WorldWideScience

Sample records for aspect ratio electrodes

  1. Improving surface acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    The acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes that are stro......The acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes...

  2. High aspect ratio silver grid transparent electrodes using UV embossing process

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2017-10-01

    Full Text Available This study presents a UV embossing process to fabricate high aspect ratio silver grid transparent electrodes on a polymer film. Transparent electrodes with a high optical transmittance (93 % and low sheet resistance (4.6 Ω/sq were fabricated without any high temperature or vacuum processes. The strong adhesion force between the UV resin and the silver ink enables the fabrication of silver microstructures with an aspect ratio higher than 3. The high aspect ratio results in a low sheet resistance while maintaining a high optical transmittance. Multi-layer transparent electrodes were fabricated by repeating the proposed UV process. Additionally, a large-area of 8-inch touch panel was fabricated with the proposed UV process. The proposed UV process is a relatively simple and low cost process making it suitable for large-area production as well as mass production.

  3. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows...

  4. Fabrication of high aspect ratio micro electrode by using EDM

    International Nuclear Information System (INIS)

    Elsiti, Nagwa Mejid; Noordin, M.Y.; Alkali, Adam Umar

    2016-01-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated. (paper)

  5. Solution Process Synthesis of High Aspect Ratio ZnO Nanorods on Electrode Surface for Sensitive Electrochemical Detection of Uric Acid

    Science.gov (United States)

    Ahmad, Rafiq; Tripathy, Nirmalya; Ahn, Min-Sang; Hahn, Yoon-Bong

    2017-04-01

    This study demonstrates a highly stable, selective and sensitive uric acid (UA) biosensor based on high aspect ratio zinc oxide nanorods (ZNRs) vertical grown on electrode surface via a simple one-step low temperature solution route. Uricase enzyme was immobilized on the ZNRs followed by Nafion covering to fabricate UA sensing electrodes (Nafion/Uricase-ZNRs/Ag). The fabricated electrodes showed enhanced performance with attractive analytical response, such as a high sensitivity of 239.67 μA cm-2 mM-1 in wide-linear range (0.01-4.56 mM), rapid response time (~3 s), low detection limit (5 nM), and low value of apparent Michaelis-Menten constant (Kmapp, 0.025 mM). In addition, selectivity, reproducibility and long-term storage stability of biosensor was also demonstrated. These results can be attributed to the high aspect ratio of vertically grown ZNRs which provides high surface area leading to enhanced enzyme immobilization, high electrocatalytic activity, and direct electron transfer during electrochemical detection of UA. We expect that this biosensor platform will be advantageous to fabricate ultrasensitive, robust, low-cost sensing device for numerous analyte detection.

  6. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  7. Simulation and Measurement of Neuroelectrodes' Characteristics with Integrated High Aspect Ratio Nano Structures

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2015-07-01

    Full Text Available Improving the interface between electrodes and neurons has been the focus of research for the last decade. Neuroelectrodes should show small geometrical surface area and low impedance for measuring and high charge injection capacities for stimulation. Increasing the electrochemically active surface area by using nanoporous electrode material or by integrating nanostructures onto planar electrodes is a common approach to improve this interface. In this paper a simulation approach for neuro electrodes' characteristics with integrated high aspect ratio nano structures based on a point-contact-model is presented. The results are compared with experimental findings conducted with real nanostructured microelectrodes. In particular, effects of carbon nanotubes and gold nanowires integrated onto microelectrodes are described. Simulated and measured impedance properties are presented and its effects onto the transfer function between the neural membrane potential and the amplifier output signal are studied based on the point-contact-model. Simulations show, in good agreement with experimental results, that electrode impedances can be dramatically reduced by the integration of high aspect ratio nanostructures such as gold nanowires and carbon nanotubes. This lowers thermal noise and improves the signal-to-noise ratio for measuring electrodes. It also may increase the adhesion of cells to the substrate and thus increase measurable signal amplitudes.

  8. Reusable High Aspect Ratio 3-D Nickel Shadow Mask

    Science.gov (United States)

    Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.

    2017-01-01

    Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835

  9. Large Aspect Ratio Tokamak Study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Wiseman, G.W.

    1980-06-01

    The Large Aspect Ratio Tokamak Study (LARTS) at Oak Ridge National Laboratory (ORNL) investigated the potential for producing a viable longburn tokamak reactor by enhancing the volt-second capability of the ohmic heating transformer through the use of high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were assessed in the context of extended burn operation. Using a one-dimensional transport code plasma startup and burn parameters were addressed. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the startup and shutdown portions of the tokamak cycle. A representative large aspect ratio tokamak with an aspect ratio of 8 was found to achieve a burn time of 3.5 h at capital cost only approx. 25% greater than that of a moderate aspect ratio design tokamak

  10. Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Hansen, Rasmus

    2015-01-01

    In this work we present high-aspect ratio carbon pillars (1.4 μm in diameter and ∼11 μm in height) on top of interdigitated electrode arrays to be used for electrochemical applications. For this purpose, different types of 2D and 3D pyrolysed carbon structures were fabricated and characterised...... of pyrolysed carbon films with increased film resistance due to oxidation during storage....

  11. Large aspect ratio tokamak study

    International Nuclear Information System (INIS)

    Reid, R.L.; Holmes, J.A.; Houlberg, W.A.; Peng, Y.K.M.; Strickler, D.J.; Brown, T.G.; Sardella, C.; Wiseman, G.W.

    1979-01-01

    The Large Aspect Ratio Tokamak Study (LARTS) investigated the potential for producing a viable long burn tokamak reactor through enhanced volt-second capability of the ohmic heating transformer by employing high aspect ratio designs. The plasma physics, engineering, and economic implications of high aspect ratio tokamaks were accessed in the context of extended burn operation. Plasma startup and burn parameters were addressed using a one-dimensional transport code. The pulsed electrical power requirements for the poloidal field system, which have a major impact on reactor economics, were minimized by optimizing the field in the ohmic heating coil and the wave shape of the ohmic heating discharge. A high aspect ratio reference reactor was chosen and configured

  12. Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-09-01

    Full Text Available The activated TIG (ATIG welding process mainly focuses on increasing the depth of penetration and the reduction in the width of weld bead has not been paid much attention. The shape of a weld in terms of its width-to-depth ratio known as aspect ratio has a marked influence on its solidification cracking tendency. The major influencing ATIG welding parameters, such as electrode gap, travel speed, current and voltage, that aid in controlling the aspect ratio of DSS joints, must be optimized to obtain desirable aspect ratio for DSS joints. Hence in this study, the above parameters of ATIG welding for aspect ratio of ASTM/UNS S32205 DSS welds are optimized by using Taguchi orthogonal array (OA experimental design and other statistical tools such as Analysis of Variance (ANOVA and Pooled ANOVA techniques. The optimum process parameters are found to be 1 mm electrode gap, 130 mm/min travel speed, 140 A current and 12 V voltage. The aspect ratio and the ferrite content for the DSS joints fabricated using the optimized ATIG parameters are found to be well within the acceptable range and there is no macroscopically evident solidification cracking.

  13. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pain, H. J.; Fearn, D. G.; Distefano, E. [Imperial College. London (United Kingdom)

    1966-10-15

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 {mu}mHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  14. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    International Nuclear Information System (INIS)

    Pain, H.J.; Fearn, D.G.; Distefano, E.

    1966-01-01

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 μmHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  15. Transcription and the aspect ratio of DNA

    DEFF Research Database (Denmark)

    Olsen, Kasper Wibeck; Bohr, Jakob

    2013-01-01

    analysis of transcription. It is shown that under certain reasonable assumptions transcription is only possible if the aspect ratio is in the regime corresponding to further twisting. We find this constraint to be in agreement with long-established crystallographic studies of DNA.......Two separate regimes exist for the aspect ratio of DNA. A low aspect regime where DNA will twist further under strain and a high aspect regime where DNA will untwist under strain. The question of the overall geometry, i.e. the aspect ratio, of DNA is revisited from the perspective of a geometrical...

  16. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  17. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    Science.gov (United States)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  18. Transport in a small aspect ratio torus

    International Nuclear Information System (INIS)

    White, R.B.; Gates, D.A.; Mynick, H.E.

    2005-01-01

    Transport theory in toroidal devices often assumes large aspect ratio and also assumes the poloidal field is small compared to the toroidal field. These assumptions result in transport which in the low collision rate limit is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial flux surface. However in a small aspect ratio device the gyro radius may be larger than the banana excursion, resulting in significant deviations from the standard neoclassical predictions. In this paper we report numerical simulation of diffusion in low and high beta low aspect ratio equilibria. We also sketch an analytic theory. The diffusion, which we refer to as omniclassical, is a combination of neoclassical and properly averaged classical effects, and can be two or three times the neoclassical value. Good agreement of the analytic theory with numerical simulations is obtained. (author)

  19. The fabrication of front electrodes of Si solar cell by dispensing printing

    International Nuclear Information System (INIS)

    Kim, Do-Hyung; Ryu, Sung-Soo; Shin, Dongwook; Shin, Jung-Han; Jeong, Jwa-Jin; Kim, Hyeong-Jun; Chang, Hyo Sik

    2012-01-01

    Highlights: ► We propose the process for the front silver electrode by employing dispensing method. ► The dispensing method is a non-contact printing process. ► The electrode by dispensing method has more uniform and narrower shape. ► The dispensing method helped to enhance the efficiency of solar cell by 0.8% absolute. - Abstract: The dispensing printing was applied to fabricate the front electrodes of silicon solar cell. In this method, a micro channel nozzle and normal Ag paste were employed. The aspect ratio and line width of electrodes could be controlled by the process variables such as the inner diameter of nozzle, dispensing speed, discharge pressure, and the gap between wafer and nozzle. For the nozzle with the inner diameter of 50 μm, the line width and aspect ratio of electrode were under 90 μm and more than ∼0.2, respectively. When comparing the efficiency of solar cell prepared by conventional screen printing and the dispensing printing, the latter exhibited 19.1%, which is 0.8% absolute higher than the former even with the same Ag paste. This is because the electrode by dispensing printing has uniform aspect ratio and narrow line width over the length of electrode.

  20. Achieving high aspect ratio wrinkles by modifying material network stress.

    Science.gov (United States)

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  1. Trade-off between Photon Management Efficacy and Material Quality in Thin-Film Solar Cells on Nanostructured Substrates of High Aspect Ratio Structures

    Directory of Open Access Journals (Sweden)

    Alan H. Chin

    2018-04-01

    Full Text Available Although texturing of the transparent electrode of thin-film solar cells has long been used to enhance light absorption via light trapping, such texturing has involved low aspect ratio features. With the recent development of nanotechnology, nanostructured substrates enable improved light trapping and enhanced optical absorption via resonances, a process known as photon management, in thin-film solar cells. Despite the progress made in the development of photon management in thin-film solar cells using nanostructures substrates, the structural integrity of the thin-film solar cells deposited onto such nanostructured substrates is rarely considered. Here, we report the observation of the reduction in the open circuit voltage of amorphous silicon solar cells deposited onto a nanostructured substrate with increasing areal number density of high aspect ratio structures. For a nanostructured substrate with the areal number density of such nanostructures increasing in correlation with the distance from one edge of the substrate, a correlation between the open circuit voltage reduction and the increase of the areal number density of high aspect ratio nanostructures of the front electrode of the small-size amorphous silicon solar cells deposited onto different regions of the substrate with graded nanostructure density indicates the effect of the surface morphology on the material quality, i.e., a trade-off between photon management efficacy and material quality. This observed trade-off highlights the importance of optimizing the morphology of the nanostructured substrate to ensure conformal deposition of the thin-film solar cell.

  2. New Vehicle Detection Method with Aspect Ratio Estimation for Hypothesized Windows

    Directory of Open Access Journals (Sweden)

    Jisu Kim

    2015-12-01

    Full Text Available All kinds of vehicles have different ratios of width to height, which are called the aspect ratios. Most previous works, however, use a fixed aspect ratio for vehicle detection (VD. The use of a fixed vehicle aspect ratio for VD degrades the performance. Thus, the estimation of a vehicle aspect ratio is an important part of robust VD. Taking this idea into account, a new on-road vehicle detection system is proposed in this paper. The proposed method estimates the aspect ratio of the hypothesized windows to improve the VD performance. Our proposed method uses an Aggregate Channel Feature (ACF and a support vector machine (SVM to verify the hypothesized windows with the estimated aspect ratio. The contribution of this paper is threefold. First, the estimation of vehicle aspect ratio is inserted between the HG (hypothesis generation and the HV (hypothesis verification. Second, a simple HG method named a signed horizontal edge map is proposed to speed up VD. Third, a new measure is proposed to represent the overlapping ratio between the ground truth and the detection results. This new measure is used to show that the proposed method is better than previous works in terms of robust VD. Finally, the Pittsburgh dataset is used to verify the performance of the proposed method.

  3. Metallization of high aspect ratio, out of plane structures

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    This work is dedicated to developing a novel three dimensional structure for electrochemical measurements in neuronal studies. The final prototype will allow not only for the study and culture on chip of neuronal cells, but also of brain tissue. The use of out-of-plane electrodes instead of planar...... ones increases the sensitivity of the system and increases the signal-to-noise ratio in the recorded signals, due to the higher availability of surface area. The main bottleneck of the out-of-plane electrode fabrication lies in the metallization process for transforming them into active electrodes......, since the coverage of the side walls of almost vertical pillars is not trivial by standard processes in a clean room facility. This paper will discuss the different steps taken towards this goal and present the results that we have obtained so far....

  4. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  5. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  6. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  7. Electrical Characteristics of the Contour-Vibration-Mode Piezoelectric Transformer with Ring/Dot Electrode Area Ratio

    Science.gov (United States)

    Yoo, Juhyun; Yoon, Kwanghee; Lee, Yongwoo; Suh, Sungjae; Kim, Jongsun; Yoo, Chungsik

    2000-05-01

    Contour-vibration-mode Pb(Sb1/2Nb1/2)O3-Pb(Zr, Ti)O3 [PSN-PZT] piezoelectric transformers with different ring/dot electrode area ratios were fabricated to the size of 27.5× 27.5× 2.5 mm3 by cold isostatic pressing. The electrical properties and characteristic temperature rises caused by the vibration were measured at various load resistances. Efficiencies above 90% with load resistance were obtained from all the transformers. The voltage step-up ratio appeared to be proportional to the dot electrode area. A 14 W fluorescent lamp, T5, was successfully driven by all of the fabricated transformers. The transformer with ring/dot electrode area ratio of 4.85 exhibited the best properties in terms of output power, efficiency and characteristic temperature rise, 14.88 W, 98% and 5°C, respectively.

  8. Stability of high β large aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cowley, S.C.

    1991-10-01

    High β(β much-gt ε/q 2 ) large aspect ratio (ε much-gt 1) tokamak equilibria are shown to be always stable to ideal M.H.D. modes that are localized about a flux surface. Both the ballooning and interchange modes are shown to be stable. This work uses the analytic high β large aspect ratio tokamak equilibria developed by Cowley et.al., which are valid for arbitrary pressure and safety factor profiles. The stability results make no assumption about these profiles or the shape of the boundary. 14 refs., 4 figs

  9. Design studies of low-aspect ratio quasi-omnigenous stellarators

    International Nuclear Information System (INIS)

    Spong, D.A.; Hirshman, S.; Whitson, J.C.

    2001-01-01

    Significant progress has been made in the development of new modest-size compact stellarator devices that could test optimization principles for the design of a more attractive reactor. These are 3 and 4 field period low-aspect-ratio quasi-omnigenous (QO) stellarators based on an optimization method that targets improved confinement, stability, ease of coil design, low-aspect-ratio, and low bootstrap current. (author)

  10. Deep Reactive Ion Etching for High Aspect Ratio Microelectromechanical Components

    DEFF Research Database (Denmark)

    Jensen, Søren; Yalcinkaya, Arda Deniz; Jacobsen, S.

    2004-01-01

    A deep reactive ion etch (DRIE) process for fabrication of high aspect ratio trenches has been developed. Trenches with aspect ratios exceeding 20 and vertical sidewalls with low roughness have been demonstrated. The process has successfully been used in the fabrication of silicon-on-insulator (SOI...

  11. Elliptic nozzle aspect ratio effect on controlled jet propagation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S M Aravindh; Rathakrishnan, Ethirajan, E-mail: aravinds@iitk.ac.in, E-mail: erath@iitk.ac.in [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur (India)

    2017-04-15

    The present study deals with the control of a Mach 2 elliptic jet from a convergent–divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121–33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle. (paper)

  12. Elliptic nozzle aspect ratio effect on controlled jet propagation

    International Nuclear Information System (INIS)

    Kumar, S M Aravindh; Rathakrishnan, Ethirajan

    2017-01-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent–divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121–33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle. (paper)

  13. Effects of Aspect Ratio on Water Immersion into Deep Silica Nanoholes.

    Science.gov (United States)

    Zheng, Jing; Zhang, Junqiao; Tan, Lu; Li, Debing; Huang, Liangliang; Wang, Qi; Liu, Yingchun

    2016-08-30

    Understanding the influence of aspect ratio on water immersion into silica nanoholes is of significant importance to the etching process of semiconductor fabrication and other water immersion-related physical and biological processes. In this work, the processes of water immersion into silica nanoholes with different height/width aspect ratios (ϕ = 0.87, 1.92, 2.97, 4.01, 5.06) and different numbers of water molecules (N = 9986, 19972, 29958, 39944) were studied by molecular dynamics simulations. A comprehensive analysis has been conducted about the detailed process of water immersion and the influence of aspect ratios on water immersion rates. Five distinguishable stages were identified for the immersion process with all studied models. The results reveal that water can easily immerse into the silica nanoholes with larger ϕ and smaller N. The calculation also suggests that aspect ratios have a greater effect on water immersion rates for larger N numbers. The mechanism of the water immersion process is discussed in this work. We also propose a mathematical model to correlate the complete water immersion process for different aspect ratios.

  14. INFLUENCE OF SCALE RATIO, ASPECT RATIO, AND PLANFORM ON THE PERFORMANCE OF SUPERCAVITATING HYDROFOILS.

    Science.gov (United States)

    performance of supercavitating hydrofoils. No appreciable scale effect was found for scale ratios up to 3 in the fully-cavitating flow region. The...overall performance of the hydrofoil by increasing the aspect ratio above 3, and (2) moderate taper ratio seems to be advantageous in view of the overall performance of supercavitating hydrofoils. (Author)

  15. Omniclassical Diffusion in Low Aspect Ratio Tokamaks

    International Nuclear Information System (INIS)

    Mynick, H.E.; White, R.B.; Gates, D.A.

    2004-01-01

    Recently reported numerical results for axisymmetric devices with low aspect ratio A found radial transport enhanced over the expected neoclassical value by a factor of 2 to 3. In this paper, we provide an explanation for this enhancement. Transport theory in toroidal devices usually assumes large A, and that the ratio B p /B t of the poloidal to the toroidal magnetic field is small. These assumptions result in transport which, in the low collision limit, is dominated by banana orbits, giving the largest collisionless excursion of a particle from an initial flux surface. However in a small aspect ratio device one may have B p /B t ∼ 1, and the gyroradius may be larger than the banana excursion. Here, we develop an approximate analytic transport theory valid for devices with arbitrary A. For low A, we find that the enhanced transport, referred to as omniclassical, is a combination of neoclassical and properly generalized classical effects, which become dominant in the low-A, B p /B t ∼ 1 regime. Good agreement of the analytic theory with numerical simulations is obtained

  16. High aspect ratio spheromak experiments

    International Nuclear Information System (INIS)

    Robertson, S.; Schmid, P.

    1987-05-01

    The Reversatron RFP (R/a = 50cm/8cm) has been operated as an ohmically heated spheromak of high aspect ratio. We find that the dynamo can drive the toroidal field upward at rates as high as 10 6 G/sec. Discharges can be initiated and ramped upward from seed fields as low as 50 G. Small toroidal bias fields of either polarity (-0.2 < F < 0.2) do not significantly affect operation. 5 refs., 3 figs

  17. Effect of aspect ratio in free-swimming plunging flexible plates

    Science.gov (United States)

    Yeh, Peter; Alexeev, Alexander

    2015-11-01

    Using three dimensional fully-coupled fluid-structure interaction simulations, we investigate the free swimming of plunging elastic rectangular plates with aspect ratios ranging from 0.5 to 5 in a viscous fluid with Reynolds number 250. We find that maximum velocity occurs near the first natural frequency regardless of aspect ratio, while the maximum swimming economy occurs away from the first natural frequency and corresponds to a specific swimmer bending pattern characterized by reduced displacement of the swimmer's center of mass. Furthermore, we find that swimmers with wider span are both faster and more economical than narrow swimmers. These faster speeds are due to decreased drag for low aspect ratio plunging swimmers, which is in agreement with a recently proposed vortex-induced drag model that suggests that the smaller relative size of side vortices in low aspect ratio swimmers creates less drag per unit width. Our results are useful for the design of small autonomous micro-swimming devices and also provide insights on the physics of aquatic locomotion using oscillating fins.

  18. Oscillatory convection in low aspect ratio Czochralski melts

    Science.gov (United States)

    Anselmo, A.; Prasad, V.; Koziol, J.; Gupta, K. P.

    1993-11-01

    Modeling of the crucible in bulk crystal growth simulations as a right circular cylinder may be adequate for high aspect ratio melts but this may be unrealistic when the melt height is low. Low melt height is a unique feature of a solid feed continuous Czochralski growth process for silicon single crystals currently under investigation. At low melt heights, the crucible bottom curvature has a dampening effect on the buoyancy-induced oscillations, a source of inhomogeneities in the grown crystal. The numerical results demonstrate how the mode of convection changes from vertical wall-dominated recirculating flows to Benard convection as the aspect ratio is lowered. This phenomenon is strongly dependent on the boundary condition at the free surface of the melt, which has been generally considered to be either adiabatic or radiatively cooled. A comparison of the flow oscillations in crucibles with and without curved bottoms at aspect ratios in the range of 0.25 to 0.50, and at realistic Grashof numbers (10 7 < Gr < 10 8) illustrate that changing the shape of the crucible may be an effective means of suppressing oscillations and controlling the melt flow.

  19. Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites.

    Science.gov (United States)

    Tang, Haixiong; Zhou, Zhi; Sodano, Henry A

    2014-04-23

    The aspect ratio of barium titanate (BaTiO3) nanowires is demonstrated to be successfully controlled by adjusting the temperature of the hydrothermal growth from 150 to 240 °C, corresponding to aspect ratios from 9.3 to 45.8, respectively. Polyvinylidene fluoride (PVDF) nanocomposites are formed from the various aspect ratio nanowires and the relationship between the dielectric constant of the nanocomposite and the aspect ratio of the fillers is quantified. It was found that the dielectric constant of the nanocomposite increases with the aspect ratio of the nanowires. Nanocomposites with 30 vol % BaTiO3 nanowires and an aspect ratio of 45.8 can reach a dielectric constant of 44.3, which is 30.7% higher than samples with an aspect ratio of 9.3 and 352% larger than the polymer matrix. These results demonstrate that using high-aspect-ratio nanowires is an effective way to control and improve the dielectric performance of nanocomposites for future capacitor applications.

  20. Influence of obstacle aspect ratio on tripped cylinder wakes

    International Nuclear Information System (INIS)

    Araújo, Tiago B.; Sicot, Christophe; Borée, Jacques; Martinuzzi, Robert J.

    2012-01-01

    Highlights: ► Influence of a tripwire on wake properties of a surface-mounted circular cylinder. ► Height-to-diameter aspect ratios of 3 and 6 are considered. ► Critical positions for the tripwire lead to an abrupt change in the wake structure. ► Results further suggest that the tripwire can strengthen 2D wake properties. - Abstract: The influence of an asymmetrically mounted, single tripwire on the shedding and wake characteristics of a vertical, surface-mounted finite circular cylinder is investigated experimentally. Height-to-diameter aspect ratios of 3 and 6 are considered. It is shown that a critical position for the tripwire exists, which is characterised in an abrupt change in the shedding frequency and wake structure. Results further suggest that the tripwire can strengthen 2D wake properties. The influence of the aspect ratio is due to tip-wake flow interactions and thus differs fundamentally from two-dimensional geometries.

  1. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  2. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  3. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  4. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  5. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S; Selvaganapathy, P R [Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7 (Canada); Derardja, A [Faculty of Science and Engineering, University of Batna (Algeria); Deen, M J, E-mail: selvaga@mcmaster.ca, E-mail: jamal@mcmaster.ca [Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8 (Canada)

    2011-08-05

    The sensitivity of many biological and chemical sensors is critically dependent on the stability of the potential of the reference electrode being used. The stability of a reference electrode's potential is highly influenced by the properties of its surface. In this paper, for the first time, the formation of nanosheets of silver chloride on silver wire is observed and controlled using high anodic constant potential (>0.5 V) and pulsed electrodeposition. The resulting nanostructured morphology substantially improves the electrode's potential stability in comparison with the conventional globular surface structure. The increased stability is attributed to the increase in the surface area of the silver chloride produced by the nanosheet formation.

  6. Configuration studies for a small-aspect-ratio tokamak stellarator hybrid

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.; Ware, A.

    1996-08-01

    The use of modulated toroidal coils offers a new path to the tokamak-stellarator hybrids. Low-aspect-ratio configurations can be found with robust vacuum flux surfaces and rotational transform close to the transform of a reverse-shear tokamak. These configurations have clear advantages in minimizing disruptions and their effect and in reducing tokamak current drive needs. They also allow the study of low-aspect-ratio effects on stellarator confinement in small devices

  7. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  8. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui; Hu, Liangbing; Rowell, Michael W.; Kong, Desheng; Cha, Judy J.; McDonough, James R.; Zhu, Jia; Yang, Yuan; McGehee, Michael D.; Cui, Yi

    2010-01-01

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  9. Effect of channel aspect ratio on chemical recuperation process in advanced aeroengines

    International Nuclear Information System (INIS)

    Zhang, Silong; Cui, Naigang; Xiong, Yuefei; Feng, Yu; Qin, Jiang; Bao, Wen

    2017-01-01

    The working process of an advanced aeroengine such as scramjet with endothermic hydrocarbon fuel cooling is a chemical recuperative cycle. The design of cooling channel in terms of engine real working conditions is very important for the chemical recuperation process. To study the effects of channel aspect ratio (AR) on chemical recuperation process of advanced aeroengines, three dimensional model of pyrolysis coolant flow inside asymmetrical rectangular cooling channels with fins is introduced and validated through experiments. Cases when AR varies from 1 to 8 are carried out. In the pyrolysis zone of the cooling channel, decreasing the channel aspect ratio can reduce the temperature difference and non-uniformity of fuel conversion in the channel cross section, and it can also increase the final conversion and corresponding chemical heat absorption. A small channel aspect ratio is beneficial for the chemical recuperation process and can guarantee the engine cooling performance in the pyrolysis zone of the cooling channel. - Highlights: • Large non-uniformity of conversion is bad for the chemical recuperation. • Small channel aspect ratio is beneficial for improving the chemical recuperation effectiveness. • Small channel aspect ratio is also beneficial for reducing the engine wall temperature.

  10. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  11. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  12. Wave-driver options for low-aspect-ratio steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1981-02-01

    Low aspect ratio designs are proposed for steady-state tokamak reactors. Benefits stem from reduced major radius and lessened stresses in the toroidal field coils, resulting in possible cost savings in the tokamak construction. In addition, a low aspect ratio (A = 2.6) permits the application of a bundle divertor capable of diverting 3-T fields to a power reactor using STARFIRE technology. Such a low aspect ratio is possible with the elimination of poloidal field coils in the central hole of the tokamak, which implies a need for noninductive current drive. Several plasma waves are considered for this application, and it appears likely that a candidate can be found which reduces the electric power for current maintenance to an acceptable value

  13. High aspect ratio titanium nitride trench structures as plasmonic biosensor

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Takayama, Osamu

    2017-01-01

    High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 ◦C on a silicon trench template. Silicon between vertical TiN layers is selectively etched...... to fabricate the high aspect ratio TiN trenches with the pitch of 400 nm and height of around 2.7 µm. Dielectric functions of TiN films with different thicknesses of 18 - 105 nm and post-annealing temperatures of 700 - 900 ◦C are characterized by an ellipsometer. We found that the highest annealing temperature...... of 900 ◦C gives the most pronounced plasmonic behavior with the highest plasma frequency, ωp = 2.53 eV (λp = 490 nm). Such high aspect ratio trench structures function as a plasmonic grating sensor that supports the Rayleigh-Woods anomalies (RWAs), enabling the measurement of changes in the refractive...

  14. Role of substrate aspect ratio on the robustness of capillary alignment

    International Nuclear Information System (INIS)

    Broesch, David J.; Shiang, Edward; Frechette, Joelle

    2014-01-01

    Capillary forces associated with liquid bridges formed across solid substrates are routinely exploited to align and assemble micro- and nanoscale devices. The magnitude of these forces plays a critical role in minimizing substrate misalignment and therefore should be controlled for robust and reliable fabrication process. We explore through simulations and experiments the role of the substrate aspect ratio (L/W) on capillary restoring forces and torques. Simulations show that increasing the aspect ratio of the substrates increases the capillary torques and forces when the substrates are misaligned through either lateral or rotational perturbations. The effect of substrate area, perimeter, and liquid volume are also systematically explored to show that the increase in restoring torque is caused by an increase in aspect ratio. A simple theoretical model based on the geometry of the system shows excellent agreement with Surface Evolver simulations. Finally, parameters from experimental flip-chip devices [Josell, D. Wallace, W.E. Warren, J.A. Wheeler, D. Powell, A.C. J. Electron. Packag. 124, 227, (2002)] are used in our simulations to show how current capillary self-alignment schemes could benefit from using rectangular substrate shapes with aspect ratio greater than one

  15. ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES

    Energy Technology Data Exchange (ETDEWEB)

    Pon, Andy; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8W 3P6 (Canada); Toala, Jesus A. [Instituto de Astrofisica de Andalucia, CSIC, Glorieta de la Astronomia s/n, E-18008, Granada (Spain); Vazquez-Semadeni, Enrique; Gomez, Gilberto C. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico); Heitsch, Fabian, E-mail: arpon@uvic.ca, E-mail: Douglas.Johnstone@nrc-cnrc.gc.ca, E-mail: toala@iaa.es, E-mail: e.vazquez@crya.unam.mx, E-mail: g.gomez@crya.unam.mx, E-mail: fheitsch@unc.edu [Department of Physics and Astronomy, University of North Carolina Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599 (United States)

    2012-09-10

    We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge-driven collapse mode in a filament, however, is shown to have a square-root dependence on the aspect ratio. For both filaments and circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales. We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of magnitude if the geometry of a cloud is not taken into account.

  16. ASPECT RATIO DEPENDENCE OF THE FREE-FALL TIME FOR NON-SPHERICAL SYMMETRIES

    International Nuclear Information System (INIS)

    Pon, Andy; Johnstone, Doug; Toalá, Jesús A.; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.; Heitsch, Fabian

    2012-01-01

    We investigate the collapse of non-spherical substructures, such as sheets and filaments, which are ubiquitous in molecular clouds. Such non-spherical substructures collapse homologously in their interiors but are influenced by an edge effect that causes their edges to be preferentially accelerated. We analytically compute the homologous collapse timescales of the interiors of uniform-density, self-gravitating filaments and find that the homologous collapse timescale scales linearly with the aspect ratio. The characteristic timescale for an edge-driven collapse mode in a filament, however, is shown to have a square-root dependence on the aspect ratio. For both filaments and circular sheets, we find that selective edge acceleration becomes more important with increasing aspect ratio. In general, we find that lower dimensional objects and objects with larger aspect ratios have longer collapse timescales. We show that estimates for star formation rates, based upon gas densities, can be overestimated by an order of magnitude if the geometry of a cloud is not taken into account.

  17. A Sense of Proportion: Aspect Ratio and the Framing of Television Space

    OpenAIRE

    Cardwell, Sarah E. F.

    2015-01-01

    Aspect ratio’ is frequently overlooked or naively characterised. Yet it plays a fundamental, determining role in forming and framing television’s spaces. A balanced reappraisal of television’s varied aspect ratios and their unique dramatic and aesthetic possibilities can enhance our close analyses and our understanding of television’s ‘art history’. This paper challenges myths, misunderstandings and preconceptions about TV’s aspect ratios and their spatial properties. Countering prevailing p...

  18. Primary response of high-aspect-ratio thermoresistive sensors

    Science.gov (United States)

    Majlesein, H. R.; Mitchell, D. L.; Bhattacharya, Pradeep K.; Singh, A.; Anderson, James A.

    1997-07-01

    There is a growing need for sensors in monitoring performance in modern quality products such as in electronics to monitor heat build up, substrate delaminations, and thermal runaway. In processing instruments, intelligent sensors are needed to measure deposited layer thickness and resistivities for process control, and in environmental electrical enclosures, they are used for climate monitoring and control. A yaw sensor for skid prevention utilizes very fine moveable components, and an automobile engine controller blends a microprocessor and sensor on the same chip. An Active-Pixel Image Sensor is integrated with a digital readout circuit to perform most of the functions in a video camera. Magnetostrictive transducers sense and damp vibrations. Improved acoustic sensors will be used in flow detection of air and other fluids, even at subsonic speeds. Optoelectronic sensor systems are being developed for installation on rocket engines to monitor exhaust gases for signs of wear in the engines. With new freon-free coolants being available the problems of A/C system corrosion have gone up in automobiles and need to be monitored more frequently. Defense cutbacks compel the storage of hardware in safe-custody for an indeterminate period of time, and this makes monitoring more essential. Just-in-time customized manufacturing in modern industries also needs dramatic adjustment in productivity of various selected items, leaving some manufacturing equipment idle for a long time, and therefore, it will be prone to more corrosion, and corrosion sensors are needed. In the medical device industry, development of implantable medical devices using both potentiometric and amperometric determination of parameters has, until now, been used with insufficient micro miniaturization, and thus, requires surgical implantation. In many applications, high-aspect- ratio devices, made possible by the use of synchrotron radiation lithography, allow more useful devices to be produced. High-aspect-ratio

  19. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    Science.gov (United States)

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  20. Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel

    International Nuclear Information System (INIS)

    Wang Chang; Gao Puzhen; Tan Sichao; Xu Chao

    2012-01-01

    Highlights: ► Effect of aspect ratio on the transition Reynolds number in rectangular channel is studied. ► Prediction correlation for transition Reynolds number is proposed. ► The initiation location of flow transition is studied. - Abstract: The critical Reynolds number of the laminar-to-turbulent transition in the rectangular channel is investigated based on the energy gradient method. The results show that the critical Reynolds number decreases with the increasing aspect ratio. However, the relative location of laminar breakdown does not migrate significantly with the variation of the aspect ratio. In addition, a theoretical correlation as a function of the aspect ratio is proposed to calculate the transition Reynolds number, and the predicted values are in good agreement with the experimental data obtained in the published literatures.

  1. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    Science.gov (United States)

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  2. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    Science.gov (United States)

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  3. Aspect Ratio Dependence of Impact Fragmentation

    International Nuclear Information System (INIS)

    Inaoka, H.; Toyosawa, E.; Takayasu, H.; Inaoka, H.

    1997-01-01

    A numerical model of three-dimensional impact fragmentation produces a power-law cumulative fragment mass distribution followed by a flat tail. The result is consistent with an experimental result in a recent paper by Meibom and Balslev [Phys. Rev. Lett. 76, 2492 (1996)]. Our numerical simulation also implies that the fragment mass distribution changes from a power law with a flat tail to a power law with a sudden cutoff, depending on the aspect ratio of the fractured object. copyright 1997 The American Physical Society

  4. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir [Nuclear Science and Technology Institute (Iran, Islamic Republic of); Saramad, Shahyar; Setayeshi, Saeed [Amirkabir University of Technology, Faculty of Energy Engineering and Physics (Iran, Islamic Republic of)

    2016-12-15

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.

  5. Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines

    International Nuclear Information System (INIS)

    Pizzarelli, Marco; Nasuti, Francesco; Onofri, Marcello

    2013-01-01

    Highlights: • Aspect ratio has a significant effect on cooling efficiency and hydraulic losses. • Minimizing power loss is of paramount importance in liquid rocket engine cooling. • A suitable quasi-2D model is used to get fast cooling system analysis. • Trade-off with assigned weight, temperature, and channel height or wall thickness. • Aspect ratio is found that minimizes power loss in the cooling circuit. -- Abstract: High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit

  6. Scattering and extinction from high-aspect-ratio trenches

    DEFF Research Database (Denmark)

    Roberts, Alexander Sylvester; Søndergaard, Thomas; Chirumamilla, Manohar

    2015-01-01

    We construct a semi-analytical model describing the scattering, extinction and absorption properties of a high aspect-ratio trench in a metallic film. We find that these trenches act as highly efficient scatterers of free waves. In the perfect conductor limit, which for many metals is approached...

  7. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    Science.gov (United States)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  8. Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8

    International Nuclear Information System (INIS)

    Rouabah, Hamza A; Morgan, Hywel; Green, Nicolas G; Park, Benjamin Y; Zaouk, Rabih B; Madou, Marc J

    2011-01-01

    Lab-on-a-chip devices require integrated pumping and fluid control in microchannels. A recently developed mechanism that can produce fluid flow is an integrated ac-electro-osmosis micropump. However, like most electrokinetic pumps, ac-electro-osmotic pumps are incapable of handling backpressure as the pumping force mechanism acts on the surface of the fluid rather than the bulk. This paper presents a novel 3D electrode structure designed to overcome this limitation. The electrodes are fabricated using carbon-MEMS technology based on the pyrolysis of the photo-patternable polymer SU-8. The novel ac-electro-osmosis micropump shows an increase in the flow velocity compared to planar electrodes.

  9. Effect of tip vortices on membrane vibration of flexible wings with different aspect ratios

    Directory of Open Access Journals (Sweden)

    Genç Mustafa Serdar

    2016-01-01

    Full Text Available In this study, the effect of the aspect ratio on the aerodynamics characteristic of flexible membrane wings with different aspect ratios (AR = 1 and AR = 3 is experimentally investigated at Reynolds number of 25000. Time accurate measurements of membrane deformation using Digital Image Correlation system (DIC is carried out while normal forces of the wing will be measured by helping a load-cell system and flow on the wing was visualized by means of smoke wire technic. The characteristics of high aspect ratio wings are shown to be affected by leading edge separation bubbles at low Reynolds number. It is concluded that the camber of membrane wing excites the separated shear layer and this situation increases the lift coefficient relatively more as compared to rigid wings. In membrane wings with low aspect ratio, unsteadiness included tip vortices and vortex shedding, and the combination of tip vortices and vortex shedding causes complex unsteady deformations of these membrane wings. The characteristic of high aspect ratio wings was shown to be affected by leading edge separation bubbles at low Reynolds numbers whereas the deformations of flexible wing with low aspect ratio affected by tip vortices and leading edge separation bubbles.

  10. Collisional Transport in a Low Aspect Ratio Tokamak -- Beyond the Drift Kinetic Formalism

    International Nuclear Information System (INIS)

    Gates, D.A.; White, R.B.

    2004-01-01

    Calculations of collisional thermal and particle diffusivities in toroidal magnetic plasma confinement devices order the toroidal gyroradius to be small relative to the poloidal gyroradius. This ordering is central to what is usually referred to as neoclassical transport theory. This ordering is incorrect at low aspect ratio, where it can often be the case that the toroidal gyroradius is larger than the poloidal gyroradius. We calculate the correction to the particle and thermal diffusivities at low aspect ratio by comparing the diffusivities as determined by a full orbit code (which we refer to as omni-classical diffusion) with those from a gyroaveraged orbit code (neoclassical diffusion). In typical low aspect ratio devices the omni-classical diffusion can be up to 2.5 times the calculated neoclassical value. We discuss the implications of this work on the analysis of collisional transport in low aspect ratio magnetic confinement experiments

  11. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fazhe; Zhao, Zengdian [Analysis and Testing Center, Shandong University of Technology, Zibo 255100 (China); Qiao, Xueliang, E-mail: xuelqiao@163.com [State Key Laboratory of Plastic Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Tan, Fatang; Wang, Wei [State Key Laboratory of Plastic Forming Simulation and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China)

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formation process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.

  12. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  13. Water entry of cylindrical bodies with various aspect ratios

    Science.gov (United States)

    Kim, Nayoung; Park, Hyungmin

    2017-11-01

    We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.

  14. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.

    Science.gov (United States)

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results.

  15. High aspect ratio channels in glass and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.D. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Dang, Z.Y. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wu, J.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Kan, J.A. van; Qureshi, S. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ynsa, M.D.; Torres-Costa, V. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco Edif. 22, Faraday 3, E-28049 Madrid (Spain); Maira, A. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Venkatesan, T.V. [Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Breese, M.B.H., E-mail: phymbhb@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2017-03-01

    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  16. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  17. Secondary flow in turbulent ducts with increasing aspect ratio

    Science.gov (United States)

    Vinuesa, R.; Schlatter, P.; Nagib, H. M.

    2018-05-01

    Direct numerical simulations of turbulent duct flows with aspect ratios 1, 3, 5, 7, 10, and 14.4 at a center-plane friction Reynolds number Reτ,c≃180 , and aspect ratios 1 and 3 at Reτ,c≃360 , were carried out with the spectral-element code nek5000. The aim of these simulations is to gain insight into the kinematics and dynamics of Prandtl's secondary flow of the second kind and its impact on the flow physics of wall-bounded turbulence. The secondary flow is characterized in terms of the cross-plane component of the mean kinetic energy, and its variation in the spanwise direction of the flow. Our results show that averaging times of around 3000 convective time units (based on duct half-height h ) are required to reach a converged state of the secondary flow, which extends up to a spanwise distance of around ≃5 h measured from the side walls. We also show that if the duct is not wide enough to accommodate the whole extent of the secondary flow, then its structure is modified as reflected through a different spanwise distribution of energy. Another confirmation of the extent of the secondary flow is the decay rate of kinetic energy of any remnant secondary motions for zc/h >5 (where zc is the spanwise distance from the corner) in aspect ratios 7, 10, and 14.4, which exhibits a decreasing level of energy with increasing averaging time ta, and in its rapid rate of decay given by ˜ta-1 . This is the same rate of decay observed in a spanwise-periodic channel simulation, which suggests that at the core, the kinetic energy of the secondary flow integrated over the cross-sectional area, , behaves as a random variable with zero mean, with rate of decay consistent with central limit theorem. Long-time averages of statistics in a region of rectangular ducts extending about the width of a well-designed channel simulation (i.e., extending about ≃3 h on each side of the center plane) indicate that ducts or experimental facilities with aspect ratios larger than 10 may

  18. Pt–Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    International Nuclear Information System (INIS)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Göran; Wijngaart, Wouter van der; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al 2 O 3 ) on Pt in nanopores to form a metal–insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al 2 O 3 layer on such a Pt film forms a metal–insulator–electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al 2 O 3 using ALD. (paper)

  19. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    Science.gov (United States)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  20. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Ping [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Transparent conducting electrodes with the combination of high optical transmission and good electrical conductivity are essential for solar energy harvesting and electric lighting devices. Currently, indium tin oxide (ITO) is used because ITO offers relatively high transparency (>80%) to visible light and low sheet resistance (Rs = 10 ohms/square (Ω /2)) for electrical conduction. However, ITO is costly due to limited indium reserves, and it is brittle. These disadvantages have motivated the search for other conducting electrodes with similar or better properties. There has been research on a variety of electrode structures involving carbon nanotube networks, graphene films, nanowire and nanopatterned meshes and grids. Due to their novel characteristics in light manipulation and collection, photonic crystal structures show promise for further improvement. Here, we report on a new architecture consisting of nanoscale high aspect ratio metallic photonic structures as transparent electrodes fabricated via a combination of processes. For (Au) and silver (Ag) structures, the visible light transmission can reach as high as 80%, and the sheet resistance of the structure can be as low as 3.2Ω /2. The optical transparency of the high aspect ratio metal structures at visible wavelength range is comparable to that of ITO glass, while their sheet resistance is more than 3 times lower, which indicates a much higher electrical conductivity of the metal structures. Furthermore, the high aspect ratio metal structures have very high infrared (IR) reflection (90%) for the transverse magnetic (TM) mode, which can lead to the development of fabrication of metallic structures as IR filters for heat control applications. Investigations of interdigitated structures based on the high aspect ratio metal electrodes are ongoing to study the feasibility in smart window applications in light transmission modulation.

  1. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Maingi, R.; Sabbagh, S.A.; Soukhanovskii, V.; Stutman, D.

    2003-01-01

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime

  2. Modeling of finite aspect ratio effects on current drive

    International Nuclear Information System (INIS)

    Wright, J.C.; Phillips, C.K.

    1996-01-01

    Most 2D RF modeling codes use a parameterization of current drive efficiencies to calculate fast wave driven currents. This parameterization assumes a uniform diffusion coefficient and requires a priori knowledge of the wave polarizations. These difficulties may be avoided by a direct calculation of the quasilinear diffusion coefficient from the Kennel-Englemann form with the field polarizations calculated by a full wave code. This eliminates the need to use the approximation inherent in the parameterization. Current profiles are then calculated using the adjoint formulation. This approach has been implemented in the FISIC code. The accuracy of the parameterization of the current drive efficiency, η, is judged by a comparison with a direct calculation: where χ is the adjoint function, ε is the kinetic energy, and rvec Γ is the quasilinear flux. It is shown that for large aspect ratio devices (ε → 0), the parameterization is nearly identical to the direct calculation. As the aspect ratio approaches unity, visible differences between the two calculations appear

  3. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    Directory of Open Access Journals (Sweden)

    S. Nishizawa

    2015-10-01

    Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  4. Analytical studies of plasma extraction electrodes and ion beam formation

    International Nuclear Information System (INIS)

    Hassan, A.; Elsaftawy, A.; Zakhary, S. G.

    2007-01-01

    In this work a theoretical and computational study on the space charge dominated beams extracted from a plasma ion source through a spherical and planer electrode is simulated and optimized. The influence of some electrode parameters: axial position, electrode diameter, material and shape; on ion current extracted from a plasma source; were investigated and compared. The optimum values and conditions of the curvature of the plasma boundary, angular divergence, perveance, and the extraction gap were optimized to extract a high quality beams. It has shown that for a planar electrode system there is usually a minimum for optimum perveance versus angular divergence at about ? 0.6 for corresponding aspect ratios. This was assured by experimental data. The appropriate spherical electrode system focus the beam to a minimum value located at a distance equal to the focal length of the spherical extraction electrode.

  5. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...

  6. Diagnostics of BubbleMode Vortex Breakdown in Swirling Flow in a Large-Aspect-Ratio Cylinder

    DEFF Research Database (Denmark)

    Kulikov, D. V.; Mikkelsen, Robert Flemming; Naumov, Igor

    2014-01-01

    We report for the first time on the possible formation of regions with counterflow (bubble-mode vortex breakdown or explosion) at the center of strongly swirling flow generated by a rotating endwall in a large-aspect-ratio cylindrical cavity filled with a liquid medium. Previously, the possibility...... of bubble-mode breakdown was studied in detail for cylindrical cavities of moderate aspect ratio (length to radius ratios up to H/R ∼ 3.5), while flows in large-aspect-ratio cylinders were only associated with regimes of self-organized helical vortex multiplets. In the present study, a regime...

  7. Comparative study of low and high aspect ratio devices for ITER design options

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Tada, Eisuke; Shimomura, Yasuo; Tsunematsu, Toshihide; Nishio, Satoshi; Nakazato, Toshiko; Murakami, Yoshiki; Koizumi, Koichi

    1992-09-01

    Comparative study on the plasma performance and the engineering characteristics of low and high aspect ratio devices for ITER (International Thermonuclear Experimental Reactor) design option is done to examine quantitatively the expected merit and demerit of high aspect ratio device on steady state operation. Device parameters of aspect ratio A=3 and 4 are chosen based on ITER-power scaling law. Improvement of steady state operation with A=4 is found only moderate. Reduction of stability margin in vertical instability is about 20% and plasma elongation must be decreased from 2 down to about 1.8 to recover this reduction of stability margin with A=4. If such lower elongation is employed, single null divertor configuration should be employed to reduce the capacity of poloidal field system. Detailed 2D divertor code calculation shows that peak heat load per unit area of A=4 device with SN configuration increases compared with A=3 device with DN configuration, contrary to the predictions so far made. Preliminary engineering studies indicate that A=4 device would have less space for handling the in-vessel components and doubled toroidal field magnet weight and winding length, and hence is less desirable when compared with the present ITER design (A=3). Based on these examinations, it is concluded that high aspect ratio device does not have remarkable advantage than low aspect ratio device, and the latter device has similar capability for the prospect of future commercial reactor to the former device. (J.P.N.)

  8. Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.; Dameron, Arrelaine A.; Li, Xuemin; Yang, Yongan; Hurst, Katherine E.; Ban, Chunmei; Tenent, Robert C.; George, Steven M. [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309 and Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309

    2018-01-01

    Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALD were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery

  9. Alternative method for variable aspect ratio vias using a vortex mask

    Science.gov (United States)

    Schepis, Anthony R.; Levinson, Zac; Burbine, Andrew; Smith, Bruce W.

    2014-03-01

    Historically IC (integrated circuit) device scaling has bridged the gap between technology nodes. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Exemplifying this trend are aggressive reductions in memory cell sizes that have resulted in systems with diminishing area between bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area and complex aerial image. To accommodate these trends, semiconductor device design has shifted toward the implementation of elliptical contact features. This empowers designers to maximize the use of free device space, preserving contact area and effectively reducing the via dimension just along a single axis. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. Vortex masks, characterized by their helically induced propagation of light and consequent dark core, afford great potential for the patterning of such features when coupled with a high resolution negative tone resist system. This study investigates the integration of a vortex mask in a 193nm immersion (193i) lithography system and qualifies its ability to augment aspect ratio through feature density using aerial image vector simulation. It was found that vortex fabricated vias provide a distinct resolution advantage over traditionally patterned contact features employing a 6% attenuated phase shift mask (APM). 1:1 features were resolvable at 110nm pitch with a 38nm critical dimension (CD) and 110nm depth of focus (DOF) at 10% exposure latitude (EL). Furthermore, iterative source-mask optimization was executed as means to augment aspect ratio. By employing mask asymmetries and directionally biased sources aspect ratios ranging between 1:1 and 2:1 were achievable, however, this

  10. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  11. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    Science.gov (United States)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/bdrag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  12. THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY

    Energy Technology Data Exchange (ETDEWEB)

    WONG,SK; CHAN,VS

    2002-11-01

    OAK B202 THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY. This article presents a comprehensive description of neoclassical transport theory in the banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical constraints. it is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  13. THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY

    International Nuclear Information System (INIS)

    WONG, S.K.; CHAN, V.S.

    2002-01-01

    OAK B202 THE LARGE ASPECT RATIO LIMIT OF NEOCLASSICAL TRANSPORT THEORY. This article presents a comprehensive description of neoclassical transport theory in the banana regime for large aspect ratio flux surfaces of arbitrary shapes. The method of matched asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates discussion of the treatment of dynamical constraints. it is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard

  14. Flutter analysis of low aspect ratio wings

    Science.gov (United States)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  15. High aspect ratio, remote controlled pumping assembly

    Science.gov (United States)

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  16. Stable equilibria for bootstrap-current-driven low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Miller, R.L.; Lin-Liu, Y.R.; Turnbull, A.D.; Chan, V.S.; Pearlstein, L.D.; Sauter, O.; Villard, L.

    1997-01-01

    Low aspect ratio tokamaks (LATs) can potentially provide a high ratio of plasma pressure to magnetic pressure β and high plasma current I at a modest size. This opens up the possibility of a high-power density compact fusion power plant. For the concept to be economically feasible, bootstrap current must be a major component of the plasma current, which requires operating at high β p . A high value of the Troyon factor β N and strong shaping is required to allow simultaneous operation at a high-β and high bootstrap fraction. Ideal magnetohydrodynamic stability of a range of equilibria at aspect ratio 1.4 is systematically explored by varying the pressure profile and shape. The pressure and current profiles are constrained in such a way as to assure complete bootstrap current alignment. Both β N and β are defined in terms of the vacuum toroidal field. Equilibria with β N ≥8 and β∼35%endash 55% exist that are stable to n=∞ ballooning modes. The highest β case is shown to be stable to n=0,1,2,3 kink modes with a conducting wall. copyright 1997 American Institute of Physics

  17. Stability of low aspect ratio inverted flags and rods in a uniform flow

    Science.gov (United States)

    Huertas-Cerdeira, Cecilia; Sader, John E.; Gharib, Morteza

    2016-11-01

    Cantilevered elastic plates and rods in an inverted configuration, where the leading edge is free to move and the trailing edge is clamped, undergo complex dynamics when subjected to a uniform flow. The stability of low aspect ratio inverted plates and rods is theoretically examined, showing that it is markedly different from that of their large aspect ratio counterpart. In the limit of zero aspect ratio, the undeflected equilibrium position is found to be stable for all wind speeds. A saddle-node bifurcation emerges at finite wind speed, giving rise to a strongly deflected stable and a weakly deflected unstable equilibria. This theory is compared to experimental measurements, where good agreement is found. This research was supported by a Grant of the Gordon and Betty Moore Foundation, the Australian Research Council Grants scheme and a "la Caixa" Fellowship Grant for Post-Graduate Studies of "la Caixa" Banking Foundation.

  18. A low aspect ratio electrothermal gun for metal plasma vapor discharge and ceramic nanopowder production

    International Nuclear Information System (INIS)

    Kim, Kyoung Jin; Peterson, Dennis R.

    2008-01-01

    Traditionally, the electrothermal gun design has the bore of a large aspect ratio: however, a low aspect ratio design with a shorter bore length has been employed for efficient production of metal plasma vapors and synthesis of nanomaterials. In a comparison of the arc resistance-current relationship, a low aspect ratio design is found to exhibit distinctively different characteristics compared to a high aspect ratio design, and this trend is explained by the scaling law of plasma properties including theory of plasma electrical conductivity. A one-dimensional isothermal model has been applied to the present experiments to confirm the scaling laws, and it was found that the present modification of the electrothermal gun is able to produce fully ionized metal plasma vapor, while the plasma vapor produced in a conventional design is partially ionized. Also, by reacting metal plasma vapors with the controlled gases in the reaction chamber, nanoscale materials such as aluminum oxide, aluminum nitride, and titanium oxide were synthesized successfully

  19. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.; Imai, S.

    1997-01-01

    The behavior of positive ions in high aspect ratio structures, relevant to the reactive ion etching of deep trenches, has been studied by means of energy resolved mass spectrometry. High aspect ratio trenches are simulated by capillary plates with various aspect ratios. Angle resolved measurements

  20. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio.

    Science.gov (United States)

    Kruyt, Jan W; van Heijst, GertJan F; Altshuler, Douglas L; Lentink, David

    2015-04-06

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  1. Masks for high aspect ratio x-ray lithography

    International Nuclear Information System (INIS)

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-01-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding

  2. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ, Incheon (Korea, Republic of)

    2016-08-15

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

  3. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    International Nuclear Information System (INIS)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee

    2016-01-01

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed

  4. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  5. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    International Nuclear Information System (INIS)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth; Bøggild, Peter; Bartenwerfer, Malte; Krohs, Florian; Oliva, Maria; Harzendorf, Torsten

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown. (paper)

  6. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  7. Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications

    International Nuclear Information System (INIS)

    Alamro, Turki; Ram, Manoj K.

    2017-01-01

    Highlights: • MoS_2-PEDOT nanocomposite electrode material was synthesized using polyanion ‘PSS’ and surfactant CTAB in an aqueous media. • The supercapacitor based on composite MoS_2-PEDOT electrode revealed higher energy density than graphene composite electrodes. • The specific capacitance of 361 Farad/gram (F/g) was obtained for 1:2 weight ratio of MoS2 to the EDOT monomer in MoS_2-PEDOT nanocomposite based electrodes. - Abstract: An innovative nanocomposite electrode was chemically synthesized using molybdenum disulphide (MoS_2)- polyethylenedioxythiophene (PEDOT) to understand the charge mechanism in a symmetric supercapacitor. The MoS_2-PEDOT nanocomposite was produced at various ratios of MoS_2 to ethylenedioxythiophene (EDOT) in an aqueous medium of polyanions polystyrene sulfonate (PSS) and cetyltrimethylammonium bromide (CTAB) at controlled conditions. The morphology, crystallinity, and optical properties of MoS_2-PEDOT nanocomposite materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, particle size analyzer, Raman spectroscopy, X-ray-diffraction, and transmission electron microscopy (TEM) techniques, respectively. The electrochemical properties of the supercapacitor were investigated using cyclic voltammetry, charging–discharging at constant current and electrochemical impedance spectroscopy (EIS) techniques. The specific capacitance, power and energy densities of the supercapacitor were estimated using cyclic voltammetry (CV), charging–discharging, Nyquist and Bode plots. The specific capacitance was estimated to be 361 Farad/gram (F/g) for the 1:2 weight ratio of MoS_2 to the EDOT monomer in the MoS_2-PEDOT nanocomposite based electrodes. Nevertheless, this study provides a fundamental aspect of synthesis of nanocomposite material for optimum attainment supercapacitive properties based on the MoS_2-PEDOT nanocomposite electrode for practical energy storage applications.

  8. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  9. Fabrication of high-aspect-ratio microgrooves using an electrochemical discharge micromilling process

    International Nuclear Information System (INIS)

    Han, Min-Seop; Chae, Ki Woon; Min, Byung-Kwon

    2017-01-01

    In this study, we created high-aspect-ratio microgrooves in hard, brittle materials using an electrochemical discharge machining (ECDM) process by introducing microtextured machining tool. To enhance the electrical discharge activity, the morphology of the tool side surface was treated via micro-electrical discharge machining to produce fine microprotrusive patterns. The resulting microtextured surface morphology enhanced the electric field and played a key role in improving the step milling depth in the ECDM process. Using the FEM analysis, the evaluation of the field enhancement factor is also addressed. Our experimental investigation revealed microgrooves having an aspect ratio of 1:4, with high geometric accuracy and crack-free surfaces, using one-step ECDM. (paper)

  10. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    Science.gov (United States)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  11. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  12. Current drive and profile control in low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Chan, V.S.; Chiu, S.C.; Lin-Liu, Y.R.; Miller, R.L.; Turnbull, A.D.

    1995-07-01

    The key to the theoretically predicted high performance of a low aspect ratio tokamak (LAT) is its ability to operate at very large plasma current*I p . The plasma current at low aspect ratios follows the approximate formula: I p ∼ (5a 2 B t /Rqψ) [(1 + κ 2 )/2] [A/(A - 1)] where A quadruple-bond R/a which was derived from equilibrium studies. For constant qψ and B t , I p can increase by an order of magnitude over the case of tokamaks with A approx-gt 2.5. The large current results in a significantly enhanced β t (quadruple-bond β N I p /aB t ) possibly of order unity. It also compensates for the reduction in A to maintain the same confinement performance assuming the confinement time τ follows the generic form ∼ HI p P -1 / 2 R 3 / 2 κ 1 / 2 . The initiation and maintenance of such a large current is therefore a key issue for LATs

  13. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    Science.gov (United States)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  14. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  15. AC magnetic losses in Bi-2223/Ag tapes with different aspect ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.; Luo, X.M.; Chen, D.X.; Collings, E.W.; Lee, E.; Sumption, M.D.; Alamgir, A.K.M.; Yi, H.P.; Fang, J.G.; Gu, C.; Guo, S.Q.; Liu, M.L.; Xin, Y.; Han, Z

    2004-10-01

    AC losses in multi-filamentary tapes depend on various parameters. Among them, the overall tape width and thickness are expected to have an important influence. In order to study this geometrical effect, five Bi-2223/Ag tapes with different aspect ratios from 5 to 26 have been prepared. AC losses have been measured at 77 K when a perpendicular AC magnetic field is applied. It has been found that at any frequencies the magnetic loss per cycle increases as the aspect ratio increases. For AC magnetic loss, with increasing frequency from 3 to 9000 Hz the losses as a function of frequency show a maximum if the field amplitude is much less than the full penetration field or increase continuously if the field amplitude is larger.

  16. AC magnetic losses in Bi-2223/Ag tapes with different aspect ratios

    International Nuclear Information System (INIS)

    Fang, J.; Luo, X.M.; Chen, D.X.; Collings, E.W.; Lee, E.; Sumption, M.D.; Alamgir, A.K.M.; Yi, H.P.; Fang, J.G.; Gu, C.; Guo, S.Q.; Liu, M.L.; Xin, Y.; Han, Z.

    2004-01-01

    AC losses in multi-filamentary tapes depend on various parameters. Among them, the overall tape width and thickness are expected to have an important influence. In order to study this geometrical effect, five Bi-2223/Ag tapes with different aspect ratios from 5 to 26 have been prepared. AC losses have been measured at 77 K when a perpendicular AC magnetic field is applied. It has been found that at any frequencies the magnetic loss per cycle increases as the aspect ratio increases. For AC magnetic loss, with increasing frequency from 3 to 9000 Hz the losses as a function of frequency show a maximum if the field amplitude is much less than the full penetration field or increase continuously if the field amplitude is larger

  17. Numerical Investigation of Mixing Characteristics in Cavity Flow at Various Aspect Ratios

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dongyang Mirae University, Seoul (Korea, Republic of); Yang, Seung Deok; Yoon, Joon Yong [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    This study numerically examined the mixing characteristics of rectangular cavity flows by using the hybrid lattice Boltzmann method (HLBM) applied to the finite difference method (FDM). Multi-relaxation time was used along with a passive scalar method which assumes that two substances have the same mass and that there is no interaction. First, we studied numerical results such as the stream function, position of vortices, and velocity profile for a square cavity and rectangular cavity with an aspect ratio of 2. The data were compared with previous numerical results that have been proven to be reliable. We also studied the mixing characteristics of a rectangular cavity flow such as the concentration profile and average Sherwood number at various Pe numbers and aspect ratios.

  18. Pt-Al{sub 2}O{sub 3} dual layer atomic layer deposition coating in high aspect ratio nanopores

    Energy Technology Data Exchange (ETDEWEB)

    Pardon, Gaspard; Gatty, Hithesh K; Stemme, Goeran; Wijngaart, Wouter van der; Roxhed, Niclas [KTH Royal Institute of Technology, School of Electrical Engineering, Micro and Nanosystems, Osquldas Vaeg 10, SE-10044 Stockholm (Sweden)

    2013-01-11

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al{sub 2}O{sub 3}) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al{sub 2}O{sub 3} layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 {mu}m thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al{sub 2}O{sub 3} using ALD. (paper)

  19. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    NARCIS (Netherlands)

    Kruyt, J.W.; Heijst, Van G.F.; Altshuler, D.L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle

  20. Fabrication process for tall, sharp, hollow, high aspect ratio polymer microneedles on a platform

    International Nuclear Information System (INIS)

    Ceyssens, Frederik; Chaudhri, Buddhadev Paul; Van Hoof, Chris; Puers, Robert

    2013-01-01

    This paper reports on a new lithographic process for fabricating arrays of tall, high aspect ratio (defined as height/wall thickness), hollow, polymer microneedles on a platform. The microneedles feature a high sharpness (down to 3 µm tip radius) and aspect ratio (>65) which is a factor 2 and 4 better than the state of the art, respectively. The maximum achievable needle shaft length is over 1 mm. The improved performance was obtained by using an anisotropically patterned silicon substrate covered with an antireflective layer as mold for the needle tip and an optimized SU-8 lithographic process. Furthermore, a platform containing liquid feedthroughs holding an arbitrary number of needles out of plane can be manufactured with only one additional process step. The high aspect ratio microneedles undergo failure at the critical load of around 230 mN in the case of 1 mm long hollow needles with triangular cross section and a base of 175 µm. Penetration into human skin is demonstrated as well. (paper)

  1. High aspect ratio MEMS capacitor for high frequency impedance matching applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb...

  2. Dynamic response of low aspect ratio piezoelectric microcantilevers actuated in different liquid environments

    International Nuclear Information System (INIS)

    Vázquez, J; Rivera, M A; Hernando, J; Sánchez-Rojas, J L

    2009-01-01

    The response of commercial piezoelectric AFM probes for potential applications in the field of chemical or biological sensors operating in liquids is investigated using laser Doppler vibrometry. The present work investigates the roles played in the frequency response by the density and the viscosity of different water–glycerol mixtures, in a frequency range of up to 1 MHz in air. Since the width of the tested probes is relatively large (and hence the aspect ratio remains small), inertial loading effects dominate viscous effects, unlike in cantilevers characterized by larger aspect ratios. Measurements are compared with results provided by a simplified computer model of a probe immersed in an inviscid surrounding fluid

  3. Influence of the aspect ratio of bioactive nanofillers on rheological behavior of PMMA-based orthopedic materials.

    Science.gov (United States)

    Liu, Tse-Ying; Chen, San-Yuan; Liu, Dean-Mo

    2004-10-15

    In this investigation, calcium-deficient hydroxyapatite (CDHA) nanocrystals with needle-like geometry were synthesized and incorporated with Poly(methyl methacrylate), PMMA, to form CDHA-PMMA nanocomposites. Rheological behaviors of the PMMA-CDHA melting suspensions were systematically investigated in terms of solid loading and aspect ratio of the CDHA nanoparticles. The maximum solid loadings of nano-CDHA particles with aspect ratios of 7.2, 10.4, and 17 were determined to be 28, 31, and 57%, respectively. An increase in solid concentrations causes pronounced shear-thinning behavior. This result suggests that a strong interaction, including Van der Waals attraction and mechanical interlocking, between the nano-CDHA particles makes the nanocomposite mixture more non-Newtonian. Furthermore, it was found that packing efficiency and yield strength in the suspension were strongly influenced by the aspect ratio, especially above the critical value of 8.8. The obtained critical aspect ratio and solid content provide not only appropriate design in the PMMA-CDHA polymeric suspension for fabrication process but also optimal conditions for the fabrication of orthopedic devices via injection molding or extrusion.

  4. The High Aspect Ratio Design (HARD): A candidate ITER concept with improved technology phase performance

    International Nuclear Information System (INIS)

    Nevins, W.M.; Perkins, L.J.; Wesley, J.C.

    1992-10-01

    The High Aspect Ratio Design (HARD) International Thermonuclear Experimental Reactor (ITER) concept developed by the US ITER team is an alternate to the low-aspect-ratio ITER design developed by the ITER participants during the Conceptual Design Activity (CDA). The CDA design, referred to hereafter as ITER CDA, has an aspect ratio, A, of 2.79, a toroidal magnetic field, B T , of 4.85 T, and a plasma current, I p , of 22 MA for operation with an ignited plasma. In contrast, HARD employs higher aspect ratio, A = 4.0, higher toroidal field, B T = 7.11 T, and lower plasma current, I p = 14.8 MA for ignition operation. The cross sections of the two designs are compared in. The parameters and performance of HARD and ITER CDA for inductively driven ignition operation are compared in. The HARD parameters provide the same ignition performance (ignition margin evaluated against ITER-89P confinement scaling) as ITER CDA in a device with comparable size and cost. However, the reason for advancing HARD rather than ITER CDA as the ITER design concept is not inductively driven ignition performance but HARD's significantly enhanced potential to achieve the technology testing and steady-state operation goals of the ITER objectives with non-inductive current drive

  5. Effect of Aspect Ratio on Electrical, Rheological and Glass Transition Properties of PC/MWCNT Nanocomposites.

    Science.gov (United States)

    Cruz, Heidy; Son, Younggon

    2018-02-01

    Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.

  6. Formation and sustainment of a low aspect ratio tokamak by a series of plasma injections

    International Nuclear Information System (INIS)

    Shimamura, Shin; Taniguchi, Makoto; Takahashi, Tsutomu; Nogi, Yasuyuki

    1995-01-01

    A low aspect ratio tokamak plasma was generated and sustained by injecting a series of plasmas from a magnetized coaxial gun into a flux conserver with toroidal field. The magnetized coaxial gun was supplied by an oscillating current with a d.c. component. The first few current pulses injected plasma and helicity into the flux conserver. This pulse helicity injection method worked effectively to maintain the low aspect ratio tokamak. 8 refs., 5 figs

  7. Facile fabrication of single-crystal-diamond nanostructures with ultrahigh aspect ratio.

    OpenAIRE

    Tao Ye; Degen Christian

    2013-01-01

    A robust and facile approach for making single crystal diamond MEMS and NEMS devices is presented. The approach relies entirely on commercial diamond material and standard cleanroom processes. As an example batch fabrication of cantilever beams of thickness down to 45 nm and aspect ratios exceeding 2000:1 is demonstrated.

  8. Key Techniques on Preparing High Aspect Ratio Micro and Nano Structures

    DEFF Research Database (Denmark)

    Jian, Zhao; Lianhe, Dong; Xiaoli, Zhu

    2016-01-01

    effectively. The mechanism of action between NaCl and HSQ was analyzed. The collapse and adhesion of resist structure due to the effect of gas-liquid interfacial capillary surface tension were suppressed by the CO2 supercritical drying method. Large-area dense nano-structures with the aspect ratio of 12...

  9. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels

    International Nuclear Information System (INIS)

    Jang, Dong Soo; Lee, Joo Seong; Ahn, Jae Hwan; Kim, Dongwoo; Kim, Yongchan

    2017-01-01

    Highlights: • Flat plate pulsating heat pipes with asymmetric and aspect ratios were tested. • Flow patterns were investigated according to channel geometry and flow condition. • Heat transfer characteristics were analyzed with various heat inputs. • Optimum asymmetric and aspect ratios were suggested for maximum thermal performance. - Abstract: The thermal performance of flat plate pulsating heat pipes (PHPs) in compact electronic devices can be improved by adopting asymmetric channels with increased pressure differences and an unbalanced driving force. The objective of this study is to investigate the heat transfer characteristics of flat plate PHPs with various asymmetric ratios and aspect ratios in the channels. The thermal performance and flow pattern of the flat plate PHPs were measured by varying the asymmetric ratio from 1.0 to 4.0, aspect ratio from 2.5 to 5.0, and heat input from 2 to 28 W. The effects of the asymmetric ratio and aspect ratio on the thermal resistance were analyzed with the measured evaporator temperature and flow patterns at various heat inputs. With heat inputs of 6 W and 12 W, the optimum asymmetric ratio and aspect ratio for the flat plate PHPs were determined to be 4.0 and 2.5, respectively. With the heat input of 18 W, the optimum asymmetric ratio and aspect ratio were determined to be 1.5 and 2.5, respectively.

  10. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    Science.gov (United States)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  11. Non-inductive current drive via helicity injection by Alfven waves in low aspects ratio Tokamak

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    1996-01-01

    A theoretical investigation of radio frequency (RF) current drive via helicity injection in low aspect ratio tokamaks was carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell was considered. Toroidal features of low aspect ratio tokamaks were simulated by incorporation of the following effects: (i) arbitrarily small aspect ratio, R o /a ≡ 1/ε (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. The study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {ω Alf (r)} min ≤ω≥{ω Alf (r)} max , where ω Alf (r)≡ω[n(r),B o (o)] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-p, ideal magneto-hydrodynamics, the wave equation with correct boundary (matching) conditions was solved, the RF field components were found and subsequently, current drive , power deposition and efficiency were computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low aspect ratio tokamaks, in the SAW mode. A special algorithm was developed which enables the selection of the antenna parameters providing optimal current drive efficiency. (authors)

  12. Influence of external toroidal flux on low-aspect-ratio toroidal plasma

    International Nuclear Information System (INIS)

    Ikuno, S.; Natori, M.; Kamitani, A.

    1999-01-01

    In the HIST device, the external flux is generated by two kinds of currents: the current I s flowing along the symmetry axis and the bias coil current I D . The influence of the external flux on the MHD equilibrium and stability of the low-aspect-ratio toroidal plasma in the HIST device is investigated numerically. Equilibrium configurations of the low-aspect-ratio toroidal plasma in the HIST device are numerically determined by means of the combination of FDM and BEM. The influence of I s and I D on their stability is also investigated by using the Mercier criterion. The results of computations show that the Mercier limit decreases to zero with increasing I s and with decreasing I D . Moreover, either a further increase in I s or a further decrease in I D raises the Mercier limit considerably. Besides, the equilibrium configuration in the HIST device changes its state from spheromak through ultra-low q to tokamak with increasing I s and with decreasing I D . (author)

  13. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A V; Coombs, T A [Electrical Engineering Division, University of Cambridge (United Kingdom)

    2006-06-15

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10{sup -3}-10{sup 3} of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%.

  14. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    International Nuclear Information System (INIS)

    Velichko, A V; Coombs, T A

    2006-01-01

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10 -3 -10 3 of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%

  15. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  16. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  17. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    Science.gov (United States)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  18. Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    Science.gov (United States)

    Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.

    2017-12-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.

  19. Non-inductive current drive via helicity injection by Alfven waves in low-aspect-ratio tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Cuperman, S.; Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). Sackler Faculty of Exact Sciences

    1996-08-01

    A theoretical investigation of radio-frequency (RF) current drive via helicity injection in low aspect ratio tokamaks is carried out. A current-carrying cylindrical plasma surrounded by a helical sheet-current antenna and situated inside a perfectly conducting shell is considered. Toroidal features of low-aspect-ratio tokamaks are simulated by incorporating the following effects: (i) arbitrarily small aspect ratio, R{sub O}/a ``identical to`` 1/{epsilon}; (ii) strongly sheared equilibrium magnetic field; and (iii) relatively large poloidal component of the equilibrium magnetic field. This study concentrates on the Alfven continuum, i.e. the case in which the wave frequency satisfies the condition {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub min}{r_brace} {<=} {omega} {<=} {l_brace}{omega}{sub Alf}({tau}){r_brace}{sub max}, where {omega}{sub Alf}({tau}) ``identical to`` {omega}{sub Alf}[n({tau}), B{sub O}({tau})] is an eigenfrequency of the shear Alfven wave (SAW). Thus, using low-{beta} magnetohydrodynamics, the wave equation with correct boundary (matching) conditions is solved, the RF field components are found, and subsequently current drive, power deposition and efficiency are computed. The results of our investigation clearly demonstrate the possibility of generation of RF-driven currents via helicity injection by Alfven waves in low-aspect-ratio tokamaks, in the SAW mode. A special algorithm is developed that enables one to select the antenna parameters providing optimal current drive efficiency. (Author).

  20. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  1. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.; Semple, James; Jagadamma, Lethy Krishnan; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.; deMello, John C.

    2014-01-01

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  2. Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia

    Science.gov (United States)

    Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo

    2018-04-01

    Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.

  3. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

    NARCIS (Netherlands)

    Kruyt, J.W.; Quicazan Rubio, E.M.; Heijst, van G.J.F.; Altshuler, D.L.; Lentink, D.

    2014-01-01

    Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy.

  4. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    Directory of Open Access Journals (Sweden)

    Hurt Robert H

    2011-05-01

    Full Text Available Abstract Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90 and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs. Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2 of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1 as well as profibrotic (M2 phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model

  5. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  6. A theoretical model to determine the capacity performance of shape-specific electrodes

    Science.gov (United States)

    Yue, Yuan; Liang, Hong

    2018-06-01

    A theory is proposed to explain and predict the electrochemical process during reaction between lithium ions and electrode materials. In the model, the process of reaction is proceeded into two steps, surface adsorption and diffusion of lithium ions. The surface adsorption is an instantaneous process for lithium ions to adsorb onto the surface sites of active materials. The diffusion of lithium ions into particles is determined by the charge-discharge condition. A formula to determine the maximum specific capacity of active materials at different charging rates (C-rates) is derived. The maximum specific capacity is correlated to characteristic parameters of materials and cycling - such as size, aspect ratio, surface area, and C-rate. Analysis indicates that larger particle size or greater aspect ratio of active materials and faster C-rates can reduce maximum specific capacity. This suggests that reducing particle size of active materials and slowing the charge-discharge speed can provide enhanced electrochemical performance of a battery cell. Furthermore, the model is validated by published experimental results. This model brings new understanding in quantification of electrochemical kinetics and capacity performance. It enables development of design strategies for novel electrodes and future generation of energy storage devices.

  7. Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera

    Directory of Open Access Journals (Sweden)

    Christopher Hassall

    2015-08-01

    Full Text Available Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site, dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa.

  8. Hot embossing of photonic crystal polymer structures with a high aspect ratio

    DEFF Research Database (Denmark)

    Schelb, Mauno; Vannahme, Christoph; Kolew, Alexander

    2011-01-01

    ). A nickel tool for the replication of structures with lateral dimensions of 110 nm and heights of approximately 370 nm is fabricated via electroplating of a nanostructured sample resulting in an aspect ratio of approximately 3.5. The structures are subsequently hot embossed into PMMA and COC substrates....

  9. Hyperthermia in low aspect-ratio magnetic nanotubes for biomedical applications

    Science.gov (United States)

    Gutierrez-Guzman, D. F.; Lizardi, L. I.; Otálora, J. A.; Landeros, P.

    2017-03-01

    A simple model for the magnetization reversal process of low aspect-ratio ferromagnetic nanotubes (MNTs) is presented. Because of advantages over other geometries, these structures are interesting for biomedical applications, such as magnetic hyperthermia cancer therapy, where the heat released during magnetic reversal is used to destroy tumors. For example, the tubular geometry provides two independent functional surfaces that may be selectively manipulated and also gives a storage cavity. Owing to their large surface to weight ratio and low mass density, MNTs are not decanted by gravity. We calculated magnetic phase diagrams, energy barriers, nucleation fields, and the amount of dissipated heat and specific absorption rate for magnetite nanotubes. The geometrical parameters were varied, and simple formulae were used to optimize the tube response under alternating excitation, as required for magnetic hyperthermia applications.

  10. The influence of streamwise vortices on turbulent heat transfer in rectangular ducts with various aspect ratios

    International Nuclear Information System (INIS)

    Choi, Hang Seok; Park, Tae Seon

    2013-01-01

    Highlights: ► With changing aspect ratio, the effect of secondary flows on the turbulent heat transfer is scrutinized by a LES. ► The conditional sampling technique of instantaneous near-wall streamwise vortices is developed. ► Clockwise and counter-clockwise rotating streamwise vortices are sampled and discussed with the wall heat transfer. ► The hot-sweep motions of CW and CCW vortices clearly appear with increasing aspect ratio. -- Abstract: The effect of aspect ratio of rectangular duct on the turbulent flow and heat transfer is very important for its engineering applications. But the turbulent thermal fields have not been fundamentally scrutinized in spite of its engineering significance especially for cooling device. Hence, in the present study, large eddy simulation is applied to the turbulent flow and heat transfer in rectangular ducts with varying aspect ratio. The turbulent statistics of the flow and thermal quantities are calculated and the characteristics of wall Nusselt number are investigated for each rectangular duct. Especially, to scrutinize near-wall streamwise vortices, a conditional sampling technique is developed and adopted. Clockwise and counter-clockwise rotating streamwise vortices are sampled and the probability density function of the vortex circulation Reynolds number and wall Nusselt number are calculated. From the results, the time-averaged secondary flow caused by instantaneous vortical motions has a great effect on the heat and momentum transport of the flow in the rectangular ducts. Hence, the wall Nusselt number is enhanced near the downwash flow region of the secondary flow. However, with increasing the aspect ratio, the effects of the hot-sweep flow of the clockwise and counter-clockwise rotating vortices become equally dominant near the wall normal bisector of the ducts. During time averaging process, these two counter-rotating vortices are canceled out each other diminishing a secondary flow but they still enhance the

  11. Kinetic and geometric aspects of solid oxide fuel cell electrodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Skaarup, Steen

    1996-01-01

    The paper gives an overview of the main factors controlling the performance of the solid oxide fuel cell (SOFC) electrodes, emphasizing the most widely chosen anodes and cathodes, Ni-YSZ and LSM-YSZ. They are often applied as composites (mixtures) of the electron conducting electrode material...

  12. A Study on Aspect Ratio of Heat Dissipation Fin for the Heat Dissipation Performance of Ultra Constant Discharge Lamp

    Science.gov (United States)

    Ko, Dong Guk; Cong Ge, Jun; Im, Ik Tae; Choi, Nag Jung; Kim, Min Soo

    2018-01-01

    In this study, we analyzed the heat dissipation performance of UCD lamp ballast fin with various aspect ratios. The minimum grid size was 0.02 mm and the number of grid was approximately 11,000. In order to determine the influence of the aspect ratio on the heat dissipation performance of UCD lamp ballast fin, the heat transfer area of the fin was kept constant at 4 mm2. The aspect ratios of the fin were 2 mm: 2 mm (basic model), 1.5 mm: 2.7 mm and 2.7 mm: 1.5 mm, respectively. The heat flux and heat flux time at fin were kept constant at 1×105 W/m2 and 10 seconds, respectively. The heat dissipation performance by the fin was the best at an aspect ratio of 1.5 mm: 2.7 mm.

  13. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    Science.gov (United States)

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  14. Toroidal Dielectric Tensor-Operator for Arbitrary Aspect-Ratio and Wave Frequency an Anisotropic-Resistivity MHD Formulation

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.

    1998-01-01

    Motivated by the recently increased interest in small aspect ratio tokamaks, we have derived a 2(1/2)D dielectric tensor-operator which can properly describe the plasma response to r.f. waves, under conditions prevailing in the pre-heated stages of arbitrary aspect ratio, axisymmetric toroidal fusion devices. The derived dielectric tensor elements are based on a two-fluid, weakly collisional plasma description, with the Hall term included. They are characterized by the following features: (i) They are cast in a form evidencing the dielectric (non-operator) and operator contributions - the latter being due to the toroidal structure of the V-operators present in Maxwell's equations, on the background of equilibrium currents and pressure gradients; (ii) They are not subject to any I imitation on the (relative) magnitude of the toroidal effects - no expansion in the inverse aspect ratio parameter is used for their derivation; (iii) They include anisotropic - parallel and perpendicular to the magnetic field - contributions to the plasma resistivity; (iv) They are not Iimited by any restriction on the (relative) value of the wave frequency. The explicit, physically transparent formulation of the dielectric tensor is intended for the numerical solution of the full (E ll ≠ 0) wave equation and subsequently, evaluation of the Alfven wave current drive in small aspect ratio tokamaks

  15. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    Science.gov (United States)

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  16. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    Science.gov (United States)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  17. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  18. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  19. The effect of aggregate aspect ratio and temperature on the fracture toughness of a low cement refractory concrete

    Directory of Open Access Journals (Sweden)

    Laura Brum Prata

    2003-12-01

    Full Text Available This work investigated the influence of the aggregate's aspect ratio on the fracture behavior of a low cement aluminum silicate refractory castable treated at two different temperatures (110 °C and 1000 °C. The aggregates were cylindrical pellets with an aspect ratio of 1, 2, 3 and 4, produced by extruding a mixture of clay and calcined alumina fired at 1600 °C for 4 h to yield mullite (3Al2O3.2SiO2. The behavior of the R-Curve and other relevant fracture parameters were evaluated based on the "Two Parameter Fracture Model" in a three-point flexure test of single-edge straight through notched specimens. The two temperature treatments produced different degrees of matrix-aggregate adhesion. The larger aspect ratio aggregates were found to promote toughening only in the dried condition, at 110 °C, while the specimens fired at 1000 °C for 4 h, regardless of their aggregate aspect ratio, displayed no significant toughening. The best results for fired samples, however, were obtained from specimens containing conventional angular aggregates.

  20. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    Science.gov (United States)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  1. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    Science.gov (United States)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  2. Lee-side flow structures of very low aspect ratio cruciform wing–body configurations

    CSIR Research Space (South Africa)

    Tuling, S

    2013-12-01

    Full Text Available A numerical and experimental investigation was performed to study the dominant flow structures in the lee side of a cruciform wing–body configuration at supersonic speeds in the + orientation. The wings or strakes are of very low aspect ratio...

  3. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G G; Veziridis, Z; Staub, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  4. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    Science.gov (United States)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  5. Comments on the asymptotic treatment of tokamak MHD-stability at large aspect ratio

    International Nuclear Information System (INIS)

    Rebhan, E.

    1980-01-01

    In the asymptotic treatment of tokamak MHD stability at small inverse aspect ratio epsilon, the special case of poloidal wave number m=0 has been treated improperly in the literature for both axisymmetric and non-axisymmetric modes. In axisymmetric stability, a contribution to the perturbational vacuum field is either omitted or cancelled. In a variational stability analysis this field contribution provides σ 2 W with a correction term proportional to (1nepsilon) -1 , which may change the asymptotic range of stability and improve agreement with numerical finite-aspect-ratio results. In non-axisymmetric stability, for the perturbational vacuum field of the m=0 modes, usually the wrong of two possible solutions is chosen. It is shown why in many cases this wrong choice has no consequences on the correctness of the stability results, and circumstances are pointed out under which consequences may arise. (author)

  6. Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles

    International Nuclear Information System (INIS)

    Hamzah, A A; Yeop Majlis, B; Yunas, J; Dee, C F; Abd Aziz, N; Bais, B

    2012-01-01

    High aspect ratio solid silicon microneedles with a concave conic shape were fabricated. Hydrofluoric acid–nitric acid–acetic acid (HNA) etching parameters were characterized and optimized to produce microneedles that have long and narrow bodies with smooth surfaces, suitable for transdermal drug delivery applications. The etching parameters were characterized by varying the HNA composition, the optical mask's window size, the etching temperature and bath agitation. An L9 orthogonal Taguchi experiment with three factors, each having three levels, was utilized to determine the optimal fabrication parameters. Isoetch contours for HNA composition with 0% and 10% acetic acid concentrations were presented and a high nitric acid region was identified to produce microneedles with smooth surfaces. It is observed that an increase in window size indiscriminately increases the etch rate in both the vertical and lateral directions, while an increase in etching temperature beyond 35 °C causes the etching to become rapid and uncontrollable. Bath agitation and sample placement could be manipulated to achieve a higher vertical etch rate compared to its lateral counterpart in order to construct high aspect ratio microneedles. The Taguchi experiment performed suggests that a HNA composition of 2:7:1 (HF:HNO 3 :CH 3 COOH), window size of 500 µm and agitation rate of 450 RPM are optimal. Solid silicon microneedles with an average height of 159.4 µm, an average base width of 110.9 µm, an aspect ratio of 1.44, and a tip angle and diameter of 19.2° and 0.38 µm respectively were successfully fabricated. (paper)

  7. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tieshi He

    2015-01-01

    Full Text Available Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distribution, and life cycle. The imbalanced supercapacitor with an AC weight ratio of 80 : 120 of positive to negative electrode has an average potential distribution in each electrode, and it revealed the best electrochemical performance: specific capacitor was 39.6 F·g−1, while the charge-discharge efficiency was 97.2% after 2000 life cycle tests.

  8. Conducting polymer coated neural recording electrodes

    Science.gov (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.

    2013-02-01

    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  9. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  10. Second regime tokamak operation at large aspect ratio

    International Nuclear Information System (INIS)

    Navratil, G.A.

    1989-01-01

    This paper reviews the need for high beta in economic tokamak reactors and summarizes recent results on the scaling of the second regime beta limit for high-n ballooning modes using optimized pressure profiles as well as results on low-n mode stability at the first regime beta limit from the Columbia HBT tokamak. While several experiments have studied ballooning limits using high εβ p plasmas, the most important question for the use of the second stability regime for tokamak reactor improvement is how to achieve these high values of εβ p while at the same time increasing the value of beta to several times the Troyon beta limit. An approach to the study of this key question on beta limits using modest sized, large aspect ratio tokamaks is described. (author). 28 refs, 7 figs, 1 tab

  11. On the structure of cellular solutions in Rayleigh-Benard-Marangoni flows in small-aspect-ratio containers

    Science.gov (United States)

    Dijkstra, Henk A.

    1992-01-01

    Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.

  12. The effect of particle aspect ratio on the electroelastic properties of piezoelectric nanocomposites

    International Nuclear Information System (INIS)

    Andrews, C; Lin, Y; Sodano, H A

    2010-01-01

    Piezoelectric materials offer exceptional sensing and actuation properties; however, they are prone to breakage and difficult to apply on curved surfaces in their monolithic form. One method of alleviating these issues is through the use of 0–3 nanocomposites, which are formed by embedding piezoelectric particles into a polymer matrix. Material of this class offers certain advantages over monolithic materials; however, it has seen little use due to its low coupling. Here we develop micromechanics and finite element models to study the electroelastic properties of an active nanocomposite, as a function of the aspect ratio and alignment of the piezoelectric filler. Our results show that the aspect ratio is critical for achieving high electromechanical coupling, and with an increase from 1 to 10 at 30% volume fraction of piezoelectric filler the coupling can increase to 60 times its initial value and achieve a bulk composite coupling as high as 90% for a pure PZT-7A piezoelectric constituent

  13. Optimized aspect ratios of restrained thick-wall cylinders by virtue of Poisson's ratio selection. Part two: Temperature application

    International Nuclear Information System (INIS)

    Whitty, J.P.M.; Henderson, B.; Francis, J.

    2011-01-01

    Highlights: → Incontrovertible evidence is presented that thermal stresses in cylindrical components which include nuclear reactors and containment vessels are shown to be highly dependent on the Poisson's ratio of the materials. → The key novelty is concerned with the identification of a new potential thermal applications for negative Poisson's ratio (auxetic) materials; i.e. those that get fatter when they are stretched. → Negative Poisson's ratio (auxetic) materials exhibit lower thermal stress build-up than conventional positive Poisson's ratio materials, this conjecture being proven using thermal surface plots. - Abstract: Analytical and numerical modelling have been employed to show that the choice of Poisson's ratio is one of the principal design criteria in order to reduce thermal stress build-up in isotropic materials. The modelling procedures are all twofold; consisting of a solution to a steady-state heat conduction problem followed by a linear static solution. The models developed take the form of simplistic thick-wall cylinders such model systems are applicable at macro-structural and micro-structural levels as the underlining formulations are based on the classical theory of elasticity. Generally, the results show that the Poisson's ratio of the material has a greater effect on the magnitude of the principal stresses than the aspect ratio of the cylinders investigated. Constraining the outside of these models significantly increases the thermal stresses induced. The most significant and original finding presented is that the for both freely expanding and constrained thick-wall cylinders the optimum Poisson's ratio is minus unity.

  14. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, Eva; Pospišková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, FEB (2017), s. 1342-1346 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA14-11516S; GA MŠk(CZ) LD14075 Institutional support: RVO:67179843 Keywords : removal * Leptothrix * Magnetic modification * Iron oxide * High aspect ratio material Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.164, year: 2016

  15. Fabrication of silicon-embedded low resistance high-aspect ratio planar copper microcoils

    Science.gov (United States)

    Syed Mohammed, Zishan Ali; Puiu, Poenar Daniel; Aditya, Sheel

    2018-01-01

    Low resistance is an important requirement for microcoils which act as a signal receiver to ensure low thermal noise during signal detection. High-aspect ratio (HAR) planar microcoils entrenched in blind silicon trenches have features that make them more attractive than their traditional counterparts employing electroplating through a patterned thick polymer or achieved through silicon vias. However, challenges met in fabrication of such coils have not been discussed in detail until now. This paper reports the realization of such HAR microcoils embedded in Si blind trenches, fabricated with a single lithography step by first etching blind trenches in the silicon substrate with an aspect ratio of almost 3∶1 and then filling them up using copper electroplating. The electroplating was followed by chemical wet etching as a faster way of removing excess copper than traditional chemical mechanical polishing. Electrical resistance was further reduced by annealing the microcoils. The process steps and challenges faced in the realization of such structures are reported here followed by their electrical characterization. The obtained electrical resistances are then compared with those of other similar microcoils embedded in blind vias.

  16. Midinfrared Surface Waves on a High Aspect Ratio Nanotrench Platform

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Bodganov, Andrey

    2017-01-01

    ameliorate surface wave propagation and even generate new types of waves. Here, we demonstrate that high aspect ratio (1:20) grating structures with plasmonic lamellas in deep nanoscale trenches, whose pitch is 1/10 – 1/35 of a wavelength, function as a versatile platform supporting both surface and guided...... bulk infrared waves. The surface waves exhibit a unique combination of properties: directionality, broadband existence (from 4 µm to at least 14 μm and beyond) and high localization, making them an attractive tool for effective control of light in an extended range of infrared frequencies....

  17. Effects of finite aspect ratio on wind turbine airfoil measurements

    DEFF Research Database (Denmark)

    Kiefer, Janik; Miller, Mark A.; Hultmark, Marcus

    2016-01-01

    Wind turbines partly operate in stalled conditions within their operational cycle. To simulate these conditions, it is also necessary to obtain 2-D airfoil data in terms of lift and drag coefficients at high angles of attack. Such data has been obtained previously, but often at low aspect ratios...... and only barely past the stall point, where strong wall boundary layer influence is expected. In this study, the influence of the wall boundary layer on 2D airfoil data, especially in the post stall domain, is investigated. Here, a wind turbine airfoil is tested at different angles of attack and with two...

  18. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    International Nuclear Information System (INIS)

    Woolley, R.D.

    2009-01-01

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress

  19. A Novel Demountable TF Joint Design for Low Aspect Ratio Spherical Torus Tokamaks

    International Nuclear Information System (INIS)

    Woolley, Robert D.

    2009-01-01

    A novel shaped design for the radial conductors and demountable electrical joints connecting inner and outer legs of copper TF system conductors in low aspect ratio tokamaks is described and analysis results are presented. Specially shaped designs can optimize profiles of electrical current density, magnetic force, heating, and mechanical stress.

  20. A modified atmospheric non-hydrostatic model on low aspect ratio grids

    Directory of Open Access Journals (Sweden)

    Wen-Yih Sun

    2012-04-01

    Full Text Available It is popular to use a horizontal explicit and a vertical implicit (HE-VI scheme in the compressible non-hydrostatic (NH model. However, when the aspect ratio becomes small, a small time-interval is required in HE-VI, because the Courant-Fredrich-Lewy (CFL criterion is determined by the horizontal grid spacing. Furthermore, simulations from HE-VI can depart from the forward–backward (FB scheme in NH even when the time interval is less than the CFL criterion allowed. Hence, a modified non-hydrostatic (MNH model is proposed, in which the left-hand side of the continuity equation is multiplied by a parameter δ (4≤δ≤16, in this study. When the linearized MNH is solved by FB (can be other schemes, the eigenvalue shows that MNH can suppress the frequency of acoustic waves very effectively but does not have a significant impact on the gravity waves. Hence, MNH enables to use a longer time step than that allowed in the original NH. When the aspect ratio is small, MNH solved by FB can be more accurate and efficient than the NH solved by HE-VI. Therefore, MNH can be very useful to study cloud, Large Eddy Simulation (LES, turbulence, flow over complex terrains, etc., which require fine resolution in both horizontal and vertical directions.

  1. Investigation of Imbalanced Activated Carbon Electrode Supercapacitors

    OpenAIRE

    Tieshi He; Xue Ren; Junping Nie; Jun Ying; Kedi Cai

    2015-01-01

    Imbalanced supercapacitor was constructed by using various ratio of activated carbon (AC) of positive to negative electrode. The electrochemical behavior of imbalanced supercapacitor was investigated using 1.0 M spiro-(1,1′)-bipyrrolidinium tetrafluoroborate electrolyte in propylene carbonate. The results showed that there are some factors that influenced the imbalanced supercapacitor with different AC ratio of positive to negative electrode, the utilization of AC, electrode potential distrib...

  2. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    White, K. L.; Takahara, A. [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395 (Japan); Hawkins, S.; Sue, H.-J., E-mail: hjsue@tamu.edu [Department of Materials Science and Engineering, Texas A& M University, College Station, Texas 77843 (United States); Miyamoto, M. [Kaneka US Materials Research Center, Kaneka America Holdings, Inc., College Station, Texas 77843 (United States)

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreement was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.

  3. A model for roll stall and the inherent stability modes of low aspect ratio wings at low Reynolds numbers

    Science.gov (United States)

    Shields, Matt

    The development of Micro Aerial Vehicles has been hindered by the poor understanding of the aerodynamic loading and stability and control properties of the low Reynolds number regime in which the inherent low aspect ratio (LAR) wings operate. This thesis experimentally evaluates the static and damping aerodynamic stability derivatives to provide a complete aerodynamic model for canonical flat plate wings of aspect ratios near unity at Reynolds numbers under 1 x 105. This permits the complete functionality of the aerodynamic forces and moments to be expressed and the equations of motion to solved, thereby identifying the inherent stability properties of the wing. This provides a basis for characterizing the stability of full vehicles. The influence of the tip vortices during sideslip perturbations is found to induce a loading condition referred to as roll stall, a significant roll moment created by the spanwise induced velocity asymmetry related to the displacement of the vortex cores relative to the wing. Roll stall is manifested by a linearly increasing roll moment with low to moderate angles of attack and a subsequent stall event similar to a lift polar; this behavior is not experienced by conventional (high aspect ratio) wings. The resulting large magnitude of the roll stability derivative, Cl,beta and lack of roll damping, Cl ,rho, create significant modal responses of the lateral state variables; a linear model used to evaluate these modes is shown to accurately reflect the solution obtained by numerically integrating the nonlinear equations. An unstable Dutch roll mode dominates the behavior of the wing for small perturbations from equilibrium, and in the presence of angle of attack oscillations a previously unconsidered coupled mode, referred to as roll resonance, is seen develop and drive the bank angle? away from equilibrium. Roll resonance requires a linear time variant (LTV) model to capture the behavior of the bank angle, which is attributed to the

  4. Transient heating and entropy generation of a fluid inside a large aspect ratio cavity

    International Nuclear Information System (INIS)

    Cajas, J.C.; Trevino, C.

    2013-01-01

    In this work, the transient heating of a fluid inside a vertical cavity of large aspect ratio (height/length) was studied numerically by the use of the SIMPLE algorithm. The heat sources are two vertical plates localized in the side walls of the cavity near the bottom. Calculations were performed for a fixed value of the Prandtl number, Pr = 7, aspect ratio of 12 and six different Rayleigh numbers between 10 3 and 10 6 . The temperature and entropy production fields, the non-dimensional heat flux on the heated plates (given by the average Nusselt number) have been obtained. From a clear dependence on the Rayleigh number, different mechanisms of symmetry break and heat transfer in the cavity were found, where vortices dynamics play a very important role. A universal behavior of the mean values of the overall reduced entropy production rate was found, valid after a short initial transient. (authors)

  5. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Directory of Open Access Journals (Sweden)

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  6. A modified atmospheric non-hydrostatic model on low aspect ratio grids: part II

    Directory of Open Access Journals (Sweden)

    Wen-Yih Sun

    2013-06-01

    Full Text Available Sun et al. (2012 proposed a modified non-hydrostatic model (MNH, in which the left-hand side of the continuity equation is multiplied by a parameter δ (4≤δ≤16 in the article to suppress high-frequency acoustic waves. They showed that the MNH allows a longer time step than the original non-hydrostatic model (NH. The MNH is also more accurate and efficient than the horizontal explicit and vertical implicit scheme (HE–VI when the aspect ratio (Δx/Δz is small. In addition to multiplying a parameter δ, here we propose to add a smoothing on the right-hand side of the continuity equation in the MNH to damp shortest sound waves. Linear stability analysis and non-linear model simulations show that the MNH with smoothing (henceforth abbreviated as MNHS can use twice the time interval of the MNH while maintaining the same accuracy. The MNHS is also more accurate and efficient than HE–VI when the aspect ratio is small.

  7. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    International Nuclear Information System (INIS)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-01

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al 2 O 3 and TiO 2 processes from Me 3 Al/H 2 O and TiCl 4 /H 2 O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes

  8. Fabrication of high-aspect-ratio microstructures using dielectrophoresis-electrocapillary force-driven UV-imprinting

    International Nuclear Information System (INIS)

    Li, Xiangming; Shao, Jinyou; Tian, Hongmiao; Ding, Yucheng; Li, Xiangmeng

    2011-01-01

    We propose a novel method for fabricating high-aspect-ratio micro-/nano-structures by dielectrophoresis-electrocapillary force (DEP-ECF)-driven UV-imprinting. The force of DEP-ECF, acting on an air–liquid interface and an air–liquid–solid three-phase contact line, is generated by applying voltage between an electrically conductive mold and a substrate, and tends to pull the dielectric liquid (a UV-curable pre-polymer) into the mold micro-cavities. The existence of DEP-ECF is explained theoretically and demonstrated experimentally by the electrically induced reduction of the contact angle. Furthermore, DEP-ECF is proven to play a critical role in forcing the polymer to fill into the mold cavities by the real-time observation of the dynamic filling process. Using the DEP-ECF-driven UV-imprinting process, high-aspect-ratio polymer micro-/nano-structures (more than 10:1) are fabricated with high consistency. This patterning method can overcome the drawbacks of the mechanically induced mold deformation and position shift in conventional imprinting lithography and maximize the pattern uniformity which is usually poor in capillary force lithography

  9. Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods

    International Nuclear Information System (INIS)

    Morasso, Carlo; Picciolini, Silvia; Schiumarini, Domitilla; Mehn, Dora; Ojea-Jiménez, Isaac; Zanchetta, Giuliano; Vanna, Renzo; Bedoni, Marzia; Prosperi, Davide; Gramatica, Furio

    2015-01-01

    In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the “seed-growth” solution. Our approach not only allows us to prepare nanorods with a four times increased Au 3+ reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50–60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag + ions in the seed-growth solution and the stability of the obtained particles has also been investigated

  10. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    Science.gov (United States)

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  11. Large-aspect-ratio limit of neoclassical transport theory

    International Nuclear Information System (INIS)

    Wong, S K.; Chan, V.S.

    2003-01-01

    This paper presents a comprehensive description of neoclassical transport theory in the banana regime for large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard

  12. Large-aspect-ratio limit of neoclassical transport theory.

    Science.gov (United States)

    Wong, S K; Chan, V S

    2003-06-01

    This paper presents a comprehensive description of neoclassical transport theory in the banana regime for large-aspect-ratio flux surfaces of arbitrary shapes. The method of matched-asymptotic expansions is used to obtain analytical solutions for plasma distribution functions and to compute transport coefficients. The method provides justification for retaining only the part of the Fokker-Planck operator that involves the second derivative with respect to the cosine of the pitch angle for the trapped and barely circulating particles. It leads to a simple equation for the freely circulating particles with boundary conditions that embody a discontinuity separating particles moving in opposite directions. Corrections to the transport coefficients are obtained by generalizing an existing boundary layer analysis. The system of moment and field equations is consistently taken in the cylinder limit, which facilitates the discussion of the treatment of dynamical constraints. It is shown that the nonlocal nature of Ohm's law in neoclassical theory renders the mathematical problem of plasma transport with changing flux surfaces nonstandard.

  13. High aspect ratio silicon nanomoulds for UV embossing fabricated by directional thermal oxidation using an oxidation mask

    International Nuclear Information System (INIS)

    Chen, L Q; Chan-Park, Mary B; Yan, Y H; Zhang Qing; Li, C M; Zhang Jun

    2007-01-01

    Nanomoulding is simple and economical but moulds with nanoscale features are usually prohibitively expensive to fabricate because nanolithographic techniques are mostly serial and time-consuming for large-area patterning. This paper describes a novel, simple and inexpensive parallel technique for fabricating nanoscale pattern moulds by silicon etching followed by thermal oxidation. The mask pattern can be made by direct photolithography or photolithography followed by metal overetching for submicron- and nanoscale features, respectively. To successfully make nanoscale channels having a post-oxidation cross-sectional shape similar to that of the original channel, an oxidation mask to promote unidirectional (specifically horizontal) oxide growth is found to be essential. A silicon nitride or metal mask layer prevents vertical oxidation of the Si directly beneath it. Without this mask, rectangular channels become smaller but are V-shaped after oxidation. By controlling the silicon etch depth and oxidation time, moulds with high aspect ratio channels having widths ranging from 500 to 50 nm and smaller can be obtained. The nanomould, when passivated with a Teflon-like layer, can be used for first-generation replication using ultraviolet (UV) nanoembossing and second-generation replication in other materials, such as polydimethylsiloxane (PDMS). The PDMS stamp, which was subsequently coated with Au, was used for transfer printing of Au electrodes with a 600 nm gap which will find applications in plastics nanoelectronics

  14. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    Science.gov (United States)

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  15. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  16. Seed-mediated synthesis of gold nanorods: control of the aspect ratio by variation of the reducing agent

    International Nuclear Information System (INIS)

    Koeppl, Susanne; Ghielmetti, Nico; Caseri, Walter; Spolenak, Ralph

    2013-01-01

    Seed-mediated growth methods involving reduction of tetrachloroaurate(III) with ascorbic acid are common for the synthesis of gold nanorods. This study shows, however, that simply by appropriate choice of the reducing agent a drastic influence on the aspect ratio can be attained. Weaker reducing agents, such as dihydroxybenzene isomers (hydroquinone, catechol or resorcinol) or glucose can increase the aspect ratio of the nanorods by an order of magnitude, up to values as high as 100 (nanowires). The increase in aspect ratio is mainly a consequence of an increase in length of the particles (up to 1–3 μm). This effect is probably associated with a decrease in the reduction rate of gold(III) species by dihydroxybenzenes or glucose compared to ascorbic acid. The reduction potential of the reducing agents strongly depends on the pH value, and related effects on the dimensions of the nanoparticles are also reflected in this study. The nanorods exhibited penta-twinned nature without noteworthy defects (e.g. stacking faults and dislocations).

  17. Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10

    International Nuclear Information System (INIS)

    Afgan, Imran; Moulinec, Charles; Prosser, Robert; Laurence, Dominique

    2007-01-01

    The flow structure around wall mounted circular cylinders of finite heights is numerically investigated via large eddy simulation (LES). The cylinder aspect ratios (AR) are 6 and 10 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 20,000 for both cases. The cantilever cylinder mounted on a flat plate is chosen since it gives insight into two entirely different flow phenomena; the tip effects of the free end (which show strong three-dimensional wake structures) and the base or junction effects (due to interaction of flow between the cylinder and the flat plate). Regular vortex shedding is found in the wake of the higher aspect ratio case as was anticipated, along with a strong downwash originating from the flow over the free end of the cylinder, whereas irregular and intermittent vortex shedding occurs in the lower aspect ratio case. Pressure distributions are computed along the length of the cylinder and compared to experimental results. Lift and drag values are also computed, along with Strouhal numbers

  18. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Science.gov (United States)

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  19. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    OpenAIRE

    Li, Xian-Xiang; Koh, Tieh-Yong; Britter, Rex E; Norford, Leslie Keith; Entekhabi, Dara

    2010-01-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street ca...

  20. Challenging aspects of contemporary cochlear implant electrode array design.

    Science.gov (United States)

    Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg

    2017-12-01

    A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the

  1. Improving acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    In recent years experiments have shown that optical waves in waveguides can be modulated by mechanical stresses from surface acoustic waves (SAW), which have most of their energy density concentrated at the surface. In these experiments the SAWs are generated in piezoelectric materials...

  2. The Impact of Volute Aspect Ratio on the Performance of a Mixed Flow Turbine

    Directory of Open Access Journals (Sweden)

    Samuel P. Lee

    2017-11-01

    Full Text Available Current trends in the automotive industry towards engine downsizing mean turbocharging now plays a vital role in engine performance. A turbocharger increases charge air density using a turbine to extract waste energy from the exhaust gas to drive a compressor. Most turbocharger applications employ a radial inflow turbine. However, mixed flow turbines can offer non-zero blade angles, reducing leading edge (LE separation at low velocity ratios. The current paper investigates the performance of a mixed flow turbine with three different volute aspect ratio (AR designs (AR = 0.5, 1 and 2. With constant A/r (ratio of volute area to centroid radius, the AR = 0.5 volute design produced a 4.3% increase in cycle averaged mass flow parameter (MFP compared to the AR = 2 design. For the purpose of performance comparison, it was necessary to manipulate the volute A/r’s to ensure constant MFP for aerodynamic similarity. With the volute A/r’s manipulated to ensure constant MFP for aerodynamic similarity, the maximum variation of cycle averaged normalized efficiency measured between the designs was 1.47%. Purely in the rotor region, the variation in normalized cycle averaged efficiency was 1%. The smallest tested volute aspect ratio showed a significant increase in volute loss while the ARs of 1 and 2 showed similar levels of loss. The smallest AR volute showed significant secondary flow development in the volute. The resulting variation in LE incidence was found to vary as a result.

  3. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    Science.gov (United States)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the

  4. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes

    Science.gov (United States)

    Ding, Quan; Besio, Walter G.

    2015-01-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n. PMID:26693200

  5. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    Science.gov (United States)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  6. High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.

    Science.gov (United States)

    Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W

    2015-04-10

    We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.

  7. Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Morasso, Carlo, E-mail: cmorasso@dongnocchi.it; Picciolini, Silvia; Schiumarini, Domitilla [Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION) (Italy); Mehn, Dora; Ojea-Jiménez, Isaac [European Commission Joint Research Centre, Institute for Health and Consumer Protection (IHCP) (Italy); Zanchetta, Giuliano [Universitá degli Studi di Milano, Dipartimento di Biotecnologie Mediche e Medicina Traslazionale (Italy); Vanna, Renzo; Bedoni, Marzia [Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION) (Italy); Prosperi, Davide [Università degli Studi di Milano Bicocca, NanoBioLab, Dipartimento di Biotecnologie e Bioscienze (Italy); Gramatica, Furio [Fondazione Don Carlo Gnocchi ONLUS, Laboratory of Nanomedicine and Clinical Biophotonics (LABION) (Italy)

    2015-08-15

    In this article, we describe how it is possible to tune the size and the aspect ratio of gold nanorods obtained using a highly efficient protocol based on the use of hydroquinone as a reducing agent by varying the amounts of CTAB and silver ions present in the “seed-growth” solution. Our approach not only allows us to prepare nanorods with a four times increased Au{sup 3+} reduction yield, when compared with the commonly used protocol based on ascorbic acid, but also allows a remarkable reduction of 50–60 % of the amount of CTAB needed. In fact, according to our findings, the concentration of CTAB present in the seed-growth solution do not linearly influence the final aspect ratio of the obtained nanorods, and an optimal concentration range between 30 and 50 mM has been identified as the one that is able to generate particles with more elongated shapes. On the optimized protocol, the effect of the concentration of Ag{sup +} ions in the seed-growth solution and the stability of the obtained particles has also been investigated.

  8. Relation of vertical stability and aspect ratio in tokamaks

    International Nuclear Information System (INIS)

    Stambaugh, R.D.; Lao, L.L.; Lazarus, E.A.

    1992-01-01

    It is evaluated how the upper limit to plasma elongation κ, caused by vertical stability, varies with the aspect ratio A=R/a of the tokamak. Equilibria were generated with EFITD and the vertical stability was assessed by GATO. For a 'generic' tokamak with a superconducting wall conformal to the plasma shape and a distance 0.5 a away from the plasma edge and a constant current profile (q 0 =1.0, l i ≅1.0, q 95 =3.2) it is found that the maximum stable κ decreased only slowly from 2.65 at A=2.0 to 2.4 at A=6.0. To first order, a reasonable assumption in trade-off studies of new machine designs is no dependence of κ max on A. (author). Letter-to-the-editor. 13 refs, 3 figs, 1 tab

  9. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: the power of four electrodes.

    Science.gov (United States)

    Schleiger, Emma; Sheikh, Nabeel; Rowland, Tennille; Wong, Andrew; Read, Stephen; Finnigan, Simon

    2014-10-01

    This study analysed correlations between post-stroke, quantitative electroencephalographic (QEEG) indices, and cognition-specific, functional outcome measures. Results were compared between QEEG indices calculated from the standard 19 versus 4 frontal (or 4 posterior) electrodes to assess the feasibility and efficacy of employing a reduced electrode montage. Resting-state EEG was recorded at the bedside within 62-101 h after onset of symptoms of middle cerebral artery, ischaemic stroke (confirmed radiologically). Relative power for delta, theta, alpha and beta, delta/alpha ratio (DAR) and pairwise-derived brain symmetry index (pdBSI) were averaged; over all electrodes (global), over F3, F4, F7, F8 (frontal) and P3, P4, T5, T6 (posterior). The functional independence measure and functional assessment measure (FIM-FAM) was administered at mean 105 days post-stroke. Total (30 items) and cognition-specific (5 items) FIM-FAM scores were correlated with QEEG indices using Spearman's coefficient, with a Bonferroni correction. Twenty-five patients were recruited, 4 died within 3 months and 1 was lost to follow-up. Hence 20 cases (10 female; 9 left hemisphere; mean age 68 years, range 38-84) were analysed. Two QEEG indices demonstrated highly-significant correlations with cognitive outcomes: frontal DAR (ρ = -0.664, p ≤ 0.001) and global, relative alpha power (ρ = 0.67, p ≤ 0.001). After correction there were no other significant correlations. Alpha activity - particularly frontally - may index post-stroke attentional capacity, which appears to be a key determinant of functional and cognitive outcomes. Likewise frontal delta pathophysiology influences such outcomes. Pending further studies, DAR from 4 frontal electrodes may inform early screening for post-MCA stroke cognitive deficits, and thereby, clinical decisions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Geometry dependence of magnetic and transport AC losses in Bi-2223/Ag tapes with different aspect ratios

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Luo, X M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Chen, D X [ICREA and Grup Electromagnetisme, Departament de Fisica, Universitat Autonoma Barcelona, 08193 Bellaterra (Spain); Alamgir, A K M [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Collings, E W [MSE, Ohio State University, Columbus, OH 43210 (United States); Lee, E [MSE, Ohio State University, Columbus, OH 43210 (United States); Sumption, M D [MSE, Ohio State University, Columbus, OH 43210 (United States); Fang, J G [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Yi, H P [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Song, X H [Innova Superconductor Technology Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Guo, S Q [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Liu, M L [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China); Xin, Y [Innopower Superconductor Cable Co., Ltd, 7 Rongchang Dongjie, Longsheng Industrial Park, Beijing Economic and Technological Development Area, 100176 (China); Han, Z [Applied Superconductivity Research Center, Tsinghua University, Beijing 100084 (China)

    2004-10-01

    On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field.

  11. Geometry dependence of magnetic and transport AC losses in Bi-2223/Ag tapes with different aspect ratios

    International Nuclear Information System (INIS)

    Fang, J; Luo, X M; Chen, D X; Alamgir, A K M; Collings, E W; Lee, E; Sumption, M D; Fang, J G; Yi, H P; Song, X H; Guo, S Q; Liu, M L; Xin, Y; Han, Z

    2004-01-01

    On five Bi-2223/Ag tapes with different aspect ratios from 5 to 26, AC losses have been measured at 77 K while a parallel AC magnetic field or a perpendicular AC magnetic field or a longitudinal AC transport current is applied. It has been found that at any frequency the perpendicular magnetic losses per cycle increase, but the parallel magnetic losses per cycle and the transport losses per cycle decrease as the aspect ratio increases. These experimental results are in accord with theoretical results. Meanwhile, we investigated the geometry dependence of the decay time constant of coupling current and that of full penetration field

  12. Heat transfer characteristics of rectangular coolant channels with various aspect ratios in the plasma-facing components under fully developed MHD laminar flow

    International Nuclear Information System (INIS)

    Takase, K.; Hasan, M.Z.

    1995-01-01

    Convective heat transfer in MHD laminar flow through rectangular channels in the plasma-facing components of a fusion reactor has been analyzed numerically to investigate the effects of channel aspect ratio, defined as the ratio of the lengths of the plasma-facing side to the other side. The adverse effect of the nonuniformity of surface heat flus on Nusselt number (Nu) at the plasma-facing side can be alleviated by increasing the aspect ratio of a rectangular duct. At the center and corner of the plasma-facing side of a square duct, the Nu of non-MHD flow are 6.8 and 2.2, respectively, for uniform surface heat flux. In the presence of a strong magnetic field, Nu at the center and corner increases to 22 and 3.6, respectively. However, when the heat flux is highly nonuniform, as in the plasma-facing components, Nu decreases from 22 to 3.1 at the center and from 3.6 to 3.1 at the corner. When the aspect ratio is increased to 4, Nu at the center and corner increase to 5 and 4.7. Along the circumference of a rectangular channel, there are locations where the wall temperature is equal to or less than the bulk coolant temperature, thus making the Nu with conventional definition infinity or negative. The ratio between Nu of MHD flow and Nu of non-MHD flow for various aspect ratios is constant in the region of Hartmann number of more than 200 at least. On the other hand, its ratio increases monotonously with increasing the aspect ratio

  13. Asymptotic solutions of miscible displacements in geometries of large aspect ratio

    International Nuclear Information System (INIS)

    Yang, Z.; Yortsos, Y.C.

    1997-01-01

    Asymptotic solutions are developed for miscible displacements at Stokes flow conditions between parallel plates or in a cylindrical capillary, at large values of the geometric aspect ratio. The single integro-differential equation obtained is solved numerically for different values of the Pacute eclet number and the viscosity ratio. At large values of the latter, the solution consists of a symmetric finger propagating in the middle of the gap or the capillary. Constraints on conventional convection-dispersion-equation approach for studying miscible instabilities in planar Hele endash Shaw cells are obtained. The asymptotic formalism is next used to derive emdash in the limit of zero diffusion emdash a hyperbolic equation for the cross-sectionally averaged concentration, the solution of which is obtained by analytical means. This solution is valid as long as sharp shock fronts do not form. The results are compared with recent numerical simulations of the full problem and experiments of miscible displacement in a narrow capillary. copyright 1997 American Institute of Physics

  14. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  15. Analysis of high aspect ratio jet flap wings of arbitrary geometry.

    Science.gov (United States)

    Lissaman, P. B. S.

    1973-01-01

    Paper presents a design technique for rapidly computing lift, induced drag, and spanwise loading of unswept jet flap wings of arbitrary thickness, chord, twist, blowing, and jet angle, including discontinuities. Linear theory is used, extending Spence's method for elliptically loaded jet flap wings. Curves for uniformly blown rectangular wings are presented for direct performance estimation. Arbitrary planforms require a simple computer program. Method of reducing wing to equivalent stretched, twisted, unblown planform for hand calculation is also given. Results correlate with limited existing data, and show lifting line theory is reasonable down to aspect ratios of 5.

  16. Differential inertial focusing of particles in curved low-aspect-ratio microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Russom, Aman; Gupta, Amit K; Nagrath, Sunitha; Di Carlo, Dino; Edd, Jon F; Toner, Mehmet [BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Boston, MA 02114 (United States)], E-mail: aman@kth.se

    2009-07-15

    Microfluidic-based manipulation of particles is of great interest due to the insight it provides into the physics of hydrodynamic forces. Here, we study a particle-size-dependent phenomenon based on differential inertial focusing that utilizes the flow characteristics of curved, low aspect ratio (channel width >> height), microfluidic channels. We report the emergence of two focusing points along the height of the channel (z-plane), where different sized particles are focused and ordered in evenly spaced trains at correspondingly different lateral positions within the channel cross-section. We applied the system for continuous ordering and separation of suspension particles.

  17. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, February (2017), s. 1342-1346 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : Leptothrix * magnetic modification * iron oxide * high aspect ratio material Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Materials engineering Impact factor: 4.164, year: 2016

  18. The effect of different aspect ratio and bottom heat flux towards contaminant removal using numerical analysis

    International Nuclear Information System (INIS)

    Saadun, M N A; Manaf, M Z A; Zakaria, M S; Hafidzal, M H M; Azwadi, C S Nor; Malek, Z A A

    2013-01-01

    Cubic Interpolated Pseudo-particle (CIP) numerical simulation scheme has been anticipated to predict the interaction involving fluids and solid particles in an open channel with rectangular shaped cavity flow. The rectangular shaped cavity is looking by different aspect ratio in modelling the real pipeline joints that are in a range of sizes. Various inlet velocities are also being applied in predicting various fluid flow characteristics. In this paper, the constant heat flux is introduced at the bottom wall, showing the buoyancy effects towards the contaminant's removal rate. In order to characterize the fluid flow, the numerical scheme alone is initially tested and validated in a lid driven cavity with a single particle. The study of buoyancy effects and different aspect ratio of rectangular geometry were carried out using a MATLAB govern by Navier-Stokes equation. CIP is used as a model for a numerical scheme solver for fluid solid particles interaction. The result shows that the higher aspect ratio coupled with heated bottom wall give higher percentage of contaminant's removal rate. Comparing with the benchmark results has demonstrated the applicability of the method to reproduce fluid structure which is complex in the system. Despite a slight deviation of the formations of vortices from some of the literature results, the general pattern is considered to be in close agreement with those published in the literature

  19. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  20. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2017-01-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible

  1. The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites

    Energy Technology Data Exchange (ETDEWEB)

    De Vivo, B.; Lamberti, P.; Spinelli, G., E-mail: gspinelli@unisa.it; Tucci, V. [Department of Information Engineering, Electrical Engineering and Applied Mathematics—DIEM, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA (Italy); Guadagno, L.; Raimondo, M. [Department of Industrial Engineering—DIIn, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano SA (Italy)

    2015-08-14

    The effect of filler aspect ratio on the electromagnetic properties of epoxy-amine resin reinforced with carbon nanofibers is here investigated. A heat treatment at 2500 °C of carbon nanofibers seems to increase their aspect ratio with respect to as-received ones most likely due to a lowering of structural defects and the improvement of the graphene layers within the dixie cup conformation. These morphological differences revealed by Raman's spectroscopy and scanning electron microscopy analyses may be responsible for the different electrical properties of the resulting composites. The DC characterization of the nanofilled material highlights an higher electrical conductivity and a lower electrical percolation threshold for the heat-treated carbon nanofibers based composites. In fact, the electrical conductivity is about 0.107 S/m and 1.36 × 10{sup −3} S/m for the nanocomposites reinforced with heat-treated and as received fibers, respectively, at 1 wt. % of nanofiller loading, while the electrical percolation threshold falls in the range [0.05–0.32]wt. % for the first nanocomposites and above 0.64 wt. % for the latter. Moreover, also a different frequency response is observed since the critical frequency, which is indicative of the transition from a resistive to a capacitive-type behaviour, shifts forward of about one decade at the same filler loading. The experimental results are supported by theoretical and simulation studies focused on the role of the filler aspect ratio on the electrical properties of the nanocomposites.

  2. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2014-01-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high

  3. Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching

    Science.gov (United States)

    Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki

    2018-06-01

    A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.

  4. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  5. High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch

    International Nuclear Information System (INIS)

    Hayase, K.; Sugimoto, H.; Ashida, H.

    2003-01-01

    The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)

  6. Atomic layer deposition for coating of high aspect ratio TiO.sub.2./sub. nanotube layers

    Czech Academy of Sciences Publication Activity Database

    Zazpe, R.; Knaut, M.; Sopha, H.; Hromádko, L.; Albert, M.; Přikryl, J.; Gärtnerová, Viera; Bartha, J.W.; Macák, J. M.

    2016-01-01

    Roč. 32, č. 41 (2016), s. 10551-10558 ISSN 0743-7463 Institutional support: RVO:68378271 Keywords : aluminum * aluminum coatings * aspect ratio * coatings * nanotubes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.833, year: 2016

  7. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Chung, Kyoo Sun [Hanyang Univ., Seoul (Korea, Republic of); Hong, Sang Heui [Seoul National Univ., Seoul (Korea, Republic of); Kang, Heui Dong [Kyungpook National Univ., Taegu (Korea, Republic of); Lee, Jae Koo [Pohang Inst. of Science and Technology, Kyungnam (Korea, Republic of)

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the `advanced tokamak` physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs.

  8. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    International Nuclear Information System (INIS)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub; Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui; Chung, Kyoo Sun; Hong, Sang Heui; Kang, Heui Dong; Lee, Jae Koo

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the 'advanced tokamak' physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs

  9. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    Science.gov (United States)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  10. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  11. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  12. Compressible gas flow through idealized cracks of large aspect ratio

    International Nuclear Information System (INIS)

    Chivers, T.C.; Skinner, J.; Williams, M.E.

    1975-07-01

    Gas flow through large aspect ratio idealized cracks is considered, where isothermal conditions with choking at exit are assumed in the theoretical analysis. For smooth wall cracks, comparisons are made between experimentally determined flowrates and those predicted, and good agreement is shown. This is followed by consideration of flow through a notional crack to examine the influence of width and surface roughness. By considering flow as simply proportional to Wsup(n), the treatment shows 'n' to reduce with W increasing, but surface roughness increases 'n' over the value appropriate to smooth conditions. From these observations it is concluded that further work is required to determine:- (i) real crack geometry and its influence on any leak-before-break philosophy, and (ii) the influence of real surface roughness on flowrate. (author)

  13. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...... as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual...

  14. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.

    2012-11-01

    In desert sunny clear-sky regions solar penetration can become excessive. This can cause non-uniform daylight distribution, glare and high solar heat gain, affecting both visual and thermal comfort. Shading devices, such as solar screens, were usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space under the desert sunny clear-sky. The larger aim is to arrive at efficient solar screen designs that suit the different orientations.The study was divided into three consecutive phases. In phase one, the effect of the two parameters on Daylight Availability was tested. The solar screen was axially rotated by three different angles at 10° increments. Also, the aspect ratio of the screen opening in both horizontal and vertical directions was changed systematically. Simulation was conducted using the annual Daylight Dynamic Performance Metrics (DDPMs). In phase two, the Annual Daylight Glare Probability (DGP) metric was evaluated for the cases that were found adequate in phase one. In the third phase, the annual solar energy transmittance through the screen was calculated for the cases that achieved acceptable performance in the two previous phases in order to identify the more energy efficient screens.Solar screens with openings having horizontal aspect ratios were found to be the most effective, while those with vertical aspect ratios were achieved the lowest performance. In the North orientation, since almost all the cases that were tested in this research provided acceptable daylighting performance, the designer now have a variety of options to choose from. Preference should be given to screen openings of horizontal aspect ratios, especially the 12:1 and 18:1 (H:V) screens that achieved the best performance where 92% of the space was " daylit" in comparison with only 53

  15. Study of an optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen, E-mail: bghong@jbnu.ac.kr [Department of Quantum System Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of); Kim, Hoseok [Department of Applied Plasma Engineering, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896 (Korea, Republic of)

    2016-11-15

    Highlights: • Optimum configuration of a transmutation reactor based on a low aspect ratio tokamak was found. • Inboard and outboard radial build are determined by plasma physics, engineering and neutronics constraints. • Radial build and equilibrium fuel cycle play a major role in determining the transmutation characteristics. - Abstract: We determine the optimal configuration of a transmutation reactor based on a low-aspect-ratio tokamak. For self-consistent determination of the radial build of the reactor components, we couple a tokamak systems analysis with a radiation transport calculation. The inboard radial build of the reactor components is obtained from plasma physics and engineering constraints, while outboard radial builds are mainly determined by constraints on neutron multiplication, the tritium-breeding ratio, and the power density. We show that the breeding blanket model has an effect on the radial build of a transmutation blanket. A burn cycle has to be determined to keep the fast neutron fluence plasma-facing material below its radiation damage limit. We show that the radial build of the transmutation reactor components and the equilibrium fuel cycle play a major role in determining the transmutation characteristics.

  16. Engineering Design Study of Quasi-Axisymmetric Stellarator with Low Aspect Ratio

    International Nuclear Information System (INIS)

    Matsuoka, Keisuke; Okamura, Shoichi; Nishimura, Shin; Isobe, Mitsutaka; Suzuki, Chihiro; Shimizu, Akihiro; Tanaka, Nobuo; Hasegawa, Mitsuru; Naito, Hideji; Urata, Kazuhiro; Suzuki, Yutaka; Tsukamoto, Tadanori

    2004-01-01

    The engineering design of the quasi-axisymmetric stellarator CHS-qa is described, having a toroidal period number of 2, major radius of 1.5 m, and plasma aspect ratio of 3.2. Although the entire structure of the machine is highly nonaxisymmetric and deformative, the following major engineering concerns for the modular coils and the vacuum vessel have been resolved: (a) modular coil design (curvature and twist of conductors), (b) supporting structures for modular coils, (c) errors due to electromagnetic forces and misalignment in manufacturing processes (analysis shows that the magnetic surface is robust against such disturbances), (d) construction procedure for vacuum vessel and modular coils, and (e) ports for heating and diagnostics

  17. Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Shimizu, Kento; Ogasawara, Tatsuhiko; Nakai, Alisa; Kasuya, Takuji

    2017-01-01

    Due to the complated flow field and aerodynamic forces characteristics, the performance and safety standard of straight-bladed VAWT have not been full developed. The objective of this study is to investigate the effect of rotor aspect ratio and solidity on the power performance in three-dimensional analysis by panel method. The panel method is based on the assumption of an incompressible and potential flow coupled with a free vortex wake. First of all, the fluctuations of power coefficient and the circulation amount distribution of the bound vortex are discussed at the fixed solidity of σ = 0.064 during rotation. Then, the fluctuations of power coefficient and the circulation amount ratio are also investigated in the spanwise direction of the blade. It can be observed from the results that the peak of power coefficient increases with the increase of the ratio of the diameter and blade span length H/D at the fixed solidity. However, the optimum tip speed ratio was expected to be increased with the increase of H/D. Moreover, in the case of the fixed rotor aspect ratio of H/c = 6, the power coefficient depends on the rotor aspect ratio, rather than the ratio of the diameter and blade span length. Compared with the H/D = 1.2, the circulation amount ratio of H/D = 0.9 indicates a large negative value in the blade center position. - Highlights: • Power and vortex characteristic are discussed with panel method. • Effects of the rotor aspect ratio and solidity on the performance are investigated. • For the σ = 0.064, the maximum power coefficient increases with increasing of H/D. • Circulation amount ratio indicates a large negative value in the case of H/D = 0.9. • Power at the blade central position increases with increasing of rotor aspect ratio.

  18. Chromatic aberrations of two-electrode transaxial mirrors

    International Nuclear Information System (INIS)

    Bejzina, L.G.; Karetskaya, S.P.

    1991-01-01

    Second order chromatic aberrations of electrostatic two-electrode transaxial mirrors in case the beam axial trajectory of charged particles is curvilinear are considered. Interrelations between coefficients of linear and angular chromatic aberrations are determined. Values of these coefficients for concave and convex transaxial mirrors with plane electrodes in dependence on potential ratio on electrodes by different onnular clearance radii are presented

  19. Practical Aspects of Log-ratio Coordinate Representations in Regression with Compositional Response

    Directory of Open Access Journals (Sweden)

    Fišerová Eva

    2016-10-01

    Full Text Available Regression analysis with compositional response, observations carrying relative information, is an appropriate tool for statistical modelling in many scientific areas (e.g. medicine, geochemistry, geology, economics. Even though this technique has been recently intensively studied, there are still some practical aspects that deserve to be further analysed. Here we discuss the issue related to the coordinate representation of compositional data. It is shown that linear relation between particular orthonormal coordinates and centred log-ratio coordinates can be utilized to simplify the computation concerning regression parameters estimation and hypothesis testing. To enhance interpretation of regression parameters, the orthogonal coordinates and their relation with orthonormal and centred log-ratio coordinates are presented. Further we discuss the quality of prediction in different coordinate system. It is shown that the mean squared error (MSE for orthonormal coordinates is less or equal to the MSE for log-transformed data. Finally, an illustrative real-world example from geology is presented.

  20. A comparative study of different aspects of manipulating ratio spectra applied for ternary mixtures: derivative spectrophotometry versus wavelet transform.

    Science.gov (United States)

    Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S

    2015-01-25

    This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  2. Development of a virtual probe tip with an application to high aspect ratio microscale features

    International Nuclear Information System (INIS)

    Bauza, Marcin B.; Hocken, Robert J.; Smith, Stuart T.; Woody, Shane C.

    2005-01-01

    Nondestructive measurement of microscale features remains a challenging metrology problem. For example, to assess a high aspect ratio small hole it is currently common to cut a cross section and measure the features of interest using an atomic force microscope, scanning probe microscope, or scanning electron microscope. Typically, these metrology tools may be suitable for surface finish measurement but often lack the capability for dimensional metrology. The aim of this article is to discuss the development of a high aspect-ratio microscale probe for measurement of microscale features. A 700:1 high aspect ratio probe shank is fabricated with a 7 μm diameter, and attached at one end to an oscillator. The oscillator produces a standing wave in the oscillating probe shank as opposed to conventional probes that use a microscale sphere on the end of a comparatively rigid shank. As a result of the standing wave formed in steady state vibration, the free end of the shank generates an amplitude of oscillation greater than the probe shank diameter. Thus, the probe does not require a spherical ball to serve as the contact point and simply uses the contact diameter of the free end of the vibrating shank. This methodology is referred to as a virtual probe tip. The virtual probe tip in conjunction with a nanopositioning scanner is used to measure surface profile measurements over traverse lengths of 130 μm. In this article, results from profiles of a 500 nm step height and a ruby sphere of diameter 1 mm are presented. Experiments in this article indicate the ability to repeatedly resolve surface features of less than 5 nm while maintaining bandwidths greater than 1 kHz. Furthermore, adhesion problems often encountered with micrometer scaled probes were not observed during profile measurements with this virtual probe

  3. All Metal Iron Core For A Low Aspect Ratio Tokamak

    International Nuclear Information System (INIS)

    Gates, D.A.; Jun, C.; Zatz, I.; Zolfaghari, A.

    2010-01-01

    A novel concept for incorporating a iron core transformer within a axisymmetric toroidal plasma containment device with a high neutron flux is described. This design enables conceptual design of low aspect ratio devices which employ standard transformer-driven plasma startup by using all-metal high resistance separators between the toroidal field windings. This design avoids the inherent problems of a multiturn air core transformer which will inevitably suffer from strong neutron bombardment and hence lose the integrity of its insulation, both through long term material degradation and short term neutron-induced conductivity. A full 3-dimensional model of the concept has been developed within the MAXWELL program and the resultant loop voltage calculated. The utility of the result is found to be dependent on the resistivity of the high resistance separators. Useful loop voltage time histories have been obtained using achievable resistivities.

  4. Correlation between MWCNT aspect ratio and the mechanical properties of composites of PMMA and MWCNTs

    Science.gov (United States)

    Mu, Mulan; Teblum, Eti; Figiel, Łukasz; Nessim, Gilbert Daniel; McNally, Tony

    2018-04-01

    The correlation between MWCNT aspect ratio and the quasi-static and dynamic mechanical properties of composites of MWCNTs and PMMA was studied for relatively long MWCNT lengths, in the range 0.3 mm to 5 mm (aspect ratios up to 5 × 105) and at low loading (0.15 wt%). The height of the MWCNTs prepared were modulated by controlling the amount of water vapour introduced in the reactor limiting Ostwald ripening of the catalyst, the formation of amorphous carbon and any increase in CNT diameter. The Tg of PMMA increased by up to 4 °C on addition of the longest tubes as they have the ability to form physical junctions with the polymer chains which lead to enhanced PMMA-MWCNTs interactions and increased mechanical properties, Young’s modulus by 20% on addition of 5 mm long MWCNTs. Predictions of the Young’s modulus of the composites of PMMA and MWCNT with the Mori-Tanaka theory show that future micromechanical models should account for MWCNT agglomeration and polymer-nanotube interactions as a function of CNT length.

  5. Epitaxial growth of quantum rods with high aspect ratio and compositional contrast

    International Nuclear Information System (INIS)

    Li, L. H.; Patriarche, G.; Fiore, A.

    2008-01-01

    The epitaxial growth of quantum rods (QRs) on GaAs was investigated. It was found that GaAs thickness in the GaAs/InAs superlattice used for QR formation plays a key role in improving the QR structural properties. Increasing the GaAs thickness results in both an increased In compositional contrast between the QRs and surrounding layer, and an increased QR length. QRs with an aspect ratio of up to 10 were obtained, representing quasiquantum wires in a GaAs matrix. Due to modified confinement and strain potential, such nanostructure is promising for controlling gain polarization

  6. Analytic free-form lens design for imaging applications with high aspect ratio

    Science.gov (United States)

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan Carlos; Meuret, Youri; Thienpont, Hugo

    2012-10-01

    A new three-dimensional analytic optics design method is presented that enables the coupling of three ray sets with only two free-form lens surfaces. Closely related to the Simultaneous Multiple Surface method in three dimensions (SMS3D), it is derived directly from Fermat's principle, leading to multiple sets of functional differential equations. The general solution of these equations makes it possible to calculate more than 80 coefficients for each implicit surface function. Ray tracing simulations of these free-form lenses demonstrate superior imaging performance for applications with high aspect ratio, compared to conventional rotational symmetric systems.

  7. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  8. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  9. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    Science.gov (United States)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  10. Effects of the aspect ratio on the dye adsorption of ZnO nanorods grown by using a sonochemical method for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Choi, Seok Cheol; Yun, Won Suk; Sohn, Sang Ho; Oh, Sang Jin

    2012-01-01

    Well-aligned ZnO nanorods for the photoelectrode of dye-sensitized solar cells (DSSCs) were grown via a sonochemical method, and the effects of their aspect ratios on the dye adsorption in DSSCs were studied. The control of the aspect ratio of well-aligned ZnO nanorods was performed by tuning the mole concentration of zinc acetate dehydrate in the range of 0.04 ∼ 0.06M. The dye amounts adsorbed in the ZnO nanorods were estimated from the UV-Visible absorbance by using the Beer-Lambert law. The efficiency of DSSCs with ZnO nanorods was measured to investigate the effects of the aspect ratio of the ZnO nanorods on the dye adsorption properties. A change in the aspect ratio of the ZnO nanorods was founded to yield a change in their dye adsorption ability, resulting in a change in the efficiency of the DSSCs.

  11. An Analysis of the Effects of Wing Aspect Ratio and Tail Location on Static Longitudinal Stability Below the Mach Number of Lift Divergence

    Science.gov (United States)

    Axelson, John A.; Crown, J. Conrad

    1948-01-01

    An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.

  12. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    Science.gov (United States)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-12-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  13. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    International Nuclear Information System (INIS)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-01-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  14. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    Science.gov (United States)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  15. The vortex structure and flux creep within superconducting permanent-magnet high aspect-ratio discs

    International Nuclear Information System (INIS)

    Watson, J.H.P.; Younas, I.

    1997-01-01

    Inhomogeneous type II superconducting discs magnetized by an applied field will retain some magnetization when field is switched off so the superconducting disc will behave as a permanent magnet after flux creep has reduced to a low value.This paper examines the superconducting vortex structure within superconducting permanent-magnet high aspect-ratio discs which is consistent with the calculated magnetic field distribution.The discs, with radius R, have the axis along the z-direction and the mid-plane of the disc corresponds to z = 0. These discs with large aspect ratios in the remnant state have a region between radius r l and R where the magnetic field is reversed. Surrounding the line r = r l and z = 0 there is a region where H cl which is in the Meissner state. Near r l the vortex lines are strongly curved. For radii r l vortex lines creep to larger values of r. For radii r > r l vortex lines creep to smaller values of r, meet at r l with vortex lines of opposite sign and form a continuous loop which decreases in size and is finally annihilated in the Meissner region. Flux creep induces lossless currents in the Meissner region. (author)

  16. Analysis of high-aspect-ratio jet-flap wings of arbitrary geometry

    Science.gov (United States)

    Lissaman, P. B. S.

    1973-01-01

    An analytical technique to compute the performance of an arbitrary jet-flapped wing is developed. The solution technique is based on the method of Maskell and Spence in which the well-known lifting-line approach is coupled with an auxiliary equation providing the extra function needed in jet-flap theory. The present method is generalized to handle straight, uncambered wings of arbitrary planform, twist, and blowing (including unsymmetrical cases). An analytical procedure is developed for continuous variations in the above geometric data with special functions to exactly treat discontinuities in any of the geometric and blowing data. A rational theory for the effect of finite wing thickness is introduced as well as simplified concepts of effective aspect ratio for rapid estimation of performance.

  17. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips

    NARCIS (Netherlands)

    Vermeer, Rolf; Berenschot, Johan W.; Sarajlic, Edin; Tas, Niels Roelof; Jansen, Henricus V.

    In this paper we present the wafer-scale fabrication of molded AFM probes with high aspect ratio ultra-sharp three-plane silicon nitride tips. Using $\\langle$111$\\rangle$ silicon wafers a dedicated process is developed to fabricate molds in the silicon wafer that have a flat triangular bottom

  18. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    Science.gov (United States)

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Wang, Lian-Ping; Li, Xin; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, Newark, DE (United States)

    2012-05-15

    Electrode/electrolyte interfacial properties of flexible supercapacitors assembled with nanostructured activated carbon fabric (ACF) electrodes can be tailored by applying a pressure and tuning electrolyte ion size relative to electrode pore size. Experimental results reveal that increasing pressure between the supercapacitor electrodes can significantly improve capacitive performance. The ratio of solvated ion size in the electrolyte to the pore size on the electrodes determines the minimum pressure necessary to achieve an optimum performance. For a specific electrode material, this minimum pressure for optimum performance is primarily governed by the size of the larger solvated ions (either the anions or cations), and is lower ({proportional_to}689 KPa) when the ratio of the solvated ion size to the pore size is higher than 0.6, and is higher (at least 1379 KPa) when the ratio is lower than 0.6. An analytical model capable of predicting the experimental performance data has been developed. These results together provide a fundamental understanding of pressure dependence of electrode/electrolyte interfacial properties and pave the way for practical applications of flexible supercapacitors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Arbitrary scattering of an acoustical Bessel beam by a rigid spheroid with large aspect-ratio

    Science.gov (United States)

    Gong, Zhixiong; Li, Wei; Mitri, Farid G.; Chai, Yingbin; Zhao, Yao

    2016-11-01

    In this paper, the T-matrix (null-field) method is applied to investigate the acoustic scattering by a large-aspect-ratio rigid spheroid immersed in a non-viscous fluid under the illumination of an unbounded zeroth-order Bessel beam with arbitrary orientation. Based on the proposed method, a MATLAB software package is constructed accordingly, and then verified and validated to compute the acoustic scattering by a rigid oblate or prolate spheroid in the Bessel beam. Several numerical examples are carried out to investigate the novel phenomenon of acoustic scattering by spheroids in Bessel beams with arbitrary incidence, with particular emphasis on the aspect ratio (i.e. the ratio of the polar radius over the equatorial radius of the spheroid), the half-cone angle of Bessel beam, the dimensionless frequency, as well as the angle of incidence. The quasi-periodic oscillations are observed in the plots of the far-field backscattering form function modulus versus the dimensionless frequency, owing to the interference between the specular reflection and the Franz wave circumnavigating the spheroid in the surrounding fluid. Furthermore, the 3D far-field scattering directivity patterns at end-on incidence and 2D polar plots at arbitrary angles of incidence are exhibited, which could provide new insights into the physical mechanisms of Bessel beam scattering by flat or elongated spheroid. This research work may provide an impetus for the application of acoustic Bessel beam in engineering practices.

  1. Numerical analysis of energetic particle stabilization of ballooning modes in finite-aspect-ratio tokamaks

    International Nuclear Information System (INIS)

    He Qibing; Peng Qiyang; Qu Wenxiao

    1993-09-01

    The effect of energetic trapped particles on the stabilization of ballooning modes in finite-aspect-ratio tokamaks is numerically analyzed. The numerical solution of boundary value problem of an integro-differential equation is successfully obtained by RKF integral method with variable step size. The results show that the instability domain of ballooning modes becomes small along with the increase of energetic particles pressure. The energetic trapped particles can partially or completely suppress the instability of ballooning modes

  2. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  3. Relaxed and partially relaxed magnetic equilibria in tight-aspect-ratio tori

    International Nuclear Information System (INIS)

    Browning, P.K.; Clegg, J.R.; Duck, R.C.; Rusbridge, M.G.

    1993-01-01

    Force-free equilibrium magnetic fields in tight-aspect-ratio toroidal configurations are investigated. The study is mainly directed to modelling field configurations in the 'rodomak', a modification to the SPHEX gun-injected spheromak in which a current-carrying rod is inserted along the geometric axis. A family of analytical relaxed states (∇ x B = μB, μ constant) is presented for a torus of rectangular cross section, with boundary conditions allowing for flux embedded in the walls, representing the gun. Numerically calculated fields in SPHEX geometry, with μ profiles relevant to the driven phase of operation, are also given. The dependence of the field configurations and global quantities such as energy, helicity and toroidal current on the controlling parameters (gun flux, gun current and rod current) and geometry is discussed. (author)

  4. Resistive vs. total power depositions by Alfven modes in pre-heated low aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cuperman, S.; Bruma, C.; Komoshvili, K.

    2004-01-01

    The power deposition of fast waves launched by a LFS located antenna in a pre-heated, strongly non-uniform low aspect ratio tokamak (START) is investigated. The rigorous computational results indicate a total power deposition by far larger than that predicted for Alfven continuum eigenmodes in cylindrical plasmas. For toroidal wave numbers |N| > 1, the resistive and total power depositions are almost equal. (author)

  5. High-aspect ratio microstructures in p-type GaAs and InP created by proton beam writing

    International Nuclear Information System (INIS)

    Menzel, F.; Spemann, D.; Butz, T.

    2011-01-01

    With proton beam writing (PBW) and subsequent electrochemical etching in HF-solution the creation of high-aspect ratio microstructures in p-type InP was performed for the first time. Microstructures with high surface quality as well as high-aspect ratio possessing lateral dimensions down to 1 μm were produced. Furthermore, free-standing microstructures were created in this material by a combined irradiation with 2.25 MeV protons and 1.125 MeV H 2 + molecules, were the smallest structure dimension of 0.6 μm was achieved for a horizontal needle. The creation of nearly perfect circular microstructures indicates that the crystal structure has little effect on the structuring process by PBW in this material. Moreover, the effect of reduced etching inside of closed irradiation patterns, already known from Si and GaAs, was observed also in InP. In further PBW experiments and subsequent electrochemical etching with KOH-solution p-type GaAs microstructures were produced. By using a 4-fold higher etch current density of 45 mA/cm 2 compared to former PBW experiments on this material the quality of the microstructures could be improved significantly leading to high aspect-ratio structures with minimum lateral sizes of ∼1 μm, nearly vertical side walls as well as circular microstructures. This shows the reduced influence of the crystal structure on the shape of the microstructures compared to experiments with lower etch current density where only flat microstructures with inclined side walls determined by the crystal structure could be created.

  6. Dependence of the ac loss on the aspect ratio in a cable in conduit conductor

    International Nuclear Information System (INIS)

    Cau, F; Bruzzone, P

    2010-01-01

    The coupling current loss in rectangular superconducting cables is strictly dependent on their aspect ratio, which has an impact on the area linked by the field variation and consequently on the currents induced between strands. The relation between the ac loss and aspect ratio is studied with reference to the testing of three short cable in conduit conductor (CICC) samples at the SULTAN test facility. The first conductor is a 25 kA NbTi cable for the JT60-SA tokamak; the second is a 20 kA Nb 3 Sn cable for the HZB hybrid magnet. The last CICC is a 68 kA Nb 3 Sn cable with layout similar to that of the ITER toroidal field (TF) conductor (called the 'European toroidal field (EUTF) alternate'). All the samples are assembled with two conductor sections differing only in their orientation with respect to the external variable field. In the first and third samples, the cable of one leg is rotated by 90 0 , while in the HZB sample it is rotated by 45 0 with respect to the other leg. The ac loss is measured at the SULTAN test facility using a gas flow calorimetric method. A sample length of 39 cm is exposed to a sinusoidal field with an amplitude of ± 0.3 or ± 0.2 T (depending on the superconductor) and frequency variable in the range 0.1-0.8 Hz. A background field of 2 T perpendicular both to the sinusoidal field and to the sample axis is also applied. The ac loss is assessed by measuring the variation of the He enthalpy, assuming the metal enthalpy to be negligible. The loss curve for both legs is discussed in terms of the respective aspect ratios and the results, including data from former test campaigns, are compared with the aim of finding an analytical relation between the loss and the conductor dimensions.

  7. Effect of aspect ratio on natural convective heat transfer adjacent to a vertival isothermal cylinder immersed in pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Eum, Yong Kyoon; Park, Sung Soon

    1990-01-01

    A numerical analysis is performed about the effect of aspect ratio on heat transfer adjacent to a vertical-isothermal cylinder of 0 deg C in pure water. The numerical results for the effect of aspect ratio are presented for ambient water temperature from 1.0 deg C to 15.0 deg C. They include velocity profiles, temperature profiles and mean Nusselt number for the entire flow field. The mean Nusselt numbers of vertival-isothermal cylinder are compared with that of vertival-isothermal plate in increasing aspect ratio of cylinder. Furthermore, the mean Nusselt numbers of unsteady region in the range of 0.084< R<0.328 are obtained by curve-fitting. The natural convection caused by phase change was investigated by experiments when the vertical ice cylinder was immersed in the pure water of which the tempetature range is from 2.0 to 10.0 deg C. Each figure shows a time-exposure photograph of flow occuring at the respective ambient water temperature conditions. As the ambient water temperature is increased from 2.0 to 10.0 deg C, the regimes of upward steady state flows, steady state dual flows and downward steady state flows are observed. Also, the variations of shapes of melting ice cylinder are investigated.(Author)

  8. Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires.

    Science.gov (United States)

    Ozel, Tuncay; Zhang, Benjamin A; Gao, Ruixuan; Day, Robert W; Lieber, Charles M; Nocera, Daniel G

    2017-07-12

    Development of new synthetic methods for the modification of nanostructures has accelerated materials design advances to furnish complex architectures. Structures based on one-dimensional (1D) silicon (Si) structures synthesized using top-down and bottom-up methods are especially prominent for diverse applications in chemistry, physics, and medicine. Yet further elaboration of these structures with distinct metal-based and polymeric materials, which could open up new opportunities, has been difficult. We present a general electrochemical method for the deposition of conformal layers of various materials onto high aspect ratio Si micro- and nanowire arrays. The electrochemical deposition of a library of coaxial layers comprising metals, metal oxides, and organic/inorganic semiconductors demonstrate the materials generality of the synthesis technique. Depositions may be performed on wire arrays with varying diameter (70 nm to 4 μm), pitch (5 μ to 15 μ), aspect ratio (4:1 to 75:1), shape (cylindrical, conical, hourglass), resistivity (0.001-0.01 to 1-10 ohm/cm 2 ), and substrate orientation. Anisotropic physical etching of wires with one or more coaxial shells yields 1D structures with exposed tips that can be further site-specifically modified by an electrochemical deposition approach. The electrochemical deposition methodology described herein features a wafer-scale synthesis platform for the preparation of multifunctional nanoscale devices based on a 1D Si substrate.

  9. Correlation development of natural convection heat transfer in consideration of aspect ratio change and coolant boiling

    International Nuclear Information System (INIS)

    Park, L. J.; Cho, Y. L.; Kang, K. H.; Kim, S. B.; Kim, H. D.; Cho, J. S.; Jung, C. H.

    1999-01-01

    A new correlation on natural convection heat transfer with crust formation in the molten metal pool has been developed in consideration of coolant boiling effect and of aspect ratio change by an increase in crust thickness. Two test results of the convection cooling case, natural and forced convection cooling cases, and of the boiling case were used in the present study. The experimental results have shown that the Nusselt number of the case with boiling condition in the molten metal pool is greater than that of the case with non-boiling condition at the same Rayleigh number. Even though the Rayleigh number rapidly decreases due to an increase of the crust thickness, the Nusselt number does not rapidly decrease because of the aspect ratio effect. From the experimental results, the new correlation between the Nusselt number and Rayleigh number in the molten metal pool with the crust formation has been developed as Nu 0.051(Ra) 1/3 (AR) . 0 .2441 (Φ) 0.025 using Globe and Dropkin correlation

  10. High aspect ratio catalytic reactor and catalyst inserts therefor

    Science.gov (United States)

    Lin, Jiefeng; Kelly, Sean M.

    2018-04-10

    The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.

  11. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    OpenAIRE

    Xavier Ortiz; David Rival; David Wood

    2015-01-01

    To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 10 4 to 2 × 10 5 . Measurements were made for angles of attack between 0°...

  12. Equilibrium paths of an imperfect plate with respect to its aspect ratio

    Science.gov (United States)

    Psotny, Martin

    2017-07-01

    The stability analysis of a rectangular plate loaded in compression is presented, a specialized code based on FEM has been created. Special finite element with 48 degrees of freedom has been used for analysis. The nonlinear finite element method equations are derived from the variational principle of minimum of total potential energy. To trace the complete nonlinear equilibrium paths, the Newton-Raphson iteration algorithm is used, load versus displacement control was changed during the calculation process. The peculiarities of the effects of the initial imperfections on the load-deflection paths are investigated with respect to aspect ratio of the plate. Special attention is paid to the influence of imperfections on the post-critical buckling mode.

  13. The equivalent pore aspect ratio as a tool for pore type prediction in carbonate reservoirs

    OpenAIRE

    FOURNIER , François; Pellerin , Matthieu; Villeneuve , Quentin; Teillet , Thomas; Hong , Fei; Poli , Emmanuelle; Borgomano , Jean; Léonide , Philippe; Hairabian , Alex

    2018-01-01

    International audience; The equivalent pore aspect ratios (EPAR) provide a tool to detect pore types by combining P-and S-wave velocities, porosity, bulk density and mineralogical composition of carbonate rocks. The integration of laboratory measurements, well log data and petrographic analysis of 468 carbonate samples from various depositional and diagenetic settings (Lower Cretaceous pre-salt non-marine carbonates from offshore Brazil, Lower Cretaceous shallow-water platform carbonates from...

  14. Nanostructured mesophase electrode materials: modulating charge-storage behavior by thermal treatment.

    Science.gov (United States)

    Kong, Hye Jeong; Kim, Saerona; Le, Thanh-Hai; Kim, Yukyung; Park, Geunsu; Park, Chul Soon; Kwon, Oh Seok; Yoon, Hyeonseok

    2017-11-16

    3D nanostructured carbonaceous electrode materials with tunable capacitive phases were successfully developed using graphene/particulate polypyrrole (PPy) nanohybrid (GPNH) precursors without a separate process for incorporating heterogeneous species. The electrode material, namely carbonized GPNHs (CGPNHs) featured a mesophase capacitance consisting of both electric double-layer (EDL) capacitive and pseudocapacitive elements at the molecular level. The ratio of EDL capacitive element to pseudocapacitive element (E-to-P) in the mesophase electrode materials was controlled by varying the PPy-to-graphite weight (P w /G w ) ratio and by heat treatment (T H ), which was demonstrated by characterizing the CGPNHs with elemental analysis, cyclic voltammetry, and a charge/discharge test. The concept of the E-to-P ratio (EPR) index was first proposed to easily identify the capacitive characteristics of the mesophase electrode using a numerical algorithm, which was reasonably consistent with the experimental findings. Finally, the CGPNHs were integrated into symmetric two-electrode capacitor cells, which rendered excellent energy and power densities in both aqueous and ionic liquid electrolytes. It is anticipated that our approach could be widely extended to fabricating versatile hybrid electrode materials with estimation of their capacitive characteristics.

  15. Differences in the Aspect Ratio of Gold Nanorods that Induce Defects in Cell Membrane Models.

    Science.gov (United States)

    Lins, Paula M P; Marangoni, Valéria S; Uehara, Thiers M; Miranda, Paulo B; Zucolotto, Valtencir; Cancino-Bernardi, Juliana

    2017-12-19

    Understanding the interactions between biomolecules and nanomaterials is of great importance for many areas of nanomedicine and bioapplications. Although studies in this area have been performed, the interactions between cell membranes and nanoparticles are not fully understood. Here, we investigate the interactions that occur between the Langmuir monolayers of dipalmitoylphosphatidyl glycerol (DPPG) and dipalmitoylphosphatidyl choline (DPPC) with gold nanorods (NR)-with three aspect ratios-and gold nanoparticles. Our results showed that the aspect ratio of the NRs influenced the interactions with both monolayers, which suggest that the physical morphology and electrostatic forces govern the interactions in the DPPG-NR system, whereas the van der Waals interactions are predominant in the DPPC-NR systems. Size influences the expansion isotherms in both systems, but the lipid tails remain conformationally ordered upon expansion, which suggests phase separation between the lipids and nanomaterials at the interface. The coexistence of lipid and NP regions affects the elasticity of the monolayer. When there is coexistence between two phases, the elasticity does not reflect the lipid packaging state but depends on the elasticity of the NP islands. Therefore, the results corroborate that nanomaterials influence the packing and the phase behavior of the mimetic cell membranes. For this reason, developing a methodology to understand the membrane-nanomaterial interactions is of great importance.

  16. Experiments of flow-induced in-line oscillation of a circular cylinder in a water tunnel. 2. Influence of the aspect ratio of a cantilevered circular cylinder

    International Nuclear Information System (INIS)

    Nakamura, Akira; Okajima, Atsushi; Kosugi, Takashi

    2001-01-01

    The flow-induced in-line oscillation of a cantilevered circular cylinder was experimentally studied through free-oscillation tests in a water tunnel. The response displacement amplitude at a circular cylinder tip was measured at reduced velocity from 1.0 to 4.0. A cantilevered cylinder was supported by a plate spring mounted on the water tunnel wall. The cylinder aspect ratio was varied from 5 to 21 to investigate the effect of aspect ratio on the response displacement. It is found that cylinders with aspect ratios of 5 and 10 have one excitation region, while cylinders with aspect ratios of 14 and 21 have two excitation regions. The aspect ratio, therefore, affects the amplitude of the excitation regions. The influence of end-effect was also investigated using cylinders with an end plate attached to the free end. Since the cylinders with an end plate show two excitation regions, even at an aspect ratio of 5, the flow around the free end of a cantilevered cylinder causes the end-effect. The mechanism of vibration was investigated using a cylinder with a splitter plate in wake to prevent alternate vortices. The amplitude is greater than those of a normal cylinder without a splitter plate, especially at V r =2.3 to 3.0, where a cylinder with an end plate shows the second excitation region. In order words, the alternate vortices suppress the amplitude in this range. The maximum amplitude of each excitation region decreases in proportion to C n and the amplitude of the first excitation is more sensitive to C n . (author)

  17. Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate.

    Science.gov (United States)

    Kim, Taegeon; Canlier, Ali; Kim, Geun Hong; Choi, Jaeho; Park, Minkyu; Han, Seung Min

    2013-02-01

    In this work, a modified polyol synthesis by adding KBr and by replacing the AgCl with NaCl seed was used to obtain high quality silver nanowires with long aspect ratios with an average length of 13.5 μm in length and 62.5 nm in diameter. The Ag nanowires suspended in methanol solution after removing any unwanted particles using a glass filter system were then deposited on a flexible polycarbonate substrate using an electrostatic spray system. Transmittance of 92.1% at wavelength of 550 nm with sheet resistance of 20 Ω/sq and haze of 4.9% were measured for the electrostatic sprayed Ag nanowire transparent electrode.

  18. Low-temperature plasma etching of high aspect-ratio densely packed 15 to sub-10 nm silicon features derived from PS-PDMS block copolymer patterns

    International Nuclear Information System (INIS)

    Liu, Zuwei; Sassolini, Simone; Olynick, Deirdre L; Gu, Xiaodan; Hwu, Justin

    2014-01-01

    The combination of block copolymer (BCP) lithography and plasma etching offers a gateway to densely packed sub-10 nm features for advanced nanotechnology. Despite the advances in BCP lithography, plasma pattern transfer remains a major challenge. We use controlled and low substrate temperatures during plasma etching of a chromium hard mask and then the underlying substrate as a route to high aspect ratio sub-10 nm silicon features derived from BCP lithography. Siloxane masks were fabricated using poly(styrene-b-siloxane) (PS-PDMS) BCP to create either line-type masks or, with the addition of low molecular weight PS-OH homopolymer, dot-type masks. Temperature control was essential for preventing mask migration and controlling the etched feature’s shape. Vertical silicon wire features (15 nm with feature-to-feature spacing of 26 nm) were etched with aspect ratios up to 17 : 1; higher aspect ratios were limited by the collapse of nanoscale silicon structures. Sub-10 nm fin structures were etched with aspect ratios greater than 10 : 1. Transmission electron microscopy images of the wires reveal a crystalline silicon core with an amorphous surface layer, just slightly thicker than a native oxide. (paper)

  19. Special aspects of the indirect radiotracer technique when used to study the adsorption and electrochemical reactions of organic substances at solid electrodes

    International Nuclear Information System (INIS)

    Andreev, V.N.; Horanyi, G.; Kazarinov, V.E.

    1986-01-01

    This paper analyzes the possibilities and special aspects of the indirect radiotracer technique with a number of examples. Data are presented concerning the effects of acetic and oxalic acid on chloride ion adsorption on platinized platinum electrodes at a potential E = 0.2 V. The effect on chloride ion adsorption is much larger in the case of oxalic acid, which is evidence for its higher adsorbability on platinum at E = 0.2 V. It is shown that the indirect radiotracer technique offers significant possibilities for studying the electrochemical properties of adsorption products of organic substances

  20. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  1. Effect of aspect ratio and number of meshes on convergence of steady-state flow calculation using Newton-Raphson iterative procedure

    International Nuclear Information System (INIS)

    Shimizu, Takeshi

    1997-01-01

    In this paper, we discuss the stability of the convergence of a nonlinear iteration procedure which may be affected by a large number of numerical factors in a complicated way. A numerical parallel channel flow problem is solved using the finite element method and the Newton-Raphson iteration procedure. The numerical factors, on which we focus attention in this study, are the aspect ratio of the channel and the number of divided meshes. We propose a nondimensional value, which is obtained from the Reynolds number, the aspect ratio and the number of meshes. The results of the numerical experiment show that the threshold of divergence in the iteration is indicated clearly by the present nondimensional value. (author)

  2. A helium-cooled blanket design of the low aspect ratio reactor

    International Nuclear Information System (INIS)

    Wong, C.P.; Baxi, C.B.; Reis, E.E.; Cerbone, R.; Cheng, E.T.

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh

  3. Engineering feasibility of tight aspect ratio Tokamak (spherical torus) reactors

    International Nuclear Information System (INIS)

    Peng, Y-K.M.; Hicks, J.B.

    1990-01-01

    Engineering solutions are identified and analyzed for key high-power-density components of tight aspect ratio tokamak reactors (spherical torus reactors). The potentially extreme divertor heat loads can be reduced to about 3 MW/m 2 in expanded divertors using coils inside the demountable toroidal field coils. Given the long and narrow divertor channels, gaseous divertor targets become possible, which eliminate sputtering and increase the divertor life. The unshielded centre conductor post (CCP) of the toroidal field coil can be made of a single dispersion strengthened copper conductor cooled by high-velocity pressurized water to maintain acceptable copper temperature and strength. Damage and activation of the CCP at a neutron fluence of 10 MW-a/m 2 are also tolerable. Annual replacement of the centre post, the divertor assemblies and the blanket can be accomplished with vertical access for all torus components, which are modularized to reduce size and weight. The technical requirements of these solutions are shown to be comparable with, if not less demanding than, those estimated for conventional tokamak reactors. (author)

  4. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  5. Calculation of stress intensity factors for circumferential semi-elliptical cracks with high aspect ratio in pipes

    International Nuclear Information System (INIS)

    Zareei, A.; Nabavi, S.M.

    2016-01-01

    In this paper, stress intensity factors are calculated at the deepest point of an internal circumferential semi-elliptical crack in a pipe subjected to any arbitrary load. Based on the three dimensional finite element analysis, a weight function is proposed for high aspect ratio semi-elliptical cracks in pipes. An effective expression is developed analytically to evaluate the stress intensity factor using the weight function method. For several crack face stress fields and welding residual stress distributions, the weight function is validated against finite element data and those in the literature. Based on the comparison results, it can be concluded that the solution proposed in this paper is effective in engineering applications. - Highlights: • Analysis of internal circumferential semi-elliptical cracks with high aspect ratio in pipes. • A weight function is proposed for the calculation of the stress intensity factors for the deepest point of the crack. • An effective closed form expression is proposed to evaluate the stress intensity factors. • Prediction of stress intensity factors for any applied stress gradients through the wall thickness without any limitations. • A three-dimensional finite element modeling employs to calculate the stress intensity factors for different geometries.

  6. Instabilities with polyacrylamide solution in small and large aspect ratios Taylor-Couette systems

    International Nuclear Information System (INIS)

    Smieszek, M; Egbers, C; Crumeyrolle, O; Mutabazi, I

    2008-01-01

    We have investigated the stability of viscoelastic polyacrylamide solution in Taylor-Couette system with different aspect ratios. The first instability modes observed in a Taylor-Couette system with Γ = 10 were TVF and WVF, as for Newtonian fluid. At higher Taylor numbers moving vortices occur, a wavy mode with non-stationary vortex size. In the Taylor-Couette system with Γ = 45.9 we note a coexistence of various instability modes. In addition to TVF, counterpropagating waves developed at the transition from the base state flow. At higher Taylor number values Taylor vortices of different sizes occurred. Reduced amplitude Wavy vortex flow has also been observed.

  7. Metal sulfide electrodes and energy storage devices thereof

    Science.gov (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig

    2017-02-28

    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  8. Determination of Optimum Compression Ratio: A Tribological Aspect

    Directory of Open Access Journals (Sweden)

    L. Yüksek

    2013-12-01

    Full Text Available Internal combustion engines are the primary energy conversion machines both in industry and transportation. Modern technologies are being implemented to engines to fulfill today's low fuel consumption demand. Friction energy consumed by the rubbing parts of the engines are becoming an important parameter for higher fuel efficiency. Rate of friction loss is primarily affected by sliding speed and the load acting upon rubbing surfaces. Compression ratio is the main parameter that increases the peak cylinder pressure and hence normal load on components. Aim of this study is to investigate the effect of compression ratio on total friction loss of a diesel engine. A variable compression ratio diesel engine was operated at four different compression ratios which were "12.96", "15:59", "18:03", "20:17". Brake power and speed was kept constant at predefined value while measuring the in- cylinder pressure. Friction mean effective pressure ( FMEP data were obtained from the in cylinder pressure curves for each compression ratio. Ratio of friction power to indicated power of the engine was increased from 22.83% to 37.06% with varying compression ratio from 12.96 to 20:17. Considering the thermal efficiency , FMEP and maximum in- cylinder pressure optimum compression ratio interval of the test engine was determined as 18.8 ÷ 19.6.

  9. Extension of the beam theory for polymer bio-transducers with low aspect ratios and viscoelastic characteristics

    International Nuclear Information System (INIS)

    Du, Ping; Lin, I-Kuan; Zhang, Xin; Lu, Hongbing

    2010-01-01

    Polydimethylsiloxane (PDMS)-based micropillars (or microcantilevers) have been used as bio-transducers for measuring cellular forces on the order of pN to µN. The measurement accuracy of these sensitive devices depends on appropriate modeling to convert the micropillar deformations into the corresponding reaction forces. The traditional approach to calculating the reaction force is based on the Euler beam theory with consideration of a linear elastic slender beam for the micropillar. However, the low aspect ratio in geometry of PDMS micropillars does not satisfy the slender beam requirement. Consequently, the Timoshenko beam theory, appropriate for a beam with a low aspect ratio, should be used. In addition, the inherently time-dependent behavior in PDMS has to be considered for accurate force conversion. In this paper, the Timoshenko beam theory, along with the consideration of viscoelastic behavior of PDMS, was used to model the mechanical response of micropillars. The viscoelastic behavior of PDMS was characterized by stress relaxation nanoindentation using a circular flat punch. A correction procedure was developed to determine the load–displacement relationship with consideration of ramp loading. The relaxation function was extracted and described by a generalized Maxwell model. The bending of rectangular micropillars was performed by a wedge indenter tip. The viscoelastic Timoshenko beam formula was used to calculate the mechanical response of the micropillar, and the results were compared with measurement data. The calculated reaction forces agreed well with the experimental data at three different loading rates. A parametric study was conducted to evaluate the accuracy of the viscoelastic Timoshenko beam model by comparing the reaction forces calculated from the elastic Euler beam, elastic Timoshenko beam and viscoelastic Euler beam models at various aspect ratios and loading rates. The extension of modeling from the elastic Euler beam theory to the

  10. Hollow density profile and particle transport of ECH plasmas in the low-aspect-ratio heliotron/torsatron CHS

    International Nuclear Information System (INIS)

    Iguchi, H.; Kubo, S.; Idei, H.

    1993-01-01

    Transport enhancement due to helical ripples is the main problem for a low-aspect-ratio helical system to survive as a magnetic fusion device. Optimization of the magnetic configuration has been experimentally studied for neutral beam heated plasmas in the Compact Helical System (CHS). A confinement regime compatible with the LHD scaling has been obtained by shifting the magnetic axis inward with respect to the minor axis of the helical windings. However a power balance analysis suggests that the improvement of plasma parameters has mainly been achieved by the improvement of power deposition. On the other hand, electron density profiles become peaked with the inward shifted magnetic axis in contrast to flattened profiles with the outward shifted one. A question arises: Does the magnetic structure really affect transport processes? In order to answer this question, it is most suitable to examine ECH plasmas in a low collisionality regime. In this paper we report some characteristics of the ECH plasmas in the low-aspect-ratio device CHS and discuss the effect of magnetic field ripples on transport processes. (author) 10 refs., 4 figs

  11. Effects of building aspect ratio, diurnal heating scenario, and wind speed on reactive pollutant dispersion in urban street canyons.

    Science.gov (United States)

    Tong, Nelson Y O; Leung, Dennis Y C

    2012-01-01

    A photochemistry coupled computational fluid dynamics (CFD) based numerical model has been developed to model the reactive pollutant dispersion within urban street canyons, particularly integrating the interrelationship among diurnal heating scenario (solar radiation affections in nighttime, daytime, and sun-rise/set), wind speed, building aspect ratio (building-height-to-street-width), and dispersion of reactive gases, specifically nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3) such that a higher standard of air quality in metropolitan cities can be achieved. Validation has been done with both experimental and numerical results on flow and temperature fields in a street canyon with bottom heating, which justifies the accuracy of the current model. The model was applied to idealized street canyons of different aspect ratios from 0.5 to 8 with two different ambient wind speeds under different diurnal heating scenarios to estimate the influences of different aforementioned parameters on the chemical evolution of NO, NO2 and O3. Detailed analyses of vertical profiles of pollutant concentrations showed that different diurnal heating scenarios could substantially affect the reactive gases exchange between the street canyon and air aloft, followed by respective dispersion and reaction. Higher building aspect ratio and stronger ambient wind speed were revealed to be, in general, responsible for enhanced entrainment of O3 concentrations into the street canyons along windward walls under all diurnal heating scenarios. Comparatively, particular attention can be paid on the windward wall heating and nighttime uniform surface heating scenarios.

  12. Effects of aspect ratio and specimen size on uniaxial failure stress of iron green bodies at high strain rates

    Directory of Open Access Journals (Sweden)

    Kuroyanagi Yuki

    2015-01-01

    Full Text Available Powder metallurgy is used for the production of a number of mechanical parts and is an essential production method. These are great advantages such as product cost effectiveness and product uniqueness. In general, however parts created by powder metallurgy have low strength because of low density. In order to increase strength as well as density, new techniques such as high-velocity-compaction (HVC was developed and further investigation has been conducted on improvement of techniques and optimum condition using computer simulation. In this study, the effects of aspect ratio and specimen size of iron green bodies on failure strength of uniaxial compression and failure behavior were examined using a split Hopkinson pressure Bar. The diameters of specimens were 12.5 mm and 25 mm the aspect ratios (thickness/diameter were 0.8 and 1.2.

  13. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  14. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  15. Redox hydrogel based bienzyme electrode for L-glutamate monitoring.

    Science.gov (United States)

    Belay, A; Collins, A; Ruzgas, T; Kissinger, P T; Gorton, L; Csöregi, E

    1999-02-01

    Amperometric bienzyme electrodes based on coupled L-glutamate oxidase (GlOx) and horseradish peroxidase (HRP) were constructed for the direct monitoring of L-glutamate in a flow injection (FI)-system. The bienzyme electrodes were constructed by coating solid graphite rods with a premixed solution containing GlOx and HRP crosslinked with a redox polymer formed of poly(1-vinylimidazole) complexed with (osmium (4-4'-dimethylbpy)2 Cl)II/III. Poly(ethylene glycol) diglycidyl ether (PEGDGE) was used as the crosslinker and the modified electrodes were inserted as the working electrode in a conventional three electrode flow through amperometric cell operated at -0.05 V versus Ag¿AgCl (0.1 M KCl). The bienzyme electrode was optimized with regard to wire composition, Os-loading of the wires, enzyme ratios, coating procedure, flow rate, effect of poly(ethyleneimine) addition, etc. The optimized electrodes were characterized by a sensitivity of 88.36 +/- 0.14 microA mM(-1) cm(-2), a detection limit of 0.3 microM (calculated as three times the signal-to-noise ratio), a response time of less than 10 s and responded linearly between 0.3 and 250 microM (linear regression coefficient = 0.999) with an operational stability of only 3% sensitivity loss during 8 h of continuous FI operation at a sample throughput of 30 injections h(-1).

  16. Finite Larmor radius effects on Alfven wave current drive in low-aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K.; Cuperman, S.; Bruma, C.

    1998-01-01

    Alfven wave current drive (AWCD) in low-aspect ratio (A≡R/a=1/ε > or approx. 1) tokamaks (LARTs) is studied numerically. For this, the full-wave equation (E parallel ≠0) with a Vlasov-based dielectric tensor is solved by relaxation techniques, subject to appropriate boundary conditions at the plasma centre and at the plasma-vacuum interface, as well as the concentric antenna current sheet and at the external metallic wall. A systematic investigation of the physical characteristics of the AWCD generated in LARTs when kinetic effects are considered is carried out and illustrative results are presented and discussed. (author)

  17. Probing Electrode Heterogeneity Using Fourier-Transformed Alternating Current Voltammetry: Application to a Dual-Electrode Configuration.

    Science.gov (United States)

    Tan, Sze-Yin; Unwin, Patrick R; Macpherson, Julie V; Zhang, Jie; Bond, Alan M

    2017-03-07

    Quantitative studies of electron transfer processes at electrode/electrolyte interfaces, originally developed for homogeneous liquid mercury or metallic electrodes, are difficult to adapt to the spatially heterogeneous nanostructured electrode materials that are now commonly used in modern electrochemistry. In this study, the impact of surface heterogeneity on Fourier-transformed alternating current voltammetry (FTACV) has been investigated theoretically under the simplest possible conditions where no overlap of diffusion layers occurs and where numerical simulations based on a 1D diffusion model are sufficient to describe the mass transport problem. Experimental data that meet these requirements can be obtained with the aqueous [Ru(NH 3 ) 6 ] 3+/2+ redox process at a dual-electrode system comprised of electrically coupled but well-separated glassy carbon (GC) and boron-doped diamond (BDD) electrodes. Simulated and experimental FTACV data obtained with this electrode configuration, and where distinctly different heterogeneous charge transfer rate constants (k 0 values) apply at the individual GC and BDD electrode surfaces, are in excellent agreement. Principally, because of the far greater dependence of the AC current magnitude on k 0 , it is straightforward with the FTACV method to resolve electrochemical heterogeneities that are ∼1-2 orders of magnitude apart, as applies in the [Ru(NH 3 ) 6 ] 3+/2+ dual-electrode configuration experiments, without prior knowledge of the individual kinetic parameters (k 0 1 and k 0 2 ) or the electrode size ratio (θ 1 :θ 2 ). In direct current voltammetry, a difference in k 0 of >3 orders of magnitude is required to make this distinction.

  18. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  19. Imprinted zeolite modified carbon paste electrode as a potentiometric sensor for uric acid

    Science.gov (United States)

    Khasanah, Miratul; Widati, Alfa Akustia; Fitri, Sarita Aulia

    2016-03-01

    Imprinted zeolite modified carbon paste electrode (carbon paste-IZ) has been developed and applied to determine uric acid by potentiometry. The imprinted zeolite (IZ) was synthesized by the mole ratio of uric acid/Si of 0.0306. The modified electrode was manufactured by mass ratio of carbon, IZ and solid paraffin was 40:25:35. The modified electrode had shown the measurement range of 10-5 M to 10-2 M with Nernst factor of 28.6 mV/decade, the detection limit of 5.86 × 10-6 M and the accuracy of 95.3 - 105.0%. Response time of the electrode for uric acid 10-5 M - 10-2 M was 25 - 44 s. The developed electrode showed the high selectivity toward uric acid in the urea matrix. Life time of the carbon paste-IZ electrode was 10 weeks.

  20. Isofocusing lens with cylindrical electrodes for charged particle beam with finite emittance

    International Nuclear Information System (INIS)

    Shpak, E.V.; Smirnova, A.A.

    1995-01-01

    An axially symmetric lens, consisting of three cylindrical electrodes and designed for shaping the beams of charged particles with final emittance, is studied. The potentials on the lens electrodes, which ensure the maintenance of the crossover formed by the lens, are calculated. The dependences of the ratios of potentials on the lens electrodes are analyzed for different values of R 0 /R 0 1 ratios, where R 0 and R 1 are maximum values of initial values of coordinates and the slopes in the crossover, respectively. 4 refs.; 3 figs

  1. High-aspect ratio micro- and nanostructures enabled by photo-electrochemical etching for sensing and energy harvesting applications

    Science.gov (United States)

    Alhalaili, Badriyah; Dryden, Daniel M.; Vidu, Ruxandra; Ghandiparsi, Soroush; Cansizoglu, Hilal; Gao, Yang; Saif Islam, M.

    2018-03-01

    Photo-electrochemical (PEC) etching can produce high-aspect ratio features, such as pillars and holes, with high anisotropy and selectivity, while avoiding the surface and sidewall damage caused by traditional deep reactive ion etching (DRIE) or inductively coupled plasma (ICP) RIE. Plasma-based techniques lead to the formation of dangling bonds, surface traps, carrier leakage paths, and recombination centers. In pursuit of effective PEC etching, we demonstrate an optical system using long wavelength (λ = 975 nm) infra-red (IR) illumination from a high-power laser (1-10 W) to control the PEC etching process in n-type silicon. The silicon wafer surface was patterned with notches through a lithography process and KOH etching. Then, PEC etching was introduced by illuminating the backside of the silicon wafer to enhance depth, resulting in high-aspect ratio structures. The effect of the PEC etching process was optimized by varying light intensities and electrolyte concentrations. This work was focused on determining and optimizing this PEC etching technique on silicon, with the goal of expanding the method to a variety of materials including GaN and SiC that are used in designing optoelectronic and electronic devices, sensors and energy harvesting devices.

  2. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Directory of Open Access Journals (Sweden)

    Wojciech Szmyt

    2017-01-01

    Full Text Available In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i the gas diffusion coefficient inside such arrays, (ii the time between collisions of molecules with the nanocylinder walls (mean time of flight, (iii the surface impingement rate, and (iv the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  3. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  4. Direct stamping of silver nanoparticles toward residue-free thick electrode

    Directory of Open Access Journals (Sweden)

    Jiseok Kim, Kevin Wubs, Byeong-Soo Bae and Woo Soo Kim

    2012-01-01

    Full Text Available Direct stamping of functional materials has been developed for cost-effective and process-effective manufacturing of nano/micro patterns. However, there remain several challenging issues like the perfect removal of the residual layer and realization of high aspect ratio. We have demonstrated facile fabrication of flexible strain sensors that have microscale thick interdigitated capacitors with no residual layer by a simple direct stamping with silver nanoparticles (AgNPs. Polyurethane (PU prepolymer was utilized as an adhesive layer to transfer AgNPs more efficiently during the separation step of the flexible stamp from directly stamped AgNPs. Scanning electron microscopy images and energy dispersive x-ray spectroscopy analysis revealed residue-free transfer of microscale thick interdigitated electrodes onto two different flexible substrates (elastomeric and brittle for the application to highly sensitive strain sensors.

  5. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Song, E-mail: tiansong22@126.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Hejun, E-mail: lihejun@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-04-30

    Highlights: • HfC naobelts accompanied by HfC nanowires were synthesized by a catalytic CVD method. • HfC nanobelts as a novel structure of HfC ceramic are reported for the first time. • HfC nanobelts have 100–200 μm in lengths and reach up to 10 μm in widths. • The synthesized product is promising field nanoemitters. - Abstract: As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor–liquid–solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO{sub 2} shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm{sup −1} and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  6. [Detection of surface EMG signal using active electrode].

    Science.gov (United States)

    He, Qinghua; Peng, Chenglin; Wu, Baoming; Wang, He

    2003-09-01

    Research of surface electromyogram(EMG) signal is important in rehabilitation medicine, sport medicine and clinical diagnosis, accurate detection of signal is the base of quantitative analysis of surface EMG signal. In this article were discussed how to reduce possible noise in the detection of surface EMG. Considerations on the design of electrode unit were presented. Instrumentation amplifier AD620 was employed to design a bipolar active electrode for use in surface EMG detection. The experiments showed that active electrode could be used to improve signal/noise ratio, reduce noise and detect surface EMG signal effectively.

  7. The impact of changing solar screen rotation angle and its opening aspect ratios on Daylight Availability in residential desert buildings

    KAUST Repository

    Sherif, Ahmed H.; Sabry, Hanan M.; Gadelhak, Mahmoud I.

    2012-01-01

    usually used to diffuse and prevent direct solar penetration into spaces. This paper investigates the impact of changing solar screen axial rotation angle and screen opening aspect ratio on daylighting performance in a typical residential living room space

  8. On the Generation of Transport Suppression Barriers by Externally Driven Alfven Waves in D-Shaped, Low Aspect Ratio Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.

    2003-01-01

    We investigate quantitatively the possibility of turbulence suppression through the generation of transport barriers in pre-heated low aspect ratio tokamaks (LARTs) by the sheared electric fields generated by externally driven rf waves in the frequency range ω A ≅ ci (ω A and ω ci are, respectively, Alfven and ion cyclotron frequencies). To this aim the following sequential steps are followed: (1) Solutions of the resistive two-fluid model full wave equation for a realistic LART configuration (D-shape cross-section and aspect ratio, R/a ∼> 1; as well as suitably located low field side, LFS, antenna) upon using a quite general dielectric tensor operator; (2) Calculation of the ponderomotive forces and their magnetic surface averages; (3) Solution of a strongly non-linear differential equation for the quasi-stationary radial electric field, including the particle orbit squeezing effects, based on the results of steps (1) and (2); and (4) Calculation of the radial flow shear, S perpend ; for both banana and potato collisional regimes

  9. Theory and observation of compressional Alfven eigenmodes in low aspect ratio plasma

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.

    2002-01-01

    A new theory of radially and poloidally localized Compressional Alfven Eigenmodes (CAE) in low aspect ratio plasma is reported. The theory is applied to identify recently observed instabilities in the MHz frequency range in National Spherical Torus experiments (NSTX). The frequency of observed CAEs is correlated with the characteristic Alfven velocity of the plasma. The observed high frequency modes are explained as CAEs driven by energetic beam ions. The CAE frequency is determined by the Alfven frequency at the mode location on the low field side of the plasma and is given approximately by ω CAE v A m=r, where m is the poloidal mode number, and r is the local minor radius. CAEs are destabilized by free energy in the energetic ion velocity space gradient via Doppler shifted cyclotron resonance with beam ions. Properties of the CAE instability driven by different NBI ion distributions are presented. (author)

  10. Electrodes for bio-application: recording and stimulation

    International Nuclear Information System (INIS)

    Fontes, M B A

    2013-01-01

    Recording and stimulation electrodes applied on excitable tissue are the basis of electrophysiological research, such as brain, muscles, peripheral nerves or sensory systems. Electrode-electrolyte impedance is one of the important characteristics due to its influence on the signal/noise ratio, signal distortion and built-up voltage. Strategies to lowering and tuning the impedance are achieved by biasing iridium oxide modified platinum microelectrodes. Surface and impedance analysis after pulse stimulation are also addressed.

  11. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lanlan [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Liu, Hongzhong, E-mail: hzliu@mail.xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Jiang, Weitao, E-mail: wtjiang@mail.xjtu.edu.cn [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, Wei [Key Laboratory of Mechanics on Western Disasters and Environment, Lanzhou University, Lanzhou 730000 (China); Chen, Bangdao [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); Li, Xin [Department of Microelectronics, Xi’an Jiaotong University, Xi’an 710049 (China); Ding, Yucheng [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China); An, Ningli [Department of Packaging Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2014-12-15

    Graphical abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA), in which the dimension of each micro-ring is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness is successfully fabricated, as shown in the SEM image of figure (a). Due to the MRA with ultrahigh aspect ratio of dielectric-metal sidewall, the FUN-membrane can be transferred to either rigid or flexible substrate to be used as the cathode for lightweight display panel, as shown in the schematic of figure (b). - Highlights: • Exploring a new fabrication method for the freestanding ultrathin nano-membrane (FUN-membrane). • FUN-membrane is composed of micro-ring array with ultrahigh aspect ratio of the insulator-metal sidewall. • The sharp metal edge of each micro-ring is preferred to be served as the micro-emitter. - Abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 10{sup 4} and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due

  12. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    International Nuclear Information System (INIS)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-01-01

    Graphical abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA), in which the dimension of each micro-ring is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness is successfully fabricated, as shown in the SEM image of figure (a). Due to the MRA with ultrahigh aspect ratio of dielectric-metal sidewall, the FUN-membrane can be transferred to either rigid or flexible substrate to be used as the cathode for lightweight display panel, as shown in the schematic of figure (b). - Highlights: • Exploring a new fabrication method for the freestanding ultrathin nano-membrane (FUN-membrane). • FUN-membrane is composed of micro-ring array with ultrahigh aspect ratio of the insulator-metal sidewall. • The sharp metal edge of each micro-ring is preferred to be served as the micro-emitter. - Abstract: A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 10 4 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the

  13. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    Science.gov (United States)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  14. Destruction of magnetic surfaces in the edge of a large aspect ratio Tokamak with ergodic limiter

    International Nuclear Information System (INIS)

    Viana, R.L.; Caldas, I.L.

    1990-01-01

    The model of Martin and Taylor for a large aspect-ratio Tokamak with an ergodic limiter is considered. In order to study the onset of chaotic behaviour for the magnetic field lines in the edge of the vessel, a Hamiltonian formulation is constructed for the system and the overlap of two peripheral magnetic islands is considered. So, it is possible to determine a threshold for the ergodic limiter current to cause destruction of rational magnetic surfaces in this region. (Author)

  15. Insulated electrocardiographic electrodes. [without paste electrolyte

    Science.gov (United States)

    David, R. M.; Portnoy, W. A. (Inventor)

    1975-01-01

    An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.

  16. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    Science.gov (United States)

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  17. Electrodes for stochastic cooling of the FNAL antiproton source

    International Nuclear Information System (INIS)

    Voelker, F.

    1982-11-01

    AN electrode array for stochastic cooling is being developed for use on the FNAL antiproton source. With minor power handling modifications, the same electrodes can function as pickups or as kickers. When used as pickups, a large array is needed to increase the signal-to-noise ratio. Each electrode is one element of a pair of directional coupler loops that are mounted flush with the upper and lower walls of the beam chamber. The loops, fabricated from flat metal plates, are supported by specially shaped legs

  18. Study on the change of aspect ratios of small surface cracks emanated from a toe of corner boxing; Mawashi yosetsudome tanbu kara hassei denpasuru bishi bisho hyomen kiretsu no aspect hi henka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Toyosada, M; Yamaguchi, K; Takeda, K; Watanabe, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-01

    The fatigue test of specimens with a stiffener was carried out to examine the change in aspect ratio (crack depth/length) of fatigue cracks in a stress concentration field and residual stress field. The aspect ratio of surface cracks just after generation can be represented with the single virtual surface crack with the same value as K value at the deepest point considering an interference effect from near cracks. No discontinuous change in K value is found at the deepest point even during growth and combination of cracks on a surface. The change in K value at the deepest point is thus the criterion to represent growth and combination of surface cracks considering the interference effect. The change in aspect ratio of the typical single virtual surface crack linearly decreases with an increase in crack depth. The shape of surface cracks generating and growing in a residual stress field is more flat than that in no residual stress field. In addition, in a residual stress field, surface cracks are longer at the same crack depth, and fatigue lives are shorter. 7 refs., 12 figs.

  19. Critical electrode size in measurement of d33 coefficient of films via spatial distribution of piezoelectric displacement

    International Nuclear Information System (INIS)

    Wang Zhihong; Miao Jianmin

    2008-01-01

    Spatial distributions of piezoelectric displacement response across the top electrode have been used in this paper to measure the piezoelectric coefficient d 33 of films based on the converse piezoelectric effect. The technical details and features of a scanning laser Doppler vibrometer have been summarized and discussed for accurately obtaining the spatial displacement distributions. Three definitions, including the apparent, the effective and the constrained piezoelectric coefficient d 33 of films, have been clarified and used to better understand the fundamental phenomenon behind the measured displacement distributions. Finite element analysis reveals that both the apparent and the effective piezoelectric coefficients depend on the electrode radius of test capacitor as well as film thickness. However, there exists a critical electrode size for apparent piezoelectric coefficients and a critical test capacitor aspect ratio for effective piezoelectric coefficient. Beyond their respective critical values, both coefficients converge to the constrained piezoelectric coefficient irrespective of film thickness. The finding of the critical electric size makes it possible to consistently measure the constrained piezoelectric coefficient of films by using the spatial distributions of the piezoelectric displacement response and becomes the fundamental criterion of this measurement method

  20. Digital simulation of chronoamperometry at an electrode within a hemispherical polymer drop containing an enzyme: comparison of a hemispherical with a flat disk electrode

    DEFF Research Database (Denmark)

    Britz, Dieter; Strutwolf, Jörg

    2013-01-01

    . As well, a cylindrical electrode with length much greater than its diameter and coated with a layer of polymer/enzyme was treated. The ratio of steady state currents at the hemispherical to the disk electrode is not, as has sometimes been assumed, always equal to π/2; indeed this is only approached...

  1. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E. [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  2. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    Science.gov (United States)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  3. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    International Nuclear Information System (INIS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-01-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label

  4. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp [Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Soriano, D. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Pedersen, J. G. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Roche, S. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  5. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J.; Soriano, D.; Pedersen, J. G.; Roche, S.

    2014-01-01

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO 2 /FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO 2 /FGNPA junction also drastically enhances TMR ratios up to ∼100%

  6. Ternary Ni–Cu–OH and Ni–Co–OH electrodes for electrochemical energy storage

    KAUST Repository

    Alhebshi, Nuha

    2015-10-01

    In this project, Ni–Cu–OH and Ni–Co–OH ternary electrodes have been prepared. Different Ni:Cu and Ni:Co ratios were deposited by chemical bath deposition (CBD) at room temperature on carbon microfibers. Since Ni(OH)2 is notorious for poor cycling stability, the goal of the work was to determine if doping with Cu or Co could improve Ni(OH)2 cycling stability performance and conductivity against reaction with electrolyte. It is observed that the electrodes with Ni:Cu and Ni:Co composition ratio of 100:10 result in the optimum capacitance and cycling stability in both Ni–Cu–OH and Ni–Co–OH electrodes. This improvement in cycling stability can be attributed to the higher redox reversibility as indicated by the smaller CV redox peak separation. In addition, it is found that decreasing Cu and Co ratios, with fixed CBD time, enhances nanoflakes formation, and hence increases electrode capacitance. For the optimum composition (Ni:Co = 100:10), composites of the ternary electrodes with graphene and carbon nanofibers were also tested, with resultant improvement in potential window, equivalent series resistance, areal capacitance and cycling stability.

  7. Hydrogen electrode reaction: A complete kinetic description

    International Nuclear Information System (INIS)

    Quaino, P.M.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2007-01-01

    The kinetic description of the hydrogen electrode reaction (HER) in the whole range of overpotentials (-0.2 < η (V) < 0.40) is presented. The Volmer-Heyrovsky-Tafel mechanism was solved considering simultaneously the following items: (i) the diffusional contribution of the molecular hydrogen from and towards the electrode surface, (ii) the forward and backward reaction rates of each elementary step and (iii) a Frumkin type adsorption for the reaction intermediate. In order to verify the descriptive capability of the kinetic expressions derived, an experimental study of the HER was carried out on a rotating platinum disc electrode in acid solution. From the correlation of these results the elementary kinetic parameters were evaluated and several aspects related to the kinetic mechanism were discussed. Finally, the use of these kinetic expressions to interpret results obtained on microelectrodes is also analysed

  8. Single-Run Single-Mask Inductively-Coupled-Plasma Reactive-Ion-Etching Process for Fabricating Suspended High-Aspect-Ratio Microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng; Fan, Kuang-Chao

    2006-01-01

    In this work, we present a single-run single-mask (SRM) process for fabricating suspended high-aspect-ratio structures on standard silicon wafers using an inductively coupled plasma-reactive ion etching (ICP-RIE) etcher. This process eliminates extra fabrication steps which are required for structure release after trench etching. Released microstructures with 120 μm thickness are obtained by this process. The corresponding maximum aspect ratio of the trench is 28. The SRM process is an extended version of the standard process proposed by BOSCH GmbH (BOSCH process). The first step of the SRM process is a standard BOSCH process for trench etching, then a polymer layer is deposited on trench sidewalls as a protective layer for the subsequent structure-releasing step. The structure is released by dry isotropic etching after the polymer layer on the trench floor is removed. All the steps can be integrated into a single-run ICP process. Also, only one mask is required. Therefore, the process complexity and fabrication cost can be effectively reduced. Discussions on each SRM step and considerations for avoiding undesired etching of the silicon structures during the release process are also presented.

  9. Tokamak reactor designs as a function of aspect ratio

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Stambaugh, R.D.

    2000-01-01

    This paper assesses the technical and economic potential of tokamak power plants which utilize superconducting coil (SC) or normal conducting coil (NC) designs as a function of aspect ratio (A). Based on the results from plasma equilibrium calculations, the key physics design parameters of β N , β p , β T , and κ were fitted to parametric equations covering A in the range of 1.2-6. By using ARIES-RS and ARIES-ST as reference design points, a fusion reactor system code was used to project the performance and cost of electricity (COE) of SC and NC reactor designs over the same range of A. The principle difference between the SC and the NC designs are the inboard standoff distance between the coil and the inboard first wall, and the maximum central column current density used for respective coil types. Results show that at an output power of 2 GWe both NC and SC designs can project COE in the respectable range of 62-65 mill/kW h at gross thermal efficiency of 46%, with neutron wall loading (Γ n ) ∼7 MW/m 2 . More importantly, we have learned that based on the present knowledge of equilibrium physics and fusion power core components and system design we can project the performance and COE of reactor designs at least for the purpose of comparative assessment. Tokamak design points can then be selected and optimized for testing or commercial devices as a function of output power, A and Γ n for both SC and NC design options

  10. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries

    Science.gov (United States)

    Tran, Hai Yen; Greco, Giorgia; Täubert, Corina; Wohlfahrt-Mehrens, Margret; Haselrieder, Wolfgang; Kwade, Arno

    2012-07-01

    The electrode manufacturing for lithium-ion batteries is based on a complex process chain with several influencing factors. A proper tailoring of the electrodes can greatly improve both the electrochemical performances and the energy density of the battery. In the present work, some significant parameters during the preparation of LiNi0.8Co0.15Al0.05O2-based cathodes were investigated. The active material was mixed with a PVDF-binder and two conductive additives in different ratios. The electrode thickness, the degree of compacting and the conductive agent type and mixing ratio have proven to have a strong impact on the electrochemical performances of the composite electrodes, especially on their behaviour at high C-rates. Further it has been shown that the compacting has an essential influence on the mechanical properties of NCA coatings, according to their total, ductile and elastic deformation behaviour.

  11. Positioning of electrode plane systematically influences EIT imaging.

    Science.gov (United States)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Müller-Lisse, Ullrich; Möller, Knut; Zhao, Zhanqi

    2015-06-01

    Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔIERV/ERV, ΔIVT/VT and ΔIIRV/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔIERV/ERV ratio in all subjects was significantly higher than the normalized ΔIIRV/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions.

  12. Effect of aspect ratio on relationship between flow resistance and flow regime of two-phase flow in rectangular channel

    International Nuclear Information System (INIS)

    Yan Chaoxing; Yan Changqi; Sun Licheng; Xing Dianchuan; Wang Yang

    2013-01-01

    On the basis of visual observation, the effects of aspect ratio on relationship between flow resistance and flow regime were investigated experimentally for two-phase flow in three rectangular channels with the same cross-section width of 43 mm and different heights of 1.41, 3 and 10 mm, respectively. According to the criteria in terms of restriction factor C o , the former two channels belong to narrow channel, whereas the last one is conventional channel. The experimental results show that the two-phase pressure drops in rectangular channel with different aspect ratios have different variation trends with the increase of the gas velocity. For the 10 mm channel, the gravitational pressure drop makes the major percentage of total pressure drop at low gas velocity while the frictional pressure drop is dominant for the 1.41 mm and 3 mm channels. With the increase of the gas flow rate, the frictional pressure drop contributes more to total pressure drop. The range of churn flow can be distinguished from its pressure drop characteristic in 10 mm channel. (authors)

  13. On the Generation of Transport Suppression Barriers by Externally Driven Alfven Waves in D-Shaped, Low Aspect Ratio Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Komoshvili, K. [The College of Judea and Samaria, Ariel (Israel)

    2003-05-01

    We investigate quantitatively the possibility of turbulence suppression through the generation of transport barriers in pre-heated low aspect ratio tokamaks (LARTs) by the sheared electric fields generated by externally driven rf waves in the frequency range {omega}{sub A} {approx_equal} <{omega}{sub ci} ({omega}{sub A} and {omega}{sub ci} are, respectively, Alfven and ion cyclotron frequencies). To this aim the following sequential steps are followed: (1) Solutions of the resistive two-fluid model full wave equation for a realistic LART configuration (D-shape cross-section and aspect ratio, R/a {approx}> 1; as well as suitably located low field side, LFS, antenna) upon using a quite general dielectric tensor operator; (2) Calculation of the ponderomotive forces and their magnetic surface averages; (3) Solution of a strongly non-linear differential equation for the quasi-stationary radial electric field, including the particle orbit squeezing effects, based on the results of steps (1) and (2); and (4) Calculation of the radial flow shear, S{sub perpend}; for both banana and potato collisional regimes.

  14. Impedance spectroscopy of tripolar concentric ring electrodes with Ten20 and TD246 pastes.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Herrera, Daniel Salazar; Besio, Walter G

    2017-07-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper, we measured the impedance on both tripolar concentric ring electrodes and standard cup electrodes by electrochemical impedance spectroscopy (EIS) using both Ten20 and TD246 electrode paste. Furthermore, we applied the model to prove that the model can predict the performance of the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  15. Creating virtual electrodes with 2D current steering

    Science.gov (United States)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.

    2018-06-01

    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number

  16. Sacrificial structures for deep reactive ion etching of high-aspect ratio kinoform silicon x-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Michael-Lindhard, Jonas; Hübner, Jörg

    2015-01-01

    This article describes the realization of complex high-aspect ratio silicon structures with feature dimensions from 100 lm to 100nm by deep reactive ion etching using the Bosch process. As the exact shape of the sidewall profiles can be crucial for the proper functioning of a device, the authors...... of the sacrificial structures was accomplished by thermal oxidation and subsequent selective wet etching. The effects of the dimensions and relative placement of sacrificial walls and pillars on the etching result were determined through systematic experiments. The authors applied this process for exact sidewall...

  17. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  18. Coaxial fiber supercapacitor using all-carbon material electrodes.

    Science.gov (United States)

    Le, Viet Thong; Kim, Heetae; Ghosh, Arunabha; Kim, Jaesu; Chang, Jian; Vu, Quoc An; Pham, Duy Tho; Lee, Ju-Hyuck; Kim, Sang-Woo; Lee, Young Hee

    2013-07-23

    We report a coaxial fiber supercapacitor, which consists of carbon microfiber bundles coated with multiwalled carbon nanotubes as a core electrode and carbon nanofiber paper as an outer electrode. The ratio of electrode volumes was determined by a half-cell test of each electrode. The capacitance reached 6.3 mF cm(-1) (86.8 mF cm(-2)) at a core electrode diameter of 230 μm and the measured energy density was 0.7 μWh cm(-1) (9.8 μWh cm(-2)) at a power density of 13.7 μW cm(-1) (189.4 μW cm(-2)), which were much higher than the previous reports. The change in the cyclic voltammetry characteristics was negligible at 180° bending, with excellent cycling performance. The high capacitance, high energy density, and power density of the coaxial fiber supercapacitor are attributed to not only high effective surface area due to its coaxial structure and bundle of the core electrode, but also all-carbon materials electrodes which have high conductivity. Our coaxial fiber supercapacitor can promote the development of textile electronics in near future.

  19. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cunguang Lou

    2016-11-01

    Full Text Available This paper describes the development of a graphene-based dry flexible electrocardiography (ECG electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM, and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.

  20. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  1. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    Science.gov (United States)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  2. Buckling of ZnS-filled single-walled carbon nanotubes – The influence of aspect ratio

    KAUST Repository

    Monteiro, André O.

    2014-08-16

    The mechanical response of single-walled carbon nanotubes (SWCNT) filled with crystalline zinc sulphide (ZnS) nanowires under uniaxial compression is studied using classical molecular dynamics. These simulations were used to analyse the behaviour of SWCNT, with and without ZnS filling, in terms of critical force and critical strain. Force versus strain curves have been computed for hollow and filled systems, the latter clearly showing an improvement of the mechanical behaviour caused by the ZnS nanowire. The same simulations were repeated for a large range of dimensions in order to evaluate the influence of the aspect ratio on the mechanical response of the tubes.

  3. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  4. Dimensions and aspect ratios of natural ice crystals

    Directory of Open Access Journals (Sweden)

    J. Um

    2015-04-01

    Full Text Available During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE in the tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS campaign at mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T between −87 and 0 °C. The projected maximum dimension (D', length (L', and width (W' of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. The dimensions and aspect ratios (AR, the dimension of the major axis divided by the dimension of the minor axis of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased with temperature. Columns and bullets had larger dimensions (i.e., W' of the minor axis (i.e., a axis for a given dimension (i.e., D' orL' of the major axis (i.e., c axis, and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50 ± 1.35 during three campaigns and 6.32 ± 1.34 (5.46 ± 1.34; 4.95 ± 1.01 during TWP-ICE (SPARTICUS; ISDAC. The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at −67 L–W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationships determined in previous studies were within the range of the current data.

  5. Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer deposition

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Takayama, Osamu; Michael-Lindhard, Jonas

    2016-01-01

    The authors report on the fabrication of TiO2 and Al2O3 nanostructured gratings with an aspect ratio of up to 50. The gratings were made by a combination of atomic layer deposition (ALD) and dry etch techniques. The workflow included fabrication of a Si template using deep reactive ion etching...... spectroscopy. The approach presented opens the possibility to fabricate high quality optical metamaterials and functional nanostructures....

  6. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  7. Positioning of electrode plane systematically influences EIT imaging

    International Nuclear Information System (INIS)

    Krueger-Ziolek, Sabine; Schullcke, Benjamin; Kretschmer, Jörn; Möller, Knut; Zhao, Zhanqi; Müller-Lisse, Ullrich

    2015-01-01

    Up to now, the impact of electrode positioning on electrical impedance tomography (EIT) had not been systematically analyzed due to the lack of a reference method. The aim of the study was to determine the impact of electrode positioning on EIT imaging in spontaneously breathing subjects at different ventilation levels with our novel lung function measurement setup combining EIT and body plethysmography. EIT measurements were conducted in three transverse planes between the 3rd and 4th intercostal space (ICS), at the 5th ICS and between the 6th and 7th ICS (named as cranial, middle and caudal) on 12 healthy subjects. Pulmonary function tests were performed simultaneously by body plethysmography to determine functional residual capacity (FRC), vital capacity (VC), tidal volume (VT), expiratory reserve volume (ERV), and inspiratory reserve volume (IRV). Ratios of impedance changes and body plethysmographic volumes were calculated for every thorax plane (ΔI_E_R_V/ERV, ΔI_V_T/VT and ΔI_I_R_V/IRV). In all measurements of a subject, FRC values and VC values differed ≤5%, which confirmed that subjects were breathing at comparable end-expiratory levels and with similar efforts. In the cranial thorax plane the normalized ΔI_E_R_V/ERV ratio in all subjects was significantly higher than the normalized ΔI_I_R_V/IRV ratio whereas the opposite was found in the caudal chest plane. No significant difference between the two normalized ratios was found in the middle thoracic plane. Depending on electrode positioning, impedance to volume ratios may either increase or decrease in the same lung condition, which may lead to opposite clinical decisions. (paper)

  8. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.

    Science.gov (United States)

    Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling

    2015-01-14

    Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.

  9. A small perturbation based optimization approach for the frequency placement of high aspect ratio wings

    Science.gov (United States)

    Goltsch, Mandy

    Design denotes the transformation of an identified need to its physical embodiment in a traditionally iterative approach of trial and error. Conceptual design plays a prominent role but an almost infinite number of possible solutions at the outset of design necessitates fast evaluations. The corresponding practice of empirical equations and low fidelity analyses becomes obsolete in the light of novel concepts. Ever increasing system complexity and resource scarcity mandate new approaches to adequately capture system characteristics. Contemporary concerns in atmospheric science and homeland security created an operational need for unconventional configurations. Unmanned long endurance flight at high altitudes offers a unique showcase for the exploration of new design spaces and the incidental deficit of conceptual modeling and simulation capabilities. Structural and aerodynamic performance requirements necessitate light weight materials and high aspect ratio wings resulting in distinct structural and aeroelastic response characteristics that stand in close correlation with natural vibration modes. The present research effort evolves around the development of an efficient and accurate optimization algorithm for high aspect ratio wings subject to natural frequency constraints. Foundational corner stones are beam dimensional reduction and modal perturbation redesign. Local and global analyses inherent to the former suggest corresponding levels of local and global optimization. The present approach departs from this suggestion. It introduces local level surrogate models to capacitate a methodology that consists of multi level analyses feeding into a single level optimization. The innovative heart of the new algorithm originates in small perturbation theory. A sequence of small perturbation solutions allows the optimizer to make incremental movements within the design space. It enables a directed search that is free of costly gradients. System matrices are decomposed

  10. Electrode Mass Balancing as an Inexpensive and Simple Method to Increase the Capacitance of Electric Double-Layer Capacitors

    Science.gov (United States)

    Andres, Britta; Engström, Ann-Christine; Blomquist, Nicklas; Forsberg, Sven; Dahlström, Christina; Olin, Håkan

    2016-01-01

    Symmetric electric double-layer capacitors (EDLCs) have equal masses of the same active material in both electrodes. However, having equal electrode masses may prevent the EDLC to have the largest possible specific capacitance if the sizes of the hydrated anions and cations in the electrolyte differ because the electrodes and the electrolyte may not be completely utilized. Here we demonstrate how this issue can be resolved by mass balancing. If the electrode masses are adjusted according to the size of the ions, one can easily increase an EDLC’s specific capacitance. To that end, we performed galvanostatic cycling to measure the capacitances of symmetric EDLCs with different electrode mass ratios using four aqueous electrolytes— Na2SO4, H2SO4, NaOH, and KOH (all with a concentration of 1 M)—and compared these to the theoretical optimal electrode mass ratio that we calculated using the sizes of the hydrated ions. Both the theoretical and experimental values revealed lower-than-1 optimal electrode ratios for all electrolytes except KOH. The largest increase in capacitance was obtained for EDLCs with NaOH as electrolyte. Specifically, we demonstrate an increase of the specific capacitance by 8.6% by adjusting the electrode mass ratio from 1 to 0.86. Our findings demonstrate that electrode mass balancing is a simple and inexpensive method to increase the capacitance of EDLCs. Furthermore, our results imply that one can reduce the amount of unused material in EDLCs and thus decrease their weight, volume and cost. PMID:27658253

  11. Confinement physic study in a small low-aspect-ratio helical device CHS

    International Nuclear Information System (INIS)

    Okamura, S.; Matsuoka, K.; Akiyama, R.

    1999-01-01

    The configuration parameter of the plasma position relative to the center of the helical coil winding is very effective one for controlling the MHD stability and the trapped particle confinement in Heliotron/Torsatron systems. But these two characteristics are contradictory to each other in this parameter. The inward shifted configuration is favorable for the drift-orbit-optimization but it is predicted unstable with the Mercier criterion. Various physics problems, such as electric field structure, plasma rotation and MHD phenomena, have been studied in CHS with a compromising intermediate position. With this standard configuration, CHS has supplied experimental results for understanding general toroidal confinement physics and low-aspect-ratio helical systems. In the recent experiments, it was found that the wide range of inward shifted configurations gives stable plasma discharges without any restriction to the special pressure profile. Such enhanced range of operation made it possible to study experimentally the drift-orbit-optimized configuration in the Heliotron/Torsatron systems. The effect of configuration improvement was studied with plasmas in a low collisionality regime. (author)

  12. High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates

    Science.gov (United States)

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Olynick, Deirdre; Russell, Thomas; University of Massachusetts Amherst Collaboration; Oxford Instrument Collaboration; Lawrence Berkeley National Lab Collaboration

    2013-03-01

    High-aspect-ratio sub-15 nm silicon trenches are fabricated directly from plasma etching of a block copolymer (BCP) mask. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) 40k-b-18k was spin coated and solvent annealed to form cylindrical structures parallel to the silicon substrate. The BCP thin film was reconstructed by immersion in ethanol and then subjected to an oxygen and argon reactive ion etching to fabricate the polymer mask. A low temperature ion coupled plasma with sulfur hexafluoride and oxygen was used to pattern transfer block copolymer structure to silicon with high selectivity (8:1) and fidelity. The silicon pattern was characterized by scanning electron microscopy and grazing incidence x-ray scattering. We also demonstrated fabrication of silicon nano-holes using polystyrene-b-polyethylene oxide (PS-b-PEO) using same methodology described above for PS-b-P2VP. Finally, we show such silicon nano-strucutre serves as excellent nano-imprint master template to pattern various functional materials like poly 3-hexylthiophene (P3HT).

  13. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  14. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Shriniwas, E-mail: sniwas89@gmail.com; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in [Academy of Scientific and Innovative Research- Central Scientific Instruments Organisation (AcSIR-CSIO), Sector-30C, Chandigarh (India); Council of Scientific and Industrial Research- Central Scientific Instruments Organisation (CSIR-CSIO), Sector-30C, Chandigarh (India)

    2016-04-13

    Graphene, an atom–thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σ{sub dc}/σ{sub opt}) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  15. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Science.gov (United States)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  16. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  17. Systematic in vitro nanotoxicity study on anodic alumina nanotubes with engineered aspect ratio: understanding nanotoxicity by a nanomaterial model.

    Science.gov (United States)

    Wang, Ye; Kaur, Gagandeep; Zysk, Aneta; Liapis, Vasilios; Hay, Shelley; Santos, Abel; Losic, Dusan; Evdokiou, Andreas

    2015-04-01

    Here, we report a detailed and systematic approach for studying the in vitro nanotoxicity study of high aspect ratio (HAR) nanomaterials using anodic alumina nanotubes (AANTs) as a nanomaterial model. AANTs with bio-inert properties and tailored aspect ratios ranging from 7.8 to 63.3 were synthesized by an electrochemical pulse anodization process. Cytotoxicity studies were conducted with RAW 264.7 mouse macrophage cells and MDA-MB 231-TXSA human breast cancer cells through several toxicity parameters, including cell viability and morphology, pro-inflammatory response, mitochondrial depolarization, lysosomal membrane permeabilization (LMP), induction of autophagy and endoplasmic reticulum (ER) stress. The resulting toxicity patterns were cell-type dependent and strongly related with AANTs dose, length of time, and importantly the AR of AANTs. Long AANTs triggered enhanced cell death, morphological changes, tumor necrosis factor α (TNF-α) release, LMP and ER stress than short AANTs. The toxic AR window of AANTs was determined to be 7.8, which is shorter than that of other previously reported HAR nanomaterials. This toxic AR window provides a promising opportunity to control the nanotoxicity of HAR nanomaterials for their advanced drug delivery application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Subsonic and transonic pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    Science.gov (United States)

    Sandford, M. C.; Ricketts, R. H.; Watson, J. J.

    1981-01-01

    A high aspect ratio supercritical wing with oscillating control surfaces is described. The semispan wing model was instrumented with 252 static orifices and 164 in situ dynamic pressure gases for studying the effects of control surface position and sinusoidal motion on steady and unsteady pressures. Data from the present test (this is the second in a series of tests on this model) were obtained in the Langley Transonic Dynamics Tunnel at Mach numbers of 0.60 and 0.78 and are presented in tabular form.

  19. Characterization of peeling modes in a low aspect ratio tokamak

    Science.gov (United States)

    Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.

    2014-11-01

    Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.

  20. A multiscale method for modeling high-aspect-ratio micro/nano flows

    Science.gov (United States)

    Lockerby, Duncan; Borg, Matthew; Reese, Jason

    2012-11-01

    In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.

  1. Highly flexible indium zinc oxide electrode grown on PET substrate by cost efficient roll-to-roll sputtering process

    International Nuclear Information System (INIS)

    Park, Yong-Seok; Kim, Han-Ki; Jeong, Soon-Wook; Cho, Woon-Jo

    2010-01-01

    We have investigated the characteristics of flexible indium zinc oxide (IZO) electrode grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll (RTR) sputtering system for use in flexible optoelectronics. It was found that both electrical and optical properties of the flexible IZO electrode were critically dependent on the DC power and Ar/O 2 flow ratio during the roll-to-roll sputtering process. At optimized conditions (constant working pressure of 3 mTorr, Ar/O 2 flow ratio of Ar at only 30 sccm, DC power 800 W and rolling speed at 0.1 cm/s) the flexible IZO electrode exhibits a sheet resistance of 17.25 Ω/sq and an optical transmittance of 89.45% at 550 nm wavelength. Due to the low PET substrate temperature, which is effectively maintained by cooling drum system, all IZO electrodes showed an amorphous structure regardless of the DC power and Ar/O 2 flow ratio. Furthermore, the IZO electrodes grown at optimized condition exhibited superior flexibility than the conventional amorphous ITO electrodes due to its stable amorphous structure. This indicates that the RTR sputter grown IZO electrode is a promising flexible electrode that can substitute for the conventional ITO electrode, due to its low resistance, high transparency, superior flexibility and fast preparation by the RTR process.

  2. Stability of highly shifted equilibria in a large aspect ratio low-field tokamak

    International Nuclear Information System (INIS)

    Gourdain, P.-A.; Leboeuf, J.-N.; Neches, R. Y.

    2007-01-01

    In the long run, the economics of fusion will dictate that reactors confine large plasma pressure rather efficiently. A possible route manifests itself as equilibria with large shift of the plasma magnetic axis. This shift compresses the flux surfaces on the outer part of the plasma, hereby increasing the allowable plasma pressure a machine can confine for a given toroidal magnetic field, which is the main cost of the device. As a first step toward a reactor, we propose investigating the stability of such configurations in a low magnetic field high aspect ratio machine. By focusing our arguments solely on the shape of the toroidal plasma current density profile we discuss the stability of highly shifted equilibria and their robustness to current profile variations that could occur in actual experiments. The evolution of the plasma parameters, as the beta poloidal is increased, is also examined to give a better understanding of the difference in performance between the various regimes

  3. Cell voltage versus electrode potential range in aqueous supercapacitors

    Science.gov (United States)

    Dai, Zengxin; Peng, Chuang; Chae, Jung Hoon; Ng, Kok Chiang; Chen, George Z.

    2015-01-01

    Supercapacitors with aqueous electrolytes and nanostructured composite electrodes are attractive because of their high charging-discharging speed, long cycle life, low environmental impact and wide commercial affordability. However, the energy capacity of aqueous supercapacitors is limited by the electrochemical window of water. In this paper, a recently reported engineering strategy is further developed and demonstrated to correlate the maximum charging voltage of a supercapacitor with the capacitive potential ranges and the capacitance ratio of the two electrodes. Beyond the maximum charging voltage, a supercapacitor may still operate, but at the expense of a reduced cycle life. In addition, it is shown that the supercapacitor performance is strongly affected by the initial and zero charge potentials of the electrodes. Further, the differences are highlighted and elaborated between freshly prepared, aged under open circuit conditions, and cycled electrodes of composites of conducting polymers and carbon nanotubes. The first voltammetric charging-discharging cycle has an electrode conditioning effect to change the electrodes from their initial potentials to the potential of zero voltage, and reduce the irreversibility. PMID:25897670

  4. Effect of Aspect Ratio, Channel Orientation, Rib Pitch-to-Height Ratio, and Number of Ribbed Walls on Pressure Drop Characteristics in a Rotating Channel with Detached Ribs

    Directory of Open Access Journals (Sweden)

    K. Arun

    2007-01-01

    Full Text Available The present work involves experimental investigation of the effects of aspect ratio, channel orientation angle, rib pitch-to-height ratio (P/e, and number of ribbed walls on friction factor in orthogonally rotating channel with detached ribs. The ribs are separated from the base wall to provide a small region of flow between the base wall and the ribs. Experiments have been conducted at Reynolds number ranging from 10000–17000 with rotation numbers varying from 0–0.38. Pitch-to-rib height ratios (P/e of 5 and 10 at constant rib height-to-hydraulic diameter ratio (e/D of 0.1 and a clearance ratio (C/e of 0.38 are considered. The rib angle of attack with respect to mainstream flow is 90∘. The channel orientation at which the ribbed wall becomes trailing surface (pressure side on which the Coriolis force acts is considered as the 0∘ orientation angle. For one-wall ribbed case, channel is oriented from 0∘ to 180∘ about its axis in steps of 30∘ to change the orientation angle. For two-wall ribbed case, the orientation angle is changed from 0∘ to 90∘ in steps of 30∘. Friction factors for the detached ribbed channels are compared with the corresponding attached ribbed channel. It is found that in one-wall detached ribbed channel, increase in the friction factor ratio with the orientation angle is lower for rectangular channel compared to that of square channel for both the pitch-to-rib height ratios of 5 and 10 at a given Reynolds number and rotation number. Friction factor ratios of two-wall detached ribbed rectangular channel are comparable with corresponding two-wall detached ribbed square channel both under stationary and rotating conditions.

  5. Numerical study of the unstable MHD spectrum of a small aspect ratio, flat current, non-circular tokamak

    International Nuclear Information System (INIS)

    Berger, D.; Bernard, L.C.; Gruber, R.; Troyon, F.

    1980-01-01

    The Lausanne ideal MHD stability code ERATO is used to investigate spectral properties of Solovev's equilibrium at small aspect ratios. Two different elongations are considered. Both free and rigid boundary models are computed and compared. Modes characterized by a large radial extension have been found which appear to be due to coupling of m=1 and m=2 modes due to toricity. The internal modes spectrum is compared with the predictions of the full Mercier criterion, taking into account its spatial dependence, and with the ballooning modes stability criterion. (Auth.)

  6. Balancing the daylighting and energy performance of solar screens in residential desert buildings: Examination of screen axial rotation and opening aspect ratio

    KAUST Repository

    Sabry, Hanan

    2014-05-01

    Solar screens are typically used to control solar access into building spaces. They proved their usefulness in improving the daylighting and energy performance of buildings in the hot arid desert environments which are endowed with abundance of clear skies.The daylighting and energy performance of solar screens is affected by many parameters. These include screen perforation, depth, reflectivity and color, aspect ratio of openings, shape, tilt angle and rotation. Changing some of these parameters can improve the daylighting performance drastically. However, this can result in increased energy consumption. A balanced solution must be sought, where acceptable daylighting performance would be achieved at minimum energy consumption.This paper aims at defining solar screen designs that achieve visual comfort and at the same time minimum energy consumption in residential desert settings. The study focused on the effect of changing the solar screen axial rotation and the aspect ratio of its openings under the desert clear-sky. The individual and combined effects of changing these parameters were studied.Results of this study demonstrated that a non-rotated solar screen that has wide horizontal openings (aspect ratio of 18:1) proved to be successful in the north and south orientations. Its performance in the east/west orientations was also superior. In contrast, the screen that was rotated along its vertical axis while having small size openings (aspect ratio of 1:1) proved to be more successful in the east/west orientations. Its performance in the north orientation was also good. These solutions enhanced daylighting performance, while maintaining the energy consumption at a minimum.Moreover, it was observed that combining two screen parameters which proved useful in previous studies on daylighting or thermal performance does not add up to better solutions. The combined solutions that were tested in this study did not prove successful in satisfying daylighting and thermal

  7. Electrode spanning with partial tripolar stimulation mode in cochlear implants.

    Science.gov (United States)

    Wu, Ching-Chih; Luo, Xin

    2014-12-01

    The perceptual effects of electrode spanning (i.e., the use of nonadjacent return electrodes) in partial tripolar (pTP) mode were tested on a main electrode EL8 in five cochlear implant (CI) users. Current focusing was controlled by σ (the ratio of current returned within the cochlea), and current steering was controlled by α (the ratio of current returned to the basal electrode). Experiment 1 tested whether asymmetric spanning with α = 0.5 can create additional channels around standard pTP stimuli. It was found that in general, apical spanning (i.e., returning current to EL6 rather than EL7) elicited a pitch between those of standard pTP stimuli on main electrodes EL8 and EL9, while basal spanning (i.e., returning current to EL10 rather than EL9) elicited a pitch between those of standard pTP stimuli on main electrodes EL7 and EL8. The pitch increase caused by apical spanning was more salient than the pitch decrease caused by basal spanning. To replace the standard pTP channel on the main electrode EL8 when EL7 or EL9 is defective, experiment 2 tested asymmetrically spanned pTP stimuli with various α, and experiment 3 tested symmetrically spanned pTP stimuli with various σ. The results showed that pitch increased with decreasing α in asymmetric spanning, or with increasing σ in symmetric spanning. Apical spanning with α around 0.69 and basal spanning with α around 0.38 may both elicit a similar pitch as the standard pTP stimulus. With the same σ, the symmetrically spanned pTP stimulus was higher in pitch than the standard pTP stimulus. A smaller σ was thus required for symmetric spanning to match the pitch of the standard pTP stimulus. In summary, electrode spanning is an effective field-shaping technique that is useful for adding spectral channels and handling defective electrodes with CIs.

  8. Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sol; Choi, Seok Min; Sohn, Ho-Seong; Cho, Hyung Hee [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was 60°, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio (e/D{sub n}) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

  9. Neoclassical viscosities in NCSX and QPS with few toroidal periods and low aspect ratios

    International Nuclear Information System (INIS)

    Nishimura, S.; Mikkelsen, D.R.; Ku, L.P.; Mynick, H.E.; Zarnstorff, M.C.; Spong, D.A.; Hirshman, S.P.

    2008-01-01

    Previously reported benchmarking examples for the analytical formulas of neoclassical viscosities were made implicitly assuming applications in a future integrated simulation system for the LHD (Large Helical Device). Therefore the toroidal period numbers assumed there were mainly N=10. In this kind of calculation, however, an implicit (or sometimes explicit) assumption of ι/N<<1 is sometimes included. This assumption is included not only in simplified bounce averaged drift kinetic equations for ripple diffusions, but also in the equation before the averaging for non-bounce-averaged effects determining neoclassical parallel viscosity and the banana-plateau diffusions. To clarify the applicability of the analytical methods even for configurations with extremely low toroidal period numbers (required for low aspect ratios), we show here recent benchmarking examples in NCSX (National Compact Stellarator Experiment) with N=3 and QPS (Quasi-poloidal Stellarator) with N=2. (author)

  10. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  11. Economically attractive features of steady-state neoclassical reversed field pinch equilibrium with low aspect ratio

    International Nuclear Information System (INIS)

    Shiina, S.; Yagi, Y.; Sugimoto, H.; Ashida, H.; Hirano, Y.; Koguchi, H.; Sakakita, H.; Taguchi, M.; Nagamine, Y.; Osanai, Y.; Saito, K.; Watanabe, M.; Aizawa, M.

    2005-01-01

    Dominant plasma self-induced current equilibrium is achieved together with the high β for the steady-state neoclassical reversed field pinch (RFP) equilibrium with low aspect ratio by broadening the plasma pressure profile. The RF-driven current, when the safety factor is smaller than unity, is much less than the self-induced current, which dominates (96%) the toroidal current. This neoclassical RFP equilibrium has strong magnetic shear or a high-stability beta (β t = 63%) due to its hollow current profile. It is shown that the obtained equilibrium is close to the relaxed-equilibrium state with a minimum energy, and is also robust against microinstabilities. These attractive features allow the economical design of compact steady-state fusion power plants with low cost of electricity (COE). (author)

  12. High aspect ratio micro tool manufacturing for polymer replication using mu EDM of silicon, selective etching and electroforming

    DEFF Research Database (Denmark)

    Tosello, Guido; Bissacco, Giuliano; Tang, Peter Torben

    2008-01-01

    Mass fabrication of polymer micro components with high aspect ratio micro-structures requires high performance micro tools allowing the use of low cost replication processes such as micro injection moulding. In this regard an innovative process chain, based on a combination of micro electrical di...... discharge machining (mu EDM) of a silicon substrate, electroforming and selective etching was used for the manufacturing of a micro tool. The micro tool was employed for polymer replication by means of the injection moulding process....

  13. [Verification of skin paste electrodes used in wireless polysomnography].

    Science.gov (United States)

    Ma, Y D; Huang, D; Chen, Y F; Jiang, H Y; Liu, J H; Sun, H Q; Li, Z H

    2018-04-18

    To explore an electrode suitable for wireless portable sleep monitoring equipment and analyze the result of the signals of electrooculogram (EOG) and electroencephalography (EEG) collected by this kind of flexible electrodes. The flexible electrodes were prepared by microelectromechanical systems (MEMS) technology. This kind of electrodes consisted parylene, chromium, and gold. Parylene, the flexible substrate of this kind of flexible electrodes, was of biocompatibility. Between parylene and gold there was an adhesion layer of chromium, which connected parylene and gold tightly. Then the flexible electrodes were stuck to medical adhesive tape. The electrodes were designed and made into a grid to make sure that the medical adhesive tape could tape on the skin tightly, so that the contact impedance between the electrodes and the skin would be reduced. Then the alternating current impedance of the electrode were tested by the CHI660E electrochemical workstation after the electrode was achieved. To make sure that this kind of electrodes could be used in EOG monitoring, the electrodes were connected to a wireless signal acquisition suite containing special biological signal acquisition and digital processing chip to gather different sites around the eyes and the electrical signals of different directions of the eye movements, then analyzed the signal-to-noise ratio of the EOG. At the end, the Philips A6 polysomnography was used to compare the noise amplitude of the EEG signals collected by the flexible electrode and the gold cup electrode. The electrodes stuck to the skin tightly, and these electrodes could collect signals that we wanted while the experiment was performed. The alternating current impedance of the flexible electrode was between 4 kΩ and 13 kΩ while with the frequency of alternating current under 100 Hz, most EEG signal frequencies were at this range. The EOG signals collected by the flexible electrodes were in line with the clinical requirements. The

  14. Physics issues for a very-low-aspect-ratio Quasi-Poloidal Stellarator (QPS)

    International Nuclear Information System (INIS)

    Lyon, J.F.; Berry, L.A.; Hirshman, S.P.

    2003-01-01

    A quasi-poloidal stellarator with very low plasma aspect ratio (R/a ∼ 2.7, 1/2-1/4 that of existing stellarators) is a new confinement approach that could ultimately lead to a high-beta compact stellarator reactor. The Quasi-Poloidal Stellarator (QPS) experiment is being developed to test key features of this approach. The QPS will study neoclassical and anomalous transport, stability limits at beta up to 2.5%, the configuration dependence of the bootstrap current, and equilibrium robustness. The quasi-poloidal symmetry leads to neoclassical transport that is much smaller than the anomalous transport. The reduced effective field ripple may also produce reduced poloidal viscosity, enhancing the ambipolar E x B poloidal drift and allowing larger poloidal flows for reduction of anomalous transport. A region of second stability exists in the QPS experiment at higher beta. Very-high-beta configurations with a tokamak-like transform profile have also been obtained with a bootstrap current 1/3-1/5 that in an equivalent tokamak. These configurations are stable to low-n ideal MHD kink and vertical instabilities for beta up to 11%. Ballooning-stable configurations are found for beta in the range 2% to 23%. (author)

  15. Specimen aspect ratio and progressive field strain development of sandstone under uniaxial compression by three-dimensional digital image correlation

    Directory of Open Access Journals (Sweden)

    H. Munoz

    2017-08-01

    Full Text Available The complete stress–strain characteristics of sandstone specimens were investigated in a series of quasi-static monotonic uniaxial compression tests. Strain patterns development during pre- and post-peak behaviours in specimens with different aspect ratios was also examined. Peak stress, post-peak portion of stress–strain, brittleness, characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio. Strain patterns of the rocks were obtained by applying three-dimensional (3D digital image correlation (DIC technique. Unlike conventional strain measurement using strain gauges attached to specimen, 3D DIC allowed not only measuring large strains, but more importantly, mapping the development of field strain throughout the compression test, i.e. in pre- and post-peak regimes. Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime. However, in post-peak regime, strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone. The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation. Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.

  16. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

    Science.gov (United States)

    Jianming, Lei; Xiaomei, Chen

    2015-08-01

    Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol-gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ratio) H2SO4 solution. The capacitance retention of RuO2/MnO2 composite electrode was 92.5% after 300 cycles.

  17. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

    International Nuclear Information System (INIS)

    Lei Jianming; Chen Xiaomei

    2015-01-01

    Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol–gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge–discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ratio) H 2 SO 4 solution. The capacitance retention of RuO 2 /MnO 2 composite electrode was 92.5% after 300 cycles. (paper)

  18. ZnO Nanorods with Tunable Aspect Ratios Deriving from Oriented-attachment for Enhanced Performance in Quantum-dot Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Wu, Dapeng; Wang, Xiaolu; Cao, Kun; An, Yipeng; Song, Xiaohui; Liu, Ning; Xu, Fang; Gao, Zhiyong; Jiang, Kai

    2017-01-01

    ZnO nanorods consisted of oriented aligned elongated-nanoparticles along the [0001] direction were readily prepared with tunable aspect ratios by a facile solvothermal method. An oriented-attachment growth mechanism was proposed based on time-dependent trails and first principle density function theory calculation. Control experiments indicated that the reaction medium played important roles to influence the oriented-attachment process and the aspect ratio could be tuned from ∼4.6 to ∼16.0 by simply altering the precursor dosages. The as-prepared ZnO nanorods were applied as photoanode materials in quantum-dot sensitized solar cells. The large pore size in the film structure and rough surface of the nanorod could enhance the quantum dots loading amounts and light scattering effect. In addition, the orderly aligned primary ENPs minimized the grain boundaries for suppressed recombination and provided a direct pathway for increased electron diffusion length. Meanwhile, the enhanced film hydrophilicity facilitated the electrolyte penetration and the regeneration of oxidized sensitizers. Therefore, a high power conversion efficiency of ∼4.83% was demonstrated, indicating substantial improvement compared with that of traditional nanoparticle based device (∼3.54%).

  19. Controlling effective aspect ratio and packing of clay with pH for improved gas barrier in nanobrick wall thin films.

    Science.gov (United States)

    Hagen, David A; Saucier, Lauren; Grunlan, Jaime C

    2014-12-24

    Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.

  20. Aspect ratio effects of an adiabatic rectangular obstacle on natural convection and entropy generation of a nanofluid in an enclosure

    International Nuclear Information System (INIS)

    Sheikhzadeh, G. A.; Nikfar, M.

    2013-01-01

    In the present study, aspect ratio (AR) effects of a centered adiabatic rectangular obstacle numerically investigated on natural convection and entropy generation in a differentially heated enclosure filled with either water or nanofluid (Cu-water). The governing equations are solved numerically with finite volume method using the SIMPLER algorithm. The study has been done for Rayleigh numbers between 10"3 and 10"6 , the aspect ratio of 1/3, 1/2, 1, 2 and 3 and for base fluid as well as nanofluid. It is found that, using the nanofluid leads to increase the flow strength, average Nusselt number and entropy generation and decrease the Bejan number especially at high Rayleigh numbers. At low Rayleigh numbers entropy generation is very low. By increasing Rayleigh number, entropy generation and Bejan number increases. It is observed that the viscose entropy generation is more considerable than the thermal entropy generation and has dominant role in total entropy generation. The maximum entropy generation occurs at AR = 1/3 and 3 and the minimum entropy generation occurs at AR = 1 and 1/2. It is observed that the effect of AR on Nusselt number, entropy generation and Bejan number depends on Rayleigh number.

  1. A sensitive label–free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio

    Science.gov (United States)

    Zhou, Chunyang; Liu, Dali; Xu, Lin; Li, Qingling; Song, Jian; Xu, Sai; Xing, Ruiqing; Song, Hongwei

    2015-01-01

    A simple and accurate label–free amperometric immunosensor for α–fetoprotein (AFP) detection is developed based on gold nanorods (GNRs) with different aspect ratio and compared with gold particles (GNPs). The positively charged GNRs and GNPs due to the surface immobilized cetyltrimethyl ammonium bromide (CTAB) can adsorb the negatively charged AFP antibody (Ab) directly. The presence of the GNRs not only enhanced the immobilized amount of biomolecules, but also improved the electrochemical properties of the immunosensor. With the aid of GNRs, the electrochemical signal was greatly enhanced in comparison with GNPs. Under optimal conditions, the proposed immunosensor could detect AFP in a linear range from 0.1 to 200 ng/mL with a detection limit of 0.04 ng/mL (signal–to–noise ratio = 3), and it also possessed good reproducibility and storage stability. Moreover, the detection of AFP in five human serum samples also showed satisfactory accuracy. The proposed methodology was potentially attractive for clinical immunoassay. PMID:25909588

  2. Bioinspired fractal electrodes for solar energy storages.

    Science.gov (United States)

    Thekkekara, Litty V; Gu, Min

    2017-03-31

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10 -3  Whcm -3 . In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10 -1  Whcm -3 - more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  3. Bioinspired fractal electrodes for solar energy storages

    Science.gov (United States)

    Thekkekara, Litty V.; Gu, Min

    2017-03-01

    Solar energy storage is an emerging technology which can promote the solar energy as the primary source of electricity. Recent development of laser scribed graphene electrodes exhibiting a high electrical conductivity have enabled a green technology platform for supercapacitor-based energy storage, resulting in cost-effective, environment-friendly features, and consequent readiness for on-chip integration. Due to the limitation of the ion-accessible active porous surface area, the energy densities of these supercapacitors are restricted below ~3 × 10-3 Whcm-3. In this paper, we demonstrate a new design of biomimetic laser scribed graphene electrodes for solar energy storage, which embraces the structure of Fern leaves characterized by the geometric family of space filling curves of fractals. This new conceptual design removes the limit of the conventional planar supercapacitors by significantly increasing the ratio of active surface area to volume of the new electrodes and reducing the electrolyte ionic path. The attained energy density is thus significantly increased to ~10-1 Whcm-3- more than 30 times higher than that achievable by the planar electrodes with ~95% coulombic efficiency of the solar energy storage. The energy storages with these novel electrodes open the prospects of efficient self-powered and solar-powered wearable, flexible and portable applications.

  4. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  5. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... the finite element method to model surface acoustic waves generated by high aspect ratio electrodes. A periodic model is proposed including a perfectly matched layer to simulate radiation conditions away from the sources, from which the modal distributions are found. The ratio of the mechanical energy...... confined to the electrode as compared to the total mechanical energy is calculated and is found to be increasing for increasing aspect ratio and to tend to a definite limit for the two families of surface waves. This observation is in support of the interpretation that high aspect ratio electrodes act...

  6. Physics Issues in the Design of Low Aspect-Ratio, High-Beta, Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Boozer, A.; Brooks, A.; Cooper, W.A.

    2000-01-01

    Compact stellarators have the potential to combine the best features of the stellarator and the advanced tokamak, offering steady state operation without current drive and potentially without disruptions at an aspect ratio similar to tokamaks. A quasi-axisymmetric stellarator is developed that is consistent with the boot-strap current and passively stable to the ballooning, kink, Mercier, vertical, and neoclassical tearing modes at b=4.1 % without need for conducting walls or external feedback. The configuration has good flux surfaces and fast ion confinement. Thermal transport analysis indicates that the confinement should be similar to tokamaks of the same size, allowing access to the b-limit with moderate power. Coils have been designed to reproduce the physics properties. Initial analysis indicates the coils have considerable flexibility to manipulate the configuration properties. Simulations of the current evolution indicate the kink-mode can remain stable during the approach to h igh-beta

  7. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  8. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  9. Permutation entropy and statistical complexity in characterising low-aspect-ratio reversed-field pinch plasma

    International Nuclear Information System (INIS)

    Onchi, T; Fujisawa, A; Sanpei, A; Himura, H; Masamune, S

    2017-01-01

    Permutation entropy and statistical complexity are measures for complex time series. The Bandt–Pompe methodology evaluates probability distribution using permutation. The method is robust and effective to quantify information of time series data. Statistical complexity is the product of Jensen–Shannon divergence and permutation entropy. These physical parameters are introduced to analyse time series of emission and magnetic fluctuations in low-aspect-ratio reversed-field pinch (RFP) plasma. The observed time-series data aggregates in a region of the plane, the so-called C – H plane, determined by entropy versus complexity. The C – H plane is a representation space used for distinguishing periodic, chaos, stochastic and noisy processes of time series data. The characteristics of the emissions and magnetic fluctuation change under different RFP-plasma conditions. The statistical complexities of soft x-ray emissions and magnetic fluctuations depend on the relationships between reversal and pinch parameters. (paper)

  10. Performance and stability limits at near-unity aspect ratio in the Pegasus Toroidal Experiment

    International Nuclear Information System (INIS)

    Fonck, R.J.

    2002-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p ≤ 0.15MA, and B t p =aB t is similar to that observed for NBI-heated START discharges. Achievable plasma current apparently is subject to a 'soft' limit of I p =I t f ≤ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions. (author)

  11. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  12. Improvements of characteristics of open cycle Faraday type MHD power generator

    International Nuclear Information System (INIS)

    Yoshida, Masaharu; Umoto, Juro; Aoki, Sigeo

    1982-01-01

    MHD power generators are classified into two types: Faraday type and diagonal type (including Hall type). It is considered also in Faraday type generators that the characteristics can be improved further by selecting the aspect ratio appropriately, and employing cap electrodes which approach diagonal conducting side-wall type from parallel plate electrodes. First, the three-dimensional analysis using a new equivalent circuit is introduced, in which finite electrode division and working gas boundary layer are considered using the generalized Ohm's law, Maxwell's electromagnetic equations and others. The above described improvement of characteristics is investigated numerically fully applying this analyzing method. If the wall temperature is low, the increase in the aspect ratio of a generating duct cross-section considerably improves the characteristics because plasma non-uniformity decreases. If the cap electrodes having an optimum side-wall length are used, the output increases considerably because the load current is given and received through the side-wall electrodes. Efficiency is a little lower than the case using parallel plate electrodes. Therefore, if the aspect ratio is taken sufficiently large, and the cap electrodes with optimum side-wall electrode length are used, the generator characteristics are greatly improved since the above mentioned effects are multiplied. (Wakatsuki, Y.)

  13. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    International Nuclear Information System (INIS)

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Menéndez, Armando; Bristow, Noel; Paul Kettle, Jeffrey; Ruiz, Bernardino

    2015-01-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (R_S = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed. (paper)

  14. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    Science.gov (United States)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  15. Enhanced Differentiation of Human Embryonic Stem Cells Toward Definitive Endoderm on Ultrahigh Aspect Ratio Nanopillars

    DEFF Research Database (Denmark)

    Rasmussen, Camilla Holzmann; Reynolds, Paul M.; Petersen, Dorthe Roenn

    2016-01-01

    highlighted that the properties of the physical environment, such as substrate stiffness, affect cellular behavior. Here, mass-produced, injection molded polycarbonate nanopillars are presented, where the surface mechanical properties, i.e., stiffness, can be controlled by the geometric design...... of the ultrahigh aspect ratio nanopillars (stiffness can be reduced by 25.000X). It is found that tall nanopillars, yielding softer surfaces, significantly enhance the induction of defi nitive endoderm cells from pluripotent human embryonic stem cells, resulting in more consistent differentiation of a pure...... population compared to planar control. By contrast, further differentiation toward the pancreatic endoderm is less successful on “soft” pillars when compared to “stiff ” pillars or control, indicating differential cues during the different stages of differentiation. To accompany the mechanical properties...

  16. Bosch-like method for creating high aspect ratio poly(methyl methacrylate) (PMMA) structures

    KAUST Repository

    Haiducu, Marius

    2012-02-02

    This paper presents a method for etching millimetre-deep trenches in commercial grade PMMA using deep-UV at 254 nm. The method is based on consecutive cycles of irradiation and development of the exposed areas, respectively. The exposure segment is performed using an inexpensive, in-house built irradiation box while the development part is accomplished using an isopropyl alcohol (IPA):H2O developer. The method was tested and characterized by etching various dimension square test structures in commercial grade, mirrored acrylic. The undercut of the sidewalls due to the uncollimated nature of the irradiation light was dramatically alleviated by using a honeycomb metallic grid in between the irradiation source and the acrylic substrate and by rotating the latter using a direct current (DC) motor-driven stage. By using an extremely affordable set-up and non-toxic, environmentally friendly materials and substances, this process represents an excellent alternative to microfabricating microfluidic devices in particular and high aspect ratio structures in general using PMMA as substrate. © 2012 SPIE.

  17. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    Science.gov (United States)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  18. A study of the electrochemical behaviour of electrodes in operating solid-state supercapacitors

    International Nuclear Information System (INIS)

    Staiti, P.; Lufrano, F.

    2007-01-01

    The electrochemical behaviour of electrodes and of complete solid-state supercapacitors has been studied by cyclic voltammetry (CV) and galvanostatic charge/discharge (CD) measurements using two independent electrochemical equipments. The first one controlled the execution of the test and recorded the voltage and current values of the complete supercapacitor while the other one recorded the potential changes of the single electrodes. In this work, two different types of capacitors were studied: (a) a symmetric supercapacitor using carbon electrodes, and (b) a hybrid (asymmetric) supercapacitor with ruthenium oxide/carbon in the positive electrode and carbon in the negative electrode. The studies evidenced that in the symmetric capacitors the positive electrode controlled the capacitive performance and an optimal mass ratio from 1.2:1 to 1.3:1 between the positive and the negative electrodes was found in the investigated conditions. For the hybrid supercapacitor it was observed that the ruthenium-based positive electrode influenced the capacitive performance of carbon-based negative electrode and that an accurate balance of carbon loading in the negative electrode was necessary

  19. Investigation at Low Speeds of the Effect of Aspect Ratio and Sweep on Rolling Stability Derivatives of Untapered Wings

    Science.gov (United States)

    Goodman, Alex; Fisher, Lewis R

    1950-01-01

    A low-scale wind-tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. The rolling-flow equipment of the Langley stability tunnel was used for the tests. The data of the investigation have been used to develop a method of accounting for the effects of the drag on the yawing moment due to rolling throughout the lift range.

  20. Integrated circuits and electrode interfaces for noninvasive physiological monitoring.

    Science.gov (United States)

    Ha, Sohmyung; Kim, Chul; Chi, Yu M; Akinin, Abraham; Maier, Christoph; Ueno, Akinori; Cauwenberghs, Gert

    2014-05-01

    This paper presents an overview of the fundamentals and state of the-art in noninvasive physiological monitoring instrumentation with a focus on electrode and optrode interfaces to the body, and micropower-integrated circuit design for unobtrusive wearable applications. Since the electrode/optrode-body interface is a performance limiting factor in noninvasive monitoring systems, practical interface configurations are offered for biopotential acquisition, electrode-tissue impedance measurement, and optical biosignal sensing. A systematic approach to instrumentation amplifier (IA) design using CMOS transistors operating in weak inversion is shown to offer high energy and noise efficiency. Practical methodologies to obviate 1/f noise, counteract electrode offset drift, improve common-mode rejection ratio, and obtain subhertz high-pass cutoff are illustrated with a survey of the state-of-the-art IAs. Furthermore, fundamental principles and state-of-the-art technologies for electrode-tissue impedance measurement, photoplethysmography, functional near-infrared spectroscopy, and signal coding and quantization are reviewed, with additional guidelines for overall power management including wireless transmission. Examples are presented of practical dry-contact and noncontact cardiac, respiratory, muscle and brain monitoring systems, and their clinical applications.

  1. Immobilization of olfactory receptors onto gold electrodes for electrical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, Ignacio [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: icasuso@pcb.ub.es; Pla-Roca, Mateu [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Gomila, Gabriel [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain)], E-mail: ggomila@pcb.ub.es; Samitier, Josep [Departament d' Electronica, Universitat de Barcelona, Laboratori de Nanobioenginyeria-IBEC, Parc Cientific de Barcelona, C/Josep Samitier 1-5, Barcelona (Spain); Minic, Jasmina; Persuy, Marie A.; Salesse, Roland; Pajot-Augy, Edith [INRA, Neurobiologie de l' Olfaction et de la Prise Alimentaire, Equipe Recepteurs et Communication Chimique, Domaine de Vilvert, Jouy en Josas Cedex (France)

    2008-07-01

    We investigate the immobilization of native nanovesicles containing functional olfactory receptors onto gold electrodes by means of atomic force microscopy in liquid. We show that nanovesicles can be adsorbed without disrupting them presenting sizes once immobilized ranging from 50 nm to 200 nm in diameter. The size of the nanovesicles shows no dependence on the electrode hydrophobicity being constant in a height/width ratio close to 1:3. Nevertheless, electrode hydrophobicity does affect the surface coverage, the surface coverage is five times higher in hydrophilic electrodes than on hydrophobic ones. Surface coverage is also affected by nanovesicles dimensions in suspension, the size homogenization to around 50 nm yields a further five fold increment in surface coverage achieving a coverage of about 50% close to the hard spheres jamming limit (54.7%). A single layer of nanovesicles is always formed with no particle overlap. Present results provide insights into the immobilization on electrodes of olfactory receptors for further olfactory electrical biosensor development.

  2. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  3. Study on morphology of high-aspect-ratio grooves fabricated by using femtosecond laser irradiation and wet etching

    International Nuclear Information System (INIS)

    Chen, Tao; Pan, An; Li, Cunxia; Si, Jinhai; Hou, Xun

    2015-01-01

    Highlights: • We studied morphologies of silicon grooves fabricated by laser irradiation and wet etching. • We found nano-ripple structures formed on the groove sidewall. • Formations of nano-ripples were due to the formation of standing wave and nanoplanes. • Remaining debris on the groove bottom was removed by KOH etching. - Abstract: Morphologies of high-aspect-ratio silicon grooves fabricated by using femtosecond laser irradiation and selective chemical etching of hydrofluoric acid (HF) were studied. Oxygen was deeply doped into silicon under femtosecond laser irradiation in air, and then the oxygen-doped regions were removed by HF etching to form high-aspect-ratio grooves. After HF etching, periodic nano-ripples which were induced in silicon by femtosecond laser were observed on the groove sidewalls. The ripple orientation was perpendicular or parallel to the laser propagation direction (z direction), which depended on the relative direction between the laser polarization direction and the scanning direction. The formation of nano-ripples with orientations perpendicular to z direction could be attributed to the standing wave generated by the interference of the incident light and the reflected light in z direction. The formation of nano-ripples with orientations parallel to z direction could be attributed to the formation of self-organized periodic nanoplanes (bulk nanogratings) induced by femtosecond laser inside silicon. Materials in the tail portion of laser-induced oxygen doping (LIOD) regions were difficult to be etched by HF solution due to low oxygen concentration. The specimen was etched further in KOH solution to remove remaining materials in LIOD regions and all-silicon grooves were fabricated

  4. Performance and stability limits at near-unity aspect ratio in the pegasus toroidal experiment

    International Nuclear Information System (INIS)

    Fonck, R.; Diem, S.; Garstka, G.; Kissick, M.; Lewicki, B.; Ostrander, C.; Probert, P.; Reinke, M.; Sontag, A.; Tritz, K.; Unterberg, E.

    2003-01-01

    The Pegasus Toroidal Experiment is a mid-sized extremely-low aspect ratio (A) spherical torus (ST). It has the dual roles of exploring limits of ST behavior as A approaches 1 and studying the physics of ST plasmas in the tokamak-spheromak overlap regime. Major parameters are R 0.25 - 0.45 m, A 1.1 - 1.4, I p T 20% have been obtained, and the operational space of beta vs I p /aB T is similar to that observed for NBI-heated START discharges. Achievable plasma current is subject to an apparent limit of I p /I tf ∼ 1. Access to higher-current plasmas appears to be restricted by the appearance of large internal MHD activity, including m/n=2/1 and 3/2 modes. Recent experiments have begun to access ideal stability limits, with disruptions observed as q 95 approaches 5, in agreement with numerical predictions for external kink mode onset. (author)

  5. Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystal

    Directory of Open Access Journals (Sweden)

    Abdellatif Gueddida

    2018-05-01

    Full Text Available We investigate the propagation of elastic waves in a one-dimensional (1D phononic crystal constituted by high aspect ratio epoxy nanoridges that have been deposited at the surface of a glass substrate. With the help of the finite element method (FEM, we calculate the dispersion curves of the modes localized at the surface for propagation both parallel and perpendicular to the nanoridges. When the direction of the wave is parallel to the nanoridges, we find that the vibrational states coincide with the Lamb modes of an infinite plate that correspond to one nanoridge. When the direction of wave propagation is perpendicular to the 1D nanoridges, the localized modes inside the nanoridges give rise to flat branches in the band structure that interact with the surface Rayleigh mode, and possibly open narrow band gaps. Filling the nanoridge structure with a viscous liquid produces new modes that propagate along the 1D finite height multilayer array.

  6. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  7. Unified model for the electromechanical coupling factor of orthorhombic piezoelectric rectangular bar with arbitrary aspect ratio

    Directory of Open Access Journals (Sweden)

    R. Rouffaud

    2017-02-01

    Full Text Available Piezoelectric Single Crystals (PSC are increasingly used in the manufacture of ultrasonic transducers and in particular for linear arrays or single element transducers. Among these PSCs, according to their microstructure and poled direction, some exhibit a mm2 symmetry. The analytical expression of the electromechanical coupling coefficient for a vibration mode along the poling direction for piezoelectric rectangular bar resonator is established. It is based on the mode coupling theory and fundamental energy ratio definition of electromechanical coupling coefficients. This unified formula for mm2 symmetry class material is obtained as a function of an aspect ratio (G where the two extreme cases correspond to a thin plate (with a vibration mode characterized by the thickness coupling factor, kt and a thin bar (characterized by k33′. To optimize the k33′ value related to the thin bar design, a rotation of the crystallogaphic axis in the plane orthogonal to the poling direction is done to choose the highest value for PIN-PMN-PT single crystal. Finally, finite element calculations are performed to deduce resonance frequencies and coupling coefficients in a large range of G value to confirm developed analytical relations.

  8. Computer Simulations of Composite Electrodes in Solid-Oxide Fuel-Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sunde, Svein

    1999-07-01

    aspects of structure and composition. The thesis is composed of the five papers: (A) Calculation of conductivity and polarization resistance of composite SOFC-electrodes from random resistor networks, (B) Monte Carlo Simulations of Conductivity of Composite Electrodes for Solid Oxide Fuel Cells, (C) Monte Carlo Simulations of the Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells (D) Calculations of Impedance of Composite Modes for Solid Oxide Fuel Cells (E) Simulations of Composite Electrodes in Fuel Cells. The major results are: (1) A Monte Carlo method is constructed for electrochemical applications, (2) The Monte Carlo simulations of conductivity with respect to its dependence on composition and temperature are validated quantitatively with respect to experimental results (papers A, B and E), (3) The Monte Carlo method is validated qualitatively with respect polarisation resistance and its thickness dependence (papers A, C, and E), (Considerable scatter in the experimental results prevents a more strict quantitative evaluation of the model.), (4) A dependence of the percolation threshold on particle size in the composite is suggested as a major reason for electrode deactivation in fuel cells employing composite electrodes in which particle aggregation occur (paper B), (5) The range of compositions within which there will be a thickness dependence of the polarisation resistance is calculated as a function of relative ratio of particle radii (paper C), (6) The shapes of impedance-plane plots for composite electrodes will usually differ significantly from their point-contact counterparts exclusively for reasons related structure (paper D), (7) The macroscopic porous-electrode theory is adapted for composite electrodes (papers C and E), (8) A model for internal reforming of methane at a composite fuel-cell anode is formulated, based on the macroscopic porous-electrode theory (paper E). The model includes a description of gas-phase transport and non

  9. Influence of writing and reading intertrack interferences in terms of bit aspect ratio in shingled magnetic recording

    Science.gov (United States)

    Nobuhara, Hirofumi; Okamoto, Yoshihiro; Yamashita, Masato; Nakamura, Yasuaki; Osawa, Hisashi; Muraoka, Hiroaki

    2014-05-01

    In this paper, we investigate the influence of the writing and reading intertrack interferences (ITIs) in terms of bit aspect ratio (BAR) in shingled magnetic recording by computer simulation using a read/write model which consists of a writing process based on Stoner-Wohlfarth switching asteroid by a one-side shielded isosceles triangular write head and a reading process by an around shielded read head for a discrete Voronoi medium model. The results show that BAR should be 3 to reduce the influence of writing and reading ITIs, media noise, and additive white Gaussian noise in an assumed areal density of 4.61Tbpsi.

  10. Aspect ratio effects of an adiabatic rectangular obstacle on natural convection and entropy generation of a nanofluid in an enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhzadeh, G. A.; Nikfar, M. [University of Kashan, Kashan (Iran, Islamic Republic of)

    2013-11-15

    In the present study, aspect ratio (AR) effects of a centered adiabatic rectangular obstacle numerically investigated on natural convection and entropy generation in a differentially heated enclosure filled with either water or nanofluid (Cu-water). The governing equations are solved numerically with finite volume method using the SIMPLER algorithm. The study has been done for Rayleigh numbers between 10{sup 3} and 10{sup 6} , the aspect ratio of 1/3, 1/2, 1, 2 and 3 and for base fluid as well as nanofluid. It is found that, using the nanofluid leads to increase the flow strength, average Nusselt number and entropy generation and decrease the Bejan number especially at high Rayleigh numbers. At low Rayleigh numbers entropy generation is very low. By increasing Rayleigh number, entropy generation and Bejan number increases. It is observed that the viscose entropy generation is more considerable than the thermal entropy generation and has dominant role in total entropy generation. The maximum entropy generation occurs at AR = 1/3 and 3 and the minimum entropy generation occurs at AR = 1 and 1/2. It is observed that the effect of AR on Nusselt number, entropy generation and Bejan number depends on Rayleigh number.

  11. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  12. A PIV Study of Baseline and Controlled Flow over the Highly Deflected Flap of a Generic Low Aspect Ratio Trapezoidal Wing

    Science.gov (United States)

    Tewes, Philipp; Genschow, Konstantin; Little, Jesse; Wygnanski, Israel

    2017-11-01

    A detailed flow survey using PIV was conducted over a highly-deflected flap (55°) of a low-aspect ratio trapezoidal wing. The wing section is a NACA 0012 with 45° sweep at both the leading and trailing edges, an aspect ratio of 1.5 and a taper ratio of 0.27. The main element is equipped with 7 equally spaced fluidic oscillators, covering the inner 60 % of the span, located near the flap hinge. Experiments were carried out at 0° and 8° incidence at a Reynolds number of 1.7 .106 for both baseline and active flow control (AFC) cases. Velocity ISO-surfaces, x-vorticity and streamlines are analyzed / discussed. A flap leading edge vortex governs the baseline flow field for 0°. This vortical structure interacts with the jets emitted by the actuators (Cμ = 1 %). Its development is hampered and the vortex is redirected toward the trailing edge resulting in a CL increase. At 8°, the dominant flap leading edge vortex could not be detected and is believed to have already merged with the tip vortex. AFC attached the flow over the flap and enhanced the lift by up to 20 % while maintaining longitudinal stability. The dominant flow features in the AFC cases are actuator-generated streamwise vortices which appear stronger at 8°. This work was supported by the Office of Naval Research under ONR Grant No. N00014-14-1-0387.

  13. Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    D. Gera; M.P. Mathur; M.C. Freeman; Allen Robinson [Fluent, Inc./NETL, Morgantown, WV (United States)

    2002-12-01

    This paper reports on the development and validation of comprehensive combustion sub models that include the effect of large aspect ratio of biomass (switchgrass) particles on carbon burnout and temperature distribution inside the particles. Temperature and carbon burnout data are compared from two different models that are formulated by assuming (i) the particles are cylindrical and conduct heat internally, and (ii) the particles are spherical without internal heat conduction, i.e., no temperature gradient exists inside the particle. It was inferred that the latter model significantly underpredicted the temperature of the particle and, consequently, the burnout. Additionally, some results from cofiring biomass (10% heat input) with pulverized coal (90% heat input) are compared with the pulverized coal (100% heat input) simulations and coal experiments in a tangentially fired 150 MW{sub e} utility boiler. 26 refs., 7 figs., 4 tabs.

  14. Evaluation of RANS and LES models for Natural Convection in High-Aspect-Ratio Parallel Plate Channels

    Science.gov (United States)

    Fradeneck, Austen; Kimber, Mark

    2017-11-01

    The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.

  15. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  16. SILAR deposition of nickel sulfide counter electrode for application in quantum dot sensitized solar cell

    Science.gov (United States)

    Singh, Navjot; Siwatch, Poonam; Arora, Anmol; Sharma, Jadab; Tripathi, S. K.

    2018-05-01

    Quantum Dot Sensitized Solar Cells are a likely replacement for Silicon-based solar cells. Counter electrodes are a fundamental aspect of QDSSC's performance. NiS being a less expensive material is a decent choice for the purpose. In this paper, we have discussed the synthesis of NiS by Successive Ionic Layer Adsorption Reaction. Optical, Crystallographic and Electrical studies have been presented. Electrical studies of the device with NiS counter electrode is compared with characteristics of the device with CNTs as the counter electrode. SILAR method is easy and less time to consume than chemical bath deposition or any other method. Results show the success of NiS synthesized by SILAR method as the counter electrode.

  17. Electrochemical impedance characterization of FeSn2 electrodes for Li-ion batteries

    International Nuclear Information System (INIS)

    Chamas, M.; Lippens, P-E.; Jumas, J-C.; Hassoun, J.; Panero, S.; Scrosati, B.

    2011-01-01

    Highlights: → In this paper we study a tin based, FeSn 2 , high capacity lithium-alloying electrode. → The electrochemical performance of this electrode in lithium batteries is remarkably influenced by the current rate. → This aspect is investigated by electrochemical techniques such as galvanostatic cycling and impedance spectroscopy. → The results demonstrated that the good electrochemical behavior of the electrode at the higher currents is due to the formation of a stable solid electrolyte interphase (SEI) film. - Abstract: This work reports the electrochemical characterization of a micro-scale FeSn 2 electrode in a lithium battery. The electrode is proposed as anode material for advanced lithium ion batteries due to its characteristics of high capacity (500 mAh g -1 ) and low working voltage (0.6 V vs. Li). The electrochemical alloying process is studied by cyclic voltammetry and galvanostatic cycling while the interfacial properties are investigated by electrochemical impedance spectroscopy. The impedance measurements in combination with the galvanostatic cycling tests reveal relatively low overall impedance values and good electrochemical performance for the electrode, both in terms of delivered capacity and cycling stability, even at the higher C-rate regimes.

  18. Freestanding membrane composed of micro-ring array with ultrahigh sidewall aspect ratio for application in lightweight cathode arrays

    Science.gov (United States)

    Wang, Lanlan; Liu, Hongzhong; Jiang, Weitao; Gao, Wei; Chen, Bangdao; Li, Xin; Ding, Yucheng; An, Ningli

    2014-12-01

    A freestanding multilayer ultrathin nano-membrane (FUN-membrane) with a micro-ring array (MRA) is successfully fabricated through the controllable film deposition. Each micro-ring of FUN-membrane is 3 μm in diameter, 2 μm in height and sub-100 nm in sidewall thickness, demonstrating an ultrahigh sidewall aspect ratio of 20:1. In our strategy, a silica layer (200 nm in thickness), a chromium transition layer (5 nm-thick) and a gold layer (40 nm-thick), were in sequence deposited on patterned photoresist. After removal of the photoresist by lift-off process, a FUN-membrane with MRA was peeled off from the substrate, where the gold layer acted as a protecting layer to prevent the MRA from fracture. The FUN-membrane was then transferred to a flexible polycarbonate (PC) sheet coated with indium tin oxide (ITO) layer, which was then used as a flexible and lightweight cathode. Remarkably, the field emission effect of the fabricated FUN-membrane cathode performs a high field-enhancement factor of 1.2 × 104 and a low turn-on voltage of 2 V/μm, indicating the advantages of the sharp metal edge of MRA. Due to the rational design and material versatility, the FUN-membrane thus could be transferred to either rigid or flexible substrate, even curved surface, such as the skin of bio-robot's arm or leg. Additionally, the FUN-membrane composed of MRA with extremely high aspect ratio of insulator-metal sidewall, also provides potential applications in optical devices, lightweight and flexible display devices, and electronic eye imagers.

  19. The Using of Used Battery as Alternative Electrode for Emission Spectrograph

    International Nuclear Information System (INIS)

    Arif Artadi; Sudaryo; Aryadi

    2007-01-01

    Analysis of boron (B) and cadmium (Cd) in U 3 O 8 has been carried out by using used battery electrode at emission spectrograph method. Analysis was done with the DC-Arc method, 10 Ampere current, 220 voltage, 25 second exposure time, and 2 mm electrode apart. The sample was extracted using TBP-Kerosine with the ratio of 70 : 30 volume of 200 ml. Water phase as the extraction result was dripped on electrode and excited. Intensity of the samples were compared to its standard, then it was obtained boron and cadmium concentration in sample were 0.07 ppm and 0.15 ppm respectively. The analysis result of boron and cadmium concentration in the sample using battery electrode were 0.21 ppm and 0.14 ppm respectively. (author)

  20. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide

    Science.gov (United States)

    Iwase, Taku; Yokogawa, Kenetsu; Mori, Masahito

    2018-06-01

    The reaction mechanism during etching to fabricate deep holes in SiN/SiO2 stacks by using a HBr/N2/fluorocarbon-based gas plasma was investigated. To etch SiN and SiO2 films simultaneously, HBr/fluorocarbon gas mixture ratio was controlled to achieve etching selectivity closest to one. Deep holes were formed in the SiN/SiO2 stacks by one-step etching at several temperatures. The surface composition of the cross section of the holes was analyzed by time-of-flight secondary-ion mass spectrometry. It was found that bromine ions (considered to be derived from NH4Br) were detected throughout the holes in the case of low-temperature etching. It was also found that the dependence of hole depth on aspect ratio decreases as temperature decreases, and it becomes significantly weaker at a substrate temperature of 20 °C. It is therefore concluded that the formation of NH4Br supplies the SiN/SiO2 etchant to the bottom of the holes. Such a finding will make it possible to alleviate the decrease in etching rate due to a high aspect ratio.

  1. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  2. Preparation of Titanium nitride nanomaterials for electrode and application in energy storage

    Science.gov (United States)

    Tang, Shun; Cheng, Qi; Zhao, Jinxing; Liang, Jiyuan; Liu, Chang; Lan, Qian; Cao, Yuan-Cheng; Liu, Jiyan

    The Titanium nitride was made by the carbamide and titanic chloride precursors. XRD results indicate that the precursor ratio N:Ti 3:1 leads to higher crystallinity. SEM and EDX demonstrated that Ti and N elements were distributed uniformly with the ratio of 1:1. The TiN used as the electrode material for supercapacitor was also studied. The specific capacities were changed from 407 F.g-1 to 385 F.g-1, 364 F.g-1 and 312 F.g-1, when the current densities were changed from 1 A.g-1 to 2 A.g-1, 5 A.g-1 and 10 A.g-1, respectively. Chronopotentiometry tests showed high coulombic efficiency. Cycling performance of the TiN electrode was evaluated by CV at a scanning rate of 50 mV.s-1 for 20,000 cycles and there was about 9.8% loss. These results indicate that TiN is a promising electrode material for the supercapacitors.

  3. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  4. Facile Route to Vertically Aligned High-Aspect Ratio Block Copolymer Films via Dynamic Zone Annealing

    Science.gov (United States)

    Singh, Gurpreet; Kulkarni, Manish; Yager, Kevin; Smilgies, Detlef; Bucknall, David; Karim, Alamgir

    2012-02-01

    Directed assembly of block copolymers (BCP) can be used to fabricate a diversity of nanostructures useful for nanotech applications. The ability to vertically orient etchable high aspect ratio (˜30) ordered BCP domains on flexible substrates via continuous processing methods are particularly attractive for nanomanufacturing. We apply sharp dynamic cold zone annealing (CZA-S) to create etchable, and predominantly vertically oriented 30nm cylindrical domains in 1 μm thick poly(styrene-b-methylmethacrylate) films on low thermal conductivity rigid (quartz) and flexible (PDMS & Kapton) substrates. Under similar static conditions, temporally stable vertical cylinders form within a narrow zone above a critical temperature gradient. Primary ordering mechanism of CZA-S involves sweeping this vertically orienting zone created at maximum thermal gradient. An optimal speed is needed since the process competes with preferential surface wetting dynamics that favors parallel orientation. GISAXS of etched BCP films confirms internal morphology.

  5. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    Science.gov (United States)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  6. Graphene as transparent and current spreading electrode in silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Behura, Sanjay K., E-mail: sanjaybehura@gmail.com; Nayak, Sasmita; Jani, Omkar [Solar Energy Research Wing, Gujarat Energy Research and Management Institute - Research, Innovation and Incubation Centre, Gandhinagar 382007, Gujarat (India); Mahala, Pramila [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat (India)

    2014-11-15

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  7. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    Science.gov (United States)

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  8. Basic toroidal Effects on Alfven Wave Current in Small Aspect Ratio Tokamaks

    International Nuclear Information System (INIS)

    Burma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    The Alfven wave current drive (AWCD) in small aspect ratio Tokamaks is properly calculated, with consideration of the basic toroidicity effects present in (i) the dielectric tensor-operator (involving the strongly toroidal equilibrium profiles), (ii) the structure of the r.f. fields obtained as a solution of the wave equation (through Maxwell's equations' toroidal operators as well as the conversion rate and conversion layer location, depending also on the equilibrium profiles) and (iii) the formulation of the AWCD (which, besides its dependence on the r.f. fields - affected by toroidicity as mentioned at points (i) and (ii) - also requires the equilibrium-magnetic-surface averaging of non-resonant forces involved). Thus, we consider consistent equilibrium profiles with neo-classical conductivity corresponding to an ohmic START-like discharge; use a resistive (anisotropic) MHD dielectric tensor-operator Edith practically no limitations, adequate to describe the plasma response in the pre-heated stage ; solve numerically the 2(1/2)D full- wave equation by the aid of an advanced finite element code developed in; and evaluate the AWCD by the aid of the recently proposed, quite general formulation holding in the case of strongly toroidal fusion devices and including contributions due to helicity injection, momentum transfer and plasma Bow. A general discussion of the results obtained in this work is presented

  9. Properties of screen printed electrocardiography smartware electrodes investigated in an electro-chemical cell.

    Science.gov (United States)

    Rattfält, Linda; Björefors, Fredrik; Nilsson, David; Wang, Xin; Norberg, Petronella; Ask, Per

    2013-07-05

    ECG (Electrocardiogram) measurements in home health care demands new sensor solutions. In this study, six different configurations of screen printed conductive ink electrodes have been evaluated with respect to electrode potential variations and electrode impedance. The electrode surfaces consisted of a Ag/AgCl-based ink with a conduction line of carbon or Ag-based ink underneath. On top, a lacquer layer was used to define the electrode area and to cover the conduction lines. Measurements were performed under well-defined electro-chemical conditions in a physiologic saline solution. The results showed that all printed electrodes were stable and have a very small potential drift (less than 3 mV/30 min). The contribution to the total impedance was 2% of the set maximal allowed impedance (maximally 1 kΩ at 50 Hz), assuming common values of input impedance and common mode rejection ratio of a regular amplifier. Our conclusions are that the tested electrodes show satisfying properties to be used as elements in a skin electrode design that could be suitable for further investigations by applying the electrodes on the skin.

  10. O2-enhanced methanol oxidation reaction at novel Pt-Ru-C co-sputtered electrodes

    International Nuclear Information System (INIS)

    Umeda, Minoru; Matsumoto, Yosuke; Inoue, Mitsuhiro; Shironita, Sayoko

    2013-01-01

    Highlights: ► Novel Pt-Ru-C electrodes were prepared by a co-sputtering technique. ► Co-sputtered electrodes with C result in highly efficient O 2 -enhanced methanol oxidation. ► Pt–Ru-alloy-based co-sputtered electrode induces a negative onset potential of methanol oxidation. ► The Pt-Ru-C electrodes allow a negative onset potential of O 2 -enhanced methanol oxidation. ► The optimum atomic ratios of Pt-Ru-C are Pt: 0.24–0.80, Ru: 0.14–0.61, C: 0.06–0.37. -- Abstract: A Pt-Ru-C electrode has been developed using a co-sputtering technique for use as the anode catalyst of a mixed-reactant fuel cell. The physical and electrochemical characteristics of the electrodes demonstrate that co-sputtered Pt and Ru form a Pt–Ru alloy. The crystallite sizes of the catalysts investigated in this study are reduced by the addition of C to the Pt–Ru alloy. Cu stripping voltammograms suggest that the sputtering of C and the formation of the Pt–Ru alloy synergically increase the electrochemical surface area of the electrodes. The methanol oxidation performances of the prepared electrodes were evaluated in N 2 and O 2 atmospheres; the Pt-Ru-C electrodes achieve an O 2 -induced negative shift in the onset potential of the methanol oxidation (E onset ) and enhance the methanol oxidation current density in the O 2 atmosphere. The mechanism of O 2 -enhanced methanol oxidation with a negative E onset at the Pt-Ru-C electrodes is attributed to a change in the electronic structure of Pt due to the formation of Pt–Ru alloy and the generation of O-based adsorption species by the reduction of O 2 . Finally, the composition of the Pt-Ru-C electrode for the O 2 -enhanced methanol oxidation with a negative E onset was found to be optimal at an atomic ratio of Pt: 0.24–0.80, Ru: 0.14–0.61, and C: 0.06–0.37

  11. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Komoshvili, K. [Tel Aviv Univ. (Israel). School of Physics and Astronomy; Coll. of Judea and Samaria, Ariel (Israel); Cuperman, S. [Tel Aviv Univ. (Israel). School of Physics and Astronomy

    2000-11-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  12. Fast waves mode conversion and energy deposition in simulated, pre-heated, neoclassical, tight aspect ratio tokamak plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Komoshvili, K.; Cuperman, S.

    2000-01-01

    Some basic aspects of wave-plasma interaction of special interest for tight aspect ratio (spherical) tokamaks (ST's) are investigated numerically; these aspects include fast mode conversion and energy deposition. The study is based on the numerical solution of the full electro-magnetic (e.m.) wave equation which includes a quite general two-fluid, resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. A generalized expression for the power absorption appropriate for the above scenario, with consideration of all the basic effects also present in the dielectric tensor-operator, was derived and used. The current-carrying ST-plasma has a circular cross-section and toroidicity effects are simulated by a Grad-Shafranov type, radially dependent axial magnetic field and its shear; however, the Shafranov shift is not considered. Actually, the equilibrium parameters and radial profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. Fast magnetosonic waves are launched from an external antenna into this simulated spherical tokamak plasma; these waves are converted to Alfven waves at points (layers) satisfying the Alfven resonance condition. Quantitative-results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited power are presented. Their dependence on the equilibrium plasma current, neoclassical resistivity and electron inertia as well as on those of the antenna launched wave (wave numbers, frequency and current intensity) is systematically studied and discussed. (orig.)

  13. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    Science.gov (United States)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  14. Study of the electrooxidation of ethanol on hydrophobic electrodes by DEMS and HPLC

    International Nuclear Information System (INIS)

    Gonzalez Pereira, M.; Davila Jimenez, M.; Elizalde, M.P.; Manzo-Robledo, A.; Alonso-Vante, N.

    2004-01-01

    The electrochemical oxidation of ethanol in alkaline solution has been studied on Cu-PVC electrode and Ni/Cu-PVC composite electrodes modified by ruthenium nanoparticles. The techniques used were cyclic voltammetry (CV), steady-state potentiostatic method, on line differential electrochemical mass spectrometry (DEMS), and high-performance liquid chromatography (HPLC). The chemical products: acetaldehyde and acetic acid were detected measuring the proper mass charge (m/z) ratios. These products were also confirmed by HPLC. The surface modification of composite electrodes by ruthenium nanoparticles promotes the formation of acetaldehyde. As shown by DEMS, the surface modification shifts the onset potential for oxygen evolution reaction on the Cu-PVC composite electrode towards more anodic values

  15. Study of the electrooxidation of ethanol on hydrophobic electrodes by DEMS and HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Pereira, M.; Davila Jimenez, M.; Elizalde, M.P.; Manzo-Robledo, A.; Alonso-Vante, N

    2004-09-15

    The electrochemical oxidation of ethanol in alkaline solution has been studied on Cu-PVC electrode and Ni/Cu-PVC composite electrodes modified by ruthenium nanoparticles. The techniques used were cyclic voltammetry (CV), steady-state potentiostatic method, on line differential electrochemical mass spectrometry (DEMS), and high-performance liquid chromatography (HPLC). The chemical products: acetaldehyde and acetic acid were detected measuring the proper mass charge (m/z) ratios. These products were also confirmed by HPLC. The surface modification of composite electrodes by ruthenium nanoparticles promotes the formation of acetaldehyde. As shown by DEMS, the surface modification shifts the onset potential for oxygen evolution reaction on the Cu-PVC composite electrode towards more anodic values.

  16. Self-supported carbon electrodes obtained by tape casting

    Directory of Open Access Journals (Sweden)

    Rubio-Marcos, F.

    2006-06-01

    Full Text Available This paper describes the preparation and electrochemical response of self-supported carbon electrodes prepared by tape casting. The dc electrical conductivity, σ, of the electrodes was determined by four-wire resistance measurements and a relation between the graphite/organic additives ratio and the electrical conductivity was established. The application of these self-supported carbon electrodes as working electrodes in analytical techniques was also evaluated using norepinephrine as electroactive substance in cyclic voltammetry and chronoamperometry. The results were compared with the traditional electrodes, carbon paste electrodes (CPEs, showing that the new self-supported carbon electrodes had both lower background noise and higher analytical response.

    Este artículo describe la preparación y respuesta electroquímica de electrodos de carbono autosoportados preparados mediante colado en cinta. La conductividad eléctrica en corriente continua de este nuevo tipo de electrodos de carbono se ha determinado usando el método de cuatro puntas y se ha establecido una relación ente la relación grafito/aditivos orgánicos y la conductividad eléctrica. La aplicación de estos electrodos autosoportados como electrodos de trabajo en diversas técnicas electroanalíticas también se ha evaluado, empleando norepinefrina como analito en voltametría cíclica y en cronoamperometría. Los resultados se compararon con los obtenidos empleando los electrodos de pasta de carbono tradicionales como electrodos de trabajo, viéndose que la señal de los nuevos electrodos autosoportados poseía menor ruido de fondo y mayor respuesta analítica.

  17. The distinct element analysis for swelling pressure test of bentonite. Discussion on the effects of wall friction force and aspect ratio of specimen

    International Nuclear Information System (INIS)

    Shimizu, Hiroyuki; Kikuchi, Hirohito; Fujita, Tomoo; Tanai, Kenji

    2011-10-01

    For geological isolation systems for radioactive waste, bentonite based material is assumed to be used as a buffer material. The swelling characteristics of the bentonite based material are expected to fill up the void space around the radioactive wastes by swelling. In general, swelling characteristics and properties of bentonite are evaluated by the laboratory tests. However, due to the lack of standardization of testing method for bentonite, the accuracy and reproducibility of the testing results are not sufficiently proved. In this study, bentonite swelling pressure test were simulated by newly developed Distinct Element Method (DEM) code, and the effects of wall friction force and aspect ratio of bentonite specimen were discussed. As a result, the followings were found. In the beginning of the swelling pressure test, since swelling occurs only around the fluid injection side of the specimen, wall friction force acts only in the swelling area and the specimen moves to opposite side from fluid injection side. However, when the entire specimen started swelling, displacement of the specimen prevented by the wall friction force, and the specimen is pressed against the pressure measurement side. Then, the swelling pressure measured on the pressure measurement side increases. Such displacement in the specimen is significantly affected by the decreasing of mechanical properties and the difference of saturation in the bentonite specimen during the fluid infiltration. Moreover, when the aspect ratio of the specimen is large, the displacement of the particle in the specimen becomes large and the area on which the wall frictional force acts is also large. Therefore, measured swelling pressure increases more greatly as the aspect ratio of the specimen increases. To contributes to the standardization of laboratory test methods for bentonite, these effects of wall friction force revealed by the DEM simulation should be verified through laboratory experiments. (author)

  18. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  19. Cause and Cure-Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    Science.gov (United States)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji

    2017-01-01

    In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.

  20. Selective passive adsorption of nitrate with surfactant treated porous electrode and electrostatic regeneration

    Science.gov (United States)

    Oyarzun, Diego I.; Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; Santiago, Juan G.; Stanford microfluidics lab Team; Lawrence Livermore National Lab Team

    2017-11-01

    Nitrate is an important pollutant in drinking water worldwide, and a number of methods exist for the removal of nitrate from water including ion exchange and reverse osmosis. However, these approaches suffer from a variety of disadvantages including the need for a regenerating brine supply and disposal of used brine for ion exchange and low water recovery ratio for reverse osmosis. We are researching and developing a form of capacitive deionization (CDI) for energy efficient desalination and selective removal of ionic toxins from water. In CDI an electrode is used to electrostatically trap ions in a pair of porous electrodes. Here, we demonstrate the use of high surface area activated carbon electrodes functionalized with ion exchange moieties for adsorption of nitrate from aqueous solution. Unlike a traditional ion exchanger, the functionalized surfaces can be repeatedly regenerated by the application of an electrostatic potential which displaces the bound NO3- while leaving an excess of electronic charge on the electrode. Trimethylammonium has an intrinsic selectivity, we are using this moiety to selectively remove nitrate over chloride. We performed adsorption/desorption cycles under several desorption voltages and ratios of concentrations.

  1. Giant rectification in graphene nanoflake molecular devices with asymmetric graphene nanoribbon electrodes

    International Nuclear Information System (INIS)

    Ji, Xiao-Li; Xie, Zhen; Zuo, Xi; Zhang, Guang-Ping; Li, Zong-Liang; Wang, Chuan-Kui

    2016-01-01

    By applying density functional theory based nonequilibrium Green's function method, we theoretically investigate the electron transport properties of a zigzag-edged trigonal graphene nanoflake (ZTGNF) sandwiched between two asymmetric zigzag graphene nanoribbon (zGNR) and armchair graphene nanoribbon (aGNR) electrodes with carbon atomic chains (CACs) as the anchoring groups. Significant rectifying effects have been observed for these molecular devices in low bias voltage regions. Interestingly, the rectifying performance of molecular devices can be optimized by changing the width of the aGNR electrode and the number of anchoring CACs. Especially, the molecular device displays giant rectification ratios up to the order of 10"4 when two CACs are used as the anchoring group between the ZTGNF and the right aGNR electrode. Further analysis indicates that the asymmetric shift of the perturbed molecular energy levels and the spatial parity of the electron wavefunctions in the electrodes around the Fermi level play key roles in determining the rectification performance. And the spatial distributions of tunneling electron wavefunctions under negative bias voltages can be modified to be very localized by changing the number of anchoring CACs, which is found to be the origin of the giant rectification ratios. - Highlights: • The rectification properties of triangular Graphene nanoflakes are investigated. • The rectifying performance can be optimized by changing the width of the right arm-chaired GNR electrode. • The rectifying performance can also be tuned by varying the number of anchoring carbon atomic chains.

  2. Electrode-immobilized compounds through γ radiation

    International Nuclear Information System (INIS)

    De Castro, E.S.

    1983-01-01

    Chemically Modified Electrodes (CMEs) are used as substrates in heterogeneous catalysis and as sensors. This work demonstrates a new strategy for immobilizing polyelectrolytes and electroactive agents on electrode surfaces. The success of this method lies in cross-linking water soluble polymer chains through the ionizing radiation of γ emissions from a 60 Co source. Cross-linking can create a continuous network out of the polymer macromolecules which then makes the network insoluble on the electrode surface. Bonds between the network and the substrate are also possible. Redox species mixed with the polymer network and irradiated become part of the insoluble network, and are permanently attached. The use of γ radiation to make electrochemical sensors is demonstrated. The immobilized network poly[diallyl dimethyl ammonium chloride] (DDAC) is placed in a solution of potassium ferricyanide and ionicly exchanges the anion into the network. An electroactive network is created from irradiating a mixture of DDAC and 2,6-dichlorophenolindophenol (DCIP). Using the amount of electroactive DCIP remaining in the film as the optimization parameter, variables such as polymer:DCIP ratio, film thickness, and dosage employed are shown to be relevant

  3. Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.

    Science.gov (United States)

    Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2015-09-23

    The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Electrochemical degradation of diuron and dichloroaniline at BDD electrode

    International Nuclear Information System (INIS)

    Polcaro, Anna Maria; Mascia, Michele; Palmas, Simonetta; Vacca, Annalisa

    2004-01-01

    The degradation of diuron and 3,4-dichloroaniline (DCA) has been studied at boron-doped diamond (BDD) anode. A three electrode impinging jet cell was used to improve the mass transfer of the reactant to the electrode surface. In the whole range of experimental conditions examined, the reactants were completely mineralised and passivation of the electrode surface was not observed. HPLC and ionic chromatography analyses revealed that the reaction involves the oxidative ring-cleavage and the formation of stoichiometric amounts of chloride and ammonium ions. Depending on the specific experimental conditions, short-chained organic acids were also identified as intermediate products. Values of global current efficiencies greater than 20% were obtained even operating with low reactant concentration (0.17 mM for diuron and 2 mM for dichloroaniline) provided that a suitable ratio between applied current and mass transfer rate was guaranteed

  5. Electrochemical degradation of diuron and dichloroaniline at BDD electrode

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, Anna Maria; Mascia, Michele; Palmas, Simonetta; Vacca, Annalisa

    2004-02-15

    The degradation of diuron and 3,4-dichloroaniline (DCA) has been studied at boron-doped diamond (BDD) anode. A three electrode impinging jet cell was used to improve the mass transfer of the reactant to the electrode surface. In the whole range of experimental conditions examined, the reactants were completely mineralised and passivation of the electrode surface was not observed. HPLC and ionic chromatography analyses revealed that the reaction involves the oxidative ring-cleavage and the formation of stoichiometric amounts of chloride and ammonium ions. Depending on the specific experimental conditions, short-chained organic acids were also identified as intermediate products. Values of global current efficiencies greater than 20% were obtained even operating with low reactant concentration (0.17 mM for diuron and 2 mM for dichloroaniline) provided that a suitable ratio between applied current and mass transfer rate was guaranteed.

  6. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    International Nuclear Information System (INIS)

    Ranganathan, S.; Easton, E.B.

    2009-01-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  7. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Faculty of Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: ranga@uoit.ca, Brad.Easton@uoit.ca

    2009-07-01

    Sol-gel chemistry is becoming more popular for the synthesis of electrode materials. For example, the sol-gel reaction can be performed in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together via the ceramic binder, which can also promote ion transport. Furthermore, the CCE structure has a high active surface area and is chemical and thermally robust. We have investigated CCE materials prepared using 3-aminopropyl trimethoxysilane. Electrochemical experiments (cyclic voltammetry, electrochemical impedance spectroscopy) were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the Cu-Cl thermochemical cycle. Our initial results have shown that CCE-based electrodes vastly outperform a bare carbon electrode, and thus are highly promising and cost-effective electrode material. Subsequent experiments involved the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements will be presented. (author)

  8. Three-dimensional random resistor-network model for solid oxide fuel cell composite electrodes

    International Nuclear Information System (INIS)

    Abbaspour, Ali; Luo Jingli; Nandakumar, K.

    2010-01-01

    A three-dimensional reconstruction of solid oxide fuel cell (SOFC) composite electrodes was developed to evaluate the performance and further investigate the effect of microstructure on the performance of SOFC electrodes. Porosity of the electrode is controlled by adding pore former particles (spheres) to the electrode and ignoring them in analysis step. To enhance connectivity between particles and increase the length of triple-phase boundary (TPB), sintering process is mimicked by enlarging particles to certain degree after settling them inside the packing. Geometrical characteristics such as length of TBP and active contact area as well as porosity can easily be calculated using the current model. Electrochemical process is simulated using resistor-network model and complete Butler-Volmer equation is used to deal with charge transfer process on TBP. The model shows that TPBs are not uniformly distributed across the electrode and location of TPBs as well as amount of electrochemical reaction is not uniform. Effects of electrode thickness, particle size ratio, electron and ion conductor conductivities and rate of electrochemical reaction on overall electrochemical performance of electrode are investigated.

  9. Log-ratio circuit for beam position monitoring

    International Nuclear Information System (INIS)

    Wells, F.D.; Shafer, R.E.; Gilpatrick, J.D.; Shurter, R.B.

    1990-01-01

    A synopsis is given of work in progress on a new signal processing technique for obtaining real-time normalized beam position information from sensing electrodes in accelerator beam pipes. The circuit employs wideband logarithmic amplifiers in a configuration that converts pickup electrode signals to position signals that are substantially independent of beam current. The circuit functions as a ratio detector that computes the logarithm of (A/B) as (Log A-Log B), and presents the result in a video (real-time analog) format representing beam position. It has potential benefits of greater dynamic range and better linearity than other techniques currently used and it may be able to operate at substantially higher frequencies. 4 refs., 8 figs

  10. High-Density Stretchable Electrode Grids for Chronic Neural Recording.

    Science.gov (United States)

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János

    2018-04-01

    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  12. High aspect ratio silicon nanowires control fibroblast adhesion and cytoskeleton organization

    Science.gov (United States)

    Andolfi, Laura; Murello, Anna; Cassese, Damiano; Ban, Jelena; Dal Zilio, Simone; Lazzarino, Marco

    2017-04-01

    Cell-cell and cell-matrix interactions are essential to the survival and proliferation of most cells, and are responsible for triggering a wide range of biochemical pathways. More recently, the biomechanical role of those interactions was highlighted, showing, for instance, that adhesion forces are essential for cytoskeleton organization. Silicon nanowires (Si NWs) with their small size, high aspect ratio and anisotropic mechanical response represent a useful model to investigate the forces involved in the adhesion processes and their role in cellular development. In this work we explored and quantified, by single cell force spectroscopy (SCFS), the interaction of mouse embryonic fibroblasts with a flexible forest of Si NWs. We observed that the cell adhesion forces are comparable to those found on collagen and bare glass coverslip, analogously the membrane tether extraction forces are similar to that on collagen but stronger than that on bare flat glass. Cell survival did not depend significantly on the substrate, although a reduced proliferation after 36 h was observed. On the contrary both cell morphology and cytoskeleton organization revealed striking differences. The cell morphology on Si-NW was characterized by a large number of filopodia and a significant decrease of the cell mobility. The cytoskeleton organization was characterized by the absence of actin fibers, which were instead dominant on collagen and flat glass support. Such findings suggest that the mechanical properties of disordered Si NWs, and in particular their strong asymmetry, play a major role in the adhesion, morphology and cytoskeleton organization processes. Indeed, while adhesion measurements by SCFS provide out-of-plane forces values consistent with those measured on conventional substrates, weaker in-plane forces hinder proper cytoskeleton organization and migration processes.

  13. Discharge characteristics of He-Ne-Xe gas mixture with varying Xe contents and at varying sustain electrode gap lengths in the plasma display panel

    International Nuclear Information System (INIS)

    Kwon, Ohyung; Whang, Ki-Woong; Bae, Hyun Sook

    2009-01-01

    The discharge characteristics of He-Ne-Xe gas mixture in the plasma display panel were investigated using a two-dimensional numerical simulation to understand the effects of adding He and varying the Xe contents in the gas mixture, and also varying sustain electrode gap. With 5% Xe content and 60 μm sustain electrode gap, decreased ionization led to the improvement of the vacuum ultraviolet (vuv) efficacy at increasing He mixing ratios. However, at 20% Xe content and 60 μm sustain electrode gap, increased electron heating improved the vuv efficacy until the He mixing ratio reached 0.7, but the efficacy decreased beyond the ratio of 0.7 due to the increased ionization of Xe atoms. At 5% Xe content and 200 μm sustain electrode gap, the vuv efficacy increased as a result of increased electron heating at the gap space at increasing He mixing ratios.

  14. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Kevin G.; Trask, Stephen E.; Bauer, Christoph; Woehrle, Thomas; Lux, Simon; Tschech, Matthias; Polzin, Bryant J.; Ha, Seungbum; Long, Brandon R.; Wu, Qingliu; Lu, Wenquan; Dees, Dennis W.; Jansen, Andrew N.

    2016-01-01

    Increasing the areal capacity or electrode thickness in lithium ion batteries is one possible means to increase pack level energy density while simultaneously lowering cost. The physics that limit use of high areal capacity as a function of battery power to energy ratio are poorly understood and thus most currently produced automotive lithium ion cells utilize modest loadings to ensure long life over the vehicle battery operation. Here we show electrolyte transport limits the utilization of the positive electrode at critical C-rates during discharge; whereas, a combination of electrolyte transport and polarization lead to lithium plating in the graphite electrode during charge. Experimental measurements are compared with theoretical predictions based on concentrated solution and porous electrode theories. An analytical expression is derived to provide design criteria for long lived operation based on the physical properties of the electrode and electrolyte. Finally, a guideline is proposed that graphite cells should avoid charge current densities near or above 4 mA/cm2 unless additional precautions have been made to avoid deleterious side reaction.

  15. Dimensional measurement of micro parts with high aspect ratio in HIT-UOI

    Science.gov (United States)

    Dang, Hong; Cui, Jiwen; Feng, Kunpeng; Li, Junying; Zhao, Shiyuan; Zhang, Haoran; Tan, Jiubin

    2016-11-01

    Micro parts with high aspect ratios have been widely used in different fields including aerospace and defense industries, while the dimensional measurement of these micro parts becomes a challenge in the field of precision measurement and instrument. To deal with this contradiction, several probes for the micro parts precision measurement have been proposed by researchers in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). In this paper, optical fiber probes with structures of spherical coupling(SC) with double optical fibers, micro focal-length collimation (MFL-collimation) and fiber Bragg grating (FBG) are described in detail. After introducing the sensing principles, both advantages and disadvantages of these probes are analyzed respectively. In order to improve the performances of these probes, several approaches are proposed. A two-dimensional orthogonal path arrangement is propounded to enhance the dimensional measurement ability of MFL-collimation probes, while a high resolution and response speed interrogation method based on differential method is used to improve the accuracy and dynamic characteristics of the FBG probes. The experiments for these special structural fiber probes are given with a focus on the characteristics of these probes, and engineering applications will also be presented to prove the availability of them. In order to improve the accuracy and the instantaneity of the engineering applications, several techniques are used in probe integration. The effectiveness of these fiber probes were therefore verified through both the analysis and experiments.

  16. X-ray investigations for determining the aspect ratio in CdSe nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Ullrich; Kurtulus, Oezguel [Festkoerperphysik, Universitaet Siegen (Germany)

    2008-07-01

    Semiconductor based 1D nanostructures are of high technological interest due to potential application in 1D conductivity measurements and optical devices. Catalyst assisted solution-liquid-solid synthesis is a new method where nanocrystal catalysts are used to grow CdSe nanorods (NR) from solution. The aim of this study is to investigate CdSe samples prepared with this new method by means of X-ray diffraction. The measurements have been performed at DELTA synchrotron using a beam of wavelength 1.127A and an image plate system. It is found that the CdSe NRs have a crystal structure of wurtzite with an aspect ratio changing between 2 and 10. This is in contradiction with the results obtained from TEM measurements, according to which the lengths of the NRs are in the order of 1 {mu} and the widths are around 20 nm. Presently the results are interpreted by the appearance of stacking faults which separate uniformly stacked AB, AB layers from each other. It is planned to measure an individual NR using a nanofocused X-ray beam. Once an individual NR could be observed, the next step is to measure the powder spectrum using a CCD as a function of the position of the beam spot along the nanorod. Depending on this information, the parameters affecting the structure of the NRs would be clear by making experiments with samples prepared in different conditions.

  17. Graphene as transparent and current spreading electrode in silicon solar cell

    Directory of Open Access Journals (Sweden)

    Sanjay K. Behura

    2014-11-01

    Full Text Available Fabricated bi-layer graphene (BLG has been studied as transparent and current spreading electrode (TCSE for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%, in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  18. Effect of the Phase Volume Ratio on the Potential of a Liquid-Membrane Ion-Selective Electrode

    Czech Academy of Sciences Publication Activity Database

    Samec, Zdeněk; Girault, H. H.

    2004-01-01

    Roč. 76, č. 14 (2004), s. 4150-4155 ISSN 0003-2700 R&D Projects: GA MŠk ME 502 Institutional research plan: CEZ:AV0Z4040901 Keywords : liquit-membrane * ion-selective electrode * two.phase liquid system Subject RIV: CG - Electrochemistry Impact factor: 5.450, year: 2004

  19. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    Science.gov (United States)

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    test signal does not itself confound electrode stability or sensation. DC-resistance to AC-impedance ratio was ~1:08, averaged across frequencies. Conclusion Using the methods developed here, a test signal can predict DC electrode resistance. Since unique test frequencies can be used at each tDCS electrode, specific electrode resistance can be resolved for any number of stimulating channels – a process made still more robust by the use of a sentinel electrode. These findings provide the first method for monitoring individual electrode resistance during tDCS that integrated into devices may minimize irritation at electrodes. PMID:25456981

  20. Preparation of Titanium nitride nanomaterials for electrode and application in energy storage

    Directory of Open Access Journals (Sweden)

    Shun Tang

    Full Text Available The Titanium nitride was made by the carbamide and titanic chloride precursors. XRD results indicate that the precursor ratio N:Ti 3:1 leads to higher crystallinity. SEM and EDX demonstrated that Ti and N elements were distributed uniformly with the ratio of 1:1. The TiN used as the electrode material for supercapacitor was also studied. The specific capacities were changed from 407 F.g−1 to 385 F.g−1, 364 F.g−1 and 312 F.g−1, when the current densities were changed from 1 A.g−1 to 2 A.g−1, 5 A.g−1 and 10 A.g−1, respectively. Chronopotentiometry tests showed high coulombic efficiency. Cycling performance of the TiN electrode was evaluated by CV at a scanning rate of 50 mV.s−1 for 20,000 cycles and there was about 9.8% loss. These results indicate that TiN is a promising electrode material for the supercapacitors. Keywords: Energy storage, Nanomaterials, Anode, Titanium nitride, Supercapacitors

  1. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  2. Evaluation of a new mid-scala cochlear implant electrode using microcomputed tomography.

    Science.gov (United States)

    Frisch, Christopher D; Carlson, Matthew L; Lane, John I; Driscoll, Colin L W

    2015-12-01

    To investigate electrode position, depth of insertion, and electrode contact using an electrode array with a mid-scala design following round window (RW) and cochleostomy insertion. Eight fresh-frozen cadaveric bones were implanted; half via a RW approach and half through an anteroinferior cochleostomy using a styleted mid-scala electrode design. Microcomputed tomography was used to acquire oblique coronal and oblique axial reformations. Individual electrode positions along each array, insertional depth, and electrode contact were determined using National Institutes of Health Image J software. All electrodes were inserted without significant resistance. The average angular depth of insertion was 436.5° for the RW group and 422.7° for the cochleostomy group. All electrodes acquired a perimodiolar position in the proximal segment and a lateral wall position at the basal turn, regardless of approach. Electrodes distal to the basal turn demonstrated a variable location, with 78% mid scala. One cochleostomy array fractured through the interscalar partition (ISP), acquiring a scala vestibuli position. The odds ratio for either abutting the modiolus, ISP, lateral wall or floor, or fracturing through the ISP were 2.7 times more likely following a cochleostomy insertion (P = .032). The styleted mid-scala electrode design acquires a proximal perimodiolar position, a lateral wall location, as it traverses the basal turn, and most commonly a mid-scala position in the distal array. Interscalar excursion occurred in one of the cochleostomy insertions. Cochleostomy insertion is more likely to result in ultimate final electrode position adjacent to critical intracochlear structures. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes

    International Nuclear Information System (INIS)

    Yao Yingwu; Zhao Chunmei; Zhu Jin

    2012-01-01

    PbO 2 –ZrO 2 nanocomposite electrodes were prepared by the anodic codeposition in the lead nitrate plating bath containing ZrO 2 nanoparticles. The influences of the ZrO 2 nanoparticles concentration, current density, temperature and stirring rate of the plating bath on the composition of the nanocomposite electrodes were investigated. The surface morphology and the structure of the nanocomposite electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The experimental results show that the addition of ZrO 2 nanoparticles in the electrodeposition process of lead dioxide significantly increases the lifetime of nanocomposite electrodes. The PbO 2 –ZrO 2 nanocomposite electrodes have a service life of 141 h which is almost four times longer than that of the pure PbO 2 electrodes. The morphology of PbO 2 –ZrO 2 nanocomposite electrodes is more compact and finer than that of PbO 2 electrodes. The relative surface area of the composite electrodes is approximately 2 times that of the pure PbO 2 electrodes. The structure test shows that the addition of ZrO 2 nanoparticles into the plating bath decreases the grain size of the PbO 2 –ZrO 2 nanocomposite electrodes. The anodic polarization curves show that the oxygen evolution overpotential of PbO 2 –ZrO 2 nanocomposite electrodes is higher than PbO 2 electrodes. The pollutant anodic oxidation experiment show that the PbO 2 –ZrO 2 nanocomposite electrode exhibited the better performance for the degradation of 4-chlorophenol than PbO 2 electrode, the removal ratio of COD reached 96.2%.

  4. Electrode and limiter biasing experiments on the tokamak ISTTOK

    International Nuclear Information System (INIS)

    Silva, C.; Figueiredo, H.; Cabral, J.A.C.; Nedzelsky, I.; Varandas, C.A.F.

    2003-01-01

    In this contribution limiter and electrode biasing experiments are compared, in particular in what concerns their effects on the edge plasma parameters. For electrode AC bias a substantial increase (>50%) in the average plasma density is observed with positive voltage, without significant changes in the edge density, leading to steeper profiles. The ratio n e /Hα also increases significantly (>20%), indicating an improvement in gross particle confinement. The plasma potential profile is strongly modified as both the edge E r and its shear increase significantly. For positive limiter bias an increase in the average plasma density and the radiation losses is observed, resulting in almost no modification, or a slight, in particle confinement. Preliminary results of simultaneous electrode and limiter bias experiments show that the control of the plasma potential profile is very limited, since negative voltages do not modify the plasma parameters significantly. (author)

  5. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  6. Pt/AlPO{sub 4} nanocomposite thin-film electrodes for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Yuhong; Kang, Joonhyeon; Nam, Seunghoon; Byun, Sujin [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of); Park, Byungwoo, E-mail: byungwoo@snu.ac.kr [WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2012-07-16

    The enhanced catalytic properties toward ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposite thin-film electrodes were investigated. The Pt/AlPO{sub 4} nanocomposites with various Al/Pt ratios (0.27, 0.57, and 0.96) were fabricated by a co-sputtering method. All of the Pt/AlPO{sub 4} nanocomposites showed a negative shift in the onset potential and a higher current density than those of pure Pt electrode for the electrooxidation of ethanol. Among the various Pt/AlPO{sub 4} nanocomposite thin-film electrodes, the electrode with an atomic ratio of Al to Pt of 0.57 showed the highest electrocatalytic activity for ethanol electrooxidation. The activation enthalpy for the optimum Pt/AlPO{sub 4} nanocomposite was approximately 0.05 eV lower than that of pure Pt. It is believed that the enhancement in catalytic activity is due to the electron-rich Pt resulting from the Fermi-energy difference between Pt and AlPO{sub 4}. - Highlights: Black-Right-Pointing-Pointer The enhanced ethanol electrooxidation on Pt/AlPO{sub 4} nanocomposites is investigated. Black-Right-Pointing-Pointer The Pt/AlPO{sub 4} exhibits higher current density and lower onset potential than pure Pt. Black-Right-Pointing-Pointer The activation enthalpy for optimum Pt/AlPO{sub 4} electrode is {approx}0.05 eV lower than pure Pt. Black-Right-Pointing-Pointer XPS shows electron-rich Pt due to Fermi-energy difference between Pt and AlPO{sub 4}.

  7. Inkjet Printing of High Aspect Ratio Superparamagnetic SU-8 Microstructures with Preferential Magnetic Directions

    Directory of Open Access Journals (Sweden)

    Loïc Jacot-Descombes

    2014-08-01

    Full Text Available Structuring SU-8 based superparamagnetic polymer composite (SPMPC containing Fe3O4 nanoparticles by photolithography is limited in thickness due to light absorption by the nanoparticles. Hence, obtaining thicker structures requires alternative processing techniques. This paper presents a method based on inkjet printing and thermal curing for the fabrication of much thicker hemispherical microstructures of SPMPC. The microstructures are fabricated by inkjet printing the nanoparticle-doped SU-8 onto flat substrates functionalized to reduce the surface energy and thus the wetting. The thickness and the aspect ratio of the printed structures are further increased by printing the composite onto substrates with confinement pedestals. Fully crosslinked microstructures with a thickness up to 88.8 μm and edge angle of 112° ± 4° are obtained. Manipulation of the microstructures by an external field is enabled by creating lines of densely aggregated nanoparticles inside the composite. To this end, the printed microstructures are placed within an external magnetic field directly before crosslinking inducing the aggregation of dense Fe3O4 nanoparticle lines with in-plane and out-of-plane directions.

  8. In-situ thermoelectrochemistry working with heated electrodes

    CERN Document Server

    Gründler, Peter

    2015-01-01

    This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electroc

  9. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    Science.gov (United States)

    Kawai, H.; Yasui, S.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO2 is changed to O2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  10. Cultivation of the photosynthesis microorganism in a Taylor-Couette Vortex Flow with a small aspect ratio

    International Nuclear Information System (INIS)

    Kawai, H; Yasui, S; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    This study focuses on the dynamics of the Taylor-Couette Vortex Flow (TVF) in a photo-bioreactor in which CO 2 is changed to O 2 with high efficiency by the photosynthesis ability of micro algae. Stirring by means of a screw propeller is generally used for a simple agitation. However, the problem is that there exists a very high shearing flow region just near the propeller, which causes the destruction of the alga cell by the shearing force. In contrast, the TVF mixing is expected to reduce such a local and random shearing force because of their column of steady and orderly vortices. In this study, the relationship between the microorganism growth rate and the flow structures in dilute suspensions of a TVF is investigated and the flow characteristics are measured by using an ultrasonic velocity profiler with a small aspect ratio of 3.

  11. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Lee, Kun-Mu; Chiu, Wei-Hao; Wei, Hung-Yu; Hu, Chih-Wei; Suryanarayanan, Vembu; Hsieh, Weng-Feng; Ho, Kuo-Chuan

    2010-01-01

    Counter electrode coated with chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) in a dye-sensitized solar cell (DSSC) was studied. The surface morphology and the nature of I - /I 3 - redox reaction based on PEDOT film were investigated using Atomic Force Microscopy and Cyclic Voltammetry, respectively. The performance of the DSSCs containing the PEDOT coated electrode was compared with sputtered-Pt electrode. We found that the root mean square roughness decreases and conductivity increases as the molar ratio of imidazole (Im)/EDOT in the PEDOT film increases. The DSSC containing the PEDOT coated on fluorine doped tin oxide glass with Im/EDOT molar ratio of 2.0, showed a conversion efficiency of 7.44% compared to that with sputtered-Pt electrode (7.77%). The high photocurrents were attributed to the large effective surface area of the electrode material resulting in good catalytic properties for I 3 - reduction. Therefore, the incorporation of a multi-walled carbon nanotube (MWCNT) in the PEDOT film, coated on various substrates was also investigated. The DSSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08% with short-circuit current density, open-circuit voltage and fill factor of 17.00 mA cm -2 , 720 mV and 0.66, respectively.

  12. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun-Mu, E-mail: d93549007@ntu.edu.t [Photovoltaics Technology Center, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan (China); Chiu, Wei-Hao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30050, Taiwan (China); Wei, Hung-Yu; Hu, Chih-Wei [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Suryanarayanan, Vembu [Electro Organic Division, Central Electrochemical Research Institute, Karaikudi 630 006 (India); Hsieh, Weng-Feng [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30050, Taiwan (China); Ho, Kuo-Chuan [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-01-01

    Counter electrode coated with chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) in a dye-sensitized solar cell (DSSC) was studied. The surface morphology and the nature of I{sup -}/I{sub 3}{sup -} redox reaction based on PEDOT film were investigated using Atomic Force Microscopy and Cyclic Voltammetry, respectively. The performance of the DSSCs containing the PEDOT coated electrode was compared with sputtered-Pt electrode. We found that the root mean square roughness decreases and conductivity increases as the molar ratio of imidazole (Im)/EDOT in the PEDOT film increases. The DSSC containing the PEDOT coated on fluorine doped tin oxide glass with Im/EDOT molar ratio of 2.0, showed a conversion efficiency of 7.44% compared to that with sputtered-Pt electrode (7.77%). The high photocurrents were attributed to the large effective surface area of the electrode material resulting in good catalytic properties for I{sub 3}{sup -} reduction. Therefore, the incorporation of a multi-walled carbon nanotube (MWCNT) in the PEDOT film, coated on various substrates was also investigated. The DSSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08% with short-circuit current density, open-circuit voltage and fill factor of 17.00 mA cm{sup -2}, 720 mV and 0.66, respectively.

  13. Experiments on a low aspect ratio wing at low Reynolds numbers

    Science.gov (United States)

    Morse, Daniel R.

    At the start of the 21st century much of the focus of aircraft design has been turned to unmanned aerial vehicles (UAVs) which generally operate at much lower speeds in higher risk areas than manned aircraft. One subset of UAVs are Micro Air Vehicles (MAVs) which usually are no larger than 20cm and rely on non-traditional shapes to generate lift at very low velocities. This purpose of this work is to describe, in detail with experimental methods, the flow field around a low aspect ratio wing operating at low Reynolds numbers and at high angles of attack. Quantitative measurements are obtained by Three Component Time Resolved Particle Image Velocimetry (3C TR PIV) which describe the mean and turbulent flow field. This research focuses on the leading edge separation zone and the vortex shedding process which occurs at the leading edge. Streamwise wing tip vortices which dominate the lift characteristics are described with flow visualization and 3C TR PIV measurements. Turbulent Kinetic Energy (TKE) is described at the leading edge over several angles of attack. Turbulent Reynolds stresses in all three directions are described over the wing span and several Reynolds numbers. Two primary cyclic processes are observed within the flow field; one low frequency oscillation in the separated region and one high frequency event associated with leading edge vortex formation and convection. Two length scales are proposed and are shown to match well with each other, one based on leading edge vortex shedding frequency and convective velocity and the other based on mean vortex separation distance. A new method of rendering velocity frequency content over large data sets is proposed and used to illustrate the different frequencies observed at the leading edge.

  14. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    Energy Technology Data Exchange (ETDEWEB)

    D' Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C. [University of Bergamo, Bergamo (Italy)

    2015-10-15

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  15. Investigation on power discharge in micro-EDM stainless steel drilling using different electrodes

    International Nuclear Information System (INIS)

    D'Urso, G.; Maccarini, G.; Quarto, M.; Ravasio, C.

    2015-01-01

    The present work deals with the execution of through micro-holes on stainless steel plates using a micro-EDM (Electrical discharge machining) machine. The investigation focuses on the influence of different electrodes' materials and power discharge on both the process performance and the dimensional characteristics of the holes. The experimental campaign was carried out by varying peak current and voltage in order to achieve both high and low power discharge conditions. Tubular electrodes made of three different materials (tungsten carbide, brass and copper) were used. The indexes taken into account were Material removal rate (MRR), Tool wear ratio (TWR), Diametral overcut (DOC) and Taper rate (TR). Brass and copper electrodes always resulted to be the best solution in terms of drilling speed even though the wear of these electrode types is remarkable higher than the tungsten one. On the opposite, tungsten carbide electrodes resulted to be the best solution when high dimensional and geometrical precision is required. Concerning the finishing of the hole inner surface, the best results were achieved using tungsten carbide electrode.

  16. Low temperature formation of electrode having electrically conductive metal oxide surface

    Science.gov (United States)

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  17. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  18. Symmetric Electrode Spanning Narrows the Excitation Patterns of Partial Tripolar Stimuli in Cochlear Implants.

    Science.gov (United States)

    Luo, Xin; Wu, Ching-Chih

    2016-12-01

    In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.

  19. Periodic TiO2 Nanostructures with Improved Aspect and Line/Space Ratio Realized by Colloidal Photolithography Technique

    Directory of Open Access Journals (Sweden)

    Loïc Berthod

    2017-10-01

    Full Text Available This paper presents substantial improvements of the colloidal photolithography technique (also called microsphere lithography with the goal of better controlling the geometry of the fabricated nano-scale structures—in this case, hexagonally arranged nanopillars—printed in a layer of directly photopatternable sol-gel TiO2. Firstly, to increase the achievable structure height the photosensitive layer underneath the microspheres is deposited on a reflective layer instead of the usual transparent substrate. Secondly, an increased width of the pillars is achieved by tilting the incident wave and using multiple exposures or substrate rotation, additionally allowing to better control the shape of the pillar’s cross section. The theoretical analysis is carried out by rigorous modelling of the photonics nanojet underneath the microspheres and by optimizing the experimental conditions. Aspect ratios (structure height/lateral structure size greater than 2 are predicted and demonstrated experimentally for structure dimensions in the sub micrometer range, as well as line/space ratios (lateral pillar size/distance between pillars greater than 1. These nanostructures could lead for example to materials exhibiting efficient light trapping in the visible and near-infrared range, as well as improved hydrophobic or photocatalytic properties for numerous applications in environmental and photovoltaic systems.

  20. High-performance Fuel Cell with Stretched Catalyst-Coated Membrane: One-step Formation of Cracked Electrode.

    Science.gov (United States)

    Kim, Sang Moon; Ahn, Chi-Yeong; Cho, Yong-Hun; Kim, Sungjun; Hwang, Wonchan; Jang, Segeun; Shin, Sungsoo; Lee, Gunhee; Sung, Yung-Eun; Choi, Mansoo

    2016-05-23

    We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

  1. Preparation and characterization of RuO2/polyaniline/polymer binder composite electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    SUZANA SOPČIĆ

    2012-03-01

    Full Text Available The composite electrodes consisting of amorphous and hydrous RuO2, polyaniline and polymeric binder, Nafion® or poly(vinilydene fluoride were prepared. The electro¬chem-ical and pseudocapacitive properties of the prepared electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the responses of composite electrodes are very sensitive to the presence of individual components and their respective ratio in the mixture. The difference in the electro-chemical behavior was explained by the different physico-chemical properties of the polymeric binders.

  2. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    Science.gov (United States)

    Sharma, Vimal Kumar; Jelen, Frantisek; Trnkova, Libuse

    2015-01-01

    Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications. PMID:25594595

  3. Functionalized Solid Electrodes for Electrochemical Biosensing of Purine Nucleobases and Their Analogues: A Review

    Directory of Open Access Journals (Sweden)

    Vimal Kumar Sharma

    2015-01-01

    Full Text Available Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications.

  4. Fast Waves Mode Conversion and Energy Deposition in Simulated, Pre-Heated, Neoclassical, Tight Aspect Ratio Tokamak Plasmas

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1999-01-01

    Some basic aspects of wave-plasma interaction of interest for tight aspect ratio spherical tokamaks are investigated theoretically. The following scenario is considered: A. Fast magnetosonic waves are launched by an external antenna into a simulated spherical Tokamak plasma; these waves are converted to Alfven waves at points (layer) satisfying the Alfven resonance condition. B. The simulated spherical tokamaks-plasma has a circular cross-section and toroidicity effects are simulated by Grad-Shafranov type, radially dependent axial magnetic field and its shear. (J. Actual equilibrium profiles (magnetic field, pressure and current) observed in the low field side (LFS) of spherical tokamaks (viz., START at Culham, UK) are used. D. The study is based on the numerical solution of the full e.m. wave equation which includes a quite general resistive MHD dielectric tensor, with consideration of equilibrium current and neoclassical effects. Two kinds of results will be presented: I. Proofs validating the computational algorithm used and including convergence and energy conservation. II. Exact quantitative results concerning (i) the structure and space dependence of the mode-converted Alfven waves and (ii) the basic features of the deposited p over . The dependence of the results on the launched wave characteristics (wave numbers, frequency and intensity) as well as on those of the equilibrium plasma (equilibrium current, neoclassical resistivity and electron inertia) will be discussed

  5. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  6. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  7. Fabrication and characterization of large arrays of mesoscopic gold rings on large-aspect-ratio cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D. Q.; Petković, I., E-mail: ivana.petkovic@yale.edu; Lollo, A. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Castellanos-Beltran, M. A. [National Institute for Standards and Technology, Boulder, Colorado 80305 (United States); Harris, J. G. E. [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2014-10-15

    We have fabricated large arrays of mesoscopic metal rings on ultrasensitive cantilevers. The arrays are defined by electron beam lithography and contain up to 10{sup 5} rings. The rings have a circumference of 1 μm, and are made of ultrapure (6N) Au that is deposited onto a silicon-on-insulator wafer without an adhesion layer. Subsequent processing of the SOI wafer results in each array being supported at the end of a free-standing cantilever. To accommodate the large arrays while maintaining a low spring constant, the cantilevers are nearly 1 mm in both lateral dimensions and 100 nm thick. The extreme aspect ratio of the cantilevers, the large array size, and the absence of a sticking layer are intended to enable measurements of the rings' average persistent current in the presence of relatively small magnetic fields. We describe the motivation for these measurements, the fabrication of the devices, and the characterization of the cantilevers' mechanical properties. We also discuss the devices' expected performance in measurements of .

  8. Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains

    Science.gov (United States)

    Grebenkov, Denis S.; Metzler, Ralf; Oshanin, Gleb

    2017-10-01

    We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations.

  9. Near-infrared selective dynamic windows controlled by charge transfer impedance at the counter electrode.

    Science.gov (United States)

    Pattathil, Praveen; Scarfiello, Riccardo; Giannuzzi, Roberto; Veramonti, Giulia; Sibillano, Teresa; Qualtieri, Antonio; Giannini, Cinzia; Cozzoli, P Davide; Manca, Michele

    2016-12-08

    Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.

  10. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  11. High rectification ratios of Fe-porphyrin molecules on Au facets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Wang, Gwo-Ching [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States); Lewis, Kim M., E-mail: lewisk2@rpi.edu [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States)

    2012-09-14

    We report room temperature measurements of current vs. voltage (I-V) from self-assembled Fe porphyrin [Fe(III) 5,15-di[4-(s-acetylthio)phenyl]-10,20-diphenyl porphine] molecular layers formed on annealed gold crystal facets on glass substrates. I-V curves were measured using an atomic force microscope with a conductive platinum tip. We observed a rectifier effect that shows asymmetric I-V curves from a monolayer of molecules. The majority rectification ratios at {+-}1 V obtained from hundreds of I-V lie in between 20 and 200, with the highest up to 9000. This is in contrast to the symmetric I-V curves measured from a few nm thick multilayer molecular islands. We contribute the observed rectification in ultrathin FeP molecular layers from asymmetric Schottky barriers that result from molecules in different bonding strengths to electrodes of gold and platinum. -- Highlights: Black-Right-Pointing-Pointer FeP molecular layers or islands of different thickness were self-assembled on Au. Black-Right-Pointing-Pointer High rectification ratios up to 9000 observed in sub-nm thick FeP molecular layers. Black-Right-Pointing-Pointer Measured current vs. voltage using a conductive AFM tip as one electrode. Black-Right-Pointing-Pointer Observed rectification of symmetric molecules using two different electrodes.

  12. Electrochemical performances of LSM/YSZ composite electrode for high temperature steam electrolysis

    International Nuclear Information System (INIS)

    Kyu-Sung Sim; Ki-Kwang Bae; Chang-Hee Kim; Ki-Bae Park

    2006-01-01

    The (La 0.8 Sr 0.2 ) 0.95 MnO 3 /Yttria-stabilized Zirconia composite electrodes were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvano-dynamic and galvano-static polarization method. For this study, the LSM perovskites were fabricated in powders by the co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composite electrodes were deposited on 8 mol% YSZ electrolyte disks by screen printing method, followed by sintering at temperature above 1100 C. From the experimental results, it is concluded that the electrochemical properties of pure and composite electrodes are closely related to their micro-structure and operating temperature. (authors)

  13. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  14. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  15. FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes.

    Science.gov (United States)

    Lee, Kilbock; Song, Seok Ho; Ahn, Jinho

    2014-03-24

    We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.

  16. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    Science.gov (United States)

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).

  17. Determination of Mercury (II Ion on Aryl Amide-Type Podand-Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Sevgi Güney

    2011-01-01

    Full Text Available A new voltammetric sensor based on an aryl amide type podand, 1,8-bis(o-amidophenoxy-3,6-dioxaoctane, (AAP modified glassy carbon electrode, was described for the determination of trace level of mercury (II ion by cyclic voltammetry (CV and differential pulse voltammetry (DPV. A well-defined anodic peak corresponding to the oxidation of mercury on proposed electrode was obtained at 0.2 V versus Ag/AgCl reference electrode. The effect of experimental parameters on differential voltammetric peak currents was investigated in acetate buffer solution of pH 7.0 containing 1 × 10−1 mol L−1 NaCl. Mercury (II ion was preconcentrated at the modified electrode by forming complex with AAP under proper conditions and then reduced on the surface of the electrode. Interferences of Cu2+, Pb2+, Fe3+, Cd2+, and Zn2+ ions were also studied at two different concentration ratios with respect to mercury (II ions. The modified electrode was applied to the determination of mercury (II ions in seawater sample.

  18. Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Song Yicheng; Zhang Junqian; Shao Xianjun; Guo Zhansheng

    2013-01-01

    This work investigates the stress-assisted diffusion of lithium ions in layered electrodes of Li-ion batteries. Decoupled diffusion governing equations are obtained. Material properties, which are characterized by a single dimensionless parameter, and mechanical constraint between a current collector and an active layer, which is characterized by the elastic modulus ratio and thickness ratio between the layers, are identified as key factors that govern the stress-assisted diffusion. For a symmetric plate electrode, stress is induced by the Li-ion concentration gradient, and stress-assisted diffusion therefore depends only on the material properties. For an asymmetric bilayer electrode, mechanical constraint plays a very important role in the diffusion via generation of bending stress. Diffusion may be facilitated, or inversely impeded, according to the constraint. By summarizing the coupling factors of common active materials and investigating the concentration variation induced by stress-assisted diffusion in various electrodes, this work provides insights on stress-assisted diffusion in a layered electrode, as well as suggestions for relevant modelling works on whether the stress-assisted diffusion should be taken into account according to the selection of material and structure. (paper)

  19. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    Science.gov (United States)

    Cha, Kyoung Je; Kim, Taewan; Jea Park, Sung; Kim, Dong Sung

    2014-11-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

  20. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    International Nuclear Information System (INIS)

    Cha, Kyoung Je; Kim, Taewan; Park, Sung Jea; Kim, Dong Sung

    2014-01-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications. (paper)