolved-small angle neutron scattering to study the kinetics of asphaltene nanoparticle aggregation in incompatible crude oil mixtures. We induce asphaltene aggregation by mixing asphaltene-rich Syrian crude oil (SACO) with a paraffinic British crude oil and observe the scattered neutron intensity, I, as a function of wave number, q, over times, t, ranging from twenty minutes to about a week. We observe a growth in I at low q as the nanoscale asphaltenes agglomerate into microscale aggregates and interpret this growth as an increase in surface scattering from the aggregates. We fit I(q,t) to an empirical model and measure the growth in the power-law exponent, α, associated with the low-q logarithmic slope of I(q). We define a time, τ α , associated with the first appearance of the aggregates when α>3; τ α increases as a function of the volume fraction, φ m , of SACO in the mixture. The surface scattering intensity initially increases and then saturates at long times when the aggregate structures no longer evolve at the length scales we probe. Based on this saturation, we define a time scale, τ I , which is larger than τ α but has essentially the same dependence on φ m . We interpret τ α (φ m ) and τ I (φ m ) in terms of a simple aggregation model based on diffusion-limited kinetics and a repulsive potential barrier that models the effective solvent quality

  10. Extraction and characterization of crude oil asphaltenes sub fractions; Extracao e caracterizacao de subfracoes de asfaltenos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Silas R.; Calado, Lucas S.; Honse, Siller O.; Mansur, Claudia R.E.; Lucas, Elizabete F., E-mail: silas@ima.ufrj.br [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Asphaltenes from crude oil have been studied for a long time. However, until today their chemical structures and physical-chemical properties are not well established. Nowadays, it is accepted that asphaltenes are dispersed in the crude oil as macro structures, which are mainly constituted of some condensed aromatic rings (about 6-20), containing aliphatic or naphthenic groups. The asphaltenes are also defined as the crude oil fraction that is insoluble in low molar mass n-alkanes and soluble in aromatic solvents, like benzene and toluene In order to investigate the molecular structure, in this work the asphaltenes were separated by using a different procedure as that normally described in the literature and characterized by infrared spectrometry, nuclear magnetic resonance, x-ray fluorescence, elemental analyses and particle size and size distribution. The difference in subfractions polarity can be attributed not only to the aromaticity changes but also to the content of elements, such as N, O, Fe, V, Si e Ni. (author)

  11. Analysis of metals in asphaltenes of KU-46 by PIXE analysis; Analisis de metales en asfaltenos de crudo mexicano KU-46 por PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Navidad G, P.; Pina L, L.I.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.A.; Romero G, E.T. [Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The content of metals of the asphaltenes obtained from the KU-46 mexican crude with n-heptane was evaluated. The found metals in higher concentration are transition metals as well as the vanadium, nickel, copper and zinc. Moreover the sulfur in high concentrations was quantified. The metallic content of the asphaltenes revealed that the crude contains a lower quantity of metals unlike the vacuum residue previously analysed. (Author)

  12. Asphaltenes analysis arising of non conventional oils; Analise de asfaltenos oriundos de petroleos nao convencionais

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernanda B. da; Fiorio, Paula G.P.; Guimaraes, Maria Jose O.C.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2012-07-01

    The need to use heavy fractions in an efficient way in the production of nobler fractions has motivated the search for ways of separating the asphaltenes, since these molecules increase the viscosity of the fractions submitted to distillation, contribute to the formation of coke and to poisoning and deactivation of catalysts used in process such as cracking, reform, etc, besides provoking cloggings and blockages caused by its deposition, generating losses on the productivity and increases of the operational costs. This paper evaluates the influence of solvent blends (EQ-NP) in the selective extraction of constituents of three samples from Brazilian heavy crude. For the extraction process was used two solvent blends (N1P1 and N1P2). The solvent blend composed of N1P1 showed a higher selectivity in the extraction of aggregates than N1P2. The extracted fraction was characterized by Hydrogen Nuclear Magnetic Resonance ({sup 1}H-NMR) and revealed that the chemical species extracted from different blends exhibit very small differences. (author)

  13. Study of the colloidal structure of crude oils - Characterisation of asphaltene suspensions. Relationships between microscopic description and macroscopic properties under different conditions

    International Nuclear Information System (INIS)

    Guille, Veronique; Espinat, Didier; Ravey, Jean-Claude

    1994-04-01

    The authors report the use of techniques of X-ray and neutron scattering, and of rheological measurements to characterise the macrostructure of asphaltenes in solution. They confirm the relevance of a lamellar model for asphaltene particles. They also show that the addition of resin particles results in a decrease of asphaltene size, and hides solvent effects. They also performed a characterisation of the residue of a vacuum distillation. Rheological measurements showed that this residue behaves like a Newtonian liquid above 100 C. Scattering spectra reveal a structure modification between 20 and 90 C. No significant change of the scattering spectrum is then noticed, even up to 300 C. It appears that the scattering technique does not allow an observation of structure modifications to be performed on a large size range [fr

  14. Comparison between asphaltenes fractions extracted from different asphaltic residue; Comparacao de fracoes de asfaltenos obtidas a partir de residuos asfalticos distintos

    Energy Technology Data Exchange (ETDEWEB)

    Barreira, Fabio R.; Lucas, Elizabete F., E-mail: fabiorbarreira@yahoo.com.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Ferreira, Silas R. [Clariant S/A, Rio de Janeiro, RJ (brazil)

    2015-07-01

    Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Due to the diversity and complexity of these structures, there is still much to be investigated in terms of characterization and stability. In this study, asphaltene subfractions were extracted from an asphaltic residue (AR02), characterized by nuclear magnetic resonance (NMR), elemental analysis (CHN), X-ray fluorescence and time-of-flight mass spectrometry (MS-TOF), and compared to previous results obtained for another asphaltic residue. The precipitation onset of (sub)fractions was assessed by optical microscopy. The results obtained indicate there are more differences than similarities between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN), presence and content of hetero elements and average molar mass. On the matter of stability, it seems that small differences in molecules polarity provoke great differences on phase behavior of every isolated asphaltenes fractions. (author)

  15. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  16. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  17. Rheological properties of hydrate suspensions in asphaltenic crude oils; Proprietes rheologiques de suspensions d'hydrate dans des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Marques de Toledo Camargo, R.

    2001-03-01

    The development of offshore oil exploitation under increasing water depths has forced oil companies to increase their understanding of gas hydrate formation and transportation in multiphase flow lines in which a liquid hydrocarbon phase is present. This work deals with the flow behaviour of hydrate suspensions in which a liquid hydrocarbon is the continuous phase. Three different liquid hydrocarbons are used: an asphaltenic crude oil, a condensate completely free of asphaltenes and a mixture between the asphaltenic oil and heptane. The rheological characterisation of hydrate suspensions is the main tool employed. Two original experimental devices are used: a PVT cell adapted to operate as a Couette type rheometer and a semi-industrial flow loop. Hydrate suspensions using the asphaltenic oil showed shear-thinning behaviour and thixotropy. This behaviour is typically found in flocculated systems, in which the particles attract each other forming flocs of aggregated particles at low shear rates. The suspensions using the condensate showed Newtonian behaviour. Their relative viscosities were high, which suggests that an aggregation process between hydrate particles takes. place during hydrate formation. Finally, hydrate suspensions using the mixture asphaltenic oil-heptane showed shear-thinning behaviour, thixotropy and high relative viscosity. From these results it can be inferred that, after the achievement of the hydrate formation process, the attractive forces between hydrate particles are weak. making unlikely pipeline obstruction by an aggregation process. Nevertheless, during the hydrate formation, these attractive forces can be sufficiently high. It seems that the hydrate surface wettability is an important parameter in this phenomena. (author)

  18. Use of compound-specific stable carbon isotope ratio measurements of asphaltene-bound polycyclic aromatic hydrocarbons (PAHs) as a novel aid to source apportionment of environmental PAHs

    Energy Technology Data Exchange (ETDEWEB)

    C. Sun; C. Snape; M. Cooper; W. Ivwurie [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy & Fuel Centre

    2005-07-01

    In this study, the PAHs from hydropyrolysis of asphaltenes from different primary sources (e.g. crude oil, low and high temperature coal tars) were characterized by their molecular distributions and {sup 13}C/{sup 12}C isotope ratios. It was found that for all oil samples, the molecular and isotopic profiles for their asphaltene-derived PAHs are both similar to those observed for their contained free aromatics, with {sup 13}C-isotopic values varying from -25 to -27{per_thousand} for the Nigerian and -27 to -30{per_thousand} for North Sea oil samples. For low and high temperature coal tar samples, however, similar molecular but different isotopic profiles were observed for their asphaltene-bound PAHs. The free aromatics are significantly isotopically lighter (by nearly -3{per_thousand}) than their asphaltene-derived counterparts having isotopic values typically between -22 and -23{per_thousand} for all coal tar samples examined, and this leads to a larger isotopic difference of up to 7{per_thousand} between the two sources of PAHs than that already observed between their free aromatics (3{per_thousand}). Applying these results to samples previously examined in an area where unambiguous source apportionment could not be conducted for the PAHs due to likely biodegradation, it was found that the bound PAHs released from the asphaltenes recovered from the soil samples in this area are extremely similar to low temperature tar as the source, in terms of their both molecular (highly alkylated) and isotopic profiles. The free PAHs are much less alkyl substituted confirming that the aromatics detected in this area have been subjected to intensiveenvironmental degradation with alkylated aromatic constituents being preferentially removed from their initial matrix.

  19. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.

    Directory of Open Access Journals (Sweden)

    Kevin A Thorn

    Full Text Available Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  20. Probing the carbonyl functionality of a petroleum resin and asphaltene through oximation and schiff base formation in conjunction with N-15 NMR

    Science.gov (United States)

    Thorn, Kevin A.; Cox, Larry G.

    2015-01-01

    Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  1. Effect of asphaltene and resin oils on the viscosity of bituminous petroleum materials to be used as asphalt primers

    Directory of Open Access Journals (Sweden)

    Bencomo, M. R.

    2006-03-01

    Full Text Available The bituminous crude from the Machete, Venezuela, area, which has such a fluid consistency that it falls outside the normal scope of the A5TM D-5 (1 penetration test exceeding the 3D-mm ceiling specified in that standard and can be used as an asphalt primer: Like other asphalt products, these materials are -chemically speaking- a mix of numerous naphthenic, paraffinic and aromatic hydrocarbons and heterocyclic compounds containing sulphur, nitrogen, oxygen and so on. They have a dense and a malthene oil phase which, along with the natural hydrocarbons additives used in these products acts as a volatile fluidizer. The former is described as a mix of asphaltenes: complex high molecular weight substances that are insoluble in paraffinic hydrocarbons and soluble in aromatic compounds such as benzene. The malthene oil phase, in turn, consists in a mix of resins and hydrocarbons and together the two constitute a colloidal system. The experiments discussed in the present paper were conducted to determine the effect of the proportion of asphaltenes and resin oils on the viscosity of such bituminous crude emulsions/ with a view to their use as primers. These experiments were run in a Parr batch reactor in a nitrogen atmosphere using n-heptane as a solvent. The resins were separated after the asphaltenes precipitated from the samples and subsequently from the malthene fraction obtained. The results showed that the asphaltenes account for the structural characteristics and consistency of the medium and the resin oils for its cohesive properties/,the malthene oils act as solvents.Los crudos extrapesados procedentes del área Machete (Venezuela son materiales de consistencia blanda o fluida, por lo que se salen del campo en el que normalmente se aplica el ensayo de penetración a productos asfálticos según el método ASTM D-5 (1, cuyo límite máximo es 30 mm, y pueden ser utilizados como pinturas asfálticas de imprimación. Al igual que otros productos

  2. Géochimie des résines et asphaltènes Geochernistry of Resins and Asphaltenes

    Directory of Open Access Journals (Sweden)

    Tissot B.

    2006-11-01

    Full Text Available Les produits lourds des huiles brutes (résines et asphaltènes jouent un rôle important dans la genèse et l'accumulation du pétrole, ainsi que dans la mise en production par des méthodes conventionnelles ou par récupération assistée. Les asphaltènes et résines sont considérés ici comme des fragments de kérogène, avec une structure d'ensemble comparable : ils peuvent constituer des intermédiaires dans la genèse de l'huile brute par dégradation thermique du kérogène. De plus, la pyrolyse des asphaltènes séparés à partir d'un pétrole biodégradé peut produire de nouveaux hydrocarbures saturés qui reproduisent la fraction saturée primitive, détruite par la dégradation ; on peut ainsi disposer d'un nouvel outil pour corréler ce type d'huiles brutes. Les produits lourds semblent défavorisés par rapport aux hydrocarbures, dans la migration de la roche-mère vers le réservoir, où les résines et asphaltènes sont proportionnellement moins abondants. La structure physique des asphaltènes et résines dans les pétroles, et en particulier l'existence d'une macrostructure du type micelles ou agrégats, est probablement responsable de la viscosité élevée des huiles lourdes. Une meilleure connaissance de cette macrostructure pourrait suggérer de nouvelles méthodes pour diminuer la viscosité et améliorer la récupération des huiles lourdes. The heavy constituents of crude oil (resins and asphaltenes play an important role in generation and accumulation of petroleum, and also in production by conventional and enhanced oil recovery processes. Asphaltenes and resins are considered here as small fragments of kerogen, with a comparable overall structure: they may act as intermediate compounds in oil generation by thermal breakdown of kerogen. Furthermore, pyrolysis of asphaltenes separated from a degraded crude oil is able to generate a new saturated hydrocarbon fraction which duplicates the original one, now degraded

  3. Avaliação geoquímica de biomarcadores ocluídos em estruturas asfaltênicas Geochemical evaluation of occluded biomarkers in asphaltenic structures

    Directory of Open Access Journals (Sweden)

    Débora de Almeida Azevedo

    2009-01-01

    Full Text Available Asphaltenes from two Brazilian crude oils were submitted to mild oxidation to disrupt their structure, releasing the occluded oil. The released hydrocarbons were compared with those from the original crude oil, and used to evaluate the alteration of the oils, especially as a result of biodegradation, but also thermal maturity. The crude oils used are depleted in n-alkanes, which are usually related to biodegradation. However, the released products from the corresponding asphaltenes have n-alkane distributions from nC10 to nC40, suggesting a protection effect from biodegradation. The m/z 191 mass chromatograms showed higher relative intensities for tricyclic terpanes than the hopanes in the crude in comparison with the released ones.

  4. Study of Asphaltene Solutions by Electrical Conductivity Measurements Conductivité électrique des solutions d'asphaltènes

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    Full Text Available The asphaltene interactions in model solutions were studied using a technique based on the electrical conductivity measurement. Interactions with n-heptane, resins, surfactants, water, phenol and NaCI were investigated. The conclusions drawn from this study confirmed previous opinions on aggregation mechanism of asphaltenes in solutions. They confirmed also the interpretation of asphaltene behaviour in terms of colloidal solution theories. Les interactions des asphaltènes avec leur environnement moléculaire dans des solutions modèles ont été étudiées par la mesure de la conductivité électrique de ces solutions. Les interactions avec le n-heptane, des résines, des tensioactifs, l'eau, le phénol et le chlorure de sodium ont été explorées. Les conclusions tirées de cette étude ont confirmé certaines hypothèses faites sur les mécanismes d'agrégation des asphaltènes en solution, en particulier dans le cadre de la théorie des solutions colloïdales.

  5. Adsorption Isotherms of Phenol and 4-Chlorophenol on Petroleum Asphaltenes Adsorption du phénol et du 4-chlorophénol sur les asphaltènes pétroliers

    Directory of Open Access Journals (Sweden)

    Jaoui M.

    2006-11-01

    Full Text Available The adsorption isotherms for phenol and 4-chlorophenol from water onto asphaltenes flocculated in bulk and asphaltenes deposited on silica were established by frontal analysis chromatography at 293, 298, 303, and 308 K. The adsorption was more important with asphaltenes flocculated in bulk and corresponded to a Freundlich isotherm mechanism. The high adsorbed amount of phenols suggests possible migration of phenols through the loose asphaltene structure. Isotherms observed with the silica coated by asphaltenes showed that adsorption occurs in two stages corresponding probably to two different organizations of solute molecules at the surface. Les isothermes d'adsorption du phénol et du 4-chlorophénol en solution dans l'eau sur des asphaltènes floculés en masse et sur des asphaltènes déposés sur de la silice ont été déterminés par analyse chromatographique frontale à 293, 298, 303 et 308 K. L'adsorption sur des asphaltènes floculés en masse était la plus importante avec des isothermes correspondant à un mécanisme de Freundlich. La quantité élevée de phénols adsorbés suggère une migration possible des molécules du phénol à travers la structure peu compacte des asphaltènes. Les isothermes observés dans le cas de silice tapissée d'asphaltènes ont montré que l'adsorption se produit en deux étapes correspondant probablement à deux organisations différentes des molécules de soluté à la surface.

  6. Colloidal Structure of Heavy Crudes and Asphaltene Soltutions Structure colloïdale des bruts lourds et des suspensions d'asphaltènes

    Directory of Open Access Journals (Sweden)

    Barre L.

    2006-12-01

    Full Text Available Many industrial problems that arise during petroleum processing are related to the high concentration of asphaltenes. A good knowledge of the chemical composition of these macromolecules and a detailed understanding of the evolution of the colloïdal structures present in oil and its derivatives can play a decisive role in improving processing facilities. Asphaltenes are defined by their insolubility in n-heptane. Soluble molecules are called maltenes which can be fractionated by liquid chromatography in so-called resins, aromatic and saturated fractions. The major part of the research carried out on these complex molecules concerned the chemical composition determination from powerful techniques measurements as for instance IR or NMR methods. Nevertheless, very little information on the colloïdal structure of asphaltenes or resins in pure solvent or in real systems is accessible.The molecular weight determination was the first objective; several techniques, as vapour pressure osmometry (VPO, were used. The main conclusion of these determinations was the huge variation of the molecular weight measured by different methods. We used X-ray and neutron small angle scattering techniques in order to deduce the size polydispersity and the weight average molecular weight. Different systems as (i asphaltenes or resins in solution with different solvents, or (ii asphaltene and resin mixtures in suspension with good or bad solvents were investigated as a function of temperature increase. We have exhibited that the aggregation number, i.e. the number of smaller entities , can strongly vary with solvent composition and temperature. Resins appear as very good solvent for asphaltene molecules. Scattering measurements often exhibit strong scattered intensity at small scattering vector, showing the presence in the suspension of large heterogeneities in diluted solutions of asphaltenes and resins. We can suggest that these heterogeneities are due to

  7. Evaluation of nano emulsion containing asphaltenes dispersant additive in dehydration of oil; Avaliacao de nanoemulsoes contendo aditivo dispersante de asfaltenos na desidratacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Priscila F. de; Rodrigues, Jessica S.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro/ Instituto de Macromoleculas/ Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: prisfrias@hotmail.com

    2011-07-01

    Due to the problem of the formation of emulsions type water-oil during oil production, new alternatives of the breakdown of these emulsions have been proposed over the years. Several polymers have been used to destabilize these emulsions and among them are those based on polyphenylene ether. The aim of this study was to develop nanoemulsions type oil / water, where an asphaltenes dispersant additive was dissolved in dispersed phase in order to evaluate them as a new alternative in the breakdown of oil emulsions. The nanoemulsions were prepared in the presence of surfactant based on polyoxide using a high pressure homogenizer (HPH). We obtained stable nanoemulsions for more than 30 days in the presence or absence of additive. These nanoemulsions were effective in water /oil phase separation, and the nanoemulsion containing the dispersant additive provided a faster separation of these phases. (author)

  8. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds.

    Science.gov (United States)

    Cataldo, Franco; Angelini, Giancarlo; García-Hernández, D Aníbal; Manchado, Arturo

    2013-07-01

    A series of 33 different polycyclic aromatic hydrocarbons (PAHs) were studied by far infrared spectroscopy (terahertz spectroscopy) in the spectral range comprised between 600 and 50 cm(-1). In addition to common PAHs like naphthalene, anthracene, phenanthrene, fluoranthene, picene, pyrene, benzo[α]pyrene, and perylene, also quite unusual PAHs were studied like tetracene, pentacene, acenaphtene, acenaphtylene, triphenylene, and decacyclene. A series of alkylated naphthalenes and anthracenes were studied as well as methypyrene. Partially or totally hydrogenated PAHs were also object of the present investigation, ranging from tetrahydronaphthalene (tetralin) to decahydronaphthalene (decalin), 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, hexahydropyrene, and dodecahydrotriphenylene. Finally, the large and quite rare PAHs coronene, quaterrylene, hexabenzocoronene, and dicoronylene were studied by far infrared spectroscopy. The resulting reference spectra were used in the interpretation of the chemical structure of asphaltenes (as extracted from a heavy petroleum fraction and from bitumen), the chemical structures of other petroleum fractions known as DAE (distillate aromatic extract) and RAE (residual aromatic extract), and a possible interpretation of components of the chemical structure of anthracite coal. Asphaltenes, heavy petroleum fractions, and coal were proposed as model compounds for the interpretation of the emission spectra of certain proto-planetary nebulae (PPNe) with a good matching in the mid infrared between the band pattern of the PPNe emission spectra and the spectra of these oil fractions or coal. Although this study was finalized in an astrochemical context, it may find application also in the petroleum and coal chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Optimization of asphaltenes decantation equipment used in deasphalting process using computational fluid dynamics; Otimizacao de um equipamento para a decantacao de asfaltenos no processo de desasfaltacao usando fluidodinamica computacional

    Energy Technology Data Exchange (ETDEWEB)

    Arenales, Carlos Gregorio Dallos [Cooperativa de Trabajadores Profesionales Ltda (CTP), Santander (Colombia); Pimiento, Carlos Eduardo Lizcano; Quintero, Lina Constanza Navarro; Bueno, Jhon Ivan Penaloza [Empresa Colombiana de Petroleos S.A. (ICP/ECOPETROL), Santander (Colombia). Instituto Colombiano del Petroleo

    2012-07-01

    Heavy crude oil is a complex mixture of compounds that include saturates, aromatics, resins and asphaltenes. In this mixture, the asphaltenes are the heaviest components and can be unstable and precipitate. This kind of components causes troubles in transportation and processing. One way to reduce this problem is through technologies that use solvents, which under adequate operating conditions, separate the heavy fraction, improving the properties and conditions for transporting and refining of heavy crude oil. One of the processes used in the petroleum industry to improve the properties of heavy and residue oil is the solvent deasphalting. These processes have the disadvantage of work at elevated pressure and temperature. The Colombian Petroleum Company, ECOPETROL S.A. has developed its own process of upgrading heavy oils, ECODESF, a process that is designed to work at moderate conditions of pressure and temperature and that by using a paraffinic solvent, significantly improves the quality of heavy oil, reducing its viscosity and increasing API gravity. The present work develops a model of computational fluid dynamics (CFD) for asphaltene settler, using microscopic balance. The response of this model allowed determine: the solids flow pattern distribution and accumulation points of heavy phase. This information is useful for understanding the fluid-dynamic behavior of the system. The model was validated using data from a pilot plant with capacity for treatment 1.25 BPD of heavy crude oil. This pilot plant is located in the Colombian Petroleum Institute of ECOPETROL (ICP), Piedecuesta city, Santander, Colombia. (author)

  10. The determination of maturity levels in source rocks of the La Luna Formation, Maracaibo Basin, Venezuela, based on convention geochemical parameters and asphaltenes; Determinacao do grau de maturacao em rochas geradoras de petroleo, formacao La Luna, Bacia de Maracaibo, Venezuela: parametros geoquimicos convencionais e asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, L.P. de [Pontificia Universidade Catolica (PUC-RS), Porto Alegre, RS (Brazil). Centro de Excelencia em Pesquisas sobre o Armazenamento de Carbono; Franco, N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Geologia; Lopez, L.; Lo Monaco, S.; Escobar, G. [Universidad Central de Venezuela (UCV), Caracas (Venezuela); Kalkreuth, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Excelencia em Analises de Carvao e Rochas Geradoras de Petroleo

    2008-07-01

    The La Luna Formation, main source rock of the Maracaibo Basin was studied by conventional geochemical parameters, used to determine the maturity, and they were compared with the physic-chemical and molecular properties of the asphaltenes present in the bitumen of the rocks. Three wells were studied (A, B and C) with a total of 13 samples. Based on Rock-Eval results the organic matter in well A (455 deg C Tmax) shows a relatively high level of maturation (top of the oil window), whereas the organic matter in well B (435 - 436 deg C Tmax) is in the beginning of the oil window. Tmax values in well C (438 - 446 deg C) and well C suggest an intermediate maturity level. The biomarkers identified in well B and C show ratios indicating an equilibrium state in the maturity level. A good correlation was found comparing the conventional analytical data with the determination of maturity level obtained from the asphaltenes precipitated from the bitumen of the samples. With increased maturity levels the H1 NMR analysis showed enrichment in aromatic molecules in relation to aliphatic, due to the bitumen aromatization process. Similarly, the asphaltenes molecular weight has higher values in samples characterized by elevated maturity levels. This confirms earlier studies that showed that asphaltenes may be utilized as maturity parameter of organic matter. (author)

  11. Study of the interface solid/solutions containing PEO-PPO block copolymers and asphaltenes by FTIR/ATR; Estudo de solucoes de copolimeros em bloco de PEO-PPO contendo asfaltenos por FTIR/DTA

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Janaina I.S.; Neto, Jessica S.G.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], E-mails: janaina_333@hotmail.com, kinha_dac_dm@hotmail.com; celias@ima.ufrj.br

    2011-07-01

    The formation of water/oil emulsions can cause problems in various stages of production, processing and refining of petroleum. In this study, the technique of Fourier transform infrared spectroscopy (FTIR) using the method of attenuated total reflectance (ATR) was applied to study the solid-solutions of block copolymers based on poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) interface and its interaction in this interface with asphaltenic fractions of petroleum. The solid is the crystal of the ATR. Initially, we determined the critical micelle concentration values of the copolymers, which were consistent those obtained by a tensiometer. Bottle Test was also performed to correlate the efficiency of PEO-PPO copolymers in the breaking of water/oil emulsions with its adsorption at the interfaces solutions. (author)

  12. Modélisation de la combustion de fuels lourds prenant en compte la dispersion des asphaltènes Modeling Heavy Fuel-Oil Combustion (While Considering Or Including Asphaltene Dispersion

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    difficultés relevant du mode d'exploration et de la non adéquation entre les structures asphalténiques et fractales. On a finalement opté pour une détermination visuelle s'appuyant sur les clichés sur lesquels les agglomérats d'asphaltènes sont clairement visualisés tels qu'ils sont dans le fuel. Ce mode d'exploration laborieux a cependant permis de déterminer un modèle construit sur une série de 25 fuels dont 10 ont été brûlés sur une chaudière de 2 MW, et 15 sur un four de 100 kW. Ce modèle fait intervenir les teneurs en carbone Conradson et en métaux, ainsi que le taux de dispersion des asphaltènes. Le perfectionnement des moyens d'exploration aidant, on peut s'attendre à ce que soient disponibles des techniques d'évaluation de la dispersion sur les clichés. Ce paramètre pourra alors être pris en considération pour une meilleure prédiction de résultats de combustion insuffisamment expliqués avec les paramètres classiques. Various models aiming to predict the amount of unburned particles (solids during heavy fuel-oil combustion have been developed. The parameters taken into consideration are generally asphaltenes precipitated by normal heptane or pentane and Conradson carbon as well as the metals content having a known catalytic effect on cenosphere combustion in the combustion chamber. The Exxon and Shell models can be mentioned, which were developed respectively in 1979 and 1981 (Chapter II. Other models also give consideration to the fuel-oil composition, the way it is atomized and diffused in the chamber and the combustion kinetics (research done by the MIT Energy Laboratory published in 1986. However, the above parameters are not the only ones involved. For some fuel oils, experience has shown that the state of dispersion of asphaltenes may also play an important role particularly for combustion installations with mechanical injection for which the dispersion of fuel-oil droplets is not very great and does not affect the structures built

  13. Experimental Investigation of the Asphaltene Deposition Process during Different Production Schemes Étude expérimentale du processus de dépôt d’asphaltènes au cours de différents modes de production

    Directory of Open Access Journals (Sweden)

    Bagheri M.B.

    2011-02-01

    Full Text Available This paper presents the results of asphaltene precipitation and deposition during lean gas injection, CO2 injection and natural depletion in reservoir conditions. In addition, the effect of variations in operating pressure, injection gas concentration and production rate on asphaltene precipitation and deposition were investigated. The severity of asphaltene deposition was found to be more pronounced in lean gas injection in comparison with CO2 injection and natural depletion. Increasing the flow rate in natural depletion experiments showed a considerable increase in asphaltene deposition, and consequently permeability reduction in the core matrix. Moreover, more asphaltene deposition was observed along the porous media in the gas injection experiments when the gas mol percent of the mixture was increased. Cet article présente les résultats d’une étude de la précipitation et du dépôt d’asphaltènes qui peuvent se produire lors d’une injection de gaz pauvre, d’une injection de CO2 ou d’une déplétion naturelle en conditions de réservoir. En outre, les effets de la pression de fonctionnement, de la concentration en gaz injecté et du débit de production sur la précipitation et le dépôt d’asphaltènes ont été étudiés. Il a été constaté que l’importance du dépôt d’asphaltènes est plus prononcée dans le cas d’une injection de gaz pauvre comparativement à une injection de CO2 ou à une déplétion naturelle. Une augmentation du débit au cours d’expériences de déplétion naturelle a montré un accroissement considérable du dépôt d’asphaltènes et, en conséquence, une réduction de perméabilité au sein de la matrice poreuse. Par ailleurs, un dépôt d’asphaltènes plus important a été observé au cours des expériences d’injection de gaz lorsque la concentration molaire gazeuse dans le mélange était augmentée.

  14. The influence of asphaltenes of the petroleum on the rheology of O/W (Oil/Water) emulsions; Influencia de asfaltenos do petroleo sobre a reologia de emulsoes O/A (Oleo/Agua)

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ronaldo Goncalves dos; Mohamed, Rahoma Sadeg; Loh, Watson; Bannwart, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2004-07-01

    Heavy oils represent a large fraction of the Brazilian petroleum reserves and display a great potential for application as substitute to the conventional oils, provided a suitable technology for their transportation is available. The high viscosity of these heavy oils leads to high flow resistance and increase in the recovery and transportation costs. Methodologies employed to reduce these problems involve application of heat of addition of diluents or lighter oils, but are associated with high costs. Formation of low viscosity oil-in-water emulsions has been proposed as an alternative for the transportation of heavy oils, as investigated in this work. Preliminary results indicate significant viscosity decreases upon emulsification of heavy oils (viscosities greater than 1,000 cP) forming o/w emulsions with high oil content (between 50-65 vol. %), which display viscosities within 4-25 cP. Additionally, the effect of different surfactants, methodology of preparation and oil asphaltene content on the emulsion stability was also evaluated. These results confirm the potential of emulsification as a viable methodology for heavy oil transportation. (author)

  15. Permeability Damage Due to Asphaltene Deposition : Experimental and Modeling Aspects Endommagement d'un milieu poreux par dépôts d'asphaltènes : expériences et modélisation

    Directory of Open Access Journals (Sweden)

    Minssieux L.

    2006-12-01

    Full Text Available The flow properties of several asphaltenic crudes were studied at reservoir temperature in rocks of different morphology and mineralogy. The experiments performed showed a progressive reduction in permeability to oil during injection, varying in rate according to the system considered. The existence of organic deposits was verified by Rock-Evalpyrolysis measurements made on sections of samples taken at the end of flow at different distances from the entry face. This technique enables the profile of the deposits to be quantified. The interpretation of the permeability damage experiments and their simulation are treated by comparing the asphaltenes in oil to colloidal particles in suspension, capable of being deposited at the surface of the pores and thus reducing the permeability of the porous medium. The first simulations were carried out using the PARISIFP particle damage model, which has recently been extended to the case of multi-layer deposition. A satisfactory qualitative agreement is observed with the experimental results. Les propriétés d'écoulement de plusieurs bruts asphalténiques ont été étudiées à la température du réservoir d'origine dans des roches de morphologie et minéralogie différentes. Les expériences réalisées mettent en évidence une réduction progressive de la perméabilité à l'huile au cours de l'injection, plus ou moins rapide selon les cas. L'existence de dépôts organiques a été vérifiée par des mesures de pyrolyse Rock-Evaleffectuées sur des sections d'échantillons prélevées en fin d'écoulement à différentes distances de la face d'entrée. Cette technique permet de quantifier le profil des dépôts. L'interprétation des expériences de colmatage et leur simulation sont traitées en assimilant les asphaltènes dans l'huile à des particules colloïdales en suspension, susceptibles de se déposer à la surface des pores et ainsi de réduire la perméabilité du milieu poreux. Les premi

  16. Représentation chimique de la structure des kérogènes et des asphaltènes en fonction de leur origine et de leur degré d'évolution Chemical Modeling of the Structure of Kerogens and Asphaltenes As a Function of Their Origin and Evolution Stage

    Directory of Open Access Journals (Sweden)

    Behar F.

    2006-11-01

    Full Text Available Dans cet article nous proposons des modèles de structures chimiques de kérogènes et d'asphaltènes de roche. Nous avons choisi de représenter les kérogènes appartenant aux trois types classiques de matières organiques aux stades d'évolution suivants : - début de la diagenèse sensu-stricto; - début de la catagenèse (formation de l'huile; - fin de la catagenèse (formation du gaz. Les asphaltènes représentés correspondent à la phase de formation de l'huile. Nous avons tenu compte des données d'analyse obtenues sur des échantillons naturels : analyse élémentaire, microscopie électronique, RMN 13C, thermogravimétrie, analyse fonctionnelle, dégradation par pyrolyse. Afin d'obtenir une représentation chimique ayant une valeur statistique suffisante, nous avons choisi une masse moléculaire de 25 000 environ, identique pour les trois kérogènes au début de la diagenèse, et une masse de 8000 environ pour les asphaltènes associés. Nous avons ensuite dessiné à l'échelle moléculaire les structures correspondantes. This paper proposes models for the chemical structures of kerogens and asphaltenes from rocks. The kerogens belonging to the three conventional types of organic matter are represented in the following stages of evolution: (1 beginning of diagenesis sensu stricto,(2 beginning of catagenesis (formation of oil, and (3 end of catagenesis (formation of gas. The asphaltenes represented here correspond to the phase of oil formation. Models are based on analytical data obtained on natural samples, i. e. elemental analysis, electron microscopy, 13C NMR, thermogravimetry, functional analysis and pyrolysis. To get enough statistical value for the chemical modelling, a same molecular mass of about 25 000 was chosen for the three kerogens at the beginning of diagenesis. A molecular mass of about 8000 was chosen for the related asphaltenes. The chemical structures were then constructed at the molecular scale.

  17. Asphaltene precipitates in oil production wells

    DEFF Research Database (Denmark)

    Kleinitz, W,; Andersen, Simon Ivar

    1998-01-01

    compounds in the organic scales from operations definitely differed from the data published in the literature. In order to dissolve the precipitates and thus eliminate the damage, various organic solvents and industrial solvent mixtures were examined. The kinetics of the dissolution process in operational...... production is also explained and discussed in detail from a reservoir engineering standpoint....

  18. Influence sur les imbrûlés solides de composés métalliques particuliers et du taux de dispersion des asphaltènes dans les fuels lourds Influence of Unburned Solids Made of Unusual Metal Compounds and of the Asphaltene Dispersion Rate in Heavy Fuel Oils

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    des asphaltes précipités au pentane dilués avec un gaz oil aromatique de raffinerie. Il a été notamment mis en évidence le rôle joué par les résines dans les dispersions des agglomérats d'asphaltènes et par voie de conséquence dans l'émission d'imbrûlés solides. L'ensemble des observations faites permet de mieux comprendre certains mécanismes intervenant en combustion de fuels lourds. Si l'on se situe sur le plan des émissions particulaires, celles-ci peuvent être largement réduites par l'utilisation de taux suffisants de vapeur auxiliaire au niveau de l'injection. The growing diversity of the origins of crude oils has led to giving consideration to the metal content in combustion models in addition of Conradson carbon or C7 asphaltenes in heavy fuel oils. Such models have been developed by Exxon (1979 and Shell (1981 in particular. Recent research done at Institut Français du Pétrole (IFP on a 2 MW package boiler has shown the influence of unusual metal compounds present in fuel oil in the form of sulfides impregnating porous carbon particles. These microparticles may be formed when severe operating conditions are applied to the visbreaking of residual fuel oils in the presence of hydrogen and a suitable catalyst. These microparticles have proved to be very active in combustion and have shown that the metal concentration is not the only factor to be taken into consideration but that the way in which it is combined may be preponderant. To widen the field of application of models, other parameters, such as the operating conditions of the boiler and the spraying of the fuel oil, have been taken into consideration together with the actual parameters of the influence of the fuel oil (research by the MIT Energy Laboratory, publications in 1986. Concerning the predicting of particulate emissions, a method in addition to tests for Conradson residue and n-heptane insolubility has been applied at IFP as part of a project to upgrade heavy oils in

  19. Insights of asphaltene aggregation mechanism from molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jennifer De León

    2015-01-01

    Full Text Available Se estudió el proceso de agregación de asfaltenos utilizando té cnicas de dinámica molecular. Se utilizaron cuatro estructuras diferentes. Las primeras tres moléculas tienen una estructura continental, con núcleos aromáticos condensador, mientras que la cuarta pose e una estructura tipo archipiélago, con pequeños grupos de anillos ar omáticos conectados con cadenas saturadas. Las moléculas fueron construidas de manera atomística, en la cual cada átomo se desc ribe individualmente. Se calcula ron las fuerzas de interacción a 300 K y 200 atm; las fuerzas de Van der W aals y las interacciones elect rostáticas fueron evaluadas separadamente. Se calculó el paráme tro de solubilidad para las cuatro molécu las. Se encontró que las inte racciones de Van der Waals asoc iadas a los anillos aromáticos y las fuerzas electrostáticas ocasionadas princ ipalmente por la presencia de heteroátomos como oxígeno, azufr e y nitrógeno, son igualmente r elevantes en la agregación de moléculas de asfalteno. Para todas las molé culas se encontró que los sistemas de asfaltenos tienen menor e nergía en estado de agregación que en estado monomérico. Para las estruct uras continentales, la presencia de largas cadenas obstruye el proceso de formación de agregados. Para las estructuras tipo archipiélago, la flexibilidad de las moléculas facilita la agregación con ot ras estructuras. La presencia de heteroátomos ocasiona una fuerza repulsiva que dificulta la agregación. El volumen molecular y la energía de c ohesión también son sensibles a la confi guración geométrica y la compos ición de las especies, lo cual afecta el parámetro de solubilidad.

  20. Automated High-Performance Liquid Chromatography Saturate, Aromatic, Resin, and Asphaltene Separation

    Science.gov (United States)

    2016-10-01

    Dividing a material into its constituent parts is necessary to define its composition. These compositional analyses are useful in binder formulation through blending, rejuvenation, and modification, as well as prediction of physical performance. Norm...

  1. Aggregation study of asphaltenes from colombian Castilla crude oil using molecular simulation

    Directory of Open Access Journals (Sweden)

    Jennifer de León-Barreneche

    2015-01-01

    Full Text Available Se presenta un modelo de simulación molecular para estudiar el mecanismo de agregación de asfaltenos. Se seleccionaron cuatro especies, obtenidas a partir de análisis estructurales del petróleo extraído del campo Castilla, en Colombia. Se estudiaron las contribuciones energéticas al proceso de agregación y se calculó el parámetro de solubilidad para cada especie. Finalmente, se estudió el proceso de agregación entre las diferentes especies con el fi n de determinar la tendencia de las moléculas hacia la autoasociación. Los resultados muestran que para todas las especies, el estado de agregación es energéticamente favorable, y que tanto las fuerzas de Van der Waals como las fuerzas electrostáticas contribuyen en igual magnitud al proceso de agregación. Se encontró también que la estructura molecular de las moléculas tiene una gran infl uencia en la manera cómo se agregan los asfaltenos. Para las estructuras continentales, las ramifi caciones largas ocasionan un impedimento físico para la agregación. Por otro lado, la fl exibilidad asociada a las moléculas tipo archipiélago favorece la agregación con otras especies, pero de alguna manera entorpece la autoasociación. El parámetro de solubilidad para todas las especies se encontró dentro del rango establecido por la literatura.

  2. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D.

    2001-01-12

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  3. Concentration of paramagnetic centres at low-temperature thermal destruction of asphaltenes of heavy petroleum distillates

    Directory of Open Access Journals (Sweden)

    Dolomatov M.U., Rodionov A.A., Gafurov M.R., Petrov A.V., Biktagirov T.B., Bakhtizin R.Z., Makarchikov S.O., Khairudinov I.Z., Orlinskii S.B.

    2016-11-01

    Full Text Available Changes of paramagnetic centers (PC concentration in dispersed petroleum systems were studied in the process of low-temperature thermolysis. The kinetic model of PC concentration dynamics based on the processes of unpaired electrons formation during singlet-triplet transitions, weak chemical bonds dissociation and recombination of free radicals is proposed.

  4. Molecular Dynamics Simulation: The Behavior of Asphaltene in Crude Oil and at the Oil/Water Interface

    KAUST Repository

    Gao, Fengfeng; Xu, Zhen; Liu, Guokui; Yuan, Shiling

    2014-01-01

    of the repulsion of the anionic headgroups. Anionic C5 Pe has a distinct affinity to the oil/water interface during the simulation, while the C5 Pe molecules persist in the crude oil domain. A three-stage model of anionic C5 Pe molecules adsorbed at the oil

  5. Rapid estimation of the organic sulphur content of kerogens, coals and asphaltenes by pyrolysis-gas chromatography

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Eglinton, T.I.; Kohnen, M.E.L.; Leeuw, J.W. de

    1990-01-01

    A pyrolysis-gas Chromatographic (py-g.c.) method for estimation of the Sorg/C ratio in kerogens and other forms of sedimentary macromolecular organic matter is described. The method is based upon flash pyrolysis at 610 °C for 10s and areal integration of the FID peaks attributed to

  6. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  7. Stabilization of Model Crude Oil Emulsion using Different ...

    African Journals Online (AJOL)

    MBI

    2015-12-31

    Dec 31, 2015 ... interaction of asphaltene with the prepared model oils can be used as a ... techniques, microscopy, interfacial pressure, and ... conclusion that these compounds were asphaltene .... The emulsion may invert from oil in water.

  8. Polymer science applied to petroleum production; Ciencia de polimeros aplicada a producao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Elizabete F.; Mansur, Claudia R.E.; Garreto, Maria S.E.; Honse, Siller O.; Mazzeo, Claudia P.P. [Universidade Federal do Rio de Janeiro/ Instituto de Macromoleculas/ Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    The petroleum production comprises several operations, from well drilling to oil and water treatment, in which polymer science is applied. This work is focused in the phase behavior of asphaltenes that can be evaluated by precipitation tests and particle size determination. Recent researches show that the petroleum can be diluted with a specific model solvent, without causing any changes on asphaltenes phase behavior, and that a representative model system can be obtained if asphaltenes could be extracted using n-alkane as low as C1. The phase behavior of asphaltenes directly depends on the solubility parameter, which can be estimated for petroleum and asphaltenic fractions by microcalorimetry. More polar asphaltenes are not completely stabilized by less polar molecules, and this affects the stability of the A/O emulsions. There is a relationship between the amount of polar groups in the polymer chain and its capability in stabilizing/flocculating the asphaltenes, which interferes in the asphaltenes particle sizes. (author)

  9. Research Article

    African Journals Online (AJOL)

    2018-05-01

    May 1, 2018 ... affect the oil recovery and its transportation processes [5]. Asphaltenes are .... petroleum fluids. Int. J. Oil, Gas Coal Technol., 2009, vol. ... chemical structure of asphaltenes from Algerian petroleum collected at different stages.

  10. Chemical modification of bitumen heavy ends and their non-fuel uses

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1976-01-01

    Bitumen asphaltenes undergo a variety of simple chemical conversions. For example, asphaltenes can be oxidized, sulfonated, sulfomethylated, halogenated, and phosphorylated. The net result is the introduction of functional entities into the asphaltene structure which confers interesting properties on the products for which a variety of uses are proposed.

  11. Measurements and thermodynamics of hydrotreater product sludge stability

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I. [Technical Univ. of Denmark, Lyngby (Denmark)

    2003-07-01

    Sludge is a by-product of the hydrotreating process of asphaltene during feedstock conversions. The stability of the asphaltenes in the system is related to the produced sludge. The remaining asphaltenes are unstable due to chemical changes in the mixture even though a large conversion of heptane asphaltene occurs. The flocculation titration technique was applied to several feedstocks and catalysts to understand changes in stability and to develop conversion schemes that avoid sludge formation. The effect of temperature conversion was studied in detail. Results obtained by flocculation titration were in agreement with size exclusion chromatography, elemental analysis, infrared spectroscopy and other methods. The authors also examined the chemical changes in product and in product asphaltenes. It was concluded that high hydrotreatment temperature leads to the formation of unstable products as cracking occurs. It was shown that molecular weight of asphaltenes decreases during the hydroprocessing, and the transition temperature is related to the feed. tabs., figs.

  12. Proceedings of the 8. Brazilian congress on polymers

    International Nuclear Information System (INIS)

    2005-01-01

    Theoretical and experimental papers are presented covering the following subjects: polymers, copolymers, nuclear magnetic resonance, small and wide angle X-ray scattering, polysaccharides, asphaltenes and rubbers

  13. Proceedings of the 6. Brazilian congress on polymers; 9. International macromolecular colloquium

    International Nuclear Information System (INIS)

    2001-01-01

    Theoretical and experimental papers are presented covering the following subjects: polymers, copolymers, nuclear magnetic resonance, small and wide angle X-ray scattering, polysaccharides, asphaltenes and rubbers

  14. Residency of rhenium and osmium in a heavy crude oil

    Science.gov (United States)

    DiMarzio, Jenna M.; Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.

    2018-01-01

    Rhenium-osmium (Re-Os) isotope geochemistry is an emerging tool for the study of oil formation and migration processes, and a new technology for petroleum exploration. Little is known, however, about the residency of Re and Os within asphaltene and maltene sub-fractions of crude oil. This information is crucial for understanding the 187Re-187Os radiometric clock held in petroleum systems and for interpreting geochronology for key processes such as oil formation, migration, and biodegradation. In this study, a heavy crude oil was separated into soluble (maltene, MALT) and insoluble (asphaltene, ASPH) fractions using n-heptane as the asphaltene-precipitating agent. The asphaltenes were separated sequentially into sub-fractions using two different solvent pairs (heptane-dichloromethane and acetone-toluene), and the bulk maltenes were separated into saturate, aromatic, and resin (SAR) fractions using open column chromatography. Each asphaltene and maltene sub-fraction was analyzed for Re and Os. The asphaltene sub-fractions and the bulk ASPH, MALT, and crude oil were analyzed for a suite of trace metals by ICP-MS. Our results show that Re and Os concentrations co-vary between the asphaltene sub-fractions, and that both elements are found mostly in the more polar and aromatic sub-fractions. Significant Re and Os are also present in the aromatic and resin fractions of the maltenes. However, each asphaltene and maltene sub-fraction has a distinct isotopic composition, and sub-fractions are not isochronous. This suggests that asphaltene sub-fractionation separates Re-Os complexes to the point where the isotopic integrity of the geochronometer is compromised. The mobility of individual Re and Os isotopes and the decoupling possibilities between radiogenic 187Os produced from 187Re remain elusive, but their recognition in this study is a critical first step. Re and Os correlate strongly with Mo and Cd in the asphaltene sub-fractions, suggesting that these metals occupy

  15. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    2000-01-01

    Recently a series of first contact miscibility (swelling) experiments have been performed on undersaturated light and heavy oils using LPG rich and methane rich injection gases, in which solid organic deposition was observed. A compositional gradient in the oils during the gas injection process....... The asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...... during the gas injection process in comparison with the standard asphaltenes in order to understand the mechanisms involved in asphaltene deposition....

  16. The relationship between SARA fractions and crude oil stability

    Directory of Open Access Journals (Sweden)

    Siavash Ashoori

    2017-03-01

    Full Text Available Asphaltene precipitation and deposition are drastic issues in the petroleum industry. Monitoring the asphaltene stability in crude oil is still a serious problem and has been subject of many studies. To investigate crude oil stability by saturate, aromatic, resin and asphaltene (SARA analysis seven types of crudes with different components were used. The applied methods for SARA quantification are IP-143 and ASTM D893-69 and the colloidal instability index (CII is computed from the SARA values as well. In comparison between CII results, the values of oil compositions demonstrated that the stability of asphaltenes in crude oils is a phenomenon that is related to all these components and it cannot be associated only with one of them, individually.

  17. Download this PDF file

    African Journals Online (AJOL)

    2018-05-01

    May 1, 2018 ... the asphaltenes precipitation was occurs in all Hassi Messaoud's oil field locations. Keywords: ... oil recovery and transportation; porous media, production tubing, valves and pipelines. [5,3,10. ... 2.1 Materials and Methods.

  18. JUST 27 No. 3 December 2007

    African Journals Online (AJOL)

    User

    2007-12-03

    Dec 3, 2007 ... weight hydrocarbon of like asphalts, taps, pitches and asphaltenes. In general, tar ... have been recorded in these areas since the dawn of this century. .... The hippopotamus, elephant, giraffe, leopard, and lion now remain.

  19. A MODEL FOR DIFFUSION CONTROLLED BIOAVAILABILITY OF CRUDE OIL COMPONENTS

    Science.gov (United States)

    Crude oil is a complex mixture of several different structural classes of compounds including alkanes, aromatics, heterocyclic polar compounds, and asphaltenes. The rate and extent of microbial degradation of crude oil depends on the interaction between the physical and biochemi...

  20. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kohnen, M.E.L.; Kock-van Dalen, A.C.; Leeuw, J.W. de

    1991-01-01

    Three types of sulphur-rich, high-molecular-weight material in the alkylsulphide, the polar and the asphaltene fracions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised.

  1. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ramalho, Joao Batista V.S. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Lechuga, Fernanda C.; Lucas, Elizabete F., E-mail: elucas@ima.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2010-07-01

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  2. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    International Nuclear Information System (INIS)

    Ramalho, Joao Batista V.S.; Lechuga, Fernanda C.; Lucas, Elizabete F.

    2010-01-01

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  3. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    Directory of Open Access Journals (Sweden)

    João Batista V. S. Ramalho

    2010-01-01

    Full Text Available Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent. No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface.

  4. Petroleum biotechnology: Technology trends for the future

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... followed by natural gas, which is a mixture of methane besides other gases. ...... The same approach could be applied to metal removal from asphaltenic .... chemistry and engineering process must assist to overcome the ...

  5. Petroleum Processing Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson; Jenny Loveridge

    2012-09-01

    A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.

  6. Molecular Dynamics Simulation of Spontaneous Imbibition in Nanopores and Recovery of Asphaltenic Crude Oils Using Surfactants for EOR Applications Simulations de dynamique moléculaire d’imbibition spontanée dans des nanopores et pour la récupération d’huiles brutes asphalténiques en utilisant des agents tensioactifs pour des applications d’EOR

    Directory of Open Access Journals (Sweden)

    Stukan M.R.

    2012-12-01

    Full Text Available We present Molecular Dynamics (MD simulations of the imbibition process in nanopores in case of two different mechanisms of the wettability modification. We compare the imbibition of an aqueous surfactant solution into an oil-wet pore driven by surfactant adsorption onto the oil-wet rock surface (coating mechanism and the imbibition of an aqueous surfactants solution driven by surfactants removing the contaminant molecules from the originally water-wet surface (cleaning mechanism. Our results show qualitative difference in the imbibition dynamics in these two cases and indicate that MD simulation is a useful tool to investigate details of the imbibition mechanisms at the pore scale with direct implications for Enhanced Oil Recovery (EOR operations. Nous presentons des simulations de Dynamique Moleculaire (DM du processus d’imbibition dans des nanopores dans le cas de deux mecanismes differents de modification de mouillabilite. Nous comparons l’imbibition d’une solution aqueuse d’agent tensioactif dans un pore mouille d’huile entrainee par une adsorption d’agent tensioactif sur la surface de roche mouillee d’huile (mecanisme de revetement et l’imbibition d’une solution aqueuse d’agent tensioactif entrainee par des agents tensioactifs eliminant les molecules contaminantes de la surface originellement mouillee d’eau (mecanisme de nettoyage. Nos resultats montrent une difference qualitative en matiere de dynamique d’imbibition dans ces deux cas et indiquent que la simulation de DM constitue un outil utile pour etudier les mecanismes d’imbibition a l’echelle des pores avec des implications directes pour des operations de recuperation renforcee d’huile (EOR, Enhanced Oil Recovery.

  7. Determination of the streaming potential and the corresponding total charge in aqueous asphalthene containing suspensions; Bestimmung der Stroemungspotentiale und der korrespondierenden Gesamtladungen in waessrigen, asphaltenhaltigen Suspensionen

    Energy Technology Data Exchange (ETDEWEB)

    Edler, S. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Rosenplaenter, A. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Rahimian, I. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1996-02-01

    The choice of demulgators for separating crude oil emulsions is still done empirically. The knowledge of the charge of crude oil compounds is essential for the amount of needed demulsifiers. By using the Particle Charge Detector of the Muetek Company the surface charges of these compounds could be determined. The suspension will be titrated with demulsifier. Surface active compounds ar enriched within the colloids of crude oil, i.e. the resins and the asphaltenes. The asphaltenes could be divided into the easy, medium and difficult soluble asphaltenes. The streaming potential of the colloids and their corresponding total charge could be determined successfully. With increasing quantity of asphaltenes the charge consumption increase almost linearly. The heavy soluble asphaltenes are needing the highest share of demulsifiers followed by the middle and the light soluble asphaltenes. The resins only show very small charge consumption. (orig.) [Deutsch] Die Auswahl von Spaltern zur Trennung von Rohoelemulsionen erfolgt zumeist empirisch. Bei Kenntnis der Ladung der rohoeleigenen Emulgatoren ist eine gezieltere Auswahl der Splater moeglich. Mit Hilfe eines Partikelladungsdetektors sollten die Oberflaechenladungen der rohoeleigenen Emulgatoren bestimmt werden. Dazu wurden Suspensionen der Rohoelkolloide mit Tensid titriert. Grenzflaechenaktive Stoffe sind in den Rohoelkolloiden, also den Erdoelharzen und den Asphaltenen, angereichert. Die Asphaltene lassen sich in leicht-, mittel- und schwerloesliche Komponenten einteilen. Es konnte das Stroemungspotential der Rohoelkolloide und die korrespondierende Gesamtladung erfolgreich bestimmt werden. Mit konstant steigendem Gehalt an Kolloiden steigt auch der Ladungsverbrauch annaehernd linear. Bei den Asphaltenfraktionen verbrauchen die schwerloeslichen Asphaltene mit Abstand den groessten Anteil der Ladung, gefolgt von den mittel- und den leichtloeslichen. Die Erdoelharze zeigen einen sehr geringen Ladungsverbrauch. (orig.)

  8. Relations between interfacial properties and heavy crude oil emulsions stability; Relations entre les proprietes interfaciales et la stabilite des emulsions de brut lourd

    Energy Technology Data Exchange (ETDEWEB)

    Hoebler-Poteau, S.

    2006-02-15

    Oil in water emulsions are currently being investigated to facilitate the transport of viscous heavy oils. The behavior of these emulsions is largely controlled by oil / water interfaces. The surface-active components of crude oil such as asphaltenes and naphthenic acids compete among themselves at these interfaces and also with possibly added synthetic surfactant emulsifier.Here, we present a study of dynamic interfacial tension and rheology of interfaces between water and a model oil (toluene) in which asphaltenes and other surface active molecules from crude oil are dissolved. We show that different parameters such as aging of the interface, asphaltenes concentration, the pH and salinity of the aqueous phase have a strong influence on interfacial properties of asphaltenes at the oil/water interface. Several micro-pipette experiments, in which micrometric drops have been manipulated, are described as well as small angle neutron scattering measurements. The influence of lower molecular weight surface-active species, such as the natural naphthenic acids contained in maltenes (crude oil without asphaltenes) has been investigated, and an interaction between asphaltenes and maltenes which facilitates molecular arrangement at the interface was detected. The microscopic properties of the different interfaces and the stability of the corresponding emulsions are determined to be correlated.The results obtained on model emulsions and model oil/water interfaces were found to be helpful in order to explain and predict the behavior of heavy crude oil emulsions. (author)

  9. Ultrasonic characterization of coal liquefaction products. Final report, April 11, 1979-February 11, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Leffert, C. B.; Weisman, L.; Moore, D.

    1980-02-29

    The Wayne State University ultrasonic device and technique was used successfully to calibrate coal-derived 0 to 45% wt % asphaltene-in-oil mixtures (2 wt % increments) for transmitted signal strength versus temperature (25 to 100/sup 0/C). Computer-aided cross plots of the transmitted signal strength versus concentration of asphaltene showed that a wide range of concentration and temperature exists where the viscosity-dominated (lower temperature) sound absorption is such that a single-valued number for the concentration of the asphaltene can be obtained from measurement of the sample temperature and transmitted signal strength and thus obtain a measure of the quality of the coal-derived product. Sufficient samples were not provided to obtain a complete calibration of added particulate matter of ash and undissolved coal at all asphaltene in oil concentrations; however, calibrations were made of added ash to three concentrations of asphaltene-in-oil and the data showed the greatest effect at the higher temperatures indicating (as planned) that sound attenuation from Rayleigh scattering is predominant with the suspended particles. We conclude from these two sets of measurements that there is a excellent expectation that the Wayne State ultrasonic device and technique could be used to simultaneously measure (on-line) the suspended particle concentration as well as the quality of the coal-derived product.

  10. Chemical-composition studies of low-temperature-carbonization coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Edel' shtein, N G; Lanin, V A

    1955-01-01

    Pintsch-oven low-temperature tar was separated into its constituents by conventional methods, and the average of 2 results was neutral asphaltenes 12.56, basic asphaltenes 2.61, acid asphaltenes 18.82, phenols 13.23, bases 2.31, neutral oil 17.66, crystalline paraffins 7.34, silica-gel tars (I) (benzene extract) 15.40, I (acetone extract) 2.47, carbenes 0.45, and carbides and dust 1.44%. The low-temperature-tar asphaltenes and tars differ from shale-oil tars by being lower in C and higher in H, with a considerably higher C:H ratio. Their specific gravity is somewhat higher, and they are cyclic in structure. The asphaltenes and silica-gel tars of coal tar and shale oil were hydrogenated, molecular weights d/sub 4//sup 20/ and n/sub 4//sup 20/ of the separated compounds were determined, and empirical formulas of the hydrogenated compounds calculated. The neutral oil was separated into saturated, intermediate (iodine number 23), unsaturated (iodine number 51), a small quantity of a mixture of unsaturated and aromatic hydrocarbons, and 44.9% aromatic hydrocarbons. While naphthenes seem to be predominantly present in the neutral-oil fraction of shale oil, aromatic hydrocarbons are predominant in coal oil.

  11. Greater bottoms upgrading with Albemarle's e-bed catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Toshima, H.; Sedlacek, Z.; Backhouse, D.; Mayo, S.; Plantenga, F. [Albemarle Catalysts, Houston, TX (United States)

    2006-07-01

    The E-bed process is a heavy oil upgrading technology that produces near isothermal reactor conditions at a constant catalytic activity. However, E-bed conversion optimization is limited by reactor and downstream fouling problems caused by asphaltene precipitation. While asphaltene precipitation can controlled by reducing hydrogenation, high hydrogenation activity is needed for the removal of sulfur and heavy metals. This presentation described an asphaltene molecule management concept to reduce the fouling of E-bed units. Sediment reduction and high hydrogenation catalysts were used in a modified E-bed process with a variety of feeds and operating conditions. It was observed that the KF1312 catalyst achieved much higher sediment-reduction capability along with satisfactory hydrogenation activity with the different kinds of crude oil sources tested. The catalyst hydrocracked the asphaltenes into smaller molecules, which created greater asphaltene solubility. The sediment reduction capacity of the catalyst-staging technology is now being optimized. It was concluded that the technology will help to reduce fouling in E-bed processes and lead to improved conversion rates for refineries. refs., tabs., figs.

  12. Mechanical Property and Analysis of Asphalt Components Based on Molecular Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Rui Li

    2017-01-01

    Full Text Available The asphalt-aggregate interface interaction plays a significant role in the overall performances of asphalt mixture. In order to analyze the chemical constitution of asphalt effects on the asphalt-aggregate interaction, the average structure C64H52S2 is selected to represent the asphalt, and the colloid, saturated phenol, and asphaltene are selected to represent the major constitutions in asphalt. The molecular models are established for the three compositions, respectively, and the Molecular Dynamics (MD simulation was conducted for the three kinds of asphaltene-aggregate system at different presses. Comparing the E value of Young modulus of these three polymers, the maximum modulus value of asphaltene was 2.80 GPa, the modulus value of colloid was secondary, and the minimum modulus of saturated phenol was 0.52 GPa. This result corresponds to conventional understanding.

  13. Simple statistical model for branched aggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Hansen, Jesper Schmidt

    2015-01-01

    , given that it already has bonds with others. The model is applied here to asphaltene nanoaggregates observed in molecular dynamics simulations of Cooee bitumen. The variation with temperature of the probabilities deduced from this model is discussed in terms of statistical mechanics arguments....... The relevance of the statistical model in the case of asphaltene nanoaggregates is checked by comparing the predicted value of the probability for one molecule to have exactly i bonds with the same probability directly measured in the molecular dynamics simulations. The agreement is satisfactory......We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule...

  14. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizy, Vahid Alipour

    2012-07-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with the same oil and flooded with CO2 at all miscible flooding conditions. This may be due to the larger permeability contrasts in sandstone cores, which promote the fingering phenomenon. Miscible CO2 flooding for chalk and sandstone cores with distilled water, as initial water saturation, shows also lower oil recovery than cores saturated with different ions. At higher miscible flooding conditions, higher oil recovery is obtained. However, presence of light components (such as C1 or C3) in oil reduced the recovery. Oil recovery in presence of methane (C1) is lower than that in presence of methane and propane (C1/C3). A ternary diagram was constructed in order to understand the CO2 flooding mechanism(s) at the different flooding conditions and in presence of light components. The side effect of the flooding with CO2 is the probability for asphaltene deposition. An approach based on solubility parameter in the liquid, is used to assess the risk for asphaltene deposition during CO2 miscible flooding. The light components (C1/C3) and higher flooding conditions enhanced the risk for asphaltene instability. It is also shown higher amount of asphaltene deposition in chalk cores than that in sandstone cores at similar miscibility conditions.(au)

  15. About Coloured Cold Asphaltic Mixtures

    Directory of Open Access Journals (Sweden)

    Loredana Judele

    2008-01-01

    Full Text Available The first coloured bitumen was obtained by using bitumen from Peru and then bitumen from the Middle East, with a low content of asphaltenes, also called "colourable" bitumens. The colours obtained by adding iron oxides led nevertheless to dark colours, due to the presence of asphaltenes. Nowadays the coloured asphalt is obtained from synthesis binders with translucent aspect. The colours are obtained by adding inorganic pigments, mainly iron oxide for red, chromic oxide for green, titanic dioxide for white. The properties and behaviour of the coloured bitumen during its lifetime are comparable with the ones of classic bitumen, sometimes even better.

  16. Physical properties and component contents of brown coal tars obtained in semicoking with a solid heat transfer semicoke

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V I; Bobrova, A A

    1955-01-01

    Tar obtained in low-temperature carbonization of brown coals with brown-coal semicoke as a heat-transfer medium contains more water and dust, has a lower drop point, and a higher specific gravity, and contains more asphaltene and less paraffin than does tar from the same coal produced in rotating retorts or in shaft kilns. The brown-coal semicoke used as a heat-transfer medium produces partial thermal cracking of the fuel and polymerization of the products of secondary decompositions. The yield of asphaltenes is lowered when the carbonization temperature is raised.

  17. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  18. Acidizing reservoirs while chelating iron with sulfosalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W A; Berkshire, D C

    1980-09-30

    A well treating process is described in which an aqueous solution of a strong acid capable of dissolving solids in a manner increasing the permeability of a subterranean earth formation is injected into a subterranean reservoir that contains an asphaltenic oil. At least the first injected portion of the aqueous acid and a solution or homogeneous dispersion of at least enough 5-sulfosalicylic acid to chelate with and prevent the formation of iron-asphaltene solids are included with substantially all of the ferric ions that become dissolved within the strong acid solution that enters the earth formation. 10 claims.

  19. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  20. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  1. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C.; Medina Z, C. [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A. [INSERPET, Bucaramanga (Colombia)

    1996-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  2. NMR and Chemometric Characterization of Vacuum Residues and Vacuum Gas Oils from Crude Oils of Different Origin

    Directory of Open Access Journals (Sweden)

    Jelena Parlov Vuković

    2015-03-01

    Full Text Available NMR spectroscopy in combination with statistical methods was used to study vacuum residues and vacuum gas oils from 32 crude oils of different origin. Two chemometric metodes were applied. Firstly, principal component analysis on complete spectra was used to perform classification of samples and clear distinction between vacuum residues and vacuum light and heavy gas oils were obtained. To quantitatively predict the composition of asphaltenes, principal component regression models using areas of resonance signals spaned by 11 frequency bins of the 1H NMR spectra were build. The first 5 principal components accounted for more than 94 % of variations in the input data set and coefficient of determination for correlation between measured and predicted values was R2 = 0.7421. Although this value is not significant, it shows the underlying linear dependence in the data. Pseudo two-dimensional DOSY NMR experiments were used to assess the composition and structural properties of asphaltenes in a selected crude oil and its vacuum residue on the basis of their different hydrodynamic behavior and translational diffusion coefficients. DOSY spectra showed the presence of several asphaltene aggregates differing in size and interactions they formed. The obtained results have shown that NMR techniques in combination with chemometrics are very useful to analyze vacuum residues and vacuum gas oils. Furthermore, we expect that our ongoing investigation of asphaltenes from crude oils of different origin will elucidate in more details composition, structure and properties of these complex molecular systems.

  3. Reduction of benzene and naphthalene mass transfer from crude oils by aging-induced interfacial films.

    Science.gov (United States)

    Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed

    2004-04-01

    Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.

  4. Classes of organic molecules targeted by a methanogenic microbial consortium grown on sedimentary rocks of various maturities

    Directory of Open Access Journals (Sweden)

    Margaux eMesle

    2015-06-01

    Full Text Available Organic-rich shales are populated by methanogenic consortia that are able to degrade the fossilized organic matter into methane gas. To identify the organic fraction effectively degraded, we have sequentially depleted two types of organic-rich rocks, shales and coal, at two different maturities, by successive solvent extractions to remove the most soluble fractions (maltenes and asphaltenes and isolate kerogen. We show the ability of the consortia to produce methane from all rock samples, including those containing the most refractory organic matter, i.e. the kerogen. Shales yielded higher methane production than lignite and coal. Mature rocks yielded more methane than immature rocks. Surprisingly, the efficiency of the consortia was not influenced by the removal of the easily biodegradable fractions contained in the maltenes and asphaltenes. This suggests that one of the limitations of organic matter degradation in situ may be the accessibility of the carbon and energy source. Indeed, bitumen has a colloidal structure that may limit the accessibility to asphaltenes in the bulk rock. Solvent extractions might favor the access to asphaltenes and kerogen by modifying the spatial organization of the molecules in the rock matrix.

  5. Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Eglinton, T.I.; Pool, W.; Leeuw, J.W. de; Eijkel, G.; Boon, J.J.

    1992-01-01

    This study describes the analysis of sulphur-containing products from Curie-point pyrolysis (Py) of eighty-five samples (kerogens, bitumen, and petroleum asphaltenes and coals) using gas chromatography (GC) in combination with sulphur-selective detection. Peak areas of approximately forty individual

  6. A news magnetic tools designed by ECOPETROL to inhibit wax in the petroleum production systems

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez U, C; Medina Z, C [ECOPETROL, Instituto Colombiano del Petroleo (Colombia); Pena C, A [INSERPET, Bucaramanga (Colombia)

    1997-12-31

    The deposition of wax and asphaltenes in production systems cause plugging in the flow lines reducing the oil production and increasing significantly the produced barrels prices. A wax magnetic inhibition technique has been tested with great success. The method has been improved with the use of magnetic tools. This work describes the experience and the results obtained with these tools. 6 figs., 1 tab.

  7. Cooee bitumen:

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Schrøder, Thomas; Dyre, J. C.

    2013-01-01

    different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes...

  8. Numerical analysis of a one-dimensional multicomponent model of the in-situ combustion process

    DEFF Research Database (Denmark)

    Nesterov, Igor; Shapiro, Alexander; Stenby, Erling Halfdan

    2013-01-01

    , the model is based on SARA representation of a petroleum mixture (saturates–aromatics–resins–asphaltenes), which may react differently with oxygen and produce other components (for example, light oils and coke). In total, the model contains 14 components, which may undergo 15 chemical reactions. The set...

  9. Quantitative analysis of properties of petroleum mixtures by near infrared spectroscopy; Analise quantitativa de propriedades de misturas de petroleos via espectrofotometria no infravermelho proximo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leila M.; Silva, Elisangela B.; Fortuny, Montserrat; Dariva, Claudio; Santos, Alexandre F. [Universidade Tiradentes (UNIT), Aracaju, SE (Brazil). Instituto de Tecnologia e Pesquisa (ITP); Araujo, Augusto M. [Siemens Brazil, Rio de Janeiro, RJ (Brazil); Coutinho, Raquel C.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    An experimental study is carried out aiming to develop a method of quantitative analysis of properties of petroleum mixtures, such as water and asphaltene contents, heavy oil concentration and viscosity based on the use of a NIR spectrophotometer. A strategy of generation of crude oil mixtures with known properties was developed to help calibrating the NIR spectrophotometer. Petroleum mixtures involving 2 or 3 oils under known ratios were prepared based on a set of different light and heavy Brazilian crude oil samples. Moreover, experimental data of 5 binary mixtures were also assembled into a data set named multi-compound. Results indicated that excellent calibration models can be obtained for binary mixtures with correlation coefficient (R{sup 2}) greater than 99% for water and asphaltene contents, viscosity and heavy oil concentration. For ternary systems, excellent correlations (R{sup 2}>99%) can be attained for asphaltene and heavy oil contents. Finally for the multi-compound data set, the asphaltene content was the only property that resulted in R{sup 2}>99%, which demonstrates the adequacy of the NIR technique for assessing this property. (author)

  10. Microbial removal of weathered hydrocarbons by well adapted ...

    African Journals Online (AJOL)

    The effectiveness of bioremediation processes may be limited by the physical and chemical properties of the pollutant, such as availability, recalcitrance, concentration and weathering, among others. The aim of this work was to evaluate the removal of recalcitrant oil fractions (aliphatic-aromatic and asphaltenic fractions) ...

  11. Results of real-time production optimization of a maturing North Sea gas asset with production constraints

    NARCIS (Netherlands)

    Linden, R.J.P. van der; Marck, J.W.; Boer, J.P. de

    2015-01-01

    Operating maturing assets poses increasingly complex challenges to operators. Meeting hourly or daily production targets becomes more difficult when wells are more often shut in for e.g. water washes (against salt deposition) or solvent jobs (at asphaltenes deposition). Declining reservoir pressure

  12. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  13. Infilling Direction and Fluid Communication in the E2.0 Reservoir of ...

    African Journals Online (AJOL)

    The study reveals a close similarity in percentage contents of the saturates, aromatics, resins and asphaltenes in all the oils. The maturity gradient clearly shows a maturation trend in the Southwest-Northeast direction which indicates that subsequent charge from the oil kitchen were more mature than the initial charges.

  14. Characterization of the rheological behavior of heavy crude oils for the optimization of their transport; Caracterisation du comportement rheologique des bruts lourds en vue de l'optimisation de leur transport

    Energy Technology Data Exchange (ETDEWEB)

    Coustet Pierre, C.

    2003-10-01

    Despite their huge reserves, production of heavy crude oils remains weak, partially because of the high viscosity. This work aims to understand the origin of this viscosity in a view of diminishing In this context, we performed structural (SAXS) and rheological studies (under shearing and oscillatory regime) in order to link macroscopic and microscopic properties of heavy oils. investigated the effect of asphaltenes and resins which are the two most polar and the high molecular mass components of heavy oils. Most of the literature work performed measures organic solvents which are considered as model solvents in a first assumption. These media haw structure too simple compared to oils. That is why we decided to complete this work by experiments in the crude. We shed some light on asphaltenes described as colloidal particles with fractal dimension of 2. Their overlapping, due to numerous polar and hydrogen bonds, responsible for the high viscosity. The contribution of asphaltenes on viscosity is lowered by resins who are able to dissociate aggregates and to reduce the interactions, so to diminish the overlapping The kinetics of formation of bonds involved in asphaltenes overlapping are strongly slower at low temperatures, which implies a shear thinning behavior under sufficiently high shearing. This allow us to describe the crude as a transient network of fractal aggregates. (author)

  15. Potential application of oxygen containing gases to enhance gravity drainage in heavy oil bearing reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Bauer, K. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Lakatos-Szabo, J. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry

    1997-06-01

    In the frame of laboratory studies the effect of air/natural CO{sub 2} mixtures on chemical composition of crude oil and gas phase, the rheological and interfacial properties, the flow mechanism and the safety measures were analyzed. The tests were performed at reservoir conditions (200 bar and 109 C) using natural rock, oil and gas samples. The oxygen content of the gas phase and the gas/oil ratio varied within wide limits. Both crude and asphaltene-free oil were used to determine the consequences of the low temperature oxidation. On the basis of the experimental results it was found that the oxygen content of the cap gas had been completely consumed by the chemical reactions (oxidation, condensation and water formation) before the asphaltene content set in equilibrium. Nearly 9% excess asphaltene formation was observed in both the crude and the asphaltene-free oils. The substantial increase in asphaltene content and the presence of colloidal water results in a measurable change in rheological and interfacial properties. Despite these factors the flow and displacement mechanism is only slightly influenced if the reservoir is of fractured character. On the other hand the in-situ oxidation of this heavy crude oil improves the efficiency of bitumen production and the quality of product used mostly for road construction. As a final statement, it was concluded that replacing the CO{sub 2} with oxygen containing inert gas, the chemical reactions can be in-situ regulated without jeopardizing the recovery efficiency. Application of the artificial gas cap concept opens new perspectives in EOR technology of karstic and fractured reservoirs containing medium and heavy crude oils in those cases where CO{sub 2} or CH gas is not available. (orig./MSK)

  16. The role of nitrogen and sulphur bearing compounds in the wettability of oil reservoir rocks: an approach with nuclear microanalysis and other related surface techniques

    International Nuclear Information System (INIS)

    Mercier, F.; Toulhoat, N.; Potocek, V.; Trocellier, P.

    1999-01-01

    Oil recovery is strongly influenced by the wettability of the reservoir rock. Some constituents of the crude oil (polar compounds and heavy fractions such as asphaltenes with heteroatoms) are believed to react with the reservoir rock and to condition the local wettability. Therefore, it is important to obtain as much knowledge as possible about the characteristics of the organic matter/mineral interactions. This study is devoted to the description at the microscopic scale of the distribution of some heavy fractions of crude oil (asphaltenes) and nitrogen molecules (pyridine and pyrrole) on model minerals of sandstone reservoir rocks such as silica and clays. Nuclear microanalysis, X-Ray Photoelectron Spectroscopy and other related microscopic imaging techniques allow to study the distribution and thickness of the organic films. The respective influences of the nature of the mineral substrate and the organic matter are studied. The important role played by the nitrogen compounds in the adsorption of organic matter is emphasized

  17. Petroleum Resins: Separation, Character, and Role in Petroleum

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Speight, James

    2001-01-01

    are precipitated, adsorbents are added to the n-pentane solutions of the resins and oils, by which process the resins are adsorbed and subsequently recovered by the use of a more polar solvent, and the oils remain in solution. The resin fraction plays an important role in the stability of petroleum and prevents...... separation of the asphaltene constituents as a separate phase. Indeed, the absence of the resin fraction (produced by a variety of methods) from the maltenes influences the ability of the de-resined maltenes to accommodate the asphaltenes either in solution or as a stable part of a colloidal system. In spite....... Suggestions are also made regarding current thoughts of the role of these constituents on the structure and stability of petroleum....

  18. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Hartmut R., E-mail: hartmut.fischer@tno.nl [TNO Technical Sciences, De Rondom 1, 5612 AP Eindhoven (Netherlands); Dillingh, E.C.; Hermse, C.G.M. [TNO Technical Sciences, De Rondom 1, 5612 AP Eindhoven (Netherlands)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Direct measurement of the contact angle between different phases of the microstructure of bitumen and aggregate surfaces of different chemical nature using AFM. Black-Right-Pointing-Pointer Common schema of adhesion of bitumen on aggregates via asphaltene precipitation. Black-Right-Pointing-Pointer Surface roughness/porosity more important than chemical nature for strength of adhesion between aggregate and bitumen. - Abstract: The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in the micro-structure of bitumen, regardless of differences in their chemical nature. The peri/catana-phase shows a preferential wetting due to adsorption of asphaltene aggregates to the mineral surfaces.

  19. On the interfacial interaction between bituminous binders and mineral surfaces as present in asphalt mixtures

    International Nuclear Information System (INIS)

    Fischer, Hartmut R.; Dillingh, E.C.; Hermse, C.G.M.

    2013-01-01

    Highlights: ► Direct measurement of the contact angle between different phases of the microstructure of bitumen and aggregate surfaces of different chemical nature using AFM. ► Common schema of adhesion of bitumen on aggregates via asphaltene precipitation. ► Surface roughness/porosity more important than chemical nature for strength of adhesion between aggregate and bitumen. - Abstract: The interfacial interaction between bituminous binders and several mineral surfaces of different chemical nature as present in asphalt mixtures has been investigated using atomic force microscopy. Several dry mineral surfaces display comparable wetting with respect to the different phases present in the micro-structure of bitumen, regardless of differences in their chemical nature. The peri/catana-phase shows a preferential wetting due to adsorption of asphaltene aggregates to the mineral surfaces.

  20. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  1. PLS models for determination of SARA analysis of Colombian vacuum residues and molecular distillation fractions using MIR-ATR

    Directory of Open Access Journals (Sweden)

    Jorge A. Orrego-Ruiz

    2014-06-01

    Full Text Available In this work, prediction models of Saturates, Aromatics, Resins and Asphaltenes fractions (SARA from thirty-seven vacuum residues of representative Colombian crudes and eighteen fractions of molecular distillation process were obtained. Mid-Infrared (MIR Attenuated Total Reflection (ATR spectroscopy in combination with partial least squares (PLS regression analysis was used to estimate accurately SARA analysis in these kind of samples. Calibration coefficients of prediction models were for saturates, aromatics, resins and asphaltenes fractions, 0.99, 0.96, 0.97 and 0.99, respectively. This methodology permits to control the molecular distillation process since small differences in chemical composition can be detected. Total time elapsed to give the SARA analysis per sample is 10 minutes.

  2. Hydroprocessing Catalysts. Utilization and Regeneration Schemes Catalyseurs d'hydrotraitement. Schémas d'utilisation et de régénération

    OpenAIRE

    Furimsky E.

    2006-01-01

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be perform...

  3. Influence of pore structure and chemical properties of supported Mo catalysts on their performance in upgrading heavy coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Hanaoka, K.; Nomura, M. (Pennsylvania State University, University Park, PA (USA). Dept. of Materials Science and Engineering)

    In the hydroprocessing of solvent-refined coals, both the pore structure and the chemical properties of the catalysts affect the conversion of the heavy materials. Increasing median pore diameter (MPD) of unimodal Ni-Mo/Al[sub 2]O[sub 3] catalysts in the relatively small pore region (up to 150 [angstrom]) enhanced the conversion of both asphaltene and preasphaltene, but further increasing the MPD up to 730 [angstrom] mainly promoted preasphaltene conversion. In the runs of the isolated fractions, however, conversions increased with MPD up to 290 [angstrom] for asphaltene and up to 730 [angstrom] for preasphaltene. The degree of heteroatom removal is also influenced by MPD. There exist preferable pore size ranges for hydrodeoxygenation. Two Mo/SiO[sub 2] and several carbon-coated Ni-Mo/Al[sub 2]O[sub 3] catalysts with different MPD and a commercial Ni-Mo supported on silicated Al[sub 2]O[sub 3] were also compared. The increasing MPD of SiO[sub 2]-supported Mo catalysts increased the conversion of preasphaltene materials. Mo/SiO[sub 2] catalysts are more effective than Ni-Mo supported on Al[sub 2]O[sub 3] and silicated Al[sub 2]O[sub 3] for converting preasphaltene materials, while the latter two are more active for conversion of asphaltene into oil. Another interesting observation is that, for a given MPD range, the carbon-coated Ni-Mo/Al[sub 2]O[sub 3] catalysts gave higher preasphaltene conversions than fresh ones. These results point to the conclusion that larger pore and less acidic hydrogenation catalysts are more effective for preasphaltene conversion, but efficient conversion of asphaltene into oil is facilitated by mild hydrocracking catalysts having appropriate pore size ranges. 43 refs., 8 figs., 9 tabs.

  4. Chemical aspects of shale and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Hackford, J E

    1922-01-01

    To prove that the kerogen in oil shale is a form of bitumen, several experiments were made with oil shale and a heavy asphaltic oil mixed with fuller's earth. When distilled, both the oil shale and asphalt-impregnated fuller's earth yielded paraffin oil, wax, and hydrogen sulfide (if sulfur was present). Both yielded ammonia if nitrogen was present. The organic material in each was partly isolated by extraction with pyridine and appeared to be the same. Oil shale is a marl that was saturated with oil or through which oil has passed or filtered. The insolubilities of its organic compounds are due to a slightly elevated temperature for a prolonged period and to the retaining effect exerted by the finely divided marl. The marl exerted a selective action on the oil and absorbed the asphaltum, sulfur, and nitrogen compounds from the oil. The class of oil evolved from a shale depended on the nature of the original compounds absorbed. Asphaltenes obtained from crude oil by precipitation with ethyl ether produced distillation products of water, hydrogen sulfide, ammonia, oil, wax, and a carbonaceous residue. Water was formed by decomposition of oxyasphaltenes and hydrogen sulfide by decomposition of thioasphaltenes. Ammonia was evolved during decomposition if lime was present, but if there was not sufficient free lime present, pyridine and pyrrole derivatives were redistilled as such. The oil and wax that resulted from the dry distillation were true decomposition products and equaled about 60 weight-percent of the asphaltenes. The oil and wax content of the mixture varied between 8 and 10 percent. The carbonaceous residue, which represented approximately 40 percent of the original asphaltene, was a decomposition product of the asphaltenes. Geologic comparisons of oil-shale deposits and oil-well fields were also made.

  5. The combined use of micro-hydropyrolysis and compound-specific isotope analysis (CSIA) as a novel technique to identify coal-derived biodegraded PAH flux in the complex environment

    Energy Technology Data Exchange (ETDEWEB)

    Cheng-Gong Sun; Gbolagade Olalere; Wisdom Ivwurie; Mick Cooper; Colin Snape [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2007-07-01

    A novel analytical methodology combining CSIA and micro-hydropyrolysis (CSIA/micro-HyPy) has been developed to aid unambiguous source apportionment of PAHs in the complex environment where PAH matrices have been heavily biodegraded and/or their isotopic signatures are overlapping for some sources. Asphaltenes retain useful information of biogeochemical significance, which can be accessed via hydropyrolysis. The PAHs released from hydropyrolysis of asphaltenes, the bound PAHs, from different primary sources (e.g. crude oils, low and high temperature coal tars) were characterized and compared to free aromatics in regard to their molecular and 13C-isotopic profiles. It was found that hydropyrolysis of asphaltenes can generate molecular and isotopic profiles highly representative of their primary sources. For both low and high temperature coal tar, the bound aromatics have broadly similar molecular distributions to their free aromatic counterparts and have {sup 13}C-isotopic values almost identical to those of UK bituminous coals(-23{per_thousand}), indicating that the asphaltenes are actually released as representative fragments of coal structures during carbonization. As expected, the bound aromatics are more 13C-enriched by 1-3 {per_thousand} (-21 to -23{per_thousand}) compared to free aromatics (-24 to -26{per_thousand}). No significant isotopic difference was observed between free and bound aromatics for a North Sea crude oil, all having similar {sup 13}C-isotopic values (-27.2-30.2 {per_thousand}) that are significantly lighter than those for coal-derived aromatics. Applications of this novel methodological CSIA/micro-HyPy technique to samples previously examined from an area around a former carbonization plant have been successfully demonstrated where unambiguous source apportionment could not be achieved previously for the PAHs due to likely environmental alternation. 3 refs., 2 figs., 2 tabs.

  6. A new generation of models for water-in-oil emulsion formation

    International Nuclear Information System (INIS)

    Fingas, M.

    2009-01-01

    Water-in-oil emulsions form after oil or petroleum products are spilled, and can make the cleanup of oil spills difficult. This paper discussed new modelling schemes designed for the formation of water-in-oil emulsions. Density, viscosity, asphaltene and resin contents were used to compute a class index for unstable, entrained water-in-oil states, meso-stable, or stable emulsions. Prediction schemes were used to estimate the water content and viscosity of the water-in-oil states and the time to formation with wave height inputs. A numerical values was used for each type of water-in-oil type. The properties of the starting oil were correlated with the numerical scheme. New regressions were then performed using a Gaussian-style regression expansion technique. Data obtained from the models suggested that water-in-oil types are stabilized by both asphaltenes and resins. The optimized model was then compared with earlier models. The study showed that the new model has the capacity to accurately predict oil-in-water types approximately 90 per cent of the time using only resin, saturate, asphaltene, viscosity, and density data. 17 refs., 8 tabs., 8 figs

  7. The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach.

    Science.gov (United States)

    Sourty, E D; Tamminga, A Y; Michels, M A J; Vellinga, W-P; Meijer, H E H

    2011-02-01

    Selected carbon-rich refinery residues ('binders') mixed with mineral particles can form composite materials ('bituminous concrete') with bulk mechanical properties comparable to those of cement concrete. The microstructural mechanism underlying the remarkable composite properties has been related to the appearance of a rigid percolating network consisting of asphaltenes and mineral particles [Wilbrink M. et al. (2005) Rigidity percolation in dispersions with a structured visco-elastic matrix. Phys. Rev. E71, 031402]. In this paper, we explore the microstructure of thin binder films of varying thickness with a number of microscopic characterization techniques, and attempt to relate the observed microstructure to the distinctive mechanical behaviour. Two binders, only one of which has been proven to be suitable for bituminous concrete were investigated, and their microstructure compared. Both binders show the formation of asphaltene aggregates. The binder suitable for bituminous concrete is distinguished by the fact that the asphaltenes show a stronger tendency towards such aggregation, due to a higher concentration and less stabilization in the maltene phase. They also show a clear affinity to other species (such as waxes) and may act as nucleation sites for crystals and aggregates of those species. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.

  8. Influence of feedstock type on heavy coker gas oil quality; A influencia do tipo de carga na qualidade do gasoleo pesado de coque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Claudine T.A.S.; Barros, Francisco C.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Over the past few years, the great challenge to the Oil Industry has been the processing of increasingly heavier feedstock seeking to meet the growing demand for medium distillates and, at the same time, the reduction of the production of fuel oils. In this scenario, the Delayed Coking Unit (DCU) appears to be an attractive technology for the processing of heavy and ultra heavy crudes. The addition of Asphaltene Residue produced by the Solvent Deasphalting Unit (SDA) to the Vacuum Residue, traditional feedstock of these units, has been a new tendency in the composition of the feedstock, with the intention of converting the residual fractions into value added liquid oil products. Results obtained in pilot plants show that asphaltene residue alters the yield and the quality of the products of the DCU, especially those of Heavy Coker Gas Oil (HKGO) that is incorporated in the feedstock of the Fluid Catalytic Cracking Unit (FCCU). The alteration in the quality of the HKGO negatively impacts on the conservation of the FCCU. The insertion of DCU in refineries that possess SDA in their refining systems has shown itself to be fundamental for the reduction of the production of fuel oils. However, to define the quantity and quality of asphaltene residue to be incorporated in the feedstock of the UCR, the best operating conditions and the necessary project adaptations to this unit are fundamental and they should be analyzed with the objective of maximizing the profitability of the refineries. (author)

  9. Could naphthenic acids be responsible for severe emulsion tightness for a low TAN value oil?

    Energy Technology Data Exchange (ETDEWEB)

    Pauchard, V.; Muller, H.; Al-Hajji, A. [Saudi Aramco, Dhahran (Saudi Arabia). Research and Development Center; Sjoblom, J. [Norwegian Univ. of Technology, Trondheim (Norway). Ugelstad Laboratory; Kokal, S. [Saudi Aramco, Dhahran (Saudi Arabia). EXPEC Advanced Research Center; Bouriat, P.; Dicharry, C. [Univ. de Pau, Pau Cedex (France). Laboratoire des Fluides Complexes, UMR CNRS; Rogers, R. [Florida State Univ., Tallahassee, FL (United States)

    2008-07-01

    This study re-analyzed the emulsion stabilizing properties of a low Total Acid Number (TAN) of a high asphaltene crude oil with respect to the role of naphthenic acids. The emulsion stability depended on the pressure/pH. The high interfacial activity of indigenous acids extracted from the crude oil was determined by means of Ion Exchange Resins and by the high organic acid content in the interfacial material extracted from a sludge emulsion. The physical origin of these phenomenological observations was identified using the Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and pendant droplet experiments. The interfacial material was composed of a mixture of asphaltenes and organic acids having a wide range of structures (monoprotic, diprotic, fatty, naphthenic and perhaps aromatic) and molecular weights. The interfacial rheology was a 2D gel with an assumed glass transition temperature of approximately 40 degrees C. It was concluded that a synergistic effect of asphaltenes and organic acids promoted the build up of a very structured interface. This interface is more resistant to droplets coalescence than less structured interfaces. Therefore, the disruption of the interfacial layer requires the drainage of individual molecules as well as a collective yield of the gel.

  10. Deposition of heavy oil fractions: development of a computational tool to predict oil mixtures compatibility; Deposicao de fracoes pesadas do petroleo: desenvolvimento de uma ferramenta computacional para a previsao da compatibilidade de misturas de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Prucole, Elisia S.; Henriques, Fernanda P.; Silva, Leandro M.; Touma, Silvia L. [PETROBRAS S.A., Rio de de Janeiro, RJ (Brazil)

    2008-07-01

    The remarkable increase in production and processing of national heavy oils is a scenario in which the deposition problem of heavy oil fractions is important, leading to huge losses, not only in economical terms but also in regard to environmental aspects, and can occur in practically all areas of the oil industry. Thus, the knowledge about technology concerning this subject is essential. In terms of heavy fractions, the asphaltenes are the heaviest components of oil and have propensity to aggregate, flocculate, precipitate and be adsorbed on surfaces. The difficulties for modeling the behavior of asphaltenes phases occur because of the high uncertainties which take in the current knowledge about the asphaltenes, their structures, flocculation and precipitation mechanisms and the phenomenon reversibility. The main goal of this work is to propose a predictive methodology for oils compatibility. A fuzzy classifier was implemented in order to predict the compatibility of oil mixtures, assessing whether the mixture condition is stable or not. The results were satisfactory, indicating a good predictive power of the proposed computational tool. (author)

  11. Flow of microemulsion through soil columns contaminated with asphaltic residue; Fluxo de microemulsoes atraves do solo contaminado com residuos asfalticos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia C.K.; Oliveira, Jose F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Oliveira, Roberto C.G.; Gonzalez, Gazpar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2004-07-01

    Nowadays, soil contamination with nonaqueous phase liquids (NAPLs) such as petroleum hydrocarbons is a major environmental problem. Significant efforts have been devoted to the development of processes to remediate sites contaminated with NAPLs. Unfortunately, most of the developed processes proved to be inefficient to remove the organic heavy fraction present in the NAPLs. Nevertheless, in our preliminary bench scale tests it was observed that, due to their high solubilization capacity and stability, microemulsions are able to remove organic heavy fractions like asphaltenes and resins, typically present in crude oils. The present work was dimensioned to evaluate, under up-flow condition, the performance of different microemulsions specially designed to remove asphaltenes fractions from soils using a column test set-up. The contaminant residual concentration was quantified by UV spectroscopy and the microemulsion efficiency determined using mass balance. The results showed that the microemulsions tested have a high capacity for removing asphaltenes fractions from contaminated soils. It was also observed that the predominant removal mechanism, solubilization or mobilization, depends essentially on the microemulsion's chemical formulation. Finally it was verified that microemulsion's formulations based on natural solvents compounds are also efficient for removing asphaltic residues. (author)

  12. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  13. Improving fuel quality by whole crude oil hydrotreating: A kinetic model for hydrodeasphaltenization in a trickle bed reactor

    International Nuclear Information System (INIS)

    Jarullah, A.T.; Mujtaba, I.M.; Wood, A.S.

    2012-01-01

    Highlights: ► Asphaltene contaminant must be removed to a large extent from the fuel to meet the regulatory demand. ► Kinetics for hydrodeasphaltenization are estimated via experimentation and modeling. ► Using the kinetic parameters, a full process model for the trickle bed reactor (TBR) is developed. ► The model is used for simulating the behavior of the TBR to get further insight of the process. ► The influences of operating conditions in the hydrodeasphaltenization process are reported. -- Abstract: Fossil fuel is still a predominant source of the global energy requirement. Hydrotreating of whole crude oil has the ability to increase the productivity of middle distillate fractions and improve the fuel quality by simultaneously reducing contaminants such as sulfur, nitrogen, vanadium, nickel and asphaltene to the levels required by the regulatory bodies. Hydrotreating is usually carried out in a trickle bed reactor (TBR) where hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM) and hydrodeasphaltenization (HDAs) reactions take place simultaneously. To develop a detailed and a validated TBR process model which can be used for design and optimization of the hydrotreating process, it is essential to develop kinetic models for each of these reactions. Most recently, the authors have developed kinetic models for all of these chemical reactions except that of HDAs. In this work, a kinetic model (in terms of kinetic parameters) for the HDAs reaction in the TBR is developed. A three phase TBR process model incorporating the HDAs reactions with unknown kinetic parameters is developed. Also, a series of experiments has been conducted in an isothermal TBR under different operating conditions affecting the removal of asphaltene. The unknown kinetic parameters are then obtained by applying a parameter estimation technique based on minimization of the sum of square errors (SSEs) between the experimental and predicted concentrations of

  14. Model compounds for heavy crude oil components and tetrameric acids: Characterization and interfacial behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Nordgaard, Erland Loeken

    2009-07-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities. The asphaltene class is defined by solubility and consists of several thousand different structures which may behave differently in oil-water systems. The nature of possible sub fractions of the asphaltene has been received more attention lately, but still the properties and composition of such is not completely understood. In this work, the problem has been addressed by synthesizing model compounds for the asphaltenes, on the basis that an acidic function incorporated could be crucial. Such acidic, poly aromatic surfactants turned out to be highly inter facially active as studied by the pendant drop technique. Langmuir monolayer compressions combined with fluorescence of deposited films indicated that the interfacial activity was a result of an efficient packing of the aromatic cores in the molecules, giving stabilizing interactions at the o/w interface. Droplet size distributions of emulsions studied by PFG NMR and adsorption onto hydrophilic silica particles demonstrated the high affinity to o/w interfaces and that the efficient packing gave higher emulsion stability. Comparing to a model compound lacking the acidic group, it was obvious that sub fractions of asphaltenes that contain an acidic, or maybe similar hydrogen bonding functions, could be responsible for stable w/o emulsions. Indigenous tetrameric acids are the main constituent of calcium naphthenate deposits. Several synthetic model tetra acids have been prepared and their properties have been compared to the indigenous

  15. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    International Nuclear Information System (INIS)

    Fingas, Merv; Fieldhouse, Ben; Mullin, Joe

    1999-01-01

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy

  16. Hydrocarbons dating by Re-Os method: experimental study of the Re-Os couple geochemical behaviour in oils during the evolution of a petroleum system

    International Nuclear Information System (INIS)

    Mahdaoui, Fatima

    2013-01-01

    The Re-Os radiogenic system is well adapted to the dating of oils and bitumen. However the meaning of the obtained age is ambiguous. This is mainly due to gaps in our knowledge of the geochemical behavior and the speciation of Re and Os in oils. Specifically, use of the Re-Os geo-chronometer requires an understanding of how Re-Os behavior can lead to the fulfillment of the conditions necessary for the development of an isochron. These conditions are: i) the isotopic homogenization of oils at the scale of a petroleum field ii) the fractionation of Re from Os so as to obtain samples with various Re/Os ratios iii) the closure of the system during the period of radiogenic ingrowth of the daughter isotope, that is, from the time of the event of interest to the present day. Experimental investigation of the organic geochemical behavior of Re and Os in oils under various conditions, designed as analogs of the different stages of petroleum generation and evolution, were performed in order to evaluate the use of the Re-Os system as a geo-chronometer in the context of a direct use on petroleum. The possibility of Re-Os fractionation resulting from asphaltene loss during oil evolution was investigated by sequential asphaltene precipitation in the laboratory. This study determined that Re and Os are mainly located in the most polar asphaltene fractions, that is, in the first to precipitate. This study also demonstrated that Re/Os ratios are not disturbed by asphaltene loss during the evolution of oils, unless this loss is unrealistically large. Thus asphaltene precipitation during migration and emplacement is not responsible for the Re/Os fractionation required for the use of the geo-chronometer. The possibility of metal transfer from formation waters to petroleum was studied by performing contact experiments between oils and aqueous solutions of Re and Os of various concentrations over a wide range of temperatures and for varying periods of time. This study demonstrated a

  17. Improvement of Heavy Oil Recovery in the VAPEX Process using Montmorillonite Nanoclays Amélioration de la récupération d’huile lourde par utilisation de nanoargiles de Montmorillonite dans le procédé VAPEX

    Directory of Open Access Journals (Sweden)

    Pourabdollah K.

    2011-10-01

    Full Text Available In this paper, the nanoclay particles were introduced as mobile adsorbents in oil reservoirs to adsorb the asphaltenes, reduce the viscosity and enhance the dispersion. The objective of this paper is experimental investigation of enhanced heavy oil recovery using in situ nanoparticles for the first time. Moreover, two thermal analysis methods (thermogravimetry and differential thermal analysis were used to analyze the asphaltene content of residue hydrocarbons in the swept chambers in nano-assisted and conventional VAPEX processes. Experiments were carried out using Iranian heavy oil and propane: the setup consisted of two sand-packed cells; one packed only with glass beads as the oil matrix and the other with glass beads and modified montmorillonite as the nanoclay, while they had similar porosity and permeability. The content of deposited asphaltene in swept matrixes, the propagation pattern of vapor chambers in heavy oil matrixes, and the rates of solvent consumption and oil production were determined. The results elucidated that montmorillonite changed the matrix heterogeneity and led to forming enhanced breakthroughs, to increasing the interfacial surface of vapor/bitumen and to accelerating the oil production. It was found that not only was the rate of vapor injection diminished, but the heavy oil recovery was also markedly enhanced by 30(±4%. Dans cet article, on decrit l’utilisation de particules de nanoargile en tant qu’adsorbant mobile dans des reservoirs d’huile afin d’adsorber les asphaltenes, reduire la viscosite de l’huile et renforcer la dispersion. L’objectif de cet article consiste en la description d’une etude experimentale de recuperation amelioree d’huile lourde par l’utilisation de nanoparticules in situ. Ce qui constitue une premiere. En outre, deux methodes d’analyse thermique (thermogravimetrie et analyse thermique differentielle ont ete utilisees pour analyser la teneur en asphaltene des residus d

  18. Naphthenic acids hydrates of gases: influence of the water/oil interface on the dispersing properties of an acidic crude oil; Acides naphteniques hydrates de gaz de l'interface eau/huile sur les proprietes dispersantes d'un brut acide

    Energy Technology Data Exchange (ETDEWEB)

    Arla, D.

    2006-01-15

    Nowadays, the development of offshore oil production under increasing water depths (high pressures and low temperatures) has led oil companies to focus on gas hydrates risks. Hydrates are crystals containing gas and water molecules which can plug offshore pipelines. It has been shown that some asphaltenic crude oils stabilize water-in-oil emulsions (W/O) during several months and exhibit very good anti-agglomerant properties avoiding hydrate plugs formation. In this work, we have studied the 'anti-hydrate' properties of a West African acidic crude oil called crude AH. This oil contains naphthenic acids, RCOOH hydrocarbons which are sensitive to both the pH and the salinity of the water phase.The emulsifying properties of the crude AH have firstly been explored. It has been shown that heavy resins and asphaltenes are the main compounds of the crude AH responsible for the long term stability of the W/O emulsions whereas the napthenates RCOO{sup -} lead to less stable W/O emulsions. Dealing with hydrates, the crude AH exhibits moderate anti-agglomerant properties due to the presence of heavy resins and asphaltenes. However, the naphthenates RCOO{sup -} drastically increase the formation of hydrate plugs. Moreover, it has been pointed out that hydrate particles agglomeration accelerates the kinetics of hydrate formation and enhances the water/oil separation. In order to explain these behaviours, a mechanism of agglomeration by 'sticking' between a hydrate particle and a water droplet has been proposed. Finally, we have developed a model which describes the physico-chemical equilibria of the naphthenic acids in the binary system water/crude AH, in order to transpose the results obtained in the laboratory to the real oil field conditions. (author)

  19. Direct measurement of oxygen in brown coals and carbochemical products by means of fast neutron analysis

    International Nuclear Information System (INIS)

    Raeppel, P.; Foerster, H.

    1990-01-01

    Analyses of elemental oxygen by means of fast neutron activation permit high-accuracy measurements of oxygen concentrations in East German brown coal; this applies to run-of-mine brown coal as well as to demineralized brown coal. The relative error was 4% in the first case and 2% in the latter case. Pre-washing with 1n ammonium acetate solution permits direct analyses of the oxygen bonded to the coal minerals. The method is applicable to other carbonaceous materials, e.g. coal ashes, solid hydrogenation residues, cokes, coal extracts, asphaltenes, oils, etc., at oxygen concentrations of 1-50%. (orig.) [de

  20. Caracterización y clasificación geoquímica de asfaltitas cubanas Geochemical characterization and classification of Cuban asphaltites

    Directory of Open Access Journals (Sweden)

    Zulema Dominguez

    2008-01-01

    Full Text Available Traditional biomarker parameters and aromatic compounds were applied to characterize and classify ten Cuban asphaltites (asphaltene-rich petroleum occurring as seeps or filling veins, joints, cavities and fissures. Genetic molecular parameters were compared in order to establish oil-oil correlations between samples. Thermal evolution was investigated using saturated biomarker and aromatic maturity parameters. All samples seem to represent petroleum in the early catagenetic stage. Statistical procedures used as auxiliary techniques show that they represent oils of Family II (marine anoxic carbonate sourced oils, except for 2 samples interpreted as belonging to Family III oils (normal marine siliciclastic suboxic sourced oils.

  1. Identification of nitrogen compounds and amides from spent hydroprocessing catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H.K.; Gray, M.R. (University of Alberta, Edmonton, AB (Canada). Dept. of Chemical Engineering)

    1991-06-01

    A spent commercial naphtha hydrotreating catalyst was analyzed to identify compounds which had accumulated on the catalyst surface during its active life. The catalyst was extracted with methylene chloride, methanol and pyridine to remove adsorbed organic material, which was rich in nitrogen and oxygen. A series of quinolones were identified in the methanol extract after enrichment with HCl-modified silica gel adsorption and subsequent silica gel chromatography. Tetra- and hexahydroquinolones with alkyl substituents up to C{sub 3} were identified. Similar amides have been identified in asphaltenes, and are very resistant to hydrogenation. Tetrahydroquinolines and piperidines were detected in the pyridine extract. 36 refs., 8 figs., 2 tabs.

  2. Land treatment of produced oily sand

    International Nuclear Information System (INIS)

    Bleckmann, C.A.; Wilson, E.J.; Hayes, K.W.; Hercyk, N.L.

    1995-01-01

    Land treatment successfully treated oily waste generated during the production of crude oil. More than 13 years of safe operations demonstrated the environmental acceptability of the method. Nearly 80% of the applied waste oil was removed by natural biodegradation processes. The oily fraction of the waste was found to have an average half-life in the soil of approximately 3 years, with significant variability between years. There was a slight increase in the proportion of heavy hydrocarbons (resins and asphaltenes) in the soil, suggesting the preferential degradation of the lighter constituents

  3. Upgrading including heteroatom removal from Victorian brown coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Larkins, F.P.; Youings, J.C.; Jackson, W.R.; Park, D. (University of Tasmania, Hobart, Tasmania (Australia))

    1989-10-01

    It has been shown using model compounds that the hydrodeoxygenation performance of a catalyst is severely inhibited by the presence of nitrogen-containing compounds under conditions of moderate reaction severity. For a low molecular weight coal-derived liquid commercial catalysts were effective for HDO and HDN at 400{degree}C, 10 MPa H{sub 2} for 30 min reaction time. For a coal-derived liquid high in asphaltene commercial catalysts and others prepared and tested in this study were ineffective. Alternative catalysts and hydrotreating conditions of greater severity will be required for such materials to effect acceptable heteroatom removal. 3 refs., 2 figs., 2 tabs.

  4. De-emulsifiers for water-in-crude oil-emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, N. [Egyptian Petroleum Research Inst. (EPRI), Cairo (Egypt); Al-Sabagh, A. [Egyptian Petroleum Research Inst. (EPRI), Cairo (Egypt)

    1997-01-01

    The efficiency of 18 different polyalkylphenols-polyalkylene-polyamines-formaldehyde ethoxylates (PAPAFE) in the deemulsification of water-in-crude oil-emulsion were studied. In this respect, two naturally occurring Egyptian water-in-curde oil-emulsions were used to test the investigated de-emulsifiers. The effect of the variation in the molecular structure of the (PAPAFE) on their de-emulsification potency is investigated. The investigation reveals that de-emulsifiers containing nonyl phenol reduce crude oil-water interfacial tension (IFT) and are more efficient than those containing dodecyl phenol. PAPAFE containing more amino groups are found to have better emulsion breaking ability. This is attributed to their enhanced ability to solubilize asphaltenes, which are the prime motivators for crude oil-water emulsion stability. They drag asphaltenes crosslinked at the water-crude oil interface and consequently, resulting in a substantial decrease in emulsion stability. There exists an optimum hydrophilic-lipophilic balance (HLB) for the investigated PAPAFE, ranging from 12 to 13.5 at which their maximum de-emulsification ability is attained. All studied PAPAFE showed increased de-emulsification performance by increasing the temperature from 50 to 70 C. Increasing the temperature reduces the viscosity of the crude oil continuous phase and increases the rate of diffusion of both the surfactant molecules and the dispersed water droplets. This will cause an increase in the rate of coalescence of the water droplets. (orig.) [Deutsch] Es wurde die Wirkung von 18 verschiedenen Polyalkylphenolpolyalkylenpolyamine-formaldehydethoxylaten (PAPAFE) bei der Demulgierung von Wasser-in-Rohoel-Emulsionen untersucht. Zwei in Aegypten natuerlich vorkommende Wasser-in-Rohoel-Emulsionen wurden fuer die Versuche eingesetzt, dabei wurde der Einfluss der molekularen Struktur der PAPAFEs auf das Demulgiervermoegen untersucht. Es zeigte sich, dass Demulgatoren mit Nonylphenol die

  5. EPR and Fluorescence Spectroscopy in the Photodegradation Study of Arabian and Colombian Crude Oils

    Directory of Open Access Journals (Sweden)

    Carmen L. B. Guedes

    2006-01-01

    W/m2. The reduction in the linewidth of the free radical of 9.8% in Arabian oil and 18.5% in Colombian oil, as well as the decrease in radical numbers, indicated photochemical degradation, especially in Colombian oil. The linewidth narrowing corresponding to free radicals in the irradiated oils occurred due to the rearrangement among radicals and aromatic carbon consumption. The irradiated oils showed a reduction in the relative intensity of fluorescence of the aromatics with high molecular mass, polar aromatics, and asphaltene. The fluorescent fraction was reduced by 61% in Arabian oil and 72% in Colombian oil, corresponding to photochemical degradation of crude oil aromatic compounds.

  6. Low-temperature thermal decomposition of heavy petroleum distillates: interconnection between the electrical properties and concentration of paramagnetic centres

    Science.gov (United States)

    Dolomatov, M.; Gafurov, M.; Rodionov, A.; Mamin, G.; González, L. Miquel; Vakhin, A.; Petrov, A.; Bakhtizin, R.; Khairudinov, I.; Orlinskii, S.

    2018-05-01

    Changes of paramagnetic centers (PC) concentration in petroleum dispersed systems (PDS) are studied in the process of low-temperature thermolysis. Complex investigation of physicochemical, rheological and electrophysical properties of high-boiling oil fractions is performed. Based on the analysis of the experimental results it can be concluded that the PDS under investigation can be regarded as amorphous broadband organic semiconductors for which PC plays a role of dopant. It shows the perspectives of the asphaltenes usage as a basis for the photovoltaic devices.

  7. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    International Nuclear Information System (INIS)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M.

    1996-01-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  8. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2015-11-05

    high in water content, are less corrosive owing to their elevated viscosity and resulting low conductivity (᝺-7 S/cm) [30]. Asphaltenes and resins...wet surface to a water-wet surface. Sludge deposits are combinations of hydrocarbons, sand, clay , corTosion prod- ucts, and biomass that can reach 50...fine clay sun·ounded by a film of water. Under low flow conditions, these particles precipitate and form a sludge deposit. 27.4 TESTING 27 .4.1 A

  9. Catalyst for the use in the hydrotreatment of a heavy hydrocarbon oil, process to its preparation and process to its use

    Energy Technology Data Exchange (ETDEWEB)

    Shiroto, Y; Higashi, T; Ono, T

    1981-10-01

    A catalyst with an improved surface activity and a maintained selectivity is used in the decomposition of asphaltenes and the removal of heavy metals from a heavy hydrocarbon oil by hydrotreatment. The catalyst carrier consists of a calcined combination of a mixture from a clay mineral with double chain structure and at least one oxide-forming substance with a metal from the groups II A, III A, IV A or IV B of the periodic system. The catalytic metal component is selected from the groups V B, VI B, VIII or I B of the periodic system.

  10. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  11. Should you trust your heavy oil viscosity measurement?

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)

    2003-07-01

    For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.

  12. Wettability Studies Using Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2015-01-01

    Full Text Available Wettability studies have been carried out on reservoir rocks using different techniques such as the Amott-Harvey method, the USBM method, and the contact angle method, all with limitations. In this study, the wettability is studied by discussing the surface charge using zeta potential measurements. The study relies on the finding that carbonated reservoir rocks, consisting of CaCO3 mainly, are positively charged and their surface has the potential to adsorb significant quantities of anions. Moreover, heavy fractions such as asphaltenes are reported to remain afloat depending on dispersive forces present in the oil and its various fractions. Experiments are carried out on aqueous limestone suspension with the addition of crude oil. The experiment is repeated with the use of polymeric inhibitors, A and B. The zeta potential is found to alter depending on the sequence of polymeric inhibitor in oil/water addition. The inhibitor is found to adsorb on the limestone surface, with a net negative charge, causing repulsion between crude oil and the inhibitor and, hence, preventing the deposition of heavy fractions and particularly asphaltenes. This study gives a comprehensive insight on the mechanism of polymeric inhibitor interaction with the surface and the effect of wettability on its performance.

  13. A study of light hydrocarbons (C{sub 4}-C{sub 1}3) in source rocks and petroleum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Odden, Wenche

    2000-07-01

    This thesis consists of an introduction and five included papers. Of these, four papers are published in international journals and the fifth was submitted for review in April 2000. Emphasis has been placed on both naturally and artificially generated light hydrocarbons in petroleum fluids and their proposed source rocks as well as direct application of light hydrocarbons to oil/source rock correlations. Collectively, these papers describe a strategy for interpreting the source of the light hydrocarbons in original oils and condensates as well as the source of the asphaltene fractions from the reservoir fluids. The influence of maturity on light hydrocarbon composition has also been evaluated. The papers include (1) compositional data on the light hydrocarbons from thermal extracts and kerogen pyrolysates of sediment samples, (2) light hydrocarbon data of oils and condensates as well as the pyrolysis products of the asphaltenes from these fluids, (3) assessment of compositional alteration effects, such as selective losses of light hydrocarbons due to evaporation, thermal maturity, phase fractionation and biodegradation, (4) comparison of naturally and artificially generated light hydrocarbons, and (5) compound-specific carbon isotope analysis of the whole range of hydrocarbons of all sample types. (author)

  14. Report on the achievements in research and development of a coal liquefaction technology in the Sunshine Project in fiscal 1981. Development of a solvent extraction and liquefaction plant (research and development of solid-liquid separation process); Sekitan ekika gijutsu no kenkyu kaihatsu, yozai chushutsu ekika plant no kaihatsu, koeki bunriho no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-03-01

    Among researches on solvent extraction and liquefaction technologies in the Sunshine Project in fiscal 1981, this paper describes the achievements in development of a solid-liquid separation technology. In the research of operation of a centrifugal separation device, a solid-liquid separation test was performed on slurry extracted from the Australian Wandoan coal being sub-bituminous coal. The deliming rate has reached 99% equilibrium at an addition rate of 20% by weight of anti-solvent (a kind of normal paraffin, which reduces solubility of part of coal extracts and enhances removal rates of ash and solids by utilizing coagulating action of the extracts). Asphaltene among the liquefaction formed materials may be recovered nearly completely, but the recovery rate for pre-asphaltene was lower. An operation test was also carried out by using slurry extracted in a 1 t/d experimental plant. In the study on operation of a 5-l/h continuous sedimentation and separation device, a maximum effect was derived with addition of anti-solvent at 25% by weight and at a stirring rate of 700 rpm. The solid-liquid separability changes depending on the kind of slurry. The low conversion rate slurry becomes difficult of separation because its viscosity is high and the difference in density between solids and liquid is small. Furthermore, the high conversion rate slurry has become difficult of separation due to small particle size of the solids. (NEDO)

  15. Prediction of ecotoxicity of hydrocarbon-contaminated soils using physicochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wong, D.C.L.; Chai, E.Y.; Chu, K.K.; Dorn, P.B.

    1999-11-01

    The physicochemical properties of eight hydrocarbon-contaminated soils were used to predict toxicity to earthworms (Eisenia fetida) and plants. The toxicity of these preremediated soils was assessed using earthworm avoidance, survival, and reproduction and seed germination and root growth in four plant species. No-observed-effect and 25% inhibitory concentrations were determined from the earthworm and plant assays. Physical property measurements and metals analyses of the soils were conducted. Hydrocarbon contamination was characterized by total petroleum hydrocarbons, oil and grease, and GC boiling-point distribution. Univariate and multivariate statistical methods were used to examine relationships between physical and chemical properties and biological endpoints. Soil groupings based on physicochemical properties and toxicity from cluster and principal component analyses were generally similar. Correlation analysis identified a number of significant relationships between soil parameters and toxicity that were used in univariate model development. Total petroleum hydrocarbons by gas chromatography and polars were identified as predictors of earthworm avoidance and survival and seed germination, explaining 65 to 75% of the variation in the data. Asphaltenes also explained 83% of the variation in seed germination. Gravimetric total petroleum hydrocarbons explained 40% of the variation in earthworm reproduction, whereas 43% of the variation in plant root growth was explained by asphaltenes. Multivariate one-component partial least squares models, which identified predictors similar to those identified by the univariate models, were also developed for worm avoidance and survival and seed germination and had predictive powers of 42 and 29%, respectively.

  16. Mousse photochemistry formation; Formacao fotoquimica de mousse

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, George W.M.; Nicodem, David E. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica]. E-mail: gwallace_iq@yahoo.com.br; nicodem@iq.ufrj.br

    2003-07-01

    The petroleum, when spilled in the sea it forms an emulsion of water in oil could contain up to 90% of water. This emulsion, called Mousse of Chocolate, it can be very stable, taking to the increase of the environmental impact and impeding the microbiological degradation. It was observed that the petroleum, when irradiated with solar light, it forms Mousse more easily. However, same being known about the importance of the action of the light in the formation of Mousse, little it is known regarding the processes and conditions involved in the formation of Mousse. This project proposes the study of the process of formation of Mousse, in function of the suffered transformations for petroleum after solar irradiation. We will study the relationship between the stability and formation of Mousse and the present amount of asphaltenes in the petroleum as a result of the irradiation. We will develop a methodology for analysis of emulsions of water in petroleum, in way we know her/it the stability of the emulsion in function of the time and the amount of water in the same. We will study the behavior of a sample of Brazilian petroleum of Campos' Basin, already used in other photochemistry studies. We will analyze the effect of the time of irradiation in the asphaltenes formation and Mousse. We will also analyze other types of petroleum, for us to compare results with obtained them in the Brazilian petroleum. (author)

  17. Characterization of oily sludge from a refinery and biodegradability assessment using various hydrocarbon degrading strains and reconstituted consortia.

    Science.gov (United States)

    Jasmine, Jublee; Mukherji, Suparna

    2015-02-01

    Oily sludge obtained from a refinery in India contained 10-11% oil associated with fine particulates. Along with Fe, Ca and Mg various toxic elements were associated with the sludge solids (Pb, Mn, Cu, Zn, As, Bi, Cd, Cr, Co, Ni and V). The oil contained 41-56% asphaltenes and the maltenes comprised of 49 ± 4%, 42 ± 2% and 4 ± 2%, aliphatic, aromatic and polar fractions, respectively. Biodegradation studies with the maltene fraction of oil provided as sole substrate revealed higher degradation by various 3-5 membered reconstituted consortia compared to pure bacterial strains and up to 42 ± 8% degradation could be achieved over 30 days. In contrast, over the same period up to 71.5 ± 2% oil degradation could be achieved using dried oily sludge (15% w/v) as sole substrate. Significant biodegradation observed in the un-inoculated controls indicated the presence of indigenous microorganisms in oily sludge. However, large variability in oil degradation was observed in the un-inoculated controls. Greater biodegradation of the maltene fraction led to significant enrichment of asphaltenes in residual oil associated with the sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Production of jet fuel using heavy crude oil; Producao de combustiveis de aviacao a partir de petroleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The production of heavy crude oils increased in the last years in the world. Crude oils with high density, viscosity, acidity and sulfur, nitrogen, metals and asphaltenes contents, by the others hand, low stability and low product quality. The challenger of many refiners is find solutions to refine the heavy crude oils, and produce fuels with certify quality, such as Jet Fuel. The principal aviation technique on the world work with gas turbines engines feted for jet fuel (JET A1). The quality specifications of this fuel are establish by International Norms: ASTM-1655, DEF STAN 91-91-3 (DERD 2494) and joint Fuelling System Check List. The world technologies to obtain jet fuel from mixtures of heavy crude oil with middle crude oils are: Atmospheric distillation, with a posterior hydrogenation and finally the additivation. Studies carried out have demonstrates that the Cubans heavy crude oils is characterized for having API less than 10, raised viscosity, high sulfur content (>6%) and asphaltenes content (more than 15%). These properties provide to its derivatives of low quality. This paper define the characteristic of Cuban heavy crude oil, the technology and operational conditions to produce jet fuel (Jet A1) and the quality of fuel produced. (author)

  19. Enhanced biodegradation of asphalt in the presence of Tween surfactants, Mn(2+) and H2O2 by Pestalotiopsis sp. in liquid medium and soil.

    Science.gov (United States)

    Yanto, Dede Heri Yuli; Tachibana, Sanro

    2014-05-01

    Asphalt and fractions thereof can contaminate water and soil environments. Forming as residues in distillation products in crude oil refineries, asphalts consist mostly of asphaltene instead of aliphatics, aromatics, and resins. The high asphaltene content might be responsible for the decrease in bioavailability to microorganisms and therefore reduce the biodegradability of asphalt in the environment. In this study, the effect on asphalt biodegradation by Pestalotiopsis sp. in liquid medium and soil of nonionic Tween surfactants in the presence of Mn2+ and H2O2 was examined. The degradation was enhanced by Tween 40 or Tween 80 (0.1%) in the presence of Mn2+ (1 mM) and H2O2 (0.05 mM). A Tween surfactant, Mn2+, and H2O2 can overcome bioavailability-mediated constraints and increase ligninolytic activities, particularly manganese peroxidase and laccase activities. The study is significant for the bioremediation of asphalt and/or viscous-crude oil-contaminated environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Vacuum Distillation Residue Upgrading by an Indigenous Bacillus Cereus

    Directory of Open Access Journals (Sweden)

    Mitra Sadat Tabatabaee

    2013-07-01

    Full Text Available Background:Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly.Results:A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332. This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR, as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively.Conclusion:Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  1. Vacuum distillation residue upgrading by an indigenous Bacillus cereus.

    Science.gov (United States)

    Tabatabaee, Mitra Sadat; Mazaheri Assadi, Mahnaz

    2013-07-16

    Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly. A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332). This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR), as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively. Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  2. Reactivity study on thermal cracking of vacuum residues

    Science.gov (United States)

    León, A. Y.; Díaz, S. D.; Rodríguez, R. C.; Laverde, D.

    2016-02-01

    This study focused on the process reactivity of thermal cracking of vacuum residues from crude oils mixtures. The thermal cracking experiments were carried out under a nitrogen atmosphere at 120psi between 430 to 500°C for 20 minutes. Temperature conditions were established considering the maximum fractional conversion reported in tests of thermogravimetry performed in the temperature range of 25 to 600°C, with a constant heating rate of 5°C/min and a nitrogen flow rate of 50ml/min. The obtained products were separated in to gases, distillates and coke. The results indicate that the behaviour of thermal reactivity over the chemical composition is most prominent for the vacuum residues with higher content of asphaltenes, aromatics, and resins. Finally some correlations were obtained in order to predict the weight percentage of products from its physical and chemical properties such as CCR, SARA (saturates, aromatics, resins, asphaltenes) and density. The results provide new knowledge of the effect of temperature and the properties of vacuum residues in thermal conversion processes.

  3. Di- or polysulphide-bound biomarkers in sulphur-rich geomacromolecules as revealed by selective chemolysis

    Science.gov (United States)

    Kohnen, Math E. l.; Sinninghe Damsté, Jaap S.; Kock-van Dalen, A. c.; Jan, W. De Leeuw

    1991-05-01

    Three types of sulphur-rich high-molecular-weight material in the alkylsulphide, the polar, and the asphaltene fractions isolated from the bitumen of an immature bituminous shale from the Vena del Gesso basin (Italy) were desulphurised using Raney Ni and were treated with MeLi/MeI, a chemical degradation method which cleaves selectively and quantitatively di- or polysulphide linkages. The products formed were characterised by gas chromatography-mass spectrometry. Raney Ni desulphurisation revealed that these S-rich macromolecules are in substantial part composed of sulphur-linked biomarkers with linear, branched, isoprenoid, steroid, hopanoid, and carotenoid carbon skeletons. MeLi/Mel treatment provided evidence that a major part of the total amount of macromolecularly bound biomarkers are linked via di- or polysulphide moieties to the macromolecular network. Since the di- or polysulphide linkages are attached at specific positions of the bound biomarkers it is proposed that they are formed by intermolecular incorporation reactions of HS x- into low-molecular-weight functionalised biological lipids during early diagenesis. The different properties (solubility and molecular weight) of the sulphur-rich macromolecules in the alkylsulphide, the resin, and the asphaltene fractions can be explained simply by differences in degree of sulphur cross-linking.

  4. Computer simulation of deasphalting vacuum residues in a pilot unit; Simulacao computacional de desasfaltacao de residuo de vacuo realizada em unidade piloto

    Energy Technology Data Exchange (ETDEWEB)

    Concha, Viktor Oswaldo Cardenas; Quirino, Filipe Augusto Barral; Koroisgi, Erika Tomie; Rivarola, Florencia Wisnivesky Rocca; Maciel, Maria Regina Wolf; Maciel Filho, Rubens [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica; Medina, Lilian Carmen; Barros, Ricardo Soares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In the context of the national petroleum industry, it is interesting to keep the production of the paraffinic lubricant oil type I, which implies in the identification of new loads to ensure the feeding of the existing units. Therefore, it is important to carry out carefully the characterization of the oils, defining its potential for fuel, asphalt and lubricant. Aiming to introduce in the characterization and evaluation of petroleum for lubricant, carried out by PETROBRAS/CENPES, information of basic oils, more similar to industrial oils, was built up in the Laboratory of Process Separation Development - LDPS of UNICAMP/FEQ, a deasphalting pilot unit. In this work, the deasphalting process of a vacuum residue of Brazilian petroleum is simulated, using Aspen Plus{sup R} simulator, in order to remove asphaltenes, resins and other heavy components of vacuum residue. The simulations were carried out considering the configuration of the pilot plant, evaluating the extraction in near-critical operational condition applied to a petroleum, using propane as the solvent. The extraction efficiency and the solvent power were evaluated considering variations in temperature, pressure and in the solvent/feed ratio in order to obtain yields with more efficiency in the production of deasphalted oil (DAO), what means more asphaltene removal. (author)

  5. Method of determining pressure dorps for various flow rates in the gas/oil pipeline Atun to Punta de Piedra to Poza Rica

    Energy Technology Data Exchange (ETDEWEB)

    Colin, M R; Chavez, P J

    1973-02-01

    There were considerable differences between the pressure drops calculated by the Bertuzzi, Tek, and Poettman for 2-phase flow in marine pipelines from offshore wells, a 16-in. onshore line to Poza Rica, and those actually measured. It was concluded that: (1) the Bertuzi et al. methods are not representative of the actual conditions in that they do not take into account the differences of elevation along the line, especially hills; (2) the method of Flanigan (OGJ 3/10/58) was found to be more adaptable to the actual conditions; (3) for the multiphase flow in the marine lines, it was indispensable to maintain a gas velocity of not less than 5 ft/sec, which largely eliminates asphaltene accumulation in the lines; (4) for the land portion of the line (29 km), the primary conclusion was that to transport 1,000 to 5,000 cu m/day at optimum pressure conditions, there is required a gas volume of the order of 30 MMcfd; and (5) injection of heavy aromatics was necessary to dissolve the deposited asphaltenes when the above gas velocity was not maintained. (10 refs.)

  6. Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO- and PdO-Functionalized SiO2 Nanoparticulated Catalysts

    Directory of Open Access Journals (Sweden)

    Luisana Cardona

    2018-03-01

    Full Text Available This work aims to investigate the effect of active catalytic nanoparticles on the improvement of the efficiency in recovery of a continuous steam injection process. Catalytic nanoparticles were selected through batch-adsorption experiments and the subsequent evaluation of the temperature for catalytic steam gasification in a thermogravimetric analyzer. A nanoparticulated SiO2 support was functionalized with 1.0 wt % of NiO and PdO nanocrystals, respectively, to improve the catalytic activity of the nanoparticles. Oil recovery was evaluated using a sand pack in steam injection scenarios in the absence and presence of a 500 mg/L SiNi1Pd1 nanoparticles-based nanofluid. The displacement test was carried out by constructing the base curves with water injection followed by steam injection in the absence and presence of the prepared treatment. The oil recovery increased 56% after steam injection with nanoparticles in comparison with the steam injection in the absence of the catalysts. The API gravity increases from 7.2° to 12.1°. Changes in the asphaltenes fraction corroborated the catalytic effect of the nanoparticles by reducing the asphaltenes content and the 620 °C+ residue 40% and 47%, respectively. Also, rheological measurements showed that the viscosity decreased by up to 85% (one order of magnitude after the nanofluid treatment during the steam injection process.

  7. Managing hydrogen and molecules in bitumen upgrading : technology and research opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    An innovative concept in oil sands mining, extraction and upgrading was presented with reference to selectively removing metals. The approach presently used to upgrade bitumen is to drive the properties of slurry mixtures closer to conventional crude oils. However, it is necessary to remove unwanted contaminants and to convert nearly all of the vacuum residues. The yield and value of the final product can be improved by maximizing the hydrogen content of the liquid products. The currently used and proposed upgrading methods are based on technologies developed between 1929 and 1954, including coking, hydrotreating, hydroconversion, and gasification. This study compared the main technologies for upgrading in terms of management of raw materials and hydrogen. The feasibility of improving recovery by using new approaches to separate bitumen was considered. It was concluded that the rejection of large fractions of bitumen as coke or asphaltenes is undesirable. New thermal process face design challenges such as distillation versus cracking coking and fouling. There is much potential for breakthrough in asphaltene precipitation technologies, based on paraffinic froth treatment concepts. tabs., figs.

  8. Evolution of wettability in terms of petroleum and petroleum fractions adsorption. An approach by the Wilhelmy method; Evolution de la mouillabilite en fonction de l`adsorption du petrole et de ses fractions. Approche par la methode des angles de contact dynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Mattos Saliba, A

    1996-12-06

    Reservoir wettability is very important to petroleum recovery by waterflooding and other processes. It is a key parameter controlling multiphase flow and fluids distribution in a porous medium. Nevertheless, the original water-wetness can be modified by the petroleum`s natural surfactants (asphaltenes and resins) adsorption onto the rock surface. This adsorption may reduce petroleum recovery. In this study, the adsorption of model molecules (pyridine and benzo-quinoline), of rude oil and of its heavier fractions (asphaltenes and resins) has been investigated in terms of wettability alteration for initially water-wet surfaces (glass or quartz). In this case, the dynamic Wilhelmy plate technique provides quantitative values of wetting preference to either oil or water. The results show that, at ambient conditions, adsorption depends on concentration, adsorbent/adsorbate interaction time, pH, solvent type, substrate surface, brine concentration and environment liquid phase (water or oil). However, the initial water film on the surface does not strongly influence this phenomena. (author) 222 refs.

  9. Chemical structure investigation on SFEF fractions of Dagang vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Yan, G.; Zhao, S.; Guo, S. [China Univ. of Petroleum, Beijing (China). State Key Laboratory of Heavy Oil Processing; Zhang, Z. [Beijing Aeronautical Technology Research Center, Beijing (China)

    2006-07-01

    One of the most important problems in petroleum chemistry is the molecular structure and composition of heavy oil fractions and its importance in applications pertaining to the recovery, refining, and upgrading of petroleum. This paper presented an investigation into the chemical structure on supercritical fluid extraction and fraction (SFEF) factions of Dagang vacuum residue. Dagang vacuum residue was cut into sixteen fractions and a tailing with SFEF instrument. Then, using a chromatography, all SFEF fractions were further separated into four group compositions, notably saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltenes (SARA). Last, the chemical structure was explored through a thorough analysis of the products from the ruthenium ions-catalyzed oxidation (RICO) reaction of those aromatics, resins and asphaltenes. The paper discussed the experiment in terms of samples and chemicals; supercritical fluid extraction and fraction; SARA separation; and RICO. The results and discussions focused on alkyl side chains attached to aromatic carbon; polymethylene bridges connecting two aromatic units; benzenecarboxylic acids an aromatic units; and others. The study has brought to light useful characterization on covalent molecular structure of two typical SFEF fractions, notably the tenth and fifteen fraction. 17 refs., 6 tabs., 16 figs., 1 appendix.

  10. Neutron activation analysis of maltenes recovered from EUROBITUM simulates

    International Nuclear Information System (INIS)

    Impens, N

    2006-01-01

    According to the present Belgian reference scenario, Eurobitum bituminised radioactive waste has to be disposed off in a deep underground repository in a stable geological formation such as Boom Clay. This waste originated mainly from mixtures of nuclear fuel decladding slurries and waste concentrates from the nuclear fuel cycle. Even though safety assessment studies up till present do not show that this waste is unacceptable for deep underground disposal, a final decision about the disposal of the bituminised waste has not been taken so far, and alternative solutions are still conceivable. To support the decision-making we investigate methods to recondition this bituminised waste. We continued studying a room temperature re-treatment method for Eurobitum. The aim of the method is the stabilisation and minimisation of final waste, and the free release of recovered materials. The method comprises the recovery of maltenes and water soluble salts. The recovery of maltenes is performed by dissolving the complete bitumen matrix with a 'solvent', followed by the precipitation of the asphaltenes by addition of a so-called 'nonsolvent'. The 'solvent' is a 50 percent aromatic blend of Shellsol A150 and Shellsol H, whereas the 'nonsolvent' is aliphatic Shellsol T. The recovered maltenes represent 40 % wt of the waste, as shown in the inner pie chart. Part of the maltenes could not be recovered and remain in the asphaltene matrix, as can be seen from the difference between the inner and outer pie chart, representing the real composition and the weight fractions after separation, respectively. A second step of the room temperature re-treatment method covers the complete removal of the water soluble (nitrate) salts, and is described in the main reference and references therein. Application of the room temperature re-treatment method results in a final waste that consists of water insoluble salts embedded in an asphaltene matrix which is less sensitive towards radiolysis than

  11. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies.

    Science.gov (United States)

    Carretti, Emiliano; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2007-05-22

    A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are

  12. Association models for petroleum applications

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios

    2013-01-01

    Thermodynamics plays an important role in many applications in the petroleum industry, both upstream and downstream, ranging from flow assurance, (enhanced) oil recovery and control of chemicals to meet production and environmental regulations. There are many different applications in the oil & gas...... industry, thus thermodynamic data (phase behaviour, densities, speed of sound, etc) are needed to study a very diverse range of compounds in addition to the petroleum ones (CO2, H2S, water, alcohols, glycols, mercaptans, mercury, asphaltenes, waxes, polymers, electrolytes, biofuels, etc) within a very....... Such association models have been, especially over the last 20 years, proved to be very successful in predicting many thermodynamic properties in the oil & gas industry. They have not so far replaced cubic equations of state, but the results obtained by using these models are very impressive in many cases, e...

  13. Study of the degradation of power generation combustion components at elevated temperature

    International Nuclear Information System (INIS)

    Castrejon, J.; Serna, S.; Wong-Moreno, A.; Fragiel, A.; Lopez-Lopez, D.

    2006-01-01

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components

  14. Intensive heat method for using non-segregate fine tailings for generating hot process water and stable solids that can support traffic

    Energy Technology Data Exchange (ETDEWEB)

    Betzer-Zilevitch, M. [Ex-Tar Technologies Inc., AB (Canada)

    2010-07-01

    This power point presentation described a method developed to extract energy from non-segregated fine tailings for generating hot process water. The method produced stable solids that were able to support traffic. Discharged non-segregated tailings passed through a zero liquid discharge direct contact steam generator (DCSG) and were then further treated and returned to the oil sands mine and bitumen extraction facility. A direct contact heat exchanger and condenser removed contaminates. Laboratory analyses confirmed that the DCSG condensate was toxic. Light organics were not destroyed. The method was then simulated in order to investigate the impact of pressure on performance. The study demonstrated that the method is both simple and robust. Non-segregated asphaltene-rich fine tailing streams can be used, and no changes to extraction, oil separation, or froth treatment equipment is needed. A cost benefit analysis was included. tabs., figs.

  15. Characterization of the viscoelastic behavior of the pure bitumen grades 10/20 and 35/50 with macroindentation and finite element computation

    KAUST Repository

    Hamzaoui, Rabah

    2013-06-23

    In this article, we present an identification procedure that allows the determination of the viscoelasticity behavior of different grades of pure bitumen (bitumen 35/50 and bitumen 10/20). The procedure required in the first stage a mechanical response based on macroindentation experiments with a cylindrical indenter. A finite element simulation was performed in the second stage to compute the mechanical response corresponding to a viscoelasticity model described by three mechanical parameters. The comparison between the experimental and numerical responses showed a perfect matching. In addition, the identification procedure helped to discriminate between different bitumens characterized by different asphaltene and maltene contents. Finally, the developed procedure could be used as an efficient tool to characterize the mechanical behavior of the viscoelastic materials, thanks to the quantified relationship between the viscoleastic parameters and the force-penetration response. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3440-3450, 2013 Copyright © 2013 Wiley Periodicals, Inc.

  16. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    Science.gov (United States)

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-06-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter.

  17. New ways of removing cyclic borehole noise from low- and high-resolution LWD images and its impact on image interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Lalchan, C.; Wiggins, C.; Moriyama, C. [Trican Well Service (Canada)

    2011-07-01

    With the depletion of conventional oil reservoirs and increasing energy demand, the exploitation of unconventional resources is underway. Until now, the use of emulsified acids, which dissolve organic and inorganic deposits and strip off layered scales, has been restricted to conventional reservoirs, but it could also be used for thermal heavy oil reservoirs. The aim of this paper is to determine the appropriate acid blend for deposit and scale removal in thermal heavy oil reservoirs. Acid formulations were tested under 170 degrees Celsius and sensitivity testing was performed to find the optimal concentration. Results showed that a 5% or 10% acid acetic, emulsified in a 4:1 ratio with a modified wax and asphaltenes solvent blend, is the optimal acid formulation for removal of scales and organic deposits. This paper demonstrated that emulsified acids can be used to stimulate water injection and production in thermal heavy oil reservoirs and provided the optimum acid formulation.

  18. Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.

    Science.gov (United States)

    Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F

    2006-06-01

    The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore.

  19. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1987-01-01

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author) [pt

  20. Enhanced E-bed bottoms upgrading using latest catalytic technology

    Energy Technology Data Exchange (ETDEWEB)

    Toshima, H.; Mayo, S.; Sedlacek, Z.; Hughes, T.; De Wind, M. [Albermarle Corp., Amsterdam (Netherlands)

    2009-07-01

    The profitability of refineries depends on heavy oil upgrading in terms of price, conversion, yields and quality of the product. The Ebullated-bed process represents a solution for the effective primary upgrading of heavy oils. Since the 1970s, Albemarle has commercialized several E-bed catalysts to upgrade the bottoms in low sediment and high hydrogenation operations. Although an E-bed is used to maximize the conversion of vacuum residuum (VR), it is often limited by fouling caused by sediment in the product. In order to reduce sedimentation in the product, Albemarle developed an improved E-bed catalytic technology by characterizing the asphaltenes and sediments in order to better understand the oil chemistry and compatibility. The most recent development involves the patented catalyst-staging technology and the improved single catalyst application. Both achieve very low sediment or higher hydrodesulphurization (HDS) and Conradson carbon (CCR) removal for improved bottom upgrading. tabs., figs.

  1. Compositional modification of crude oil during oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yangming; Weng, Huanxin [Department of Earth Sciences, Zhejiang University, Hangzhou 310027 (China); Chen, Zulin; Chen, Qi [Petroleum Geochemistry Research Center, Jianghan Petroleum University, Jingzhou, Hubei (China)

    2003-05-01

    Ten crude oils from two recovery stages spanning 5-10-year interval of five productive wells in the Tarim Basin, northwest China were analyzed for their compositional modification during production process. Significant compositional changes in polar and nonpolar fractions between the previous oil samples and the latter ones were noted at both bulk and molecular level. The latter oil samples appear to contain more aromatic fraction and less asphaltenes and resin, and their gas chromatography (GC) data for whole oil show reduced alkanes with low molecular weight and enhanced high homologue relative to the previous oil samples. Compared with the oils collected from the previous recovery stage, the concentration of basic type of nitrogen-containing compounds and organic acids in oils from the latter recovery stage have a reducing trend, suggesting the occurrence of interaction between crude oil and reservoir rock.

  2. A pre-Paleogene unconformity surface of the Sikeshu Sag, Junggar Basin: Lithological, geophysical and geochemical implications for the transportation of hydrocarbons

    Directory of Open Access Journals (Sweden)

    Xiaoyue Gao

    2013-11-01

    Full Text Available The unconformity surface at the bottom of the Paleogene is one of the most important migration pathways in the Sikeshu Sag of the Junggar Basin, which consists of three layers: upper coarse clastic rock, lower weathering crust and leached zone. The upper coarse clastic rock is characterized by higher density and lower SDT and gamma-ray logging parameters, while the lower weathering crust displays opposite features. The transport coefficient of the unconformity surface is controlled by its position in respect to the basal sandstone; it is higher in the ramp region but lower in the adjacent uplifted and sag areas. The content of saturated hydrocarbons increases with the decrease of the content of non-hydrocarbons and asphaltenes. The content of benzo[c] carbazole decreases as the content of benzo[a] carbazole and [alkyl carbazole]/[alkyl + benzo carbazole] increases. This suggests that the unconformity surface is an efficient medium for the transportation of hydrocarbons.

  3. Use of adsorption and gas chromatographic techniques in estimating biodegradation of indigenous crude oils

    International Nuclear Information System (INIS)

    Kokub, D.; Allahi, A.; Shafeeq, M.; Khalid, Z.M.; Malik, K.A.; Hussain, A.

    1993-01-01

    Indigenous crude oils could be degraded and emulsified upto varying degree by locally isolated bacteria. Degradation and emulsification was found to be dependent upon the chemical composition of the crude oils. Tando Alum and Khashkheli crude oils were emulsified in 27 and 33 days of incubation respectively. While Joyamair crude oil and not emulsify even mainly due to high viscosity of this oil. Using adsorption chromatographic technique, oil from control (uninoculated) and bio degraded flasks was fractioned into the deasphaltened oil containing saturate, aromatic, NSO (nitrogen, sulphur, oxygen) containing hydrocarbons) and soluble asphaltenes. Saturate fractions from control and degraded oil were further analysed by gas liquid chromatography. From these analyses, it was observed that saturate fraction was preferentially utilized and the crude oils having greater contents of saturate fraction were better emulsified than those low in this fraction. Utilization of various fractions of crude oils was in the order saturate> aromatic> NSO. (author)

  4. Hydroprocessing catalysts utilization and regeneration schemes

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off-site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed.

  5. Selection of catalysts and reactors for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E. [Imaf Group, Ottawa, ON (Canada)

    1998-07-13

    The performance of hydroprocessing units can be influenced by the selection of the catalysts and the type of reactor to suit a particular feed. The catalysts and reactors selected for light feeds differ markedly from those selected for heavy feeds. Fixed-bed reactors have been traditionally used for light feeds. High asphaltene and high metal content feeds are successfully processed using moving-bed and/or ebullated bed reactors. Multi-reactor systems consisting of moving-bed and/or ebullated bed reactors in series with fixed-bed reactors can be used to process difficult feeds. For heavy feeds, the physical properties (e.g. porosity), shape and size of the catalyst particles become crucial parameters. Pretreatment of catalysts by presulfiding improves the performance of the units.

  6. FY 1980 Report on results of Sunshine Project by Coal Group. Basic researches on coal liquefaction techniques by solvolysis; 1980 nendo sunshine keikaku sekitanhan hokokusho. Sekitan no solvolysis ekika gijutsu no kiso kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The basic experimental researches were carried out for coal liquefaction by solvolysis. The studied items include hydrogenation conditions for treating the primary liquefied products, asphalt, pitch and model solvents (e.g., anthracene oil) in the presence of a commercial catalyst, solvolysis conditions for finely divided, molten coal using a hydrogenation recycled solvent, hydrotreating solvents, analysis of solvolysis-liquefied products, and liquefaction capacity of fractionated solvents for finely divided, molten coal. The studied items for separation of minerals include settlement at high temperature of the solid residue from the first liquefaction stage, and changed coal particle size distribution as a result of the first-stage liquefaction reactions in the presence of a hydrogenation solvent. The experimental study results indicate that conversion of finely divided molten coal into asphaltenes and preasphaltenes is notably accelerated in the phase-II coal liquefaction process by solvolysis, when a hydrotreating solvent is used for the first stage solvolysis process. (NEDO)

  7. Coking of residue hydroprocessing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.R.; Zhao, Y.X. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical Engineering; McKnight, C.A. [Syncrude Canada Ltd., Edmonton, AB (Canada); Komar, D.A.; Carruthers, J.D. [Cytec Industries Inc., Stamford, CT (United States)

    1997-11-01

    One of the major causes of deactivation of Ni/Mo and Co/Mo sulfide catalysts for hydroprocessing of heavy petroleum and bitumen fractions is coke deposition. The composition and amount of coke deposited on residue hydroprocessing catalysts depends on the composition of the liquid phase of the reactor. In the Athabasca bitumen, the high molecular weight components encourage coke deposition at temperatures of 430 to 440 degrees C and at pressures of 10 to 20 MPa hydrogen pressure. A study was conducted to determine which components in the heavy residual oil fraction were responsible for coking of catalysts. Seven samples of Athabasca vacuum residue were prepared by supercritical fluid extraction with pentane before being placed in the reactor. Carbon content and hydrodesulfurization activity was measured. It was concluded that the deposition of coke depended on the presence of asphaltenes and not on other compositional variables such as content of nitrogen, aromatic carbon or vanadium.

  8. Basic studies on coal liquefaction reaction, reforming and utilization of liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1993-09-01

    This report describes the achievement of research and development of coal liquefaction technologies in the Sunshine Project for FY 1992, regarding the coal liquefaction reaction, reforming and utilization of liquefaction products. For the fundamental study on coal liquefaction reaction, were investigated effect of asphaltene in petroleum residue on coprocessing, pretreatment effect in coprocessing of Taiheiyo coal and tarsand bitumen using oil soluble catalyst, solubilization and liquefaction of Taiheiyo coal at mild conditions with the aid of super acid, and flash hydropyrolysis of finely pulverized swollen coal under high hydrogen pressure. On the other hand, for the study on hydrotreatment of coal derived liquid, were investigated catalytic hydroprocessing of Wandoan coal liquids, production of gasoline from coal liquids by fluid catalytic cracking, solvent extraction of phenolic compounds from coal liquids, and separation of hetero compounds in coal liquid by means of high pressure crystallization. Further progress in these studies has been confirmed. 9 figs., 6 tabs.

  9. Process and catalysis for hydrocracking of heavy oil and residues

    Energy Technology Data Exchange (ETDEWEB)

    Morel, F.; Kressmann, S. [Centre d' Etudes et de developpement Indutriel ' Rene Navarre' , Vernaison (France); Harle, V.; Kasztelan, S. [Division Cinetique et Catalyse, Rueil-Malmaison (France)

    1997-07-01

    Atmospheric or vacuum residue can be converted into valuable distillates using reaction temperature, high hydrogen pressure and low contact time hydroprocessing units. Various residue hydrocracking processes are now commercially employed using fixed bed, moving bed or ebullated bed reactors. The choice of process type depends mainly on the amount of metals and asphaltenes in the feed and on the level of conversion required. Various improvements have been introduced in the last decade to increase run length, conversion level, products qualities and stability of the residual fuel. These improvements include on stream catalysts replacement systems, swing reactors, improved feed distribution, guard bed materials limiting pressure drop, coke resistant catalysts, complex association of catalysts using particle size, activity and pore size grading. Further improvement of the resistance of catalysts to deactivation by coke and metal deposits and of the hydrodenitrogenation activity are two major challenges for the development of new residue hydrocracking catalysts and processes. 29 refs.

  10. Fiscal 1998 international research cooperation project. Feasibility study report on excavation of international joint research seeds; 1998 nendo kokusai kyoryoku jigyo seika hokokusho. Kokusai kyodo kenkyu seeds hakkutsu no tame no FS chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Feasibility study (FS) was made on excavation of international joint research seeds for developed countries. As FS themes, 6 themes were selected among applied 11 ones. China was interested in the joint research on improvement of a cetane number by ring-opening of LCO from fluid catalytic crackers through hydrogenation for Arabian crude oil, although China has an experience for domestic one. Since France and the USA are in the early developmental stage of practical atmospheric temperature and pressure conversion technology of lower hydrocarbon after the basic research stage, study was made on the possibility of a joint research. The other themes are as follows: Oil resource and energy conservation technology by recycling general plastics and industrial synthetic resins, advanced solid catalyst regulating technology by physicochemical technique and its application to next-generation oil refining processes, structure analysis of asphaltene and reaction mechanism analysis of heavy oil by computer simulation, and production technology of ultra-precisely controlled catalytic materials. (NEDO)

  11. Organic palladium and palladium-magnesium chemical modifiers in direct determination of lead in fractions from distillation of crude oil by electrothermal atomic absorption analysis

    Science.gov (United States)

    Kowalewska, Zofia; Bulska, Ewa; Hulanicki, Adam

    1999-05-01

    Platinum reforming catalysts are easily poisoned by increased levels of lead, therefore a sensitive atomic absorption spectrometric procedure for lead determination in fractions from crude oil distillation was developed. Lead was present in organic form in the samples analysed therefore the behaviour of various lead compounds (Pb-alkylarylsulphonate, Pb-4-cyclohexanobutyrate, tetraethyllead, Pb in fuel oil) was studied. The best procedure for the determination of lead in different petroleum products, including those containing asphaltenes includes a pretreatment with iodine and methyltrioctylammonium chloride, followed by the use of an organic Pd-Mg modifier. Under these conditions an effective matrix removal is possible at a pyrolysis temperature up to approximately 1100°C and the behaviour of lead present in different forms is unified. The characteristic mass is 11-12 pg Pb, corresponding to a detection limit of 0.25 ng g -1 for 20 μl sample solution. This can be lowered by multiple injection.

  12. STUDY OF THE THERMAL CRACKING DURING THE VACUUM DISTILLATION OF ATMOSPHERIC RESIDUE OF CRUDE OIL

    Directory of Open Access Journals (Sweden)

    JAOUAD ELAYANE

    2017-03-01

    Full Text Available This article concerns the study of the thermal cracking as undesirable phenomenon in the vacuum distillation of atmospheric residue of crude oil. In this point, we have sought to identify and characterize the effect of the increase in the temperature of vacuum distillation on the separation and the modification of the constituents of atmospheric residue of crude oil whose origin is Arabian Light. This study has been carried out by several techniques of analysis such as the density (ASTM D4052, distillation (ASTM D1160, determination of heavy metals nickel and vanadium (IFP9422, dosing of Conradson Carbon (ASTM D189, dosing of asphaltenes (ASTM D2549 and dosage of PCI (polycyclic aromatics (ASTM D 5186. The results showed a clear idea on the decomposition of the atmospheric residue and their influence on the performance of the vacuum distillation unit.

  13. Kinetics of coal liquefaction during heating-up and isothermal stages

    Energy Technology Data Exchange (ETDEWEB)

    Xian Li; Haoquan Hu; Shengwei Zhu; Shuxun Hu; Bo Wu; Meng Meng [Dalian University of Technology, Dalian (China). Institute of Coal Chemical Engineering

    2008-04-15

    Direct liquefaction of Shenhua bituminous coal was carried out in a 500 ml autoclave with iron catalyst and coal liquefaction cycle-oil as solvent at initial hydrogen of 8.0 MPa, residence time of 0-90 min. To investigate the liquefaction kinetics, a model for heating-up and isothermal stages was developed to estimate the rate constants of both stages. In the model, the coal was divided into three parts, easy reactive part, hard reactive part and unreactive part, and four kinetic constants were used to describe the reaction mechanism. The results showed that the model is valid for both heating-up and isothermal stages of liquefaction perfectly. The rate-controlled process for coal liquefaction is the reaction of preasphaltene plus asphaltene (PAA) to oil plus gas (O + G). The upper-limiting conversion of isothermal stage was estimated by the kinetic calculation. 21 refs., 4 figs., 4 tabs.

  14. Development of a chromatographic method for the study of the stability and compatibility of Mexican fuel oils; Desarrollo de un metodo cromatografico para el estudio de estabilidad y compatibilidad de combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Blass Amador, Georgina; Panama Tirado, Luz Angelica [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-11-01

    In Mexico, the largest part of the generated electric energy comes from the use of residual heavy oils known as fuel oils which have suffered quality degradation due to a combination of factors, among which stands out the changes in the refining process. It is necessary to develop methods capable of indicating the instability (formation of sediment or viscosity increase during storage or heating) or incompatibility (formation of sediment in mixing two or more fuel oils) of the fuel oils employed in fossil fuel power plants. This work objective was to develop an alternative test for the study of the compatibility and/or stability of Mexican fuel oils using high resolution liquid chromatography (CLAR) and so to determine structural aspects of the fuel oil that determine its stability. Since the formation of sediments occurs when the dissolving ability of the fuel is inadequate to keep the asphaltenes in solution, it is important to know the solvent power degree or aromaticity of the diluent; so, in the first part of this work the attention was centered in the determination of the profile of aromatic compounds of the fuel oil diluents, the other part was dedicated to the determination of the distribution profile the molecular weights of the asphaltenes present in the fuel oils. The profiles of the aromatic fraction, as well as of the molecular weight distribution were determined using liquid chromatography, in which a variety of columns and solvents were used. A combination of routine tests was accomplished, such as asphaltenes content, toluene equivalence, viscosity, etc., in order to obtain correlation with the chromatographic method developed. In this article it is only discussed the section corresponding to the obtainment of the profile of aromatics content in the fuel oils. It has been found a correlation among the asphaltenes content, toluene equivalence, aromaticity profiles and stability. As a direct consequence, it is expected to be able to predict the

  15. Gas hydrates and clathrates. Flow assurance, environmental and economic perspectives and the Nigerian liquefied natural gas project

    International Nuclear Information System (INIS)

    Gbaruko, B.C.; Igwe, J.C.; Nwokeoma, R.C.; Gbaruko, P.N.

    2007-01-01

    Gas hydrates are nonstoichiometric crystalline compounds that belong to the inclusion group known as clathrates. They occur when water molecules attach themselves together through hydrogen bonding and form cavities which can be occupied by a single gas or volatile liquid molecule. Gas hydrates, asphaltenes and waxes are three major threats to flow assurance that must be well assessed by design team uptime. Gas hydrates are also looked upon as a future energy source and as a potential climate hazard. The purpose of this review is to show the chemistry and mechanism of gas hydrate formation, the problems they pose, especially to flow assurance, their system implications, their environmental and economic perspectives with respect to their prospects as storage and transport alternative to the liquefied natural gas technology. (author)

  16. Organic geochemistry and petrology of oil source rocks, Carpathian Overthrust region, southeastern Poland - Implications for petroleum generation

    Science.gov (United States)

    Kruge, M.A.; Mastalerz, Maria; Solecki, A.; Stankiewicz, B.A.

    1996-01-01

    The organic mailer rich Oligocene Menilite black shales and mudstones are widely distributed in the Carpathian Overthrust region of southeastern Poland and have excellent hydrocarbon generation potential, according to TOC, Rock-Eval, and petrographic data. Extractable organic matter was characterized by an equable distribution of steranes by carbon number, by varying amounts of 28,30-dinor-hopane, 18??(H)-oleanane and by a distinctive group of C24 ring-A degraded triterpanes. The Menilite samples ranged in maturity from pre-generative to mid-oil window levels, with the most mature in the southeastern portion of the study area. Carpathian petroleum samples from Campanian Oligocene sandstone reservoirs were similar in biomarker composition to the Menilite rock extracts. Similarities in aliphatic and aromatic hydrocarbon distributions between petroleum asphaltene and source rock pyrolyzates provided further evidence genetically linking Menilite kerogens with Carpathian oils.

  17. Effect of the rate of heating on the quality of the primary tar in low-temperature coal-carbonization process

    Energy Technology Data Exchange (ETDEWEB)

    Turskii, Y I

    1956-01-01

    Two stages are observed. The first stage yields products of the primary and partial decomposition of coal, mainly water, CO/sub 2/, and CO as decomposition products of functional groups (-COOH, > CO, - OH, and so forth). No tar is formed in this stage. The structural decomposition and tar formation occur in the second stage. The rate of heating is important for the quality of the tar obtained. The slow rate of heating with both stages following each other yields a good-quality tar, richer in C and H, with lower O content. In case of high rate of heating both stages overlap. The tar is of poorer quality with higher specific gravity, and contains more O and asphaltenes. The complete experimental data are given in detail.

  18. Role of hydrotreating products in deposition of fine particles in reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Chung, K.; Gray, M.R. [University of Alberta, Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2001-06-11

    Hydrotreating reactions may affect the deposition of fine particles, which can eventually lead to reactor plugging. The deposition of fine particles from gas oil was measured in an internally recirculating reactor at 375{degree}C under hydrogen. H{sub 2}S from hydrodesulfurization would convert corrosion products to metal sulfides. Iron sulfide deposited rapidly in the packed bed because the mineral surface did not retain a stabilizing layer of asphaltenic material. Addition of water, to test the role of hydrodeoxygenation, doubled the deposition of clay particles by reducing the surface coating of organic material. Neither ammonia or quinoline had any effect on particle deposition, therefore, hydrodenitrogenation did not affect particle behavior. 16 refs., 4 figs., 3 tabs.

  19. Study of the degradation of power generation combustion components at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Castrejon, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico); Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico)]. E-mail: aserna@uaem.mx; Wong-Moreno, A. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico); Fragiel, A. [Centro de Ciencias de la Materia Condensada-UNAM, Km 7 Carretera Tijuana-Ensenada, C.P. 22800, Ensenada, Baja California (Mexico); Lopez-Lopez, D. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico)

    2006-01-15

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components.

  20. The role of polar aromatics in residuum hydrocracking

    International Nuclear Information System (INIS)

    Benham, N.K.; Pruden, B.B.

    1997-01-01

    The CANMET hydrocracking process was developed to convert the heavy pitch fraction in bitumen into salable products. Some of the defining features of the CANMET technology were described. A 5000 BPD demonstration unit was built for Petro-Canada's Montreal Refinery in 1985. The CANMET slurry hydrocracking process uses a solid additive to inhibit coke formation and is capable of 975+ degrees F conversion levels in excess of 90 per cent. The process can be used for a wide range of refinery residues including conventional crudes and residues from refinery conversion units. The CANMET process has the capability of upgrading FCCU slurry, visbreaker vacuum tower bottoms, deasphalter bottoms residue, and poor quality gas oils from cokers and visbreakers. The current practices of the Petro-Canada commercial operation were discussed in the context of adapting the process to handle higher levels of asphaltenes. Pilot plant projects are being considered for ROSE R deasphalter bottoms. 10 refs., 5 tabs., 21 figs

  1. Laboratory studies of the properties of in-situ burn residues: chemical composition of residues

    International Nuclear Information System (INIS)

    Trudel, B.K.; Buist, I.A.; Schatzke, D.; Aurand, D.

    1996-01-01

    The chemical composition of the residue from small-scale burns of thick oil slicks was studied. The objective was to describe the changes in chemical composition in oils burning on water and to determine how these changes were influenced by the condition of the burn. Small-scale test burns involved burning 40-cm diameter pools of oil on water. A range of eight oil types including seven crude oils and an automotive diesel were burned. For each oil, slicks of fresh oil of three different thicknesses were tested. Two of the oils were tested before and after weathering. Results showed that the composition of the residue differed greatly from the parent oil. Asphaltenes, high-boiling-point aromatics and resins remained concentrated in the burn residue. The burning of slicks appeared to remove most of the lower-molecular weight aromatic hydrocarbons which included the more toxic and more bioavailable components of the crude oils. 11 refs., 6 tabs

  2. Effect of Co Mo/HSO3-functionalized MCM-41 over heavy oil

    International Nuclear Information System (INIS)

    Schacht, P.; Ramirez G, M.; Ramirez, S.; Aguilar P, J.; Norena F, L.; Abu, I.

    2010-01-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  3. Deuterium as a tracer in coal liquefaction. Pt. 1

    International Nuclear Information System (INIS)

    Wilson, M.A.; Collin, P.J.; Barron, P.F.; Vassallo, A.M.

    1982-01-01

    Deuterium has been used to trace the pathways by which hydrogen reacts with an Australian bituminous coal (Liddell) in the presence of a nickel/molybdenum catalyst. The results show that at 400 0 C extensive scrambling of hydrogen and deuterium occurs among aromatic and α to aromatic aliphatic hydrogen and deuterium substituents. Deuterium can enter all structural groups in both asphaltene and hexane-soluble fractions of the coal-derived liquids, but it enters aromatic and α to aromatic groups in preference to alkyl groups remote from aromatic rings. Thus the results indicate that hydrogen atoms are very mobile during coal hydrogenation. Deuterium from deuterium oxide generated during conversion can also be incorporated into the coal-derived liquids. During coal hydrogenation, the eventual fate of much of the hydrogen in the gas phase is to substitute for hydrogen already in the coal. (Auth.)

  4. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  5. Relation of sulfur with hydrocarbons in Brazilian heavy and extra-heavy crude oil; Relacao do enxofre com os hidrocarbonetos em petroleos pesados e extra pesados brasileiros

    Energy Technology Data Exchange (ETDEWEB)

    Iorio, Sonia Maria Badaro Mangueira; Guimaraes, Regina Celia Lourenco; Silva, Maria do Socorro A. Justo da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Costa, Alexander Vinicius Moraes da [Fundacao Gorceix, Ouro Preto, MG (Brazil)

    2008-07-01

    As the occurrence of heavy and extra-heavy oils increases sensitively, their participation in the refineries feeding also becomes greater. Heavy oils usually have lower price than a light one, because they produce lower quality derivatives and it's more difficult to meet the specifications. Crude oils are a complex mixture, mostly compounded by carbon and hydrogen and also by impurities like sulfur, nitrogen, oxygen and metals. Sulfur is the third most abundant component of crude oils, following carbon and hydrogen. In general there is a strong positive correlation between the concentrations of polar compounds (aromatics, resins and asphaltenes), and the sulfur content. This work presents graphically sulfur content and polar compounds concentrations for Brazilian and foreign heavy and extra-heavy oils (< 20 deg API). The results of the data analysis indicate that Brazilian crude oils behave differently from foreign heavy and extra-heavy oils. (author)

  6. Investigations of the Montmorillonite and Aluminium Trihydrate Addition Effects on the Ignitability and Thermal Stability of Asphalt

    Directory of Open Access Journals (Sweden)

    Kai Zhu

    2014-01-01

    Full Text Available By means of limiting oxygen index (LOI, cone calorimeter, and TG-DSC tests, this paper investigated the effect of unmodified montmorillonite (MMT, organically modified montmorillonite (OMMT, and aluminium trihydrate (ATH additions on the flame retardancy for asphalt combustion. Experimental results showed that adding a small amount of montmorillonite did not significantly increase the oxygen index of the asphalt but reduced the heat release rate during asphalt combustion. TGA tests had indicated that the montmorillonite (MMT and OMMT could suppress the release of flammable volatiles and form more asphaltenes, which hence postponed the burnout time of asphalt. Furthermore, the combination of montmorillonite (MMT and OMMT and ATH had yielded a synergistic effect, which had further reduced the heat release rate and also increased the oxygen index of asphalt. In particular, after further addition of OMMT, the barrier layer showed less crack, leading to a significant decrease in the heat release rate as compared to the adding of ATH alone.

  7. Organosulphur Compounds in Coals as Determined by Reaction with Raney Nickel and Microscale Pyrolysis Techniques. Quarterly report, January-March, 1996

    International Nuclear Information System (INIS)

    Stalker, L.; Philip, P.

    1997-01-01

    Since the last report, we have concentrated on completing all the chemical degradation experimental work. This has involved the completion of a series of chemical degradation experiments using deuterium labeled sodium borohydride and deuterated methanol . The products of these desulphurization experiments have, as usual, been fractionated into aliphatic and aromatic hydrocarbons and NSO compounds. The aliphatic hydrocarbon fractions of each desulphurization experiment are currently being analysed by gas chromatography(GC) and gas chromatography-mass spectrometry(GCMS). The object of the deuterium labelling experiments is to determine the relative abundance of thioether, triolane, and thiophene organic sulphur units cleaved in the different coal fractions( i.e. pre- extracted coal matrix, asphaltene and free polars from the maltenes)

  8. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow

    2004-05-01

    We report on progress in three areas. In part one, the wetting effects of synthetic base oils are reported. Part two reports progress in understanding the effects of surfactants of known chemical structures, and part three integrates the results from surface and core tests that show the wetting effects of commercial surfactant products used in synthetic and traditional oil-based drilling fluids. An important difference between synthetic and traditional oil-based muds (SBM and OBM, respectively) is the elimination of aromatics from the base oil to meet environmental regulations. The base oils used include dearomatized mineral oils, linear alpha-olefins, internal olefins, and esters. We show in part one that all of these materials except the esters can, at sufficiently high concentrations, destabilize asphaltenes. The effects of asphaltenes on wetting are in part related to their stability. Although asphaltenes have some tendency to adsorb on solid surfaces from a good solvent, that tendency can be much increased near the onset of asphaltene instability. Tests in Berea sandstone cores demonstrate wetting alteration toward less water-wet conditions that occurs when a crude oil is displaced by paraffinic and olefinic SBM base oils, whereas exposure to the ester products has little effect on wetting properties of the cores. Microscopic observations with atomic forces microscopy (AFM) and macroscopic contact angle measurements have been used in part 2 to explore the effects on wetting of mica surfaces using oil-soluble polyethoxylated amine surfactants with varying hydrocarbon chain lengths and extent of ethoxylation. In the absence of water, only weak adsorption occurs. Much stronger, pH-dependent adsorption was observed when water was present. Varying hydrocarbon chain length had little or no effect on adsorption, whereas varying extent of ethoxylation had a much more significant impact, reducing contact angles at nearly all conditions tested. Preequilibration of

  9. First crude oil from Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Arenbrister, L.P.; Demidenko, K.A.; Zhmykhova, N.M.

    1986-01-01

    The physicochemical properties of the crude taken from Neogene deposits at a depth of 1486-1443 m are analyzed. The oil is distinguished by low contents of sulfur and resinous-asphaltenic substances, a high content of wax, and a high yield of light cuts distilling below 350 degrees C. The naptha cuts have high contents of naphthenes, and the diesel fuel cuts have high cetane numbers, low sulfur contents, and high contents of straight chain paraffins. The vacuum gasoil has a low density, a low viscosity, a low carbon residue and low contents of sulfur and nitrogen. This gasoil is a good feedstock for catalytic cracking and hydrocracking. The Verkhne-Echin crude is classified as light, low-sulfur, lowresin and high-wax. It can be used to produce jet fuels and summer-grade diesel fuels with low sulfur contents, as well as high-V.I. lube base stocks and liquid and solid paraffins.

  10. Bituminization of simulated PWR type reactor wastes, boric evaporator bottons and ion exchange resins, carried out in CNEN/SP using commercial bitumen available in the Brazilian market

    International Nuclear Information System (INIS)

    Grosche Filho, C.E.; Chandra, U.

    1986-01-01

    The first results of the study of bituminization of simulated PWR wastes, boric evaporator bottons and spent ion-exclange resins (OH - , H + ) and incinerated ash-wates are presented and discussed. The study consisted of characterization of the commercial bitumen, locally available and bitumen wastes products of varying whight compositions. The characterization was carried out using standard analysis methods of ABNT and ASTM, and included measurement of, penetration, softening point and flash point. In addition, the bitumen samples were analized for their resin and asphaltene contents. For leaching studies, wastes products of bitumen and resin loaded with 134 Cs were utilized. The method used was according to the ISO norms. The simulation of the industrial process was carried out using an extruder-evaporator typically used in the plastic industries offered by Industria de Maquinas Miotto Ltda., Sao Bernardo do Campo - SP. (Author) [pt

  11. Estimation of quality and yields of products from the process of future national oils indelayed coking units; Estimativa da qualidade e dos rendimentos de produtos de coqueamento a partir do processamento de petroleos nacionais

    Energy Technology Data Exchange (ETDEWEB)

    Filipakis, Sofia D.; Silva, Maria do Socorro A.J. da; Guimaraes, Regina C.L. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    As the importance of the delayed coking process increases in the Brazilian refinery scenario, it is necessary to perform a more detailed evaluation of vacuum residues potential on this kind of process. This work compares the performance of future produced and exported oils residues with those which are references nowadays as delayed coking feeding. This information is essential for the prediction of the future quality and yield of the products generated by this process, and for the determination of the oils value for exportation. For this purpose, a process simulator was used considering the operational conditions of a real delayed coking unit. The carbon residue and asphaltenes ratio from the residues were also evaluated. This simulation demonstrated that most of the future oils will produce a high quality coke from the point of view of crystallinity and metals content, and it will present high contents of both volatile matter and sulphur. The exported oils residues are likely to show good crystallinity. (author)

  12. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  13. Effect of Co Mo/HSO{sub 3}-functionalized MCM-41 over heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, P.; Ramirez G, M.; Ramirez, S. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico); Aguilar P, J.; Norena F, L. [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, 02200 Mexico D. F. (Mexico); Abu, I., E-mail: pschacha@imp.m [University of Calgary, Department of Chemical and Petroleum Engineering, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada)

    2010-07-01

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  14. Back-echo method for determining the content of C, CH, CH/sub 2/ and CH/sub 3/ fragments

    Energy Technology Data Exchange (ETDEWEB)

    Polonov, V.M.; Kalabin, G.A.; Kushnarev, D.F.; Latyshev, V.P.

    1984-07-01

    Possibility was investigated of determining the content of quaternary, tertiary, secondary and primary carbon atoms in soluble products from coal. Cubed residues of medium resin oil from semicoking Cheremkhovskii coals, hydrogenation products from mixtures of medium oil and light dephenolized oil, and asphaltenes separated from the hydrogenation products of Berezovsk coals were used as samples. A new method of quantitative analysis based on the pulse sequence of the back echo from the nuclear magnetic resonance of /sup 13/C was used. The method can be applied in the analysis of light and heavy products from coal, petroleum, shales and complex mixtures of organic substances. The method is limited by a decrease in accuracy when the heteroatom content in the samples increases, causing deterioration in the quality of spectra separation. 13 references.

  15. Sequential Isolation of Saturated, Aromatic, Resinic and Asphaltic Fractions Degrading Bacteria from Oil Contaminated Soil in South Sumatera

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2012-04-01

    Full Text Available Sequential isolation has been conducted to obtain isolates of saturated, aromatic, resin, and asphaltene fractions degrading bacteria from oil contaminated sites. Five soil samples were collected from South Sumatera. These were analyzed using soil extract medium enriched with oil recovery or Remaining-Oil recovery Degradated (ROD as sole carbon and energy sources according to the isolation stage. ROD at the end of every isolation stage analyzed oil fractions by use of the SARA analysis method. Six isolates of bacteria have been selected, one isolate was fraction saturates degrading bacteria that are Mycobacterium sp. T1H2D4-7 at degradation rate 0.0199 mgs/h with density 8.4x106 cfu/g from stage I. The isolate T2H1D2-4, identified as Pseudomonas sp. was fraction aromatics degrading bacteria at accelerate 0.0141 mgs/h with density 5.1x106 cfu/g are obtained at stage II. Two isolates namely Micrococcus sp. T3H2D4-2 and Pseudomonas sp. T1H1D5-5 were fraction resins degrading bacteria by accelerate 0.0088 mgs/h at density 5.6x106 cfu/g and 0.0089 mgs/h at density 5.7x106 cfu/g are obtained at stage III. Isolation of stage IV has been obtained two isolates Pseudomonas sp. T4H1D3-1and Pseudomonas sp. T4H3D5-4 were fraction asphaltenes degrading bacteria by accelerate 0.0057 mgs/h at density 5.6x106 cfu/g and accelerate 0.0058 mgs/h at density 5.7x106 cfu/g.

  16. Active carbon catalyst for heavy oil upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Hidetsugu; Terai, Satoshi [Technology Research Center, Toyo Engineering Corporation, 1818 Azafujimi, Togo, Mobara-shi, Chiba 297-00017 (Japan); Uchida, Masayuki [Business Planning and Exploring Department, Overseas Business Development and Marketing Division, Toyo Engineering Corporation, 2-8-1 Akanehama, Narashino-shi, Chiba 275-0024 (Japan); Cano, Jose L.; Ancheyta, Jorge [Maya Crude Treatment Project, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, Mexico D.F. 07730 (Mexico)

    2004-11-24

    The active carbon (AC) catalyst was studied by hydrocracking of Middle Eastern vacuum residue (VR) for heavy oil upgrading. It was observed that the active carbon has the affinity to heavy hydrocarbon compounds and adsorption selectivity to asphaltenes, and exhibits better ability to restrict the coke formation during the hydrocracking reaction of VR. The mesopore of active carbon was thought to play an important role for effective conversion of heavy hydrocarbon compounds into lighter fractions restricting carbon formation. The performance of the AC catalyst was examined by continuous hydrocracking by CSTR for the removal of such impurities as sulfur and heavy metals (nickel and vanadium), which are mostly concentrated in the asphaltenes. The AC catalyst was confirmed to be very effective for the removal of heavy metals from Middle Eastern VR, Maya/Istmo VR and Maya VR. The extruded AC catalysts were produced by industrial manufacturing method. The application test of the extruded AC catalyst for ebullating-bed reactor as one of the commercially applicable reactors was carried out at the ebullating-bed pilot plant for 500h. The ebullition of the extruded AC catalyst was successfully traced and confirmed by existing {gamma}-ray density meter. The extruded AC catalyst showed stable performance with less sediment formation at an equivalent conversion by conventional alumina catalyst at commercial ebullating-bed unit. The degradation of the AC catalyst at the aging test was observed to be less than that of the conventional alumina catalyst. Thus, the AC catalyst was confirmed to be effective and suitable for upgrading of heavy oil, especially such heavy oils as Maya, which contains much heavy metals.

  17. Chemical composition of Pechora Sea crude oil

    Directory of Open Access Journals (Sweden)

    Derkach S. R.

    2017-03-01

    Full Text Available The physicochemical properties of the Pechora Sea shelf oil and its chemical composition have been studied using the methods of refractometry, titrimetry, viscometry, rheometry and standard methods for the analysis of oil and petroleum products. The fractionation of oil is held at atmospheric pressure, some fractions boiling at the temperature below and above 211 °C have been received. Chemical structural-group composition of oil and its components has been investigated using a Fourier infrared (IR spectroscopy method. The density of oil has been obtained, it is equal to 24.2 API. The chemical composition analysis shows that water content in the investigated oil sample is about 0.03 % (by weight. The oil sample contains hydrocarbons (including alkanes, naphthenes, arenes and asphaltenes with resins; their content is equal to 89 and 10 % (by weight respectively. Alkane content is about 66 %, including alkanes of normal structure – about 37 %. The solidification temperature of oil sample is equal to –43 °C. This low temperature testifies obliquely low content of solid alkanes (paraffin. Bearing in mind the content of asphaltenes with resins we can refer the investigated oil sample to resinous oils. On the other hand spectral coefficient values (aromaticity quotient and aliphaticity quotient show that oil sample belongs to naphthenic oils. According to the data of Fourier IR spectroscopy contents of naphthenes and arenes are 5.9 and 17.8 % respectively. Thus, the obtained data of chemical structural-group composition of crude oil and its fractions indicate that this oil belongs to the heavy resinous naphthenic oils. The rheological parameters obtained at the shear deformation conditions characterize the crude oil as a visco-plastic medium.

  18. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  19. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  20. Two-stage catalytic up-grading of vacuum residue of a Wandoan coal liquid. [Vacuum residue of coal liquid

    Energy Technology Data Exchange (ETDEWEB)

    Mochida, I.; Sakanishi, K.; Korai, Y.; Fujitsu, H.

    1986-08-01

    A successive two-stage hydrotreatment using a commercial Ni-Mo/Al/sub 2/O/sub 3/ catalyst (HDN-30) was applied to the vacuum residue of a Wandoan coal liquid to achieve high levels of hydrocracking, hydrodenitrogenation and hydrodeoxygenation. Two-stage hydrotreatment in 1-methylnaphthalene containing 20wt% fluoranthene as a solvent at solvent/coal liquid ratio of unity removed 83% (overall) of nitrogen and 90% (overall) of oxygen in the asphaltene (benzene-soluble fraction) at 380/sup 0/C for 3 h and at 420/sup 0/C for 3h under hydrogen pressure of 15 MPa and 14 MPa, respectively, while the single stage treatment at 420/sup 0/C for 3 h removed only 41% and 46%, respectively. The same two-stage treatment allowed the overall denitrogenation of 51% and the overall deoxygenation of 67% from a mixture of asphaltene and preasphaltene (THF-soluble fraction). Addition of the catalyst prior to the second stage reaction increased the removal of nitrogen and oxygen to 75 and 82%, respectively, indicating significant catalyst deactivation by the preasphaltene fraction in the first stage. Increasing the solvent/coal liquid ratio to 2 or addition of tetrahydrofluoranthene as a component of the solvent increased the removal of nitrogen and oxygen to 70 and 80%, respectively. Such two-stage hydrotreatment was also effective in refining the whole residue, allowing denitrogenations and deoxygenations of 68 and 75% respectively using tetrahydrofluoranthene. The coke, unreacted coal and minerals in the residue may not cause acute catalyst deactivation. High dissolving ability of the reaction solvents is very effective to decrease catalyst deactivation by carbon deposition. The successive two-stage hydrotreatment also enhanced hydrocracking of polar and resin fractions in the residue into oils (conversion, 65%). (Abstract Truncated)

  1. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  2. Prediction of compatibility of crude oils with condensate (C5+); Previsao de compatibilidade de petroleos e condensado (C5+)

    Energy Technology Data Exchange (ETDEWEB)

    Zilio, Evaldo Lopez; Santos, Maria de Fatima Pereira dos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Ramos, Antonio Carlos da Silva; Rolemberg, Marlus Pinheiro [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil)

    2008-07-01

    Due to the recent raise of the national natural gas demand and to the need of flowing the condensates (C5+) produced from the NGPP (Natural Gas Processing Plant) by adding them to the streams of the crude oil, there was the need to carry out the compatibility prediction of one condensate with two onshore crude oils from Espirito Santo. The model to predict the compatibility among crude oils and among crude oils and oil products is based on the use of the solubility parameter of the oils. To apply it, the solubility parameter of each crude oil or oil product is measured and the parameter of their blend is calculated. If this value is beneath the asphaltenes flocculation parameter, the blend is incompatible; if it is above, the blend is compatible. In this article, the compatibility predictions were done according to the Solubility Parameter Model to two blends: the condensate C with the crude oil X and with the crude oil Y. The model predictions are that both blends are incompatible at given proportions. To check the predictions, the same two blends were experimentally carried out. It must be emphasized that the compatibility tests were done at atmospheric pressure and at the temperature of 15 deg C. These tests consist in adding the condensate to the crude oil with a titrater and visualizing the asphaltenes precipitation at an optical microscope. The experimental results were equivalent to the values predicted by the model. It is worth mentioning that there were several practical difficulties, as the high volatility of the condensate and the fact that the temperatures to determine the parameters and to carry out the tests were very lower than the operation temperature. Therefore, a security factor was applied on the predictions (less 20%). (author)

  3. Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media

    Science.gov (United States)

    Javanbakht, Gina; Arshadi, Maziar; Qin, Tianzhu; Goual, Lamia

    2017-07-01

    Industrial processes such as remediation of oil-contaminated aquifers and enhanced oil recovery (EOR) often utilize chemical additives to increase the removal of non-aqueous phase liquids (NAPLs) from subsurface formations. Although the majority of crude oils are classified as LNAPLs, they often contain heavy molecules (DNAPLs) such as asphaltenes that tend to adsorb on minerals and alter their wettability. Effective additives are therefore those that can reduce the threshold capillary pressure, thus mobilizing LNAPL inside pore spaces and solubilizing DNAPL from rock surfaces. Nonionic surfactants in brine have often been injected to oil or contaminated aquifer formations in order to enhance NAPL displacement through IFT reduction. Recent studies revealed that surfactant-based microemulsions have a higher tendency to alter the wettability of surfaces, compared to surfactants alone, leading to more effective NAPL removal. However, the impact of these additives on pore-scale displacement mechanisms and multi-phase fluid occupancy in porous media is, to date, still unclear. In this study, x-ray microtomography experiments were performed to investigate the impact of surfactants and microemulsions on the mobilization and solubilization of NAPL in heterogeneous rocks. Saturation profiles indicated that an incremental NAPL removal was attained by addition of microemulsion to brine, compared with surfactant. Residual cluster size distributions revealed that microemulsions could break up large clusters into smaller disconnected ones, improving their mobilization in the rock. In-situ contact angle measurements showed that microemulsions could reverse the wettability of rough contaminated surfaces to a higher extent than surfactants. Unlike surfactant alone, the surfactant-solvent blend in the carrier fluid of microemulsions was able to penetrate rough grain surfaces, particularly those of dolomite cement, and desorb asphaltenes in the form of small-emulsified NAPL droplets

  4. Effect of Extracted Compositions of Liquefaction Residue on the Structure and Properties of the Formed-coke

    Directory of Open Access Journals (Sweden)

    Song Yong-hui

    2016-01-01

    Full Text Available The purpose of this paper is to study the effect of extracted compositions of the de-ash liquefaction residue (D-DCLR on pyrolysis products yields, compressive strength and composition of the formed-coke, which was prepared by co-pyrolysis of the low metamorphic pulverized coal and D-DCLR. The scanning electron microscope (SEM and the Fourier Transform Infrared (FT-IR were used to characterize the morphology and functional group of the formed-coke, respectively. The results showed that the extracted compositions of D-DCLR were heavy oil (HS, asphaltene (A, pre-asphaltene (PA and tetrahydrofuran isolusion (THFIS, whose contents were 5.10%, 40.90%, 14.4%, 39.60%, respectively. During the pyrolysis process, HS was the main source of tar, and HS, A as well as PA were conducive to improve gas yields. The THFIS helped to improve the yield of the formed-coke up to 89.5%, corresponding to the compressive strength was only 147.7N/ball for the coke. A and PA were the key factors affecting the compressive strength and surface structure of the formed-coke. The compressive strength of coke could be up to 728.0N/ball with adding D-DCLR, which reduced by 50% after the removal of A and PA. The FT-IR analysis showed that the types of surface functional groups of the formed-coke were remained the same after co-pyrolysis, but the absorption peak intensity of each functional group was changed.

  5. Bitumen extraction from oil sands ore-water slurry using CaO (lime) and or ozone

    Energy Technology Data Exchange (ETDEWEB)

    Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada); Burkus, Z.; Moschopedis, S.E.; Ozum, B. [Apex Engineering Inc., Calvert City, KY (United States)

    2008-10-15

    Reductions in the surface and interfacial tensions in oil sands ore-water slurry systems improve bitumen extraction processes from oil sands ore structures and promote the attachment of air bubbles to liberated bitumen droplets. This study provided details of a non-caustic bitumen extraction process where oil sands slurries were conditioned by bitumen asphaltenes modified to act as surfactants. Oil sands ore-water slurry extraction processes were optimized by adding lime (CaO) and oxidizing bitumen asphaltenes with ozone (O{sub 3}). Experiments were conducted using oil sands ore and process water samples from Alberta. Extraction tests were performed to investigate the effects of various CaO and O{sub 3} dosages and treatment retention times on bitumen extraction efficiency on operating temperatures of 20, 35 and 50 degrees C. A Dean-Stark extraction apparatus was used to determine the amount of bitumen contained in the ore, froth, and in left-over tailings. Process water and release water chemistry were also monitored. Bitumen extraction efficiency was defined as the percentage of bitumen recovered in the resulting froth. Use of the slurries allowed high extraction efficiencies at a temperature of 35 degrees C. Energy consumption and carbon dioxide (CO{sub 2}) emissions were also reduced. The study showed that both additions resulted in significant improvements in bitumen extraction efficiency. Use of the technique also eliminated the accumulation of Na{sup +} ions in produced water. It was concluded that further tests are needed in order to commercialize the CaO and O{sub 3} based techniques. 14 refs., 1 tab., 4 figs.

  6. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  7. Processing of oil products using complex radiation-thermal treatment and radiation oxonolysis

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.

    2002-01-01

    Most of industrial radiation facilities afford an opportunity to produce a considerable amount of reactive ozone-containing gaseous mixtures parallel to the basic production that causes no detriment to the output of the main designed product. The synergetic action of the ozone-containing mixtures and ionizing radiation is of a special interest for industrial application since it can be efficiently used in a wide range of technologies, in particular, for stimulation of chemical conversion in hydrocarbons accompanied by intensive oxidizing processes. In this paper the effect of simultaneous radiation-thermal processing and radiation oxonolysis on hydrocarbon chemical conversion, and subsequent alterations in composition and properties of oil products were studied on the example of high-viscous oil (Karazhanbas field, Kazakhstan) subjected to irradiation by 2 MeV electrons combined with radiation ozonization in the bubbling mode. It was stated that application of the bubbling mode for radiation-induced ozonization of high-viscous oil leads to decrease in the yields of engine fuels in average by 8-10 % compared with those obtained in the conditions when radiation-thermal cracking was applied without bubbling. In the latter case mean yields of the wide gas-oil fraction with boiling start temperature of 350 deg. C, that included gasoline, kerosene, and diesel fuel, were about 76-80 %. Decrease in the gasoline yields does not lead to noticeable alterations in hydrocarbon contents of the gasoline fraction (boiling beginning bellow 175 deg. C) compared with gasoline produced be radiation-thermal cracking, in both cases it meets requirements for high quality standards. However, essential difference was observed in properties of heavy residua of oil processing (oil fractions with T boil >350 deg. C), i.e. the fractions that contained high concentrations of asphaltenes and pitches. Application of radiation oxonolysis diminishes concentrations of high-molecular aromatic

  8. Deceased Slabs Drive Oil

    Science.gov (United States)

    Stein, H. J.; Hannah, J. L.

    2017-12-01

    The application of Re-Os isotope geochemistry to dating single oils is a nascent field [1,2]. Challenges include dissection of oils into asphaltene-maltene (ASPH-MALT) components in a way that preserves meaningful chronologic and source information. Significantly, oil-water mixing rapidly transfers Os to the oil, while Re exchange is sluggish [3]. The Os initial ratio of the oil is shifted in the direction of Os carried in the aqueous fluid, whereas the Re-Os isotopic age is preserved. We show that this phenomenon is operative in natural systems. Further, we show that deserpentinization of old oceanic slabs [4], may be linked to expulsion of Os-enriched waters into overlying sedimentary sections - a process that may be of fundamental importance for oil generation. This conclusion does not diminish the role of traditional organic-rich shales as source rocks for the hydrocarbon, but shows that external fluids are essential to petroleum generation. Moreover, the external fluids may be an important driver for expulsion and migration of oils. We have taken apart several petroleum systems from source rock, to residual oil, to tar mat development, to in situ live oil, through to produced oil. In many cases, a fluid with low 187Os/188Os - unlike that of normal basinal brines - provides a critical component to the oil-water mixture. Funding - CHRONOS project supported by Norwegian petroleum industry (Eni-Norge, Lundin, Aker BP) Acknowledgement - Christine Fichler [4], who first queried us on old slabs and oil, and stimulated ideas. [1] Georgiev, S.V., Stein, H.J., Hannah, J.L., Galimberti, R., Nali, M., Yang, G., and Zimmerman, A. (2016) Re-Os dating of maltenes and asphaltenes within single samples of crude oil: Geochim. Cosmochim. Acta 179: 53-75. [doi.org/10.1016/j.gca.2016.01.016] [2] DiMarzio, J., Georgiev, S.V., Stein, H.J., and Hannah, J.L. (in press) Residency of rhenium and osmium in a heavy crude oil: Geochim. Cosmochim. Acta. [3] Hurtig, N.C., Georgiev, S

  9. Advanced characterisation of organic matter in oil sands and tailings sands used for land reclamation by Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS)

    Science.gov (United States)

    Noah, M.; Vieth-Hillebrand, A.; Wilkes, H.

    2012-04-01

    subsequent separation into asphaltenes, aliphatic hydrocarbons, aromatic hydrocarbons, neutral nitrogen, sulphur, oxygen (NSO) compounds and carboxylic acids. The asphaltene fractions are analysed using pyrolysis-GC, all other fractions are analysed by GC-MS. Additionally Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) is used to study the chemical composition of the samples on the molecular level using different ionisation methods.

  10. New insights into the effects of styrene-butadiene-styrene polymer modifier on the structure, properties, and performance of asphalt binder: The case of AP-5 asphalt and solvent deasphalting pitch

    Energy Technology Data Exchange (ETDEWEB)

    Nciri, Nader, E-mail: nader.nciri@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Kim, Namho [Department of Architectural Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of); Cho, Namjun, E-mail: njuncho@koreatech.ac.kr [Department of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education, 1600 Chungjeol-ro, Byeongcheon-myeon, Dongnam-gu, Cheonan-City, Chungnam-Province 330-708 (Korea, Republic of)

    2017-06-01

    This paper deals with the poorly understood effects of styrene-butadiene-styrene (SBS) copolymer on the bitumen performance. It focuses on determining the impact of various concentrations (e.g., 0, 4, 8, and 12 wt. %) of SBS on the attributes of two types of asphalt namely AP-5 asphalt and solvent deasphalting (SDA) pitch. The unmodified and modified binders were investigated in terms of their chemical compositions, microstructures, thermo-analytical behaviors, and physical properties. The intricate chemical compositions were evaluated by elemental analysis and thin layer chromatography-ionization detection (TLC-FID). Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to examine the microstructures. Whereas, thermal characteristics were evaluated by thermogravimetric analysis (TGA/DTGA) and differential scanning calorimetry (DSC). The physical behaviors were monitored through the softening point, penetration, viscosity, and ductility tests. The findings showed that the blending of asphalt with different amounts of SBS resulted into different rheological behaviors. This was reflected from the difference in the SARA (i.e., saturates, aromatics, resins, and asphaltenes) compositions and colloidal instability indexes of the modified asphalts. SEM exhibited a continuous asphalt phase with distributed SBS particles, a continuous polymer phase with distributed asphalt globules, or two interconnected continuous phases. FT-IR, {sup 1}H {sup 13}C NMR, and XRD data revealed that the AP-5 asphalt and SDA pitch experienced a number of distinct structural changes. TGA/DSC studies determined the occurrence of diverse events during thermal treatment. It is concluded that the degree of SBS modification depends strongly on SARA composition and polymer content. If the polymers are molded at higher concentrations along with aromatics-rich SDA pitches, then the mixtures

  11. Solids precipitation in crude oils, gas-to-liquids and their blends

    Science.gov (United States)

    Ramanathan, Karthik

    Gas-to-liquids (GTL) liquids are obtained from syngas by the Fischer-Tropsch synthesis. The blending of GTL liquids produced from natural gas/coal reserves and crude oils is a possibility in the near future for multiple reasons. Solids precipitation is a major problem in pipelines and refineries leading to significant additional operating costs. The effect of the addition of a paraffinic GTL liquid to crude oils on solids precipitation was investigated in this study. A Fourier transform infrared (FT-IR) spectroscopic technique was used to obtain solid-liquid equilibria (SLE) data for the various samples. The SLE of multiple systems of model oils composed of n-alkanes was investigated preliminarily. Blends of a model oil simulating a GTL liquid composition and a crude oil showed that the wax precipitation temperature (WPT) decreased upon blending. Three crude oils from different geographic regions (Alaskan North Slope, Colorado and Venezuela) and a laboratory-produced GTL liquid were used in the preparation of blends with five different concentrations of the GTL liquid. The wax precipitation temperatures of the blends were found to decrease with the increasing addition of the GTL liquid for all the oils. This effect was attributed to the solvent effect of the low molecular weight-paraffinic GTL liquid on the crude oils. The weight percent solid precipitated that was estimated as a function of temperature did not show a uniform trend for the set of crude oils. The asphaltene onset studies done on the blends with near-infrared spectroscopy indicated that the addition of GTL liquid could have a stabilizing effect on the asphaltenes in some oils. Analytical techniques such as distillation, solvent separation, HPLC, GC, and GPC were used to obtain detailed composition data on the samples. Two sets of compositional data with 49 and 86 pseudo-components were used to describe the three crude oils used in the blending work. The wax precipitation was calculated using a

  12. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  13. Geochemical characteristics of oil sands fluid petroleum coke

    International Nuclear Information System (INIS)

    Nesbitt, Jake A.; Lindsay, Matthew B.J.; Chen, Ning

    2017-01-01

    The geochemical characteristics of fluid petroleum coke from the Athabasca Oil Sands Region (AOSR) of northern Alberta, Canada were investigated. Continuous core samples were collected to 8 m below surface at several locations (n = 12) from three coke deposits at an active oil sands mine. Bulk elemental analyses revealed the coke composition was dominated by C (84.2 ± 2.3 wt%) and S (6.99 ± 0.26 wt%). Silicon (9210 ± 3000 mg kg"−"1), Al (5980 ± 1200 mg kg"−"1), Fe (4760 ± 1200 mg kg"−"1), and Ti (1380 ± 430 mg kg"−"1) were present in lesser amounts. Vanadium (1280 ± 120 mg kg"−"1) and Ni (230 ± 80 mg kg"−"1) exhibited the highest concentrations among potentially-hazardous minor and trace elements. Sequential extractions revealed potential for release of these metals under field-relevant conditions. Synchrotron powder X-ray diffraction revealed the presence of Si and Ti oxides, organically-complexed V and hydrated Ni sulfate, and provided information about the asphaltenic carbon matrix. X-ray absorption near edge structure (XANES) spectroscopy at the V and Ni K-edges revealed that these metals were largely hosted in porphyrins and similar organic complexes throughout coke grains. Minor differences among measured V and Ni K-edge spectra were largely attributed to slight variations in local coordination of V(IV) and Ni(II) within these organic compounds. However, linear combination fits were improved by including reference spectra for inorganic phases with octahedrally-coordinated V(III) and Ni(II). Sulfur and Fe K-edge XANES confirmed that thiophenic coordination and pyritic-ilmenitic coordination are predominant, respectively. These results provide new information on the geochemical and mineralogical composition of oil sands fluid petroleum coke and improve understanding of potential controls on associated water chemistry. - Highlights: • Oil sands fluid petroleum coke contains wide range of major, minor and

  14. Analyse quantitative des effluents de pyrolyse en milieu ouvert et fermé Quantitative Analysis of Pyrolysis Effluents in an Open and Closed System

    Directory of Open Access Journals (Sweden)

    Behar F.

    2006-11-01

    Full Text Available Dans la première partie de l'article, nous décrivons une technique de pyrolyse en milieu ouvert qui permet de caractériser les matières organiques complexes comme le kérogène, le charbon, les asphaltènes de roche et d'huiles, les substances humiques et fulviques etc. Les effluents de pyrolyse sont récupérés et fractionnés quantitativement puis analysés par des techniques spécifiques comme la chromatographie en phase gazeuse et le couplage chromatographie/spectrométrie de masse. Dans la deuxième partie, est présentée une technique de pyrolyse en milieu fermé pour simuler au laboratoire l'évolution thermique des kérogènes, asphaltènes ou huiles. Nous nous sommes surtout attachés à dresser des bilans massiques et des bilans de l'hydrogène sur l'ensemble des produits de pyrolyse. Pour cela, nous avons distingué cinq classes de poids moléculaire croissant : C1, C2-C5, C6-C13, C14+ et coke. La récupération quantitative et la séparation de chacune des cinq fractions permet une analyse moléculaire détaillée de chacune d'elles. The first part of this article describes an open pyrolysis system in order to characterize complex organic matter such as kerogen, coal, rock and oil asphaltenes and humic substances, etc. Pyrolysis effluents are recovered, fractionated quantitatively by liquid chromatography, and then they are analyzed by specific techniques such as gas chromatography and chromatography/mass-spectrometry coupling. The second part describes a pyrolysis technique in a closed system, used for the laboratory simulation of the thermal evolution of kerogens, asphaltenes or oils. A special effort has been made to give the mass and hydrogen balances for all pyrolysis products. For this, five classes have been distinguised with increasing molecular weight: C1, C2-C5, C6-C13, C14+ and coke. The quantitative recovery and the separation of each of the five fractions is used to make a detailed molecular analysis of each of

  15. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  16. Novel use of residue from direct coal liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Jianli Yang; Zhaixia Wang; Zhenyu Liu; Yuzhen Zhang [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    2009-09-15

    Direct coal liquefaction residue (DCLR) is, commonly, designed to be used as a feed stock for gasification or combustion. Use of DCLR as a value added product is very important for improving overall economy of direct coal liquefaction processes. This study shows that the DCLR may be used as a pavement asphalt modifier. The modification ability is similar to that of Trinidad Lake Asphalt (TLA), a superior commercial modifier. Asphalts modified by two DCLRs meet the specifications of ASTM D5710 and BSI BS-3690 designated for the TLA-modified asphalts. The required addition amount for the DCLRs tested is less than that for TLA due possibly to the high content of asphaltene in DCLRs. Different compatibility was observed for the asphalts with the same penetration grade but from the different origin. Different components in the DCLR play different roles in the modification. Positive synergetic effects among the fractions were observed, which may due to the formation of the stable colloid structure. Unlike polymer-type modifier, the structure of asphalt-type modifier has a similarity with petroleum asphalts which favors the formation of a stable dispersed polar fluid (DPF) colloid structure and improves the performance of pavement asphalt. 12 refs., 1 fig., 6 tabs.

  17. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Hafeez, I.; Kamal, M.A.; Shahzad, Q.; Bashir, N.; Ahadi, M.R.

    2012-01-01

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  18. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.

    Science.gov (United States)

    Laborde-Boutet, Cedric; McCaffrey, William C

    2017-02-21

    To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

  19. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    Directory of Open Access Journals (Sweden)

    Mohyeldin Ragab

    2015-01-01

    Full Text Available In this work we investigated the performance aspects of addition of used motor oils (UMO to neat and crumb rubber modified asphalts (CRMA and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM alone or with UMO results in the formation of internal network within the modified asphalt. Based on the results of short and long term aged asphalts, the utilization of combination of UMO and CRM enhanced the aging behavior of asphalt. Bending beam rheometer was utilized to investigate the low temperature behavior of UMO modified asphalts. Based on those tests, the utilization of the UMO and CRM enhanced the low temperature properties of asphalts. Based on the results of the asphalt separation tests and the Gel Permeation Chromatography (GPC analysis, it was found that saturates and naphthene aromatics are the two asphalt fractions that have similar molecular size fractions as those of UMO. However, UMO only shifts the molecular sizes of saturates after interaction with asphalt. Results also show that polar aromatics pose higher molecular size structures than UMO.

  20. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration.

    Science.gov (United States)

    Chandrasekhar, K; Venkata Mohan, S

    2012-04-01

    Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Hydrocracking of coal extracts to highly aromatic petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Kotowski, W; Gorski, R

    1972-07-01

    Coal extracts were hydrocracked at 400 to 450/sup 0/C, 250 atm, 0.8 to 2.0 hr/sup -1/ space velocity, and with 1.5 cu m/l./hr of hydrogen over a bed of fluidized, 0.6 to 0.8 mm granules of nickel-molybdenum zeolite catalyst using the Consolidation Coal Co. process. The 330/sup 0/C bp extract was diluted with the 230 to 320/sup 0/C fraction of the product. At 440/sup 0/C and 1.2 hr/sup -1/ space velocity, the hydrotreatment removed 97% of the sulfur compounds, 95% of oxygen compounds, and 92% of nitrogen compounds. The yield of 35 to 230/sup 0/C gasoline stock decreased with increasing feed space velocity, but that of 230 to 340/sup 0/C gas oils increased. The synthetic crude product contained 48.7% aromatics, 35.1% naphthenes, 13.4% paraffins, 2.8% olefins, 0.14% sulfur, and 1.07% asphaltene. The product is compared with Romashkino crude.

  2. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    Science.gov (United States)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey

    2018-02-01

    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  3. Weathering rates of oil components in a bioremediation experiment in estuarine sediments

    International Nuclear Information System (INIS)

    Oudot, J.; Merlin, F.X.; Pinvidic, P.

    1998-01-01

    The influence of the addition of a slow release fertiliser on the biodegradation rate of crude oil in experimental plots set up in the mid-tide sediments of an estuarine environment in the bay of Brest, France, was studied during a 9 month experiment. The weathering of total oil and fractions was monitored to the internal conservative biomarker 17 α(H), 21β(H)-30-norhopane by computerised capillary gas-chromatography. At the end of the experiment, the biodegradation rates for total oil, aliphatics, cycloalkanes and aromatics were respectively 40 ± 7, 83 ± 6, 49 ± 10 and 55 ± 18%. The resins and asphaltenes were not degraded. No significant difference in biodegradation rates was observed between fertilised and non-fertilised plots, which was attributed to the high background level of N and P in the site under study. It is thought that if background level of N in the interstitial pore water of the sediment is ≥ 100 μmoles litre -1 then bioremediation through fertilisation may be of limited use only. (author)

  4. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L.

    2004-01-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs

  5. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings

    International Nuclear Information System (INIS)

    Chaillan, F.; Chaineau, C.H.; Point, V.; Saliot, A.; Oudot, J.

    2006-01-01

    Oily drill cuttings and a soil contaminated with weathered crude oils were treated by enhanced biodegradation under tropical conditions in industrial scaled experiments. Oil contaminants were characterized by gas chromatography and mass spectrometry. This allowed for the identification of a mixture of two crude oils in the contaminated soil. After 12 months of bioremediation process, the removal of hydrocarbons reached by biodegradation an extent of 60% although nutrient amendment with elevated concentration of N-urea had highly detrimental effects on the hydrocarbon degrading fungal populations due to the production of toxic concentration of ammonia gas by nitrification. The saturated hydrocarbons were extensively assimilated, though n-alkanes were not completely removed. Aromatic hydrocarbons were less degraded than saturated whereas resin and asphaltene fractions were, surprisingly, partly assimilated. In laboratory conditions, the residual hydrocarbons in the field-treated materials were 15-20% further degraded when metabolic byproducts resulting from biodegradation were diluted or removed. - Bioremediation of oil-polluted soils can be impaired if urea is used as nitrogen source, and metabolic byproducts can limit biodegradation rates in industrial scaled experiments

  6. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  7. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  8. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  9. Effect of biosurfactants on crude oil desorption and mobilization in a soil system

    Energy Technology Data Exchange (ETDEWEB)

    Kuyukina, M.S.; Ivshina, I.B. [Ural Branch of the Russian Academy of Sciences, Perm (Russian Federation). Institute of Ecology and Genetics of Microorganisms; Makarov, S.O.; Litvinenko, L.V. [Perm State University, Perm (Russian Federation); Cunningham, C.J. [University of Edinburgh (United Kingdom). Contaminated Land Assessment and Remediation Research Centre; Philp, J.C. [Napier University, Edinburgh (United Kingdom). School of Life Sciences

    2005-02-01

    Microbially produced biosurfactants were studied to enhance crude oil desorption and mobilization in model soil column systems. The ability of biosurfactants from Rhodococcus ruber to remove the oil from the soil core was 1.4-2.3 times greater than that of a synthetic surfactant of suitable properties, Tween 60. Biosurfactant-enhanced oil mobilization was temperature-related, and it was slower at 15{sup o}C than at 22-28{sup o}C. Mathematical modelling using a one-dimensional filtration model was applied to simulate the process of oil penetration through a soil column in the presence of (bio)surfactants. A strong positive correlation (R{sup 2} = 0.99) was found between surfactant penetration through oil-contaminated soil and oil removal activity. Biosurfactant was less adsorbed to soil components than synthetic surfactant, thus rapidly penetrating through the soil column and effectively removing 65-82% of crude oil. Chemical analysis showed that crude oil removed by biosurfactant contained a lower proportion of high-molecular-weight paraffins and asphaltenes, the most nonbiodegradable compounds, compared to initial oil composition. This result suggests that oil mobilized by biosurfactants could be easily biodegraded by soil bacteria. Rhodococcus biosurfactants can be used for in situ remediation of oil-contaminated soils. (author)

  10. Trace metals in heavy crude oils and tar sand bitumens

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, J.G.

    1990-11-28

    Fe, Ni, and V are considered trace impurities in heavy crude oils and tar sand bitumens. In order to understand the importance of these metals, we have examined several properties: (1) bulk metals levels, (2) distribution in separated fractions, (3) size behavior in feeds and during processing, (4) speciation as a function of size, and (5) correlations with rheological properties. Some of the results of these studies show: (1) V and Ni have roughly bimodal size distributions, (2) groupings were seen based on location, size distribution, and Ni/V ratio of the sample, (3) Fe profiles are distinctively different, having a unimodal distribution with a maximum at relatively large molecular size, (4) Fe concentrations in the tar sand bitumens suggest possible fines solubilization in some cases, (5) SARA separated fractions show possible correlations of metals with asphaltene properties suggesting secondary and tertiary structure interactions, and (6) ICP-MS examination for soluble ultra-trace metal impurities show the possibility of unexpected elements such as U, Th, Mo, and others at concentrations in the ppB to ppM range. 39 refs., 13 figs., 5 tabs.

  11. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim [Faculty of Graduate Studies, Jordan University, Queen Rania Street, Amman, 11942 (Jordan); Haddadin, Jamal [Faculty of Agriculture, Mutah University, P.O. Box 59, Mutah 61710 (Jordan)

    2009-04-15

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K{sub 2}HPO{sub 4} to KH{sub 2}PO{sub 4} ratio, temperature, pH, and agitation speeds were 2:1, 37 C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre-treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale. (author)

  12. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria

    International Nuclear Information System (INIS)

    Haddadin, Malik S.Y.; Abou Arqoub, Ansam A.; Abu Reesh, Ibrahim; Haddadin, Jamal

    2009-01-01

    This study was done to extract hydrocarbon compounds from El-Lajjun oil shale using biosurfactant produced from two strains Rhodococcus erythropolis and Rhodococcus ruber. The results have shown that, optimal biosurfactant production was found using naphthalene and diesel as a carbon source for R. erthropolis and R. ruber, respectively. Optimum nitrogen concentration was 9 g/l and 7 g/l for R. erthropolis and R. ruber, respectively. Optimum K 2 HPO 4 to KH 2 PO 4 ratio, temperature, pH, and agitation speeds were 2:1, 37 deg. C, 7 and 200 rpm. Under optimal conditions R. erthropolis and R. ruber produced 5.67 and 6.9 g/l biosurfactant, respectively. Maximum recovery of oil achieved with hydrogen peroxide pre-treatment was 25% and 26% at biosurfactant concentration of 8 g/l and 4 g/l for R. erthropolis and R. ruber, respectively. The extent desorption of hydrocarbons from the pre-treated oil shale by biosurfactant were inversely related to the concentration of high molecular weight hydrocarbons, asphaltenes compounds. Pre- treatment of oil shale with hydrogen peroxide produced better improvement in aromatic compounds extraction in comparison with improvement which resulted from demineralization of the oil shale

  13. Removal Capacities of Polycyclic Aromatic Hydrocarbons (PAHs by a Newly Isolated Strain from Oilfield Produced Water

    Directory of Open Access Journals (Sweden)

    Yi-Bin Qi

    2017-02-01

    Full Text Available The polycyclic aromatic hydrocarbon (PAH-degrading strain Q8 was isolated from oilfield produced water. According to the analysis of a biochemical test, 16S rRNA gene, house-keeping genes and DNA–DNA hybridization, strain Q8 was assigned to a novel species of the genus Gordonia. The strain could not only grow in mineral salt medium (MM and utilize naphthalene and pyrene as its sole carbon source, but also degraded mixed naphthalene, phenanthrene, anthracene and pyrene. The degradation ratio of these four PAHs reached 100%, 95.4%, 73.8% and 53.4% respectively after being degraded by Q8 for seven days. A comparative experiment found that the PAHs degradation efficiency of Q8 is higher than that of Gordonia alkaliphila and Gordonia paraffinivorans, which have the capacities to remove PAHs. Fourier transform infrared spectra, saturate, aromatic, resin and asphaltene (SARA and gas chromatography–mass spectrometry (GC–MS analysis of crude oil degraded by Q8 were also studied. The results showed that Q8 could utilize n-alkanes and PAHs in crude oil. The relative proportions of the naphthalene series, phenanthrene series, thiophene series, fluorene series, chrysene series, C21-triaromatic steroid, pyrene, and benz(apyrene were reduced after being degraded by Q8. Gordonia sp. nov. Q8 had the capacity to remediate water and soil environments contaminated by PAHs or crude oil, and provided a feasible way for the bioremediation of PAHs and oil pollution.

  14. Upgrading Unconventional Oil Resources with the EST Process

    Energy Technology Data Exchange (ETDEWEB)

    Delbianco, Alberto; Meli, Salvatori; Panariti, Nicolleta; Rispoli, Giacomo

    2007-07-01

    We strongly believe that unconventional oils will play a much larger role in the growth of supply than is currently recognized. As a matter of fact, whereas the earth's conventional proven world oil reserves are 1.3 trillion barrels, extra-heavy plus bitumen resources amount to about 4 trillion barrels. The unconventional oils are characterized by low API gravity (<10), high viscosity and high concentration of poisons such as sulphur, nitrogen, metals, and asphaltenes. For this reason, a key role for the full exploitation of these hydrocarbon resources is played by the downstream processes that are required to upgrade and convert them into valuable products. In this scenario, Eni has developed a novel hydrocracking process (EST: Eni Slurry Technology) which is particularly well-suited for the conversion and upgrading of heavy feedstocks (conventional vacuum residues, extra-heavy oils and bitumen). EST employs nano-sized hydrogenation catalysts and an original process scheme that allow complete feedstock conversion to an upgraded synthetic crude oil (SCO) with an API gravity gain greater than 20 and avoid the production of residual by-products, such as pet-coke or heavy fuel oil. A Commercial Demonstration Unit (CDP) of 1200 bbl/d capacity is successfully operating in the Eni's Taranto refinery since November 2005. (auth)

  15. Sulfurisation of lipids in a marine-influenced lignite

    Energy Technology Data Exchange (ETDEWEB)

    Sandison, C.M.; Alexander, R.; Kagi, R.I.; Boreham, C.J. [Curtin University of Technology, Perth, WA (Australia)

    2002-07-01

    Compelling evidence is presented for the process of lipid sulfurisation in humic coal-forming environments. The production of reduced inorganic sulfides by sulfate-reducing bacteria during a marine transgression, which occurred during early diagenesis, enabled the selective sequestration of functionalised lipids in the polar and asphaltene fractions from the Eocene, marine-influenced Heartbreak Ridge lignite deposit in southeast Western Australia. Nickel boride desulfurisation experiments conducted on these fractions released small but significant quantities of sulfur-bound hydrocarbons. These comprised mostly higher plant triterpanes, C-29 steranes and extended 17beta(H),21beta(H)-hopanes, linked by one sulfur atom at, or close to, functionalised sites in the original natural product precursors. These sulfurised lipids come from the same carbon sources as the free hydrocarbon lipids, except for the sulfurised extended hopanoids, which may be partially derived from a different bacterial source. These results indicate that the selectivity and nature of steroid and hopanoid vulcanisation in coal-forming mires is similar to that observed in other sedimentary environments. However, the diversity of higher plant triterpanes that can be sulfurised in marine transgressed coals is greater than that reported in immature terrestrial coals. This preservation mechanism explains the formation of the structurally related biomarkers in more mature sulfur-rich humic coals.

  16. Comparison of crude oil interfacial behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beetge, J.H.; Panchev, N. [Champion Technologies Inc., Fresno, TX (United States)

    2008-07-01

    The bulk properties of crude oil are used to predict its behaviour with regards to treatment, transport and processing. Surface active components, such as asphaltenes, are often used to study or explain critical interfacial behaviour of crude oil. This study investigated the differences and similarities in the interfacial behaviour of the collective surface active component in various crude oils from different sources. The properties of interfaces between crude oil and water were compared using a Teclis drop shape tensiometer. A portion of a crude oil sample was diluted in toluene and contacted with water in a rising drop configuration. Dynamic surface tension and interfacial rheology was examined as a function of time from the early stages of interface formation. Sinusoidal oscillation of the drop volume allowed for the evaluation of visco-elastic behaviour of the crude oil/water interface as it developed with time. The Gibbs elastic modulus, as well as its elastic and viscose components were calculated from the drop shape. The interfacial behaviour was expressed in terms of concentration, oscillation frequency and interface age. It was concluded that knowledge of crude oil interfacial character could be of value in the treatment, transport and processing of crude oils because the its behaviour may play a significant role in crude oil production and processing.

  17. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  18. The effect of low molecular weight multifunctional additives on heavy oil viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, T.B.P.; Yarranton, H.W.; Larter, S.R. [Calgary Univ., AB (Canada)

    2010-07-01

    Crude oils contain many small multifunctional low molecular weight components that act as linking molecules between larger functionalized species. The linkage molecules have a significant impact on the flow properties of hydrocarbon systems. This study investigated the use of a low molecular weight multiheteroatom species (LMWMH) as a molecular Velcro linking high molecular weight components together. LMWMH species were added to Albertan bitumens and heavy oil, and their impact on viscosity was investigated. Results of the experimental studies were then compared with the effects of hydrocarbon solvents on similar samples. The LMWMH species included bifunctional species and analogous alkyl and aryl monoamines that acted as blocking molecules to hinder the association of larger petroleum species. Density and viscosity measurements were conducted. A correlation method was used to predict the viscosity of the solvent-diluted heavy oil and bitumen samples. The study showed that of the tested additives, only aniline demonstrated an additional viscosity-reducing effect. The aniline inhibited asphaltene association and is a promising candidate for enhanced in-situ bitumen viscosity reduction. 23 refs., 4 tabs.

  19. Group separation of coal components and new ideas of coal utilization as petroleum

    Energy Technology Data Exchange (ETDEWEB)

    Zhi-hong Qin; Cui-li Hou; Juan Chen; Li-ying Zhang; Jie-qiong Ma [China University of Mining & Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2009-09-15

    Four different groups of components were separated from coal under mild conditions of extraction and stripping process. Within these groups, and with pre-separation, individual utilization of all coal components can be realized, similar to petroleum components and enhance the inherent value and utilization value of coal, as well as increase environmental benefits. The characteristics of each component were analyzed with measurements by FTIR, GC/MS, TEM and the establishment of caking properties. The results show that coal can be separated into residues, ultra-pure coal, asphaltene components and light components by adding solvents for stripping into the CS{sub 2}/NMP mixed extraction solution. Those four groups of components present great differences in the presence of carbon and hydrogen elements, in the structure of functional groups, in their macroscopic structure and micro-morphology and caking properties. Every component possesses its own inherent values and approaches. A new idea of coal processes and utilization, similar to the use of petroleum is proposed. 11 refs., 6 figs., 6 tabs.

  20. Thermal Adsorption Processing Of Hydrocarbon Residues

    Directory of Open Access Journals (Sweden)

    Sudad H. Al.

    2017-04-01

    Full Text Available The raw materials of secondary catalytic processes must be pre-refined. Among these refining processes are the deasphalting and demetallization including their thermo adsorption or thermo-contact adsorption variety. In oil processing four main processes of thermo-adsorption refining of hydrocarbon residues are used ART Asphalt Residual Treating - residues deasphaltizing 3D Discriminatory Destructive Distillation developed in the US ACT Adsorption-Contact Treatment and ETCC Express Thermo-Contact Cracking developed in Russia. ART and ACT are processes with absorbers of lift type reactor while 3D and ETCC processes are with an adsorbing reactor having ultra-short contact time of the raw material with the adsorbent. In all these processes refining of hydrocarbon residues is achieved by partial Thermo-destructive transformations of hydrocarbons and hetero-atomic compounds with simultaneous adsorption of the formed on the surface of the adsorbents resins asphaltene and carboids as well as metal- sulphur - and nitro-organic compounds. Demetallized and deasphalted light and heavy gas oils or their mixtures are a quality raw material for secondary deepening refining processes catalytic and hydrogenation cracking etc. since they are characterized by low coking ability and low content of organometallic compounds that lead to irreversible deactivation of the catalysts of these deepening processes.

  1. An integrated approach to combating flow assurance problems

    Energy Technology Data Exchange (ETDEWEB)

    Abney, Laurence; Browne, Alan [Halliburton, Houston, TX (United States)

    2005-07-01

    Any upset to the internal pipe surface of a pipeline can significantly impact both pipeline through-put and energy requirements for maintaining design flow rates. Inefficient flow through pipelines can have a significant negative impact on operating expense (Opex) and the energy requirements necessary to maintain pipeline through-put. Effective flow maintenance helps ensure that Opex remains within budget, processing equipment life is extended and that excessive use of energy is minimized. A number of events can result in debris generation and deposition in a pipeline. Corrosion, hydrate formation, paraffin deposition, asphaltene deposition, development of 'black powder' and scale formation are the most common sources of pipeline debris. Generally, a combination of pigging and chemical treatments is used to remove debris; these two techniques are commonly used in isolation. Incorporation of specialized fluids with enhanced solid-transport capabilities, specialized dispersants, or specialized surfactants can improve the success of routine pigging operations. An array of alternative and often complementary remediation technologies can be used to effect the removal of deposits or even full restrictions from pipelines. These include the application of acids, specialized chemical products, and intrusive interventions techniques. This paper presents a review of methods of integrating existing technologies. (author)

  2. raaSAFT: A framework enabling coarse-grained molecular dynamics simulations based on the SAFT- γ Mie force field

    Science.gov (United States)

    Ervik, Åsmund; Serratos, Guadalupe Jiménez; Müller, Erich A.

    2017-03-01

    We describe here raaSAFT, a Python code that enables the setup and running of coarse-grained molecular dynamics simulations in a systematic and efficient manner. The code is built on top of the popular HOOMD-blue code, and as such harnesses the computational power of GPUs. The methodology makes use of the SAFT- γ Mie force field, so the resulting coarse grained pair potentials are both closely linked to and consistent with the macroscopic thermodynamic properties of the simulated fluid. In raaSAFT both homonuclear and heteronuclear models are implemented for a wide range of compounds spanning from linear alkanes, to more complicated fluids such as water and alcohols, all the way up to nonionic surfactants and models of asphaltenes and resins. Adding new compounds as well as new features is made straightforward by the modularity of the code. To demonstrate the ease-of-use of raaSAFT, we give a detailed walkthrough of how to simulate liquid-liquid equilibrium of a hydrocarbon with water. We describe in detail how both homonuclear and heteronuclear compounds are implemented. To demonstrate the performance and versatility of raaSAFT, we simulate a large polymer-solvent mixture with 300 polystyrene molecules dissolved in 42 700 molecules of heptane, reproducing the experimentally observed temperature-dependent solubility of polystyrene. For this case we obtain a speedup of more than three orders of magnitude as compared to atomistically-detailed simulations.

  3. Caractérisation de quelques stabilisants naturels de l'émulsion d'eau dans le pétrole brut, grace à l'extension de la technique de "moussage" au système liquide-liquide eau-huile Characterising Several Natural Stabilizants of Water Emulsion in Crude Oil by Extending the "Foaming" Technique to Oil/Water Liquid-Liquid Systems

    Directory of Open Access Journals (Sweden)

    Coste J. -F.

    2006-11-01

    Full Text Available L'extension de la technique, de " moussage "au système liquide-liquide eau-pétrole brut a permis d'augmenter la concentration d'une fraction du pétrole en acides naphténiques, amines, asphaltènes et porphyrines, grâce à l'accroissement de l'aire de l'interface entre les deux phases non miscibles. Ces espèces chimiques présentes à l'interface favorisent la formation des films entre les gouttelettes de phase aqueuse dispersée. Elles sont à l'origine de la stabilité de I'émulsion d'eau dans le pétrole. The " foaming " technique was extended to a water/crude-oil liquid-liquid system so as to increase the concentration of naphthenic acids, amines, asphaltenes and porphyrins in an oil fraction by enlarging the interface orea between the two immiscible phases. The presence of these chemical species at the interface promotes the formation of films between the dispersed aqueuss-phase droplets. They are at the origin of the stability of a water in oil emulsion.

  4. Analysis of petroleum oily sludge producing in petroleum field of Rio Grande do Norte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de Souza; Lima, Regineide Oliveira; Silva, Edjane Fabiula Buriti da; Castro, Kesia Kelly Vieira de; Chiavone Filho, Osvaldo; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    In exploration and production of petroleum is generated solid waste different and components other. The petroleum oily sludge is a complex mix of components different (water, oil and solid). The petroleum oily sludge generally has other residues and is formed during production and operations, transport, storage and petroleum refining (atmospheric residue, vacuum residue and catalytic cracking residue). However, according to its origin, the compositions can be found quite varied for sludge. Observing the process steps production and refining is possible to locate its main sources and percentage contributions in terms of waste generation. The elemental analysis was performed with oily sludge from region and it showed different composition. For carbon element and hydrogen, small differences was observed, but for was observed greater differences for Oxygen element. The sludge has different inorganic and organic composition. The sludge from oil water separator (OWS) 2 showed a greater amount of oil (94.88%), this may indicate a residue of aggregate high for petroleum industry. In analysis of Saturates, Aromatics, Resins and Asphaltenes (SARA), the sludge from unloading showed amount high of saturates. The inorganic material separated from sludge was characterized and sludge from OWS 2 had high amount sulfur (41.57%). The sludge analyzed showed organic components high values, so it can be treated and reprocessed in process units petroleum industry. The analysis thermal degradation had a better setting for treated oily sludge. (author)

  5. Petroleomics: chemistry of the underworld.

    Science.gov (United States)

    Marshall, Alan G; Rodgers, Ryan P

    2008-11-25

    Each different molecular elemental composition-e.g., C(c)H(h)N(n)O(o)S(s)-has a different exact mass. With sufficiently high mass resolving power (m/Deltam(50%) approximately 400,000, in which m is molecular mass and Deltam(50%) is the mass spectral peak width at half-maximum peak height) and mass accuracy (/=9.4 T) Fourier transform ion cyclotron resonance mass spectrometry, it is possible to resolve and identify uniquely and simultaneously each of the thousands of elemental compositions from the most complex natural organic mixtures, including petroleum crude oil. It is thus possible to separate and sort petroleum components according to their heteroatom class (N(n)O(o)S(s)), double bond equivalents (DBE = number of rings plus double bonds involving carbon, because each ring or double bond results in a loss of two hydrogen atoms), and carbon number. "Petroleomics" is the characterization of petroleum at the molecular level. From sufficiently complete characterization of the organic composition of petroleum and its products, it should be possible to correlate (and ultimately predict) their properties and behavior. Examples include molecular mass distribution, distillation profile, characterization of specific fractions without prior extraction or wet chemical separation from the original bulk material, biodegradation, maturity, water solubility (and oil:water emulsion behavior), deposits in oil wells and refineries, efficiency and specificity of catalytic hydroprocessing, "heavy ends" (asphaltenes) analysis, corrosion, etc.

  6. Production of petroleum bitumen by oxidation of heavy oil residue with sulfur

    Science.gov (United States)

    Tileuberdi, Ye.; Akkazyn, Ye. A.; Ongarbayev, Ye. K.; Imanbayev, Ye. I.; Mansurov, Z. A.

    2018-03-01

    In this paper production of bitumen adding elemental sulfur at oxidation of oil residue are investigated. The objects of research were distilled residue of Karazhanbas crude oil and elemental sulfur. These oil residue characterized by a low output of easy fractions and the high content of tar-asphaltene substances, therefore is the most comprehensible feedstock for producing bitumen. The sulfur is one of the oil product collected in oil extraction regions. Oxidation process of hydrocarbons carried out at temperatures from 180 up to 210 °С without addition of sulfur and with the addition of sulfur (5-10 wt. %) for 4 hours. At 200 °С oxidation of hydrocarbons with 5, 7 and 10 wt.% sulfur within 3-4 h allows receiving paving bitumen on the mark BND 200/300, BND 130/200, BN 90/130 and BN 70/30. Physical and mechanical characteristics of oxidation products with the addition of 5-7 wt. % sulfur corresponds to grade of paving bitumen BND 40/60. At the given temperature oxidized for 2.5-3 h, addition of 10 wt. % sulfur gave the products of oxidation describing on parameters of construction grades of bitumen (BN 90/10).

  7. Isolation of CYP1A inducing components in coal tar fraction (F3) of Alaska north slope crude oil : a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Saravanabhavan, G.; Brown, R.S. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry; Khan, C.W.; Hodson, P.V. [Queen' s Univ., Kingston, ON (Canada). Dept. of Biology

    2004-07-01

    Recent concerns regarding the effects of weathered crude oil on the early life stage of aquatic organisms are related to reports that blue sac disease (BSD) has been linked to larval fish exposed to crude oil. Studies have shown that a relationship exists between the induction of CYP1A enzymes and the occurrence of BSD in fish species. However, the mechanism of BSD is not fully understood. This study contributed to the Toxicity Identification and Evaluation (TIE) approach by isolating the CYP1A enzyme. An improved separation and analysis method for characterizing crude oil was also developed. Earlier studies revealed that the highest CYP1A activity occurred in the coal tar fraction of crude oil, which is rich in polycyclic aromatic hydrocarbons (PAH) and which contains many classes of compounds such as waxes, asphaltenes and resins. The TIE method included separation of these compound classes as well as a detailed characterization of the PAH classes. A solvent extraction method was also developed to fractionate the coal tar fraction into compound classes with particular emphasis on isolating PAH components. The study showed that fractions rich in PAH were responsible for a significant CYP1A induction in juvenile trout, but fractions poor in PAH did not. The solid phase extraction method offered better PAH fractions for further analysis by liquid chromatography.

  8. Fuel quality control: Five years of activity in laboratories

    International Nuclear Information System (INIS)

    Bettinelli, M.; Cimini, G.; Durello, G.; Lucchesi, P.L.

    1991-01-01

    A description of how ENEL (Italian National Electricity Board) carries out the activity of fuel quality control is given, and the results of the Round Robin circuit which has been operating for five years in laboratories regulary performing the control analyses of these products are reported. The laboratories taking part in the Round Robin circuit are 41 (out of which 35 are ENEL laboratories and 6 are owned by external companies) and they are situated throughout Italy; the controlled parameters are the following: heat of combustion (PCS), sulphur (S), vanadium (V) and asphaltenes (ASF); the adopted methods are the official ASTM or IP ones. The statistical analysis of the results has permitted, for every parameter, the calculation of the repeatability and the reproducibility which, in most cases, have turned out to be in keeping with the values provided for in the regulations. Among the collateral initiatives promoted in the framework of this Round Robin, the following are reported: preparation of standards of fuel oil with a known content of a sulphur and vanadium; expediting visits to all the ENEL laboratories participating in the RRT; publication of a handbook of the adopted analysis methods (in Italian); definition of guide-lines on the right selection of new automatic equipment

  9. Benthic Bioprocessing of Hydrocarbons in the Natural Deep-Sea Environment

    Science.gov (United States)

    Sultan, N.; MacDonald, I. R.; Bohrmann, G.; Schubotz, F.; Johansen, C.

    2017-12-01

    Science is accustomed to quantifying ecosystem processes that consume carbon from primary production as it drifts downward through the photic zone. Comparably efficient processes operate in reverse, as living and non-living components sequester and re-mineralize a large fraction of hydrocarbons that migrate out of traps and reservoirs to the seafloor interface. Together, they comprise a sink that prevents these hydrocarbons from escaping upward into the water column. Although quantification of the local or regional magnitude of this sink poses steep challenges, we can make progress by classifying and mapping the biological communities and geological intrusions that are generated from hydrocarbons in the deep sea. Gulf of Mexico examples discussed in this presentation extend across a broad range of depths (550, 1200, and 3200 m) and include major differences in hydrocarbon composition (from gas to liquid oil to asphaltene-dominated solids). Formation of gas hydrate is a dynamic process in each depth zone. At upper depths, gas hydrate is unstable at a timescale of months to years and serves as a substrate for microbial consortia and mussel symbiosis. At extreme depths, gas hydrate supports large and dense tubeworm colonies that conserve the material from decomposition. Timescales for biogeochemical weathering of oil and asphalts are decadal or longer, as shown by sequential alterations and changing biological colonization. Understanding these processes is crucial as we prepare for wider and deeper energy exploitation in the Gulf of Mexico and beyond.

  10. Achievement report for fiscal 1993 on research under Sunshine Program. Research on direct liquefaction reaction of coal; 1993 nendo sekitan no chokusetsu ekika hanno ni kansuru kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    The reaction velocity constant of coal or the distribution of products in a high-pressure hydrocracking process of coal are found not to be affected by the temperature rise rate. The liquefaction of coal using CO and water is analyzed using a high-pressure differential thermal analyzer. The hydrogen gas generated during the water gas reaction reacts with CO for the formation of alcohols, carbonic acid, etc. The reaction rate is found to be higher when the specimen contains more oxygen. When coals greatly different from each other in terms of thermolytic reactivity, caking property, and intersolubility with medium oils are mixed, synergistic effects are exhibited, positive when active hydrogen supply is abundant and negative when it is short. In the case of the Hokkaido coal which contains 73.0-87.4% carbon, the grain diameter does not affect the liquefaction rate when the coal is crushed to the 48-mesh size approximately. Reaction velocity in direct liquefaction does not relate to hydrogen pressure. Asphaltenes in coal liquefaction are produced at the beginning of reaction, to be reduced in molecular weight due to cleavage of methylene crosslinks with the progress of reaction. Studies are conducted in a 0.1t/d-capable bench plant about liquefaction reaction characteristics and coal liquid properties, and chemical structures. (NEDO)

  11. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  12. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  13. Bioremediation in oil-contaminated sites: bacteria and surfactant accelerated remediation

    Science.gov (United States)

    Strong-Gunderson, Janet M.; Guzman, Francisco

    1996-11-01

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One important issue is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These sites areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltens, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost- effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico.

  14. Extensive experimental investigation of the effect of drainage height and solvent type on the stabilized drainage rate in vapour extraction (VAPEX process

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammadpoor

    2015-09-01

    Full Text Available The low cost of the injected solvent, which can be also recovered and recycled, and the applicability of VAPEX technique in thin reservoirs are among the main advantages of VAPEX process compared to thermal heavy oil recovery techniques. In this research, an extensive experimental investigation is carried out to first evaluate the technical feasibility of utilization of various solvents for VAPEX process. Then the effect of drainage height on the stabilized drainage rate in VAPEX process was studied by conducting series of experiments in two large-scale 2D VAPEX models of 24.5 cm and 47.5 cm heights. Both models were packed with low permeability Ottawa sand (#530 and saturated with a heavy oil sample from Saskatchewan heavy oil reservoirs with viscosity of 5650 mPa s. Propane, butane, methane, carbon dioxide, propane/carbon dioxide (70%/30% and propane/methane (70%/30% were considered as respective solvents for the experiments, and a total of twelve VAPEX tests were carried out. Moreover, separate experiments were carried out at the end of each VAPEX experiment to measure the asphaltene precipitation at various locations of the VAPEX models. It was found that injecting propane would result in the highest drainage rate and oil recovery factor. Further analysis of results showed stabilized drainage rate significantly increased in the larger physical model.

  15. Effect of temperature on biodegradation of crude oil

    International Nuclear Information System (INIS)

    Zekri, A.; Chaalal, O.

    2005-01-01

    An active strain of anaerobic thermophilic bacteria was isolated from the environment of the United Arab Emirates. This project studied the effect of temperature, salinity and oil concentration on biodegradation of crude oil. Oil weight loss, microbial growth and the changes of the crude oil asphaltene concentration are used to evaluate the oil degradation by this strain. A series of batch experiments was performed to study the effects of bacteria on the degradation of crude oil. The effects of oil concentration, bacteria concentration, temperature and salinity on the biodegradation were investigated. The temperatures of the studied systems were varied between 35 and 75 o C and the salt concentrations were varied between 0 and 10%. Oil concentrations were ranged from 5 to 50% by volume. Experimental work showed the bacteria employed in this project were capable of surviving the harsh environment and degrading the crude oil at various conditions. Increasing the temperature increases the rate of oil degradation by bacteria. Increasing the oil concentration in general decreases the rate of bacteria oil degradation. Salinity plays a major role on the acceleration of biodegradation process of crude oil. An optimum salinity should be determined for every studied system. The finding of this project could be used in either the treatment of oil spill or in-situ stimulation of heavy oil wells. (author)

  16. Upgrading of heavy crude oil with supported and unsupported transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)

    2006-07-01

    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  17. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)

    2013-11-01

    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  18. Aging of SRC liquids

    Science.gov (United States)

    Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.

    1981-02-01

    The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.

  19. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    Fadhi, A.B.

    2006-01-01

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  20. Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study

    International Nuclear Information System (INIS)

    Subagyono, Dirgarini J.N.; Marshall, Marc; Jackson, W. Roy; Chaffee, Alan L.

    2015-01-01

    Pressurized thermal decomposition of two marine algae, Pinus radiata chip residue and grape marc using high temperature, high pressure reactions has been studied. The yields and composition of the products obtained from liquefactions under CO of a mixture of biomass and H 2 O (with or without catalyst) were compared with products from liquefaction of dry biomass under N 2 , at different temperatures, gas pressures and for CO runs, water to biomass ratios. Thermochemical reactions of algae produced significantly higher dichloromethane solubles and generally higher product yields to oil and asphaltene than Pinus radiata and grape marc under the reaction conditions used. Furthermore, the biofuels derived from algae contained significant concentrations of aliphatic hydrocarbons as opposed to those from radiata pine and grape marc which were richer in aromatic compounds. The possibility of air transport fuel production from algae thus appears to have considerable advantages over that from radiata pine and grape marc. - Highlights: • Liquefaction of algae gave more oil than that of Pinus radiata and grape marc. • Reactions under CO/H 2 O produced higher yields of oil than N 2 . • Water to biomass ratio had little effect on the yields. • Bio-oil from algae contained substantial amounts of aliphatic hydrocarbons. • Pinus radiata oil was low in N but high in O

  1. You've got 'scale' : developments in well-bore remediation technology

    Energy Technology Data Exchange (ETDEWEB)

    Zemlak, Z. [Schlumberger Canada Ltd., Calgary, AB (Canada); Kortash, B. [Amoco Canada Petroleum Co. Ltd., Calgary, AB (Canada)

    2000-06-01

    The Kaybob field Beaver Hill Lake formation in Central Alberta is an aquifer driven maturing gas reservoir with high concentrations of iron sulfide scale. This scale, in combination with a time layered asphaltenes has an impact on production. Since the scale forms on tubular walls and results in corrosion of metal, it also increases risks during well intervention. Past techniques to remove the scale have not proven to be successful. This study presents a newly developed Blaster scale removal system to clean tubings. Blaster techniques use high-pressure jetting in combination with special abrasives to remove extremely hard, inert scales without damaging the tubing or completion components. Amoco Canada has been involved in the continual improvement and modification of the method since its introduction in 1998. To date, a total of 19 wells have been completed, providing valuable data about the method. It was concluded that although iron sulfide scale is common throughout the gas reservoir, the composition and solubility varies from well to well. Amoco Canada has found that Blaster techniques are a safe, low risk method of cleaning coiled tubulars to known drift parameters, in areas where scale and corrosion have been uncontrollable. 5 refs., 2 tabs., 1 fig.

  2. Bioremediation in oil-contaminated sites: Bacteria and surfactant accelerated remediation

    International Nuclear Information System (INIS)

    Strong-Gunderson, J.M.

    1996-01-01

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One of the important issues is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These site areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltenes, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost-effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico

  3. Pyrolysis thermocatalytic of the residues generated in the process of oil refining; Pirolise termocatalitica de residuos gerados no processo de refino de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Regineide Oliveira; Castro, Kesia Kelly Vieira de; Lima, Cicero de Souza; Araujo, Aruzza Mabel de Morais; Silva, Edjane Fabiula Buriti da; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    The pyrolysis process is a catalytic thermal defined as the degradation of waste which occurs by the action of temperature and presence of catalysts. Thus promoting disruption of the original molecular structure of a given compound by the catalytic action in an environment with little or no oxygen. Investigations have been developed in the pyrolysis due to be a promising technique, due to the application of catalytic materials. In this work, the catalyst used Al/MCM-41 was synthesized in a ratio Si / Al = 50 by the hydrothermal method. Being in this promising oil industry because of their structural characteristics. This material was characterized by XRD analysis, which was observed three major peaks typical of mesoporous materials. The analysis of the adsorption / desorption of nitrogen this material was performed to determine the textural parameters, which are peculiar to the mesoporous materials. The residue samples were characterized with a view to meet some properties such as through elemental analysis of the compounds and saturates, aromatics, resins and asphaltenes. The pyrolysis reaction system catalytic thermal residue is mounted to test the pyrolysis of residue pure and the Al-MCM-41. For both pyrolysis liquid fractions were obtained, gaseous and solid. And only the liquid fractions were characterized by chromatography coupled to mass spectrometry. Thus, there was an increase in the range hydrocarbons (C6-C12 and C13-C17) for products obtained from the pyrolysis catalyst. (author)

  4. Action of microwave radiation in emulsion of oil demulsification by copolymers of poly (ethylene oxide-b-propylene oxide); Acao da radiacao micro-ondas na desemulsificacao de emulsoes de petroleo por copolimeros de poli(oxido de etileno-b-oxido de propileno)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Bianca M.S.; Ramalho, Joao B.V.; Guimaraes, Regina C.L.; Guarnieri, Ricardo A. [Petrobras Petroleo Brasileiro - CENPES/TPEP/TPP, Rio de Janeiro, RJ (Brazil)], e-mail: bmachado@petrobras.com.br; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria do Petroleo,Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    Emulsions of water-in-petroleum are generally formed during crude oil production. The emulsion needs to be destabilized, along the process in the production units, so as to allow the water-oil separation. This process is accomplished by heating and addition of demulsifier, like poly (ethylene oxide-b-propylene oxide) which promotes the removal of the natural emulsifier from the water droplets interfaces. Normally, the conventional heating is used, but the microwave radiation has been suggested to heat de emulsions. The results obtained in this work show that microwave radiation can really enhance the demulsification rate of petroleum emulsions by gravitational mechanism. It is also shown that demulsification enhancement is greatly related to the selective and higher heating of the water phase induced by the microwave radiation, which causes the lowering of the interfacial film rigidity and the increase of the film drainage, after the demulsifier is added to the dispersed system. It was also observed that the higher the density, viscosity, acidity and asphaltenes content of the crude oil, the lower the demulsification rate. (author)

  5. The effect of catalysts blending on coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, F.; Gulyurtlu, I.; Lobo, L.S.; Cabrita, I. [INETI, Lisbon (Portugal)

    1999-05-01

    The effect of several catalysts on coal hydropyrolysis efficiency was studied, having selected catalysts with different characteristics and behaviours. For the experimental conditions used Fe{sub 2}O{sub 3} and ICI 41-6 showed selectivity towards lighter fractions, whilst ZnCl{sub 2} led to the highest coal conversion and to the greatest preasphaltenes yields. These results suggested the use of mixtures of catalysts. The heavier molecules of asphaltenes produced as a result of ZnCl{sub 2} action, could then be converted into lighter fractions by the action of a selective catalyst. Coal hydropyrolysis tests were undertaken using ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3} or ICI 41-6. These mixtures of catalysts led to increased conversions and higher product yields. The best results were obtained in the presence of ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3}. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM. 17 refs., 11 figs., 1 tab.

  6. Rheological, structural and chemical evolution of bitumen under gamma irradiation

    International Nuclear Information System (INIS)

    Mouazen, M.; Poulesquen, A.; Bart, F.; Masson, J.; Charlot, M.; Vergnes, B.

    2013-01-01

    Bitumen derived from crude oil by fractional distillation has been used in the nuclear industry as a radioactive waste encapsulation matrix. When subjected to α, β and γ self-irradiation, this organic matrix undergoes radiolysis, generating hydrogen bubbles and modifying the physical and chemical properties of the material. In this paper, the effects of irradiation on bitumen materials, especially in terms of its physical, chemical, structural and rheological properties, were characterized at radiation doses ranging from 1 to 7 MGy. An increase in the shear viscosity and melt yield stress was observed with increasing doses. Similarly, the elastic and viscous moduli (G' and G'') increase with the dose, with a more pronounced increase for G' that reflects enhanced elasticity arising from radiation-induced cross-linking. In addition, a low-frequency plateau is observed for G', reflecting pseudo-solid behavior and leading to an increase of the complex viscosity. This behavior is due to increased interactions between asphaltene particles, and to aromatization of the bitumen by γ-radiations. Cross-linking of bitumen enhances its strength, as confirmed by various techniques (modulated DSC, DTA/TGA, SEC, FTIR and XRD). (authors)

  7. Economic evaluation of organic deposition inhibition treatment: case study; Avaliacao economica de tratamentos de inibicao de deposicao organica: estudo de casos

    Energy Technology Data Exchange (ETDEWEB)

    Lechuga, Fernanda Curty; Seidl, Peter Rudolf; Guimaraes, Maria Jose de Oliveira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Lucas, Elizabete Fernandes [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    During the production process the temperature and pressure decrease along the well, that generate an increase in viscosity, changes in the composition of the oil and chemical changes in the balance of oil. These changes in the balance may lead to precipitation and deposition of organic components of heavy oil. These occurrences cause serious economic consequences. To solve problems related to organic deposition, it is proposed some actions to prevent the formation of these deposits. Chemical additives interfere in precipitation of paraffins and aggregation of asphaltenes, increasing stability. This paper aims to examine, in economic terms, treatments prevention in different wells by the mechanism of inhibition of organic deposition by the action of chemical additives. The methodology applied for the economic analysis was the return on investment (ROI - Return-on-investments) that could estimate when there was an economic gain in problems of organic deposition treated with chemical additives. The results showed that if these wells use prevention methods it could get a return of more than $ 100.00 per dollar invested in treatment, which would be beneficial, since these treatments increase the production of oil and reduce the idle time in wells. (author)

  8. Directions in refining and upgrading of heavy oil and bitumen

    International Nuclear Information System (INIS)

    Dawson, B.; Parker, R. J.; Flint, L.

    1997-01-01

    The expansion of heavy oil transportation, marketing and refining facilities over the past two decades have been reviewed to show the strides that several Canadian refiners have taken to build up the facilities required to process synthetic crude oil (SCO). Key points made at a conference, convened by the National Centre for Upgrading Technology (NCUT), held in Edmonton during September 1997 to discuss current and future directions in the refining and marketing of heavy oil, bitumen and SCO, were summarized. Among the key points mentioned were: (1) the high entry barriers faced by centralized upgraders, (2) the advantages of integrating SCO or heavy oil production with downstream refining, (3) the stiff competition from Venezuela and Mexico that both SCO and heavy oil will face in the U.S. PADD II market, (4) the differences between Canadian refiners who have profited from hydrocracking and are better able to handle coker-based SCO, and American refiners who rely chiefly on catalytic cracking and are less able to process the highly aromatic SCO, and (5) the disproportionate cost in the upgrading process represented by the conversion of asphaltenes. Challenges and opportunities for key stakeholders, i.e. producers, refiners, marketers and technology licensors also received much attention at the Edmonton conference

  9. Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)

    2005-01-15

    Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)

  10. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    Science.gov (United States)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  11. Mobis HRH process residue hydroconversion using a recoverable nano-catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.; Rhodey, G. [Mobis Energy Inc., Calgary, AB (Canada)

    2009-07-01

    This presentation described a newly developed pseudo-homogeneous catalyst (PHC) for hydroconversion of heavy hydrocarbon feeds with high levels of sulphur, nitrogen, resins, asphaltenes and metals. An active catalyst is formed in the reaction system, consisting of particles that are 2-9 nm in size and whose properties resemble those of a colloid solution at both room and reaction temperature. Residue processing with this pseudo-homogeneous catalyst system results in better cracking and hydrogenation at lower process severity. The PHC system in heavy residue hydroconversion (HRH) process achieves up to 95 per cent residue conversion at pressures below 7.3 MPa, reaction temperatures between 400 to 460 degrees C, and with feed space velocity between 1 to 2 per hour, thus rendering the PHC catalyst system suitable for deep conversion of hydrocarbon residues. As much as 95 per cent of the catalyst can be recovered and regenerated within the process. Pilot plants are in operation for the hydroconversion of Athabasca vacuum bottoms using this technology. The use of the HRH process in oilsands and refinery operations were discussed along with comparative yields and economics. tabs., figs.

  12. An investigation of problematic solids in oil sands processing : separation and characterization of organic matter strongly bound to oil sands solids

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, T.; Woods, J.R.; Kung, J.; Fu, D.; Kingston, D.; Kotlyar, L.S. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology; Sparks, B.D. [V. Bede Technical Associates, Ottawa, ON (Canada)

    2009-07-01

    Some of the solid fractions in Athabasca oilsands are associated with strongly bound organic matter that is insoluble in toluene, a solvent commonly used to extract bitumen. The presence of toluene insoluble organic matter (TIOM) increases oil wettability of solids which may adversely affect the release of bitumen from the oilsands. Some of the solid material from the coking operation may be carried over to downstream operations where it can cause fouling. This study used supercritical fluid extraction with methanol to remove TIOM from oilsands after extraction of bitumen by toluene. The methanol extract (ME) is soluble in toluene and was analyzed. Results were compared with corresponding bitumen fractions prepared using a modified HPLC SARA separation technique. Number average molecular weights for the ME were similar to those for resins separated from bitumen. The study also showed that the number of alkyl substituents on aromatic ring systems and the lengths of paraffinic straight chains for resins and ME samples were similar, with only minor differences in terms of H/C atomic ratios and aromaticities. The ME was more polar than the resin and asphaltene fractions, which may explain the selective adsorption of this fraction. tabs., figs.

  13. Choosing mineral carrier of nanoscale additives for asphalt concrete

    Directory of Open Access Journals (Sweden)

    Inozemtsev Sergey Sergeevich

    2014-03-01

    Full Text Available At present time the operation life of the majority of roads is essentially shorter than required. The reason for it is the increase in traffic intensity and axle loads of automobile transport. The obvious reasons for early wear of roads are the low quality of the components used and low industrial standards while producing asphalt pavement. In this paper the mineral material was selected as a carrier of nanoscale additives for asphalt. The optimal modes for grinding mineral materials were identified, which provide correspondence of their structure parameters with the developed model. The influence of different mineral nanomodifier carriers on the structure formation processes was estimated. It is shown that among a number of mineral materials diatomite has high activity in relation to the bitumen, because it has a highly porous structure. It is also shown that as a result of lighter fractions of bitumen adsorption on the border of phase interface, diatomite and bitumen changes from the free state to the film, and solvate shell of bitumen is saturated with asphaltenes. With the help of IR spectroscopy the authors defined the nature of the diatomite and bitumen interaction and proved that in the process of their interaction there occurs physical adsorption with additional absorption of bitumen components into the pore space of diatomite grains.

  14. Report on the coal energy achievements in the Sunshine Project in fiscal 1988; 1989 nendo sunshine keikaku seika hokokusho. Sekitan energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-07-01

    This paper describes the achievements in the Sunshine Project in fiscal 1988 in studies on coal liquefaction. The liquefaction mechanisms may be conceived to work in the following three manners: radicals produced by spontaneous bond and cleavage of coal molecules draw out hydrogen from the donor and stabilize it; bond, cleavage and stabilization due to hydrogenation from the donor to coal aromatic nucleus; and cleavage and stabilization due to work of active hydrogen discharged from the donor. How these mechanisms contribute to composition of the products depends on coals, liquefying conditions, and reactivity of the donor. Selection of the donor solvent requires design by which high liquefaction yield can be obtained with small amount of solvent. The oil plus asphaltene yield could have been approached to the ideal value through the moving liquefaction of gaseous phase hydrogen and catalyst-free hydrogen, with the 4HFL to coal ratio at 1.5 to 1. The gaseous phase hydrogen was found effective in reducing 4HFL. Liquefaction residual oil manufactured from Morwell brown coal subjected to BCL was hydrogenated in single stage or two stages to compare and discuss the solvent sorting constituents, reactivity of CLVR, and how the catalytic activity deteriorates. The cause for the catalyst deterioration was elucidated, and considerations were given on catalysts and reaction conditions for lightening and refining of CLVR. (NEDO)

  15. Bioremediation of petroleum hydrocarbons in soil environments

    International Nuclear Information System (INIS)

    Rowell, M.J.; Ashworth, J.; Qureshi, A.A.

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs

  16. Chemical and microbiological studies on petroleum contaminated soils after two years of biotreatment

    International Nuclear Information System (INIS)

    Bosecker, K.; Hollerbach, A.; Teschner, M.; Wehner, H.; Kassner, H.

    1993-01-01

    For reclamation of a former refinery area, five batches of 200--300 m 3 of contaminated soil were treated with indigenous or specially selected microorganisms. Partly, the beds were irrigated, nutrients were added or the test sites were heated. After two years of bioremediation soil samples were investigated by chemical and microbiological techniques. Within the period the total concentration of hydrocarbons decreased from 15,000--35,000 mg/kg weight to 3,750--9,400 mg/kg dry weight. The portion of saturated hydrocarbons was reduced by 20--60%. In parallel, the amount of heterocompounds and asphaltenes increased. Polycyclic aromatic hydrocarbons were in the range of 16--31 mg/kg dry weight, phenols were 130--170 μg/kg dry weight. Microbiological investigations resulted in a roughly similar distribution pattern of ecophysiological groups in all samples. Among the heterotrophic aerobes which ranged from 1.2 x 10 7 -- 1.2 x 10 8 cfu/ml oil degrading bacteria predominated (up to 9.4 x 10 7 cells/ml) showing high potential for degradation of saturated hydrocarbons under laboratory conditions

  17. Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ju Binshan

    2015-11-01

    Full Text Available The injection of CO2 into oil reservoirs is performed not only to improve oil recovery but also to store CO2 captured from fuel combustion. The objective of this work is to develop a numerical simulator to predict quantitatively supercritical CO2 flooding behaviors for Enhanced Oil Recovery (EOR. A non-isothermal compositional flow mathematical model is developed. The phase transition diagram is designed according to the Minimum Miscibility Pressure (MMP and CO2 maximum solubility in oil phase. The convection and diffusion of CO2 mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude and phase partitioning are considered. The governing equations are discretized by applying a fully implicit finite difference technique. Newton-Raphson iterative technique was used to solve the nonlinear equation systems and a simulator was developed. The performances of CO2 immiscible and miscible flooding in oil reservoirs are predicted by the new simulator. The distribution of pressure and temperature, phase saturations, mole fraction of each component in each phase, formation damage caused by asphaltene precipitation and the improved oil recovery are predicted by the simulator. Experimental data validate the developed simulator by comparison with simulation results. The applications of the simulator in prediction of CO2 flooding in oil reservoirs indicate that the simulator is robust for predicting CO2 flooding performance.

  18. Report on the research achievements in the Sunshine Project in fiscal 1992. Studies on liquefying reaction in coal, and reforming and utilization of the products; 1992 nendo sekitan no ekika hanno to seiseibutsu no kaishitsu riyo no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1992 in studies on liquefying reaction in coal, and reforming of the products. High conversion rate was attained in the co-treatment of bitumen and Taiheiyo coals by using highly dispersing oil soluble solvent without performing coking, even if the asphaltene concentration is high. When a very highly acidic trifluoromethane sulfonic acid catalyst is used, hydrogenation and conversion to solubilized low molecules is possible even with a solvent having low affinity with coal. Swelling effect by tetralin is remarkable in pulverized coal, and the conversion rate was improved greatly under high-pressure hydrogen. When naphtha of the Wandoan coal liquefied oil is given extraction treatment with base and acid/base, the gas production decreases noticeably when hydrogenating and refining the extracts, resulting in reduced hydrogen consumption and improved oil recovery rate. Furthermore, when the extraction treated naphtha is hydrogenated, denitrification can be achieved completely. Kerosene and light oil liquefied from the Wandoan coal were cracked by fluidity contact, whereas the light gravity product yield due to the decomposition was found low because of containing a great amount of two-ring aromatics. The pressure crystal deposition method using solvent is effective in separation of high-melting point compounds including anthracene from heavy gravity oil. (NEDO)

  19. New insights into oxidation behaviours of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada)

    2006-07-01

    Innovative technologies will be needed to develop many of the world's oil reservoirs in an economically sustainable manner. In recent years, air injection for light oil reservoirs has gained recognition as an Improved Oil Recovery (IOR) process. In this process, the oxygen from the injected air reacts with a small fraction of the reservoir oil at high temperature to produce a mixture of carbon dioxide and nitrogen. The produced gas generated by the reaction mobilizes the oil downstream, thereby sweeping oil towards the production wells. High pressure air injection used in light oil reservoirs differs from the process used in heavy oil reservoirs, despite the fact that various oxidation reaction schemes exist. The key challenge facing the air injection process is the complexity of the oxidation reaction for crude oil and the lack of understanding of the oxidation behavior of light oils. This study identified a range of oxidation behaviors between light oil and heavy oil. The relationship between crude oil composition and its oxidation behaviors was also examined with reference to 3 different oils and their SARA (saturates, aromatics, resins and asphaltenes) fractions. This study was carried out at various pressures and temperatures using thermogravimetry and pressurized differential scanning calorimetry (PDSC) as the thermal analysis techniques.

  20. Study of the processes of radionuclides transfer, heavy metals and aero-particles among the solid, dissolved phase and the air

    International Nuclear Information System (INIS)

    Romero G, E. T.; Ordonez R, E.; Reyes G, L. R.; Jose Y, M.

    2010-01-01

    In this chapter the investigations developed in the Instituto Nacional de Investigaciones Nucleares (ININ) are presented, in collaboration with specialists in diverse fields of the science. In the first place, is presented the objective and an introduction of each one of the following projects: Study of the uranium migration through the not saturated area, and Synthesis and characterization of phosphate materials by conventional techniques, projects developed under the direction and collaboration of the Ph D. Eduardo Ordonez Regil. Identification of the chemical-morphologic composition of painting mural pigments: the blue Mayan, indigo blue, the secret of the color, and investigation of the physiochemical components of the asphaltenes and malthenes of heavy crudes and vacuum residual, with the supervision of the Ph D. Miguel Jose Yacaman. Evaluation of the water quality and type of sediments of the lake-crater The Pool: one of the seven stars of Santiago Valley, Guanajuato; Study of the sorption kinetics of Cr(Vi) in floor of a container of chromium residuals in Buenavista, Guanajuato, Mexico; Investigation of the underground water hydrochemistry of the basin of the Avenues River in Pachuca de Soto, Hidalgo, and Characterization of the particle material and modeled of the dispersion and pollutants transport in the air of the Metropolitan Area of the Toluca Valley, projects carried out under the direction and collaboration of the Ph D. Lazaro Raymundo Reyes Gutierrez. Finally, is presented the most representative of the obtained results, as well as a discussion of the same ones. (Author)

  1. Group type analysis of asphalt by column liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.; Yang, J.; Xue, Y.; Li, Y. [Chinese Academy of Science, Taiyuan (China)

    2008-07-01

    An improved analysis method for characterization of asphalt was established. The method is based on column chromatography technique. The asphalts were separated into four groups: saturates, aromatics, resins, and asphaltenes, quantitatively. About 0.1 g of sample was required in each analysis. About 20 mL of n-heptanes was used to separate out saturates first. Then about 35 mL of n-heptanes/dichloromethane (.5, v/v) mixture was used to separate out aromatics. About 30 mL of dichloromethane/tetrahydrofuran (1/3, v/v) mixture was used to separate out resin. The quality of the separation was confirmed by infrared spectra (IR) and {sup 1}H NMR analysis. The model compounds, tetracosan for saturates, dibenz(o)anthracen for aromatics, and acetanilide for resins were used for verification. The IR and {sup 1}H NMR analysis of the prepared fractions from the column liquid chromatography were in good agreement that of pure reagents.

  2. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  3. Metal Oxide Nanoparticles Supported on Macro-Mesoporous Aluminosilicates for Catalytic Steam Gasification of Heavy Oil Fractions for On-Site Upgrading

    Directory of Open Access Journals (Sweden)

    Daniel López

    2017-10-01

    Full Text Available Catalytic steam gasification of extra-heavy oil (EHO fractions was studied using functionalized aluminosilicates, with NiO, MoO3, and/or CoO nanoparticles with the aim of evaluating the synergistic effect between active phase and the support in heavy oil on-site upgrading. Catalysts were characterized by chemical composition through X-ray Fluorescence, surface area, and pore size distribution through N2 adsorption/desorption, catalyst acidity by temperature programmed desorption (TPD, and metal dispersion by pulse H2 chemisorption. Batch adsorption experiments and catalytic steam gasification of adsorbed heavy fractions was carried out by thermogravimetric analysis and were performed with heavy oil model solutions of asphaltenes and resins (R–A in toluene. Effective activation energy estimation was used to determine the catalytic effect of the catalyst in steam gasification of Colombian EHO. Additionally, R–A decomposition under inert atmosphere was conducted for the evaluation of oil components reactions with active phases and steam atmosphere. The presence of a bimetallic active phase Inc.reases the decomposition of the heavy compounds at low temperature by an increase in the aliphatic chains decomposition and the dissociation of heteroatoms bonds. Also, coke formation after steam gasification process is reduced by the application of the bimetallic catalyst yielding a conversion greater than 93%.

  4. Dispersant effectiveness: Studies into the causes of effectiveness variations

    International Nuclear Information System (INIS)

    Fingas, M.F.; Kyle, D.; Tennyson, E.

    1995-01-01

    Effectiveness, a key issue of using dispersants, is affected by many interrelated factors. The principal factors involved are the oil composition, dispersant formulation, sea surface turbulence and dispersant quantity. Oil composition is a very strong determinant. Current dispersant formulation effectiveness correlates strongly with the amount of saturate component in the oil. The other components of the oil, the asphaltenes, resins or polars and aromatic fractions show a negative correlation with the dispersant effectiveness. Viscosity is also a predictor of dispersant effectiveness and may have an effect because it is in turn determined by oil composition. Dispersant composition is significant and interacts with oil composition. Dispersants show high effectiveness at HLB values near 10. Sea turbulence strongly affects dispersant effectiveness.Effectiveness rises with increasing turbulence to a maximum value. Effectiveness for current commercial dispersants is gaussian around a peak salinity value. Peak effectiveness is achieved at very high dispersant quantities--at a ratio of 1:5, dispersant-to-oil volume. Dispersant effectiveness for those oils tested and under the conditions measured, is approximately logarithmic with dispersant quantity and will reach about 50% of its peak value at a dispersant to oil ratio of about 1:20 and near zero at a ratio of about 1:50

  5. Downhole Upgrading of Orinoco Basin Extra-Heavy Crude Oil Using Hydrogen Donors under Steam Injection Conditions. Effect of the Presence of Iron Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Cesar Ovalles

    2015-03-01

    Full Text Available An extra-heavy crude oil underground upgrading concept and laboratory experiments are presented which involve the addition of a hydrogen donor (tetralin to an Orinoco Basin extra-heavy crude oil under steam injection conditions (280–315 °C and residence times of at least 24-h. Three iron-containing nanocatalysts (20 nm, 60 nm and 90 nm were used and the results showed increases of up to 8° in API gravity, 26% desulfurization and 27% reduction in the asphaltene content of the upgraded product in comparison to the control reaction using inert sand. The iron nanocatalysts were characterized by SEM, XPS, EDAX, and Mössbauer spectroscopy before and after the upgrading reactions. The results indicated the presence of hematite (Fe2O3 as the predominant iron phase. The data showed that the catalysts were deactivating by particle sintering (~20% increase in particle size and also by carbon deposition. Probable mechanisms of reactions are proposed.

  6. Investigation on trace elements in crude oil and organic matter extracted from rocks with instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Ding Zuguo; Chai Zhifang

    1990-01-01

    Solvent extraction, column chromatography and instrumental neutron activation analysis(INAA) have been used to investigate the trace elements in crude oil, organic matter extracted from rocks and their related fractions. With these methods, about 70 crude oil samples from eight different oil fields in China and 6 extracted asphaltene samples of the lower paleozoic from the upper Yangtze region have been analyzed, and about 40 elements of interest have been determined. Those elements include Al, As, Au, Ba, Br, Cl, Co, Cr, Cs, Cu, Fe, Hf, I, Ir, Mg, Mn, Mo, Na, Ni, Rb, Re, S, Sb, Sc, Se, Sr, Th, Zn, V and parts of REE. The experimental results show that the method possesses several advantages, i.e. non-destructive, multi-elements, sensitive, precise and accurate. Without ashing samples, the loss of volatile elements such as Cl, S, Se and Sb are avoided. The column chromatography makes it possible to study the distributions of trace elements in different fractions of crude oil and organic matter extracted. Meanwhile, the characters of trace elements in them have also been discussed

  7. White knight : small technology companies hope to mine some Athabasca riches of their own

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2006-09-15

    Many oilsands operators are investigating processes that will add value to oilsands tailings as well as mitigate their environmental footprint. Containing an estimated 10 per cent heavy minerals, nearly 6 cubic metres of tailings are created for every cubic metre of bitumen produced. This article presented details of a new process to extract titanium oxide (TiO{sub 2}) from oil sands tailings in order to produce the high quality TiO{sub 2} pigment used a whitener and opacifier for paper, plastics, paint and cosmetics. A licensing agreement has recently been reached between Western Oil Sands Inc. and Altair Nanotechnologies Inc. to test the patented process. The Altairnano Hydrochloride Pigment Process (AHP) is a package of technologies that includes 4 patents, trade secrets and expertise developed over a decade of research and development. The agreement is comprised of a 3 phase, 5 year program to evaluate, develop and commercialize the process, and includes the construction of a demonstration TiO{sub 2} production facility, as well as plans for a full-scale commercial facility. To date, Altairnano has processed bulk samples of oilsands tailings in various configurations to obtain mineral concentrates using the AHP process. The partnership is also considering a processing technology to demonstrate the feasibility of recycling hot water to recover residual asphaltene byproducts to produce a heavy mineral concentrate for further upgrading to zircon and rutile. 3 figs.

  8. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Bayat, Mahmoud; Aminian, Javad; Bazmi, Mansour; Shahhosseini, Shahrokh; Sharifi, Khashayar

    2012-01-01

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  9. Aerobic remediation of petroleum sludge through soil supplementation: Microbial community analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Venkateswar; Devi, M. Prathima; Chandrasekhar, K.; Goud, R. Kannaiah [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology CSIR-IICT, Hyderabad 500 607 (India); Mohan, S. Venkata, E-mail: vmohan_s@yahoo.com [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology CSIR-IICT, Hyderabad 500 607 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Enhanced aerobic-degradation of PAHs was noticed with increasing soil concentration. Black-Right-Pointing-Pointer Lower ring PAHs showed superior degradation over higher ring PAHs. Black-Right-Pointing-Pointer Role of dehydrogenase activity, redox pattern and dissolved oxygen was investigated. Black-Right-Pointing-Pointer Community analysis detected survival of efficient aromatic degrading microorganisms. - Abstract: The effect of soil concentration on the aerobic degradation of real-field petroleum sludge was studied in slurry phase reactor. Total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) showed effective removal but found to depend on the soil concentration. Aromatic fraction (48.12%) documented effective degradation compared to aliphatics (47.31%), NSO (28.69%) and asphaltenes (26.66%). PAHs profile showed efficient degradation of twelve individual aromatic compounds where lower ring compounds showed relatively higher degradation efficiency compared to the higher ring compounds. The redox behaviour and dehydrogenase activity showed a linear increment with the degradation pattern. Microbial community composition and changes during bioremediation were studied using denaturing gradient gel electrophoresis (DGGE). Among the 12 organisms identified, Proteobacteria was found to be dominant representing 50% of the total population (25% of {gamma}-proteobacteria; 16.6% of {beta}-proteobacteria; 8.3% of {alpha}-proteobacteria), while 33.3% were of uncultured bacteria and 16.6% were of firmicutes.

  10. Effect of CuO receptor on the liquid yield and composition of oils derived from liquefaction of coals by microwave energy

    International Nuclear Information System (INIS)

    Yagmur, Emine; Simsek, Emir H.; Aktas, Zeki; Togrul, Taner

    2008-01-01

    The effects of microwave receptor to coal (receptor/coal) ratio and the period of heating by microwave energy on the solubilization of Turkish coals in tetralin have been investigated. CuO was used as microwave receptor. The amount of receptor and the type of coal significantly affected the yield of liquid product. The addition of the CuO receptor caused to increase in the lignite conversions to oil fractions. The yield of THF soluble fraction increased in the presence of CuO receptor, however, due to catalytic effect of CuO, the yields of preasphaltene (PAS) and asphaltene (AS) decreased. The oil fractions were obtained from the experiments treated by microwave energy in the presence of 3/5 CuO/coal ratio and in the absence of receptor for 20 min liquefaction periods. The compositions of the oil fractions were determined by GC/MS. The composition of the oil fractions of the coals strongly depends on the type of coal. It was observed that the oil fractions contain oxygenated aromatic compounds in addition to condensed aromatic structures. Considerable amounts of 3,4-dihydro-1(2H)-naphthalenone (alpha-tetralone) were found in the oil fractions of lignites treated by microwave energy

  11. A novel process for heavy residue hydroconversion using a recoverable pseudo-homogenous catalyst PHC system

    Energy Technology Data Exchange (ETDEWEB)

    Romocki, S.M.; Rhodey, W.G. [Mobis Energy Inc., Calgary, AB (Canada)

    2008-10-15

    This paper described a pseudo-homogenous catalyst (PHC) designed to refine heavy hydrocarbon residues containing sulfur, nitrogen, metals, and asphaltene impurities known to clog pores and deactivate traditional hydrocrackers. The heavy residue hydroconversion (HRH) process incorporated a single particle, chemically generated PHC uniformly distributed in the feed. Thermal decomposition within the reaction system of a water-in-oil emulsion containing ammonium paramolybdate was used to form molybdenum oxide, which was then sulfided within the feed in order to create an ultra-dispersed suspension of catalytically active molybdenum disulfide particles measuring between 2 and 9 nm. A proprietary online catalyst recovery and regeneration step was used to maintain high catalyst activity. The molybdenum was then recovered from a purge stream and then reintroduced to the catalyst preparation area as a catalyst precursor. After being conditioned, the feed was combined with hydrogen and a water-oil catalyst emulsion and introduced into a furnace. Heavy components were cracked, hydrogenated and converted to lighter products. The high performance catalyst system was able to convert 95 per cent of residues at pressures below 7.3 Mpa and at reaction temperatures ranging between 400 and 460 degrees C. The catalyst was tested at a pilot plant using Athabasca vacuum bottoms. It was concluded that the HRH process is now being successfully used to produce 200 barrels of heavy oil per day. Designs for commercial installations are now being prepared. 4 refs., 2 tabs., 2 figs.

  12. The slender bubble model for very slow degassing in porous media and cold production

    Energy Technology Data Exchange (ETDEWEB)

    Chraibi, M. [Total, Paris (France); Zaleski, S. [Society of Petroleum Engineers, London (United Kingdom)]|[Paris Univ., Paris (France); Franco, F. [Society of Petroleum Engineers, London (United Kingdom)]|[Total, Paris (France)

    2008-10-15

    Cold oil production leads to degassing of the light species and the formation of a bubbly phase. This is often referred to as the foamy oil effect and is particularly observed with heavy oils, combining high viscosity and asphaltenes. The presence and behaviour of a foamy-oil effect is critical to the cold production process. However, because a wide range of different petrophysical parameters and experimental factors interact in a complex manner, this process is not a well-understood production mechanism. This study focused on improving the understanding of the solution gas drive mechanism in primary heavy oil recovery. A Darcy-scale model was developed that took into account the basic physical phenomena of bubble nucleation, bubble growth by solute diffusion and expansion, and bubble mobilization. The relative permeability of the gas phase was replaced by an expression for the gas mobility with new physical effects related to capillarity, viscosity, gravity, and bubble geometry. The purpose was to fit the productions with a limited number of parameters, having physical meaning, independently from the depletion rate. The paper also presented several simplifications of the basic Darcy-scale equations, that enabled the production prediction in a much simpler manner than through full simulations. The full set of Darcy-scale equations were solved using a numerical solution. The formation of strong gradients of the gas phase saturation were shown to depend on gravity and viscosity. 12 refs., 4 figs.

  13. Biomarkers of metabolism disturbance in bivalve molluscs induced by environmental pollution with processed by-products of oil

    Directory of Open Access Journals (Sweden)

    E. V. Sukharenko

    2017-05-01

    Full Text Available Processed by-products of oil are the most common pollutants in all river and sea water. The increase in oxidative stress in bivalve molluscs was studied in both tissues of the hepatopancreas and the gill. The model for artificial treatment with processed by-products of oil was performed in a laboratory experiment with the river mollusc Dreissena polymorpha Pallas, 1771. The exposure of the molluscs over 28 days to mazut 50 mg/l induced significant increase of both final product of lipid peroxidation (LPO and antioxidant enzime activity. A significant increase in LPO was observed in the hepatopancreas and gill of D. polymorpha treated with mazut compared to the control group. Antioxidant enzyme activity of cartalase, supeoxide dismutase, glutathione reductase and glutathione-S-transferase showed a greater increase (by almost 1.5 times in the hepatopancreas than in the gill of D. polymorpha. A similar LPO growth and modulation of antioxidant enzyme activity were determined in the hepatopancreas and gill of the mussel Mytilus galloprovincialis Lamarck, 1879 collected in an area polluted with resins, hydrocarbons and asphaltenes, Donuzlav lake in the Kerch gulf. Varied cellular reactivation of the antioxidant enzyme system in the hepatopancreas rather than the gill was observed in both kinds of mollusc Dreissena and Mytilus. The obtained results are evidence of the higher sensitivity of the hepatopancreas cells of bivalve molluscs to organic pollutants compared to the gill cells.

  14. Double twist : Can-K's electric submersible twin screw pump is designed to handle the nastiest crudes

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-12-15

    This article described the Can-K Group of Companies' electric submersible twin screw pump (ESTSP) designed for pumping heavy crudes with high levels of asphaltenes, hydrogen sulphide, wax, and methane. The technology was awarded the 2010 winner of best production technology for a company with fewer than 100 employees. The ESTSP can pump at a greater depth than other lift technologies. The design challenges included making the pump small enough to fit inside the well casing while also able to generate the high pressures necessary for pumping heavy oil. The ESTSP can compete directly against other lift technologies, including electric submersible pumps (ESPs). In the design, two shafts are separated by a timing gear. Each shaft has short sections of interlocking screws that do not touch, which lessens tension and the need for torque, lowering electricity consumption. The ESTSP is more efficient than ESP systems, particularly in more viscous mediums with high gas-to-oil ratios. The positive displacement pump interprets only volume and does not distinguish between gas and oil, functioning with gas content up to 97 percent. ESTSP can also handle more sand than ESP because it does not rely on centrifugal force. A patented screw design also helps prevent pump seizure resulting from sand and other solids. The pump uses downhole electric motors from other manufacturers. The inherent efficiencies of twin screw pumps give the technology the potential to replace conventional ESPs. 2 figs.

  15. Study of the processes of radionuclides transfer, heavy metals and aero-particles among the solid, dissolved phase and the air; Estudio de los procesos de transferencia de radionuclidos, metales pesados y aeroparticulas entre la fase solida, disuelta y el aire

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes G, L. R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Geociencias Aplicadas, Camino a la Presa San Jose 2055, Col. Lomas 4 seccion, 78216 San Luis Potosi (Mexico); Jose Y, M., E-mail: elizabeth.romero@inin.gob.m [University of Texas at San Antonio, Department of Physics and Astronomy, One UTSA Circle, San Antonio TX 78249 (United States)

    2010-07-01

    In this chapter the investigations developed in the Instituto Nacional de Investigaciones Nucleares (ININ) are presented, in collaboration with specialists in diverse fields of the science. In the first place, is presented the objective and an introduction of each one of the following projects: Study of the uranium migration through the not saturated area, and Synthesis and characterization of phosphate materials by conventional techniques, projects developed under the direction and collaboration of the Ph D. Eduardo Ordonez Regil. Identification of the chemical-morphologic composition of painting mural pigments: the blue Mayan, indigo blue, the secret of the color, and investigation of the physiochemical components of the asphaltenes and malthenes of heavy crudes and vacuum residual, with the supervision of the Ph D. Miguel Jose Yacaman. Evaluation of the water quality and type of sediments of the lake-crater The Pool: one of the seven stars of Santiago Valley, Guanajuato; Study of the sorption kinetics of Cr(Vi) in floor of a container of chromium residuals in Buenavista, Guanajuato, Mexico; Investigation of the underground water hydrochemistry of the basin of the Avenues River in Pachuca de Soto, Hidalgo, and Characterization of the particle material and modeled of the dispersion and pollutants transport in the air of the Metropolitan Area of the Toluca Valley, projects carried out under the direction and collaboration of the Ph D. Lazaro Raymundo Reyes Gutierrez. Finally, is presented the most representative of the obtained results, as well as a discussion of the same ones. (Author)

  16. Comparative evaluation of online oil and gas monitor; Avaliacao de monitores de teor de oleo e graxa em linha

    Energy Technology Data Exchange (ETDEWEB)

    Louvisse, Ana Maria Travalloni; Pereira Junior, Oswaldo de Aquino; Jesus, Rafael Ferreira de; Santos, Lino Antonio Duarte dos; Lopes, Humberto Eustaquio [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Petroleum is predominantly recovered in form of water in oil emulsions, which are stabilised by petroleum resins and asphaltenes, the colloidal disperse components of crude oil. The water phase, separated during the production process, consists of a dilute oil in water emulsion, commonly called produced water.There are a wide variety of methods for determination of oil in produced water that are commercially based on a number of technique. On line continuously monitoring shall be particularly useful in providing information to assist in optimising the separation process and also to attend the environmental legislation for discharge the produced water. There are a wide variety of on line oil in water monitors that are commercially available based on a number of technique. In this paper, a comparative evaluation was made between some methods of on line oil in water detecting. These are light scattering and ultraviolet fluorescence technique. A brief description of the optical methods will be discussed and some of associated problems and limitation are pointed. The work was done in a specific experimental set up that allows the simultaneous pumping of crude oil and water through a calibrated restriction in a pipe has been used. A permanent pressure drop induced by the restriction leads to the dispersion of the oil droplets in the water phase. The monitors based on light scattering technique tested show good agreement between monitor reading and the oil dispersion used. Otherwise for ultraviolet fluorescence based monitors show a significant effect of the variation of oil type. (author)

  17. Improved cracking characteristics of bitumen through advanced froth treatment process

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.H. [National Centre for Upgrading Technology, Devon, AB (Canada); Dabros, T. [Natural Resources Canada, Devon, AB (Canada). CANMET Advanced Separation Technologies Laboratory; Humphries, A. [Albemarle Catalysts Co., Houston, TX (United States)

    2006-07-01

    Fluid catalytic cracking (FCC) is the dominant refinery conversion process for producing transportation fuels. Feed to the FCC unit is heavy gas oil (HGO). Its quality depends on the crude used and the processes involved. Bitumen-derived crude (BDC), including synthetic crude oil (SCO) is less superior to produce FCC feed than stocks from conventional sources. As a result, North American refiners have limited the use of BDC in their conventional FCC-based operations. This paper examined the improved cracking characteristics of bitumen through an advanced froth treatment process. This involved processing of the bitumen with paraffinic solvent in froth treatment with removal of some asphaltenes, CCR precursors, and metals. The paper discussed the experimental and subsequent results and discussion, including cracking characteristics; product quality; synergetic effect; and economic benefits. It was concluded that the poisoning effect by some deleterious components such as nitrogen compounds in feeds on the catalyst could be reduced or compensated for by higher C/O ratios (more catalyst per unit weight of feed). In addition, as conversion increased, sulfur in gasoline decreased slightly and linearly with more or less the same magnitude for the two bitumens. 5 refs., 1 tab., 3 figs.

  18. Nonlinear machine learning in soft materials engineering and design

    Science.gov (United States)

    Ferguson, Andrew

    The inherently many-body nature of molecular folding and colloidal self-assembly makes it challenging to identify the underlying collective mechanisms and pathways governing system behavior, and has hindered rational design of soft materials with desired structure and function. Fundamentally, there exists a predictive gulf between the architecture and chemistry of individual molecules or colloids and the collective many-body thermodynamics and kinetics. Integrating machine learning techniques with statistical thermodynamics provides a means to bridge this divide and identify emergent folding pathways and self-assembly mechanisms from computer simulations or experimental particle tracking data. We will survey a few of our applications of this framework that illustrate the value of nonlinear machine learning in understanding and engineering soft materials: the non-equilibrium self-assembly of Janus colloids into pinwheels, clusters, and archipelagos; engineering reconfigurable ''digital colloids'' as a novel high-density information storage substrate; probing hierarchically self-assembling onjugated asphaltenes in crude oil; and determining macromolecular folding funnels from measurements of single experimental observables. We close with an outlook on the future of machine learning in soft materials engineering, and share some personal perspectives on working at this disciplinary intersection. We acknowledge support for this work from a National Science Foundation CAREER Award (Grant No. DMR-1350008) and the Donors of the American Chemical Society Petroleum Research Fund (ACS PRF #54240-DNI6).

  19. Bioremediation of petroleum hydrocarbons in soil environments

    Energy Technology Data Exchange (ETDEWEB)

    Rowell, M J; Ashworth, J; Qureshi, A A

    1992-12-01

    The bioremediation of petroleum hydrocarbons in soil environments was reviewed via a literature survey and discussions with workers in relevant disciplines. The impacts of hydrocarbons on soil are discussed along with a range of methods available to assist in their decomposition by soil microorganisms. The range of petroleum-based materials considered includes conventional and synthetic crude oils, refined oils, sludges, asphalts and bitumens, drilling mud residues, creosote tars, and some pesticides. The degradability of hydrocarbons largely depends upon their aqueous solubility and their adsorption on soil surfaces and, therefore, is related to their molecular structures. The ease of decomposition decreases with increasing complexity of structure, in the order aliphatics > aromatics > heterocyclics and asphaltenes (most recalcitrant). Most soils contain an adequate population of microorganisms and hence bioaugmentation may only be needed in special circumstances. Decomposition is fastest in soils where the hydrocarbon loading rate, aeration, nutrition, moisture, and pH are all optimized. At spill sites there is little control over the application rate, although containment measures can assist in either limiting contamination or distributing it more evenly. The enhancement of bioremediation is discussed in light of all these factors. Other techniques such as enhanced aeration, hydrocarbon decomposition by anaerobic processes, surfactants, and burning are also discussed. 211 refs., 11 figs., 10 tabs.

  20. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    International Nuclear Information System (INIS)

    Gallego, J.R.; Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J; Garcia-Martinez, M.J.; Llamas, J.F.

    2006-01-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs

  1. Theoretical Calculation of the Uv-Vis Spectral Band Locations of Pahs with Unknown Syntheses Procedures and Prospective Carcinogenic Activity

    Science.gov (United States)

    Ona-Ruales, Jorge Oswaldo; Ruiz-Morales, Yosadara

    2017-06-01

    Annellation Theory and ZINDO/S semiempirical calculations have been used for the calculation of the locations of maximum absorbance (LMA) of the Ultraviolet-Visible (UV-Vis) of 31 C_{34}H_{16} PAHs (molecular mass 424 Da) with unknown protocols of synthesis. The presence of benzo[a]pyrene bay-like regions and dibenzo[a,l]pyrene fjord-like regions in several of the structures that could be linked to an enhancement of the biological behavior and carcinogenic activity stresses the importance of C_{34}H_{16} PAHs in fields like molecular biology and cancer research. In addition, the occurrence of large PAHs in oil asphaltenes exemplifies the importance of these calculations for the characterization of complex systems. The C_{34}H_{16} PAH group is the largest molecular mass group of organic compounds analyzed so far following the Annellation Theory and ZINDO/S methodology. Future analysis using the same approach will provide evidence regarding the LMA of other high molecular mass PAHs.

  2. The Use of Biobased Surfactant Obtained by Enzymatic Syntheses for Wax Deposition Inhibition and Drag Reduction in Crude Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2016-04-01

    Full Text Available Crude oil plays an important role in providing the energy supply of the world, and pipelines have long been recognized as the safest and most efficient means of transporting oil and its products. However, the transportation process also faces the challenges of asphaltene-paraffin structural interactions, pipeline pressure losses and energy consumption. In order to determine the role of drag-reducing surfactant additives in the transportation of crude oils, experiments of wax deposition inhibition and drag reduction of different oil in pipelines with a biobased surfactant obtained by enzymatic syntheses were carried out. The results indicated that heavy oil transportation in the pipeline is remarkably enhanced by creating stable oil-in-water (O/W emulsion with the surfactant additive. The wax appearance temperature (WAT and pour point were modified, and the formation of a space-filling network of interlocking wax crystals was prevented at low temperature by adding a small concentration of the surfactant additive. A maximum viscosity reduction of 70% and a drag reduction of 40% for light crude oil flows in pipelines were obtained with the surfactant additive at a concentration of 100 mg/L. Furthermore, a successful field application of the drag-reducing surfactant in a light crude oil pipeline in Daqing Oilfield was demonstrated. Hence, the use of biobased surfactant obtained by enzymatic syntheses in oil transportation is a potential method to address the current challenges, which could result in a significant energy savings and a considerable reduction of the operating cost.

  3. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R. [Oviedo Univ., Asturias (Spain); Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J [Oviedo Univ., Asturias (Spain). Inst. de Biotecnologia de Asturias; Garcia-Martinez, M.J.; Llamas, J.F. [Univ. Polictenica de Madrid, Madrid (Spain). Laboratorio de Estratigrafia Biomolecular

    2006-07-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs.

  4. Photolysis of petroleum

    International Nuclear Information System (INIS)

    Bobra, M.

    1992-05-01

    A study was conducted to examine the chemical and physical changes that occur in oils as a result of photooxidation. A literature review of recent studies in petroleum photochemistry revealed reported effects of photo-induced reactions in petroleum, including changes in color, polymerization, solidification, increases in solubility and toxicity, and changes in interfacial properties. A list of products reported as a result of photolysis of petroleum is presented, including such compounds as aldehydes, ketones, esters, and lactones. The photoreactivity of various petroleum components is discussed and mechanisms of photooxidation of petroleum are suggested. In the experimental portion of the study, a variety of crude oils and petroleum products were used to determine how different oils are affected by photolysis, and to examine the importance of photolysis as a weathering process. Photooxidation products from several oils were isolated and identified, including aliphatic and aromatic acids, alcohols, and phenols. Some physical manifestations attributed to photolysis included yellowing, formation of precipitates or crusts, increases in density and viscosity with time, increases of asphaltene content in some oils, changes in pH of the surrounding water, and emulsification. 51 refs., 38 figs., 18 tabs

  5. Laboratory testing of a room temperature separation technique as part of a method for the reconditioning of bituminised waste

    International Nuclear Information System (INIS)

    Impens, N.

    2009-01-01

    At the Belgian Nuclear Research Center SCK-CEN, a research project has been finalised on the possible alternatives to re-treat so-called homogeneous bituminised waste such as Eurobitum. One way to retreat this type of waste would be plasma-incineration. Preliminary results showed that a very stable final vitrified waste can be obtained comparable to the stability of R7-T7 reference waste glass, and that the waste volume would be reduced to 75 percent of the original volume. The major disadvantages of this retreatment technique is the high-tech and high cost plasma installation needed and the safety aspects related to the higher radioactivity content of this waste type. The technique proposed in this paper is based on the dissolution of the bitumen in an organic solvent and the subsequent extraction of nitrates in water leading to the separation of (1) an organic effluent containing the maltenes, (2) an aqueous effluent containing the nitrates and (3) the final waste containing the asphaltene fraction and water insoluble salts including most of the radionuclides. This paper describes the lab-scale results of a room temperature separation technique applied to real radioactive Eurobitum samples, sampled from a drum that was produced in 1981

  6. Report on the achievements in the Sunshine Project in fiscal 1990 on research and development of coal energy. Studies on coal liquefying catalysts and a method for analyzing liquefied oil; 1990 nendo sekitan ekikayo shokubai oyobi ekikayu bunsekiho no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    This paper describes the achievements in the Sunshine Project in fiscal 1990 on research of coal liquefying catalysts and a method for analyzing liquefied oil. Regenerating deteriorated hydrogenating catalysts for coal liquefied oil makes the restoration non-reversible because of residual sulfate. Discussions were given on the regenerating mechanisms. It was found that adding Ru enhances activity of an Ni-Mo catalyst for hydrogenating denitrification and hydrogenation. In studying coal liquefying reaction, a basic study was performed to analyze a catalytic mechanism in the hydrogenating decomposition. Sequential lightening reaction process is being analyzed at molecular levels on coal, preasphaltene, asphaltene and oil. Investigations were carried out on hydrogenating denitrification, deoxygenation, ring opening, decomposition mechanism and catalytic action. A study on precision structural analysis has begun on PSU circulating solvent as a NEDO bituminous coal liquefaction supporting technology. In fiscal 1990, a preliminary study was performed to identify the overall image of the composition of the Wandoan coal liquefied oil. Detailed analysis was executed on naphthalenes and their hydrides. This paper also describes composition analysis and reaction analysis by using the GC/MS ion chromatogram method. It also dwells on the study on catalyst utilizing systems. (NEDO)

  7. Expediting the chemistry of hematite nanocatalyst for catalytic aquathermolysis of heavy crude oil

    Science.gov (United States)

    Khalil, Munawar

    In upstream exploration and production of heavy and extra heavy oil, catalytic aquathermolysis is a process where steam (along with catalyst) is injected into the reservoir to improve oil production. The improvement of oil production has been associated with the reduction of heavy oil's viscosity due to the degradation of large hydrocarbon molecules (resin and asphaltene fractions) which mostly the result of desulphurization of organosulphur compounds. In this work, the potential of hematite (alpha-Fe2O3) nanoparticles, a nontoxic, inexpensive and the most stable phase of iron oxide, was investigated for aquathermolysis application. This dissertation encompasses the synthesis, surface modification, catalytic activity, and catalysis mechanism of hematite nanoparticles in aquathermolysis. In the first part of this study, a simple hydrothermal method was successfully developed to synthesize hematite nanoparticles with high purity and good crystallinity. Using this method, the size, crystal's growth rate, shape, and dispersity of the nanoparticles can be controlled by the amount of iron precursor, precipitation agent, temperature and reaction time. Furthermore, the surface chemistry of hematite nanoparticle was modified in order to improve particle dispersibility in hydrocarbon phase. Based on the result, oleic acid (OA) was successfully grafted on the surface of hematite nanoparticles by forming a monodentate interaction and changed the surface property of the nanoparticles from hydrophilic to hydrophobic. As the result, nanoparticles were able to be transferred from aqueous phase to non-polar phase, vice versa, depending on the amount of oleic acid used for modification. In the third part of this work, the catalytic activity and catalytic mechanism of hematite nanoparticles to catalyze desulphurization reaction were studied. It is found that hematite nanoparticles have a good catalytic activity to decompose a highly stable aromatic organosulphur compound, i

  8. Formation of organic solid phases in hydrocarbon reservoir fluids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, S.I.; Lindeloff, N.; Stenby, E.H.

    1998-12-31

    The occurrence of solid phases during oil recovery is a potential problem. The present work has mainly been concerned with wax formation due to cooling of oils with a large paraffin content. 8 oils have been included in this project, although only a few of these have till now been subject to all the experimental techniques applied. The oils and wax fractions from these have been characterized using techniques such as GC-MS and Ftir. The goal has in part been to get a detailed description of the oil composition for use in model evaluation and development and in part to get a fundamental understanding of waxy oil properties and behaviour. A high pressure (200 bar) equipment has been developed for automatic detection of wax appearance using a filtration technique and laser light turbidimetry. The latter was found to be far superior to the filtration. The filtration was used to sample the incipient solid phase for characterization. However entrapment of liquid in the filters currently used have hampered this part. A number of model systems and one gas condensate have been investigated. The GC-MS procedure was found only to been able to detect molecules up to n-C45 and the group type analysis was not accurate enough for modelling purposes. Using Ftir it was obvious that incipient phases may contain very complex molecules (asphaltenes) which are not captured by GC-MS especially when fractionation is done using the acetone precipitation at elevated temperature. The latter fractionation procedure has been investigated thoroughly as a tool for understanding wax distribution etc. Within thermodynamic modelling a delta lattice parameter model has been developed which incorporates the non-ideality of the solid phases into the calculation of SLE. The non-ideality is estimated from pure component properties. A new algorithm for phase equilibria involving gas-liquid-solid has been developed. Currently both the model work and the experimental works are continued. (au)

  9. Biodegradation of marine oil spill residues using aboriginal bacterial consortium based on Penglai 19-3 oil spill accident, China.

    Science.gov (United States)

    Wang, Chuanyuan; Liu, Xing; Guo, Jie; Lv, Yingchun; Li, Yuanwei

    2018-09-15

    Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to deal with the petroleum pollution after an oil spill accident. The biodegradation of crude oil by microorganisms co-incubated from sediments collected from the Penglai 19-3 oil platform, Bohai Sea, China, was examined. The relative susceptibility of the isomers of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene to biodegradation was also discussed. The results showed that the relative degradation values of total petroleum hydrocarbon (TPH) are 43.56% and 51.29% for sediments with untreated microcosms (S-BR1) and surfactant-treated microcosms (S-BR2), respectively. TPH biodegradation results showed an obvious decrease in saturates (biodegradation rate: 67.85-77.29%) and a slight decrease in aromatics (biodegradation rate: 47.13-57.21%), while no significant difference of resins and asphaltenes was detected. The biodegradation efficiency of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene for S-BR1 and S-BR2 samples reaches 1.28-84.43% and 42.56-86.67%, respectively. The efficiency of crude oil degradation in sediment with surfactant-treated microcosms cultures added Tween 20, was higher than that in sediment with untreated microcosms. The biodegradation and selective depletion is not only controlled by thermodynamics but also related to the stereochemical structure of individual isomer compounds. Information on the biodegradation of oil spill residues by the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Characterization of coal-derived liquids and other fossil-fuel-related materials employing mass spectrometry. Final report, September 30, 1976-September 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Scheppele, S E

    1982-05-01

    A document was prepared which assessed the state-of-the art in the mass spectrometric characterization of fossil fuel materials and the relevance of these data to the fossil fuel industry. A Kratos DS50 SM data system was successfully interfaced to a CEC 21-110B mass spectrometer. Communications between the NOVA 3/12 computer in the data system and the OSU central computer were established. A Grant Comparator/Microdensitometer was acquired and made operational. Plans were developed and hardware acquired for interfacing the densitometer to the NOVA 3/12 computer. A quartz direct introduction probe was acquired for the CEC 21-110B. A temperature controller for the probe was acquired and interfaced to the slow speed ADC on the auxillary board in the data system/mass spectrometer interface. The combined FI/EI source was modified to operate in the FD mode and an apparatus was fabricated for conditioning FD emitters. A CSI supergrater 3 was interfaced to the PE 3920 gas chromatograph. The upgraded facility was used to develop mass spectrometric methods for the characterization of fossil fuel materials and to apply methods to the characterization of these materials. Activities included: (1) initial development of field-ionization mass spectrometry for the characterization of saturated hydrocarbons, (2) computerization of the technique of probe microdistillation/mass spectrometry, (3) initation of the development of a new method for the computer assisted assignment of formulas to ion masses, (4) characterization of neutral fractions from a hydrotreated tar-sands oil, and (5) characterization of coal-derived oils and asphaltenes.

  11. Determination of oxygen and nitrogen derivatives of polycyclic aromatic hydrocarbons in fractions of asphalt mixtures using liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization.

    Science.gov (United States)

    Nascimento, Paulo Cicero; Gobo, Luciana Assis; Bohrer, Denise; Carvalho, Leandro Machado; Cravo, Margareth Coutinho; Leite, Leni Figueiredo Mathias

    2015-12-01

    Liquid chromatography coupled to mass spectrometry with atmospheric pressure chemical ionization was used for the determination of polycyclic aromatic hydrocarbon derivatives, the oxygenated polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons, formed in asphalt fractions. Two different methods have been developed for the determination of five oxygenated and seven nitrated polycyclic aromatic hydrocarbons that are characterized by having two or more condensed aromatic rings and present mutagenic and carcinogenic properties. The parameters of the atmospheric pressure chemical ionization interface were optimized to obtain the highest possible sensitivity for all compounds. The detection limits of the methods ranged from 0.1 to 57.3 μg/L for nitrated and from 0.1 to 6.6 μg/L for oxygenated derivatives. The limits of quantification were in the range of 4.6-191 μg/L for nitrated and 0.3-8.9 μg/L for oxygenated derivatives. The methods were validated against a diesel particulate extract standard reference material (National Institute of Standards and Technology SRM 1975), and the obtained concentrations (two nitrated derivatives) agreed with the certified values. The methods were applied in the analysis of asphalt samples after their fractionation into asphaltenes and maltenes, according to American Society for Testing and Material D4124, where the maltenic fraction was further separated into its basic, acidic, and neutral parts following the method of Green. Only two nitrated derivatives were found in the asphalt sample, quinoline and 2-nitrofluorene, with concentrations of 9.26 and 2146 mg/kg, respectively, whereas no oxygenated derivatives were detected. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dual vapor extraction on acidic sludge tar at a former refinery

    International Nuclear Information System (INIS)

    Lear, P.R.; Beall, P.; Townsend, S.

    1996-01-01

    OHM Remediation Services Corp conducted a pilot-scale demonstration for a novel application of dual vapor extraction technology for the pretreatment of the acid tar sludge material. The acid tar sludge comprised of approximately 60% asphaltene hydrocarbon material, 20% clay, and up to 20% sulfuric acid (H 2 SO 4 ). The liquid layer in the bottom of the pits has a low pH ( 2 ) gas which is released with the sludge material is excavated or handled. The objective of the dual vapor extraction was to remove the SO 2 vapors and liquid layer containing sulfuric acid prior to any further treatment. The dual vapor extraction would reduce the amount of alkaline reagent required for neutralization while eliminating the health and safety concerns. Overall, the DVE pilot demonstration successfully showed that both liquids and vapors could be removed from the acid tar sludge material. The liquid present in the lower portions of the pits will have pH values of 1.0 or less and acidities on the order of 5% H 2 SO 4 . The liquid removed from the acid tar sludge material by a DVE system will have slightly higher pH (∼1.5) and lower alkalinities (∼3% H 2 SO 4 ). The SO 2 concentration in the vapors removed by the DVE system will be variable with initial levels approaching 1,200 ppmv SO 2 . The SO 2 concentration in the vapor phase should decrease with time. A caustic scrubber solution will remove any SO 2 from the vapor phase. After DVE treatment, the acid tar sludge material would have a slightly increased pH and a decreased SO 2 concentration

  13. The comparison of naturally weathered oil and artificially photo-degraded oil at the molecular level by a combination of SARA fractionation and FT-ICR MS

    International Nuclear Information System (INIS)

    Islam, Ananna; Cho, Yunju; Yim, Un Hyuk; Shim, Won Joon; Kim, Young Hwan; Kim, Sunghwan

    2013-01-01

    Highlights: • Weathered oils from the Hebei Spirit oil spill and photo degraded oils are compared. • We investigate changes of polar species at the molecular level by 15T FT-ICR MS. • Significant reduction of sulfur class compounds in saturates fraction is observed. • The relative abundance of protonated compounds (presumably basic nitrogen compounds) increase after degradation. • Changes of polar compounds occurred by natural and photo degradation are similar. -- Abstract: Two sets of oil samples, one obtained from different weathering stages of the M/V Hebei Spirit oil spill site and the other prepared by an in vitro photo-degradation experiment, were analyzed and compared at the molecular level by atmospheric pressure photo-ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). For a more detailed comparison at the molecular level, the oil samples were separated into saturate, aromatic, resin, and asphaltene (SARA) fractions before MS analysis. Gravimetric analysis of the SARA fractions revealed a decreased weight percentage of the aromatic fraction and an increased resin fraction in both sets of samples. Molecular-level investigations of the SARA fractions showed a significant reduction in the S 1 class in the saturate fraction and increase of S 1 O 1 class compounds with high DBE values in resin fraction. Levels of N 1 and N 1 O 1 class compounds resulting in protonated ions (presumably basic nitrogen compounds) increased after degradation compared to compounds generating molecular ions (presumably non-basic nitrogen compounds). This study revealed changes occurring in heteroatom polar species of crude oils such as sulfur and nitrogen containing compounds that have not been easily detected with conventional GC based techniques

  14. Support vector machine regression (SVR/LS-SVM)--an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data.

    Science.gov (United States)

    Balabin, Roman M; Lomakina, Ekaterina I

    2011-04-21

    In this study, we make a general comparison of the accuracy and robustness of five multivariate calibration models: partial least squares (PLS) regression or projection to latent structures, polynomial partial least squares (Poly-PLS) regression, artificial neural networks (ANNs), and two novel techniques based on support vector machines (SVMs) for multivariate data analysis: support vector regression (SVR) and least-squares support vector machines (LS-SVMs). The comparison is based on fourteen (14) different datasets: seven sets of gasoline data (density, benzene content, and fractional composition/boiling points), two sets of ethanol gasoline fuel data (density and ethanol content), one set of diesel fuel data (total sulfur content), three sets of petroleum (crude oil) macromolecules data (weight percentages of asphaltenes, resins, and paraffins), and one set of petroleum resins data (resins content). Vibrational (near-infrared, NIR) spectroscopic data are used to predict the properties and quality coefficients of gasoline, biofuel/biodiesel, diesel fuel, and other samples of interest. The four systems presented here range greatly in composition, properties, strength of intermolecular interactions (e.g., van der Waals forces, H-bonds), colloid structure, and phase behavior. Due to the high diversity of chemical systems studied, general conclusions about SVM regression methods can be made. We try to answer the following question: to what extent can SVM-based techniques replace ANN-based approaches in real-world (industrial/scientific) applications? The results show that both SVR and LS-SVM methods are comparable to ANNs in accuracy. Due to the much higher robustness of the former, the SVM-based approaches are recommended for practical (industrial) application. This has been shown to be especially true for complicated, highly nonlinear objects.

  15. A Theoretical Investigation of the Structure and Reactivity of the Molecular Constituents of Oil Sand and Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Parish, Carol A. [Univ. of Richmond, VA (United States)

    2016-11-28

    We used a variety of small organic models of asphaltenes to investigate the molecular mechanism for the high temperature decomposition that would take place as part of the oil refinery process. We determined that the decomposition is initiated via four different types of hydrogen migration reactions. According to the energetics of the reactions, the dominant 1,2-H shift mechanism involves two competitive product channels, namely, C2H2 + CH2CS and CS + CH3CCH. The minor channels include the formation of CS + CH2CCH2, H2S + C4H2, HCS + CH2CCH, CS + CH2CHCH, H + C4H3S, and HS + C4H3. We also investigated the alkyl substitution effect by exploring the decomposition pathways of models with alkyl arms. The energetics of such systems were very similar to that for unsubstituted model compounds, which suggests that asphaltene alkylation may not play a significant role in the decomposition of asphaltene compounds. This work was published in the Journal of Physical Chemistry A 2011, 115, 2882-2891. A MECHANISTIC STUDY OF THE 2-THIENYLMETHYL + HO2 RADICAL RECOMBINATION REACTION Radicals are molecules which contain single electrons. They are very reactive. Radical recombination reactions are important in the combustion of fuel oils. Shale oil contains radicals. We used quantum mechanics to explore the reactivity of shale oil model radical compounds. Seventeen product channels corresponding to either addition/elimination or direct hydrogen abstraction were characterized. Direct hydrogen abstraction proceeds via a weakly bonded complex, which leads to 2-methylthiophene, 2-methylene-2,3-dihydrothiophene or 2-methylene-2,5-dihydrothiophene depending upon the 2-thienylmethyl radical reaction site. The addition pathway for the two radical reactants is barrierless with the formation of three adducts, as distinguished by HO

  16. Development of SRC-I product analysis. Volume 3. Documentation of procedures

    Energy Technology Data Exchange (ETDEWEB)

    Schweighardt, F.K.; Kingsley, I.S.; Cooper, F.E.; Kamzelski, A.Z.; Parees, D.M.

    1983-09-01

    This section documents the BASIC computer program written to simulate Wilsonville's GC-simulated distillation (GCSD) results at APCI-CRSD Trexlertown. The GC conditions used at APCI for the Wilsonville GCSD analysis of coal-derived liquid samples were described in the SRC-I Quarterly Technical Report, April-June 1981. The approach used to simulate the Wilsonville GCSD results is also from an SRC-I Quarterly Technical Report and is reproduced in Appendix VII-A. The BASIC computer program is described in the attached Appendix VII-B. Analysis of gases produced during coal liquefaction generates key information needed to determine product yields for material balance and process control. Gas samples from the coal process development unit (CPDU) and tubing bombs are the primary samples analyzed. A Carle gas chromatographic system was used to analyze coal liquefaction gas samples. A BASIC computer program was written to calculate the gas chromatographic peak area results into mole percent results. ICRC has employed several analytical workup procedures to determine the amount of distillate, oils, asphaltenes, preasphaltenes, and residue in SRC-I process streams. The ASE procedure was developed using Conoco's liquid column fractionation (LC/F) method as a model. In developing the ASE procedure, ICRC was able to eliminate distillation, and therefore quantify the oils fraction in one extraction step. ASE results were shown to be reproducible within +- 2 wt %, and to yield acceptable material balances. Finally, the ASE method proved to be the least affected by sample composition.

  17. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  18. Dependence of liquefaction behavior on coal characteristics. Part VI. Relationship of liquefaction behavior of a set of high sulfur coals to chemical structural characteristics. Final technical report, March 1981 to February 1984

    Energy Technology Data Exchange (ETDEWEB)

    Neill, P. H.; Given, P. H.

    1984-09-01

    The initial aim of this research was to use empirical mathematical relationships to formulate a better understanding of the processes involved in the liquefaction of a set of medium rank high sulfur coals. In all, just over 50 structural parameters and yields of product classes were determined. In order to gain a more complete understanding of the empirical relationships between the various properties, a number of relatively complex statistical procedures and tests were applied to the data, mostly selected from the field of multivariate analysis. These can be broken down into two groups. The first group included grouping techniques such as non-linear mapping, hierarchical and tree clustering, and linear discriminant analyses. These techniques were utilized in determining if more than one statistical population was present in the data set; it was concluded that there was not. The second group of techniques included factor analysis and stepwise multivariate linear regressions. Linear discriminant analyses were able to show that five distinct groups of coals were represented in the data set. However only seven of the properties seemed to follow this trend. The chemical property that appeared to follow the trend most closely was the aromaticity, where a series of five parallel straight lines was observed for a plot of f/sub a/ versus carbon content. The factor patterns for each of the product classes indicated that although each of the individual product classes tended to load on factors defined by specific chemical properties, the yields of the broader product classes, such as total conversion to liquids + gases and conversion to asphaltenes, tended to load largely on factors defined by rank. The variance explained and the communalities tended to be relatively low. Evidently important sources of variance have still to be found.

  19. The properties of heavy oils and Orimulsion : another look

    International Nuclear Information System (INIS)

    Fingas, M.; Hollebone, B.; Wang, Z.; Smith, P.

    2003-01-01

    A comparison was made between the physical properties and behaviour indicators of several heavy oils, including Orimulsion. Most heavy oils are rich in resins, asphaltenes, heavy saturates and heavy aromatics and their behaviour may vary during spills due to their different densities. The authors examined the change in density with changes in weathering and temperature. The authors noted two phenomena associated with the behaviour of heavy oils in water, namely sinking and over-washing. Sinking was defined as the bulk sinking of oil to the bottom or an intermediate layer. Over-washing was described as the washing of a layer of water over dense oil at sea while the oil is still close to the surface. The problem with over-washing is that it is not always visible to observers from a ship. The authors briefly reviewed the literature on the topic of dense oil behaviour. To determine whether extensive weathering could render oils heavier than water, weathering experiments were performed on dense oils. Results showed that weathering is rarely a sole factor in the bulk sinking of oil. For the oil to sink after weathering, its density would have to be very close to that of water. Weathering studies have shown that little weathering occurs on sunken oil after it is submerged. The uptake of particulate matter is the most important process in increasing density. The authors also discussed sinking prediction equations and provided a mathematical description of the conditions required for oil to be covered by a layer of water. A summary of the dynamics of Orimulsion as measured in a test tank was also included. 21 refs., 3 tabs., 3 figs

  20. Property Analysis of Exfoliated Graphite Nanoplatelets Modified Asphalt Model Using Molecular Dynamics (MD Method

    Directory of Open Access Journals (Sweden)

    Hui Yao

    2017-01-01

    Full Text Available This Molecular Dynamics (MD simulation paper presents a physical property comparison study between exfoliated graphite nanoplatelets (xGNP modified and control asphalt models, including density, glass transition temperature, viscosity and thermal conductivity. The three-component control asphalt model consists of asphaltenes, aromatics, and saturates based on previous references. The xGNP asphalt model was built by incorporating an xGNP and control asphalt model and controlling mass ratios to represent the laboratory prepared samples. The Amber Cornell Extension Force Field (ACEFF was used with assigned molecular electro-static potential (ESP charge from NWChem analysis. After optimization and ensemble relaxation, the properties of the control and xGNP modified asphalt models were computed and analyzed using the MD method. The MD simulated results have a similar trend as the test results. The property analysis showed that: (1 the density of the xGNP modified model is higher than that of the control model; (2 the glass transition temperature of the xGNP modified model is closer to the laboratory data of the Strategic Highway Research Program (SHRP asphalt binders than that of the control model; (3 the viscosities of the xGNP modified model at different temperatures are higher than those of the control model, and it coincides with the trend in the laboratory data; (4 the thermal conductivities of the xGNP modified asphalt model are higher than those of the control asphalt model at different temperatures, and it is consistent with the trend in the laboratory data.

  1. Modeling of cobalt-based catalyst use during CSS for low-temperature heavy oil upgrading

    Science.gov (United States)

    Kadyrov, R.; Sitnov, S.; Gareev, B.; Batalin, G.

    2018-05-01

    One of the methods, which is actively used on deposits of heavy oils of the Upper Kungurian (Ufimian) sandstones of the Republic of Tatarstan, is cyclic steam simulation (CSS). This method consists of 3 stages: injection, soaking, and production. Steam is injected into a well at a temperature of 300 to 340° C for a period of weeks to months. Then, the well is allowed to sit for days to weeks to allow heat to soak into the formation. Finally, the hot oil is pumped out of the well for a period of weeks or months. Once the production rate falls off, the well is put through another cycle. The injection of the catalyst solution before the injection of steam opens the possibility for upgrading the heavy oil in the process of aquathermolysis directly in the reservoir. In this paper, the possibility of using a catalyst precursor based on cobalt for upgrading the hydrocarbons of this field in the process of their extraction is represented. SARA analysis on oil saturated sandstones shows an increase in the proportion of saturated hydrocarbons by 11.1% due to the hydrogenation of aromatic hydrocarbons and their derivatives, the content of resins and asphaltenes are remained practically unchanged. A new method for estimating the adsorption of a catalyst based on taking into account the change in the concentration of the base metal before and after simulation of catalyst injection in the thermobaric conditions of the reservoir is proposed. During the study of catalyst adsorption in the rock, when simulating the CSS process, it is found that almost 28% of the cobalt, which is the main element of the catalyst precursor, is retained in the rock.

  2. Trapping hydropyrolysates on silica and their subsequent desorption to facilitate rapid fingerprinting by GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Meredith, W.; Russell, C.A.; Cooper, M.; Snape, C.E. [Nottingham Univ. (United Kingdom). Fuel and Energy Centre; Love, G.D. [Newcastle upon Tyne Univ. (United Kingdom). School of Civil Engineering and Geosciences; Fabbri, D. [Universita di Bologna, Ravenna (Italy). Lab. di Chimica Ambientale; Vane, C.H. [British Geological Society, Keyworth (United Kingdom)

    2004-01-01

    Analytical hydropyrolysis performed under high hydrogen gas pressure (>10 MPa) has been demonstrated to possess the unique ability to release high yields of biomarker hydrocarbons covalently bound within the non-hydrocarbon macromolecular fraction of crude oils and source rocks. This study describes the development of the experimental procedure for trapping the product oils (hydropyrolysates) on silica to facilitate more convenient recovery than conventional collection and to allow analysis by thermal desorption-GC-MS without any prior work-up. Conventionally, the trap has consisted of a stainless steel coil, cooled with dry ice from which the products are recovered in organic solvents. Replacing this with a system in which the hydropyrolysates are adsorbed on a small mass of silica greatly reduces the turn-around time between tests, and aids the recovery and separation of the products. This method has been developed using an oil shale and an oil asphaltene fraction, with the silica trap producing very similar biomarker profiles to that from the conventional trap. The quantitative recovery of hydrocarbons from a light crude oil desorbed from silica under hydropyrolysis conditions demonstrates no significant loss of the high molecular weight n-alkanes (>n-C{sub 10}) for both trapping methods. The use of liquid nitrogen as the trap coolant results in significantly improved recovery of the lower molecular mass constituents. The silica trapping method allows for the hydropyrolysates to be characterised by thermal desorption-GC-MS, which has been investigated both on- and off-line. The oils undergo relatively little cracking during desorption, with similar n-alkane and biomarker profiles being obtained as with normal work-up and GC-MS analysis. Thus, in terms of fingerprinting geomacromolecules, ''hypy-thermal desorption-GC-MS'' appears to have the potential to be developed as an attractive alternative to traditional py-GC-MS. (author)

  3. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  4. Co-pyrolysis of waste tire/coal mixtures for smokeless fuel, maltenes and hydrogen-rich gas production

    International Nuclear Information System (INIS)

    Bičáková, Olga; Straka, Pavel

    2016-01-01

    Highlights: • Co-pyrolysis of waste tires/coal mixtures yields mainly smokeless fuel (55–74 wt%). • Alternatively, the smokeless fuel can serve as carbonaceous sorbent. • The obtained tar contained maltenes (80–85 wt%) and asphaltenes (6–8 wt%). • Tar from co-pyrolysis can serve as heating oil or a source of maltenes for repairing of asphalt surfaces. • The hydrogen-rich gas was obtained (61–65 vol% H_2, 24–25 vol% CH_4, 1.4–2 vol% CO_2). - Abstract: The processing of waste tires with two different types of bituminous coal was studied through the slow co-pyrolysis of 1 kg of waste tire/coal mixtures with 15, 30 and 60 wt% waste tires on a laboratory scale. The waste tire/coal mixtures were pyrolysed using a quartz reactor in a stationary bed. The mixtures were heated at a rate 5 °C/min up to the final temperature of 900 °C with a soaking time of 30 min at the required temperature. The mass balance of the process and the properties of the coke and tar obtained were evaluated, further, the influence of the admixture in the charge on the amount and composition of the obtained coke and tar was determined. It was found that the smokeless fuel/carbonaceous sorbent and a high yield of tar for further use can be obtained through the slow co-pyrolysis. The obtained tars contained mostly maltenes (80–85 wt%). FTIR analysis showed that the maltenes from the co-pyrolysis of coal/waste tires exhibited significantly lower aromaticity as compared with that from coal alone. The gas obtained from pyrolysis or co-pyrolysis of waste tire/coal mixtures contained a high amount of hydrogen (above 60 vol%) and methane (above 20 vol%).

  5. Ex situ bioremediation of a soil contaminated by mazut (heavy residual fuel oil)--a field experiment.

    Science.gov (United States)

    Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M

    2011-03-01

    Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Investigation of γ-(2,3-Epoxypropoxypropyltrimethoxy Silane Surface Modified Layered Double Hydroxides Improving UV Ageing Resistance of Asphalt

    Directory of Open Access Journals (Sweden)

    Canlin Zhang

    2017-01-01

    Full Text Available γ-(2,3-Epoxypropoxypropyltrimethoxy silane surface modified layered double hydroxides (KH560-LDHs were prepared and used to improve the ultraviolet ageing resistance of asphalt. The results of X-ray photoelectron spectrometry (XPS indicated that KH560 has been successfully grafted onto the surface of LDHs. The agglomeration of LDHs particles notably reduced after KH560 surface modification according to scanning electron microscopy (SEM, which implied that the KH560 surface modification was helpful to promote the dispersibility of LDHs in asphalt. Then, the influence of KH560-LDHs and LDHs on the physical and rheological properties of asphalt before and after UV ageing was thoroughly investigated. The storage stability test showed that the difference in softening point (ΔS of LDHs modified asphalt decreased from 0.6 °C to 0.2 °C at an LDHs content of 1% after KH560 surface modification, and the tendency became more pronounced with the increase of LDH content, indicating that KH560 surface modification could improve the stability of LDHs in asphalt. After UV ageing, the viscous modulus (G’’ of asphalt significantly reduced, and correspondingly, the elastic modulus (G’ and rutting factor (G*/sin δ rapidly increased. Moreover, the asphaltene increased and the amount of “bee-like” structures of the asphalt decreased. Compared with LDHs, KH560-LDHs obviously restrained performance deterioration of the asphalt, and helped to relieve the variation of the chemical compositions and morphology of asphalt, which suggested that the improvement of KH560-LDHs on UV ageing resistance of asphalt was superior to LDHs.

  7. Phytoremediation potential and ecological and phenological changes of native pioneer plants from weathered oil spill-impacted sites at tropical wetlands.

    Science.gov (United States)

    Palma-Cruz, Felipe de J; Pérez-Vargas, Josefina; Rivera Casado, Noemí Araceli; Gómez Guzmán, Octavio; Calva-Calva, Graciano

    2016-08-01

    Pioneer native plant species from weathered oil spill-affected sites were selected to study their potential for phytoremediation on the basis of their ecological and phenological changes during the phytoremediation process. Experiments were conducted in field and in greenhouse. In field, native plants from aged oil spill-impacted sites with up 400 g of weathered petroleum hydrocarbons per kilogram soil were selected. In the impacted sites, the principal dominant plant species with potential for hydrocarbons removal were Cyperus laxus, Cyperus esculentus, and Ludwigia peploides. In greenhouse, the phenology of the selected plant species was drastically affected by the hydrocarbons level above 325 g total petroleum hydrocarbons (TPH) per kilogram soil after 2 years of phytoremediation of soils from the aged oil spill-impacted sites. From the phytoremediation treatments, a mix-culture of C. laxus, C. esculentus, and L. peploides in soil containing 325 g TPH/kg soil, from which 20.3 % were polyaromatic hydrocarbons (PAH) and 34.2 % were asphaltenes (ASF), was able to remove up 93 % of the TPH, while in unvegetated soil the TPH removal was 12.6 %. Furthermore, evaluation of the biodiversity and life forms of plant species in the impacted sites showed that phytoremediation with C. esculentus, alone or in a mix-culture with C. laxus and L. peploides, reduces the TPH to such extent that the native plant community was progressively reestablished by replacing the cultivated species resulting in the ecological recovery of the affected soil. These results demonstrate that native Cyperus species from weathered oil spill-affected sites, specifically C. esculentus and C. laxus, alone or in a mix-culture, have particular potential for phytoremediation of soils from tropical wetlands contaminated with weathered oil hydrocarbons.

  8. Study on hydrogen transfer in coal liquefaction by tritium and carbon-14 tracers

    International Nuclear Information System (INIS)

    Nitoh, Osamu; Kabe, Toshiaki; Kabe, Yaeko.

    1985-01-01

    For the analysis of mechanism of hydrogenation and cracking of coal, the liquefaction of Taiheiyo coal using tritium labeled gaseous hydrogen and tritium labeled tetralin with small amounts of carbon-14 labeled naphthalene has been studied. Taiheiyo coal(25g) was thermally decomposed in tetralin or naphthalene solvent(75g) at 400--440 0 C under the initial hydrogen pressure of 5.9MPa for 30min with Ni-Mo-Al 2 O 3 catalyst(0--5g). The reaction mixture in an autoclave was separated by filtration, distillation and solvent extraction. Produced gas, oils and the solvent were analyzed by gas chromatography. The tritium and carbon-14 contents of separated reaction products were measured with a liquid scintilation counter to study the hydrogen transfer mechanism. The distribution of reaction products and the amount of hydrogen transfer from gas or solvent to the products were also determined. In hydrogen donor solvent such as tetralin, the coal liquefaction yield was independent from the catalyst, but the catalyst was effective in hydrocracking of preasphaltene and asphaltene. In naphthalene solvent, the coal liquefaction reaction hardly occured in the absence of the catalyst, because hydrogen transfer from both the solvent and gaseous hydrogen was scarce. Tritium distribution in the reaction products showed that complicated hydrogen exchange reactions between gaseous hydrogen, coal liquids and solvent came out by the presence of coal liquids and catalyst. The very small amounts of carbon-14 transferred to the liquefaction products showed that carbon exchange or transfer between solvent and coal did not take place. (author)

  9. The life cycle greenhouse gas emissions implications of power and hydrogen production for oil sands operations

    International Nuclear Information System (INIS)

    McKellar, J.M.; Bergerson, J.A.; MacLean, H.L.

    2009-01-01

    'Full text:' The Alberta Oil Sands represent a major economic opportunity for Canada, but the industry is also a significant source of greenhouse gas (GHG) emissions. One of the sources of these emissions is the use of natural gas for the production of electricity, steam and hydrogen. Due to concerns around resource availability and price volatility, there has been considerable discussion regarding the potential replacement of natural gas with an alternative fuel. While some of the options are non-fossil and could potentially reduce GHG emissions (e.g., nuclear, geothermal, biomass), others have the potential to increase emissions. A comparative life cycle assessment was completed to investigate the relative GHG emissions, energy consumption and financial implications of replacing natural gas with coal, coke, asphaltenes or bitumen for the supply of electricity, steam and hydrogen to oil sands operations. The potential use of carbon capture and storage (CCS) was also investigated as a means of reducing GHG emissions. Preliminary results indicate that, without CCS, the natural gas systems currently in use have lower life cycle GHG emissions than gasification systems using any of the alternative fuels analysed. However, when CCS is implemented in both the coke gasification and natural gas systems, the coke systems have lower GHG emissions and financial costs than the natural gas systems (assuming a 30-year project life and a natural gas price of 6.5 USD/gigajoule). The use of CCS does impose a financial penalty though, indicating that it is unlikely to be implemented without some financial incentive. While this study has limitations and uncertainties, the preliminary results indicate that although the GHG emissions of oil sands development pose a challenge to Canada, there are opportunities available for their abatement. (author)

  10. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil.

    Science.gov (United States)

    Maletić, Snežana P; Dalmacija, Božo D; Rončević, Srđan D; Agbaba, Jasmina R; Perović, Svetlana D Ugarčina

    2011-01-01

    The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.

  11. Use of ultrasound in petroleum residue upgradation

    Energy Technology Data Exchange (ETDEWEB)

    Sawarkar, A.N.; Pandit, A.B.; Samant, S.D.; Joshi, J.B. [Mumbai Univ., Mumbai (India). Inst. of Chemical Technology

    2009-06-15

    The importance of bottom-of-the barrel upgrading has increased in the current petroleum refining scenario because of the progressively heavier nature of crude oil. Heavy residues contain large concentrations of metals such as vanadium and nickel which foul catalysts and reduce the potential effect of residue fluidized catalytic cracking. This study showed that the cavitational energy induced by ultrasound be be successfully used to upgrade hydrocarbon mixtures. Conventional processes for the upgrading of residual feedstocks, such as thermal cracking and catalytic cracking, were carried out in the temperature range of 400-520 degrees C. Experiments were performed on 2 vacuum residues, Arabian mix vacuum residue (AMVR) and Bombay high vacuum residue (BHVR) and 1 Haldia asphalt (HA). These were subjected to acoustic cavitation for different reaction times from 15 to 120 minutes at ambient temperature and pressure. Two acoustic cavitation devices were compared, namely the ultrasonic bath and ultrasonic horn. In particular, this study compared the ability of these 2 devices to upgrade the petroleum residues to lighter, more value-added products. Different surfactants were used to examine the effect of ultrasound on upgrading the residue when emulsified in water. In order to better understand the reaction mechanism, a kinetic model was developed based on the constituents of the residue. The ultrasonic horn was found to be more effective in bringing about the upgrading than ultrasonic bath. The study also showed that the acoustic cavitation of the aqueous emulsified hydrocarbon mixture could reduce the asphaltenes content to a greater extent than the acoustic cavitation of non-emulsified hydrocarbon mixture. 20 refs., 11 tabs., 17 figs.

  12. Gasification of coal as efficient means of environment protection and hydrogenation of heavy oils residues

    Energy Technology Data Exchange (ETDEWEB)

    Krichko, A.A.; Maloletnev, A.S. [Fossil Fuel Institute, Moscow (Russian Federation)

    1995-12-31

    The Russia`s more then 50% of coals produced in its European part contain over 2,5% of sulphur, and the coals containing less than 1.5% of sulphurs comprise ca.20%. Thus, utilisation of the sulphide coals is inevitable, and there a problem arises concerning the technology of their sensible use and considering the requirements on the environment protection. Russia`s specialists have developed a design and construction for a steam-gas installation with a closed cycle gasification of the solid fuel. The gasification process will proceed in the fluidized bed under forced pressure of the steam-air blast. Characteristic features of this process are the following: a higher efficiency (the capacity of one gas generator is 3-3,5 times larger than that attained in the present gas generators of the Lurgy`s type): 2-2,5 times decreased fuel losses as compared to the Winkler`s generators; retention of the sensible heat, resulting in an increased total energy efficiency. The main task for petroleum refining industry at the present stage is the increase of depth of oil processing with the aim to intensify motor fuel production. One of the ways to solve the problem is to involve heavy oil residues into the processing. But the high metal and asphaltenes contents in the latter make the application of traditional methods and processes more difficult. Up to now there is no simple and effective technology which could give the opportunity to use oil residues for distillate fractions production. In Fossil fuel institute a process for hydrogenation of high boiling oil products, including with high sulphur, vanadium and nickel contents ones, into distillates and metals concentrates. The main point of the new process is as follows: the water solution of catalytic additive, for which purpose water soluble metal salts of VI-VIII groups are used, is mixed with tar, dispersed and then subjected to additional supercavitation in a special apparatus.

  13. Well performance relationships in heavy foamy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Mahadevan, J. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Tulsa Univ., Tulsa, OK (United States)

    2008-10-15

    The viscosities and thermodynamic properties of heavy oils are different from conventional oils. Heavy oil reservoirs have foamy behaviour and the gas/oil interface stabilizes in the presence of asphaltenes. In the case of conventional oils, gas evolves from the solution when the formation pressure reaches the bubble point pressure. This study modelled the fluid properties of heavy foamy oils and their influence on the inflow performance relationship (IPR). An expression for inflow performance in heavy oil was developed by including the properties of foamy oil into a space averaged flow equation assuming pseudo-steady state conditions. The unique feature of this study was that the density, formation volume factor and solution gas-oil ratio were modelled as functions of entrained gas fraction. The newly developed expression for inflow performance of foamy oils may also be used to model conventional oil inflow by setting the entrained gas fraction to zero in the fluid property models. The results of the inflow performance of foamy oil and conventional oil were compared and an outflow performance relationship was calculated. The study showed that the inflow performance in foamy oil is influenced by entrained gas. The surface flow rates and bottom-hole flow rates are also influenced by the presence of entrained gas, with heavy foamy oil showing a higher volumetric production rate than conventional oil. The outflow performance curve depended on the fluid properties of the foamy oil. A nodal analysis of the well performance showed that the conventional calculation methods underestimate the production from foamy oil wells because they do not consider the effect of entrained gas which lowers density and improves the mobility of foamy oil. 14 refs., 2 tabs., 20 figs., 1 appendix.

  14. Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity

    Science.gov (United States)

    Peluso, Enzo

    The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.

  15. Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies

    Directory of Open Access Journals (Sweden)

    Xiankang Xin

    2017-10-01

    Full Text Available In this paper, physical experiments and numerical simulations were applied to systematically investigate the non-Newtonian flow characteristics of heavy oil in porous media. Rheological experiments were carried out to determine the rheology of heavy oil. Threshold pressure gradient (TPG measurement experiments performed by a new micro-flow method and flow experiments were conducted to study the effect of viscosity, permeability and mobility on the flow characteristics of heavy oil. An in-house developed novel simulator considering the non-Newtonian flow was designed based on the experimental investigations. The results from the physical experiments indicated that heavy oil was a Bingham fluid with non-Newtonian flow characteristics, and its viscosity-temperature relationship conformed to the Arrhenius equation. Its viscosity decreased with an increase in temperature and a decrease in asphaltene content. The TPG measurement experiments was impacted by the flow rate, and its critical flow rate was 0.003 mL/min. The TPG decreased as the viscosity decreased or the permeability increased and had a power-law relationship with mobility. In addition, the critical viscosity had a range of 42–54 mPa∙s, above which the TPG existed for a given permeability. The validation of the designed simulator was positive and acceptable when compared to the simulation results run in ECLIPSE V2013.1 and Computer Modelling Group (CMG V2012 software as well as when compared to the results obtained during physical experiments. The difference between 0.0005 and 0.0750 MPa/m in the TPG showed a decrease of 11.55% in the oil recovery based on the simulation results, which demonstrated the largely adverse impact the TPG had on heavy oil production.

  16. The use of modified tyre derived fuel for compression ignition engines.

    Science.gov (United States)

    Pilusa, T J

    2017-02-01

    This study investigated physical and chemical modification of tyre-derived fuel oil (TDFO) obtained from pyrolysis of waste tyres and rubber products for application as an alternative fuel for compression ignition engines (CIE's). TDFO collected from a local waste tyre treatment facility was refined via a novel "oxidative gas-phase fractional distillation over 13× molecular sieves" to recover the light to medium fractions of the TDFO while oxidising and capturing some sulphur compounds in a gas phase. This was followed by desulphurization and chemical modification to improve cetane number, kinematic viscosity and fuel stability. The resulting fuel was tested in an ADE407T truck engine to compare its performance with petroleum diesel fuel. It was discovered that gas phase oxidative fractional distillation reduces the low boiling point sulphur compounds in TDFO such as mercaptans. Using petroleum diesel fuel as a reference, it was observed that the produced fuel has a lower cetane number, flash point and viscosity. On storage the fuel tends to form fibrous microstructures as a result of auto-oxidation of asphaltenes present in the fuel. Mixtures of alkyl nitrate, vinyl acetate, methacrylic anhydride, methyl-tert butyl ether, n-hexane and n-heptane were used to chemically modify the fuel in accordance with the minimum fuel specifications as per SANS 342. The engine performance tests results did not show any sign of engine ceasing or knocking effect. The power-torque trend was very consistent and compared well with petroleum diesel fuelled engine. The levels of total sulphur are still considerably high compared to other cleaner fuel alternatives derived from zero sulphur sources. Copyright © 2016. Published by Elsevier Ltd.

  17. Simultaneous cleanup of soil polluted with crude oil and heavy metals

    International Nuclear Information System (INIS)

    Groudeva, V.; Doycheva, A.; Groudev, S.

    2005-01-01

    Some soils in a site located in the Northwestern part of Bulgaria were heavily polluted with crude oil and some heavy metals (copper, zinc, cadmium, lead). The oil was light, with a specific gravity of about 0.8 g/cm 3 , rich in paraffins and with a very low content of asphaltene-resinous substances. The heavy metals were present mainly as the relevant sulphide minerals but products from the oxidation of sulphides were also present. The oil and the above-mentioned heavy metals were present mainly in the upper soil layers (mainly in the horizon A). Preliminary laboratory experiments in reactors and lysimeters revealed that it was possible to remove most of the contaminants in the soil by using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes in the levels of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. It was also found that the inoculation of the soil with active oil-degrading and metal-solubilizing microorganisms caused a considerable positive effect on the soil clean up. A pilot-scale operation for a simultaneous biological removal of the oil and heavy metals from the soil was carried out using the heap technique. Some data about this pilot-scale operation are presented in this paper. At the end of the treatment, the contents of pollutants in the soil were decreased below the permissible levels for soil of such type. At the same time, the chemical composition, structure and main physical and water properties of the soil were altered to a small extent, regardless of the fact that its pH was decreased to about 3.5. The addition of lime to the treated soil increased this pH to about 5.5 and in this way prevented the further acidification of the soil and the generation of acid drainage after rainfall. It must be noted that the removal of contaminants from the control heap was negligible, even after a period of about three years

  18. Reactivity of Athabasca residue and of its SARA fractions during residue hydroconversion

    Energy Technology Data Exchange (ETDEWEB)

    Verstraete, J.; Danial-Fortain, P.; Gauthier, T.; Merdrignac, I. [IFP-Lyon, Vermaison (France); Budzinski, H. [Bordeaux Univ. (France). ISM-LPTC, UMR CNRS

    2009-07-01

    Residue conversion processes are becoming increasingly important because of the declining market for residual fuel oil and a greater demand for middle distillates. Ebullated-bed hydroconversion is a commercially proven technology for converting heavy feedstocks with high amounts of impurities. The process enables the conversion of atmospheric or vacuum residues at temperatures up to 440 degrees C, and at liquid hourly space velocity (LHSV) conditions in the range of 0.15 to 0.5 per hour. A 540 degrees C conversion of up to 80 weight per cent can be achieved under these conditions. This paper reported on a research study conducted at IFP Lyon in which the residue hydroconversion in a large-scale ebullated bed bench unit was investigated to determine the impact of operating conditions and feed properties on yield and product qualities. Hydrogen was added to the feed in the bench units to keep a high hydrogen partial pressure and favour the catalytic hydroconversion reactions. In a typical test, the reactor was fed with 50 g of feedstock and 0.45 g of crushed equilibrium industrial NiMo catalyst, pressurized hydrogen and quickly heated at the reaction temperature. This paper also discussed the conversion of Athabasca bitumen residue in the large-scale pilot plant and also in the small scale batch reactor. The effect of operating temperature and space velocity was examined. The reactivity of the saturates, aromatics, resins and asphaltenes (SARA) fractions of the bitumen was studied separately in order to better understand the conversion mechanisms and reactivities. The Athabasca bitumen feed and SARA fractions were also analyzed in terms of standard petroleum analysis, SARA fractionation, elemental analysis, size exclusion chromatography (SEC) and 13C NMR. Hydroconversion experiments were conducted in the batch unit at different reaction temperatures and reaction times. A comparison of small-scale batch results with those obtained with the continuous large-scale bench

  19. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  20. Evaluation des méthodes chimiques, spectroscopiques et chromatographiques utilisables pour l'identification des polluants pétroliers en mer Evaluation of Chemical, Spectroscopic and Chromatographic Methods Used to Identify Offshore Oil Pollutants

    Directory of Open Access Journals (Sweden)

    Albaigés J.

    2006-11-01

    Full Text Available Dans cet article on passe en revue les différentes méthodes utilisables pour l'identification des principaux polluants pétroliers de la mer par l'analyse quantitativé de leurs « marqueurs passifs x (soufre, azote, nickel, vanadium, paraffine et asphaltènes et la détermination d'autres caractéristiques intrinsèques. II s'agit de méthodes chimiques, spectroscop iques (infrarouge, ultraviolette et chromatographiques (chromatographie en phase gazeuse à haute résolution avec détection par ionisation de flamme, photométrie de flamme et capture d'électrons. Les mesures ont concerné une grande variété de produits susceptibles de polluer la côte méditerranéenne espagnole - pétrole brut des gisements offshore d'Amposta et de Castellôn; - pétroles bruts importés traités dans les raffineries côtières (Boscan, Es Sider, Kuwait, Arabian light, etc.; - fractions lourdes provenant de ces raffineries (fuel-cils, asphaltes, lubrifiants; - polluants réels; - échantillons altérés artificiellement en laboratoire afin de mettre en évidence l'action progressive des éléments naturels. On a trouvé que les méthodes les plus intéressantes étaient : - le dosage chimique du soufre, du nickel et du vanadium; - la spectroscopie infrarouge; - la chromatographie en phase gazeuse à haute résolution avec détection par ionisation et photométrie de flamme. This article reviews the different methods that con be used to identify the leading petroleum pollutants of the sea by quantitative analysis of their a passive markers » (sulfur, nitrogen, nickel, vanadium, paraffin, asphaltenes and by determining other intrinsic properties. These methods are chemical, spectroscopic (infrared, ultraviolet and chromatographic (high-resolution gas chromatography with flame ionization detection, flame photometry and electron capture. Measurements were made of a great variety of products capable of polluting the Spanish Mediterranean coast, including

  1. La conversion des résidus et huiles lourdes : au carrefour du thermique et du catalytique Conversion of Residues and Heavy Oils At the Crossroads of Thermal Cracking and Catalytic Reactions

    Directory of Open Access Journals (Sweden)

    Le Page J. F.

    2006-11-01

    Full Text Available Cet article passe en revue les diverses familles de procédés de conversion des résidus et huiles lourdes. Tous les résultats semblent converger pour accréditer l'idée que dans tous ces procédés, y compris les procédés dits catalytiques, l'essentiel de la conversion des espèces de poids moléculaire élevé, résines et asphaltènes, procède par mécanisme radicalaire : la clef de la conversion profonde, c'est paradoxalement la maîtrise de la condensation radicalaire de ces espèces. Hydrogène seul, hydrogène en présence de solvant donneur, d'additifs ou encore mieux de catalyseurs, sont les armes dont dispose tout raffineur pour affirmer cette maîtrise, dans la mesure où il ne tient pas à fabriquer du coke. Tous ces procédés de conversion des résidus donnent par ailleurs naissance à des produits craqués dont la nature et la distribution rappellent celles des produits de première distillation du pétrole brut dont est issu le résidu soumis au craquage. This article reviews the different families of conversion processes for residues and heavy oils. All the results seem to converge to support the idea that in all these processes, including so-called catalytic processes, most of the conversion of high-molecular-weight species (resins and asphaltenes operates by a radical mechanism. The key to in-depth conversion is, paradoxically, the mastery of the radical condensation of these species. Hydrogen alone, hydrogen in the presence of a donor solvent, of additives or, better yet, of catalysts, are the arms at the disposal of all refiners to assert this mastery, to the extent that they do not want to manufacture coke. All such conversion processes for residues also give rise to cracked products whose nature and distribution recall those of first-distillation products of crude oil, from which the residue comes that is subjected to cracking.

  2. Studies of water-in-oil emulsions : testing of emulsion formation in OHMSETT

    International Nuclear Information System (INIS)

    Fingas, M.; Fieldhouse, B.

    2001-01-01

    A study was conducted to determine the stability of water-in-oil emulsions in the OHMSETT tank facility. The results were then compared with previous laboratory studies which suggested that the stability of emulsions can be grouped into four categories, stable, unstable, meso-stable and entrained. It has been determined that entrained emulsions can retain oil by viscous forces long enough for interfacial agents, resins and asphaltenes to stabilize the droplets. This paper also described the difference in viscosity between the 4 categories of emulsion stability. The OHMSETT tests were conducted in two series of one week each. The first series of tests were conducted in July and involved 12 experiments on 2 different types of oils which were placed at varying thicknesses on the water. The second set of tests were conducted in November and involved 12 experiments on 6 oils. The rheological properties of the oils were measured and compared to the same oils undergoing emulsification in the laboratory. The oils and water-in-oil states produced were found to have analogous properties between the laboratory and the first set of tests at the OHMSETT facility. All the oils tested produced entrained water-in-oil states in both the laboratory and the test tank. The energy in the two test conditions was found to be similar, with the OHMSETT emulsions similar to one produced in the laboratory at high energies. The second series of tests at OHMSETT did not result in the expected water in-oil- states. This unexpected result was most likely due to the residual surfactant from an earlier dispersant experiment. The study showed that the conditions for emulsion formation are analogous in the OHMSETT tank and in the laboratory tests. The level of energy is considered to be the major variant. It was concluded that the energy levels between the laboratory mixing experiments and the OHMSETT is similar. It was shown that surfactants left over from dispersant testing inhibited the formation

  3. Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

    KAUST Repository

    Yutkin, Maxim P.

    2017-08-25

    Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of

  4. From the local structure of the catalytic materials to the colloidal macrostructure of systems of the petroleum industry; De la structure locale des materiaux catalytiques a la macrostructure colloidale des systemes d'interet petrolier

    Energy Technology Data Exchange (ETDEWEB)

    Espinat, D.

    2006-01-15

    insight in the macrostructure of these colloidal systems, as for instance, asphaltenes solutions and petroleum heavy fractions, clay suspensions and anti-wear additives. Other techniques can be used in order to reduce particle size poly-dispersity of these systems. (author)

  5. Behaviour of bituminized waste under gamma irradiation. Effect of STE3 decontamination process components

    International Nuclear Information System (INIS)

    Bernat, Ph.

    1994-10-01

    Liquid wastes of light and medium activity are treated by chemical co-precipitation and sludge are mixed with bitumen. Irradiation is responsible of gas production and potential swelling of the embedded. It prevails on limitation of filling of storage containers and activity to 140 Ci. The aim of this work is the study of influence of the components of the decontamination process on the behaviour of bituminous wastes, in order to control swelling and to state radiolysis mechanisms, both for production and storage of wastes. For pure bitumen, mechanism of production of H 2 and CH 4 are specified. Oxygen consumption, localised on the surface of samples, leads to conversion of aromatic oils and resins to asphaltenes, by a chain reaction mechanism. CO 2 et CO are reaction products of gaseous oxygen, respectively with bitumen and light hydrocarbons. The composition of bitumen is slightly modified to heavier and higher polarity products, with parallel hardening. NaNO 3 , Na 2 SO 4 , BaSO 4 , PPFNi, K 2 SO 4 , NiSO 4 , et diatoms DIT3R et DIC3 have strictly a dilution effect towards gas generation. CoS, above 1% embedded, strongly inhibits production of H 2 , CH 4 and light hydrocarbons. Degradation of bitumen being reduced, a radical mechanism with both radicals H· et R· might exist. Kinetic shows that a bi-radicals mechanism (or more) is probable. In the same way, Raney's nickel induces a important decrease of production of H 2 , CH 4 et C 2 , with a capacity of 7,7 ml/g. Swelling depends on dimension of sample gas production and dose rate. Solid content and particle size are not determining parameters. Low swelling is obtained for penetrability higher than 70 1/10 mm, This can be realised by addition of a solvent as TBP and by increasing temperature above 40 deg C. Rheological characterizations (oscillation and creeping mode) have not been successful to correlate swelling with a physical parameter. (author)

  6. Diagenetic and compositional controls of wettability in siliceous sedimentary rocks, Monterey Formation, California

    Science.gov (United States)

    Hill, Kristina M.

    Modified imbibition tests were performed on 69 subsurface samples from Monterey Formation reservoirs in the San Joaquin Valley to measure wettability variation as a result of composition and silica phase change. Contact angle tests were also performed on 6 chert samples from outcrop and 3 nearly pure mineral samples. Understanding wettability is important because it is a key factor in reservoir fluid distribution and movement, and its significance rises as porosity and permeability decrease and fluid interactions with reservoir grain surface area increase. Although the low permeability siliceous reservoirs of the Monterey Formation are economically important and prolific, a greater understanding of factors that alter their wettability will help better develop them. Imbibition results revealed a strong trend of decreased wettability to oil with increased detrital content in opal-CT phase samples. Opal-A phase samples exhibited less wettability to oil than both opal-CT and quartz phase samples of similar detrital content. Subsurface reservoir samples from 3 oil fields were crushed to eliminate the effect of capillary pressure and cleansed of hydrocarbons to eliminate wettability alterations by asphaltene, then pressed into discs of controlled density. Powder discs were tested for wettability by dispensing a controlled volume of water and motor oil onto the surface and measuring the time required for each fluid to imbibe into the sample. The syringe and software of a CAM101 tensiometer were used to control the amount of fluid dispensed onto each sample, and imbibition completion times were determined by high-speed photography for water drops; oil drop imbibition was significantly slower and imbibition was timed and determined visually. Contact angle of water and oil drops on polished chert and mineral sample surfaces was determined by image analysis and the Young-Laplace equation. Oil imbibition was significantly slower with increased detrital composition and faster

  7. Wax deposition in crude oil pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, Pablo Morelato; Rodrigues, Lorennzo Marrochi Nolding [Universidade Federal do Espirito Santo, Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Engenharia de Petroleo; Romero, Mao Ilich [University of Wyoming, Laramie, WY (United States). Enhanced Oil Recovery Institute], e-mail: mromerov@uwyo.edu

    2010-07-01

    Crude oil is a complex mixture of hydrocarbons which consists of aromatics, paraffins, naphthenics, resins asphaltenes, etc. When the temperature of crude oil is reduced, the heavy components, like paraffin, will precipitate and deposit on the pipe internal wall in the form of a wax-oil gel. The gel deposit consists of wax crystals that trap some amount of oil. As the temperature gets cooler, more wax will precipitate and the thickness of the wax gel will increase, causing gradual solidification of the crude and eventually the oil stop moving inside the offshore pipeline. Crude oil may not be able to be re-mobilized during re-startup. The effective diameter will be reduced with wax deposition, resulting in several problems, for example, higher pressure drop which means additional pumping energy costs, poor oil quality, use of chemical components like precipitation inhibitors or flowing facilitators, equipment failure, risk of leakage, clogging of the ducts and process equipment. Wax deposition problems can become so sever that the whole pipeline can be completely blocked. It would cost millions of dollars to remediate an offshore pipeline that is blocked by wax. Wax solubility decreases drastically with decreasing temperature. At low temperatures, as encountered in deep water production, is easy to wax precipitate. The highest temperature below which the paraffins begins to precipitate as wax crystals is defined as wax appearance temperature (WAT). Deposition process is a complex free surface problem involving thermodynamics, fluid dynamics, mass and heat transfer. In this work, a numerical analysis of wax deposition by molecular diffusion and shear dispersion mechanisms in crude oil pipeline is studied. Diffusion flux of wax toward the wall is estimated by Fick's law of diffusion, in similar way the shear dispersion; wax concentration gradient at the solid-liquid interface is obtained by the volume fraction conservation equation; and since the wax deposition

  8. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  9. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    Science.gov (United States)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  10. Formation et stabilisation des émulsions inverses eau de mer-pétrole. Rôle de la tension et de la viscosité d'interface Formation and Stabilization of Reverse Seawater-Oil Emulsions. Role of Tension and Interfacial Viscosity

    Directory of Open Access Journals (Sweden)

    Desmaison M.

    2006-11-01

    Full Text Available On a étudié l'évolution au cours du temps de la tension et de la viscosité à l'interface d'un pétrole brut arabe léger et d'eau de mer reconstituée. D'une valeur initiale moyenne de 18 mNm-1, la tension interfaciale s'abaisse au niveau de 1 mNm-1 après 40 jours de contact. L'influence de l'oxygène et de la lumière, l'action des antioxydants et le rôle des constituants isolés du pétrole montrent que cette évolution est due à une oxydation photochimique de composés de la fraction aromatique. Inversement, la viscosité interfaciale augmente avec le temps selon une allure exponentielle. Cette évolution est liée à la présence d'asphaltènes dont les structures s'organisent au cours du temps. La superposition de ces deux phénomènes entraîne la formation et la stabilisation des émulsions inverses, dites mousses au chocolat que l'on observe lors des déversements accidentels de pétrole en mer. This article examines the evolution in time of the tension and interfacial viscosity of the Arabian Light crude oil reconstituted seawater interface. From an initial level of 18 mNm-1, the interfacial tension decreases to 1 mNm-1 after 40 days of contact. The influence of oxygen and light, the effect of antioxidants and the rote of constituents isolated from the oil show that this evolution is due to photochemical oxidation of compounds in the aromatic fraction. On the contrary, interfacial viscosity increases at an exponential rate with time. This evolution is linked to the presence of asphaltenes having structures which become organized with time. The combined effect of these two phenomena causes the formation and stabilization of reverse emulsions, called chocolate mousse, which are seen during accidental offshore oil spills.

  11. Changes of Properties of Bitumen Binders by Additives Application

    Science.gov (United States)

    Remišová, Eva; Holý, Michal

    2017-10-01

    Requirements for properties of bituminous binders are determined in the European standards. The physico-chemical behaviour of bitumen depends on its colloidal structure (asphaltenes dispersed into an oily matrix constituted by saturates, aromatics and resins) that depends primarily on its crude source and processing. Bitumen properties are evaluated by group composition, elementary analysis, but more often conventional or functional tests. Bitumen for road uses is assessed according to the physical characteristics. For the purpose of improving the qualitative properties of bitumen and asphalts the additives are applied e.g. to increase elasticity, improving the heat stability, improving adhesion to aggregate, to decrease viscosity, increasing the resistance to aging, to prevent binder drainage from the aggregate surface, etc. The objective of presented paper is to assess and compare effect of additives on properties of bitumen binders. In paper, the results of bitumen properties, penetration, softening point, and dynamic viscosity of two paving grade bitumen 35/50, 50/70 and polymer modified bitumen PmB 45/80-75 are analyzed and also the changes of these properties by the application of selected additives (Sasobit, Licomont BS100, Wetfix BE and CWM) to improve adhesion to aggregate and improve workability. Measurements of properties have been performed according to the relevant European standards. The laboratory tests showed significantly increasing the softening point of paving grade bitumen 50/70 and 35/50 by 13 to 45°C. The effect of various additives on bitumen softening point is different. Penetration varies according to type of bitumen and type of used additive. The penetration values of modified bitumen PmB 45/80-75 with additives Sasobit and Licomont BS100 show increase of bitumen stiffness of 16 0.1mm and a shift in the gradation. The changes in penetration and in softening point significantly shown when calculating on Penetration index as a parameter of

  12. Role of NSO compounds during primary cracking of a Type II kerogen and a Type III lignite

    Science.gov (United States)

    Behar, F.; Lorant, F.; Lewan, M.

    2008-01-01

    The aim of this work is to follow the generation of NSO compounds during the artificial maturation of an immature Type II kerogen and a Type III lignite in order to determine the different sources of the petroleum potential during primary cracking. Experiments were carried out in closed system pyrolysis in the temperature range from 225 to 350 ??C. Two types of NSOs were recovered: one is soluble in n-pentane and the second in dichloromethane. A kinetic scheme was optimised including both kerogen and NSO cracking. It was validated by complementary experiments carried out on isolated asphaltenes generated from the Type II kerogen and on the total n-pentane and DCM extracts generated from the Type III lignite. Results show that kerogen and lignite first decompose into DCM NSOs with minor generation of hydrocarbons. Then, the main source of petroleum potential originates from secondary cracking of both DCM and n-pentane NSOs through successive decomposition reactions. These results confirm the model proposed by Tissot [Tissot, B., 1969. Premie??res donne??es sur les me??canismes et la cine??tique de la formation du pe??trole dans les bassins se??dimentaires. Simulation d'un sche??ma re??actionnel sur ordinateur. Oil and Gas Science and Technology 24, 470-501] in which the main source of hydrocarbons is not the insoluble organic matter, but the NSO fraction. As secondary cracking of the NSOs largely overlaps that of the kerogen, it was demonstrated that bulk kinetics in open system is a result of both kerogen and NSO cracking. Thus, another kinetic scheme for primary cracking in open system was built as a combination of kerogen and NSO cracking. This new kinetic scheme accounts for both the rate and amounts of hydrocarbons generated in a closed pyrolysis system. Thus, the concept of successive steps for hydrocarbon generation is valid for the two types of pyrolysis system and, for the first time, a common kinetic scheme is available for extrapolating results to natural

  13. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)

  14. TECHNOLOGY AND EFFICIENT USE OF PEAT ASH IN MASTICS FOR WATERPROOFING OF BRIDGE AND TUNNEL STRUCTURES

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2015-01-01

    Full Text Available A prospective method for protection of  bridges and tunnels against aggressive water action is surface waterproofing on the basis of an organo-mineral binder. Its structural strength can be increased by introduction of particles which are similar to the size of  asphaltenes and an elasticity of disperse medium has been increased due to introduction of polymers. These theoretical suppositions point out the possibility for simultaneous provision of flexibility at low temperatures and high heat resistance for mastics on the basis  of organo-mineral binders. In this regard a goal has been set to obtain a mastic high flexibility and high heat resistance  while using finely divided activated peat ash.Rubber crushed in accordance with ТУ (Technical Specifications 38.108035–87,  divinyl-styrene thermoelastoplast DСT-30Р-20ПС,  bitumen of grade 20/30 in accordance with СТБ ЕН 12591–2010, ash from burning peat at the Lida Peat Briquette Plant, multi-purpose industrial oil of solvent refining with high viscosity index, super-plasticizer – sodium salt which is a condensation product of aromatic carbon sulfo-oxidation with formaldehyde and neutralization with the help of sodium hydroxide (type 1 have been used in order to obtain the stated objective. While using these materials compositions and technology for preparation of organo-mineral mastics have been developed in the paper. Their tests have shown that a modification of finely divided  mastics carried out with the help of peat ash which is activated by super-plasticizer НСПКСАУсФ-1, various polymer additives, contributes to an increase in their heat resistance, elasticity, water resistance, and also allows to control their technological and operational characteristics. The paper has experimentally confirmed that peat ash can be successfully used for preparation of high-quality waterproofing mastics which are so necessary for  protection of bridge and tunnel

  15. MTS-MD of Biomolecules Steered with 3D-RISM-KH Mean Solvation Forces Accelerated with Generalized Solvation Force Extrapolation.

    Science.gov (United States)

    Omelyan, Igor; Kovalenko, Andriy

    2015-04-14

    We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD

  16. Effects of silica-based nanostructures with raspberry-like morphology and surfactant on the interfacial behavior of light, medium, and heavy crude oils at oil-aqueous interfaces

    Science.gov (United States)

    Bai, Lingyun; Li, Chunyan; Korte, Caroline; Huibers, Britta M. J.; Pales, Ashley R.; Liang, Wei-zhen; Ladner, David; Daigle, Hugh; Darnault, Christophe J. G.

    2017-11-01

    were ranked as follows: (1) Prudhoe Bay > (2) Lloydminster > and (3) West Texas Intermediate. The level of asphaltenes and resins in these crude oil samples reflected these rankings. A decrease in the IFT also indicated the potential of the SiO2 NPs to decrease capillary pressure and induce the movement and recovery of oil in original water-wet reservoirs. Conversely, an increase in IFT indicated the potential of SiO2 NPs to increase capillary pressure and oil recovery in reservoirs subject to wettability reversal under water-wet conditions. Raspberry-like morphology particles were discovered in 5 wt% brine-surfactant-SiO2 nanofluid-oil systems. The development of raspberry-like particles material with high surface area, high salt stability, and high capability of interfaces alteration and therefore wettability changes offers a wide range of applications in the fields of applied nanoscience, environmental engineering, and petroleum engineering.

  17. Soil-Water Repellency and Critical Humidity as Cleanup Criteria for Remediation of a Hydrocarbon Contaminated Mud

    Science.gov (United States)

    Guzmán, Francisco Javier; Adams, Randy H.

    2010-05-01

    The majority of soil remediation programs focus mainly on reducing the hydrocarbon concentration, based on the assumption that the primary impact is toxicity and/or leachates and that these are directly proportional to concentration. None-the-less, interference with natural soil-water interactions are frequently more damaging, especially for sites contaminated with very viscous, weathered hydrocarbons. Therefore, the kind of hydrocarbons present in the soil and their interactions with soil surfaces may be more important than the overall hydrocarbon concentration in terms of soil restoration. One recently patented technology, the Chemical-Biological Stabilization process, focuses specifically on restoring soil fertility as the main objective for remediation of sites with agricultural use. This method was recently validated at an industrial scale by the treatment of 150 cubic meters of bentonitic drilling muds (70,5% fines) from an old sulphur mine, which were contaminated with very weathered oil (4° API), consisting of 31% asphaltenes. This material was treated by adding 4% (w/w, dry) of calcium hydroxide, followed by 4% (w/w, dry) of sugar cane cachasse (a fine fibered agricultural waste), thoroughly mixing between additions using an excavator. After the soil had dried sufficiently and the pH was soil water repellency. MED was measured on air dried soil and WDPT values were calculated from the extrapolation of penetration time vs. ethanol molarity functions (Rx=0,99). Additionally, water penetration times were measured at different humidities to determine critical moisture levels for absorption in soil humic substances while a vigorous vegetative growth was established. During two years of treatment the MED values were reduced 30% from 5,13 to 3,58M, and WDPT values were reduced over 25 times (from 10 exp5,6 s to 10 exp4,2 s). Critical humidity values varied from ~16,9 - 19,5%H for penetration in treated and untreated material. During the driest part of the year

  18. Joint Industry-Funded R and D Projects in Exploration and Production

    Energy Technology Data Exchange (ETDEWEB)

    Guerillot, D.; Eschard, R.; Malla, M.; Van Buchem, F.; Baghbani, D.; Granjeon, D.; Wolf, S.; Callot, J.P.; Jardin, A.; Kirkwood, D.; Rodriguez, S.; Abadi, A.; Roure, F.; Ghandriche, F.; Prinzhofer, A.; Moretti, I.; Le Melinaire, P.; Vizika, O.; Bekri, S.; Zinszner, B.; Lucet, N.; Rasologosaon, P.; Duquet, B.; Tonellot, T.; Nivlet, P.; Le Ravalec, M.; Bennis, C.; Barroux, C.; Hu, L.Y.; Doligez, B.; Vidal-Gilbert, S.; Zabalza-Mezghani, I.; Caillabet, Y.; Sarda, S.; Ricois, O.; Mouchel, R.; Behar, E.; Nabzar, L.; Zaitoun, A.; Audibert-Hayet, A.; Sauvant, V.; Chauchot, P.; Ropital, F.; Sinquin, A.; Decarre, S.; Larsen, R.; Biolley, F.; Brucy, F.; Charron, Y.; Averbuch, D.; Perrin, G.; Falcimaigne, J.; Roux, P.; Paen, D.; Broutin, P.; Renard, G.; Egermann, P.; Lombard, J.M.; Le Thiez, P.; Fries, G.

    2005-07-01

    and Monitoring: Hybrid LGR: Hybrid Local Grid Refinement, Mick: Lumping and De-lumping Algorithms in Reservoir Simulation, Condor: History Matching Using a Gradual Deformation Method, Calfrac: Calibration of Faulted and Fractured Reservoir Models, Pab 4D: Stratigraphic Architecture of Turbiditic Fans in the PAB Sandstone Outcrop, 4Demon: 4D Deformation Monitoring, Monitor II: Use of Time Lapse Seismic to Update, Constrain and Improve Reservoir Simulation Model, Cougar II: Quantification of Uncertainties in Reservoir Simulation; - Session 4, Reservoir Characterization, Simulation and Monitoring: Industrial JIP: Fraca ++ with Beicip-Franlab: The Next Generation Tools for Fracture Modeling and Characterization, Industrial JIP: First with Beicip-Franlab: A New Generation of Reservoir Simulation Platform; - Session 5, Oil and Gas Production: Padoc: Precipitation of Asphaltenes in Deep Offshore Conditions, Prowide: Optimization of Water Reinjection Scheme, Stargel: Size-Controlled Micro-gels for Water Shut-off, SandCoat: Sand Consolidation by Polymer/Gel Treatment, Waoe: Well Abandonment, Tideep with Ifremer: Thermal Insulation of Deep Sea Flow-lines, Hypip: Hydrogen Permeation in Pipe-in-Pipe, Hydis: Hydrate Plug Dissociation, Thyssi with Sintef: Transportation of Hydrates in Slurry, Hilm: Comprehension, Prediction and Modeling of Heave Induced Lateral Motions of Steel Catenary Risers; - Session 6, Oil and Gas Production: Cold Start: Crude Oil Flow Restartability at Low Temperatures, Icare: Internal Coating for Pressure Loss Reduction, Famus with DNV: Flow Assurance by Management of Uncertainties and Simulation, Charpy X100: Fracture Assessment of X100 Steel for Gas Pipelines, Pearl with DB Guinard Pumps: Production of Energy and Additional Recovery of Liquid, Industrial JIP: Platina with RSI: The Solution for Engineering and Process Analysis from Near Well Bore to Export; - Session 7, Environmental Protection: Acacia: Acid Alteration of Cement and Interface, Castor with

  19. Organic geochemistry and petrology of subsurface Paleocene-Eocene Wilcox and Claiborne Group coal beds, Zavala County, Maverick Basin, Texas, USA

    Science.gov (United States)

    Hackley, Paul C.; Warwick, Peter D.; Hook, Robert W.; Alimi, Hossein; Mastalerz, Maria; Swanson, Sharon M.

    2012-01-01

    degradation at the beginning and end of Indio mire development. Fluorescence spectra of sporinite and resinite are consistent and distinctly different from each other, attributed to the presence of a greater proportion of complex asphaltene and polar molecules in resinite. Gas chromatography of resinite-rich coal shows sesquiterpenoid and diterpenoid peaks in the C14–17 range, which are not present in resinite-poor coal. Quantities of extracts suggest bitumen concentration below the threshold for effective source rocks [30–50 mg hydrocarbon/g total organic carbon (HC/g TOC)]. Saturate/aromatic and pristane/phytane (Pr/Ph) ratios are different from values for nearby Tertiary-reservoired crude oil, suggesting that the Indio coals are too immature to source liquid hydrocarbons in the area. However, moderately high HI values (200–400 mg HC/g rock) may suggest some potential for naphthenic–paraffinic oil generation where buried more deeply down stratigraphic/structural dip. Extractable phenols and C20+ alkanes are suggested as possible intermediates for acetate fermentation in microbial methanogenesis which may, however, be limited by poor nutrient supply related to low rainfall and meteoric recharge rate or high local sulfate concentration.

  20. Fluid Sampling under Adverse Conditions Echantillonnage des fluides en conditions difficiles

    Directory of Open Access Journals (Sweden)

    Williams J. M.

    2006-12-01

    Full Text Available Valid samples are essential to the proper description of reservoir fluids; if the samples are not representative, all measurements on them will be invalid. This paper discusses the principal challenges facing fluid sampling including gas condensate reservoirs, compositional gradients, water content of hydrocarbon fluids, asphaltene deposition, wax formation, oil base mud contamination, and reactive components. It also reports the major technological advances recently made in this field. It reviews developments in sampling techniques such as MDT-type tools, new DST sampling tools, coiled tubing sampling, and isokinetic techniques, and it highlights common limitations. The value of making proper use of existing technology is emphasized, both with traditional techniques and new developments, with reference to correct well conditioning, interpretation of field data, and especially to optimum handling of samples. The paper emphasizes the need for better exchange of sampling knowledge between organizations, and highlights the lack of up-to-date industry standards with respect to fluid sampling. A solution is proposed in the form of a joint industry project to identify and document best practices. Des échantillons valables sont essentiels pour bien caractériser les fluides de gisements. Si les échantillons ne sont pas représentatifs, toutes les mesures ultérieures seront entachées d'erreurs. Cet article discute les principaux défis en matière d'échantillonnage, en particulier les réservoirs de gaz à condensats, les gradients compositionnels, la teneur en eau des fluides hydrocarbonés, les dépôts d'asphaltènes, les dépôts de paraffines, la contamination par les boues à base d'huile, et les constituants réactifs. Il relate également les principaux progrès technologiques récemment réalisés dans ce domaine et passe en revue les développements des techniques d'échantillonnage telles que les outils de type MDT, les nouveaux outils d

  1. Hydroprocessing Catalysts. Utilization and Regeneration Schemes Catalyseurs d'hydrotraitement. Schémas d'utilisation et de régénération

    Directory of Open Access Journals (Sweden)

    Furimsky E.

    2006-11-01

    Full Text Available The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be performed either in-situ or off-site. The former is suitable for fixed bed reactors whereas the catalyst from ebullated bed reactors must be regenerated off -site. The regeneration of spent catalysts heavily loaded with metals such as V, Ni and Fe may not be economic. Such catalysts may be suitable for metal reclamation. An environmentally safe method for catalyst disposal must be found if neither regeneration nor metal reclamation from spent catalysts can be performed. La quantité de catalyseurs utilisée représente une part importante du coût d'une opération d'hydrotraitement. Le choix d'un réacteur et d'un catalyseur approprié dépend des propriétés de la charge. On préfère utiliser les procédés permettant un fonctionnement continu pendant le chargement et le soutirage du catalyseur lorsqu'il s'agit de traiter des charges à haute teneur en asphaltène et en métaux. Le catalyseur usé peut être régénéré et remis en fonctionnement s'il n'est pas trop désactivé. La régénération peut être réalisée in situ ou hors du site. La première solution convient pour les réacteurs à lit fixe, tandis que le catalyseur de réacteurs à lit bouillonnant doit être régénéré hors du site. La régénération de catalyseurs usés fortement chargés en métaux tels que le vanadium, le nickel et le fer n'apparaît pas économique. De tels catalyseurs peuvent convenir pour la récupération des métaux. On doit trouver une méthode sans danger pour l

  2. Evaluating Re-Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments

    Science.gov (United States)

    Rooney, A.D.; Selby, D.; Lewan, M.D.; Lillis, P.G.; Houzay, J.-P.

    2012-01-01

    Successful application of the 187Re–187Os geochronometer has enabled the determination of accurate and precise depositional ages for organic-rich sedimentary rocks (ORS) as well as establishing timing constraints of petroleum generation. However, we do not fully understand the systematics and transfer behaviour of Re and Os between ORS and petroleum products (e.g., bitumen and oil). To more fully understand the behaviour of Re–Os systematics in both source rocks and petroleum products we apply hydrous pyrolysis to two immature hydrocarbon source rocks: the Permian Phosphoria Formation (TOC = 17.4%; Type II-S kerogen) and the Jurassic Staffin Formation (TOC = 2.5%; Type III kerogen). The laboratory-based hydrous pyrolysis experiments were carried out for 72 h at 250, 300, 325 and 350 °C. These experiments provided us with whole rock, extracted rock and bitumen and in some cases expelled oil and asphaltene for evaluation of Re–Os isotopic and elemental abundance. The data from these experiments demonstrate that the majority (>95%) of Re and Os are housed within extracted rock and that thermal maturation does not result in significant transfer of Re or Os from the extracted rock into organic phases. Based on existing thermodynamic data our findings suggest that organic chelating sites have a greater affinity for the quadravalent states of Re and Os than sulphides. Across the temperature range of the hydrous pyrolysis experiments both whole rock and extracted rock 187Re/188Os ratios show small variations (3.3% and 4.7%, for Staffin, respectively and 6.3% and 4.9% for Phosphoria, respectively). Similarly, the 187Os/188Os ratios show only minor variations for the Staffin and Phosphoria whole rock and extracted rock samples (0.6% and 1.4% and 1.3% and 2.2%). These isotopic data strongly suggest that crude oil generation through hydrous pyrolysis experiments does not disturb the Re–Os systematics in ORS as supported by various studies on natural systems. The

  3. The source and distribution of thermogenic dissolved organic matter in the ocean

    Science.gov (United States)

    Dittmar, T.; Suryaputra, I. G. N. A.; Paeng, J.

    2009-04-01

    OM. Petroleum-derived ThOM in the deep Gulf of Mexico had very similar structures than fused ring systems in asphaltenes, but also ThOM in the rivers and groundwaters was similar. First data on aerosols, on the other had, show a clear difference between particulate and dissolved samples. ThOM from aerosols and most soils was characterized by an abundance of benzene-hexacarboxylic acid (B6CA), different from thermogenic DOM. Dissolution processes may cause partial breakdown of larger fused ring systems and thus cause similar structural units in all DOM samples. In the deep ocean, the distribution of thermogenic DOM was relatively homogeneous throughout the water column. The concentration of carbon that resides in thermogenic polycyclic aromatic hydrocarbon varied between 610 and 800 nM (1.5-2% of total dissolved organic carbon). The total amount of thermogenic DOM in the deep ocean is approx. one Peta mole carbon globally. The relatively homogenous distribution of thermogenic DOM in the abyssal ocean indicates that thermogenic DOM behaves virtually inert in the abyssal environment. One of the most striking features is that the oldest water masses, which are not enriched in industrial products (such as the Freon CFC-12) showed highest concentrations of thermogenic DOM. The younger water masses such as Antarctic bottom and intermediate waters are not particularly enriched in thermogenic DOM. This distribution suggests a preindustrial origin of ThOM in the deep ocean. Rivers and deep-sea seep systems were both identified as potential sources of ThOM to the deep ocean. Radiocarbon dating on BPCAs will provide further evidence for the origin of BC in the deep ocean.

  4. Analyse géochimique de la matiére organique extraite des roches sédimentaires. IV. Extraction des roches en faible quantités Geochemical Analysis of Organic Matter Extracted from Sedimentary Rocks Iv. Exraction from Small Amounts of Rock

    Directory of Open Access Journals (Sweden)

    Monin J. C.

    2006-11-01

    extraction medium. The nature of the solvent is not critical provided that a very poor solvent for hydrocabbues is not chosen. Extractability actually depends more on the desorbing power vis-à-vis the rock thon the solving power. For resins and asphaltenes, interpreting the results is a delicote job because there is no clearcut boundary between simply dissolved products, solvolysis products and neoformation products produced by solvent/organic motter/mineral motter interaction. Hence there is no ultimately recommendable extraction procedure. Everything depends on the analytical requirements as well as on laboratory practices. The procedure retained et Institut Français du Pétrole (IFP is a beaker extraction process with magnetic stirring for 20 min in chloroform at 50 'C (approximately. The procedure for evaporation of the solvent and recovery of the extract is also described and should be studied carefully on account of the small amounts.

  5. Comportement en vapocraquage de molécules modèles et de distillats sous vide hydrotraités. Première partie : potentialité de craquage, réacteur à profil de température rectangulaire et à court temps de séjour Steam-Cracking Behavior of Model Molecules and Hydrotreated Vacuum Distillates

    Directory of Open Access Journals (Sweden)

    Berthelin M.

    2006-11-01

    to determine a scale of cracking potential, so that the performances of a pretreatment catalyst could be oriented, i. e. optimization of hydrogen consumption and better upgrading of heavy feedstocks during steam cracking. Thanks to the rectangular temperature profile of the micropilot plant, very great improvements in ethylene production and very low asphaltene production were revealed by the pyrolysis of hydrotreated vacuum distillates. The primordial importance of temperature in the temperature/residence-time pair was confirmed.

  6. Turbulent Flow of Saudi Non-Newtonian Crude Oils in a Pipeline Écoulement turbulent de bruts non-newtoniens séoudiens dans une canalisation

    Directory of Open Access Journals (Sweden)

    Hemeidia A. M.

    2006-11-01

    Full Text Available Rheological properties of Saudi Arab-Light, Arab-Berri and Arab-Heavy crude oils were measured with Brookfield Viscometer (LVT Model at temperatures 10, 15, 20, 25, 38, 55 and 70°C. Saudi Arab-Light and Arab-Heavy exhibit non-Newtonian behavior at temperature less than or equal to 20°C, while Saudi Arab-Berri behaves as a non-Newtonian fluid at all temperatures. The main reason for this rheological behavior can be attributed to the thermal and shear histories; the relative amounts of wax and asphaltene content in Saudi crude oils as well. Therefore, Statistical Analysis (t-test was used to check the variability of the change in rheological behavior of Saudi non-Newtonian crude oils at a confidence level of 95%. The evaluation ensured that, all non-Newtonian data were statistically not different and were correlated with power-law model. Under turbulent flow conditions the pipeline design calculations were carried out through a computer program. Les propriétés rhéologiques des bruts séoudiens Arab-Light, Arab-Berri et Arab-Heavy ont été mesurées à l'aide d'un viscomètre Brookfield (modèle LVT à des températures de 10, 15, 20, 25, 38, 55 et 70°C. Les Saudi Arab-Light et Arab-Heavy présentent un comportement non newtonien à des températures égales ou inférieures à 20°C, tandis que le Saudi Arab-Berri se comporte comme un fluide non newtonien à toutes les températures. Ce comportement rhéologique est principalement dû aux historiques thermiques et de cisaillement, de même qu'aux quantités relatives de paraffine et à la teneur en asphaltène des bruts séoudiens. Une analyse statistique (essai t a donc été menée pour vérifier la variabilité des changements de comportement rhéologique des bruts séoudiens non newtoniens à un degré de fiabilité de 95%. Il en est ressorti que toutes les données non newtoniennes étaient statistiquement non différentes et étaient en corrélation avec le modèle de la loi des

  7. DGMK/OeGEW spring meeting of the exploration and production department. Proceedings; DGMK/OeGEW-Fruehjahrstagung des Fachbereichs Aufsuchung und Gewinnung. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the spring meeting 2009 of the exploration and production department of the German Society and Coal Science and Technology (DGMK, Hamburg, Federal Republic of Germany) and the Austrian Society of Petroleum Sciences (OeGEW, Vienna, Austria) at 27th and 28th April, 2009, in Celle (Federal Republic of Germany), the following lectures were held: (1) Natural gas for Europe - Where does it come from, and how safe is it?; (2) Fluid dynamics in salt-encased carbonates; (3) Predicting petroleum fluid quality and quantity by using the PhaseKinetic approach for a basin modelling study in the Jeanne d'Arc Basin, offshore Newfoundland, Canada; (4) Models of geomechanical reservoirs for the prognosis of tectonic stresses and crack grids - concept and case study from the Sirte Basin / Libya; (5) A depositional model and sequence stratigraphic correlation for Ordovician glacial deposits, Illizi Basin, Algeria; (6) Palynology of the upper Silurian to Middle Devonian of wells from the Reggane Basin, southern Algeria; (7) Evaluation of heterogeneities in petroleum deposits by mans of asphaltene; (8) Experiments to reactions of n-alkanes with hematite in clastic reservoir rocks; (9) Organic geochemical characterization of terrestrial source rocks of the Triassic Madygen Formation (Southern Tien Shan, Kyrgyzstan); (10) Mud Volcanoes of Azerbaijan - Organic chemistry of ejected sediments; (11) Seismoelectric signatures for the determination of depositional parameters; (12) A workflow for the processing and imaging of Reflexion seismic data with CRS attributes; (13) Detection of altitude variations during production of natural gas or petroleum in the area of the San Jorge Basin by means of satellite radar interferometry; (14) (S)PWD - Development of a high resolution system for seismic exploratory work in the deep drilling; (15) Development of a discontinuum mechanics based computer algorithm in the FDM program FLAC3D for Frac dispersion in tigt gas reservoirs; (16) A fresh

  8. DETERMINACIÓN DE LAS FRACCIONES SARA DE ASFALTOS COLOMBIANOS ENVEJECIDOS AL MEDIO AMBIENTE EMPLEANDO CROMATOGRAFÍA LÍQUIDA EN COLUMNA DETERMINAÇÃO DAS FRAÇÕES SARA DE ASFALTOS COLOMBIANOS ENVELHECIDOS AO MÉDIO AMBIENTE EMPREGANDO CROMATOGRAFIA LÍQUIDA EM COLUNA DETERMINATION OF SARA FRACTIONS OF ENVIRONMENTALLY AGED COLOMBIAN ASPHALTS USING LIQUID CHROMATOGRAPHY COLUMN

    Directory of Open Access Journals (Sweden)

    Fredy Alberto Reyes

    2012-06-01

    ôde ser responsável pelo endurecimento observado nos asfaltos, que apresentaram uma consistência dura e quebradiça, o que está de acordo com a obtenção de índices coloidais elevados. O método empregado permitiu estabelecer correlações entre a composição química do asfalto e suas propriedades mecânicas.In this paper, we present a method based on liquid chromatography column to quantify the chemical composition of asphalt cements manufactured in Colombia, under the environment by determining the SARA fractions. The method was applied to thin layers of asphalt 60/70 and 80/100 to determine changes in the chemical composition of the material after exposure for 12 months in the weather conditions in the city of Bogotá; SARA tests were performed to the original asphalt, 1, 3, 6, 9 and 12 months aged respectively. SARA trials showed that aging caused a decrease in the fraction of aromatics and asphaltenes increased compared to non-aged asphalt. The reduction of aromatics and resins could be responsible for the hardening observed in the asphalt, which had a stiff and brittle consistency; that leads to obtaining higher colloidal index. The performed method established possible correlations between the chemical composition of asphalt and its mechanical properties.

  9. Simulation de la désactivation d'un catalyseur d'hydrodémétallisation à géométrie ouverte Simulation of the Deactivation of a Hydrodemetallization Catalyst with an Open Geometry

    Directory of Open Access Journals (Sweden)

    Tanoubi I.

    2006-11-01

    éveloppement rationnel de nouveaux catalyseurs industriels. A predictive simulation method is proposed for the deactivation of a hydrodemetallization catalyst in time. It is based on a model of the geometry of the catalyst associated with a diffusion law of the reactants, with consideration being given to the textural evolution of the catalyst during the reaction. Textural evolution is due to the solid deposition of reaction products in the catalytic pores. The deposit also catalyzes the reaction, but much less effectively than the catalyst fresh. Deactivation is linked to the decrease in the specific surface area and to the progressive plugging up of the pores. The geometry taken into consideration reflects the original socalled chestnut-burrtexture characterizing new catalysts developed by Institut Français du Pétrole (IFP for the hydrotreatment of residues. Simulation shows that this specific geometry brings about better catalyst stability in relation to deactivation factors. The model first considers a simple kinetics involving solely the demetallization reaction. Likewise, it is capable of introducing a competitive reaction to justify experimental observations in an environment contaminated by asphaltenes, i. e. the occurrence of maximum concentrations of a solid deposit inside the catalyst grains and not on their immediate periphery. The simulation predicts the evolution in time of the profiles along the grain, the specific surface area, the void fraction, the reactant concentration in the pores and the mass of metals deposited. It also determines at all times the reactant flux on the surface of the grain as well as the Tamm factor and the metal capture rate. The model gives a satisfactory account of the leading experimental observations and also provides a very useful qualitative tool for the rational development of new industrial catalysts.

  10. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  11. Ignition et oxydation des particules de combustible solide pulvérisé Ignition and Oxidation of Pulverized Solid Fuel

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    the rate of heterogeneous combustion can reach its normal steady state, which is practically the same as that of char. At temperatures between the ignition temperature of the solid fuel and the extinction temperature of residual char, combustion is incomplete and extinction occurs at a devolatilization degree that is all the greater as the temperature is high. This phenomenon can be qualitively explained by the standard thermal ignition theory when it is applied to the specific case of pyrolyzable solid fuels. Ignition temperatures as well as ignition delays have been determined for a great many lower- and higher-rank solid fuels (coals, cokes, asphaltenes, soot, wood, graphite. An analysis of the experimental rate of heterogeneous combustion, and especially of the apparent activation temperature, and its dependency with regard to particle size and oxygen concentration, shows that this combustion is controlled under test conditions by CO desorption and that it occurs mainly in the mixed kinetico-diffusional regime. Investigations of the dependency of ignition delays with regard to temperature, to particle size and to oxygen partial pressure suggest that reactions occur in a pure kinetic regime during such delays and that the desorption reaction product is mainly CO.

  12. Thermal Evolution of Crude Oils in Sedimentary Basins: Experimental Simulation in a Confined System and Kinetic Modeling Evolution thermique des huiles dans les bassins sédimentaires : simulation expérimentale par pyrolyse en milieu confiné et modélisation cinétique

    Directory of Open Access Journals (Sweden)

    Behar F.

    2006-11-01

    Full Text Available A detailed knowledge of the cracking mechanisms of crude oils should highly improve the understanding of geochemical reactions involved in hydrocarbon degradation into lighter oil and gas and consequently the applicability of kinetic models currently used for prediction of gas formation. Although the mechanisms of cracking are well known for several model compounds or simple mixtures, there is, to date, no available method to model complex mixtures, especially when they contain heavy compounds, except by using empirical approaches. During thermal cracking, oil will produce both lighter and heavier molecules than those present in the initial sample. Thus, the pyrolysate will be a mixture of both new compounds and compounds not yet degraded. In order to discriminate between reactants and products, we have chosen to fractionate each oil into two classes : the first one (distillate 300- comprising light hydrocarbons ranging from C6 to C16 the second one (residue 300+ comprising both hydrocarbons and polar compounds. For simulation of thermal evolution of crude oils, about 100 experiments were carried out on two oils (Boscan and Pematang, in a closed pyrolysis system, over a wide range of heating times (few minutes to 1 month and temperatures (335 to 500°C. The pyrolysate is represented by 10 chemical fractions (C1, C2, C3-C5, C6-C13 saturates, benzene + toluene + xylenes + naphthalene, C9-C13 alkyl aromatics, C14+ saturates, C14+ condensed aromatics, C14+ alkyl and/or naphtheno aromatics + resins + asphaltenes and coke. For kinetic modeling, the degradation of each fraction, except for C1, C6-C13 aromatic mixture comprising benzene, toluene, xylenes and naphthalene, and coke considered as stable compounds, is described by a balanced elementary reaction governed by first order kinetics and obeying Arrhenius law. For a given oil, the kinetic parameters of the model (apparent activation energies Ei, preexponential factor A and stoichiometric

  13. Solubilisation des hydrocarbures dans les solutions micellaires Influence de la structure et de la masse moléculaire Solubilization of Hydrocarbons in Micellar Solutions Influence of Structure and Molecular Weight

    Directory of Open Access Journals (Sweden)

    Baviere M.

    2006-11-01

    ideal behavior disappears for hydrocarbon mixtures. The different effects of alcohol on the phase behavior of micellar systems, due to its partitioning among the different phases, have been confirmed, and in particular the effect on solubilization. This solubilization is all the weaker as the alcohol concentration is great. The solubilization of crude oils depends strongly on their chemical composition. It may vary from single to double for crudes having exactly the same equivalent alkane, i. e. having similar molecular weights. Oil from Daqing has very weak solubilization, even though the interfacial tensions between the micellar phase and the excess oil are relatively low. According to tests of fractions extracted from the crude oil, resins might be responsible for such a behavior in an environment with high molecular weights. To achieve better control over the formulation of micellar fluids, further research will have to be done to determine the effect of heavy constituents (paraffins, resins and asphaltenes on the interfacial properties of water/hydrocarbon/surfactant systems. Likewise, the interactions occurring between the hydrocarbon constituents and the surfactant raise problems concerning the choice of the surfactant. The use of surfactants having varying structures, mainly with regard to the lipophilic part (branching, aromaticity, etc. , should make it possible to indicate to what extent this structure can be adapted to the composition of the oil to make formulations as efficient as possible.