WorldWideScience

Sample records for aspartic proteinases based

  1. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features

    NARCIS (Netherlands)

    Have, ten A.; Dekkers, E.; Kay, J.; Phylip, L.H.; Kan, van J.A.L.

    2004-01-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal

  2. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    DEFF Research Database (Denmark)

    Li, M; Phylip, L H; Lees, W E

    2000-01-01

    .2 and 1.8 A, respectively, for complexes of proteinase A with full-length IA3 and with a truncated form consisting only of residues 2-34, reveal an unprecedented mode of inhibitor-enzyme interactions. Neither form of the free inhibitor has detectable intrinsic secondary structure in solution. However......, upon contact with the enzyme, residues 2-32 become ordered and adopt a near-perfect alpha-helical conformation. Thus, the proteinase acts as a folding template, stabilizing the helical conformation in the inhibitor, which results in the potent and specific blockage of the proteolytic activity.......Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2...

  3. Extending crystallographic information with semiempirical quantum mechanics and molecular mechanics: a case of aspartic proteinases.

    Science.gov (United States)

    Goldblum, A; Rayan, A; Fliess, A; Glick, M

    1993-01-01

    The results of crystallographic analysis of a complex between an aspartic proteinase, endothiapepsin, and an inhibitor have been extended through the assignment of protons in the active site, to study various steps in the reaction with a substrate. Mechanistic implications are suggested as a consequence of semiempirical quantum mechanical calculations, indicating that most of the activation energy is required to bring the substrate from an initial binding mode to close distance to a water molecule.

  4. The potency and specificity of the interaction between the IA3 inhibitor and its target aspartic proteinase from Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Phylip, L H; Lees, W E; Brownsey, B G

    2001-01-01

    The yeast IA3 polypeptide consists of only 68 residues, and the free inhibitor has little intrinsic secondary structure. IA3 showed subnanomolar potency toward its target, proteinase A from Saccharomyces cerevisiae, and did not inhibit any of a large number of aspartic proteinases with similar se...

  5. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.).

    Science.gov (United States)

    Llorente, Berta E; Brutti, Cristina B; Caffini, Néstor O

    2004-12-29

    The study of proteinase expression in crude extracts from different organs of the globe artichoke (Cynara scolymus L.) disclosed that enzymes with proteolytic and milk-clotting activity are mainly located in mature flowers. Maximum proteolytic activity was recorded at pH 5.0, and inhibition studies showed that only pepstatin, specific for aspartic proteinases, presented a significant inhibitory effect. Such properties, in addition to easy enzyme inactivation by moderate heating, make this crude protease extract potentially useful for cheese production. Adsorption with activated carbon, together with anion exchange and affinity chromatography, led to the isolation of a heterodimeric milk-clotting proteinase consisting of 30- and 15-kDa subunits. MALDI-TOF MS of the 15-kDa chain determined a 15.358-Da mass, and the terminal amino sequence presented 96% homology with the smaller cardosin A subunit. The amino terminal sequence of the 30-kDa chain proved to be identical to the larger cardosin A subunit. Electrophoresis evidenced proteinase self-processing that was confirmed by immunoblots presenting 62-, 30-, and 15-kDa bands.

  6. Renin inhibition by substituted piperidines: a novel paradigm for the inhibition of monomeric aspartic proteinases?

    Science.gov (United States)

    Oefner, C; Binggeli, A; Breu, V; Bur, D; Clozel, J P; D'Arcy, A; Dorn, A; Fischli, W; Grüninger, F; Güller, R; Hirth, G; Märki, H; Mathews, S; M ller, M; Ridley, R G; Stadler, H; Vieira, E; Wilhelm, M; Winkler, F; Wostl, W

    1999-03-01

    The aspartic proteinase renin catalyses the first and rate-limiting step in the conversion of angiotensinogen to the hormone angiotensin II, and therefore plays an important physiological role in the regulation of blood pressure. Numerous potent peptidomimetic inhibitors of this important drug target have been developed, but none of these compounds have progressed past clinical phase II trials. Limited oral bioavailability or excessive production costs have prevented these inhibitors from becoming new antihypertensive drugs. We were interested in developing new nonpeptidomimetic renin inhibitors. High-throughput screening of the Roche compound library identified a simple 3, 4-disubstituted piperidine lead compound. We determined the crystal structures of recombinant human renin complexed with two representatives of this new class. Binding of these substituted piperidine derivatives is accompanied by major induced-fit adaptations around the enzyme's active site. The efficient optimisation of the piperidine inhibitors was facilitated by structural analysis of the renin active site in two renin-inhibitor complexes (some of the piperidine derivatives have picomolar affinities for renin). These structural changes provide the basis for a novel paradigm for inhibition of monomeric aspartic proteinases.

  7. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1980-01-01

    Aminopeptidase A (aspartate aminopeptidase, EC 3.4.11.7) was purified 2000-fold from pig kidney cortex. The essential step in the purification was chromatography on an immunoadsorbent column prepared from a rabbit antiserum raised against pig intestinal aminopeptidase A. Glutamyl and aspartyl...... revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed...... protein....

  8. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    DEFF Research Database (Denmark)

    Danielsen, Erik Michael; Norén, O; Sjöström, H

    1980-01-01

    immunoelectrophoresis when anionic or cationic detergents were present. On gel filtration, mol.wts. of 350000--400000 and 270000 were calculated for the detergent and proteinase forms. Electron microscopy after negative staining of the proteinase form revealed a dimeric structure. Electrophoresis of either form...

  9. [Evalution of activity of acid aspartic proteinase in Candida strains isolated from oral cavity of patients with increased risk of mycosis].

    Science.gov (United States)

    Rózga, A; Kurnatowska, A J; Raczyńsak-Witońska, G; Loga, G

    2001-01-01

    We have evaluated the activity of acid aspartic protease in 195 strains of Candida isolated from the oral cavity of three groups of patients. The first group comprised patients with cancer of the larynx qualified for surgery, the second- patients with neoplastic disease ( Hodgkin s disease, lymphoma, acute granulocytic leukaemia, lymphatic leukaemia, lung cancer, multiple myeloma, stomach cancer, breast cancer) who were not treated, the third group- patients with neoplastic diseases treated by chemotherapy. The strains of fungi were differentiated using API 20C and Api 20C AUX tests according to the protocol adopted at the Department of Medical Parasitology and Biology, Medical University of Lódz. The activity of acid protease was studied by Staib method in Rózga modification. Almost all strains showed high and very high proteolytic activity. The rang of proteolysis zone of Candida strains from the three groups of patients varied from 2,5 to 12,5 mm. We have found the mean proteolytic zones of strains isolated from groups I and III differed statistically significantly (p<0,001). Similarly, statisticall sihnificant difference was seen between these parameters for groups II and III (p<0,05), while there was no difference between strains from group I and II.

  10. Potyviral NIa proteinase, a proteinase with novel deoxyribonuclease activity.

    Science.gov (United States)

    Anindya, Roy; Savithri, Handanahal S

    2004-07-30

    The NIa proteinase from pepper vein banding virus (PVBV) is a sequence-specific proteinase required for processing of viral polyprotein in the cytoplasm. It accumulates in the nucleus of the infected plant cell and forms inclusion bodies. The function of this protein in the nucleus is not clear. The purified recombinant NIa proteinase was active, and the mutation of the catalytic residues His-46, Asp-81, and Cys-151 resulted in complete loss of activity. Most interesting, the PVBV NIa proteinase exhibited previously unidentified activity, namely nonspecific double-stranded DNA degradation. This DNase activity of the NIa proteinase showed an absolute requirement for Mg(2+). Site-specific mutational analysis showed that of the three catalytic residues, Asp-81 was the crucial residue for DNase activity. Mutation of His-46 and Cys-151 had no effect on the DNase activity, whereas mutant D81N was partially active, and D81G was completely inactive. Based on kinetic analysis and molecular modeling, a metal ion-dependent catalysis similar to that observed in other nonspecific DNases is proposed. Similar results were obtained with glutathione S-transferase-fused PVBV NIa proteinase and tobacco etch virus NIa proteinase, confirming that the DNase function is an intrinsic property of potyviral NIa proteinase. The NIa protein present in the infected plant nuclear extract also showed the proteinase and the DNase activities, suggesting that the PVBV NIa protein that accumulates in the nucleus late in the infection cycle might serve to degrade the host DNA. Thus the dual function of the NIa proteinase could play an important role in the life cycle of the virus.

  11. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  12. Computational study of some benzamidine-based inhibitors of thrombin-like snake venom proteinases

    Science.gov (United States)

    Henriques, Elsa S.; Nascimento, Marco A. C.; Ramos, Maria João

    Pit viper venoms contain a number of serine proteinases that, despite their observed coagulant thrombin-like action in vitro, exhibit a paradoxical benign defibrinogenating (anticoagulant) action in vivo, with clinical applications in preventing thrombi and improved blood circulation. Considering that several benzamidine-based inhibitors, some highly selective to thrombin, also inhibit the enzymatic activity of such venombins, the modeling of their enzyme-inhibitor interactions could provide valuable information on the topological factors that determine the divergences in activity. The first step, and the object of the present study, was to derive the necessary set of parameters, consistent with the CHARMM force field, and to perform molecular dynamics (MD) simulations on a few selected representatives of the inhibitors in question under physiological conditions. Bonding and van der Waals parameters were derived by analogy to similar ones in the existing force field. Net atomic charges were obtained with a restrained fitting to the molecular electrostatic potential generated at B3LYP/6-31G(d) level. The parameters were refined to reproduce the available experimental geometries and crystal data, and the MD simulations of the free inhibitors in aqueous solution at 298 K provided an insightful description of their available conformational space.

  13. Fasciola gigantica cathepsin L proteinase-based synthetic peptide for immunodiagnosis and prevention of sheep fasciolosis

    Czech Academy of Sciences Publication Activity Database

    Ježek, Jan; El Ridi, R.; Salah, M.; Wagih, A.; Aziz, H. W.; Tallima, H.; El Shafie, M. H.; Khalek, T. A.; Ammou, F. F. A.; Strongylis, C.; Moussis, V.; Tsikaris, V.

    2008-01-01

    Roč. 90, č. 3 (2008), s. 349-357 ISSN 0006-3525 Institutional research plan: CEZ:AV0Z40550506 Keywords : cathepsin L proteinase * peptides * sequential oligopeptide carriers * synthetic peptide vaccine * Fasciiola gigantica Subject RIV: CC - Organic Chemistry Impact factor: 2.823, year: 2008

  14. Cathepsin D inactivates cysteine proteinase inhibitors, cystatins.

    Science.gov (United States)

    Lenarcic, B; Kos, J; Dolenc, I; Lucovnik, P; Krizaj, I; Turk, V

    1988-07-29

    The formation of inactive complexes in excess molar amounts of human cathepsins H and L with their protein inhibitors human stefin A, human stefin B and chicken cystatin at pH 5.6 has been shown by measurement of enzyme activity coupled with reverse-phase HPLC not to involve covalent cleavage of the inhibitors. Inhibition must be the direct result of binding. On the contrary the interaction of cystatins with aspartic proteinase cathepsin D at pH 3.5 for 60 min followed by HPLC resulted in their inactivation accompanied by peptide bond cleavage at several sites, preferentially those involving hydrophobic amino acid residues. The released peptides do not inhibit papain and cathepsin L. These results explain reported elevated levels of cysteine proteinases and lead to the proposal that cathepsin D exerts an important function, through inactivation of cystatins, in the increased activities of cysteine proteinases in human diseases including muscular distrophy.

  15. Effect of a single aspartate on helix stability at different positions in a neutral alanine-based peptide.

    OpenAIRE

    Huyghues-Despointes, B. M.; Scholtz, J. M.; Baldwin, R. L.

    1993-01-01

    A single aspartate residue has been placed at various positions in individual peptides for which the alanine-based reference peptide is electrically neutral, and the helix contents of the peptides have been measured by circular dichroism. The dependence of peptide helix content on aspartate position has been used to determine the helix propensity (s-value). Both the charged (Asp-) and uncharged (Asp0) forms of the aspartate residue are strong helix breakers and have identical s-values of 0.29...

  16. A Concise Synthesis of Glycolipids Based on Aspartic Acid Building Blocks

    Directory of Open Access Journals (Sweden)

    Lorna Abbey

    2012-09-01

    Full Text Available L-Aspartic acid building blocks bearing galactosyl moieties were used to synthesise glycolipid mimetics of variable hydrocarbon chain length. The glycolipids were readily prepared through amide bond formation using the TBTU/HOBt coupling methodology. It was observed that, under these conditions, activation of the α-carboxylic acid of the intermediates led to near complete racemisation of the chiral centre if the reaction was carried out in the presence of a base such as triethylamine. The enantiomerically pure glycolipids were obtained after careful consideration of the synthetic sequence and by performing the coupling reactions in the absence of base.

  17. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole as a reactivity probe for the investigation of the thiol proteinases. evidence that ficin and bromelain may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain.

    Science.gov (United States)

    Shipton, M; Stuchbury, T; Brocklehurst, K

    1976-01-01

    1. 4-Chloro-7-nitrobenzo-2-oxa-1,3-diazole (Nbd chloride) was used as a reactivity probe to characterize the active centres of papin (EC 3.4.22.2), ficin (EC 3.4.22.3) and bromelain (EC 3.4.22.4). 2. In the pH range 0-8 Nbd chloride probably exists mainly as a monocation, possibly with the proton located on N-1 of the oxadiazole ring. 3. Spectroscopic evidence is presented for the intermediacy of Meisenheimer-type adducts in the reaction of Nbd chloride with nucleophiles. 4. The pH-dependence of the second-order rate constants (k) of the reactions of the three enzymes with Nbd chloride was determined at 25 degrees C, I = 0.1 mol/litre in 6.7% (v/v) ethanol in the pH range 2.5-5, where, at least for papain and ficin, the reactions occur specifically with their active-centre thiol groups. The pH-k profile for the papain reaction is bell-shaped (pKaI = 3.24, pKaII = 3.44 and k = 86M(-1)-s(-1), whereas that for ficin is sigmoidal (pKa = 3.6, k = 0.36M(-1)-s(-1), the rate increasing with increasing pH. The profile for the bromelain reaction appears to resemble that for the ficin reaction, but is complicated by amino-group labelling. 5. The bell-shaped profile of the papain reaction is considered to arise from the reaction of the thiolate ion of cysteine-25, maintained in acidic media by interaction with the side chain of histidine-159, with the Nbd chloride monocation hydrogen-bonded at its nitro group to the un-ionized form of the carboxyl group of aspartic acid-158. The lack of acid catalysis in the corresponding reactions of ficin and probably of bromelain suggests that these enzymes may lack carboxyl groups conformationally equivalent to that of aspartic acid-158 of papain. The possible consequences of this for the catalytic sites of these enzymes is discussed. PMID:11778

  18. Contribution of muscle proteinases to meat tenderization.

    Science.gov (United States)

    Jiang, S T

    1998-07-01

    The exact mechanisms involved in the postmortem meat tenderization process and the nature of changes associated with improvement in tenderness are complex and not fully understood. Based on the relevant evidence thus far obtained, the focus of this review is on clarifying the factors affecting meat tenderness, particularly the toughening and tenderness phases, possible endogenous proteinases involved in meat tenderization and how these proteinases contribute to meat tenderization. Of the different biochemical and ultrastructural changes occurring in the meat tenderization process, myofibril disruption at the Z-disk and contractile proteins are discussed in detail. This myofibril disruption can perhaps be ascribed to the synergistic action of calcium-dependent proteinases (both mu- and m-calpains) and lysosomal proteinases, especially the cathepsins B and L.

  19. Mechanism and ion-dependence of in vitro autoactivation of yeast proteinase A

    DEFF Research Database (Denmark)

    Van Den Hazel, H; Wolff, A M; Kielland-Brandt, Morten

    1997-01-01

    Yeast proteinase A is synthesized as a zymogen which transits through the endoplasmic reticulum, the Golgi complex and the endosome to the vacuole. On arrival in the vacuole, activation takes place. It has previously been found that proteinase A can activate autocatalytically; however......, the propeptide of proteinase A shows essentially no similarity to other known aspartic proteinase propeptides. To understand why proteinase A activation occurs rapidly in the vacuole but not at all in earlier compartments, we have purified the zymogen and investigated the conditions that trigger autoactivation...... the pH- and ionic-strength-dependence and the predominance of a product-catalysed mechanism are well adapted to the situation in vivo, since slow activation in the absence of active proteinase A helps to prevent activation in prevacuolar compartments, whereas, on delivery to the vacuole, lower p...

  20. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae).

    Science.gov (United States)

    Lufrano, Daniela; Faro, Rosário; Castanheira, Pedro; Parisi, Gustavo; Veríssimo, Paula; Vairo-Cavalli, Sandra; Simões, Isaura; Faro, Carlos

    2012-09-01

    Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes.

    Science.gov (United States)

    Varghese, Anju; Raina, O K; Nagar, Gaurav; Garg, Rajat; Banerjee, P S; Maharana, B R; Kollannur, Justin D

    2012-02-10

    Native cathepsin-L cysteine proteinase (28 kDa) was purified from the excretory secretory products of Fasciola gigantica and was used for sero-diagnosis of F. gigantica infection in buffaloes by Dot-enzyme-linked immunosorbent assay (Dot-ELISA). The test detected F. gigantica field infection in these animals with a sensitivity of ∼ 90%. No specific IgG antibody binding was displayed by sera obtained from 76 buffaloes considered to be Fasciola and other parasite-free by microscopic examination of faeces and necropsy examination of liver, rumen and intestine. Additionally, sera from 156 Fasciola-free buffaloes, yet infected with Gigantocotyle explanatum, Paramphistomum epiclitum, Gastrothylax spp., Strongyloides papillosus and hydatid cyst were all negative, indicating that F. gigantica cathepsin-L cysteine proteinase does not cross-react with these helminth parasites in natural infection of the host. The data indicated that cathepsin-L cysteine proteinase based Dot-ELISA reached ∼ 90% sensitivity and 100% specificity with relation to above parasites in the detection of bubaline fasciolosis. The present Dot-ELISA diagnostic assay is relevant to the field diagnosis of F. gigantica infection in buffaloes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Preparation and properties of poly(aspartic acid)-based hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.D. [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, J.H. [SungKyunKwan University, Suwon (Korea, Republic of); Kim, S.H.; Kim, Y.H. [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    1999-03-01

    High molecular weight polysuccinimide (PSI), as a precursor of poly (aspartic acid), was prepared by thermal polycondensation of L-aspartic acid. The molecular weight was high when phosphoric acid was used as a catalyst, and the ratio to monomer was 0.75 : 1(phosphoric acid : L-aspartic acid). Attempted solution polymerization in various sulfolane/mesitylene mixtures gave only low molecular weight polymers. By the post polymerization of PSI using DCC as a condensing reagent, the molecular weight of PSI could be increased to some extent. Hydrogels was prepared by crosslinking reaction of PSI with diamine, followed by hydrolysis with NaOH either in water or in DMF solution. As high as 104 g water/g-polymer absorption could be obtained from the hydrogel prepared with 3 mol % of hexamethylenediamine. 13 refs., 7 figs., 1 tab.

  3. Cysteine proteinases and cystatins

    Directory of Open Access Journals (Sweden)

    Adeliana S. Oliveira

    2003-01-01

    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  4. Picornaviral 3C cysteine proteinases have a fold similar to the chymotrypsin-like serine proteinases

    Energy Technology Data Exchange (ETDEWEB)

    Allaire,M.; Chernaia, M.; Malcolm, B.; James, M.

    1994-01-01

    The picornavirus family includes several pathogens such as poliovirus, rhinovirus (the major cause of the common cold), hepatitis A virus and the foot-and-mouth disease virus. Picornaviral proteins are expressed by direct translation of the genomic RNA into a single, large polyprotein precursor. Proteolysis of the viral polyprotein into the mature proteins is assured by the viral 3C enzymes, which are cysteine proteinases. Here we report the X-ray crystal structure at 2.3 {angstrom} resolution of the 3C proteinase from hepatitis A virus (HAV-3C). The overall architecture of HAV-3C reveals a fold resembling that of the chymotrypsin family of serine proteinases, which is consistent with earlier predictions. Catalytic residues include Cys 172 as nucleophile and His 44 as general base. The 3C cleavage specificity for glutamine residues is defined primarily by His 191. The overall structure suggests that an inter-molecular (trans) cleavage releases 3C and that there is an active proteinase in the polyprotein.

  5. Aspartate Aminotransferase and Alanine Aminotransferase Detection on Paper-Based Analytical Devices with Inkjet Printer-Sprayed Reagents

    Directory of Open Access Journals (Sweden)

    Hsiang-Li Wang

    2016-01-01

    Full Text Available General biochemistry detection on paper-based microanalytical devices (PADs uses pipette titration. However, such an approach is extremely time-consuming for large-scale detection processes. Furthermore, while automated methods are available for increasing the efficiency of large-scale PAD production, the related equipment is very expensive. Accordingly, this study proposes a low-cost method for PAD manufacture, in which the reagent is applied using a modified inkjet printer. The optimal reaction times for the detection of aspartate aminotransferase (AST and alanine aminotransferase (ALT are shown to be 6 and 7 min, respectively, given AST and ALT concentrations in the range of 5.4 to 91.2 U/L (R2 = 0.9932 and 5.38 to 86.1 U/L (R2 = 0.9944. The experimental results obtained using the proposed PADs for the concentration detection of AST and ALT in real human blood serum samples are found to be in good agreement with those obtained using a traditional spectrophotometric detection method by National Cheng Kung University hospital.

  6. Adsorption of arginine, glycine and aspartic acid on Mg and Mg-based alloy surfaces: A first-principles study

    Science.gov (United States)

    Fang, Zhe; Wang, Jianfeng; Yang, Xiaofan; Sun, Qiang; Jia, Yu; Liu, Hairong; Xi, Tingfei; Guan, Shaokang

    2017-07-01

    Studying the adsorption behaviors of biomolecules on the surface of Mg and Mg-based alloy has a fundamental and important role for related applications in biotechnology. In the present work, we systematically investigate and compare the adsorption properties of three typical amino acids, i.e., Arg (arginine), Gly (glycine) and Asp (aspartic acid), which form RGD tripeptide, on the Mg (0 0 0 1) surface with various doping (Zn, Y, and Nd), and aim to realize proper binding between biomolecules and Mg and Mg-based biomedical materials. Our results show that flat adsorption configurations of the functional groups binding to the surfaces are favored in energy for all the three selected amino acids. In specific, for the amino acids adsorped on clean Mg (0 0 0 1) surface, the adsorption energy (Eads) of Arg is found to be -1.67 eV for the most stable configuration, with amino and guanidyl groups binding with the surface. However, Gly (Asp) is found to binding with the surface through amino and carboxyl groups, with a -1.16 eV (-1.15 eV) binding energy. On the 2% Zn doped Mg (0 0 0 1) alloy surface (Mg-Zn (2%)), the Eads are significantly increased to be -1.91 eV, -1.32 eV and -1.35 eV for Arg, Gly and Asp, respectively. While the Mg-Y (1%) and Mg-Nd (1%) slightly weaken the adsorption of three amino acids. Moreover, we have performed detail discussions of the binding properties between amino acids and surfaces by projected density of states (PDOS) combined with charge transfer analyses. Our studies provide a comprehensive understanding on the interactions between amino acids and Mg and Mg-based alloy surfaces, with respect to facilitate the applications of Mg and Mg-based biomedical alloys in biosensing, drug delivery, biomolecule coating and other fields in biotechnology.

  7. The cysteine proteinases of the pineapple plant.

    OpenAIRE

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-01-01

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelai...

  8. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    Science.gov (United States)

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  9. An injectable and biodegradable hydrogel based on poly(α,β-aspartic acid) derivatives for localized drug delivery.

    Science.gov (United States)

    Lu, Caicai; Wang, Xiaojuan; Wu, Guolin; Wang, Jingjing; Wang, Yinong; Gao, Hui; Ma, Jianbiao

    2014-03-01

    An injectable hydrogel via hydrazone cross-linking was prepared under mild conditions without addition of cross-linker or catalyst. Hydrazine and aldehyde modified poly(aspartic acid)s were used as two gel precursors. Both of them are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter can be prepared by thermal polycondensation of aspartic acid. Hydrogels were prepared in PBS solution and characterized by different methods including gel content and swelling, Fourier transformed-infrared spectroscopy, and in vitro degradation experiment. A scanning electron microscope viewed the interior morphology of the obtained hydrogels, which showed porous three-dimensional structures. Different porous sizes were present, which could be well controlled by the degree of aldehyde substitution in precursor poly(aspartic acid) derivatives. The doxorubicin-loaded hydrogels were prepared and showed a pH-sensitive release profile. The release rate can be accelerated by decreasing the environmental pH from a physiological to a weak acidic condition. Moreover, the cell adhesion and growth behaviors on the hydrogel were studied and the polymeric hydrogel showed good biocompatibility. Copyright © 2013 Wiley Periodicals, Inc.

  10. Classification of Lactococcus lactis cell envelope proteinase based on gene sequencing, peptides formed after hydrolysis of milk, and computer modeling

    DEFF Research Database (Denmark)

    Børsting, Mette Winther; Qvist, K.B.; Brockmann, E.

    2015-01-01

    and β-casein. A model structure of Lc. lactis CEP based on the crystal structure of Streptococcus C5a CEP was used to investigate the AA positions in the substrate-binding region. New AA positions were suggested, which could be relevant for the cleavage specificity of CEP; however, these could only...

  11. Human seminal proteinase and prostate-specific antigen are the ...

    Indian Academy of Sciences (India)

    Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several ... St Louis University School of Medicine, St Louis, MO 63104, USA; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110 025, ...

  12. Aspartate aminotransferase (AST) blood test

    Science.gov (United States)

    ... gov/ency/article/003472.htm Aspartate aminotransferase (AST) blood test To use the sharing features on this page, please enable JavaScript. The aspartate aminotransferase (AST) blood test measures the level of the enzyme AST in ...

  13. Serine proteinase from Cucurbita ficifolia seeds.

    Science.gov (United States)

    Dryjański, M; Otlewski, J; Wilusz, T

    1990-01-01

    A new serine proteinase was isolated from Cucurbita ficifolia seeds by the purification procedure, which includes: extraction, salting out with ammonium sulphate, chromatography on CM-cellulose. Sephacryl S-300 gel filtration and h.p.l.c. on DEAE-2SW TSK column. The enzyme was homogeneous both in native and SDS PAGE. Three independent methods showed its molecular mass to be approximately 77 kDa. The enzyme was inhibited by specific serine proteinase organic inhibitors, and was active in the presence of inhibitors specific for other proteinase classes. Surprisingly, squash proteinase exhibited a very high and broad pH optimum with a maximum at 10.7. It hydrolysed many different peptide bonds in B-chain of insulin and was able to cleave four bonds in endogenous serine proteinase inhibitor (CMTI).

  14. The propeptide is required for in vivo formation of stable active yeast proteinase A and can function even when not covalently linked to the mature region

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1993-01-01

    The PEP4-encoded aspartate protease proteinase A from Saccharomyces cerevisiae is synthesized as a zymogen (Ammerer, G., Hunter, C. P., Rothman, J. H., Saari, G. C., Valls, L. A., and Stevens, T. H. (1986) Mol. Cell. Biol. 6, 2490-2499; Woolford, C. A., Daniels, L. B., Park, F. J., Jones, E. W., ...

  15. Digestive proteinases of larvae of the corn earworm, Heliothis zea: characterization, distribution, and dietary relationships.

    Science.gov (United States)

    Lenz, C J; Kang, J; Rice, W C; McIntosh, A H; Chippendale, G M; Schubert, K R

    1991-01-01

    Proteinases and peptidases from the intestinal tract of fifth-instar larvae of Heliothis (= Helicoverpa) zea (Boddie) (Lepidoptera:Noctuidae) were characterized based on their substrate specificity, tissue of origin, and pH optimum. Activity corresponding to trypsin, chymotrypsin, carboxypeptidases A and B, and leucine aminopeptidase was detected in regurgitated fluids, midgut contents, and midgut wall. High levels of proteinase activity were detected in whole midgut homogenates, with much lower levels being observed in foregut and salivary gland homogenates. In addition, enzyme levels were determined from midgut lumen contents, midgut wall homogenates, and regurgitated fluids. Proteinase activities were highest in the regurgitated fluids and midgut lumen contents, with the exception of leucine aminopeptidase activity, which was found primarily in the midgut wall. Larvae fed their natural diet of soybean leaves had digestive proteinase levels that were similar to those of larvae fed artificial diet. No major differences in midgut proteinase activity were detected between larvae reared under axenic or xenic conditions, indicating that the larvae are capable of digesting proteins in the absence of gut microorganisms. The effect of pH on the activity of each proteinase was studied. The pH optima for the major proteinases were determined to be pH 8.0-8.5 for trypsin, when tosyl-L-arginine methyl ester was used as the substrate; and pH 7.5-8.0 for chymotrypsin, when benzoyl-L-tyrosine ethyl ester was used as the substrate.

  16. Role of N-Methyl-D-Aspartate Receptors in Action-Based Predictive Coding Deficits in Schizophrenia.

    Science.gov (United States)

    Kort, Naomi S; Ford, Judith M; Roach, Brian J; Gunduz-Bruce, Handan; Krystal, John H; Jaeger, Judith; Reinhart, Robert M G; Mathalon, Daniel H

    2017-03-15

    Recent theoretical models of schizophrenia posit that dysfunction of the neural mechanisms subserving predictive coding contributes to symptoms and cognitive deficits, and this dysfunction is further posited to result from N-methyl-D-aspartate glutamate receptor (NMDAR) hypofunction. Previously, by examining auditory cortical responses to self-generated speech sounds, we demonstrated that predictive coding during vocalization is disrupted in schizophrenia. To test the hypothesized contribution of NMDAR hypofunction to this disruption, we examined the effects of the NMDAR antagonist, ketamine, on predictive coding during vocalization in healthy volunteers and compared them with the effects of schizophrenia. In two separate studies, the N1 component of the event-related potential elicited by speech sounds during vocalization (talk) and passive playback (listen) were compared to assess the degree of N1 suppression during vocalization, a putative measure of auditory predictive coding. In the crossover study, 31 healthy volunteers completed two randomly ordered test days, a saline day and a ketamine day. Event-related potentials during the talk/listen task were obtained before infusion and during infusion on both days, and N1 amplitudes were compared across days. In the case-control study, N1 amplitudes from 34 schizophrenia patients and 33 healthy control volunteers were compared. N1 suppression to self-produced vocalizations was significantly and similarly diminished by ketamine (Cohen's d = 1.14) and schizophrenia (Cohen's d = .85). Disruption of NMDARs causes dysfunction in predictive coding during vocalization in a manner similar to the dysfunction observed in schizophrenia patients, consistent with the theorized contribution of NMDAR hypofunction to predictive coding deficits in schizophrenia. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Proteinase inhibitors in Brazilian leguminosae

    Directory of Open Access Journals (Sweden)

    C. A. M. Sampaio

    1991-01-01

    Full Text Available Serine proteinase inhitors, in the seeds of several Leguminosae from the Pantanal region (West Brazil, were studied using bovine trypsin, a digestive enzyme, Factor XIIa and human plasma Kallikrein, two blood clotting factors. The inhibitors were purified from Enterolobium contortisiliquum (Mr=23,000, Torresea cearensis (Mr = 13,000, Bauhinia pentandra (Mr = 20,000 and Bauhinia bauhinioides (Mr = 20,000. E. contortisiliquum inhibitor inactivates all three enzymes, whereas the T. cearensis inhibitor inactivates trypsin and Factor XSSa, but does nor affect plasma kallikrein; both Bauhinia inhibitors, on the other hand, inactivate trypsin and plasma kallikrein but only the Bpentandra inhibitor affects Factor XIIa. Ki values were calculated between 10 [raised to the power of] -7 and 10 [raised to the power of] -8 M.

  18. Insulin aspart pharmacokinetics

    DEFF Research Database (Denmark)

    Rasmussen, Christian Hove; Roge, Rikke Meldgaard; Ma, Zhulin

    2014-01-01

    Background: Insulin aspart (IAsp) is used by many diabetics as a meal-time insulin to control postprandial glucose levels. As is the case with many other insulin types, the pharmacokinetics (PK), and consequently the pharmacodynamics (PD), is associated with clinical variability, both between...... to investigate and quantify the properties of the subcutaneous depot. Data from Brange et al. (1990) are used to determine the effects of insulin chemistry in subcutis on the absorption rate. Intravenous (i.v.) bolus and infusion PK data for human insulin are used to understand and quantify the systemic...... distribution and elimination (Porksen et al., 1997; Sjostrand et al., 2002). PK and PD profiles for type 1 diabetics from Chen et al. (2005) are analyzed to demonstrate the effects of IAsp antibodies in terms of bound and unbound insulin. PK profiles from Thorisdottir et al. (2009) and Ma et al. (2012b...

  19. Biodistribution, pharmacokinetics and toxicity of a Vasconcellea cundinamarcensis proteinase fraction with pharmacological activity

    Directory of Open Access Journals (Sweden)

    Fernanda O. Lemos

    Full Text Available Abstract Prior studies demonstrate that a proteinase fraction from Vasconcellea cundinamarcensis V.M. Badillo, Caricaceae, exhibits wound healing activity in gastric and cutaneous models and antitumoral/antimetastatic effects. Here, we present the toxicity, pharmacokinetics and biodistribution data for this proteinase fraction following a single dose into Swiss mice by i.v., s.c. or p.o. routes. The i.v. and s.c. toxicity assays demonstrate that proteinase fraction at ≤20 mg/kg is non-lethal after single injection, while parental administration (p.o. of ≤300 mg/kg does not cause death. Based on p.o. acute toxicity dose using Organisation for Economic Cooperation and Development protocols, proteinase fraction ranks as Class IV “harmful” substance. Proteinase fraction shows high uptake determined as Kp (distribution tissue/blood in organs linked to metabolism and excretion. Also, high bioavailability (≈100% was observed by s.c. administration. The blood contents following i.v. dose fits into a pharmacokinetic bi-compartmental model, consisting of high removal constants – kel 0.22 h−1 and kd 2.32 h−1and a half-life – t½ = 3.13 h. The Ames test of proteinase fraction (0.01–1% demonstrates absence of mutagenic activity. Likewise, genotoxic evaluation of proteinase fraction (5 or 10 mg/kg, i.p. shows no influence in micronuclei frequency. In conclusion, the acute doses for proteinase fraction lack mutagenic and genotoxic activity, clearing the way for clinical assays.

  20. QSAR study of the non-peptidic inhibitors of procollagen C-proteinase based on Multiple linear regression, principle component regression, and partial least squares

    Directory of Open Access Journals (Sweden)

    Ardeshir Khazaei

    2017-09-01

    Full Text Available The quantitative structure–activity relationship (QSAR analyses were carried out in a series of novel sulfonamide derivatives as the procollagen C-proteinase inhibitors for treatment of fibrotic conditions. Sphere exclusion method was used to classify data set into categories of train and test set at different radii ranging from 0.9 to 0.5. Multiple linear regression (MLR, principal component regression (PCR and partial least squares (PLS were used as the regression methods and stepwise, Genetic algorithm (GA, and simulated annealing (SA were used as the feature selection methods. Three of the statistically best significant models were chosen from the results for discussion. Model 1 was obtained by MLR–SA methodology at a radius of 1.6. This model with a coefficient of determination (r2 = 0.71 can well predict the real inhibitor activities. Cross-validated q2 of this model, 0.64, indicates good internal predictive power of the model. External validation of the model (pred_r2 = 0.85 showed that the model can well predict activity of novel PCP inhibitors. The model 2 which developed using PLS–SW explains 72% (r2 = 0.72 of the total variance in the training set as well as it has internal (q2 and external (pred_r2 predictive ability of ∼67% and ∼71% respectively. The last developed model by PCR–SA has a correlation coefficient (r2 of 0.68 which can explains 68% of the variance in the observed activity values. In this case internal and external validations are 0.61 and 0.75, respectively. Alignment Independent (AI and atomic valence connectivity index (chiv have the greatest effect on the biological activities. Developed models can be useful in designing and synthesis of effective and optimized novel PCP inhibitors which can be used for treatment of fibrotic conditions.

  1. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, K; Tidemand, L D; Winther, Jakob R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain........ As a reference, S. cerevisiae CEN.PK 113-5D was transformed with the same plasmid and the two strains were characterised in batch cultivations on glucose. The glucose metabolism was found to be less fermentative in S. kluyveri than in S. cerevisiae. The yield of ethanol on glucose was 0.11 g/g in S. kluyveri...

  2. Production of a heterologous proteinase A by Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Tidemand, L.D.; Winther, J.R.

    2001-01-01

    In order to evaluate the potential of Saccharomyces kluyveri for heterologous protein production, S. kluyveri Y159 was transformed with a S. cerevisiae-based multi-copy plasmid containing the S. cerevisiae PEP4 gene, which encodes proteinase A, under the control of its native promoter......, compared to a yield of 0.40 g/g in S. cerevisiae. Overexpression of PEP4 led to the secretion of active proteinase A in both S. kluyveri and S. cerevisiae. The yield of active proteinase A during growth on glucose was found to be 3.6-fold higher in S. kluyveri than in the S. cerevisiae reference strain........ As a reference. S. cerevisiae CEN.PK 113-5D was transformed with the same plasmid and the two strains were characterised in batch cultivations on glucose. The glucose metabolism was found to be less fermentative in S. kluyveri than in S. cerevisiae. The yield of ethanol on glucose was 0.11 g/g in S. kluyveri...

  3. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket

    Science.gov (United States)

    Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.

    2009-01-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes AspH35 and GluL34 to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the GluL34 to alanine mutant, leads to an impressive 109-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations. PMID:19846764

  4. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    DEFF Research Database (Denmark)

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    The Saccharomyces cerevisiae PEP4 gene encodes proteinase A, an aspartyl protease. pep4 mutants are defective in the activation of many vacuolar hydrolases, including proteinase B. We have expressed a pep4 mutation which directs the accumulation of pro-proteinase A with a defective active site. C...

  5. Streptococcus thermophilus cell wall-anchored proteinase: release, purification, and biochemical and genetic characterization.

    Science.gov (United States)

    Fernandez-Espla, M D; Garault, P; Monnet, V; Rul, F

    2000-11-01

    Streptococcus thermophilus CNRZ 385 expresses a cell envelope proteinase (PrtS), which is characterized in the present work, both at the biochemical and genetic levels. Since PrtS is resistant to most classical methods of extraction from the cell envelopes, we developed a three-step process based on loosening of the cell wall by cultivation of the cells in the presence of glycine (20 mM), mechanical disruption (with alumina powder), and enzymatic treatment (lysozyme). The pure enzyme is a serine proteinase highly activated by Ca(2+) ions. Its activity was optimal at 37 degrees C and pH 7.5 with acetyl-Ala-Ala-Pro-Phe-paranitroanilide as substrate. The study of the hydrolysis of the chromogenic and casein substrates indicated that PrtS presented an intermediate specificity between the most divergent types of cell envelope proteinases from lactococci, known as the PI and PIII types. This result was confirmed by the sequence determination of the regions involved in substrate specificity, which were a mix between those of PI and PIII types, and also had unique residues. Sequence analysis of the PrtS encoding gene revealed that PrtS is a member of the subtilase family. It is a multidomain protein which is maturated and tightly anchored to the cell wall via a mechanism involving an LPXTG motif. PrtS bears similarities to cell envelope proteinases from pyogenic streptococci (C5a peptidase and cell surface proteinase) and lactic acid bacteria (PrtP, PrtH, and PrtB). The highest homologies were found with streptococcal proteinases which lack, as PrtS, one domain (the B domain) present in cell envelope proteinases from all other lactic acid bacteria.

  6. Hydrolytic activity of Virgibacillus sp. SK37, a starter culture of fish sauce fermentation, and its cell-bound proteinases.

    Science.gov (United States)

    Sinsuwan, Sornchai; Rodtong, Sureelak; Yongsawatdigul, Jirawat

    2012-08-01

    Fish sauce production relies on a natural fermentation process requiring 12-18 months for process completion. Virgibacillus sp. SK37 has been shown to be a potential strain for fish sauce acceleration. However, hydrolytic activity of proteinases bound at cell surface of this strain has not been well elucidated. Addition of 0.2 % CaCl(2) (w/w) in conjunction with starter cultures of Virgibacillus sp. SK 37 increased protein hydrolysis as measured by α-amino group content throughout fermentation (P bound proteinases from Virgibacillus sp. SK 37 were extracted into a free form by incubating the washed cells in Ca(2+)-free buffer at 37 °C for 2 h. Cell-bound proteinases revealed molecular mass of 19, 20, 22, 32, 34, and 44 kDa based on a synthetic peptide zymogram. The proteinases showed subtilisin-like serine characteristics with the highest activity at 50 °C and pH 8 and 11. Activity of the extracted proteinases increased ~4 times at ≥100 mM CaCl(2). In addition, CaCl(2) enhanced thermal stability of the extracted proteinases. Enzymes showed proteolytic activity in either the absence or presence of 10 and 25 % NaCl toward fish muscle, soy protein isolate, and casein substrates. Cell-bound proteinases were likely to play an important role in protein hydrolysis during fish sauce fermentation.

  7. Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists

    DEFF Research Database (Denmark)

    Hansen, Kasper Bø; Mullasseril, Praseeda; Dawit, Sara

    2010-01-01

    N-Methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca(2+)-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describ...

  8. Self-Assembly of a Strong Polyhedral Oligomeric Silsesquioxane Core-Based Aspartate Derivative Dendrimer Supramolecular Gelator in Different Polarity Solvents.

    Science.gov (United States)

    He, Huiwen; Chen, Si; Tong, Xiaoqian; An, Zhihang; Ma, Meng; Wang, Xiaosong; Wang, Xu

    2017-11-21

    Aromatic groups are introduced into the end peripherals of polyhedral oligomeric silsesquioxane (POSS) core-based organic/inorganic hybrid supramolecules to get a novel dendrimer gelator POSS-Z-Asp(OBzl) (POSS-ASP), which have eight aspartate derivative arms to make full use of strong π-π stacking forces to get strong supramolecular gels in addition to multiple hydrogen bindings and van der Waals interactions. POSS-ASP can self-assemble into three-dimensional nanoscale gel networks to provide hybrid physical gels especially with strong mechanical properties and fast-recovery behaviors. Two totally different morphologies of the connected spherical particle structures and banded ultralong fibers are observed owing to the polarity of solvents confirmed by the scanning electron microscopy, polarized optical microscopy, and transmission electron microscopy techniques, expecting the existing various self-assembly models and illustrating the peripherals of the dendrimer and the polarity of solvents having huge influences in the supramolecular self-assembly mechanism. What is more, the thermal stability, rheological properties, and network architecture information have also been investigated via tube-inversion, rotational rheometer, and powder X-ray diffraction methods, the results of which confirm the two different gel formation mechanisms that make POSS-ASP to exhibit two totally different thermal and mechanical properties. Such a study reports a new gelation system in organic or organic/aqueous mixed solvents, which can be helpful for investigating the relationship of dendritic supramolecular gelation and different polarity solvents during the supramolecular self-assembly process of gelators.

  9. Proteinase genes of cheese starter cultures

    NARCIS (Netherlands)

    Kok, Jan

    The proteolytic enzymes of lactococci are of eminent importance for milk fermentations. By the combined action of proteinases and peptidases milk protein is degraded to peptides and amino acids which are required for cell growth and contribute to the organoleptic properties of the foods. The

  10. Degradation of biomolecules in artificially and naturally aged teeth: implications for age estimation based on aspartic acid racemization and DNA analysis.

    Science.gov (United States)

    Dobberstein, Reimer C; Huppertz, Jan; von Wurmb-Schwark, Nicole; Ritz-Timme, Stefanie

    2008-08-06

    Postmortem teeth are the most stable structures, and can be used to gain different information (age estimation, genetic data). Over long postmortem intervals (PMI), degradation processes may alter the molecular integrity and thus affect the reliability of applied molecular methods. Whereas some knowledge on the degradation of biomolecules in bone during the PMI exists, data for teeth are lacking. In particular, the impact of degradation processes in dentine on age estimation based on aspartic acid racemization (AAR) cannot be estimated yet. Hence, the molecular stability of both collagen and DNA was analyzed systematically, and their impact on the reliability of age estimation based on AAR and genetic analyses was checked. Two hundred and ten human and 59 porcine teeth were heated (90 degrees C in water) to simulate collagen and DNA diagenesis; 14 naturally aged teeth (PMI: 3 days to 1700 years) were analyzed comparatively. Peptide patterns of cyanogen bromide (CNBr)-cleaved collagen were employed as a new approach to check the collagen integrity. In the same samples, collagen yields, amino acid compositions, AAR in different protein fractions, and DNA integrity were analyzed. In heated human and porcine teeth the collagen content declined during the heating experiment. The amino acid composition in human samples was collagen-like until 12 days of heating. In naturally aged teeth, the collagen yielded from 9.5 to 15%, and no discrepancy of amino acid composition to that of modern collagen was observed. Electrophoresis of CNBr-peptides showed an altered pattern in experimentally degraded samples from day 10 on; naturally aged collagen displayed the typical collagen pattern. AAR increased in all protein fractions with increasing duration of the heating experiment; naturally aged samples displayed a slow accumulation of AAR. DNA degraded progressively, and after 32 h of heat exposure no more DNA was detectable, whereas the amplification of nuclear and mitochondrial

  11. Insulin aspart in diabetic pregnancy

    DEFF Research Database (Denmark)

    Mathiesen, Elisabeth R

    2008-01-01

    in insulin requirements during pregnancy necessitate short-acting insulins for postprandial control of hyperglycemia. The fast-acting insulin analogue insulin aspart has been tested in a large, randomized trial of pregnant women with Type 1 diabetes and offers benefits in control of postprandial......Pregnancy in women with diabetes is associated with an increased risk of obstetric complications and perinatal mortality. Maintenance of near-normal glycemia during pregnancy can bring the prevalence of fetal, neonatal and maternal complications closer to that of the nondiabetic population. Changes...... and no increase in insulin antibodies was found. Thus, the use of insulin aspart in pregnancy is regarded safe....

  12. The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms.

    Science.gov (United States)

    Niemer, Melanie; Mehofer, Ulrich; Torres Acosta, Juan Antonio; Verdianz, Maria; Henkel, Theresa; Loos, Andreas; Strasser, Richard; Maresch, Daniel; Rademacher, Thomas; Steinkellner, Herta; Mach, Lukas

    2014-04-01

    The tobacco-related species Nicotiana benthamiana has recently emerged as a promising host for the manufacturing of protein therapeutics. However, the production of recombinant proteins in N. benthamiana is frequently hampered by undesired proteolysis. Here, we show that the expression of the human anti-HIV antibodies 2F5, 2G12, and PG9 in N. benthamiana leaves leads to the accumulation of discrete heavy chain-derived degradation products of 30-40 kDa. Incubation of purified 2F5 with N. benthamiana intercellular fluid resulted in rapid conversion into the 40-kDa fragment, whereas 2G12 proved largely resistant to degradation. Such a differential susceptibility to proteolytic attack was also observed when these two antibodies were exposed to various types of proteinases in vitro. While serine and cysteine proteinases are both capable of generating the 40-kDa 2F5 fragment, the 30-kDa polypeptide is most readily obtained by treatment with the latter class of enzymes. The principal cleavage sites reside within the antigen-binding domain, the VH -CH 1 linker segment and the hinge region of the antibodies. Collectively, these results indicate that down-regulation of endogenous serine and cysteine proteinase activities could be used to improve the performance of plant-based expression platforms destined for the production of biopharmaceuticals. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. NMR studies of protonation and hydrogen bond states of internal aldimines of pyridoxal 5'-phosphate acid-base in alanine racemase, aspartate aminotransferase, and poly-L-lysine.

    Science.gov (United States)

    Chan-Huot, Monique; Dos, Alexandra; Zander, Reinhard; Sharif, Shasad; Tolstoy, Peter M; Compton, Shara; Fogle, Emily; Toney, Michael D; Shenderovich, Ilya; Denisov, Gleb S; Limbach, Hans-Heinrich

    2013-12-04

    Using (15)N solid-state NMR, we have studied protonation and H-bonded states of the cofactor pyridoxal 5'-phosphate (PLP) linked as an internal aldimine in alanine racemase (AlaR), aspartate aminotransferase (AspAT), and poly-L-lysine. Protonation of the pyridine nitrogen of PLP and the coupled proton transfer from the phenolic oxygen (enolimine form) to the aldimine nitrogen (ketoenamine form) is often considered to be a prerequisite to the initial step (transimination) of the enzyme-catalyzed reaction. Indeed, using (15)N NMR and H-bond correlations in AspAT, we observe a strong aspartate-pyridine nitrogen H-bond with H located on nitrogen. After hydration, this hydrogen bond is maintained. By contrast, in the case of solid lyophilized AlaR, we find that the pyridine nitrogen is neither protonated nor hydrogen bonded to the proximal arginine side chain. However, hydration establishes a weak hydrogen bond to pyridine. To clarify how AlaR is activated, we performed (13)C and (15)N solid-state NMR experiments on isotopically labeled PLP aldimines formed by lyophilization with poly-L-lysine. In the dry solid, only the enolimine tautomer is observed. However, a fast reversible proton transfer involving the ketoenamine tautomer is observed after treatment with either gaseous water or gaseous dry HCl. Hydrolysis requires the action of both water and HCl. The formation of an external aldimine with aspartic acid at pH 9 also produces the ketoenamine form stabilized by interaction with a second aspartic acid, probably via a H-bond to the phenolic oxygen. We postulate that O-protonation is an effectual mechanism for the activation of PLP, as is N-protonation, and that enzymes that are incapable of N-protonation employ this mechanism.

  14. Establishment of a simple cell-based ELISA for the direct detection of abnormal isoform of prion protein from prion-infected cells without cell lysis and proteinase K treatment

    Science.gov (United States)

    Shan, Zhifu; Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2016-01-01

    ABSTRACT Prion-infected cells have been used for analyzing the effect of compounds on the formation of abnormal isoform of prion protein (PrPSc). PrPSc is usually detected using anti-prion protein (PrP) antibodies after the removal of the cellular isoform of prion protein (PrPC) by proteinase K (PK) treatment. However, it is expected that the PK-sensitive PrPSc (PrPSc-sen), which possesses higher infectivity and conversion activity than the PK-resistant PrPSc (PrPSc-res), is also digested through PK treatment. To overcome this problem, we established a novel cell-based ELISA in which PrPSc can be directly detected from cells persistently infected with prions using anti-PrP monoclonal antibody (mAb) 132 that recognizes epitope consisting of mouse PrP amino acids 119–127. The novel cell-based ELISA could distinguish prion-infected cells from prion-uninfected cells without cell lysis and PK treatment. MAb 132 could detect both PrPSc-sen and PrPSc-res even if all PrPSc molecules were not detected. The analytical dynamic range for PrPSc detection was approximately 1 log. The coefficient of variation and signal-to-background ratio were 7%–11% and 2.5–3.3, respectively, demonstrating the reproducibility of this assay. The addition of a cytotoxicity assay immediately before PrPSc detection did not affect the following PrPSc detection. Thus, all the procedures including cell culture, cytotoxicity assay, and PrPSc detection were completed in the same plate. The simplicity and non-requirement for cell lysis or PK treatment are advantages for the high throughput screening of anti-prion compounds. PMID:27565564

  15. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Bader Oliver

    2008-07-01

    Full Text Available Abstract Background Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. Results In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. Conclusion Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.

  16. The main proteinases in Dermatobia hominis second and third instars larvae are serine-proteinases.

    Science.gov (United States)

    Pires, F A; Moya-Borja, G E; Barreira, J D; Pinho, R T; Alves, C R

    2007-04-30

    We performed a combination of proteinase assay, either in solution or immobilized in sodium dodecyl sulfate-polyacrylamide gel copolymerized with gelatin, to detect and quantify proteinases of Dermatobia hominis second (L2) and third (L3) instar larvae. In the quantitative assay, we examined proteinase activity by hydrolysis of a panel of peptide bonds specific for the main proteinase classes. We verified that the pGlu-Phe-Leu p-nitroanilide substrate was hydrolyzed by crude extracts of L2 (3.0+/-0.2 nmol h(-1)mg of protein(-1)) and L3 (7.7+/-0.1 nmol h(-1)mg of protein(-1)) and that both activities were partially inhibited by trans-epoxysuccinyl-l-leucylamido-(4-guanidino)butane, 15% and 3%, respectively. Also, we demonstrated that the Nalpha-p-Tosyl-l-Arg methyl ester substrate was hydrolyzed by crude extracts of L2 (117+/-24 nmol h(-1)mg of protein(-1)) and L3 (111+/-10 nmol h(-1)mg of protein(-1)), suggesting a predominance of esterase activity in the crude larval preparation. Interestingly, the specific activity of serine-proteinases was totally inhibited by phenylmethylsulphonyl fluoride in the L3 crude extract, while only 10% of this enzyme class activity was inhibited in the L2 crude extract. The results of the qualitative assays with substrate gels suggested that L2 and L3 larvae express serine-proteinases with similar (13 and 22 kDa) and distinct (50 kDa in L2 and 30 kDa in L3) relative molecular masses. These findings contribute to the biochemical characterization of D. hominis L2 and L3 larvae.

  17. 21 CFR 582.5017 - Aspartic acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of use...

  18. Multiple pathways for vacuolar sorting of yeast proteinase A

    DEFF Research Database (Denmark)

    Westphal, V; Marcusson, E G; Winther, Jakob R.

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide...... of proteinase A. We found that sorting of such a hybrid protein is dependent on the vacuolar protein-sorting receptor Vps10p. This was unexpected, as strains disrupted for VPS10 sort more than 85% of the proteinase A to the vacuole. Consistent with a role for Vps10p in sorting of proteinase A, we found that 1...

  19. Nanoparticle carriers based on copolymers of poly( l-aspartic acid co- l-lactide)-1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine for drug delivery

    Science.gov (United States)

    Han, Siyuan; Wang, Huan; Liang, Xingjie; Hu, Liming; Li, Min; Wu, Yan

    2011-09-01

    A novel poly( l-aspartic) derivative (PAL-DPPE) containing polylactide and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) segments has been successfully synthesized. The chemical structures of the copolymers were confirmed by Fourier-transform infrared spectroscopy (FTIR), NMR (1H NMR, 13C NMR, 31P NMR), and thermogravimetric analysis (TGA). Fluorescence spectroscopy, dynamic light scattering (DLS), and transmission electron microscopy (TEM) confirmed the formation of micelles of the PAL-DPPE copolymers. In order to estimate the feasibility as novel drug carriers, an anti-tumor model drug doxorubicin (DOX) was incorporated into polymeric micelles by double emulsion and nanoprecipitation method. The DOX-loaded micelle size, size distribution, and encapsulation efficiency (EE) were influenced by the feed weight ratio of the copolymer to DOX. In addition, in vitro release experiments of the DOX-loaded PAL-DPPE micelles exhibited that faster release in pH 5.0 than their release in pH 7.4 buffer. The poly( l-aspartic) derivative copolymer was proved to be an available carrier for the preparation of micelles for anti-tumor drug delivery.

  20. Use of recombinant Entamoeba histolytica cysteine proteinase 1 to identify a potent inhibitor of amebic invasion in a human colonic model.

    Science.gov (United States)

    Meléndez-López, Samuel G; Herdman, Scott; Hirata, Ken; Choi, Min-Ho; Choe, Youngchool; Craik, Charles; Caffrey, Conor R; Hansell, Elisabeth; Chávez-Munguía, Bibiana; Chen, Yen Ting; Roush, William R; McKerrow, James; Eckmann, Lars; Guo, Jianhua; Stanley, Samuel L; Reed, Sharon L

    2007-07-01

    Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.

  1. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus microplus involved in the generation of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    Craik Charles S

    2010-07-01

    Full Text Available Abstract Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins. A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.

  2. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp YM55-1

    NARCIS (Netherlands)

    Veetil, Vinod Puthan; Raj, Hans; Quax, Wim J.; Janssen, Dick B.; Poelarends, Gerrit J.

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of l-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of l-aspartate to form an enzyme-stabilized enediolate intermediate.

  3. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  4. [Purification of extracellular proteinases from B. subtilis SKB 256 by biospecific chromatography].

    Science.gov (United States)

    Radzhabov, U R; Davranov, K D; Rakhimov, M M

    2011-01-01

    Abstract-A simple and efficient method of preparing highly purified extracellular proteinases of B. subtilis B-1 (SKB 256) has been developed. A sorbent based on sorsilen impregnated with hemoglobin or cytochrome c has been synthesized for this purpose. A significant difference between the efficiency of hemoglobin and cytochrome c as biospecific ligands has been observed: the enzyme yield amounted to 40.6 and 65.6% of the total amount of enzyme adsorbed, respectively. The culture was shown to contain two major proteinase forms with different molecular masses that could be separated by chromatography on a Sephadex G-50 but gave only one band with MW 27 kDa upon denaturing electrophoresis in 12.5% PAG in the presence of 0.1% SDS. The influence of eluent pH, ionic strength and ethanol concentration on the sorption of the proteinases on the biospecific sorbent, as well as on the desorption from it, has been investigated. Positive influence of 20% ethanol on proteinase desorption has been demonstrated.

  5. Engineering proteinase K using machine learning and synthetic genes

    Directory of Open Access Journals (Sweden)

    Wang Rebecca P

    2007-03-01

    Full Text Available Abstract Background Altering a protein's function by changing its sequence allows natural proteins to be converted into useful molecular tools. Current protein engineering methods are limited by a lack of high throughput physical or computational tests that can accurately predict protein activity under conditions relevant to its final application. Here we describe a new synthetic biology approach to protein engineering that avoids these limitations by combining high throughput gene synthesis with machine learning-based design algorithms. Results We selected 24 amino acid substitutions to make in proteinase K from alignments of homologous sequences. We then designed and synthesized 59 specific proteinase K variants containing different combinations of the selected substitutions. The 59 variants were tested for their ability to hydrolyze a tetrapeptide substrate after the enzyme was first heated to 68°C for 5 minutes. Sequence and activity data was analyzed using machine learning algorithms. This analysis was used to design a new set of variants predicted to have increased activity over the training set, that were then synthesized and tested. By performing two cycles of machine learning analysis and variant design we obtained 20-fold improved proteinase K variants while only testing a total of 95 variant enzymes. Conclusion The number of protein variants that must be tested to obtain significant functional improvements determines the type of tests that can be performed. Protein engineers wishing to modify the property of a protein to shrink tumours or catalyze chemical reactions under industrial conditions have until now been forced to accept high throughput surrogate screens to measure protein properties that they hope will correlate with the functionalities that they intend to modify. By reducing the number of variants that must be tested to fewer than 100, machine learning algorithms make it possible to use more complex and expensive tests so

  6. Characterization of l-Theanine Excitatory Actions on Hippocampal Neurons: Toward the Generation of Novel N-Methyl-d-aspartate Receptor Modulators Based on Its Backbone.

    Science.gov (United States)

    Sebih, Fatiha; Rousset, Matthieu; Bellahouel, Salima; Rolland, Marc; de Jesus Ferreira, Marie Celeste; Guiramand, Janique; Cohen-Solal, Catherine; Barbanel, Gérard; Cens, Thierry; Abouazza, Mohammed; Tassou, Adrien; Gratuze, Maud; Meusnier, Céline; Charnet, Pierre; Vignes, Michel; Rolland, Valérie

    2017-08-16

    l-Theanine (or l-γ-N-ethyl-glutamine) is the major amino acid found in Camellia sinensis. It has received much attention because of its pleiotropic physiological and pharmacological activities leading to health benefits in humans, especially. We describe here a new, easy, efficient, and environmentally friendly chemical synthesis of l-theanine and l-γ-N-propyl-Gln and their corresponding d-isomers. l-Theanine, and its derivatives obtained so far, exhibited partial coagonistic action at N-methyl-d-aspartate (NMDA) receptors, with no detectable agonist effect at other glutamate receptors, on cultured hippocampal neurons. This activity was retained on NMDA receptors expressed in Xenopus oocytes. In addition, both GluN2A and GluN2B containing NMDA receptors were equally modulated by l-theanine. The stereochemical change from l-theanine to d-theanine along with the substitution of the ethyl for a propyl moiety in the γ-N position of l- and d-theanine significantly enhanced the biological efficacy, as measured on cultured hippocampal neurons. l-Theanine structure thus represents an interesting backbone to develop novel NMDA receptor modulators.

  7. Health economics analysis of insulin aspart vs. regular human insulin in type 2 diabetes patients, based on observational real life evidence from general practices in Germany.

    Science.gov (United States)

    Liebl, A; Seitz, L; Palmer, A J

    2014-10-01

    A retrospective analysis of German general practice data demonstrated that insulin aspart (IA) was associated with a significantly reduced incidence of macrovascular events (MVE: stroke, myocardial infarction, peripheral vascular disease or coronary heart disease) vs. regular human insulin (RHI) in type 2 diabetes patients. Economic implications, balanced against potential improvements in quality-adjusted life years (QALYs) resulting from lower risks of complications with IA in this setting have not yet been explored. A decision analysis model was developed utilizing 3-year initial MVE rates for each comparator, combined with published German-specific insulin and MVE costs and health utilities to calculate number needed to treat (NNT) to avoid any MVE, incremental costs and QALYs gained/ person for IA vs. RHI. A 3-year time horizon and German 3(rd)-party payer perspective were used. Probabilistic sensitivity analysis was performed, sampling from distributions of key parameters. Additional sensitivity analyses were performed. NNT over a 3 year period to avoid any MVE was 8 patients for IA vs. RHI. Due to lower MVE rates, IA dominated RHI with 0.020 QALYs gained (95% confidence interval: 0.014-0.025) and cost savings of EUR 1 556 (1 062-2 076)/person for IA vs. RHI over the 3-year time horizon. Sensitivity analysis revealed that IA would still be overall cost saving even if the cost of IA was double the cost/unit of RHI. From a health economics perspective, IA was the superior alternative for the insulin treatment of type 2 diabetes, with lower incidence of MVE events translating to improved QALYs and lower costs vs. RHI within a 3-year time horizon. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  8. The kinetics of proteinase K digestion of linear prion polymers

    National Research Council Canada - National Science Library

    Joanna Masel; Vincent A. A. Jansen

    1999-01-01

    ...conversion. Prion digestion by proteinase K (PK) is predicted to be biphasic. The second phase of digestion should be virtually independent of the PK concentration and should depend on the initial size distribution of prion polymers...

  9. Action of plant proteinase inhibitors on enzymes of physiopathological importance

    Directory of Open Access Journals (Sweden)

    Maria Luiza V. Oliva

    2009-09-01

    Full Text Available Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.Obtidas de sementes leguminosas, várias proteínas inibem proteinases de origem animal, incluindo humanas, e podem ser consideradas para o desenvolvimento de compostos com atividade biológica. Inibidores da família Bowman-Birk e da família Kunitz vegetal tem sido caracterizados em relação a especificidade para proteinase, estrutura primária e sitio reativo. O nosso grupo majoritariamente vem estudando o gênero Bauhinia, principalmente as espécies bauhinioides, rufa, ungulatae variegata. Em algumas espécies, mais de um inibidor com propriedades diferentes foi caracterizado. Embora tais proteínas apresentem alta similaridade estrutural, diferem quanto à inibição de proteinases, e foram exploradas em estudos utilizando diversos modelos biológicos.

  10. High-level expression of Proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains.

    Science.gov (United States)

    Yang, Hu; Zhai, Chao; Yu, Xianhong; Li, Zhezhe; Tang, Wei; Liu, Yunyun; Ma, Xiaojian; Zhong, Xing; Li, Guolong; Wu, Di; Ma, Lixin

    2016-06-01

    Proteinase K is widely used in scientific research and industries. This report was aimed to achieve high-level expression of proteinase K using Pichia pastoris GS115 as the host strain. The coding sequence of a variant of proteinase K that has higher activity than the wild type protein was chosen and optimized based on the codon usage preference of P. pastoris. The novel open reading frame was synthesized and a series of multi-copy expression vectors were constructed based on the pHBM905BDM plasmid, allowing for the tandem integration of multiple copies of the target gene into the genome of P. pastoris with a single recombination. These strains were used to study the correlation between the gene copy number and the expression level of proteinase K. The results of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the host genome stably. Meanwhile, the results of qPCR and enzyme activity assays indicated that the mRNA and protein expression levels of the target gene increased as the gene copy number increased. Moreover, the effect of gene dosage on the expression level of the recombinant protein was more obvious using high-density fermentation. The maximum expression level and enzyme activity of proteinase K, which were obtained from the recombinant yeast strain bearing 5 copies of the target gene after an 84-h induction, were approximately 8.069 mg/mL and 108,295 U/mL, respectively. The recombinant proteinase was purified and characterized. The optimum pH and temperature for the activity of this protease were approximately pH 11 and 55 °C, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Characterization of the aspartate transcarbamoylase from Methanococcus jannaschii.

    Science.gov (United States)

    Hack, E S; Vorobyova, T; Sakash, J B; West, J M; Macol, C P; Hervé, G; Williams, M K; Kantrowitz, E R

    2000-05-26

    The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.

  12. Identification of a vesicular aspartate transporter

    OpenAIRE

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sia...

  13. Structure, chromosomal assignment, and expression of the gene for proteinase-3. The Wegener's granulomatosis autoantigen.

    Science.gov (United States)

    Sturrock, A B; Franklin, K F; Rao, G; Marshall, B C; Rebentisch, M B; Lemons, R S; Hoidal, J R

    1992-10-15

    Proteinase-3 (PR-3) is a neutral serine proteinase present in the azurophil granules of human polymorphonuclear leukocytes. It degrades a variety of extracellular matrix proteins including elastin in vitro and causes emphysema when administered by tracheal insufflation to hamsters. It is identical to the target autoantigen (c-ANCA) associated with Wegener's granulomatosis and to myeloblastin, a serine proteinase first identified in HL-60 leukemia cells. In this study, the gene encoding PR-3 was cloned and sequenced. The gene spans approximately 6.5 kilobase pairs and consists of five exons and four introns. The genomic organization of PR-3 is similar to that of the other serine proteinases expressed in hemopoietic cells. Each residue of the catalytic triad of PR-3 is located on a separate exon, and the positions of the residues within the exons are similar to those in human leukocyte elastase and cathepsin G. The phase and placement of the introns in the PR-3 gene are also similar to those in human leukocyte elastase and cathepsin G. The 400-base pair (bp) 5'-flanking sequence of the PR-3 gene contains a TATA box at position 379. There is no CAAT box promoter element. The 3'-untranslated region is 200 bp, extending from a TGA stop codon to the site of polyadenylation 10 bp after the canonical AATAAA signal. Amplification of PR-3 from a human/hamster hybrid cell line localizes the gene to human chromosome 19. Evidence from Northern analysis suggests that PR-3 expression is primarily confined to the promyelocytic/myelocytic stage of bone marrow development.

  14. Identification of a vesicular aspartate transporter

    Science.gov (United States)

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects. PMID:18695252

  15. Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation

    Directory of Open Access Journals (Sweden)

    Meng Guoliang

    2006-12-01

    Full Text Available Abstract Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1 and uterus (ISP1 and ISP2. These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.

  16. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Directory of Open Access Journals (Sweden)

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  17. THE EFFECT OF THE HYDROGEN ION CONCENTRATION ON THE RATE OF HYDROLYSIS OF GLYCYL GLYCINE, GLYCYL LEUCINE, GLYCYL ALANINE, GLYCYL ASPARAGINE, GLYCYL ASPARTIC ACID, AND BIURET BASE BY EREPSIN

    Science.gov (United States)

    Northrop, John H.; Simms, Henry S.

    1928-01-01

    1. The rate of hydrolysis at different pH values of glycyl glycine, glycyl leucine, glycyl alanine, glycyl asparagine, glycyl aspartic acid and biuret base has been determined. 2. The pH-activity curves obtained in this way differ for the different substrates. 3. The curves can be satisfactorily predicted by the assumption that erepsin is a weak acid or base with a dissociation constant of 10–7.6 and that the reaction takes place between a particular ionic species of the enzyme and of the substrate. There are several possible arrangements which will predict the experimental results. 4. The rate of inactivation of erepsin at various pH values has been determined and found to agree with the assumption used above, that the enzyme is a weak acid or base with a dissociation constant of about 10–7.6. 5. It is pointed out that if the mechanism assumed is correct, the determination of a significant value for the relative rate of hydrolysis of various peptides is a very uncertain procedure. PMID:19872461

  18. Entamoeba histolytica: cysteine proteinase activity and virulence. Focus on cysteine proteinase 5 expression levels.

    Science.gov (United States)

    Freitas, Michelle A R; Fernandes, Helen C; Calixto, Viviane C; Martins, Almir S; Silva, Edward F; Pesquero, Jorge L; Gomes, Maria A

    2009-08-01

    Cysteine proteinase (CP) activity and CP5 mRNA levels were analyzed in eleven samples of Entamoeba histolytica isolated from patients presenting different clinical profiles. The virulence degree of the isolates, determined in hamster liver, correlated well with the clinical form of the patient and culture conditions. CP5 mRNA levels were also determined in sample freshly picked up directly from liver amoebic abscess. Differences were not observed in the levels of CP5 mRNA and CP specific activity among the cultured samples. However, different levels of CP5 mRNA were observed in trophozoite freshly isolated from hepatic amoebic lesions. These results reinforce the importance of CP5 for the virulence of amoebae and the need for studies with the parasite present in lesions to validate mechanisms involved in pathogenesis of amoebiasis.

  19. Fragment Linking and Optimization of Inhibitors of the Aspartic Protease Endothiapepsin : Fragment-Based Drug Design Facilitated by Dynamic Combinatorial Chemistry

    NARCIS (Netherlands)

    Mondal, Milon; Radeva, Nedyalka; Fanlo-Virgos, Hugo; Otto, Sijbren; Klebe, Gerhard; Hirsch, Anna K. H.

    2016-01-01

    Fragment-based drug design (FBDD) affords active compounds for biological targets. While there are numerous reports on FBDD by fragment growing/optimization, fragment linking has rarely been reported. Dynamic combinatorial chemistry (DCC) has become a powerful hit-identification strategy for

  20. Arabidopsis aspartic proteases A36 and A39 play roles in plant reproduction.

    Science.gov (United States)

    Gao, Hui; Li, Rui; Guo, Yi

    2017-04-03

    Aspartic proteases (Aps, EC3.4.23) are one of the 4 major mechanistic classes of proteolytic enzymes with the conserved motifs Asp-Thr/Ser-Gly (DT/SG) at the active site and are activated at acidic pH. In Arabidopsis, 69 genes were identified as coding putative aspartic proteinases. However, little is known about most of these enzymes. Recently, we characterized 2 novel Arabidopsis Aps genes, A36 and A39, which encode 2 putative GPI-anchored pollen-high-expressed Aps. a36 a39 mutants display significant abortion. The pollen grains underwent apoptosis-like programmed cell death and the degeneration of female gametes was also appeared in the a36 a39 mutant. Besides, the pollen tube of a36 a39 has compromised micropylar guidance. A36 and A39 were membrane-anchored protein and co-localized with a reported GPI-anchored protein COBRA-LIKE 10 (COBL10). In apical region of a36 a39 pollen tubes cell wall, the abundance of highly methlyestered homogalacturonans and xyloglucans were significantly increased. These results indicated that A36 and A39 are vital factors involved in gametogenesis and pollen guidance in Arabidopsis.

  1. Modulating the pH-activity profile of cellulase by substitution: replacing the general base catalyst aspartate with cysteinesulfinate in cellulase A from Cellulomonas fimi.

    Science.gov (United States)

    Cockburn, Darrell W; Vandenende, Chris; Clarke, Anthony J

    2010-03-09

    Cellulase A (CenA) from Cellulomonas fimi is an inverting glycoside hydrolase and a member of family 6 of the CAZy database classification system. We replaced its putative catalytic base aspartyl residues, Aps392 and Asp216, with cysteinesulfinate using a combination of site-directed mutagenesis and chemical modification to investigate the applicability of this approach for the modulation of enzymatic properties. The substituted cysteinyl residues were oxidized to cysteinesulfinic acid with hydrogen peroxide, and the resulting protein products were demonstrated to retain their native structure. Oxidation of the Asp392Cys mutant enzyme restored 52% of wild-type activity when assessed at pH 7.5, whereas Asp216Cys CenA remained inactive. This suggests that Asp216 is not the catalytic base and provides further support for Asp392 performing this role. Similar substitution of the catalytic acid residue Asp252 or the catalytic nucleophile of the retaining enzyme Cel5A from Thermobifida fusca failed to produce active enzymes. This indicates a potential utility of this approach for uniquely identifying catalytic base residues. The replacement of Asp392 with cysteinesulfinate induced an acidic shift in the pH profile of the enzyme such that this enzyme derivative was more active than wild-type CenA below pH 5.5. These data demonstrate the potential of combining site-directed mutagenesis with chemical modification as a viable approach for the modulation of cellulases, and potentially other glycoside hydrolases, at low pH.

  2. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans.

  3. Secreted fungal aspartic proteases: A review.

    Science.gov (United States)

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  4. In vitro evaluation of proteinase, phospholipase and haemolysin ...

    African Journals Online (AJOL)

    Aim: The present study aimed to determine phospholipase, proteinase and haemolysin activities in Candida species isolated from various clinical samples. Material and Method: A total of 110 Candida species isolated from various clinical specimens were identified up to species level by standard mycological techniques ...

  5. Chromosomal Stabilization of the Proteinase Genes in Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, Cornelis; Gietema, Jan; Kok, Jan; Venema, Gerhardus

    The plasmid-encoded proteinase genes prtP and prtM of Lactococcus lactis subsp. cremoris Wg2 were integrated by a Campbell-like mechanism into the L. lactis subsp. lactis MG1363 chromosome by using the insertion vector pKLG610. Two transformants were obtained that differed in the number of amplified

  6. Plant Proteinase Inhibitors in Therapeutics – Focus on Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Sandhya Srikanth

    2016-12-01

    Full Text Available Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI has been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and

  7. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Directory of Open Access Journals (Sweden)

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  8. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Caroline A Owen

    2008-06-01

    Full Text Available Caroline A OwenDivision of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USAAbstract: Since the early 1960s, a compelling body of evidence has accumulated to show that proteinases play critical roles in airspace enlargement in chronic obstructive pulmonary disease (COPD. However, until recently the causative enzymes and their exact roles in pathologic processes in COPD have not been clear. Recent studies of gene-targeted mice in murine models of COPD have confirmed roles for proteinases not only in airspace enlargement, but also in airway pathologies in COPD. These studies have also shed light on the specific proteinases involved in COPD pathogenesis, and the mechanisms by which these proteinases injure the lung. They have also identified important interactions between different classes of proteinases, and between proteinases and other molecules that amplify lung inflammation and injury. This review will discuss the biology of proteinases and the mechanisms by which they contribute to the pathogenesis of COPD. In addition, I will discuss the potential of proteinase inhibitors and anti-inflammatory drugs as new treatment strategies for COPD patients.Keywords: proteinase, proteinase inhibitor, proteolysis, chronic obstructive pulmonary disease, inflammation, mucus hypersecretion

  9. Bio-physical evaluation and in vivo delivery of plant proteinase inhibitor immobilized on silica nanospheres.

    Science.gov (United States)

    Khandelwal, Neha; Doke, Dhananjay S; Khandare, Jayant J; Jawale, Priyanka V; Biradar, Ankush V; Giri, Ashok P

    2015-06-01

    Recombinant expression of Capsicum annuum proteinase inhibitors (CanPI-13) and its application via synthetic carrier for the crop protection is the prime objective of our study. Herein, we explored proteinase inhibitor peptide immobilization on silica based nanospheres and rods followed by its pH mediated release in vitro and in vivo. Initial studies suggested silica nanospheres to be a suitable candidate for peptide immobilization. Furthermore, the interactions were characterized biophysically to ascertain their conformational stability and biological activity. Interestingly, bioactive peptide loading at acidic pH on nanospheres was found to be 62% and showed 56% of peptide release at pH 10, simulating gut milieu of the target pest Helicoverpa armigera. Additionally, in vivo study demonstrated significant reduction in insect body mass (158 mg) as compared to the control insects (265 mg) on 8th day after feeding with CanPI-13 based silica nanospheres. The study confirms that peptide immobilized silica nanosphere is capable of affecting overall growth and development of the feeding insects, which is known to hamper fecundity and fertility of the insects. Our study illustrates the utility and development of peptide-nanocarrier based platform in delivering diverse biologically active complexes specific to gut pH of H. armigera. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mechanism of Excretion of a Bacterial Proteinase: Factors Controlling Accumulation of the Extracellular Proteinase of a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    BISSELL, MINA J.; TOSI, ROBERTO; GORINI, LUIGI

    1970-06-29

    It has been known that the extracellular proteinase of Coccus P is found only in cultures grown in the presence of Ca{sup 2+}. It is now shown that this cation is required neither for synthesis, excretion, or activation of a zymogen nor as a prosthetic factor necessary for enzymatic activity. The only function of Ca{sup 2+} is to stabilize the active structure of the enzyme molecule, presumably by substituting for absence of S-S bridges. In the absence of Ca{sup 2+} , the excreted proteinase undergoes rapid autodigestion and, instead of the active protein, its hydrolytic products are accumulated in the culture fluid. In minimal medium and under conditions of enzyme stability [presence of Ca{sup 2+} and Ficoll (Pharmacia)], Coccus P accumulates the proteinase at a gradually reduced speed although the rate of cultural growth remains constant. It is shown that this decline in rate of accumulation is caused by the excreted proteinase itself, possibly acting on its own precursor emerging from the cell in a form susceptible to proteolytic attack and not amenable to Ca{sup 2+} protection. A proteinase precursor is actually demonstrable in a calciumless culture at the onset of the enzyme accumulation which follows Ca{sup 2+} addition. It is suggested that excreted proteins require an unfolded (or incompletely folded) structure to cross the cell envelope. The proteinase excreted by a Sarcina strain (Coccus P) is found only in cultures containing Ca{sup 2+} ions (1), a feature common to proteinases of other bacteria (4, 12, 18) and to other excreted enzymes (14). Among the nontoxic divalent cations, Ca{sup 2+} is rather specific in this effect. Other ions such as Mn{sup 2+} or Mg{sup 2+}, the latter being present in all media as an indispensible growth factor, are ineffective. Addition of Ca{sup 2+} to the proteolytically inactive supernatant fluid of a calcium- free culture does not result in the appearance of the missing enzyme activity. The early assumption that Ca{sup 2

  11. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    DEFF Research Database (Denmark)

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan

    2011-01-01

    Background: Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore...... of these classes of proteolytic enzymes suggest that substrate specificity may be important and that trade-offs may prevent the simultaneous upregulation of both classes of enzymes.......Background: Attine ants live in symbiosis with a basidiomycetous fungus that they rear on a substrate of plant material. This indirect herbivory implies that the symbiosis is likely to be nitrogen deprived, so that specific mechanisms may have evolved to enhance protein availability. We therefore...... hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...

  12. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis.

    Science.gov (United States)

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter W; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M

    2015-07-30

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Wound and methyl jasmonate induced pigeon pea defensive proteinase inhibitor has potency to inhibit insect digestive proteinases.

    Science.gov (United States)

    Lomate, Purushottam R; Hivrale, Vandana K

    2012-08-01

    Wounding of plants by chewing insects or other damage induces the synthesis of defensive proteinase inhibitors (PI) in both wounded and distal unwounded leaves. In the present paper we report the characterization of inducible defensive PI from pigeon pea (Cajanus cajan) and its in vitro interaction with Helicoverpa armigera gut proteinases (HGP). We found that PI activity was induced in local as well as systemic leaves of pigeon pea by the wounding and methyl jasmonate (MeJA) application. Consistent induction of PI was observed in two wild cultivars of pigeon pea at various growth stages. The estimated molecular weight of inducible PI was ~16.5 kDa. Electrophoretic analysis and enzyme assays revealed that the induced PI significantly inhibited total gut proteinase as well as trypsin-like activity from the midgut of H. armigera. The induced PI was found to be inhibitor of trypsin as well as chymotrypsin. Study could be important to know the further roles of defensive PIs. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  14. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Directory of Open Access Journals (Sweden)

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  15. Proteinase-activated receptor-2 up-regulation by Fcγ-receptor activation in human neutrophils

    Science.gov (United States)

    St-Onge, Mireille; Lagarde, Stéphanie; Laflamme, Cynthia; Rollet-Labelle, Emmanuelle; Marois, Louis; Naccache, Paul H.; Pouliot, Marc

    2010-01-01

    We shed new light on the expression and function of the proteinase-activated receptor (PAR) family, associated with inflammation and hyperalgesia, in human granulocytes. Resting cells expressed constitutive levels of PAR-2 and PAR-3 mRNA but not PAR-1 or PAR-4. Based on flow cytometry, stimulation with opsonized bacteria (Bop) specifically up-regulated cell surface expression of PAR-2 in a concentration-dependent and time-dependent manner, independent of transcription or de novo protein synthesis. Primary granules were identified as a source of preformed PAR-2 that can readily be mobilized at the surface on fusion with the plasma membrane. Cellular response to PAR-2 activation, measured as changes in intracellular calcium concentration, was enhanced in PAR-2 up-regulated cells. Increase of cell-surface PAR-2 and of cell responsiveness were dependent specifically on the engagement of immunoglobulin (Ig)-binding receptors. Together, our results reveal that mobilization of intracellular granules, in response to Ig-receptor activation, up-regulates PAR-2 surface expression and makes neutrophils more responsive to proteinase activity. This enhanced response to PAR-2 activation indicates that molecular communication between pain and inflammation may be more important than previously believed.—St-Onge, M., Lagarde, S., Laflamme, C., Rollet-Labelle, E., Marois, L., Naccache, P. H., Pouliot, M. Proteinase-activated receptor-2 up-regulation by Fcγ-receptor activation in human neutrophils. PMID:20154268

  16. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  17. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward ({sup 3}H)-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics.

  18. Structure and function of invertebrate Kazal-type serine proteinase inhibitors.

    Science.gov (United States)

    Rimphanitchayakit, Vichien; Tassanakajon, Anchalee

    2010-04-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.

  19. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    DEFF Research Database (Denmark)

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis...

  20. Use of a cysteine proteinase from Carica candamarcensis as a protective agent during DNA extraction

    Directory of Open Access Journals (Sweden)

    M.S. Genelhu

    1998-09-01

    Full Text Available We describe the use of a plant cysteine proteinase isolated from latex of Carica candamarcensis as a protective agent during isolation of bacterial DNA following growth in culture of these cells. Between 100 to 720 units of proteinase (1 µg = 6 units afforded good DNA protection when incubated with various kinds of microorganisms. Agarose gel electrophoresis showed that the resulting DNA was similar in size to DNA preparations obtained by treatment with proteinase K. The viability of the resulting material was checked by PCR amplification using species-specific primers. After standing at room temperature (25oC for 35 days, the enzyme lost 10% of its initial activity. The enzyme stability and good yield of DNA suggest the use of this proteinase as an alternative to proteinase K.

  1. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren

    2004-01-01

    Background: Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS), efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like...... the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection....... Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results: We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network...

  2. SPECIATION OF L-ASPARTIC ACID COMPLEXES OF Co(II), Ni(II ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. Chemical speciation of binary complexes of Co(II), Ni(II), Cu(II) and Zn(II) with L-aspartic acid was investigated pH-metrically in acetonitrile- and ethylene glycol-water mixtures. The stability constants were calculated using the computer program MINIQUAD75. The best-fit chemical models were selected based ...

  3. Interaction of rose bengal with mung bean aspartate transcarbamylase

    Indian Academy of Sciences (India)

    tribpo

    Abstract. The fluorescein dye, rose bengal in the dark: (i) inhibited the activity of mung bean aspartate transcarbamylase (EC 2.1.3.2) in a non-competitive manner, when aspartate was the varied substrate; (ii) induced a lag in the time course of reaction and this hysteresis was abolished upon preincubation with carbamyl ...

  4. Sequence analysis of equine adenovirus 2 hexon and 23K proteinase genes indicates a phylogenetic origin distinct from equine adenovirus 1.

    Science.gov (United States)

    Reubel, G H; Studdert, M J

    1997-07-01

    We report the first nucleotide sequence data on equine adenovirus 2 (EAdV2) which corroborate on the molecular level that EAdV2 is distinct from equine adenovirus 1 (EAdV1). Based on sequence homology with Eadv1 the hexon gene of Eadv2 was identified. HindIII restriction fragments containing the hexon and eight other viral genes were cloned into the plasmid pUC19 and the nucleotide sequence of the hexon and the 23K proteinase genes completely determined. Amino acid (aa) comparison of sequence fragments with published adenovirus (AdV) proteins identified the genes for the E1B/19K, IVa2, DNA polymerase, terminal protein, pVI, DNA binding and 100K proteins, usually with highest similarities to human AdV. The nine EAdV2 genes appeared to be in the same relative order as homologous genes of other AdV. The EAdV2 hexon was encoded between the minor capsid precursor protein pVI upstream and the 23K proteinase gene downstream and comprised 2712 nucleotides which translated into 903 aa residues. It was more closely related to the human AdV48 hexon with 71.6% identical and 82.7% functionally similar aa than to the EAdV1 hexon gene with 69.3% aa identity and 80.7% functional similarity. The deduced aa sequence of the EAdV2 23K proteinase gene was 201 residues; it shared 59.7% identical and 75% similar aa residues with the bovine AdV3 23K proteinase as the closest relative. Phylogenetic analysis of the hexon and 23K proteinase genes indicated that EAdV2 does not share an immediate common ancestor with EAdV1 and other AdV.

  5. Proteinase inhibitory activities of two two-domain Kazal proteinase inhibitors from the freshwater crayfish Pacifastacus leniusculus and the importance of the P(2) position in proteinase inhibitory activity.

    Science.gov (United States)

    Donpudsa, Suchao; Söderhäll, Irene; Rimphanitchayakit, Vichien; Cerenius, Lage; Tassanakajon, Anchalee; Söderhäll, Kenneth

    2010-11-01

    Serine proteinase inhibitors are found ubiquitously in living organisms and involved in homeostasis of processes using proteinases as well as innate immune defense. Two two-domain Kazal-type serine proteinase inhibitors (KPIs), KPI2 and KPI8, have been identified from the hemocyte cDNA library of the crayfish Pacifastacus leniusculus. Unlike other KPIs from P. leniusculus, they are found specific to the hemocytes and contain an uncommon P(2) amino acid residue, Gly. To unveil their inhibitory activities, the two KPIs and their domains were over-expressed. By testing against subtilisin, trypsin, chymotrypsin and elastase, the KPI2 was found to inhibit strongly against subtilisin and weakly against trypsin, while the KPI8 was strongly active against only trypsin. With their P(1) Ser and Lys residues, the KPI2_domain2 and KPI8_domain2 were responsible for strong inhibition against subtilisin and trypsin, respectively. Mutagenesis of KPI8_domain1 at P(2) amino acid residue from Gly to Pro, mimicking the P(2) residue of KPI8_domain2, rendered the KPI8_domain1 strongly active against trypsin, indicating the important role of P(2) residue in inhibitory activities of the Kazal-type serine proteinase inhibitors. Only the KPI2 was found to inhibit against the extracellular serine proteinases from the pathogenic oomycete of the freshwater crayfish, Aphanomyces astaci. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Evidence for increased cellular uptake of glutamate and aspartate in the rat hippocampus during kainic acid seizures. A microdialysis study using the "indicator diffusion' method

    DEFF Research Database (Denmark)

    Bruhn, T; Christensen, Thomas; Diemer, Nils Henrik

    1997-01-01

    Using a newly developed technique, based on microdialysis, which allows cellular uptake of glutamate and aspartate to be studied in awake animals, we investigated uptake of glutamate and aspartate in the hippocampal formation of rats during limbic seizures induced by systemical administration...

  7. Are Proteinase 3 and Cathepsin C Enzymes Related to Pathogenesis of Periodontitis?

    Directory of Open Access Journals (Sweden)

    Oya Türkoğlu

    2014-01-01

    Full Text Available Aim. Cathepsin C is the activator of the polymorphonuclear leukocyte-derived proteinase 3, which contributes to inflammatory processes. The aim of the present study was to investigate gingival crevicular fluid (GCF proteinase 3 and cathepsin C levels in periodontal diseases. Design. Eighteen patients with chronic periodontitis (CP, 20 patients with generalized aggressive periodontitis (G-AgP, 20 patients with gingivitis, and 18 healthy subjects were included in the study. Periodontal parameters including probing depth, clinical attachment level, papilla bleeding index, and plaque index were assessed in all study subjects. GCF proteinase 3 and cathepsin C levels were analyzed by ELISA. Results. GCF proteinase 3 total amount was significantly higher in diseased groups compared to control group, after adjusting age P0.05. Periodontal parameters of sampling sites were positively correlated with GCF proteinase 3 total amounts P0.05. Conclusions. Elevated levels of GCF proteinase 3 in CP, G-AgP, and gingivitis might suggest that proteinase 3 plays a role during inflammatory periodontal events in host response. However, cathepsin C in GCF does not seem to have an effect on the pathogenesis of periodontal diseases.

  8. Isolation and characterization of a proteinase K-sensitive PrPSc fraction.

    Science.gov (United States)

    Pastrana, Miguel A; Sajnani, Gustavo; Onisko, Bruce; Castilla, Joaquín; Morales, Rodrigo; Soto, Claudio; Requena, Jesús R

    2006-12-26

    Recent studies have shown that a sizable fraction of PrPSc present in prion-infected tissues is, contrary to previous conceptions, sensitive to digestion by proteinase K (PK). This finding has important implications in the context of diagnosis of prion disease, as PK has been extensively used in attempts to distinguish between PrPSc and PrPC. Even more importantly, PK-sensitive PrPSc (sPrPSc) might be essential to understand the process of conversion and aggregation of PrPC leading to infectivity. We have isolated a fraction of sPrPSc. This material was obtained by differential centrifugation at an intermediate speed of Syrian hamster PrPSc obtained through a conventional procedure based on ultracentrifugation in the presence of detergents. PK-sensitive PrPSc is completely degraded under standard conditions (50 mug/mL of proteinase K at 37 degrees C for 1 h) and can also be digested with trypsin. Centrifugation in a sucrose gradient showed sPrPSc to correspond to the lower molecular weight fractions of the continuous range of oligomers that constitute PrPSc. PK-sensitive PrPSc has the ability to convert PrPC into protease-resistant PrPSc, as assessed by the protein misfolding cyclic amplification assay (PMCA). Limited proteolysis of sPrPSc using trypsin allows for identification of regions that are particularly susceptible to digestion, i.e., are partially exposed and flexible; we have identified as such the regions around residues K110, R136, R151, K220, and R229. PK-sensitive PrPSc isolates should prove useful for structural studies to help understand fundamental issues of the molecular biology of PrPSc and in the quest to design tests to detect preclinical prion disease.

  9. Novel distribution of the secretory leucocyte proteinase inhibitor in kidney

    Directory of Open Access Journals (Sweden)

    Sophie Ohlsson

    2001-01-01

    Full Text Available The secretory leucocyte proteinase inhibitor (SLPI is a low molecular weight, tissue-specific inhibitor of, for example, elastase and cathepsin G, which also have antimicrobial capacity. SLPI has been localised to the respiratory, gastrointestinal and genital tracts, but so far not to the kidney. The presence of SLPI in renal tubuli cells was demonstrated using immunohistochemistry and, by means of in situ hybridisation on human renal biopsies, we were able to demonstrate SLPI production. In various inflammatory conditions in the kidneys, the protease-antiprotease balance is disturbed. For this reason, as well as the possible role in the defence against ascending urinary tract infections, it is interesting to establish a source of SLPI in renal tubuli cells.

  10. Homology models of main proteinase from coronavirus associated with SARS

    Science.gov (United States)

    Liu, Hsuan-Liang; Lin, Jin-Chung; Ho, Yih; Chen, Chin-Wen

    2005-01-01

    In this study, two homology models of the main proteinase (M pro) from the novel coronavirus associated with severe acute respiratory syndrome (SARS-CoV) were constructed. These models reveal three distinct functional domains, in which an intervening loop connecting domains II and III as well as a catalytic cleft containing the substrate binding subsites S1 and S2 between domains I and II are observed. S2 exhibits structural variations more significantly than S1 during the 200 ps molecular dynamics simulations because it is located at the open mouth of the catalytic cleft and the amino acid residues lining up this subsite are least conserved. In addition, the higher structural variation of S2 makes it flexible enough to accommodate a bulky hydrophobic residue from the substrate.

  11. Inhibition of bone resorption by selective inactivators of cysteine proteinases.

    Science.gov (United States)

    Hill, P A; Buttle, D J; Jones, S J; Boyde, A; Murata, M; Reynolds, J J; Meikle, M C

    1994-09-01

    Inactivators of cysteine proteinases (CPs) were tested as inhibitors of bone resorption in vitro and in vivo. The following four CP inactivators were tested: Ep475, a compound with low membrane permeability which inhibits cathepsins B, L, S, H, and calpain; Ep453, the membrane-permeant prodrug of Ep475; CA074, a compound with low membrane permeability which selectively inactivates cathepsin B; and CA074Me, the membrane-permeant prodrug of CA074. The test systems consisted of 1) monitoring the release of radioisotope from prelabelled mouse calvarial explants and 2) assessing the extent of bone resorption in an isolated osteoclast assay using confocal laser microscopy. Ep453, Ep475, and CA074Me inhibited both stimulated and basal bone resorption in vitro while CA074 was without effect; the inhibition was reversible and dose dependent. None of the inhibitors affected protein synthesis, DNA synthesis, the PTH-enhanced secretion of beta-glucuronidase, and N-acetyl-beta-glucosaminidase, or the spontaneous release of lactate dehydrogenase. Ep453, Ep475, and CA074Me dose-dependently inhibited the resorptive activity of isolated rat osteoclasts cultured on bone slices with a maximal effect at 50 microM. The number of resorption pits and their mean volume was reduced, whilst the mean surface area remained unaffected. Again, CA074 was without effect. Ep453, Ep475, and CA074Me, but not CA074, when administered subcutaneously at a dose of 60 micrograms/g body weight inhibited bone resorption in vivo as measured by an in vivo/in vitro assay, by about 20%. This study demonstrates that cathepsins B, L, and/or S are involved in bone resorption in vitro and in vivo. Whilst cathepsin L and/or S act extracellularly, and possibly intracellularly, cathepsin B mediates its effects intracellularly perhaps through the activation of other proteinases involved in subosteoclastic collagen degradation.

  12. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    Science.gov (United States)

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Circular dichroism of stem bromelain: a third spectral class within the family of cysteine proteinases.

    Science.gov (United States)

    Arroyo-Reyna, A; Hernandez-Arana, A; Arreguin-Espinosa, R

    1994-01-01

    Two forms of stem bromelain (EC 3.4.22.4) were isolated from commercial, crude and chromatographically purified preparations of the enzyme by means of gel-filtration and cation-exchange liquid chromatography. These forms possess nearly identical secondary and tertiary structures, as judged from their circular dichroism (c.d.) spectra. The spectral characteristics of stem bromelain suggest that this enzyme belongs to the alpha + beta protein class, as other cysteine proteinases do. In agreement with these results, quantitative estimation of secondary structures yielded amounts similar to those for papain and proteinase omega. However, the bromelain c.d. curve is clearly distinguishable from those reported for papain and proteinase omega, on one hand, and that of chymopapain, on the other. Thus, it is apparent that there are at least three types of c.d. spectra associated with the family of cysteine proteinases. PMID:8198520

  14. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    Directory of Open Access Journals (Sweden)

    Lepelley Maud

    2012-03-01

    Full Text Available Abstract Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP and four cysteine proteinase inhibitor (CPI gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is

  15. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination.

    Science.gov (United States)

    Lepelley, Maud; Amor, Mohamed Ben; Martineau, Nelly; Cheminade, Gerald; Caillet, Victoria; McCarthy, James

    2012-03-01

    Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Two cysteine proteinase (CP) and four cysteine proteinase inhibitor (CPI) gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is likely to play a strong role in the programmed cell death

  16. STABILITY OF BINARY COMPLEXES OF L-ASPARTIC ACID IN ...

    African Journals Online (AJOL)

    Preferred Customer

    KEY WORDS: Binary complexes, Stability constants, Aspartic acid, Speciation, Dioxan ... Potentiometric study of Fe(II) and Zn(II) was carried out by Ritsma [19], Maker et al. [20],. Gergely and .... The effect of variations in asymmetry potential,.

  17. Red cell aspartate aminotransferase saturation with oral pyridoxine intake

    OpenAIRE

    Oshiro, Marilena; Nonoyama, Kimiyo; Oliveira, Raimundo Antônio Gomes; Barretto, Orlando Cesar de Oliveira

    2005-01-01

    CONTEXT AND OBJECTIVE: The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. DESIGN AND SETTING: Controlled trial, in Hematology Division of Instituto...

  18. Red cell aspartate aminotransferase saturation with oral pyridoxine intake

    Directory of Open Access Journals (Sweden)

    Marilena Oshiro

    Full Text Available CONTEXT AND OBJECTIVE: The coenzyme of aspartate aminotransferase is pyridoxal phosphate, generated from fresh vegetables containing pyridoxine. Vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome respond to high pyridoxine doses. The objective was to investigate the oral pyridoxine oral dose that would lead to maximized pyridoxal phosphate saturation of red cell aspartate aminotransferase. DESIGN AND SETTING: Controlled trial, in Hematology Division of Instituto Adolfo Lutz. METHODS: Red cell aspartate aminotransferase activity was assayed (before and after in normal volunteers who were given oral pyridoxine for 15-18 days (30 mg, 100 mg and 200 mg daily. In vitro study of blood from seven normal volunteers was also performed, with before and after assaying of aspartate aminotransferase activity. RESULTS: The in vivo study showed increasing aspartate aminotransferase saturation with increasing pyridoxine doses. 83% saturation was reached with 30 mg daily, 88% with 100 mg, and 93% with 200 mg after 20 days of oral supplementation. The in vitro study did not reach 100% saturation. CONCLUSIONS: Neither in vivo nor in vitro study demonstrated thorough aspartate aminotransferase saturation with its coenzyme pyridoxal phosphate in red cells, from increasing pyridoxine supplementation. However, the 200-mg dose could be employed safely in vitamin B6-responsive sideroblastic anemia, myelofibrosis and Peyronie’s syndrome treatment. Although maximum saturation in circulating red cells is not achieved, erythroblasts and other nucleated and cytoplasmic organelles containing cells certainly will reach thorough saturation, which possibly explains the results obtained in these diseases.

  19. Structural organization of precursors of thermolysin-like proteinases.

    Science.gov (United States)

    Demidyuk, Ilya V; Gasanov, Eugene V; Safina, Dina R; Kostrov, Sergey V

    2008-09-01

    The primary structures of the full-length precursors of thermolysin-like proteinases (TLPs) were systemically analyzed. Structural comparison of the precursor amino-terminal regions (ATRs) removed during maturation allowed us to divide the family into two groups: peptidases with short (about 50 amino acids) and long (about 200 amino acids) ATRs. The accumulation of mutations in the ATRs of both types proved to correlate with that in the catalytic domains. No classical signal peptides were identified in the short ATRs, but they contained a conserved PPL-motif near the initiation methionine. The functional role of the short ATRs and PPL-motif is currently unclear. The C-terminal regions (CTRs) of TLP precursors, which are often removed during maturation, too, are found in about a half of precursors with long ATRs, but occur more rarely in precursors with short ATRs. CTRs in TLP precursors contain previously identified conserved domains typical for many other proteins and likely underlie the interaction with high molecular weight substrates.

  20. Granulomatosis with polyangiitis (Wegener granulomatosis): A proteinase-3 driven disease?

    Science.gov (United States)

    Witko-Sarsat, Véronique; Thieblemont, Nathalie

    2018-03-01

    Granulomatosis with polyangiitis (GPA, Wegener granulomatosis) is a systemic autoimmune vasculitis that affects small arteries, arterioles, and capillaries, most notably in the kidneys and lungs. In this disease, proteinase-3 (PR3), produced by neutrophils, is targeted by antineutrophil cytoplasmic antibodies (ANCA). Recent work by our group has shown how PR3 impairs the resolution of inflammation and deregulates the immune system. Normally, the clearance of activated neutrophils triggers an anti-inflammatory, pro-resolution process. In patients with GPA, however, macrophages phagocytose apoptotic neutrophils then release massive amounts of pro-inflammatory mediators, notably interleukin-1, thereby generating a pro-inflammatory microenvironment conducive to autoimmunity. This deregulation of immune processes is accompanied with activation of plasmacytoid dendritic cells and with polarization of T-helper-2 (Th2), Th9, and Th17 cells. These recent data highlight the dual role of PR3, both auto-antigenic and auto-inflammatory, thus potentially opening up new therapeutic avenues. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  1. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    Directory of Open Access Journals (Sweden)

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  2. Molecular karyotype and chromosomal localization of genes encoding beta-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli.

    Science.gov (United States)

    Toaldo, C B; Steindel, M; Sousa, M A; Tavares, C C

    2001-01-01

    The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of beta-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70) and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of beta-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  3. [Aspartate aminotransferase--key enzyme in the human systemic metabolism].

    Science.gov (United States)

    Otto-Ślusarczyk, Dagmara; Graboń, Wojciech; Mielczarek-Puta, Magdalena

    2016-03-16

    Aspartate aminotransferase is an organ-nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms--cytoplasmic (AST1) and mitochondrial (AST2), that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys - 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp) in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  4. Aspartate aminotransferase – key enzyme in the human systemic metabolism

    Directory of Open Access Journals (Sweden)

    Dagmara Otto-Ślusarczyk

    2016-03-01

    Full Text Available Aspartate aminotransferase is an organ - nonspecific enzyme located in many tissues of the human body where it catalyzes reversible reaction of transamination. There are two aspartate aminotransferase isoforms - cytoplasmic (AST1 and mitochondrial (AST2, that usually occur together and interact with each other metabolically. Both isoforms are homodimers containing highly conservative regions responsible for catalytic properties of enzyme. The common feature of all aspartate aminotransfeses is Lys – 259 residue covalent binding with prosthetic group - pyridoxal phosphate. The differences in the primary structure of AST isoforms determine their physico-chemical, kinetic and immunological properties. Because of the low concentration of L-aspartate (L-Asp in the blood, AST is the only enzyme, which supply of this amino acid as a substrate for many metabolic processes, such as urea cycle or purine and pyrimidine nucleotides in the liver, synthesis of L-arginine in the kidney and purine nucleotide cycle in the brain and the skeletal muscle. AST is also involved in D-aspartate production that regulates the metabolic activity at the auto-, para- and endocrine level. Aspartate aminotransferase is a part of the malate-aspartate shuttle in the myocardium, is involved in gluconeogenesis in the liver and kidney, glyceroneogenesis in the adipose tissue, and synthesis of neurotransmitters and neuro-glial pathway in the brain. Recently, the significant role of AST in glutaminolysis - normal metabolic pathway in tumor cells, was demonstrated. The article is devoted the role of AST, known primarily as a diagnostic liver enzyme, in metabolism of various human tissues and organs.

  5. The M358R variant of α{sub 1}-proteinase inhibitor inhibits coagulation factor VIIa

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, William P., E-mail: sheffiel@mcmaster.ca [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario (Canada); Bhakta, Varsha [Canadian Blood Services, Centre for Innovation, Hamilton, Ontario (Canada)

    2016-02-12

    The naturally occurring M358R mutation of the plasma serpin α{sub 1}-proteinase inhibitor (API) changes both its cleavable reactive centre bond to Arg–Ser and the efficacy with which it inhibits different proteases, reducing the rate of inhibition of neutrophil elastase, and enhancing that of thrombin, factor XIa, and kallikrein, by several orders of magnitude. Although another plasma serpin with an Arg–Ser reactive centre, antithrombin (AT), has been shown to inhibit factor VIIa (FVIIa), no published data are available with respect to FVIIa inhibition by API M358R. Recombinant bacterially-expressed API M358R and plasma-derived AT were therefore compared using gel-based and kinetic assays of FVIIa integrity and activity. Under pseudo-first order conditions of excess serpin over protease, both AT and API M358R formed denaturation-resistant inhibitory complexes with FVIIa in reactions accelerated by TF; AT, but not API M358R, also required heparin for maximal activity. The second order rate constant for heparin-independent API M358R-mediated FVIIa inhibition was determined to be 7.8 ± 0.8 × 10{sup 2} M{sup −1}sec{sup −1}. We conclude that API M358R inhibits FVIIa by forming inhibitory complexes of the serpin type more rapidly than AT in the absence of heparin. The likely 20-fold excess of API M358R over AT in patient plasma during inflammation raises the possibility that it could contribute to the hemorrhagic tendencies manifested by rare individuals expressing this mutant serpin. - Highlights: • The inhibitory specificity of the serpin alpha-1-proteinase inhibitor (API) is sharply altered in the M358R variant. • API M358R forms denaturation-resistant complexes with coagulation factor VIIa at a rate accelerated by tissue factor but unaffected by heparin. • Complex formation was shown by gel-based assays and quantified kinetically by inhibition of FVIIa-dependent amidolysis.

  6. Proteinase-activated receptors (PARs) as targets for antiplatelet therapy.

    Science.gov (United States)

    Cunningham, Margaret; McIntosh, Kathryn; Bushell, Trevor; Sloan, Graeme; Plevin, Robin

    2016-04-15

    Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date. © 2016 Authors; published by Portland Press Limited.

  7. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Directory of Open Access Journals (Sweden)

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  8. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Directory of Open Access Journals (Sweden)

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  9. Differential antibiosis against Helicoverpa armigera exerted by distinct inhibitory repeat domains of Capsicum annuum proteinase inhibitors.

    Science.gov (United States)

    Joshi, Rakesh S; Gupta, Vidya S; Giri, Ashok P

    2014-05-01

    Plant defensive serine proteinase inhibitors (PIs) are known to have negative impact on digestive physiology of herbivore insects and thus have a crucial role in plant protection. Here, we have assessed the efficacy and specificity of three previously characterized inhibitory repeat domain (IRD) variants from Capsicum annuum PIs viz., IRD-7, -9 and -12 against gut proteinases from Helicoverpa armigera. Comparative study of in silico binding energy revealed that IRD-9 possesses higher affinity towards H. armigera serine proteinases as compared to IRD-7 and -12. H. armigera fed on artificial diet containing 5 TIU/g of recombinant IRD proteins exhibited differential effects on larval growth, survival rate and other nutritional parameters. Major digestive gut trypsin and chymotrypsin genes were down regulated in the IRD fed larvae, while few of them were up-regulated, this indicate alterations in insect digestive physiology. The results corroborated with proteinase activity assays and zymography. These findings suggest that the sequence variations among PIs reflect in their efficacy against proteinases in vitro and in vivo, which also could be used for developing tailor-made multi-domain inhibitor gene(s). Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Improved postprandial glycaemic control with insulin Aspart in type 2 diabetic patients treated with insulin

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Thorsby, P; Kjems, L

    2000-01-01

    The effect on postprandial blood glucose control of an immediately pre-meal injection of the rapid acting insulin analogue Aspart (IAsp) was compared with that of human insulin Actrapid injected immediately or 30 minutes before a test meal in insulin-treated type 2 diabetic patients with residual.......0 nmol/l (range, 0.3-2.5) and diabetes duration 12.5 years (range, 3.0-26.0). Twenty-two patients completed the study. A significantly improved postprandial glucose control was demonstrated with IAsp as compared to Act0, based on a significantly smaller postprandial blood glucose excursion (IAsp, 899......-meal administration of the rapid-acting insulin analogue Aspart in patients with type 2 diabetes resulted in an improved postprandial glucose control compared to Actrapid injected immediately before the meal, but showed similar control compared to Actrapid injected 30 minutes before the meal. These results indicate...

  11. Comparison of a Multiple Daily Insulin Injection Regimen (Glargine or Detemir Once Daily Plus Prandial Insulin Aspart and Continuous Subcutaneous Insulin Infusion (Aspart in Short-Term Intensive Insulin Therapy for Poorly Controlled Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    Wen-shan Lv

    2013-01-01

    Full Text Available Aims. To examine the potential differences between multiple daily injection (MDI regimens based on new long-acting insulin analogues (glargine or detemir plus prandial insulin aspart and continuous subcutaneous insulin aspart infusion (CSII in patients with poorly controlled type 2 diabetes. Methods. Patients (n=119 with poorly controlled type 2 diabetes of a duration exceeding five years were randomly assigned into three groups: Group A treated with CSII using insulin aspart; Group B treated with glargine-based MDI and Group C treated with detemir-based MDI. Results. Good glycemic control was achieved by patients in Group A in a significantly shorter duration than patients in Groups B and C. Total daily insulin, basal insulin dose and dose per kg body weight in Group A were significantly less than those in Groups B and C. Daily blood glucose fluctuation in Group A was significantly less than that in Groups B and C. There were no differences between Groups B and C. Conclusions. Aspart-based CSII may achieve good blood glucose control with less insulin doses over a shorter period compared with glargine or detemir-based MDI. No differences between glargine- and detemir-based MDI were detected in poorly controlled subjects with type 2 diabetes.

  12. The Enteric Nervous System in Inflammation and Pain: The Role of Proteinase-Activated Receptors

    Directory of Open Access Journals (Sweden)

    Nathalie Vergnolle

    2003-01-01

    Full Text Available The enteric nervous system (ENS plays a pivotal role in inflammatory and nociceptive processes. Drugs that interact with the ENS have recently raised considerable interest because of their capacity to regulate numerous aspects of the gut physiology and pathophysiology. The present article summarizes recent research on proteinases and proteinase-activated receptors (PARs as signalling molecules in the ENS. In particular, experiments in animal models suggest that PAR2 is important to neurogenic inflammation in the intestine. Moreover, PAR2 agonists seem to induce intestinal hypersensitivity and hyperalgesic states, suggesting a role for this receptor in visceral pain perception. Thus, PARs, together with the proteinases that activate them, represent exciting new targets for therapeutic intervention on the ENS.

  13. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis

    Science.gov (United States)

    Hernández, Hilda M.; Marcet, Ricardo; Sarracent, Jorge

    2014-01-01

    Human trichomonosis, infection with Trichomonas vaginalis, is the most common non-viral sexually transmitted disease in the world. The host-parasite interaction and pathophysiological processes of trichomonosis remain incompletely understood. This review focuses on the advancements reached in the area of the pathogenesis of T. vaginalis, especially in the role of the cysteine proteinases. It highlights various approaches made in this field and lists a group of trichomonad cysteine proteinases involved in diverse processes such as invasion of the mucous layer, cytoadherence, cytotoxicity, cytoskeleton disruption of red blood cells, hemolysis, and evasion of the host immune response. A better understanding of the biological roles of cysteine proteinases in the pathogenesis of this parasite could be used in the identification of new chemotherapeutic targets. An additional advantage could be the development of a vaccine in order to reduce transmission of T. vaginalis. PMID:25348828

  14. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  15. Human Rhinovirus Proteinase 2A Induces Th1 and Th2 Immunity in COPD

    Science.gov (United States)

    Singh, Manisha; Lee, Seung-Hyo; Porter, Paul; Xu, Chuang; Ohno, Ayako; Atmar, Robert L.; Greenberg, Stephen B.; Bandi, Venkata; Gern, Jim; Amineva, Svetlana; Aminev, Alex; Skern, Tim; Smithwick, Pamela; Perusich, Sarah; Barrow, Nadia; Roberts, Luz; Corry, David B.; Kheradmand, Farrah

    2010-01-01

    Background Tobacco related lung diseases including chronic obstructive pulmonary disease (COPD), are major causes of lung-related disability and death worldwide. Acute exacerbation of COPD (AE-COPD) is commonly associated with upper and lower respiratory viral infections and may result in respiratory failure in those with advanced lung disease. Objective We sought to determine the mechanism underlying COPD exacerbation, and host response to pathogen-derived factors. Methods Over a 24 months period, we assessed the viral causes for upper and lower respiratory infections in COPD (n=155) and control (n=103) subjects. We collected nasal and bronchoalveolar lavage (BAL) fluid and peripheral blood under baseline and exacerbated condition. We determined the effect of human rhinovirus (HRV) proteinases on T cell activation in humans, and in mice. Results HRVs are isolated from nasal and lung fluid from subjects with AE-COPD. BAL fluid, and CD4 T cells from COPD patients exhibited a type 1 T helper (Th1), and Th2 cell cytokine phenotype during acute infection. HRV-encoded proteinase 2A activated monocyte-derived dendritic cells in vitro, and induced strong Th1, and Th2 immune responses from CD4 T cells. Intranasal administration of recombinant rhinovirus proteinase 2A in mice resulted in an increase in airway hyperreactivity, lung inflammation, and IL-4 and IFN-γ production from CD4 T cells. Conclusion Our findings suggest that patients with severe COPD show Th1 and Th2 bias responses during AE-COPD. HRV-encoded proteinase 2A, like other microbial proteinases, could provide a Th1 and Th2-biasing adjuvant factor during upper and lower respiratory infection in patients with severe COPD. Alteration of the immune response to secreted viral proteinases may contribute to worsening of dyspnea and respiratory failure in COPD. PMID:20430426

  16. The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu

    2012-11-01

    Full Text Available Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2 family. The recombinant SaPIN2b (rSaPIN2b, which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  17. Th1 Cell Development Induced by Cysteine Proteinases A and B in Localized Cutaneous Leishmaniasis Due to Leishmania guyanensis

    Science.gov (United States)

    Pascalis, Hervé; Lavergne, Anne; Bourreau, Eliane; Prévot-Linguet, Ghislaine; Kariminia, Amina; Pradinaud, Roger; Rafati, Sima; Launois, Pascal

    2003-01-01

    The cysteine proteinases CPA and CPB from Leishmania major induced Th1 responses in patients with leishmaniasis due to Leishmania guyanensis. Furthermore, cysteine proteinases induced neither interleukin 4 (IL-4) nor IL-13 and low levels of IL-10 in controls and patients. The results suggest that CPs would be quite good candidates for a vaccine against different Leishmania species. PMID:12704171

  18. Participation of intracellular cysteine proteinases, in particular cathepsin B, in degradation of collagen in periosteal tissue explants

    NARCIS (Netherlands)

    Creemers, L. B.; Hoeben, K. A.; Jansen, D. C.; Buttle, D. J.; Beertsen, W.; Everts, V.

    1998-01-01

    The involvement of cysteine proteinases in the degradation of soft connective tissue collagen was studied in cultured periosteal explants. Using cysteine proteinase inhibitors that were active intracellularly or extracellularly (Ep453 and Ep475, respectively), it was shown that over-all collagen

  19. Molecular investigation on the interaction of spermine with proteinase K by multispectroscopic techniques and molecular simulation studies.

    Science.gov (United States)

    Hosseini-Koupaei, Mansoore; Shareghi, Behzad; Saboury, Ali Akbar; Davar, Fateme

    2017-01-01

    The alteration in structure, function and stability of proteinase K in the presence of spermine was investigated using spectroscopic methods and simulation techniques. The stability and enzyme activity of proteinase K-spermine complex were significantly enhanced as compared to that of the pure enzyme. The increase in the value of Vmax and the catalytic efficiency of Proteinase K in presence of spermine confirmed that the polyamine could bring the enzyme hyperactivation. UV-vis spectroscopy, intrinsic fluorescence and circular dichroism methods demonstrated that the binding of spermine changed the microenvironment and structure of proteinase K. The fluorescence studies, showing that spermine quenched the intensity of proteinase K with static mechanism. Thermodynamic parameters analysis suggested that hydrogen bond and van der Waals forces play a key role in complex stability which is in agreement with modeling studies. The CD spectra represented the secondary structure alteration of proteinase K with an increase in α-helicity and a decrease in β-sheet of proteinase K upon spermine conjugation. The molecular simulation results proposed that spermine could interact with proteinase K spontaneously at single binding site, which is in agreement with spectroscopic results. This agreement between experimental and theoretical results may be a worth method for protein-ligand complex studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Amino acid sequences of mammalian kazal-type proteinase inhibitors from salivary glands.

    Science.gov (United States)

    Hochstrasser, K; Wachter, E; Reisinger, P W; Greim, M; Albrecht, G J; Gebhard, W

    1993-09-01

    1. The amino acid sequences of bikazins (the double-headed Kazal-type proteinase inhibitors from submandibular glands) isolated from the snow leopard (Unica unica), the European mink (Mustela lutreola), and the European pine marten (Martes martes) were determined. 2. N-terminal domains of bikazins are characterized by a cysteine residue spacing that differs from that of C-terminal domains of bikazins and other Kazal-type proteinase inhibitor domains. 3. N-terminal sequences of bikazins seem to be specific for, and highly conserved within, each Carnivora family.

  1. The cell envelope subtilisin-like proteinase is a virulence determinant for Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Gottschalk Marcelo

    2010-02-01

    Full Text Available Abstract Background Streptococcus suis is a major swine pathogen and zoonotic agent that mainly causes septicemia, meningitis, and endocarditis. It has recently been suggested that proteinases produced by S. suis (serotype 2 are potential virulence determinants. In the present study, we screened a S. suis mutant library created by the insertion of Tn917 transposon in order to isolate a mutant deficient in a cell surface proteinase. We characterized the gene and assessed the proteinase for its potential as a virulence factor. Results Two mutants (G6G and M3G possessing a single Tn917 insertion were isolated. The affected gene coded for a protein (SSU0757 that shared a high degree of identity with Streptococccus thermophilus PrtS (95.9% and, to a lesser extent, with Streptococcus agalactiae CspA (49.5%, which are cell surface serine proteinases. The SSU0757 protein had a calculated molecular mass of 169.6 kDa and contained the catalytic triad characteristic of subtilisin family proteinases: motif I (Asp200, motif II (His239, and motif III (Ser568. SSU0757 also had the Gram-positive cell wall anchoring motif (Leu-Pro-X-Thr-Gly at the carboxy-terminus, which was followed by a hydrophobic domain. All the S. suis isolates tested, which belonged to different serotypes, possessed the gene encoding the SSU0757 protein. The two mutants devoid of subtilisin-like proteinase activity had longer generation times and were more susceptible to killing by whole blood than the wild-type parent strain P1/7. The virulence of the G6G and M3G mutants was compared to the wild-type strain in the CD1 mouse model. Significant differences in mortality rates were noted between the P1/7 group and the M3G and G6G groups (p Conclusion In summary, we identified a gene coding for a cell surface subtilisin-like serine proteinase that is widely distributed in S. suis. Evidences were brought for the involvement of this proteinase in S. suis virulence.

  2. Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.O.; Markby, D.W.; Schachman, H.K.

    1989-02-15

    Most investigations of the allosteric properties of the regulatory enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli are based on the sigmoidal dependence of enzyme activity on substrate concentration and the effects of the inhibitor, CTP, and the activator, ATP, on the saturation curves. Interpretations of these effects in terms of molecular models are complicated by the inability to distinguish between changes in substrate binding and catalytic turnover accompanying the allosteric transition. In an effort to eliminate this ambiguity, the binding of the 3H-labeled bisubstrate analog N-(phosphonacetyl)-L-aspartate (PALA) to aspartate transcarbamoylase in the absence and presence of the allosteric effectors ATP and CTP has been measured directly by equilibrium dialysis at pH 7 in phosphate buffer. PALA binds with marked cooperativity to the holoenzyme with an average dissociation constant of 110 nM. ATP and CTP alter both the average affinity of ATCase for PALA and the degree of cooperativity in the binding process in a manner analogous to their effects on the kinetic properties of the enzyme; the average dissociation constant of PALA decreases to 65 nM in the presence of ATP and increases to 266 nM in the presence of CTP while the Hill coefficient, which is 1.95 in the absence of effectors, becomes 1.35 and 2.27 in the presence of ATP and CTP, respectively. The dissociation constant of PALA from the catalytic subunit is 95 nM. Interpretation of these results in terms of a thermodynamic scheme linking PALA binding to the assembly of ATCase from catalytic and regulatory subunits demonstrates that saturation of the enzyme with PALA shifts the equilibrium between holoenzyme and subunits slightly toward dissociation.

  3. Novel Kazal-type proteinase inhibitors from the skin secretion of the Splendid leaf frog, Cruziohyla calcarifer

    Directory of Open Access Journals (Sweden)

    Carolina Proaño-Bolaños

    2017-06-01

    Full Text Available Peptidase inhibitors have an important role controlling a variety of biological processes. Here, we employed a peptidomic approach including molecular cloning, tandem mass spectrometry and enzymatic assays to reveal 7 Kazal-type proteinase inhibitors (CCKPs (18 variants in the skin secretion of the unexplored frog, Cruziohyla calcarifer. All 18 proteins shared the Kazal pattern C-X(7-C-X(6,7-C-X(6,7-Y-X(3-C-X(2-C-X(15-21-C and 3 disulphide bridges. Based on structural comparative analysis, we deemed trypsin and chymotrypsin inhibitory activity in CCKP-1, 4 and CCKP 2, 5, 7, respectively. These peptidase inhibitors presumably play a role to control the balance between other functional peptides produced in the amphibian skin secretions.

  4. Leucocyte membrane expression of proteinase 3 correlates with disease activity in patients with Wegener's granulomatosis

    NARCIS (Netherlands)

    Kobold, ACM; Kallenberg, CGM; Tervaert, JWC

    Wegener's granulomatosis (WG) is an inflammatory disorder characterized by granulomatous inflammation and vasculitis, and is strongly associated with antineutrophil cytoplasmic antibodies (ANCA). ANCA in patients with WG an directed against proteinase 3 (Pr3) in most of the cases. In vine, upon

  5. Proteinase K and the structure of PrPse: the good, the bad, and the ugly

    Science.gov (United States)

    Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunod...

  6. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors ...

    Indian Academy of Sciences (India)

    Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of ...

  7. Human neutrophil defensins and secretory leukocyte proteinase inhibitor in squamous metaplastic epithelium of bronchial airways.

    NARCIS (Netherlands)

    Aarbiou, J.; Schadewijk, A. van; Stolk, J.; Sont, J.K.; Boer, W.I.; Rabe, K.F.; Krieken, J.H.J.M. van; Mauad, T.; Hiemstra, P.S.

    2004-01-01

    OBJECTIVE: The aim of this study was to analyze a possible contribution of human neutrophil defensins and secretory leukocyte proteinase inhibitor (SLPI) to the induction of airway epithelial changes such as squamous cell metaplasia. MATERIALS AND METHODS: The presence of these molecules and the

  8. Recombinant protein to analyze autoantibodies to proteinase 3 in systemic vasculitis

    NARCIS (Netherlands)

    Rarok, AA; Huitema, MG; van der Leij, MJ; van der Geld, YM; Berthold, H; Schmitt, J; Stegeman, CA; Limburg, PC; Kallenberg, CGM

    2003-01-01

    The presence of antineutrophil cytoplasmic autoantibodies with specificity for proteinase 3 (PR3-ANCA) usually is detected by enzyme-linked immunosorbent assay (ELISA) with purified PR3 as a substrate. We studied the technical performance of direct and capture ELISA using a recombinant

  9. Serum proteinase inhibitors and other serum proteins in protein-energy malnutrition

    NARCIS (Netherlands)

    Schelp, F.P.; Migasena, P.; Pongpaew, P.; SCHREURS W.H.P

    1977-01-01

    1. The concentrations of serum protein albumin, prealbumin and transferrin were determined in twenty-eight cases of protein-energy malnutrition (PEM) with infection, together with the levels of serum proteinase inhibitors (PI), alpha1-antitrypsin (AT), alpha1-antichymotrypsin (Ach),

  10. Human anti-neutrophil cytoplasm autoantibodies to proteinase 3 (PR3-ANCA) bind to neutrophils

    NARCIS (Netherlands)

    Van Rossum, AP; van der Geld, YM; Limburg, PC; Kallenberg, CGM

    Human anti-neutrophil cytoplasm autoantibodies to proteinase 3 (PR3-ANCA) bind to neutrophils. Background. Recently, the in vivo pathogenic role of anti-neutrophil cytoplasm autoantibodies (ANCA) in ANCA-associated vasculitis has been challenged by Abdel-Salam et al. In their report, they observed

  11. Nutritional Requirements and Nitrogen-Dependent Regulation of Proteinase Activity of Lactobacillus helveticus CRL 1062

    Science.gov (United States)

    Hebert, Elvira M.; Raya, Raul R.; De Giori, Graciela S.

    2000-01-01

    The nutritional requirements of Lactobacillus helveticus CRL 1062 were determined with a simplified chemically defined medium (SCDM) and compared with those of L. helveticus CRL 974 (ATCC 15009). Both strains were found to be prototrophic for alanine, glycine, asparagine, glutamine, and cysteine. In addition, CRL 1062 also showed prototrophy for lysine and serine. The microorganisms also required riboflavin, calcium pantothenate, pyridoxal, nicotinic acid, and uracil for growth in liquid SCDM. The growth rate and the synthesis of their cell membrane-bound serine proteinases, but not of their intracellular leucyl-aminopeptidases, were influenced by the peptide content of the medium. The highest proteinase levels were found during cell growth in basal SCDM, while the synthesis of this enzyme was inhibited in SCDM supplemented with Casitone, Casamino Acids, or β-casein. Low-molecular-mass peptides (<3,000 Da), extracted from Casitone, and the dipeptide leucylproline (final concentration, 5 mM) play important roles in the medium-dependent regulation of proteinase activity. The addition of the dipeptide leucylproline (5 mM) to SCDM reduced proteinase activity by 25%. PMID:11097908

  12. Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica.

    Science.gov (United States)

    Ankri, S; Miron, T; Rabinkov, A; Wilchek, M; Mirelman, D

    1997-01-01

    The ability of Entamoeba histolytica trophozoites to destroy monolayers of baby hamster kidney cells is inhibited by allicin, one of the active principles of garlic. Cysteine proteinases, an important contributor to amebic virulence, as well as alcohol dehydrogenase, are strongly inhibited by allicin. PMID:9333064

  13. Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica.

    OpenAIRE

    Ankri, S; Miron, T; Rabinkov, A; Wilchek, M; Mirelman, D

    1997-01-01

    The ability of Entamoeba histolytica trophozoites to destroy monolayers of baby hamster kidney cells is inhibited by allicin, one of the active principles of garlic. Cysteine proteinases, an important contributor to amebic virulence, as well as alcohol dehydrogenase, are strongly inhibited by allicin.

  14. The digestion of phagocytosed collagen is inhibited by the proteinase inhibitors leupeptin and E-64

    NARCIS (Netherlands)

    Everts, V.; Beertsen, W.; Tigchelaar-Gutter, W.

    1985-01-01

    Using morphometric methods the effects of the thiol-proteinase inhibitors leupeptin and E-64 on the digestion of intracytoplasmic collagen fibrils were studied in cultured mouse bone explants. Both drugs caused a dose-dependent increase of lysosomal structures containing cross-banded collagen

  15. Modeling the growth and proteinase A production in continuous cultures of recombinant Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Carlsen, Morten; Jochumsen, Kirsten Væver; Emborg, Claus

    1997-01-01

    Overexpression of the homologous protein proteinase A (PrA) in Saccharomyces cerevisiae has been achieved by inserting the PrA gene (PEP4) with its own promoter on a 2 mu multicopy plasmid. With this system the specific PrA production rate was found to be described well by a linear function...

  16. SARS CoV main proteinase: The monomer-dimer equilibrium dissociation constant.

    Science.gov (United States)

    Graziano, Vito; McGrath, William J; Yang, Lin; Mangel, Walter F

    2006-12-12

    The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, KD, have varied more than 65,0000-fold, from equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded KD values of 5.8 +/- 0.8 microM (obtained from the entire scattering curve), 6.5 +/- 2.2 microM (obtained from the radii of gyration), and 6.8 +/- 1.5 microM (obtained from the forward scattering). The KD from chemical cross-linking was 12.7 +/- 1.1 microM, and from enzyme kinetics, it was 5.2 +/- 0.4 microM. While each of these three techniques can present different, potential limitations, they all yielded similar KD values.

  17. Miltpain, a cysteine proteinase, from milt of Pacific cod (Gadus macrocephalus): purification and characterization.

    Science.gov (United States)

    Kawabata, C; Doi, Y; Ichishima, E

    2000-04-01

    Miltpain (EC.3.4.22.-) is a cysteine proteinase that preferentially hydrolyzes basic proteins, previously found in the milt of chum salmon. Here we report a similar cysteine proteinase in the milt of the marine Pacific cod. The enzyme was isolated and purified 6900-fold and with an estimated mass of 63 kDa by gel filtration chromatography and 72 kDa by SDS/PAGE. Cod miltpain has an optimum pH of 6.0 for Z-Arg-Arg-MCA hydrolysis, and Km of 11.5 microM and kcat of 19.0 s-1 with Z-Arg-Arg-MCA. It requires a thiol-inducing reagent for activation and is inhibited by E-64, iodoacetamide, CA-074, PCMB, NEM, TLCK, TPCK, ZPCK and o-phenanthroline. This proteinase strongly hydrolyzes basic proteins such as salmine, clupeine and histone, and exhibits unique substrate specificity toward paired basic residues such as Lys-Arg, Arg-Arg on the substrates of P2-P1. The isoelectric point is 5.2 by isoelectric focusing. N-Terminal sequencing gave a sequence of < EVPVEVVRXYVTSAPEK. The cysteine proteinase from Pacific cod very closely matches the previously reported miltpain from chum salmon.

  18. The helper component-proteinase of cowpea aphid-borne mosaic virus

    NARCIS (Netherlands)

    Mlotshwa, S.

    2000-01-01

    Cowpea aphid-borne mosaic potyvirus causes severe yield losses in cowpea, an important legume crop in semi-arid regions of Africa. We have elucidated the genomic sequence of the virus and subsequently focused our attention on the so-called helper component-proteinase (HC-Pro), a

  19. Pest Protection Conferred by a Beta vulgaris Serine Proteinase Inhibitor Gene

    Science.gov (United States)

    Smigocki, Ann C.; Ivic-Haymes, Snezana; Li, Haiyan; Savić, Jelena

    2013-01-01

    Proteinase inhibitors provide a means of engineering plant resistance to insect pests. A Beta vulgaris serine proteinase inhibitor gene (BvSTI) was fused to the constitutive CaMV35S promoter for over-expression in Nicotiana benthamiana plants to study its effect on lepidopteran insect pests. Independently derived BvSTI transgenic tobacco T2 homozygous progeny were shown to have relatively high BvSTI gene transcript levels. BvSTI-specific polyclonal antibodies cross-reacted with the expected 30 kDA recombinant BvSTI protein on Western blots. In gel trypsin inhibitor activity assays revealed a major clear zone that corresponded to the BvSTI proteinase inhibitor that was not detected in the untransformed control plants. BvSTI-transgenic plants were bioassayed for resistance to five lepidopteran insect pests. Spodoptera frugiperda, S. exigua and Manduca sexta larvae fed BvSTI leaves had significant reductions in larval weights as compared to larvae fed on untransformed leaves. In contrast, larval weights increased relative to the controls when Heliothis virescens and Agrotis ipsilon larvae were fed on BvSTI leaves. As the larvae entered the pupal stage, pupal sizes reflected the overall larval weights. Some developmental abnormalities of the pupae and emerging moths were noted. These findings suggest that the sugar beet BvSTI gene may prove useful for effective control of several different lepidopteran insect pests in genetically modified tobacco and other plants. The sugar beet serine proteinase inhibitor may be more effective for insect control because sugar beet is cropped in restricted geographical areas thus limiting the exposure of the insects to sugar beet proteinase inhibitors and build up of non-sensitive midgut proteases. PMID:23468963

  20. Seroprevalence of Fasciola gigantica infection in bovines using cysteine proteinase dot enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    Niranjan Kumar

    2017-10-01

    Full Text Available Aim: The objective of the present study was to know the seroprevalence status of Fasciola gigantica infection in cattle and buffaloes using cysteine proteinase (CP antigen in dot enzyme-linked immunosorbent assay (ELISA format under field conditions. Materials and Methods: As per the standard protocol, the sera were collected from the blood of 112 cattle and 38 buffaloes of coastal areas of Navsari district, South Gujarat, India. The indirect ELISA was performed on the strip of nitrocellulose paper blotted with 1 μl of CP antigen, to detect F. gigantica seropositive animals. Results: The native CP of F. gigantica revealed a single visible band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was no any noted cross-reaction between the selected antigen and sera of Gastrothylax crumenifer-infected animals in ELISA. Out of 150 screened bovines, the sera of 47 (31.33% were found to be reactive in dot-ELISA, with a prevalence rate of 31.25% and 31.58% in cattle and buffaloes, respectively. The seropositive bovines with heavy, moderate, and light level of infection were 44.68%, 34.04%, and 21.28%, respectively (p0.05 between moderate and heavy or light. The share of F. gigantica seropositive and negative animals was 31% and 69%, respectively. The optical density at 450 nm of pooled sera of seropositive bovines with heavy, moderate, and light reactivity in plate-ELISA was significantly higher with field or reference negative sera. Conclusion: The CP-based dot-ELISA can be useful for field veterinarians for quick and timely isolation of the animals requiring urgent flukicide therapy.

  1. Seroprevalence of Fasciolagigantica infection in bovines using cysteine proteinase dot enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Kumar, Niranjan; Varghese, Anju; Solanki, J B

    2017-10-01

    The objective of the present study was to know the seroprevalence status of Fasciola gigantica infection in cattle and buffaloes using cysteine proteinase (CP) antigen in dot enzyme-linked immunosorbent assay (ELISA) format under field conditions. As per the standard protocol, the sera were collected from the blood of 112 cattle and 38 buffaloes of coastal areas of Navsari district, South Gujarat, India. The indirect ELISA was performed on the strip of nitrocellulose paper blotted with 1 µl of CP antigen, to detect F. gigantica seropositive animals. The native CP of F. gigantica revealed a single visible band on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. There was no any noted cross-reaction between the selected antigen and sera of Gastrothylax crumenifer-infected animals in ELISA. Out of 150 screened bovines, the sera of 47 (31.33%) were found to be reactive in dot-ELISA, with a prevalence rate of 31.25% and 31.58% in cattle and buffaloes, respectively. The seropositive bovines with heavy, moderate, and light level of infection were 44.68%, 34.04%, and 21.28%, respectively (p0.05 between moderate and heavy or light). The share of F. gigantica seropositive and negative animals was 31% and 69%, respectively. The optical density at 450 nm of pooled sera of seropositive bovines with heavy, moderate, and light reactivity in plate-ELISA was significantly higher with field or reference -negative sera. The CP-based dot-ELISA can be useful for field veterinarians for quick and timely isolation of the animals requiring urgent flukicide therapy.

  2. Production of aspartic peptidases by Aspergillus spp. using tuna ...

    African Journals Online (AJOL)

    A Kp of 4.5 for ATPS PEG 1450-Pi; in ATPS PEG 8000-Pi, Kp value of the range of 2 to 2.5 was obtained. A purification factor 2 was obtained. The method appears to be suitable as a first step for the purification of these proteins from these complex medium. Key words: Tuna cooked wastewater, aspartic peptidases, aqueous ...

  3. Immunological cross-reactivity of the major allergen from perennial ryegrass (Lolium perenne), Lol p I, and the cysteine proteinase, bromelain.

    Science.gov (United States)

    Pike, R N; Bagarozzi, D; Travis, J

    1997-04-01

    Antibodies prepared in rabbits against the major allergen from ryegrass (Lolium perenne), Lol p I, cross-reacted with the cysteine proteinase bromelain from pineapple and vice versa. Deglycosylation of the proteins showed that the cross-reaction was based on recognition of the carbohydrate moiety of the allergen, but for bromelain the cross-reaction was most likely due to a combination of factors. The results indicate that the carbohydrate residues from these allergens play an important role in cross-reactions found between them and possibly those from other species.

  4. Three-dimensional hybrid networks based on aspartic acid

    Indian Academy of Sciences (India)

    Author Affiliations. Anupama Ghosh1 2 R A Sanguramath2. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012; Chemistry and Physics of Materials Unit and CSIR Centre of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064 ...

  5. Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence.

    Science.gov (United States)

    Chen, Hsien-Jung; Huang, Yu-Hsuan; Huang, Guan-Jhong; Huang, Shyh-Shyun; Chow, Te-Jin; Lin, Yaw-Huei

    2015-05-15

    Plant aspartic proteases are generally divided into three categories: typical, nucellin-like, and atypical aspartic proteases based on their gene and protein structures. In this report, a full-length cDNA SPAP1 was cloned from sweet potato leaves, which contained 1515 nucleotides (504 amino acids) and exhibited high amino acid sequence identity (ca. 51-72%) with plant typical aspartic proteases, including tomato LeAspP, potato StAsp, and wheat WAP2. SPAP1 also contained conserved DTG and DSG amino acid residues within its catalytic domain and plant specific insert (PSI) at the C-terminus. The cDNA corresponding to the mature protein (starting from the 66th to 311th amino acid residues) without PSI domain was constructed with pET30a expression vector for fusion protein and antibody production. RT-PCR and protein blot hybridization showed that SPAP1 expression level was the highest in L3 mature leaves, then gradually declined until L5 completely yellow leaves. Ethephon, an ethylene-releasing compound, also enhanced SPAP1 expression at the time much earlier than the onset of leaf senescence. Exogenous application of SPAP1 fusion protein promoted ethephon-induced leaf senescence, which could be abolished by pre-treatment of SPAP1 fusion protein with (a) 95 °C for 5 min, (b) aspartic protease inhibitor pepstatin A, and (c) anti-SPAP1 antibody, respectively. Exogenous SPAP1 fusion protein, whereas, did not significantly affect leaf senescence under dark. These data conclude that sweet potato SPAP1 is a functional typical aspartic protease and participates in ethephon-mediated leaf senescence. The SPAP1-promoted leaf senescence and its activity are likely not associated with the PSI domain. Interaction of ethephon-inducible components for effective SPAP1 promotion on leaf senescence is also suggested. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. pH-dependent processing of yeast procarboxypeptidase Y by proteinase A in vivo and in vitro

    DEFF Research Database (Denmark)

    Sørensen, S O; van den Hazel, H B; Kielland-Brandt, Morten

    1994-01-01

    procarboxypeptidase Y by purified proteinase A. This has identified two different processing intermediates; one active and one inactive. The intermediates define a 33 amino acid segment of the 91 amino acid propeptide as sufficient for maintaining the enzyme in an inactive state. The inactive intermediate...... activity. Efficient processing of procarboxypeptidase Y in the absence of proteinase B is dependent on acidic vacuolar pH, and the processing at neutral pH is slow and takes place in two steps similar to those identified in vitro.......Carboxypeptidase Y is a vacuolar enzyme from Saccharomyces cerevisiae. It enters the vacuole as a zymogen, procarboxypeptidase Y, which is immediately processed in a reaction involving two endoproteases, proteinase A and proteinase B. We have investigated the in vitro activation of purified...

  7. BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling

    OpenAIRE

    Vadon-Le Goff, Sandrine; Hulmes, David J. S.; Moali, Catherine

    2015-01-01

    Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases, here called BTPs, include the proteases originally identified for their roles in the C-terminal maturation of fibrillar procollagens ("procollagen C-proteinase"). Though numerous other substrates have since been discovered, the BTPs remain the main proteases involved in extracellular matrix assembly with little or no implication in matrix degradation. During the same period however, the BTPs have also become established as importa...

  8. Distribution and evolution of the serine/aspartate racemase family in invertebrates.

    Science.gov (United States)

    Uda, Kouji; Abe, Keita; Dehara, Yoko; Mizobata, Kiriko; Sogawa, Natsumi; Akagi, Yuki; Saigan, Mai; Radkov, Atanas D; Moe, Luke A

    2016-02-01

    Free D-amino acids have been found in various invertebrate phyla, while amino acid racemase genes have been identified in few species. The purpose of this study is to elucidate the distribution, function, and evolution of amino acid racemases in invertebrate animals. We searched the GenBank databases, and found 11 homologous serine racemase genes from eight species in eight different invertebrate phyla. The cloned genes were identified based on their maximum activity as Acropora millepora (Cnidaria) serine racemase (SerR) and aspartate racemase (AspR), Caenorhabditis elegans (Nematoda) SerR, Capitella teleta (Annelida) SerR, Crassostrea gigas (Mollusca) SerR and AspR, Dugesia japonica (Platyhelminthes) SerR, Milnesium tardigradum (Tardigrada) SerR, Penaeus monodon (Arthropoda) SerR and AspR and Strongylocentrotus purpuratus (Echinodermata) AspR. We found that Acropora, Aplysia, Capitella, Crassostrea and Penaeus had two amino acid racemase paralogous genes and these paralogous genes have evolved independently by gene duplication at their recent ancestral species. The transcriptome analyses using available SRA data and enzyme kinetic data suggested that these paralogous genes are expressed in different tissues and have different functions in vivo. Phylogenetic analyses clearly indicated that animal SerR and AspR are not separated by their particular racemase functions and form a serine/aspartate racemase family cluster. Our results revealed that SerR and AspR are more widely distributed among invertebrates than previously known. Moreover, we propose that the triple serine loop motif at amino acid positions 150-152 may be responsible for the large aspartate racemase activity and the AspR evolution from SerR.

  9. Structural Insights into a Novel Class of Aspartate Aminotransferase from Corynebacterium glutamicum.

    Directory of Open Access Journals (Sweden)

    Hyeoncheol Francis Son

    Full Text Available Aspartate aminotransferase from Corynebacterium glutamicum (CgAspAT is a PLP-dependent enzyme that catalyzes the production of L-aspartate and α-ketoglutarate from L-glutamate and oxaloacetate in L-lysine biosynthesis. In order to understand the molecular mechanism of CgAspAT and compare it with those of other aspartate aminotransferases (AspATs from the aminotransferase class I, we determined the crystal structure of CgAspAT. CgAspAT functions as a dimer, and the CgAspAT monomer consists of two domains, the core domain and the auxiliary domain. The PLP cofactor is found to be bound to CgAspAT and stabilized through unique residues. In our current structure, a citrate molecule is bound at the active site of one molecule and mimics binding of the glutamate substrate. The residues involved in binding of the PLP cofactor and the glutamate substrate were confirmed by site-directed mutagenesis. Interestingly, compared with other AspATs from aminotransferase subgroup Ia and Ib, CgAspAT exhibited unique binding sites for both cofactor and substrate; moreover, it was found to have unusual structural features in the auxiliary domain. Based on these structural differences, we propose that CgAspAT does not belong to either subgroup Ia or Ib, and can be categorized into a subgroup Ic. The phylogenetic tree and RMSD analysis also indicates that CgAspAT is located in an independent AspAT subgroup.

  10. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis CryIA(c) protoxin.

    Science.gov (United States)

    Oppert, B; Kramer, K J; Johnson, D; Upton, S J; Mcgaughey, W H

    1996-06-01

    The ability of proteinases in gut extracts of the Indianmeal moth, Plodia interpunctella, to hydrolyze Bacillus thuringiensis (Bt) protoxin, casein, and rho-nitroanilide substrates was investigated. A polyclonal antiserum to protoxin CryIA(c) was used in Western blots to demonstrate slower protoxin processing by gut enzymes from Bt subspecies entomocidus-resistant larvae than enzymes from susceptible or kurstaki-resistant strains. Enzymes from all three strains hydrolyzed N-alpha-benzoyl-L-arginine rho-nitroanilide, N-succinyl-ala-ala-pro-phenylalanine rho-nitroanilide, and N-succinyl-ala-ala-pro-leucine rho-nitroanilide. Zymograms and activity blots were used to estimate the apparent molecular masses, number of enzymes, and relative activities in each strain. Several serine proteinase inhibitors reduced gut enzyme activities, with two soybean trypsin inhibitors, two potato inhibitors, and chymostatin the most effective in preventing protoxin hydrolysis.

  11. A preliminary neutron crystallographic study of proteinase K at pD 6.5

    Energy Technology Data Exchange (ETDEWEB)

    Gardberg, Anna S [ORNL; Blakeley, Matthew P. [Institut Laue-Langevin (ILL); Myles, Dean A A [ORNL

    2009-01-01

    AbstractA preliminary neutron crystallographic study of the proteolytic enzyme proteinase K is presented. Large hydrogenated crystals were prepared in deuterated crystallization buffer using the vapour-diffusion method. Data were collected to a resolution of 2.3 on the LADI-III diffractometer at the Institut Laue Langevin (ILL) in 2.5 days. The results demonstrate the feasibility of a full neutron crystallographic analysis of this structure aimed at providing relevant information on the location of H atoms, particularly at the active site. This information will contribute to further understanding of the molecular mechanisms underlying proteinase K's catalytic activity and to an enriched understanding of the subtilisin clan of serine proteases.

  12. Perspectives of digestive pest control with proteinase inhibitors that mainly affect the trypsin-like activity of Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    M.E. Pereira

    2005-11-01

    Full Text Available The present study describes the main characteristics of the proteolytic activities of the velvetbean caterpillar, Anticarsia gemmatalis Hübner, and their sensitivity to proteinase inhibitors and activators. Midguts of last instar larvae reared on an artificial diet were homogenized in 0.15 M NaCl and centrifuged at 14,000 g for 10 min at 4ºC and the supernatants were used in enzymatic assays at 30ºC, pH 10.0. Basal total proteolytic activity (azocasein hydrolysis was 1.14 ± 0.15 absorbance variation min-1 mg protein-1, at 420 nm; basal trypsin-like activity (N-benzoyl-L-arginine-p-nitroanilide, BApNA, hydrolysis was 0.217 ± 0.02 mmol p-nitroaniline min-1 mg protein-1. The maximum proteolytic activities were observed at pH 10.5 using azocasein and at pH 10.0 using BApNA, this pH being identical to the midgut pH of 10.0. The maximum trypsin-like activity occurred at 50ºC, a temperature that reduces enzyme stability to 80 and 60% of the original, when pre-incubated for 5 and 30 min, respectively. Phenylmethylsulfonyl fluoride inhibited the proteolytic activities with an IC50 of 0.39 mM for azocasein hydrolysis and of 1.35 mM for BApNA hydrolysis. Benzamidine inhibited the hydrolysis with an IC50 of 0.69 and 0.076 mM for azocasein and BApNA, respectively. The absence of cysteine-proteinases is indicated by the fact that 2-mercaptoethanol and L-cysteine did not increase the rate of azocasein hydrolysis. These results demonstrate the presence of serine-proteinases and the predominance of trypsin-like activity in the midgut of Lepidoptera insects, now also detected in A. gemmatalis, and suggest this enzyme as a major target for pest control based on disruption of protein metabolism using proteinase inhibitors.

  13. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  14. Bioprocessing and immobilization of cell envelope proteinases from Lactobacillus delbrueckii subsp. lactis 313, for protein degradation

    OpenAIRE

    Agyei, Dominic

    2017-01-01

    Proteolytic enzymes are a useful class of biomolecules due to their ubiquity and the plethora of physiological roles they play in living systems. These enzymes are esponsible for the breakdown of proteins to peptides and have several applications in food, pharmaceuticals, diagnostics, photographic, waste treatments, bioremediation, and in the textile industry. Cell-envelope proteinases (CEPs) are a special class of industrially relevant extracellular proteolytic enzymes obtained from la...

  15. SARS CoV Main Proteinase: The Monomer-Dimer Equilibrium Dissociation Constant

    Energy Technology Data Exchange (ETDEWEB)

    Graziano,V.; McGrath, W.; Yang, L.; Mangel, W.

    2006-01-01

    The SARS coronavirus main proteinase (SARS CoV main proteinase) is required for the replication of the severe acute respiratory syndrome coronavirus (SARS CoV), the virus that causes SARS. One function of the enzyme is to process viral polyproteins. The active form of the SARS CoV main proteinase is a homodimer. In the literature, estimates of the monomer-dimer equilibrium dissociation constant, K{sub D}, have varied more than 650000-fold, from <1 nM to more than 200 {mu}M. Because of these discrepancies and because compounds that interfere with activation of the enzyme by dimerization may be potential antiviral agents, we investigated the monomer-dimer equilibrium by three different techniques: small-angle X-ray scattering, chemical cross-linking, and enzyme kinetics. Analysis of small-angle X-ray scattering data from a series of measurements at different SARS CoV main proteinase concentrations yielded K{sub D} values of 5.8 {+-} 0.8 {mu}M (obtained from the entire scattering curve), 6.5 {+-} 2.2 {mu}M (obtained from the radii of gyration), and 6.8 {+-} 1.5 {mu}M (obtained from the forward scattering). The K{sub D} from chemical cross-linking was 12.7 {+-} 1.1 {mu}M, and from enzyme kinetics, it was 5.2 {+-} 0.4 {mu}M. While each of these three techniques can present different, potential limitations, they all yielded similar K{sub D} values.

  16. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α.

    Science.gov (United States)

    Steinberger, Jutta; Kontaxis, Georg; Rancan, Chiara; Skern, Tim

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb(pro)) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb(pro) L200F provide structural evidence for intramolecular self-processing. (15)N-HSQC measurements of Lb(pro) L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb(pro), lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb(pro), stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb(pro) and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb(pro). Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Crystal structure of truncated aspartate transcarbamoylase from Plasmodium falciparum.

    Science.gov (United States)

    Lunev, Sergey; Bosch, Soraya S; Batista, Fernando de Assis; Wrenger, Carsten; Groves, Matthew R

    2016-07-01

    The de novo pyrimidine-biosynthesis pathway of Plasmodium falciparum is a promising target for antimalarial drug discovery. The parasite requires a supply of purines and pyrimidines for growth and proliferation and is unable to take up pyrimidines from the host. Direct (or indirect) inhibition of de novo pyrimidine biosynthesis via dihydroorotate dehydrogenase (PfDHODH), the fourth enzyme of the pathway, has already been shown to be lethal to the parasite. In the second step of the plasmodial pyrimidine-synthesis pathway, aspartate and carbamoyl phosphate are condensed to N-carbamoyl-L-aspartate and inorganic phosphate by aspartate transcarbamoylase (PfATC). In this paper, the 2.5 Å resolution crystal structure of PfATC is reported. The space group of the PfATC crystals was determined to be monoclinic P21, with unit-cell parameters a = 87.0, b = 103.8, c = 87.1 Å, α = 90.0, β = 117.7, γ = 90.0°. The presented PfATC model shares a high degree of homology with the catalytic domain of Escherichia coli ATC. There is as yet no evidence of the existence of a regulatory domain in PfATC. Similarly to E. coli ATC, PfATC was modelled as a homotrimer in which each of the three active sites is formed at the oligomeric interface. Each active site comprises residues from two adjacent subunits in the trimer with a high degree of evolutional conservation. Here, the activity loss owing to mutagenesis of the key active-site residues is also described.

  18. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer.

    Science.gov (United States)

    Theocharis, Achilleas D; Gialeli, Chrisostomi; Bouris, Panagiotis; Giannopoulou, Efstathia; Skandalis, Spyros S; Aletras, Alexios J; Iozzo, Renato V; Karamanos, Nikos K

    2014-11-01

    Proteoglycans are major constituents of extracellular matrices, as well as cell surfaces and basement membranes. They play key roles in supporting the dynamic extracellular matrix by generating complex structural networks with other macromolecules and by regulating cellular phenotypes and signaling. It is becoming evident, however, that proteolytic enzymes are required partners for matrix remodeling and for modulating cell signaling via matrix constituents. Proteinases contribute to all stages of diseases, particularly cancer development and progression, and contextually participate in either the removal of damaged products or in the processing of matrix molecules and signaling receptors. The dynamic interplay between proteoglycans and proteolytic enzymes is a crucial biological step that contributes to the pathophysiology of cancer and inflammation. Moreover, proteoglycans are implicated in the expression and secretion of proteolytic enzymes and often modulate their activities. In this review, we describe the emerging biological roles of proteoglycans and proteinases, with a special emphasis on their complex interplay. We critically evaluate this important proteoglycan-proteinase interactome and discuss future challenges with respect to targeting this axis in the treatment of cancer. © 2014 FEBS.

  19. Involvement of papain and legumain proteinase in the senescence process of Medicago truncatula nodules.

    Science.gov (United States)

    Pierre, Olivier; Hopkins, Julie; Combier, Maud; Baldacci, Fabien; Engler, Gilbert; Brouquisse, Renaud; Hérouart, Didier; Boncompagni, Eric

    2014-05-01

    The symbiotic interaction between legumes and Rhizobiaceae leads to the formation of new root organs called nodules. Within the nodule, Rhizobiaceae differentiate into nitrogen-fixing bacteroids. However, this symbiotic interaction is time-limited as a result of the initiation of a senescence process, leading to a complete degradation of bacteroids and host plant cells. The increase in proteolytic activity is one of the key features of this process. In this study, we analysed the involvement of two different classes of cysteine proteinases, MtCP6 and MtVPE, in the senescence process of Medicago truncatula nodules. Spatiotemporal expression of MtCP6 and MtVPE was investigated using promoter- β-glucuronidase fusions. Corresponding gene inductions were observed during both developmental and stress-induced nodule senescence. Both MtCP6 and MtVPE proteolytic activities were increased during stress-induced senescence. Down-regulation of both proteinases mediated by RNAi in the senescence zone delayed nodule senescence and increased nitrogen fixation, while their early expression promoted nodule senescence. Using green fluorescent protein fusions, in vivo confocal imaging showed that both proteinases accumulated in the vacuole of uninfected cells or the symbiosomes of infected cells. These data enlighten the crucial role of MtCP6 and MtVPE in the onset of nodule senescence. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation.

    Science.gov (United States)

    Nieminen, Mikko T; Listyarifah, Dyah; Hagström, Jaana; Haglund, Caj; Grenier, Daniel; Nordström, Dan; Uitto, Veli-Jukka; Hernandez, Marcela; Yucel-Lindberg, Tülay; Tervahartiala, Taina; Ainola, Mari; Sorsa, Timo

    2018-02-06

    Periodontal pathogens have been linked to oral and gastrointestinal (orodigestive) carcinogenesis. However, the exact mechanisms remain unknown. Treponema denticola (Td) is associated with severe periodontitis, a chronic inflammatory disease leading to tooth loss. The anaerobic spirochete Td is an invasive bacteria due to its major virulence factor chymotrypsin-like proteinase. Here we aimed to investigate the presence of Td chymotrypsin-like proteinase (Td-CTLP) in major orodigestive tumours and to elucidate potential mechanisms for Td to contribute to carcinogenesis. The presence of Td-CTLP within orodigestive tumour tissues was examined using immunohistochemistry. Oral, tonsillar, and oesophageal squamous cell carcinomas, alongside gastric, pancreatic, and colon adenocarcinomas were stained with a Td-CTLP-specific antibody. Gingival tissue from periodontitis patients served as positive controls. SDS-PAGE and immunoblot were used to analyse the immumodulatory activity of Td-CTLP in vitro. Td-CTLP was present in majority of orodigestive tumour samples. Td-CTLP was found to convert pro MMP-8 and -9 into their active forms. In addition, Td-CTLP was able to degrade the proteinase inhibitors TIMP-1, TIMP-2, and α-1-antichymotrypsin, as well as complement C1q. Because of its presence within tumours and regulatory activity on proteins critical for the regulation of tumour microenvironment and inflammation, the Td-CTLP may contribute to orodigestive carcinogenesis.

  1. Fibronectin-degrading activity of Trypanosoma cruzi cysteine proteinase plays a role in host cell invasion.

    Science.gov (United States)

    Maeda, Fernando Yukio; Cortez, Cristian; Izidoro, Mario Augusto; Juliano, Luiz; Yoshida, Nobuko

    2014-12-01

    Trypanosoma cruzi, the agent of Chagas disease, binds to diverse extracellular matrix proteins. Such an ability prevails in the parasite forms that circulate in the bloodstream and contributes to host cell invasion. Whether this also applies to the insect-stage metacyclic trypomastigotes, the developmental forms that initiate infection in the mammalian host, is not clear. Using T. cruzi CL strain metacyclic forms, we investigated whether fibronectin bound to the parasites and affected target cell invasion. Fibronectin present in cell culture medium bound to metacyclic forms and was digested by cruzipain, the major T. cruzi cysteine proteinase. G strain, with negligible cruzipain activity, displayed a minimal fibronectin-degrading effect. Binding to fibronectin was mediated by gp82, the metacyclic stage-specific surface molecule implicated in parasite internalization. When exogenous fibronectin was present at concentrations higher than cruzipain can properly digest, or fibronectin expression was stimulated by treatment of epithelial HeLa cells with transforming growth factor beta, the parasite invasion was reduced. Treatment of HeLa cells with purified recombinant cruzipain increased parasite internalization, whereas the treatment of parasites with cysteine proteinase inhibitor had the opposite effect. Metacyclic trypomastigote entry into HeLa cells was not affected by anti-β1 integrin antibody but was inhibited by anti-fibronectin antibody. Overall, our results have indicated that the cysteine proteinase of T. cruzi metacyclic forms, through its fibronectin-degrading activity, is implicated in host cell invasion. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    Science.gov (United States)

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Assembly of catalytic subunits of aspartate transcarbamoylase from Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.L.; Schachman, H.K.

    1980-10-01

    Although extensive studies have been conducted on the assembly of the allosteric enzyme, aspartate transcarbamoylase (ATCase) from isolate, intact catalytic (C) and regulatory (R) subunits, there has been little research on the formation of these subunits from individual catalytic (c) and regulatory (r) polypeptide chains. Such studies would be useful for evaluating the strengths of the interchain bonding domains within the subunits just as earlier experiments provided valuable data regarding interactions between the subunits in ATCase. The intact enzyme comprising two C trimers and three R dimers is designated as C/sub 2/R/sub 3/ or c/sub 6/r/sub 6/.

  4. Insulin degludec aspart: One-year real world experience

    OpenAIRE

    Sanjay Kalra; Manash P Baruah

    2016-01-01

    Background: This retrospective analysis describes the use of insulin degludec aspart (IDegAsp) in India. Material and Methods: All subjects who had received IDegAsp for 52 weeks at two endocrine centers were included in this study. Results: Forty-eight subjects (40 men), with mean age of 54.33 ? 9.63 years and mean duration of diabetes of 6.33 ? 2.96 years, started IDegAsp as insulin of initiation (16), as an intensification regime (4), as de-escalation from basal-bolus therapy (16), or as sw...

  5. [Phospholipase and proteinase production by Malassezia pachydermatis isolated in dogs with and without otitis].

    Science.gov (United States)

    Ortiz, Gustavo; Martín, M Carmen; Carrillo-Muñoz, Alfonso J; Payá, M Jesús

    2013-01-01

    Malassezia pachydermatis is part of the skin microbiota of dogs and cats. M. pachydermatis has been associated with external otitis and seborrhoeic dermatitis, reported more often in dogs than in cats. When the physical, chemical or immunological mechanisms of the skin are altered, M. pachydermatis could act as a pathogen. Thus, several virulence factors, such as the ability to produce esterase, lipase, lipoxygenase, protease, chondroitin sulphatase, and hyaluronidase, have been studied. In the present study, we aim to identify the phospholipase activity measured at pH 6.3, and the proteinase activity measured at pH 6.3 and pH 6.8 (pH from ears of dogs with external otitis) of M. pachydermatis strains isolated from dogs with and without external otitis. The phospholipase activity was measured using a semi-quantitative method with egg yolk, and the proteinase activity with a semi-quantitative method using bovine serum albumin agar. The study was performed on 96 isolates of M. pachydermatis, 43 isolated from dogs without clinical symptoms of otitis, and 52 isolated from dogs with otitis. In our study, 75.8% of the isolates showed phospholipase activity at pH 6.3, and 81 and 97.9% of them showed proteinase activity measured at pH 6.3 and 6.8, respectively. A higher phospholipase activity was detected in strains isolated from dogs with otitis. The proteinase activity was increased at a pH of 6.8 (97.9%) in comparison to a pH of 6.3 (81%). Our results suggest that the phospholipase activity may play an important role in the invasion of host tissues in chronic canine otitis cases. The proteinase activity results obtained in this study suggest that a reduction in the pH of the treatment may improve its efficacy in the resolution of M. pachydermatis otitis. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis

    OpenAIRE

    Freinkman, Elizaveta; Wang, Tim; Chen, Walter W.; Abu-Remaileh, Monther; Sabatini, David; Birsoy, Kivanc

    2015-01-01

    The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibitio...

  7. Site-directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from Bacillus sp. YM55-1.

    Science.gov (United States)

    Puthan Veetil, Vinod; Raj, Hans; Quax, Wim J; Janssen, Dick B; Poelarends, Gerrit J

    2009-06-01

    Aspartate ammonia lyases (also referred to as aspartases) catalyze the reversible deamination of L-aspartate to yield fumarate and ammonia. In the proposed mechanism for these enzymes, an active site base abstracts a proton from C3 of L-aspartate to form an enzyme-stabilized enediolate intermediate. Ketonization of this intermediate eliminates ammonia and yields the product, fumarate. Although two crystal structures of aspartases have been determined, details of the catalytic mechanism have not yet been elucidated. In the present study, eight active site residues (Thr101, Ser140, Thr141, Asn142, Thr187, His188, Lys324 and Asn326) were mutated in the structurally characterized aspartase (AspB) from Bacillus sp. YM55-1. On the basis of a model of the complex in which L-aspartate was docked manually into the active site of AspB, the residues responsible for binding the amino group of L-aspartate were predicted to be Thr101, Asn142 and His188. This postulate is supported by the mutagenesis studies: mutations at these positions resulted in mutant enzymes with reduced activity and significant increases in the K(m) for L-aspartate. Studies of the pH dependence of the kinetic parameters of AspB revealed that a basic group with a pK(a) of approximately 7 and an acidic group with a pK(a) of approximately 10 are essential for catalysis. His188 does not play the typical role of active site base or acid because the H188A mutant retained significant activity and displayed an unchanged pH-rate profile compared to that of wild-type AspB. Mutation of Ser140 and Thr141 and kinetic analysis of the mutant enzymes revealed that these residues are most likely involved in substrate binding and in stabilizing the enediolate intermediate. Mutagenesis studies corroborate the essential role of Lys324 because all mutations at this position resulted in mutant enzymes that were completely inactive. The substrate-binding model and kinetic analysis of mutant enzymes suggest that Thr187 and Asn326

  8. Cisplatin-Rich Polyoxazoline-Poly(aspartic acid) Supramolecular Nanoparticles.

    Science.gov (United States)

    Zhang, Peng; Yuan, Kangjun; Li, Cheng; Zhang, Xiaoke; Wu, Wei; Jiang, Xiqun

    2017-12-01

    Cisplatin-rich supramolecular nanoparticles are constructed through the supramolecular inclusion interaction between the admantyl (Ad)-terminated poly(aspartic acid) (Ad-P(Asp)) and the β-cyclodextrin (β-CD)-terminated poly(2-methyl-2-oxazoline). In the formation of the nanoparticles, the β-CD/admantane inclusion complex integrates poly(2-methyl-2-oxazoline) and poly(aspartic acid) chains to form pseudoblock copolymers, followed by the coordination between carboxyl groups in P(Asp) block and cisplatin. This coordination interaction drives the formation of nanoparticle and enables cisplatin incorporated into the nanoparticles. The spherical cisplatin-rich supramolecular nanoparticles have 53% cisplatin-loading content, good stability, and effective inhibition of the cell proliferation when it is tested in H22 cancer cells. Near-infrared fluorescence imaging of tumor bearing mice reveals that the cisplatin-rich nanoparticles can target the tumor in vivo effectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Strains of Lactococcus lactis with a partial pyrimidine requirement show sensitivity toward aspartic acid

    DEFF Research Database (Denmark)

    Wadskov-Hansen, Steen Lyders Lerche; Martinussen, Jan

    2009-01-01

    The growth rate of the widely used laboratory strain Lactococcus lactis subsp. cremoris LM0230 was reduced if aspartic acid were present in the growth medium. The strain LM0230 is a plasmid- and phage-cured derivative of L. lactis subsp. cremoris C2, the ancestor of the original dairy isolate L...... with the wild-type strain, and this varied with the concentration of aspartic acid. The observed effect of aspartate could be explained by the accumulation of the toxic pyrimidine de novo pathway intermediate, carbamoyl aspartate. Assays of the pyrimidine biosynthetic enzymes of L. lactis LM0230 showed....... lactis subsp. cremoris NCDO712. The growth of both C2 and NCDO712 was unaffected by exogenous aspartate. Also, the growth rate of the pyrimidine auxotrophic mutants of L. lactis was affected by exogenous aspartate. The maximum observed reduction in the growth rate was similar to 35% when compared...

  10. Increase in net activity of serine proteinases but not gelatinases after local endotoxin exposure in the peripheral airways of healthy subjects.

    Directory of Open Access Journals (Sweden)

    Margaretha E Smith

    Full Text Available We tested the hypothesis that activation of the innate immune response induces an imbalance in the proteolytic homeostasis in the peripheral airways of healthy subjects, towards excess serine or gelatinase proteinase activity. During bronchoscopy, 18 healthy human subjects underwent intra-bronchial exposure to endotoxin and contra-lateral exposure to vehicle. Bronchoalveolar lavage (BAL samples were harvested 24 or 48 hours (h later. We quantified archetype proteinases, anti-proteinases, inflammatory BAL cells, and, importantly, total plus net proteinase activities using functional substrate assays. As expected, endotoxin exposure increased the concentrations of polymorphonuclear leukocytes (PMN's and macrophages, of proteinases and the anti-proteinases tissue inhibitor of metalloproteinase-1, α-1-antitrypsin and, to a lesser extent, secretory leukoproteinase inhibitor, at both time points. Notably, at these time points, endotoxin exposure substantially increased the quantitative NE/SLPI ratio and the net serine proteinase activity corresponding to neutrophil elastase (NE. Endotoxin exposure also increased the total gelatinase activity corresponding to matrix metalloproteinase (MMP-9; an activity dominating over that of MMP-2. However, endotoxin exposure had no impact on net gelatinolytic activity at 24 or 48 h after exposure. Thus, local activation of the innate immune response induces an imbalance towards increased net serine proteinase activity in the proteolytic homeostasis of the peripheral airways in healthy subjects. Hypothetically, this serine proteinase activity can contribute to tissue remodelling and hypersecretion via NE from PMN's, if it is triggered repeatedly, as might be the case in chronic inflammatory airway disorders.

  11. A novel potentiometric method for the determination of real crosslinking ratio of poly(aspartic acid) gels.

    Science.gov (United States)

    Torma, Viktória; Gyenes, Tamás; Szakács, Zoltán; Zrínyi, Miklós

    2010-03-01

    In order to obtain nontoxic functional polymer gels for biomedical applications, chemically crosslinked poly(aspartic acid) gels have been prepared using 1,4-diaminobutane as crosslinker. The presence of COOH and amino groups on the network chains renders these gels pH sensitive. Due to the specific hydrophobic-hydrophilic balance, these gels show a significant volume transition at a well-defined pH close to the pK value of uncrosslinked poly(aspartic acid). Since the magnitude of volume change critically depends on the degree of crosslinking, it is an important task to determine the topological characteristics of these networks. A novel method based on potentiometric acid-base titration has been developed to assess the crosslinking ratio, excluding physical crosslinks and entanglements. It turned out that only 25% of all crosslinker molecules forms real crosslinks between the poly(aspartic acid) chains; the rest react with one of its functional groups and forms short pendant side chains. At a nominal crosslinking ratio of 0.1, the number average molecular mass between crosslinks is found to be M(c) = 2300. Copyright 2010. Published by Elsevier Ltd.

  12. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, Jutta [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria); Kontaxis, Georg [Max F. Perutz Laboratories, University of Vienna, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, A-1030 Vienna (Austria); Rancan, Chiara [Helmholtz Zentrum München, Department of Gene Vectors, Haematologikum, Marchioninistrasse 25, D-81377 Munich (Germany); Skern, Tim, E-mail: timothy.skern@meduniwien.ac.at [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria)

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.

  13. Protonation Equilibria of L-Aspartic, Citric and Succinic Acids in Anionic Micellar Media

    Directory of Open Access Journals (Sweden)

    P. Srinivasa Rao

    2009-01-01

    Full Text Available The impact of sodium lauryl sulphate (SLS on the protonation equilibria of L-aspartic acid, citric acid and succinic acid has been studied in various concentrations (0.5-2.5% w/v of SLS solution maintaining an ionic strength of 0.16 mol dm-3 at 303 K. The protonation constants have been calculated with the computer program MINIQUAD75 and the best fit models have been calculated based on statistical parameters. The trend of log values of step-wise protonation constants with mole fraction of the medium has been explained based on electrostatic and non-electrostatic forces operating on the protonation equilibria. The effects of errors on the protonation constants have also been presented.

  14. Phenolic compounds from Miconia myriantha inhibiting Candida aspartic proteases.

    Science.gov (United States)

    Li, X C; Jacob, M R; Pasco, D S; ElSohly, H N; Nimrod, A C; Walker, L A; Clark, A M

    2001-10-01

    Assay-guided fractionation of the ethanol extract of the twigs and leaves of Miconia myriantha yielded two new compounds, mattucinol-7-O-[4' ',6' '-O-(S)-hexahydroxydiphenoyl]-beta-D-glucopyranoside (1) and mattucinol-7-O-[4' ',6' '-di-O-galloyl]-beta-D-glucopyranoside (2), along with mattucinol-7-O-beta-D-glucopyranoside (3), ellagic acid (4), 3,3'-di-O-methyl ellagic acid-4-O-beta-D-xylopyranoside, and gallic acid. Complete (1)H and (13)C NMR assignments of compound 1, which possesses a hexahydroxydiphenoyl unit, were achieved using the HMBC technique optimized for small couplings to enhance the four-bond and two-bond H/C correlations. Compounds 1 and 4 showed inhibitory effects against Candida albicans secreted aspartic proteases, with IC(50) of 8.4 and 10.5 microM, respectively.

  15. Aspartate aminotransferase activity in human healthy and inflamed dental pulps.

    Science.gov (United States)

    Spoto, G; Fioroni, M; Rubini, C; Tripodi, D; Perinetti, G; Piattelli, A

    2001-06-01

    Aspartate aminotransferase (AST) seems to be an important mediator of inflammatory processes. Its role in the progression and detection of inflammatory periodontal disease has been increasingly recognized in recent years. In the present study AST activity was analyzed in normal healthy human dental pulps, in reversible pulpitis, and in irreversible pulpitis. Enzymatic AST activity showed that the control values for the healthy pulps were 4.8 +/- 0.7 units/mg of pulp tissue. In reversible pulpitis specimens the AST activity increased to 7.98 +/- 2.1 units/mg of pulp tissue. In irreversible pulpitis specimens the values decreased to 2.28 +/- 1.7 units/mg of pulp tissue. Differences between the groups (control versus reversible pulpitis and reversible pulpitis versus irreversible pulpitis) were statistically significant (p = 0.0015). These results could point to a role of AST in the early events that lead to development of pulpal inflammation.

  16. N-methyl-D-aspartic acid receptor agonists

    DEFF Research Database (Denmark)

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzyloxy......) showed peak affinity for [3H]AMPA receptor sites (IC50 = 72 +/- 13 microM) and was shown to be a more potent inhibitor of [3H]CPP binding (IC50 = 3.7 +/- 1.5 microM) than (S)-AMAA (9) (IC50 = 61 +/- 6.4 microM). Neither enantiomer of AMAA affected [3H]kainic acid receptor binding significantly...

  17. Anti-N-methyl-D-aspartate receptor encephalitis in China

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-06-01

    Full Text Available N-methyl-D-aspartate receptors (NMDARs are mainly distributed in the central nervous system, and play important roles in the mechanisms of learning and memory. A newly discovered disease caused by autoantibody to NMDAR has been described, and is called anti-NMDAR encephalitis. Patients with this disease often suffer from mental disorders, seizures and other encephalitis-like symptoms. Accumulated data suggests that the severity of the disease makes early diagnosis very important. Accurately detecting the autoantibody to NMDAR is considered to be the gist of diagnosis. Good prognosis is predicted in most patients, when treated properly. Immunotherapy is preferred in most cases. In China, this disease has been reported only for a few years, but sporadic case reports are also helpful for profiling.

  18. Anti-N-Methyl-d-Aspartate Receptor Encephalitis

    Directory of Open Access Journals (Sweden)

    Te-Yu Hung

    2011-12-01

    Full Text Available Anti-N-methyl-d-aspartate (NMDA receptor encephalitis is a treatment-responsive encephalitis associated with anti-NMDA receptor antibodies, which bind to the NR1/NR2 heteromers of the NMDA receptors. It is a highly characteristic syndrome evolving in five stages: the prodromal phase (viral infection-like symptoms, psychotic phase, unresponsive phase, hyperkinetic phase, and gradual recovery phase. It has been considered as a paraneoplastic syndrome usually affecting childbearing-age female with ovarian tumors; however, recent reports suggest a much higher incidence of nonparaneoplastic cases in children. We report a 14-year-old girl with anti-NMDA receptor encephalitis without a detectable tumor who showed a nearly complete recovery after intensive immunotherapy.

  19. The expression of cathepsin B and other lysosomal proteinases in normal tissues and in tumors.

    Science.gov (United States)

    Qian, F; Chan, S J; Gong, Q M; Bajkowski, A S; Steiner, D F; Frankfater, A

    1991-01-01

    The mRNA for the lysosomal proteinases cathepsins B, D, H, L, and S are broadly distributed in normal rodent tissues. Although total cathepsin mRNA levels generally parallel the protein catabolic activity of the tissues, the expressions of the individual enzymes do not appear to be linked. Thus, the relative proportions of the individual messages are found to vary from tissue to tissue. Further evidence for the independent regulation of lysosomal proteinase expression is derived from observations of selective increases in mRNA levels for individual proteinases in rodent tumors. Only cathepsin B mRNA is elevated in a highly metastatic murine B16a melanoma and in a Walker-256 rat carcinosarcoma, while Moloney murine sarcoma virus-transformed fibroblasts express increased mRNA for cathepsins B, D, and L and normal levels for H and S. To address the regulation of cathepsin B expression, the mouse cathepsin B gene and its 5'-upstream region were cloned. The gene has 10 exons and 9 introns spanning about 20 kilobases. The 5'-upstream region and exon 1 are GC-rich with several potential Sp1 binding sites. TATA and CAAT motifs adjacent to the transcription start site are not evident. These properties are characteristic of mammalian "housekeeping" genes. B16 melanoma cells contain three cathepsin B transcripts of 2.2, 4.0 and 5.0 kilobases. The two larger messages, which were not found in normal tissues, contain unusually long 3'-untranslated regions resulting from the alternative cleavage and polyadenylation of the 3' end of the cathepsin B pre-mRNA in B16 melanomas. As all three messages encoded normal preprocathepsin B, cathepsin B secretion by melanoma cells is probably due to posttranslational mechanisms and not to alternative splicing or gene mutation.

  20. [Studies on periodontal pathogenic proteinases from Porphyromonas gingivalis and host cells].

    Science.gov (United States)

    Yamamoto, K

    1995-05-01

    Progressive periodontal disease is characterized by acute progressive lesions of gingival connective tissues, excessive leukocyte infiltration, and occurrence of a characteristic microflora. A variety of proteolytic enzymes derived from oral bacteria and host cells are found in gingival crevices and thought to play an important role in the onset and development of progressive periodontal disease. The anaerobic bacterium Porphyromonas gingivalis has been implicated in the etiology of the disease. Recently, we have purified a novel arginine-specific cysteine proteinase, termed "argingipain", from the culture supernatant of the organism. The enzyme was shown to have two important abilities related to the virulence of the organism. One is direct association with periodontal tissue breakdown through its abilities to degrade physiologically important proteins such as human collagens (type I and IV) and to evade inactivation by internal protease inhibitors. The other is associated with disruption of the normal host defense mechanisms through its abilities to degrade immunoglobulins and to inhibit the bactericidal activity of polymorphonuclear leukocytes. The virulence of argingipain was further substantiated by disruption of argingipain-encoding genes on the chromosome by use of suicide plasmid systems. On the other hand, we have studied roles of host cell-derived proteinases in the periodontal tissue breakdown. Levels of lysosomal proteinases such as cathepsins B, H, L, G and medullasin were determined in gingival crevicular fluid from periodontitis patients and experimental gingivitis subjects by activity measurement and sensitive immunoassay. The results suggested that all of these enzymes would be involved in the development of both gingivitis and periodontitis.

  1. Crystal structure of Clostridium acetobutylicum aspartate kinase (CaAk: An important allosteric enzyme for amino acids production

    Directory of Open Access Journals (Sweden)

    Babu A. Manjasetty

    2014-09-01

    Full Text Available Aspartate kinase (AK is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-l-aspartate from l-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw = 48,030 Da; 437aa; SwissProt: Q97MC0 has been determined to 3 Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%. It is composed of two domains: an N-terminal catalytic domain (kinase domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing bacteria such as Clostridium tetani (64% sequence identity suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  2. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives.

    Science.gov (United States)

    Li, Yanjun; Wei, Hongbo; Wang, Ting; Xu, Qingyang; Zhang, Chenglin; Fan, Xiaoguang; Ma, Qian; Chen, Ning; Xie, Xixian

    2017-12-01

    The l-aspartate amino acids (AFAAs) are constituted of l-aspartate, l-lysine, l-methionine, l-threonine and l-isoleucine. Except for l-aspartate, AFAAs are essential amino acids that cannot be synthesized by humans and most farm animals, and thus possess wide applications in food, animal feed, pharmaceutical and cosmetics industries. To date, a number of amino acids, including AFAAs have been industrially produced by microbial fermentation. However, the overall metabolic and regulatory mechanisms of the synthesis of AFAAs and the recent progress on strain construction have rarely been reviewed. Aiming to promote the establishment of strains of Corynebacterium glutamicum and Escherichia coli, the two industrial amino acids producing bacteria, that are capable of producing high titers of AFAAs and derivatives, this paper systematically summarizes the current progress on metabolic engineering manipulations in both central metabolic pathways and AFAA synthesis pathways based on the category of the five-word strain breeding strategies: enter, flow, moderate, block and exit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Characterization of kininogenase activity of an acidic proteinase isolated from human kidney

    OpenAIRE

    Gomes, RAS; Juliano, L. [UNIFESP; Chagas, JR [UNIFESP; Hial, V

    1997-01-01

    An acidic proteinase was purified from human kidney cortex. the enzyme showed a molecular mass of 31 kDa by SDS-PAGE, 36 kDa by gel filtration, and isoelectric points of 5.2 and 6.1. the optimum pH for hydrolysis of bovine hemoglobin was about 3.5. Reverse-phase KPLC analysis of the incubation mixture of the enzyme with human plasma showed the presence of an active peptide on rat uterus muscle with the same retention time as the methionyl-lysyl-bradykinin (MLBK) standard. the specific activit...

  4. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom.

    Science.gov (United States)

    Patiño, Arley Camilo; Pereañez, Jaime Andrés; Gutiérrez, José María; Rucavado, Alexandra

    2013-03-01

    Two clotting serine proteinases, named Cdc SI and Cdc SII, were isolated and characterized for the first time from Colombian Crotalus durissus cumanensis snake venom. The enzymes were purified using two chromatographic steps: molecular exclusion on Sephacryl S-200 and RP-HPLC on C8 Column. The molecular masses of the proteins, determined by MALDI-TOF mass spectrometry, were 28,561.4 and 28,799.2 Da for Cdc SI and Cdc SII, respectively. The aim of the present study was to evaluate enzymatic, coagulant and toxic properties of the two enzymes. The serine proteinases hydrolyzed specific chromogenic substrate (BaPNA) and exhibited a Michaelis-Menten behavior. Cdc SI had V(max) of 0.038 ± 0.003 nmol/min and K(M) of 0.034 ± 0.017 mM, while Cdc SII displayed values of V(max) of 0.267 ± 0.011 nmol/min and K(M) of 0.145 ± 0.023 mM. N-terminal sequences were VIGGDEXNIN and VIGGDICNINEHNFLVALYE for Cdc SI and Cdc SII, respectively. Molecular masses, N-terminal sequences, inhibition assays, and enzymatic profile suggest that Cdc SI and Cdc SII belong to the family of snake venom thrombin-like enzymes. These serine proteinases differed in their clotting activity on human plasma, showing a minimum coagulant dose of 25 μg and 0.571 μg for Cdc SI and Cdc SII, respectively. Enzymes also showed coagulant activity on bovine fibrinogen and degraded chain α of this protein. Toxins lack hemorrhagic and myotoxic activities, but are capable to induce defibrin(ogen)ation, moderate edema, and an increase in vascular permeability. These serine proteinases may contribute indirectly to the local hemorrhage induced by metalloproteinases, by causing blood clotting disturbances, and might also contribute to cardiovascular alterations characteristic of patients envenomed by C. d. cumanensis in Colombia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  6. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways.

    Science.gov (United States)

    Lund, L R; Rømer, J; Thomasset, N; Solberg, H; Pyke, C; Bissell, M J; Danø, K; Werb, Z

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when beta-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when beta-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1 beta converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin-1 and

  7. Evaluation of the efficacy of a recombinant Entamoeba histolytica cysteine proteinase gene (EhCP5) antigen in Minipig.

    Science.gov (United States)

    He, Guang-Zhi; Deng, Shu-Xuan; Tian, Wei-Yi; Feng, Yong

    2012-03-01

    Entamoeba histolytica cysteine proteinase gene 5(EhCP5) is one of the major proteinase genes of all EhCP-transcripts. The amebiasis cysteine proteinase gene encoding an antigen from E. histolytica, as well as the recombinant EhCP5, obtained by cloning and expression of the EhCP5 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in Minipig against challenge infection in a minipig-E. histolytica model. There was a 52.27% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-EhCP5 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.0001). Our data will help to know the mechanism of vaccinal protection of E. histolytica. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K

    Directory of Open Access Journals (Sweden)

    Bao Chunju

    2016-06-01

    Full Text Available Angiotensin I converting enzyme (ACE inhibitory peptides derived from milk proteins have obvious effect of lowering blood pressure, safe and non-toxic side effects. This study compared four commercial proteases, namely alcalase, flavourzyme, neutral protease and proteinase K for their ACE inhibitory activity in skimmed goat and cow milk and identified the best one with higher ACE inhibitory activity. The degree of hydrolysis (DH of alcalase and proteinase K were much higher than flavourzyme, neutral protease for both skimmed goat and cow milk. Alcalase was the best enzyme to produce ACE inhibitory peptides from goat milk, with the ACE inhibitory activity 95.31%, while proteinase K was the optimal protease for hydrolyzing cow milk, with 81.28% ACE inhibitory activity. Furthermore, no correlation was obtained between the ACE inhibitory activity and DH for both goat and cow milk.

  9. Centroid search optimization of cultural conditions affecting the production of extracellular proteinase by Pseudomonas fragi ATCC 4973.

    Science.gov (United States)

    Myhara, R M; Skura, B

    1990-10-01

    The production of extracellular proteinase by Pseudomonas fragi ATCC 4973 grown in a defined citrate medium, containing glutamine as the sole nitrogen source, was determined under varying cultural conditions. Simultaneous evaluation of cultural conditions using a 'centroid search' optimization technique showed that the optimum cultural conditions for proteinase production by Ps. fragi were: incubation temperature, 12.5 degrees C; incubation time, 38 h; initial pH, 6.8; organic nitrogen concentration, 314 mmol nitrogen/l (glutamine); a gas mixture containing 16.4% oxygen flowing over the medium (7.42 ppm dissolved oxygen). Oxygen was the major factor influencing proteinase production by Ps. fragi. The results may have applications in the storage of fluid milk. Centroid search optimization was shown to be suitable for microbiological experiments.

  10. An o-phthalaldehyde spectrophotometric assay for proteinases.

    Science.gov (United States)

    Church, F C; Porter, D H; Catignani, G L; Swaisgood, H E

    1985-05-01

    A rapid and convenient spectrophotometric assay has been devised to measure proteolysis. The assay is based on the reaction of o-phthalaldehyde (OPA) and 2-mercaptoethanol with amino groups released during proteolysis of a protein substrate. The reaction is specific for primary amines in amino acids, peptides, and proteins, approaches completion within 1 to 2 min at 25 degrees C (half-times of approx 10-15 s), and requires no preliminary heating or separation of the hydrolyzed products from the undegraded protein substrate prior to performing the assay. The OPA assay was relatively as successful as a 2,4,6-trinitrobenzenesulfonic acid (TNBS) procedure in predicting the extent of hydrolysis of a protein substrate. The utility of the OPA method was demonstrated by measuring the degree of proteolytic degradation caused by trypsin, subtilisin, Pronase, and chymotrypsin of various soluble protein substrates. Ethanethiol (instead of 2-mercaptoethanol) or 50% of dimethyl sulfoxide can be included in the assay solution to stabilize certain OPA-amine products. The present method approaches the sensitivity of ninhydrin and TNBS procedures, is more convenient and rapid, and could substitute for these reagents in most assay systems.

  11. Effects of the aspartic protease inhibitor from Lupinus bogotensis seeds on the growth and development of Hypothenemus hampei: an inhibitor showing high homology with storage proteins.

    Science.gov (United States)

    Molina, Diana; Patiño, Luisa; Quintero, Mónica; Cortes, José; Bastos, Sara

    2014-02-01

    The coffee berry borer Hypothenemus hampei is a pest that causes great economic damage to coffee grains worldwide. Because the proteins consumed are digested by aspartic proteases in the insect's midgut, the inhibition of these proteases by transferring a gene encoding an aspartic protease inhibitor from Lupinus bogotensis Benth. to coffee plants could provide a promising strategy to control this pest. Five aspartic protease inhibitors from L. bogotensis (LbAPI) were accordingly purified and characterized. The gene encoding the L. bogotensis aspartic protease inhibitor (LbAPI), with the highest inhibitory activity against H. hampei, was expressed in Escherichia coli and the purified recombinant protein (rLbAPI), with a molecular mass of 15 kDa, was subsequently assessed for its ability to inhibit the aspartic protease activity present in the H. hampei midgut in vitro, as well as its effects on the growth and development of H. hampei in vivo. The in vitro experiments showed that rLbAPI was highly effective against aspartic proteases from H. hampei guts, with a half maximal inhibitory concentration (IC50) of 2.9 μg. The in vivo experiments showed that the concentration of rLbAPI (w/w) in the artificial diet necessary to cause 50% mortality (LD50) of the larvae was 0.91%. The amino acid sequence of LbAPI had high homology (52-80%) to the seed storage proteins, vicilin and β-conglutin, suggesting that this protein was generated by evolutionary events from a β-conglutin precursor. Based on these results, LbAPI may have a dual function as storage protein, and as defense protein against H. hampei. These results provide a promising alternative to obtain a coffee plant resistant to H. hampei. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Demyelinating disease and anti-N-methyl-D-aspartate receptor immunoglobulin G antibodies: a case report.

    Science.gov (United States)

    Waschbisch, Anne; Kallmünzer, Bernd; Schwab, Stefan; Gölitz, Philipp; Vincent, Angela; Lee, De-Hyung; Linker, Ralf A

    2014-12-23

    Anti-N-methyl-D-aspartate receptor immunoglobulin G antibodies directed against the GluN1 subunit are considered highly specific for anti-N-methyl-D-aspartate receptor encephalitis, a severe clinical syndrome characterized by seizures, psychiatric symptoms, orofacial dyskinesia and autonomic dysfunction. Here we report a 33 year old Caucasian male patient with clinically definite multiple sclerosis who was found to be positive for anti-N-methyl-D-aspartate receptor antibodies. Rituximab therapy was initiated. On the 18 months follow-up visit the patient was found to be clinically stable, without typical signs of anti-N-methyl-D-aspartate receptor encephalitis. Our findings add to the growing evidence for a possible association between anti-N-methyl-D-aspartate receptor encephalitis and demyelinating diseases.

  13. Brewer's spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Directory of Open Access Journals (Sweden)

    Rodrigo Pires do Nascimento

    2011-12-01

    Full Text Available Brewer's spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates.

  14. N-acetyl-aspartate, total creatine, and myo-inositol in the epileptogenic human hippocampus.

    Science.gov (United States)

    Petroff, Ognen A C; Errante, Laura D; Kim, Jung H; Spencer, Dennis D

    2003-05-27

    Mesial temporal lobe epilepsy (mTLE) is characterized by hippocampal atrophy, decreased N-acetyl-aspartate, and a low N-acetyl-aspartate/total creatine ratio, often attributed to neuron loss and gliosis. Qualitative studies reported that N-acetyl-aspartate content was significantly lower in hippocampal sclerosis. It was proposed to measure the effects of neuron loss and gliosis on the hippocampal content of N-acetyl-aspartate, total creatine, and myo-inositol in mTLE. Twenty hippocampal specimens were obtained during temporal lobectomy and frozen quickly. Perchloric acid extracts of the small metabolites were prepared and analyzed by proton MRS at 11.75 T. Adjacent samples were used for cell counts. There were no significant associations between hippocampal neuron loss and the cellular content of N-acetyl-aspartate, total creatine, or myo-inositol, despite more than a threefold difference in neuron loss and a twofold increase in glial density. Metabolite concentrations varied two- to fourfold. Variation in the cellular content of total creatine accounted for more than three-quarters of the rank-order variance of the N-acetyl-aspartate concentrations. There were no associations between myo-inositol and N-acetyl-aspartate or total creatine. Overall, mean N-acetyl-aspartate levels were below those reported by in vivo MRS studies of control subjects. These data suggest that decreased N-acetyl-aspartate in mesial temporal lobe epilepsy reflects altered mitochondrial metabolism, not merely neuron loss or gliosis. It is hypothesized that the altered N-acetyl-aspartate and creatine metabolism could reflect mitochondrial dysfunction or proliferation of immature glial cells that could contribute to the epileptogenic state.

  15. Involvement of a cathepsin B-like cysteine proteinase in platelet aggregation induced by tumor cells and their shed membrane vesicles.

    Science.gov (United States)

    Cavanaugh, P G; Sloane, B F; Bajkowski, A S; Gasic, G J; Gasic, T B; Honn, K V

    1983-01-01

    Murine 15091A mammary adenocarcinoma cells and membrane vesicles spontaneously shed from these tumor cells in culture can induce aggregation of washed human platelets. A spectrum of proteinase inhibitors was tested for their ability to inhibit 15091A induced platelet aggregation. Of the inhibitors tested the most effective were those selective for cysteine proteinases. The effect of the spectrum of proteinase inhibitors on 15091A induced platelet aggregation was compared to the effect on cathepsin B-like cysteine proteinase activity in homogenates of 15091A tumor cells and their spontaneously shed vesicles. The results suggest that there is a correlation between activity of a cathepsin B-like proteinase in 15091A cells and vesicles and the ability of these cells and vesicles to induce aggregation of washed human platelets.

  16. The effect of proteinases on phenylalanine ammonia-lyase from the yeast Rhodotorula glutinis.

    Science.gov (United States)

    Gilbert, H J; Jack, G W

    1981-01-01

    Phenylalanine ammonia-lyase (EC 4.3.1.5) of the yeast Rhodotorula glutinis was rapidly inactivated by duodenal juice. It was susceptible to chymotrypsin and subtilisin and to a lesser extent trypsin. Initial proteolysis of the enzyme by chymotrypsin and trypsin resulted in cleavage of the monomeric subunit (75 000 Mr) into a large (65 000 Mr) and a small (10 000 Mr) peptide. The small peptide was rapidly degraded. The 65 000-Mr fragment was resistant to prolonged incubation with chymotrypsin, but was degraded by trypsin under the same conditions. Phenylalanine ammonia-lyase was cleaved into several polypeptides by subtilisin, the 65 000-Mr peptide being totally absent. The N-terminal region of the enzyme was contained in the 65 000-Mr fragment, as was the dehydroalanine moiety, the prosthetic group. Active-site-binding ligands protect the enzyme from inactivation by the three proteinases, and peptide-bond cleavage by trypsin and chymotrypsin. Several chemical modifications were performed on phenylalanine ammonia-lyase. Some decreased its antigenicity, and ethyl acetimidate decreased the rate of degradation of the 65 000-Mr peptide by trypsin. The modification did not protect the enzyme from proteolytic inactivation of the enzymic activity. These observations are discussed in terms of the structure of phenylalanine ammonia-lyase and site of action of the proteinases. PMID:7041889

  17. Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p220.

    Science.gov (United States)

    Kräusslich, H G; Nicklin, M J; Toyoda, H; Etchison, D; Wimmer, E

    1987-01-01

    Poliovirus infection of HeLa cells induces rapid shutoff of host protein synthesis, whereas translation of poliovirus RNA is not inhibited. It is presumed that shutoff is the result of proteolytic cleavage of component p220 of eucaryotic initiation factor 4F. To study whether poliovirus proteinase 2A is involved in this cleavage, we translated synthetic RNAs that contained the coding region for poliovirus-specific polypeptides P1 and 2A in vitro and assayed for cleavage of p220. We report here that cleavage of p220 occurred in all cases when active proteinase 2A was translated and that disruption of the coding sequence of 2A by linker insertion or deletion prevented processing of p220 in vitro. Activity of 2A was determined by its ability to cleave at the P1-P2 site of a segment of the poliovirus polyprotein. We also constructed a plasmid in which the 3'-most 500 nucleotides of the nontranslated region of encephalomyocarditis virus were linked to the coding sequence for poliovirus polypeptide 2A. Translation of the RNA transcript of this clone was very efficient and yielded a fusion protein that included 2A; this polypeptide also induced cleavage of p220. In vitro translation in the presence of antibodies against 2A specifically inhibited processing of p220, whereas incubation of in vitro translation products with antibodies against 2A after translation was completed did not prevent proteolysis of p220. Images PMID:3039165

  18. Midgut serine proteinases and alternative host plant utilization in Pieris brassicae L.

    Directory of Open Access Journals (Sweden)

    Rakesh eKumar

    2015-03-01

    Full Text Available Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of theworld. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolummajus L., of the family Tropaeolaceae. Proteolytic digestion was studied in larvaefeeding on multiple hosts. Fourth instars were collected from cauliflower fields beforetransfer onto detached, aerial tissues of selected host plants in the lab. Variable levels ofmidgut serine proteinases were detected in larvae fed on different hosts using proteinsubstrates (casein and recombinant RBCL cloned from cauliflower and diagnostic,synthetic substrates. Qualitative changes in midgut trypsin activities and quantitativechanges in midgut chymotrypsin activities were implicated in physiological adaptation oflarvae transferred to T. majus. Midgut proteolytic activities were inhibited to differentextents by serine proteinase inhibitors, including putative trypsin inhibitors isolated fromherbivore-attacked and herbivore-free leaves of cauliflower (CfTI and T. majus (TpTI.Transfer of larvae to T. majus significantly influenced feeding parameters but notnecessarily when transferred to different tissues of the same host. Results obtained arerelevant for devising sustainable pest management strategies, including transgenicapproaches using genes encoding plant protease inhibitors.

  19. The murine alpha(1)-proteinase inhibitor gene family: polymorphism, chromosomal location, and structure.

    Science.gov (United States)

    Barbour, Karen W; Wei, FuSheng; Brannan, Camilynn; Flotte, Terence R; Baumann, Heinz; Berger, Franklin G

    2002-11-01

    alpha(1)-Proteinase inhibitor (alpha(1)-PI) is a member of the serpin superfamily of serine proteinase inhibitors, which function in maintaining homeostasis through regulation of numerous proteolytic processes. In laboratory mice (Mus musculus domesticus), alpha(1)-PI occurs in multiple isoforms encoded by a family of three to five genes that are polymorphic among inbred strains and that are located at the Serpina1 locus on chromosome 12. In the present study, we have characterized the alpha(1)-PI gene family of inbred mice in more detail. We show that mice express seven isoforms, all of which are encoded by genes that map to the Serpina1 locus. In addition, polymorphism at the locus is defined by three haplotypes (Serpina1(b), Serpina1(c), and Serpina1(l)) that differ with regard to both the number and identity of alpha(1)-PI genes. Finally, we present the complete sequence of an 84-kb region of Serpina1 containing a tandem repeat of two alpha(1)-PI genes.

  20. A serine proteinase homologue, SPH-3, plays a central role in insect immunity.

    Science.gov (United States)

    Felföldi, Gabriella; Eleftherianos, Ioannis; Ffrench-Constant, Richard H; Venekei, István

    2011-04-15

    Numerous vertebrate and invertebrate genes encode serine proteinase homologues (SPHs) similar to members of the serine proteinase family, but lacking one or more residues of the catalytic triad. These SPH proteins are thought to play a role in immunity, but their precise functions are poorly understood. In this study, we show that SPH-3 (an insect non-clip domain-containing SPH) is of central importance in the immune response of a model lepidopteran, Manduca sexta. We examine M. sexta infection with a virulent, insect-specific, Gram-negative bacterium Photorhabdus luminescens. RNA interference suppression of bacteria-induced SPH-3 synthesis severely compromises the insect's ability to defend itself against infection by preventing the transcription of multiple antimicrobial effector genes, but, surprisingly, not the transcription of immune recognition genes. Upregulation of the gene encoding prophenoloxidase and the activity of the phenoloxidase enzyme are among the antimicrobial responses that are severely attenuated on SPH-3 knockdown. These findings suggest the existence of two largely independent signaling pathways controlling immune recognition by the fat body, one governing effector gene transcription, and the other regulating genes encoding pattern recognition proteins.

  1. Suppression of collagen-induced arthritis with a serine proteinase inhibitor (serpin) derived from myxoma virus.

    Science.gov (United States)

    Brahn, Ernest; Lee, Sarah; Lucas, Alexandra; McFadden, Grant; Macaulay, Colin

    2014-08-01

    Many viruses encode virulence factors to facilitate their own survival by modulating a host's inflammatory response. One of these factors, secreted from cells infected with myxoma virus, is the serine proteinase inhibitor (serpin) Serp-1. Because Serp-1 had demonstrated anti-inflammatory properties in arterial injury models and viral infections, it was cloned and evaluated for therapeutic efficacy in collagen-induced arthritis (CIA). Clinical severity was significantly lower in the Serp-1 protocols (p<0.0001) and blinded radiographs indicated that the Serp-1 group had significantly less erosions than the controls (p<0.01). Delayed-type hypersensitivity was lower in the Serp-1 group but antibody titers to type II collagen were not significantly altered. Recipients had minimal histopathologic synovial changes and did not develop neutralizing antibodies to Serp-1. These results indicate that Serp-1 impedes the pathogenesis of CIA and suggests that the therapeutic potential of serine proteinase inhibitors in inflammatory joint diseases, such as rheumatoid arthritis, should be investigated further. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Proteolysis of the peanut allergen Ara h 1 by an endogenous aspartic protease.

    Science.gov (United States)

    Wilson, Karl A; Tan-Wilson, Anna

    2015-11-01

    The 7S and 11S globulins of peanuts are subjected to proteolysis two days after seed imbibition, with Ara h 1 and the arachin acidic chains being among the first storage proteins to be mobilized. Proteolytic activity was greatest at pH 2.6-3 and is inhibited by pepstatin A, characteristic of an aspartic protease. This activity persists in seedling cotyledons up to at least 8 days after imbibition. In vitro proteolysis of Ara h 1 at pH 2.6 by extracts of cotyledons from seedlings harvested 24 h after seed imbibition generates newly appearing bands on SDS-PAGE. Partial sequences of Ara h 1 that were obtained through LC-MS/MS analysis of in-gel trypsin digests of those bands, combined with information on fragment size, suggest that proteolysis begins in the region that links the two cupin domains to produce two 33/34 kD fragments, each one encompassing an intact cupin domain. The later appearance of two 18 and 10/11 kD fragments can be explained by proteolysis within an exposed site in the cupin domains of each of the 33/34 kD fragments. The same or similar proteolytic activity was observed in developing seeds, but Ara h 1 remains intact through seed maturation. This is partly explained by the observation that acidification of the protein storage vacuoles, demonstrated by vacuolar accumulation of acridine orange that was dissipated by a membrane-permeable base, occurs only after germination. These findings suggest a method for use of the seed aspartic protease in reducing peanut allergy due to Ara h 1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. A heterozygous mutation in GOT1 is associated with familial macro-aspartate aminotransferase.

    Science.gov (United States)

    Kulecka, Maria; Wierzbicka, Aldona; Paziewska, Agnieszka; Mikula, Michal; Habior, Andrzej; Janczyk, Wojciech; Dabrowska, Michalina; Karczmarski, Jakub; Lazniewski, Michal; Ginalski, Krzysztof; Czlonkowska, Anna; Socha, Piotr; Ostrowski, Jerzy

    2017-11-01

    Macro-aspartate aminotransferase (macro-AST) manifests as a persistent elevation of AST levels, because of association of the protein with immunoglobulins in the circulation. Macro-AST is a rare, benign condition without a previously confirmed genetic basis. Whole exome sequencing (WES)-based screening was performed on 32 participants with suspected familial macro-AST, while validation of variants was performed on an extended cohort of 92 probands and 1,644 healthy controls using Taqman genotyping. A missense variant (p.Gln208Glu, rs374966349) in glutamate oxaloacetate transaminase 1 (GOT1) was found, as a putative causal variant predisposing to familial macro-AST. The GOT1 p.Gln208Glu mutation was detected in 50 (54.3%) of 92 probands from 20 of 29 (69%) families, while its prevalence in healthy controls was only 0.18%. In silico analysis demonstrated that the amino acid at this position is not conserved among different species and that, functionally, a negatively charged glutamate on the GOT1 surface could strongly anchor serum immunoglobulins. Our data highlight that testing for the p.Gln208Glu genetic variant may be useful in diagnosis of macro-AST. Higher than normal levels of aspartate aminotransferase (AST) in the bloodstream may be a sign of a health problem. Individuals with macro-AST have elevated blood AST levels, without ongoing disease and often undergo unnecessary medical tests before the diagnosis of macro-AST is established. We found a genetic variant in the GOT1 gene associated with macro-AST. Genetic testing for this variant may aid diagnosis of macro-AST. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  4. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    Science.gov (United States)

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Molecular cloning and functional expression of cDNA encoding a cysteine proteinase inhibitor, cystatin, from Job's tears (Coix lacryma-jobi L. var. Ma-yuen Stapf).

    Science.gov (United States)

    Yoza, Koh-Ichi; Nakamura, Sumiko; Yaguchi, Miki; Haraguchi, Kazutomo; Ohtsubo, Ken-Ichi

    2002-10-01

    A lambdaZAP II cDNA library was constructed from mRNA in immature seeds of the grass Job's tears. A cDNA clone for a cysteine proteinase inhibitor, cystatin, was isolated from the library. The cDNA clone spanned 757 base pairs and encoded 135 amino acid residues. The deduced amino acid sequence was similar to that of cystatins from the gramineous plants rice, sorghum, and corn. The central Gln-Val-Val-Ala-Gly sequence thought to be one of the binding sites of cystatins was found. A remarkable characteristic of the peptide sequence of Job's-tears cystatin was the putative signal peptide that has been found in sorghum and corn but not in rice. The cystatin cDNA was expressed in Escherichia coli as a His-tagged recombinant protein. The purified recombinant protein inhibited papain.

  6. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida Atividade diferencial in vitro de fosfolipases e proteinases ácidas de isolados clínicos de Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (pINTRODUÇÃO: Candida são leveduras comensais, porém, se o equilíbrio da flora normal for interrompido ou as defesas imunitárias estiverem comprometidas, espécies de Candida podem causar manifestações de doença. Vários atributos contribuem na virulência e patogenicidade de Candida, inclusive a produção de enzimas extracelulares hidrolíticas, especialmente fosfolipases e proteinases. O objetivo deste estudo foi verificar a atividade in vitro de fosfolipases e proteinases ácidas em isolados clínicos de Candida spp. MÉTODOS: Oitenta e dois isolados provenientes de pacientes hospitalizados coletados a partir de sítios de origem diversos foram analisados. A produção de fosfolipase foi verificada em meio egg yolk e a de proteinase em meio contendo soro albumina bovina. O estudo foi feito em triplicata. RESULTADOS

  7. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Casablanca cohort of the A1chieve study.

    Science.gov (United States)

    Farouqi, Ahmed; Chadli, Asmae

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Casablanca, Morocco. A total of 495 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 231), insulin detemir (n = 151), insulin aspart (n = 19), basal insulin plus insulin aspart (n = 53) and other insulin combinations (n = 41). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 10.2%) and insulin user (mean HbA1c: 9.4%) groups. After 24 weeks of treatment, both groups showed improvement in HbA1c (insulin naïve: -2.3%, insulin users: -1.8%). Major hypoglycaemia was observed in the insulin naïve group after 24 weeks. SADRs were reported in 1.2% of insulin naïve and 2.1% of insulin user groups. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  8. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Maharashtra cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Uday Phadke

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Maharashtra, India. Results: A total of 3069 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 2115, insulin detemir (n = 461, insulin aspart (n = 333, basal insulin plus insulin aspart (n = 92 and other insulin combinations (n = 61. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.8 and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.4%, insulin users: −1.4%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  9. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kerala cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sreejith N Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kerala, India. Results: A total of 1732 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1203, insulin detemir (n = 212, insulin aspart (n = 312, basal insulin plus insulin aspart (n = 1 and other insulin combinations (n = 1. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 8.3% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.4%, insulin users: −0.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  10. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kolkata cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Anirban Majumder

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kolkata, India. Results: A total of 576 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 417, insulin detemir (n = 70, insulin aspart (n = 55, basal insulin plus insulin aspart (n = 19 and other insulin combinations (n = 15. At baseline, glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.3% and insulin user (mean HbA 1 c: 8.6% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.3%, insulin users: −1.4%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  11. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Mumbai cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    P G Talwalkar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Mumbai, India. Results: A total of 2112 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1561, insulin detemir (n = 313, insulin aspart (n = 144, basal insulin plus insulin aspart (n = 53 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.7% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.4%, insulin users: −1.8%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  12. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Haryana cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Haryana, India. Results: A total of 345 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 236, insulin detemir (n = 66, insulin aspart (n = 28, basal insulin plus insulin aspart (n = 1 and other insulin combinations (n = 14. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.7% and insulin user (mean HbA 1 c: 10.5% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −3.9%, insulin users: −3.3%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  13. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Chennai cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    J S Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Chennai, India. Results: A total of 1334 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 983, insulin detemir (n = 205, insulin aspart (n = 42, basal insulin plus insulin aspart (n = 41 and other insulin combinations (n = 63. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.4% and insulin users (mean HbA 1 c: 9.3% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.1%, insulin users: −1.9%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  14. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Delhi cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Sudhir Tripathi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Delhi, India. Results: A total of 2242 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1515, insulin detemir (n = 521, insulin aspart (n = 176, basal insulin plus insulin aspart (n = 11 and other insulin combinations (n = 19. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 11.0% groups. After 24 weeks of treatment both the groups showed improvement in HbA 1 c (insulin naïve: −3.1%, insulin users: −3.6%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  15. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Casablanca cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Ahmed Farouqi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Casablanca, Morocco. Results: A total of 495 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 231, insulin detemir (n = 151, insulin aspart (n = 19, basal insulin plus insulin aspart (n = 53 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.2% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.3%, insulin users: −1.8%. Major hypoglycaemia was observed in the insulin naïve group after 24 weeks. SADRs were reported in 1.2% of insulin naïve and 2.1% of insulin user groups. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  16. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Kuwait cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Alaa Daban

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Kuwait. Results: A total of 1185 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 472, insulin detemir (n = 472, insulin aspart (n = 4, basal insulin plus insulin aspart (n = 188 and other insulin combinations (n = 48. At baseline, glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.8% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.4%, insulin users: −1.7%. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.1% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  17. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Oman cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Mustafa Al Abousi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Oman. Results: A total of 349 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 121, insulin detemir (n = 171, insulin aspart (n = 2, basal insulin plus insulin aspart (n = 38 and other insulin combinations (n = 17. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.2% and insulin user (mean HbA 1 c: 8.8% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.1%, insulin users: −1.6%. SADRs including major hypoglycaemic events did not occur in the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia and no weight gain.

  18. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Gujarat cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Banshi Saboo

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Gujarat, India. Results: A total of 812 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 502, insulin detemir (n = 89, insulin aspart (n = 155, basal insulin plus insulin aspart (n = 45 and other insulin combinations (n = 21. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.9% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.2%, insulin users: −2.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  19. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Marrakech cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    El Ansari Nawal

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Marrakech, Morocco. Results: A total of 196 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 71, insulin detemir (n = 83, insulin aspart (n = 5, basal insulin plus insulin aspart (n = 14 and other insulin combinations (n = 23. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.3% and insulin user (mean HbA 1 c: 9.3% groups. After 24 weeks of treatment, both the study groups showed improvement in HbA 1 c (insulin naïve: −2.3%, insulin users: −1.9%. SADR′s including major hypoglycaemic events did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  20. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Bangalore cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    L Srinivasa Murthy

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Bangalore, India. Results: A total of 1533 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 1262, insulin detemir (n = 165, insulin aspart (n = 86, basal insulin plus insulin aspart (n = 11 and other insulin combinations (n = 2. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.2% and insulin users (mean HbA 1 c: 8.8% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −1.3%, insulin users: −1.5%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  1. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Punjab cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Parminder Singh

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Punjab, India. Results: A total of 655 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 587, insulin detemir (n = 28, insulin aspart (n = 24, basal insulin plus insulin aspart (n = 13 and other insulin combinations (n = 3. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.1% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −0.8%, insulin users: −1.0%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  2. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Agadir cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Hicham Boussouf

    2013-01-01

    Full Text Available Background: A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Agadir, Morocco. Results: A total of 201 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 98, insulin detemir (n = 54, insulin aspart (n = 8, basal insulin plus insulin aspart (n = 8 and other insulin combinations (n = 33. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.7% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −1.3%. No major hypoglycaemia was observed at 24 weeks. SADRs were reported in 1.5% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  3. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Gujarat cohort of the A1chieve study.

    Science.gov (United States)

    Saboo, Banshi; Patel, Mayur

    2013-11-01

    The A1chieve, a multicentric (28 countries), 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726) in routine clinical care across four continents. Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Gujarat, India. A total of 812 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 502), insulin detemir (n = 89), insulin aspart (n = 155), basal insulin plus insulin aspart (n = 45) and other insulin combinations (n = 21). At baseline glycaemic control was poor for both insulin naïve (mean HbA1c: 8.9%) and insulin user (mean HbA1c: 9.1%) groups. After 24 weeks of treatment, both the groups showed improvement in HbA1c (insulin naïve: -2.2%, insulin users: -2.5%). SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  4. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase

    DEFF Research Database (Denmark)

    Brinch-Pedersen, Henrik; Galili, G; Knudsen, S

    1996-01-01

    In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance the...... as observed in T0 seeds. It is concluded that the aspartate family pathway may be genetically engineered by the introduction of genes coding for feed-back-insensitive enzymes, preferentially giving elevated levels of lysine and methionine.......In prokaryotes and plants the synthesis of the essential amino acids lysine and threonine is predominantly regulated by feed-back inhibition of aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS). In order to modify the flux through the aspartate family pathway in barley and enhance...... the accumulation of the corresponding amino acids, we have generated transgenic barley plants that constitutively express mutant Escherichia coli genes encoding lysine feed-back insensitive forms of AK and DHPS. As a result, leaves of primary transformants (T0) exhibited a 14-fold increase of free lysine and an 8...

  5. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases

    NARCIS (Netherlands)

    Gruden, K.; Kuipers, A.G.J.; Guncar, G.; Slapar, N.; Strukelj, B.; Jongsma, M.A.

    2004-01-01

    Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition

  6. Digestive proteinase activity in corn earworm (Helicoverpa zea) after molting and in response to lowered redox potential.

    Science.gov (United States)

    Johnson, K S; Felton, G W

    2000-08-01

    Insect digestive proteinases are often strongly influenced by ambient physicochemical conditions, such as pH, ionic strength, and oxidation-reduction potential. Although the effects of the former two parameters are well documented, the influence of redox potential on catalytic rates of digestive enzymes is not well understood. In this study, we manipulated the midgut redox potential of a generalist caterpillar (the corn earworm, Helicoverpa zea) by augmenting artificial diet with dithiothreitol, a powerful thiol reducing agent that lowers the redox potential in the lumen by 40-45 mV. Effects on total proteolytic activity, as well as on elastase, chymotrypsin, trypsin, leucine aminopeptidase, and carboxypeptidase A and B activities were measured using azocasein and nitroanilide model substrates. The profiles of proteinase activities in the epithelium and lumen were also monitored on days 1, 2, and 3 after the molt in penultimate instar larvae. Although the reducing agent strongly inhibited the activity of some proteinases in vitro, ingestion of the reducing diet failed to affect in vivo proteinase activities. There was also no effect on larval relative growth, consumption, or digestive efficiencies. We conclude that dietary reducing agents must lower midgut redox potential to below -40 mV to significantly impact digestive efficiency. Arch. Copyright 2000 Wiley-Liss, Inc.

  7. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    NARCIS (Netherlands)

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.

    Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth

  8. Antisense inhibition of expression of cysteine proteinases affects Entamoeba histolytica-induced formation of liver abscess in hamsters.

    Science.gov (United States)

    Ankri, S; Stolarsky, T; Bracha, R; Padilla-Vaca, F; Mirelman, D

    1999-01-01

    Trophozoites of virulent Entamoeba histolytica transfected with the antisense gene encoding cysteine proteinase 5 (CP5) have only 10% of the CP activity but retain their cytopathic activity on mammalian monolayers. In the present study we found that the transfected trophozoites with low levels of CP activity were incapable of inducing the formation of liver lesions in hamsters.

  9. Serine proteinase from Cucurbita ficifolia seed; purification, properties, substrate specificity and action on native squash trypsin inhibitor (CMTI I).

    Science.gov (United States)

    Dryjanski, M; Otlewski, J; Polanowski, A; Wilusz, T

    1990-09-01

    A proteinase was purified from resting seeds of Cucurbita ficifolia by ammonium sulfate fractionation and successive chromatography on CM-cellulose, Sephacryl S-300 and TSK DEAE-2SW (HPLC) columns. Inhibition by DFP and PMSF suggests that the enzyme is a serine proteinase. The apparent molecular mass of this enzyme is ca. 77 kDa. The optimum activity for hydrolysis of casein and Suc-Ala-Ala-Pro-Phe-pNA is around pH 10.5. The following peptide bonds in the oxidized insulin B-chain were hydrolysed by the proteinase: Phe1-Val2, Asn3-Gln4, Gln4-His5, Cya7-Gly8, Glu13-Ala14, Ala14-Leu15, Cya19-Gly20, Pro28-Lys29 and Lys29-Ala30. The proteinase is more selective towards the native squash seed trypsin inhibitor (CMTI I) and primarily cuts off only its N-terminal arginine. The inhibitor devoided of the N-terminal arginine residue is still active against trypsin.

  10. Estimation of biofilm, proteinase & phospholipase production of the Candida species isolated from the oropharyngeal samples in HIV-infected patients

    Directory of Open Access Journals (Sweden)

    Vicky Lahkar

    2017-01-01

    Interpretation & conclusions: Although C. albicans was the most common Candida species identified in HIV positive patients, the emergence of NAC was of special concern. Virulence factors such as biofilms, proteinases and phospholipases were noted in both these groups. Further research is required for better understanding of the pathogenic role of Candida species so as to aid in therapeutic interventions.

  11. Characterization of extracellular polymeric matrix, and treatment of Fusobacterium nucleatum and Porphyromonas gingivalis biofilms with DNase I and proteinase K

    Directory of Open Access Journals (Sweden)

    Marwan Mansoor Ali Mohammed

    2013-01-01

    Full Text Available Background: Biofilms are organized communities of microorganisms embedded in a self-produced extracellular polymeric matrix (EPM, often with great phylogenetic variety. Bacteria in the subgingival biofilm are key factors that cause periodontal diseases; among these are the Gram-negative bacteria Fusobacterium nucleatum and Porphyromonas gingivalis. The objectives of this study were to characterize the major components of the EPM and to test the effect of deoxyribonuclease I (DNase I and proteinase K. Methods: F. nucleatum and P. gingivalis bacterial cells were grown in dynamic and static biofilm models. The effects of DNase I and proteinase K enzymes on the major components of the EPM were tested during biofilm formation and on mature biofilm. Confocal laser scanning microscopy was used in observing biofilm structure. Results: Proteins and carbohydrates were the major components of the biofilm matrix, and extracellular DNA (eDNA was also present. DNase I and proteinase K enzymes had little effect on biofilms in the conditions used. In the flow cell, F. nucleatum was able to grow in partially oxygenated conditions while P. gingivalis failed to form biofilm alone in similar conditions. F. nucleatum supported the growth of P. gingivalis when they were grown together as dual species biofilm. Conclusion: DNase I and proteinase K had little effect on the biofilm matrix in the conditions used. F. nucleatum formed biofilm easily and supported the growth of P. gingivalis, which preferred anaerobic conditions.

  12. Constitutive membrane expression of proteinase 3 (PR3) and neutrophil activation by anti-PR3 antibodies

    NARCIS (Netherlands)

    van Rossum, AP; Rarok, AA; Huitema, MG; Fassina, G; Limburg, PC; Kallenberg, CGM

    2004-01-01

    Antineutrophil cytoplasm autoantibodies with specificity for proteinase 3 (PR3) are thought to play a major role in the pathogenesis of Wegener's granulomatosis (WG), presumably by their potential to activate neutrophils. In patients with WG, high expression of PR3 on the surface of nonprimed

  13. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Molecular cloning and functional characterisation of a cathepsin L-like proteinases from the fish kinetoplastid parasite Trypanosoma carassii

    NARCIS (Netherlands)

    Ruszczyk, A.; Forlenza, M.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2008-01-01

    Trypanosoma carassii is a fish kinetoplastid parasite that belongs to the family Trypanosomatida. In the present study we cloned a cathepsin L-like proteinase from T. carassii. The nucleotide sequence of 1371 bp translated into a preproprotein of 456 amino acids. The preproprotein contained the

  15. Kinetic modelling of enzyme inactivation : kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F

    NARCIS (Netherlands)

    Schokker, E.P.

    1997-01-01

    The kinetics of heat inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F was studied. It was established, by making use of kinetic modelling, that heat inactivation in the temperature range 35 - 70 °C was most likely caused

  16. The association of two recombinant proteinases of a feline strain of Porphyromonas gingivalis with periodontal disease in cats.

    Science.gov (United States)

    Norris, J M; Love, D N

    2000-01-01

    Serum from 40 domestic cats with various grades of periodontal disease was used to probe two recombinant functional proteinases from feline strain VPB 3457 of Porphyromonas gingivalis expressed in E. coli. One recombinant proteinase (VPB 2856) was constructed using polymerase chain reaction and had 91% DNA identity with the prtC collagenase gene of the human type strain of P. gingivalis, while the other proteinase (VPB 2814) was isolated from a size selected genomic library and had an amino-terminal sequence with no significant identity with deposited sequences. Thirteen of 40 cats showed a serum antibody response to VPB 2856 using Western immunoblot detection. All the 13 cats had an overall periodontal grade of 3 or greater and greater than 1.68x10(5) cfu P. gingivalis at the canine and premolar periodontium sample sites. Fourteen of 40 cats showed a serum antibody response to VPB 2814. Thirteen of these 14 cats had an overall periodontal grade of 3 or greater. Regression analysis of overall periodontal grade against the serum antibody response showed significant positive relationships for both VPB 2856 (r2 = 0.351; pgrade of serum antibody response showed a positive relationship for both VPB 2856 (r2 = 0.662; p<0.001) and VPB 2814 (r2 = 0.531; p<0.001). These data provide strong evidence that the recombinant proteinases of feline P. gingivalis expressed in E. coli clones VPB 2856 and VPB 2814 are associated with periodontal disease in cats.

  17. Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue

    NARCIS (Netherlands)

    Creemers, L. B.; Jansen, I. D.; Docherty, A. J.; Reynolds, J. J.; Beertsen, W.; Everts, V.

    1998-01-01

    The degradation of soft connective tissue collagen is considered to depend on the activity of various proteolytic enzymes, particularly those belonging to the group of matrix metalloproteinases and cysteine proteinases. In the present study, we investigated the contribution of these enzymes to this

  18. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone

    NARCIS (Netherlands)

    Everts, V.; Korper, W.; Hoeben, K.A.; Jansen, I.D.C.; Bromme, D.; Cleutjens, K.B.J.M.; Heeneman, S.; Peters, C.; Reinheckel, T.; Saftig, P.; Beertsen, W.

    2006-01-01

    Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous

  19. Degradation of collagen in the bone-resorbing compartment underlying the osteoclast involves both cysteine-proteinases and matrix metalloproteinases

    NARCIS (Netherlands)

    Everts, V.; Delaissé, J. M.; Korper, W.; Niehof, A.; Vaes, G.; Beertsen, W.

    1992-01-01

    The site of action of cysteine-proteinases (CPs) and matrix metalloproteinases (MMPs) in the degradation of bone collagen by osteoclasts was investigated by evaluating the effects of the CP-inhibitor trans-epoxy-succinyl-L-leucylamido (4-guanidino)-butane (E-64) and the MMP-inhibitor

  20. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes

    NARCIS (Netherlands)

    van der Geld, Ymke M.; Hellmark, Thomas; Selga, Daina; Heeringa, Peter; Huitema, Minke G.; Limburg, Pieter C.; Kallenberg, Cees G. M.

    2007-01-01

    Aim: In this study, we employed chimeric human/ mouse Proteinase 3 ( PR3) proteins as tools to induce an autoantibody response to PR3 in rats and mice. Method: Rats and mice were immunised with recombinant human PR3 ( HPR3), recombinant murine PR3 ( mPR3), single chimeric human/ mouse PR3 ( HHm,

  1. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L. Plants

    Directory of Open Access Journals (Sweden)

    Afsana Islam

    2017-10-01

    Full Text Available The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L. Kunitz Proteinase Inhibitor (Tr-KPI gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  2. Kunitz Proteinase Inhibitors Limit Water Stress Responses in White Clover (Trifolium repens L.) Plants.

    Science.gov (United States)

    Islam, Afsana; Leung, Susanna; Nikmatullah, Aluh; Dijkwel, Paul P; McManus, Michael T

    2017-01-01

    The response of plants to water deficiency or drought is a complex process, the perception of which is triggered at the molecular level before any visible morphological responses are detected. It was found that different groups of plant proteinase inhibitors (PIs) are induced and play an active role during abiotic stress conditions such as drought. Our previous work with the white clover (Trifolium repens L.) Kunitz Proteinase Inhibitor (Tr-KPI) gene family showed that Tr-KPIs are differentially regulated to ontogenetic and biotic stress associated cues and that, at least some members of this gene family may be required to maintain cellular homeostasis. Altered cellular homeostasis may also affect abiotic stress responses and therefore, we aimed to understand if distinct Tr-PKI members function during drought stress. First, the expression level of three Tr-KPI genes, Tr-KPI1, Tr-KPI2, and Tr-KPI5, was measured in two cultivars and one white clover ecotype with differing capacity to tolerate drought. The expression of Tr-KPI1 and Tr-KPI5 increased in response to water deficiency and this was exaggerated when the plants were treated with a previous period of water deficiency. In contrast, proline accumulation and increased expression of Tr-NCED1, a gene encoding a protein involved in ABA biosynthesis, was delayed in plants that experienced a previous drought period. RNAi knock-down of Tr-KPI1 and Tr-KPI5 resulted in increased proline accumulation in leaf tissue of plants grown under both well-watered and water-deficit conditions. In addition, increased expression of genes involved in ethylene biosynthesis was found. The data suggests that Tr-KPIs, particularly Tr-KPI5, have an explicit function during water limitation. The results also imply that the Tr-KPI family has different in planta proteinase targets and that the functions of this protein family are not solely restricted to one of storage proteins or in response to biotic stress.

  3. Reversible dissociation of a carbomoyl phosphate synthase-aspartate transcarbamoylase-dihydroorotase complex from ovarian eggs of Rana catesbeiana: effect of uridine triphosphate and other modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Kent, R.J.; Lin, R.L.; Sallach, H.J.; Cohen, P.P.

    1975-05-01

    Glutamine-dependent carbamoyl phosphate synthase (ATP:carbamate phosphotransferase (dephosphorylating), EC 2.7.2.9), aspartate transcarbamoylase (carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) and dihydroorotase (L-5,6-dihydroorotate amidohydrolase, EC 3.5.2.3), are copurified as a high-molecular-weight complex from extracts of unfertilized eggs of Rana catesbeiana. UTP is required to maintain the integrity of the complex during the last two purification steps. Removal of the nucleotide results in dissociation of the complex. Based on sedimentation behavior in glycerol gradients, the dissociated carbamoyl phosphate synthase has an apparent molecular weight of 260,000 +- 20,000 and that of dihydroorotase is estimated at 280,000 +- 20,000. Aspartate transcarbamoylase is broadly distributed over the gradient. The addition of ATP, 5-phosphoribosyl-1-pyrophosphate, Mg/sup + +/, or inorganic phosphate to the dissociated complex results in the appearance of a peak of aspartate transcarbamoylase activity with an apparent molecular weight of 110,000 +- 10,000. Incubation of a mixture of the dissociated enzymes with UTP and Mg/sup + +/ leads to their reassociation into the high-molecular-weight complex.

  4. Insulin degludec aspart: One-year real world experience

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2016-01-01

    Full Text Available Background: This retrospective analysis describes the use of insulin degludec aspart (IDegAsp in India. Material and Methods: All subjects who had received IDegAsp for 52 weeks at two endocrine centers were included in this study. Results: Forty-eight subjects (40 men, with mean age of 54.33 ± 9.63 years and mean duration of diabetes of 6.33 ± 2.96 years, started IDegAsp as insulin of initiation (16, as an intensification regime (4, as de-escalation from basal-bolus therapy (16, or as switch from premixed insulin (12. The dose of IDegAsp fell from 43.17 ± 21.18 U/day or 0.56 ± 0.23 U/kg to 37.75 ± 17.13U/day (0.51 ± 0.12 U/kg at 24 weeks and 41.41 ± 15.33 U/day (0.56 ± 0.17 U/kg at 52 weeks. Hemoglobin A1c (HbA1c, which was 9.52 ± 1.27% at the start of therapy, fell to 7.51 ± 0.46% at 26 weeks and to 7.48 ± 0.40% at 52 weeks. Fasting plasma glucose fell from 154.08 ± 33.30 mg% to 108.58 ± 22.26 mg% at 26 weeks and 102.17 ± 12.79 mg% at 52 weeks. Of the 48 subjects, 39 (81.25% achieved a target of HbA1c <7.0% at both 26 and 52 weeks. No episode of hypoglycemia was reported in the 4 weeks preceding the analysis. Conclusion: This communication highlights the efficacy, safety, and tolerability, while providing insight into the usage patterns of IDegAsp.

  5. Shrimp serine proteinase homologues PmMasSPH-1 and -2 play a role in the activation of the prophenoloxidase system.

    Directory of Open Access Journals (Sweden)

    Miti Jearaphunt

    Full Text Available Melanization mediated by the prophenoloxidase (proPO activating system is a rapid immune response used by invertebrates against intruding pathogens. Several masquerade-like and serine proteinase homologues (SPHs have been demonstrated to play an essential role in proPO activation in insects and crustaceans. In a previous study, we characterized the masquerade-like SPH, PmMasSPH1, in the black tiger shrimp Penaeus monodon as a multifunctional immune protein based on its recognition and antimicrobial activity against the Gram-negative bacteria Vibrio harveyi. In the present study, we identify a novel SPH, known as PmMasSPH2, composed of an N-terminal clip domain and a C-terminal SP-like domain that share high similarity to those of other insect and crustacean SPHs. We demonstrate that gene silencing of PmMasSPH1 and PmMasSPH2 significantly reduces PO activity, resulting in a high number of V. harveyi in the hemolymph. Interestingly, knockdown of PmMasSPH1 suppressed not only its gene transcript but also other immune-related genes in the proPO system (e.g., PmPPAE2 and antimicrobial peptides (e.g., PenmonPEN3, PenmonPEN5, crustinPm1 and Crus-likePm. The PmMasSPH1 and PmMasSPH2 also show binding activity to peptidoglycan (PGN of Gram-positive bacteria. Using a yeast two-hybrid analysis and co-immunoprecipitation, we demonstrate that PmMasSPH1 specifically interacted with the final proteinase of the proPO cascade, PmPPAE2. Furthermore, the presence of both PmMasSPH1 and PmPPAE2 enhances PGN-induced PO activity in vitro. Taken together, these results suggest the importance of PmMasSPHs in the activation of the shrimp proPO system.

  6. Shrimp serine proteinase homologues PmMasSPH-1 and -2 play a role in the activation of the prophenoloxidase system.

    Science.gov (United States)

    Jearaphunt, Miti; Amparyup, Piti; Sangsuriya, Pakkakul; Charoensapsri, Walaiporn; Senapin, Saengchan; Tassanakajon, Anchalee

    2015-01-01

    Melanization mediated by the prophenoloxidase (proPO) activating system is a rapid immune response used by invertebrates against intruding pathogens. Several masquerade-like and serine proteinase homologues (SPHs) have been demonstrated to play an essential role in proPO activation in insects and crustaceans. In a previous study, we characterized the masquerade-like SPH, PmMasSPH1, in the black tiger shrimp Penaeus monodon as a multifunctional immune protein based on its recognition and antimicrobial activity against the Gram-negative bacteria Vibrio harveyi. In the present study, we identify a novel SPH, known as PmMasSPH2, composed of an N-terminal clip domain and a C-terminal SP-like domain that share high similarity to those of other insect and crustacean SPHs. We demonstrate that gene silencing of PmMasSPH1 and PmMasSPH2 significantly reduces PO activity, resulting in a high number of V. harveyi in the hemolymph. Interestingly, knockdown of PmMasSPH1 suppressed not only its gene transcript but also other immune-related genes in the proPO system (e.g., PmPPAE2) and antimicrobial peptides (e.g., PenmonPEN3, PenmonPEN5, crustinPm1 and Crus-likePm). The PmMasSPH1 and PmMasSPH2 also show binding activity to peptidoglycan (PGN) of Gram-positive bacteria. Using a yeast two-hybrid analysis and co-immunoprecipitation, we demonstrate that PmMasSPH1 specifically interacted with the final proteinase of the proPO cascade, PmPPAE2. Furthermore, the presence of both PmMasSPH1 and PmPPAE2 enhances PGN-induced PO activity in vitro. Taken together, these results suggest the importance of PmMasSPHs in the activation of the shrimp proPO system.

  7. The anthelmintic efficacy of natural plant cysteine proteinases against the equine tapeworm, Anoplocephala perfoliata in vitro.

    Science.gov (United States)

    Mansur, F; Luoga, W; Buttle, D J; Duce, I R; Lowe, A E; Behnke, J M

    2016-09-01

    Papaya latex has been demonstrated to be an efficacious anthelmintic against murine, porcine, ovine and canine nematode parasites, and even those infecting poultry, and it has some efficacy against rodent cestodes. The active ingredients of papaya latex are known to be cysteine proteinases (CPs). The experiments described in this paper indicate that CPs in papaya latex, and also those in pineapples, are highly efficacious against the equine cestode Anoplocephala perfoliata in vitro, by causing a significant reduction in motility leading to death of the worms. The susceptibility of A. perfoliata to damage by CPs was considerably greater than that of the rodent cestodes Hymenolepis diminuta and H. microstoma. Our results are the first to report anthelmintic efficacy of CPs against an economically important equine helminth. Moreover, they provide further evidence that the spectrum of activity of CPs is not restricted to nematodes and support the idea that these plant-derived enzymes can be developed into useful broad-spectrum anthelmintics.

  8. Enhancement of native and phosphorylated TDP-43 immunoreactivity by proteinase K treatment following autoclave heating.

    Science.gov (United States)

    Mori, Fumiaki; Tanji, Kunikazu; Kakita, Akiyoshi; Takahashi, Hitoshi; Wakabayashi, Koichi

    2011-08-01

    TDP-43 is a major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). To evaluate the effectiveness of proteinase K (PK) treatment in antigen retrieval for native and phosphorylated TDP-43 protein, we examined the temporal cortex and spinal cord from patients with sporadic ALS and FTLD-TDP and control subjects. PK treatment following heat retrieval enhanced the immunoreactivity for native TDP-43 in controls as well as for native and phosphorylated TDP-43 in ALS and FTLD-TDP. A significant number of TDP-43-positive neuropil threads were demonstrated in lesions, in which routine immunohistochemistry revealed that the predominant inclusions are cytoplasmic. This retrieval method is the best of immunohistochemical techniques for demonstrating TDP-43 pathology, especially in the neuropil. © 2010 Japanese Society of Neuropathology.

  9. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity

    Science.gov (United States)

    Cárdenas-Guerra, Rosa Elena; Figueroa-Angulo, Elisa Elvira; Puente-Rivera, Jonathan; Zamudio-Prieto, Olga; Ortega-López, Jaime

    2015-01-01

    We focus on the iron response of Trichomonas vaginalis to gene family products such as the cysteine proteinases (CPs) involved in virulence properties. In particular, we examined the effect of iron on the gene expression regulation and function of cathepsin L-like and asparaginyl endopeptidase-like CPs as virulence factors. We addressed some important aspects about CPs genomic organization and we offer possible explanations to the fact that only few members of this large gene family are expressed at the RNA and protein levels and the way to control their proteolytic activity. We also summarized all known iron regulations of CPs at transcriptional, posttranscriptional, and posttranslational levels along with new insights into the possible epigenetic and miRNA processes. PMID:26090464

  10. [Effect of proteinaceous proteinase inhibitors from potato tubers on the growth and development of phytopathogenic microorganisms].

    Science.gov (United States)

    Revina, T A; Gerasimova, N G; Kladnitskaia, G V; Chalenko, G I; Valueva, T A

    2008-01-01

    We studied the effect of two proteins, PSPI-21 and PKSI, on the growth and development of phytopathogenic microorganisms (Phytophthora infestans oomycete and Fusarium culmorum fungus). Both proteins were isolated from potato tubers (Solanum tuberosum L., cv. Istrinskii) and served as inhibitors of serine proteinases. These proteins differed in the ability to inhibit growth of Phytophthora infestans oomycete and Fusarium culmorum fungus. PSPI-21 was the most potent in modulating the growth of oomycete mycelium. PKSI primarily affected the growth of the fungal mycelium. The proteins under study induced complete destruction of oomycete zoospores and partial destruction of fungal macroconidia. Our results suggest that these proteins are involved in the protection of potato plants from phytopathogenic microorganisms.

  11. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans.

    Science.gov (United States)

    Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene

    2010-01-01

    Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.

  12. Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of biologically active peptides from casein.

    Science.gov (United States)

    Dąbrowska, Anna; Szołtysik, Marek; Babij, Konrad; Pokora, Marta; Zambrowicz, Aleksandra; Chrzanowska, Józefa

    2013-01-01

    The main objective of this study was to determine potential application of a serine proteinase derived from Asian pumpkin for obtaining biologically active peptides from casein. The course of casein hydrolysis by three doses of the enzyme (50, 150, 300 U/mg of protein) was monitored for 24 hours by the determinations of: hydrolysis degree DH (%), free amino group content (μmole Gly/g), RP HPLC peptide profiles and by polyacrylamide gel electrophoresis. In all hydrolyzates analyzed antioxidant activities were determined using three tests: the ability to reduce iron ions in FRAP test, the ability to scavenge free radicals in DPPH test, and Fe(2+) chelating activity. The antimicrobial activity of obtained peptide fractions was determined as the ability to inhibit the growth of Escherichia coli, Bacillus cereus and Pseudomonas fluorescens in a diffusion plate test. The deepest degradation, expressed as the DH [%] and the free amino group content (67% and 7528 µmole Gly/mg, respectively), was noted in samples hydrolyzed with 300 U/ml of enzyme for 24 hours, while in other samples the determined values were about three and two times lower. The results were in agreement with the peptide profiles obtained by RP HPLC. The highest antioxidative activities determined in all tests were seen for the casein hydrolysate obtained with 300 U/mg protein of serine proteinase after 24 h of reaction (2.15 µM Trolox/mg, 96.15 µg Fe(3+)/mg, 814.97 µg Fe(2+)/mg). Antimicrobial activity was presented in three preparations. In other samples no antimicrobial activity was detected.

  13. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea): partial characterization and relationship with molting.

    Science.gov (United States)

    Fernández Gimenez, A V; García-Carreño, F L; Navarrete del Toro, M A; Fenucci, J L

    2001-10-01

    The present study describes the activity and some characteristics of proteinases in the hepatopancreas of red shrimp Pleoticus muelleri during the different stages of the molting cycle. Proteolytic activity was highest between pH 7.5 and 8. The hepatopancreatic protein content in the premolt stage was higher than in the other stages of the molting cycle (P.05). No significant differences were found in total proteolytic activity in the hepatopancreas when comparing molting stages. The proteolytic activity of the P. muelleri hepatopancreas enzyme preparations is the main responsibility of serine proteinases. TLCK, a trypsin inhibitor, reduced azocasein hydrolysis between 26% (intermolt) and 37% (premolt). TPCK, a chymotrypsin inhibitor, did not decrease hydrolytic activity, except for in postmolt. Low trypsin and chymotrypsin activities were found during intermolt, and increased in postmolt. The electrophoretogram of the enzyme extracts shows 12 bands of activity during intermolt (from 16.6 to 53.1 kDa). Some fractions were not detected in the postmolt and premolt stages. Three low molecular weight trypsin forms (17.4, 19.1 and 20 kDa) were found in all molting stages. One band of chymotrypsin (21.9 kDa) was observed in all molting stages. High molecular mass active bands (66-205 kDa) could not be characterized with inhibitors. Comparison of the protease-specific activity of the hepatopancreas of some species indicated a relationship between digestive enzyme activity and feeding habits of the shrimp. Omnivorous shrimp, such as Penaeus vannamei (syn: Litopenaeus vannamei) and Penaeus monodon, showed higher protease activity than the carnivorous shrimp, Penaeus californiensis (syn: Farfantepenaeus californiensis) and P. muelleri. In fact, the enzymatic activity in the hepatopancreas of P. muelleri showed variations in relation to feeding habit and molting cycle.

  14. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    Science.gov (United States)

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Intersubunit communication in the dihydroorotase–aspartate transcarbamoylase complex of Aquifex aeolicus

    National Research Council Canada - National Science Library

    Evans, Hedeel Guy; Fernando, Roshini; Vaishnav, Asmita; Kotichukkala, Mahalakshmi; Heyl, Deborah; Hachem, Fatme; Brunzelle, Joseph S; Edwards, Brian F.P; Evans, David R

    2014-01-01

    Aspartate transcarbamoylase and dihydroorotase, enzymes that catalyze the second and third step in de novo pyrimidine biosynthesis, are associated in dodecameric complexes in Aquifex aeolicus and many other organisms...

  16. Trapping and structure determination of an intermediate in the allosteric transition of aspartate transcarbamoylase

    National Research Council Canada - National Science Library

    Wenyue Guo; Jay M. West; Andrew S. Dutton; Hiro Tsuruta; Evan R. Kantrowitz

    2012-01-01

    X-ray crystallography and small-angle X-ray scattering (SAXS) in solution have been used to show that a mutant aspartate trans-carbamoylase exists in an intermediate quaternary structure between the canonical T and R structures...

  17. Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes

    NARCIS (Netherlands)

    Hahnenkamp, Klaus; Nollet, Joke; van Aken, Hugo K.; Buerkle, Hartmut; Halene, Tobias; Schauerte, Svenja; Hahnenkamp, Anke; Hollmann, Markus W.; Strümper, Danja; Durieux, Marcel E.; Hoenemann, Christian W.

    2004-01-01

    BACKGROUND: Clinical studies suggest that intraoperative administration of the clinical remifentanil formulation Ultiva (GlaxoWellcome GmbH & Co, Bad Oldesloe, Germany) increases postoperative pain and postoperative analgesic requirements, but mechanisms remain unclear. N-methyl-D-aspartate (NMDA)

  18. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    DEFF Research Database (Denmark)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouther L.J.

    2013-01-01

    . Furthermore, LC–MS (MS) measurements indicated that the combination of aspartate buffer and Zn2+ in particular suppressed intermolecular degradation reactions near the Cys1,6 disulfide bridge. These results lead to the hypothesis that in aspartate buffer, Zn2+ changes the conformation of oxytocin...... in such a way that the Cys1,6 disulfide bridge is shielded from its environment thereby suppressing intermolecular reactions involving this region of the molecule. To verify this hypothesis, we investigate here the conformation of oxytocin in aspartate buffer in the presence of Mg2+ or Zn2+, using 2D NOESY......, with the largest chemical shift changes observed for Cys1. Zn2+ causes more extensive changes in oxytocin in aqueous solution than Mg2+. Our findings suggest that the carboxylate group of aspartate neutralizes the positive charge of the N-terminus of Cys1, allowing the interactions with Zn2+ to become more...

  19. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.

    Science.gov (United States)

    Santos, L O; Garcia-Gomes, A S; Catanho, M; Sodre, C L; Santos, A L S; Branquinha, M H; d'Avila-Levy, C M

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas' disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  20. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    OpenAIRE

    Maria Maddalena Di Fiore; Alessandra Santillo; Sara Falvo; Salvatore Longobardi; Gabriella Chieffi Baccari

    2016-01-01

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances...

  1. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    Directory of Open Access Journals (Sweden)

    Dannette S Richards

    Full Text Available Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA. However, whether these synapses express vesicular glutamate transporters (VGLUTs capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT contacting calbindin-immunoreactive (-IR Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  2. Rat d-aspartate oxidase is more similar to the human enzyme than the mouse enzyme.

    Science.gov (United States)

    Katane, Masumi; Kuwabara, Hisashi; Nakayama, Kazuki; Saitoh, Yasuaki; Miyamoto, Tetsuya; Sekine, Masae; Homma, Hiroshi

    2017-12-29

    d-Aspartate oxidase (DDO) is a degradative enzyme that is stereospecific for the acidic amino acid d-aspartate, an endogenous agonist of the N-methyl-d-aspartate (NMDA) receptor. Dysregulation of NMDA receptor-mediated neurotransmission has been implicated in the onset of various neuropsychiatric disorders including schizophrenia, as well as chronic pain. Thus, appropriate regulation of d-aspartate is believed to be important for maintaining proper neural activity in the nervous system. Accordingly, much attention has been paid to the role(s) of DDO in the metabolism of d-aspartate in vivo, and the physiological functions of DDO have been actively investigated using experimental rats and mice. However, detailed characterisation of rat DDO has not yet been performed, and little is known about species-specific differences in the properties of mammalian DDOs. In this study, the structural and enzymatic properties of purified recombinant rat, mouse and human DDOs were examined and compared. The results showed that rat DDO is more similar to human DDO than to mouse DDO. This work provides useful insight into the use of rats as an experimental model for investigating the biological significance of human DDO and/or d-aspartate. This article is part of a Special Issue entitled: d-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Lowered circulating aspartate is a metabolic feature of human breast cancer.

    Science.gov (United States)

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-10-20

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer.

  4. A Cooperative Escherichia coli Aspartate Transcarbamoylase without Regulatory Subunits

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, K.; Kantrowitz, E

    2010-01-01

    Here we report the isolation, kinetic characterization, and X-ray structure determination of a cooperative Escherichia coli aspartate transcarbamoylase (ATCase) without regulatory subunits. The native ATCase holoenzyme consists of six catalytic chains organized as two trimers bridged noncovalently by six regulatory chains organized as three dimers, c{sub 6}r{sub 6}. Dissociation of the native holoenzyme produces catalytically active trimers, c{sub 3}, and nucleotide-binding regulatory dimers, r{sub 2}. By introducing specific disulfide bonds linking the catalytic chains from the upper trimer site specifically to their corresponding chains in the lower trimer prior to dissociation, a new catalytic unit, c{sub 6}, was isolated consisting of two catalytic trimers linked by disulfide bonds. Not only does the c{sub 6} species display enhanced enzymatic activity compared to the wild-type enzyme, but the disulfide bonds also impart homotropic cooperativity, never observed in the wild-type c3. The c{sub 6} ATCase was crystallized in the presence of phosphate and its X-ray structure determined to 2.10 {angstrom} resolution. The structure of c{sub 6} ATCase liganded with phosphate exists in a nearly identical conformation as other R-state structures with similar values calculated for the vertical separation and planar angles. The disulfide bonds linking upper and lower catalytic trimers predispose the active site into a more active conformation by locking the 240s loop into the position characteristic of the high-affinity R state. Furthermore, the elimination of the structural constraints imposed by the regulatory subunits within the holoenzyme provides increased flexibility to the c{sub 6} enzyme, enhancing its activity over the wild-type holoenzyme (c{sub 6}r{sub 6}) and c{sub 3}. The covalent linkage between upper and lower catalytic trimers restores homotropic cooperativity so that a binding event at one or so active sites stimulates binding at the other sites. Reduction

  5. Development of an Amperometric Biosensor Platform for the Combined Determination of L-Malic, Fumaric, and L-Aspartic Acid.

    Science.gov (United States)

    Röhlen, Désirée L; Pilas, Johanna; Schöning, Michael J; Selmer, Thorsten

    2017-10-01

    Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.

  6. A route to anionic hydrophilic films of copolymers of l-leucine, l-aspartic acid and l-aspartic acid esters

    NARCIS (Netherlands)

    Sederel, W.L.; Bantjes, A.; Feijen, Jan

    1975-01-01

    A series of copolymers of l-leucine and β-benzyl-l-aspartate [Leu/Asp(OBz)] covering the range 30–70 mol % of l-leucine, was synthesized by the N-carboxyanhydride (NCA) method. The copolymers were characterized by elemental analysis, infra-red spectroscopy and viscometry. For all compositions high

  7. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rajasthan cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Akhil Joshi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rajasthan, India. Results: A total of 477 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 340, insulin detemir (n = 90, insulin aspart (n = 37, basal insulin plus insulin aspart (n = 7 and other insulin combinations (n = 2. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.3% and insulin user (mean HbA 1 c: 8.4% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −0.9%, insulin users: −1.2%. Major hypoglycaemic events decreased from 0.5 events/patient-year to 0.0 events/patient-year in insulin naïve group while no change from baseline (1.3 events/patients-year was observed for insulin users. SADRs were not reported in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  8. Molecular cloning, expression and characterization of a serine proteinase from Japanese edible mushroom, Grifola frondosa : solving the structure - function anomaly of a reported aminopeptidase

    National Research Council Canada - National Science Library

    Islam, M.M

    2009-01-01

    The N-terminal amino acid sequence of an aminopeptidase from Japanese edible mushroom, Grifola frondosa , was reported to have high similarity with that of a serine proteinase from basidiomycete, Agaricus bisporous...

  9. Molecular cloning, expression and characterization of a serine proteinase from Japanese edible mushroom, Grifola frondosa: solving the structure - function anomaly of a reported aminopeptidase

    National Research Council Canada - National Science Library

    Islam, Mohammed M

    2008-01-01

    The N-terminal amino acid sequence of an aminopeptidase from Japanese edible mushroom, Grifola frondosa, was reported to have high similarity with that of a serine proteinase from basidiomycete, Agaricus bisporous...

  10. [Molecular cloning and analysis of cDNA sequences encoding serine proteinase and Kunitz type inhibitor in venom gland of Vipera nikolskii viper].

    Science.gov (United States)

    Ramazanova, A S; Fil'kin, S Iu; Starkov, V G; Utkin, Iu N

    2011-01-01

    Serine proteinases and Kunitz type inhibitors are widely represented in venoms of snakes from different genera. During the study of the venoms from snakes inhabiting Russia we have cloned cDNAs encoding new proteins belonging to these protein families. Thus, a new serine proteinase called nikobin was identified in the venom gland of Vipera nikolskii viper. By amino acid sequence deduced from the cDNA sequence, nikobin differs from serine proteinases identified in other snake species. Nikobin amino acid sequence contains 15 unique substitutions. This is the first serine proteinase of viper from Vipera genus for which a complete amino acid sequence established. The cDNA encoding Kunitz type inhibitor was also cloned. The deduced amino acid sequence of inhibitor is homologous to those of other proteins from that snakes of Vipera genus. However there are several unusual amino acid substitutions that might result in the change of biological activity of inhibitor.

  11. Review of biphasic insulin aspart in the treatment of type 1 and 2 diabetes

    Directory of Open Access Journals (Sweden)

    Nazia Raja-Khan

    2008-01-01

    Full Text Available Nazia Raja-Khan, Sarah S Warehime, Robert A GabbayDivision of Endocrinology, Diabetes, and Metabolism, Penn State Institute for Diabetes and Obesity, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USABackground: Insulin is an effective treatment for achieving glycemic control and preventing complications in patients with diabetes. In order to make insulin therapy more acceptable to patients, newer formulations of insulin have been developed, such as biphasic insulins. Biphasic insulins conveniently provide both prandial and basal insulin in a single injection. One of the most well-studied biphasic insulins is biphasic insulin aspart 70/30.Objective: Our goal was to review the current literature on the safety and efficacy of biphasic insulin aspart in type 1 and type 2 diabetes.Methods: A MEDLINE search was conducted using the terms “biphasic insulin aspart” to identify clinical studies and reviews.Results: Biphasic insulin aspart more effectively reduces post-prandial glucose compared to other biphasic insulins and basal insulins. Compared to biphasic insulin aspart, fasting glucose levels are lower with NPH, similar with glargine, and similar or lower with biphasic human insulin. Treat-to-target trials have shown that a goal HbA1c below 6.5 or 7% can be achieved with biphasic insulin aspart. The risk of hypoglycemia is similar to or less than that seen with other biphasic insulins or NPH insulin.Conclusion: Biphasic insulin aspart 70/30 is a safe and effective treatment option for patients with diabetes.Keywords: biphasic insulin aspart, insulin, diabetes

  12. Poly(aspartic acid) with adjustable pH-dependent solubility.

    Science.gov (United States)

    Németh, Csaba; Gyarmati, Benjámin; Abdullin, Timur; László, Krisztina; Szilágyi, András

    2017-02-01

    Poly(aspartic acid) (PASP) derivatives with adjustable pH-dependent solubility were synthesized and characterized to establish the relationship between their structure and solubility in order to predict their applicability as a basic material for enteric coatings. Polysuccinimide, the precursor of PASP, was modified with short chain alkylamines, and the residual succinimide rings were subsequently opened to prepare the corresponding PASP derivatives. Study of the effect of the type and concentration of the side groups on the pH-dependent solubility of PASP showed that solubility can be adjusted by proper selection of the chemical structure. The Henderson-Hasselbalch (HH) and the extended HH equations were used to describe the pH-dependent solubility of the polymers quantitatively. The estimate provided by the HH equation is poor, but an accurate description of the pH-dependent solubility can be found with the extended HH equation. The dissolution rate of a polymer film prepared from a selected PASP derivative was determined by fluorescence marking. The film dissolved rapidly when the pH was increased above its pK a . Cellular viability tests show that PASP derivatives are non-toxic to a human cell line. These polymers are thus of great interest as starting materials for enteric coatings. Poly(amino acid) type biocompatible polymers were synthesized for future use as pharmaceutical film coatings. To this end, we tailored the pH-dependent solubility of poly(aspartic acid) (PASP). It was found that both the solubility and the pK a values of the modified PASP depended strongly on composition. Fluorescent marking was used to characterize the dissolution of a chosen PASP derivative. In acidic media only a negligible amount of the polymer dissolved, but dissolution was very fast and complete at the pH values that prevail in the small intestine. As a consequence, enteric coatings based on such PASP derivatives may be used for drug delivery in the gastrointestinal tract

  13. Production of proteinase A by Saccharomyces cerevisiae in a cell-recycling fermentation system: Experiments and computer simulations

    DEFF Research Database (Denmark)

    Grøn, S.; Biedermann, K.; Emborg, Claus

    1996-01-01

    experimentally and by computer simulations. Experiments and simulations showed that cell mass and product concentration were enhanced by high ratios of recycling. Additional simulations showed that the proteinase A concentration decreased drastically at high dilution rates and the optimal volumetric......Overproduction of proteinase A by recombinant Saccharomyces cerevisiae was investigated by cultivations in a cell-recycling bioreactor. Membrane filtration was used to separate cells from the broth. Recycling ratios and dilution rates were varied and the effect on enzyme production was studied both...... productivities were at high dilution rates just below washout and at high ratios of recycling. Cell-recycling fermentation gave much higher volumetric productivities and stable product concentrations in contrast to simple continuous fermentation....

  14. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).

    Science.gov (United States)

    Liu, Yu-Xin; Zhou, Da-Yong; Ma, Dong-Dong; Liu, Zi-Qiang; Liu, Yan-Fei; Song, Liang; Dong, Xiu-Ping; Li, Dong-Mei; Zhu, Bei-Wei; Konno, Kunihiko; Shahidi, Fereidoon

    2017-10-01

    Autolysis of sea cucumber, caused by endogenous enzymes, leads to postharvest quality deterioration of sea cucumber. However, the effects of endogenous proteinases on structures of collagen fibres, the major biologically relevant substrates in the body wall of sea cucumber, are less clear. Collagen fibres were prepared from the dermis of sea cucumber (Stichopus japonicus), and the structural consequences of degradation of the collagen fibres caused by endogenous cysteine proteinases (ECP) from Stichopus japonicus were examined. Scanning electron microscopic images showed that ECP caused partial disaggregation of collagen fibres into collagen fibrils by disrupting interfibrillar proteoglycan bridges. Differential scanning calorimetry and Fourier transform infrared analysis revealed increased structural disorder of fibrillar collagen caused by ECP. SDS-PAGE and chemical analysis indicated that ECP can liberate glycosaminoglycan, hydroxyproline and collagen fragments from collagen fibres. Thus ECP can cause disintegration of collagen fibres by degrading interfibrillar proteoglycan bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    DEFF Research Database (Denmark)

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.

    2003-01-01

    tissues of roots, and to the phloem of coleoptiles and leaves. The identification of BSZ4 in vegetative tissues by western blotting was confirmed for the roots by purification and amino acid sequencing, and for the leaves by in vitro reactive-centre loop cleavage studies. Plant serpins are likely to use......Proteins of the serpin superfamily (similar to43 kDa) from mature cereal grains are in vitro suicide-substrate inhibitors of specific mammalian serine proteinases of the chymotrypsin family. However, unlike the 'standard-mechanism' serine proteinase inhibitors (... centres in vitro, were ubiquitous at low levels, but the protein could not be detected. EST analysis showed that expression of genes for serpins with BSZx-type reactive centres in vegetative tissues is widespread in the plant kingdom, suggesting a common regulatory function. For BSZ4 and BSZ7, expression...

  16. Analysis of green kiwi fruit (Actinidia deliciosa cv. Hayward) proteinases by two-dimensional zymography and direct identification of zymographic spots by mass spectrometry.

    Science.gov (United States)

    Larocca, Marilena; Rossano, Rocco; Riccio, Paolo

    2010-11-01

    Proteinases present in kiwi fruits are potentially allergenic enzymes belonging to the papain family of cysteine proteinases. Actinidin is a prominent kiwi enzyme. The study of kiwi proteinases is important for the follow-up of fruit maturation, a deeper insight in the allergenic properties of individual proteins, and the application of kiwi proteinases for meat tenderisation and other industrial purposes. Kiwi crude extracts were analysed by two-dimensional zymography on gelatin-containing gels. The digestion by the reactivated proteolytic enzymes after electrophoresis resulted in insights into kiwi proteinases. A mixture of several enzyme isotypes with the same pI but different molecular mass was observed. Clear spots, corresponding to the proteolytic activities, were excised, digested with trypsin, and submitted to MALDI-ToF mass spectrometry for protein identification. The most representative enzyme was actinidin. The innovative achievements of the present study are the: (1) two-dimensional zymographic map of kiwi gelatinases without the need for extensive purification; and (2) direct identification of proteinase isotypes by means of direct MALDI-ToF MS analysis of the zymographic spots. 2010 Society of Chemical Industry

  17. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  18. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    OpenAIRE

    CB Toaldo; Steindel, M; MA Sousa; CC Tavares

    2001-01-01

    The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70) and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity...

  19. Isolation, cloning and structural characterisation of boophilin, a multifunctional Kunitz-type proteinase inhibitor from the cattle tick.

    Directory of Open Access Journals (Sweden)

    Sandra Macedo-Ribeiro

    Full Text Available Inhibitors of coagulation factors from blood-feeding animals display a wide variety of structural motifs and inhibition mechanisms. We have isolated a novel inhibitor from the cattle tick Boophilus microplus, one of the most widespread parasites of farm animals. The inhibitor, which we have termed boophilin, has been cloned and overexpressed in Escherichia coli. Mature boophilin is composed of two canonical Kunitz-type domains, and inhibits not only the major procoagulant enzyme, thrombin, but in addition, and by contrast to all other previously characterised natural thrombin inhibitors, significantly interferes with the proteolytic activity of other serine proteinases such as trypsin and plasmin. The crystal structure of the bovine alpha-thrombin.boophilin complex, refined at 2.35 A resolution reveals a non-canonical binding mode to the proteinase. The N-terminal region of the mature inhibitor, Q16-R17-N18, binds in a parallel manner across the active site of the proteinase, with the guanidinium group of R17 anchored in the S(1 pocket, while the C-terminal Kunitz domain is negatively charged and docks into the basic exosite I of thrombin. This binding mode resembles the previously characterised thrombin inhibitor, ornithodorin which, unlike boophilin, is composed of two distorted Kunitz modules. Unexpectedly, both boophilin domains adopt markedly different orientations when compared to those of ornithodorin, in its complex with thrombin. The N-terminal boophilin domain rotates 9 degrees and is displaced by 6 A, while the C-terminal domain rotates almost 6 degrees accompanied by a 3 A displacement. The reactive-site loop of the N-terminal Kunitz domain of boophilin with its P(1 residue, K31, is fully solvent exposed and could thus bind a second trypsin-like proteinase without sterical restraints. This finding explains the formation of a ternary thrombin.boophilin.trypsin complex, and suggests a mechanism for prothrombinase inhibition in vivo.

  20. Aspartate aminotransferase is potently inhibited by copper complexes: Exploring copper complex-binding proteome.

    Science.gov (United States)

    Jia, Yuqi; Lu, Liping; Yuan, Caixia; Feng, Sisi; Zhu, Miaoli

    2017-05-01

    Recent researches indicated that a copper complex-binding proteome that potently interacted with copper complexes and then influenced cellular metabolism might exist in organism. In order to explore the copper complex-binding proteome, a copper chelating ion-immobilized affinity chromatography (Cu-IMAC) column and mass spectrometry were used to separate and identify putative Cu-binding proteins in primary rat hepatocytes. A total of 97 putative Cu-binding proteins were isolated and identified. Five higher abundance proteins, aspartate aminotransferase (AST), malate dehydrogenase (MDH), catalase (CAT), calreticulin (CRT) and albumin (Alb) were further purified using a SP-, and (or) Q-Sepharose Fast Flow column. The interaction between the purified proteins and selected 11 copper complexes and CuCl2 was investigated. The enzymes inhibition tests demonstrated that AST was potently inhibited by copper complexes while MDH and CAT were weakly inhibited. Schiff-based copper complexes 6 and 7 potently inhibited AST with the IC50 value of 3.6 and 7.2μM, respectively and exhibited better selectivity over MDH and CAT. Fluorescence titration results showed the two complexes tightly bound to AST with binding constant of 3.89×10(6) and 3.73×10(6)M(-1), respectively and a stoichiometry ratio of 1:1. Copper complex 6 was able to enter into HepG2 cells and further inhibit intracellular AST activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Clinical analysis on anti-N-methyl-D-aspartate receptor encephalitis cases: Chinese experience

    Science.gov (United States)

    Huang, Xiaoqin; Fan, Chunqiu; Wu, Jian; Ye, Jing; Zhan, Shuqin; Song, Haiqing; Liu, Aihua; Su, Yingying; Jia, Jianping

    2015-01-01

    As a kind of autoimmune encephalitis which was just identified, the clinical manifestations of the anti-N methyl-D aspartate (anti-NMDA) receptor encephalitis are complex, diverse and in severe condition. The immunotherapy has shown good effect on the treatment but in generally, the diagnosis and treatment are still in the experience accumulation stage. More clinical research in different population is necessary, for example, in the Chinese population. This study was completed in anti-NMDA receptor encephalitis patients who were diagnosed in Beijing Xuan Wu Hospital (China) during the time from 2011 to 2013. Total 33 patients were involved with the average age of 29.7 years old when the diseases were onset. With diverse clinical manifestations, most patients displayed positively by NMDAR antibody test and 63.6% of them were associated with elevated CSF-lgA. Patients also showed abnormal MRI and EEG. Only three patients had teratomas. With hormone therapy, gamma globulin treatment or plasma exchange, more than three quarters of patients fully recovered and the others had moderate symptoms. Based on our results, we suggest that NMDAR antibody test would be helpful to make a timely diagnosis and to administer immunotherapy. PMID:26770517

  2. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla

    2017-04-01

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  3. Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.

    Science.gov (United States)

    Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla

    2017-04-14

    The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.

  4. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  5. Lactate oxidation at the mitochondria: a lactate-malate-aspartate shuttle at work

    Directory of Open Access Journals (Sweden)

    Daniel A Kane

    2014-11-01

    Full Text Available Lactate, the conjugate base of lactic acid occurring in aqueous biological fluids, has been derided as a dead-end waste product of anaerobic metabolism. Catalyzed by the near-equilibrium enzyme lactate dehydrogenase (LDH, the reduction of pyruvate to lactate is thought to serve to regenerate the NAD+ necessary for continued glycolytic flux. Reaction kinetics for LDH imply that lactate oxidation is rarely favored in the tissues of its own production. However, a substantial body of research directly contradicts any notion that LDH invariably operates unidirectionally in vivo. In the current Perspective, a model is forwarded in which the continuous formation and oxidation of lactate serves as a mitochondrial electron shuttle, whereby lactate generated in the cytosol of the cell is oxidized at the mitochondria of the same cell. From this perspective, an intracellular lactate shuttle operates much like the malate-aspartate shuttle; it is also proposed that the two shuttles are necessarily interconnected. Among the requisite features of such a model, significant compartmentalization of LDH, much like the creatine kinase of the PCr shuttle, would facilitate net cellular lactate oxidation under a variety of conditions.

  6. Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis).

    Science.gov (United States)

    Korkmaz, Brice; Lesner, Adam; Letast, Stephanie; Mahdi, Yassir K; Jourdan, Marie-Lise; Dallet-Choisy, Sandrine; Marchand-Adam, Sylvain; Kellenberger, Christine; Viaud-Massuard, Marie-Claude; Jenne, Dieter E; Gauthier, Francis

    2013-07-01

    Neutrophils are among the first cells implicated in acute inflammation. Leaving the blood circulation, they quickly migrate through the interstitial space of tissues and liberate oxidants and other antimicrobial proteins together with serine proteinases. Neutrophil elastase, cathepsin G, proteinase 3 (PR3), and neutrophil serine protease 4 are four hematopoietic serine proteases activated by dipeptidyl peptidase I during neutrophil maturation and are mainly stored in cytoplasmic azurophilic granules. They regulate inflammatory and immune responses after their release from activated neutrophils at inflammatory sites. Membrane-bound PR3 (mbPR3) at the neutrophil surface is the prime antigenic target of antineutrophil cytoplasmic autoantibodies (ANCA) in granulomatosis with polyangiitis (GPA), a vasculitis of small blood vessels and granulomatous inflammation of the upper and/or lower respiratory tracts. The interaction of ANCA with mbPR3 results in excessive activation of neutrophils to produce reactive oxygen species and liberation of granular proteinases to the pericellular environment. In this review, we focus on PR3 and dipeptidyl peptidase I as attractive pharmacological targets whose inhibition is expected to attenuate autoimmune activation of neutrophils in GPA.

  7. Extracellular serine-proteinases isolated from Streptomyces alboniger: Partial characterization and effect of aprotinin on cellular structure

    Directory of Open Access Journals (Sweden)

    Lopes Andréa

    1999-01-01

    Full Text Available Streptomyces alboniger ATCC 12461 grown in brain heart infusion (BHI medium produced two extracellular serine-proteinases, denoted SP I and SP II, which were purified by ammonium sulfate precipitation and aprotinin-agarose affinity chromatography. SP I was purified 88,9-fold and SP II 66,7- fold, with 33.4% and 10.4% yield, respectively. The optimum pH for the proteinases activity, using a-N-p-tosyl-L-arginine-methyl ester (TAME as substrate, was 9-10 and the optimum temperature was 37ºC. The proteolytic activity of SP I and SP II was inhibited by aprotinin and SP I was partially inhibited by leupeptin, both serine-proteinase inhibitors. S. alboniger growth in BHI-liquid medium decreased when 5 mg/ml, 10 mg/ml of aprotinin was used, being completely inhibited with 20 mg/ml and 40 mg/ml. At the ultrastructural level, aprotinin-treated S. alboniger cells showed swelling of the bacterial body and condensation of the genetic material, probably related to the inhibition of its growth.

  8. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Directory of Open Access Journals (Sweden)

    Serena Boccella

    2015-01-01

    Full Text Available D-Aspartate (D-Asp is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO. D-Asp acts as an agonist on NMDA receptors (NMDARs. Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/− or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS neurons of the dorsal horn of the spinal cord (L4–L6 and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.

  9. Effect of ethylenediamine on chemical degradation of insulin aspart in pharmaceutical solutions.

    Science.gov (United States)

    Poulsen, Christian; Jacobsen, Dorte; Palm, Lisbeth

    2008-11-01

    To examine the effect of different amine compounds on the chemical degradation of insulin aspart at pharmaceutical formulation conditions. Insulin aspart preparations containing amine compounds or phosphate (reference) were prepared and the chemical degradation was assessed following storage at 37 degrees C using chromatographic techniques. Ethylenediamine was examined at multiple concentrations and the resulting insulin-ethylenediamine derivates were structurally characterized using matrix assisted laser desorption ionization time-of-flight mass spectroscopy. The effects on ethylenediamine when omitting glycerol or phenolic compounds from the formulations were investigated. Ethylenediamine was superior in terms of reducing formation of high molecular weight protein and insulin aspart related impurities compared to the other amine compounds and phosphate. Monotransamidation of insulin aspart in the presence of ethylenediamine was observed at all of the six possible Asn/Gln residues with Asn(A21) having the highest propensity to react with ethylenediamine. Data from formulations studies suggests a dual mechanism of ethylenediamine and a mandatory presence of phenolic compounds to obtain the effect. The formation of high molecular weight protein and insulin aspart related impurities was reduced by ethylenediamine in a concentration dependant manner.

  10. Vacuolar proteases from Candida glabrata: Acid aspartic protease PrA, neutral serine protease PrB and serine carboxypeptidase CpY. The nitrogen source influences their level of expression.

    Science.gov (United States)

    Sepúlveda-González, M Eugenia; Parra-Ortega, Berenice; Betancourt-Cervantes, Yuliana; Hernández-Rodríguez, César; Xicohtencatl-Cortes, Juan; Villa-Tanaca, Lourdes

    2016-01-01

    The Saccharomyces cerevisiae vacuole is actively involved in the mechanism of autophagy and is important in homeostasis, degradation, turnover, detoxification and protection under stressful conditions. In contrast, vacuolar proteases have not been fully studied in phylogenetically related Candida glabrata. The present paper is the first report on proteolytic activity in the C. glabrata vacuole. Biochemical studies in C. glabrata have highlighted the presence of different kinds of intracellular proteolytic activity: acid aspartyl proteinase (PrA) acts on substrates such as albumin and denatured acid hemoglobin, neutral serine protease (PrB) on collagen-type hide powder azure, and serine carboxypeptidase (CpY) on N-benzoyl-tyr-pNA. Our results showed a subcellular fraction with highly specific enzymatic activity for these three proteases, which allowed to confirm its vacuolar location. Expression analyses were performed in the genes CgPEP4 (CgAPR1), CgPRB1 and CgCPY1 (CgPRC), coding for vacuolar aspartic protease A, neutral protease B and carboxypeptidase Y, respectively. The results show a differential regulation of protease expression depending on the nitrogen source. The proteases encoded by genes CgPEP4, CgPRB1 and CgCPY1 from C. glabrata could participate in the process of autophagy and survival of this opportunistic pathogen. Copyright © 2014 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  11. Role of cysteine proteinase of Entamoeba histolytica in target cell death.

    Science.gov (United States)

    Singh, D; Naik, S R; Naik, S

    2004-08-01

    The bacterial flora of the intestine plays an important role in the virulence caused by Entamoeba histolytica. Cysteine proteinase (CP), an amoebic virulence factor, plays a major role in host cell destruction. The mechanism of increased virulence following bacterial co-association is not understood. We studied CP of E. histolytica HM1:IMSS which was co-associated with Escherichia coli K12 strain pre-incubated with GalNAc or CP specific inhibitor E 64. Co-association of E. histolytica with bacteria enhanced CP activity 3-6-fold as assessed by azocasein assay and substrate gel electrophoresis showed bands at molecular weights of 28, 35 and 56 kDa. Northern and Western blot analysis showed increase in ehcp2 and ehcp5 gene expression. Trophozoites co-associated with E. coli showed greater cytotoxicity of BHK cells by a 51Cr release assay than trophozoites that had not been co-associated; this enhancement was abolished by E-64 treatment. The killing of BHK 21 targets by E. histolytica was characterized by DNA laddering which was not inhibited with E-64. GalNAc pre-incubation of trophozoites reduced cytotoxicity and DNA laddering, while E. coli co-associated E. histolytica showed smearing with faint laddering of BHK implicating both necrosis and apoptosis. Hence, bacterial co-association increases CP activity and CP gene expression and contributes to the necrosis of the target cell.

  12. The electrophoretic mobility of alpha 1-proteinase inhibitor: effects of proteolysis and cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Stockley, R.A.; Afford, S.C.; Brunett, D.

    1982-04-01

    The electrophoretic mobility of purified alpha 1-proteinase inhibitor was compared with that of carbamoylated transferrin. The results ranged from 64.0 to 68.9% of the distance moved by the transferrin and was increased by cigarette smoke solution (range 70.4% to 75.0% of carbamoylated transferrin). The addition of leucocyte elastase produced a change in electrophoretic mobility only in the presence of excess enzyme when mobility fell (58.0 to 62.0%) and was associated with complete and not partial loss of inhibitory activity. No further change was seen over 24 h. Studies on sputum showed a wide range of mobility from 68.0 to 45.0% but only those with a mobility greater than 64.0% retained any inhibitory capacity against porcine pancreatic elastase. However, several samples had a mobility lower than that produced by proteolysis with leucocyte elastase and some showed continuing reduction with time. It is suggested that this is due to proteolysis by more than one enzyme.

  13. Characterization of a novel vaccine candidate and serine proteinase inhibitor from Schistosoma japonicum (Sj serpin).

    Science.gov (United States)

    Yan, Yutao; Liu, Shuxian; Song, Guangcheng; Xu, Yixin; Dissous, Colette

    2005-07-15

    Serine proteinase inhibitors (serpins) represent an important superfamily of endogenous inhibitors that regulate proteolytic events active in a variety of physiological functions. Immunological screening of a Schistosoma japonicum adult worm cDNA expression library with sera of Microtus fortis, a naturally resistant vertebrate host, has identified one clone that encoded for a sequence homologous to those of the serpin superfamily. The full-length sequence encoding S. japonicum serpin (Sj serpin) was amplified from adult worm cDNA by using 5'-RACE-PCR and subsequently cloned into the prokaryotic expression vector pET28c. The full-length Sj serpin fusion-protein with his-tag was expressed in E. coli, purified by affinity chromatography and used to immunize New Zealand white rabbits. Sj serpin is located on the tegument in S. japonicum adult worms. C57BL/6 mice immunized with Sj serpin induced the production of high levels of specific IgE and IgG1 subclass antibodies as well as a marked IL-4 response. Lymphocyte surface marker analysis revealed proliferation of CD19 expressing B cells, indicating a predominant Th2-type response to Sj serpin. Immunized mice developed moderate protection against infection of S. japonicum as demonstrated by a 36 and 39% reduction in the recovery of adult worms and eggs, respectively. These data suggested a role for Sj serpin as a vaccine candidate or as a novel target for anti-schistosome drugs.

  14. Proteinase K and the structure of PrPSc: The good, the bad and the ugly.

    Science.gov (United States)

    Silva, Christopher J; Vázquez-Fernández, Ester; Onisko, Bruce; Requena, Jesús R

    2015-09-02

    Infectious proteins (prions) are, ironically, defined by their resistance to proteolytic digestion. A defining characteristic of the transmissible isoform of the prion protein (PrP(Sc)) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrP(Sc) by Western blot, ELISA or immunohistochemical detection. PK digestion has also been used to detect differences in prion strains. Thus, PK has been a crucial tool to detect and, thereby, control the spread of prions. PK has also been used as a tool to probe the structure of PrP(Sc). Mass spectrometry and antibodies have been used to identify PK cleavage sites in PrP(Sc). These results have been used to identify the more accessible, flexible stretches connecting the β-strand components in PrP(Sc). These data, combined with physical constraints imposed by spectroscopic results, were used to propose a qualitative model for the structure of PrP(Sc). Assuming that PrP(Sc) is a four rung β-solenoid, we have threaded the PrP sequence to satisfy the PK proteolysis data and other experimental constraints. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis

    Science.gov (United States)

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U.; Kegel, Johanna; Haller, Hermann; Haubitz, Marion

    2015-01-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  16. Conjugation of biogenic polyamine (putrescine) with proteinase K: Spectroscopic and theoretical insights.

    Science.gov (United States)

    Hosseini-Koupaei, Mansoore; Shareghi, Behzad; Saboury, Ali Akbar

    2017-05-01

    To understand the influence of polyamine on conformation, stabilization and function of proteins, we used multispectroscopic and simulation methods through structural, stability and kinetic measurements of proteinase K (PK) as a model enzyme combined with putrescine (Put). Structural variability of PK was investigated at different concentrations of Put, using circular dichroism, spectrofluorescence and UV-vis measurements. The secondary structure of PK was changed through β-sheet to α-helix switch induced by Put. Spontaneity of the PK-Put complexation, through hydrogen and van der Waals interactions, altered the microenvironment of aromatic residues due to the exposure of them to the solvent. UV-vis measurement also supported the secondary and tertiary structure alteration of PK as a function of Put concentration. Analysis of kinetic parameters and stability studies revealed that Put could act as an enhancer of activity and stabilizer of PK. Our experiments showed that stability and activity changes of enzyme were closely associated to the conformational alterations of enzyme. The molecular simulation results also demonstrated that Put could spontaneously bind and alter the structure of PK, thereby confirming the experimental results. Overall, the results showed that Put could bind to PK and improve its stability and activity, thereby promising various biotechnological and industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The pep4 gene encoding proteinase A is involved in dimorphism and pathogenesis of Ustilago maydis.

    Science.gov (United States)

    Soberanes-Gutiérrez, Cinthia V; Juárez-Montiel, Margarita; Olguín-Rodríguez, Omar; Hernández-Rodríguez, César; Ruiz-Herrera, José; Villa-Tanaca, Lourdes

    2015-10-01

    Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild-type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild-type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  18. An alanine residue in the M3-M4 linker lines the glycine binding pocket of the N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Wood, M W; VanDongen, H M; VanDongen, A M

    1997-02-07

    While attempting to map a central region in the M3-M4 linker of the N-methyl-D-aspartate receptor NR1 subunit, we found that mutation of a single position, Ala-714, greatly reduced the apparent affinity for glycine. Proximal N-glycosylation localized this region to the extracellular space. Glycine affinities of additional Ala-714 mutations correlated with side chain volume. Substitution of alanine 714 with cysteine did not alter glycine sensitivity, although this mutant was rapidly inhibited by dithionitrobenzoate. Glycine protected the A714C mutant from modification by dithionitrobenzoate, whereas the co-agonist L-glutamate was ineffective. These experiments place Ala-714 in the glycine binding pocket of the N-methyl-D-aspartate receptor, a determination not predicted by previous structural models based on bacterial periplasmic binding protein homology.

  19. An alternative method to amplify RNA without loss of signal conservation for expression analysis with a proteinase DNA microarray in the ArrayTube® format

    Directory of Open Access Journals (Sweden)

    Wiederanders B

    2006-06-01

    Full Text Available Abstract Background Recent developments in DNA microarray technology led to a variety of open and closed devices and systems including high and low density microarrays for high-throughput screening applications as well as microarrays of lower density for specific diagnostic purposes. Beside predefined microarrays for specific applications manufacturers offer the production of custom-designed microarrays adapted to customers' wishes. Array based assays demand complex procedures including several steps for sample preparation (RNA extraction, amplification and sample labelling, hybridization and detection, thus leading to a high variability between several approaches and resulting in the necessity of extensive standardization and normalization procedures. Results In the present work a custom designed human proteinase DNA microarray of lower density in ArrayTube® format was established. This highly economic open platform only requires standard laboratory equipment and allows the study of the molecular regulation of cell behaviour by proteinases. We established a procedure for sample preparation and hybridization and verified the array based gene expression profile by quantitative real-time PCR (QRT-PCR. Moreover, we compared the results with the well established Affymetrix microarray. By application of standard labelling procedures with e.g. Klenow fragment exo-, single primer amplification (SPA or In Vitro Transcription (IVT we noticed a loss of signal conservation for some genes. To overcome this problem we developed a protocol in accordance with the SPA protocol, in which we included target specific primers designed individually for each spotted oligomer. Here we present a complete array based assay in which only the specific transcripts of interest are amplified in parallel and in a linear manner. The array represents a proof of principle which can be adapted to other species as well. Conclusion As the designed protocol for amplifying m

  20. pH-responsive poly(aspartic acid) hydrogel-coated magnetite nanoparticles for biomedical applications.

    Science.gov (United States)

    Vega-Chacón, Jaime; Arbeláez, María Isabel Amaya; Jorge, Janaina Habib; Marques, Rodrigo Fernando C; Jafelicci, Miguel

    2017-08-01

    A novel multifunctional nanosystem formed by magnetite nanoparticles coated with pH-responsive poly(aspartic acid) hydrogel was developed. Magnetite nanoparticles (Fe3O4) have been intensively investigated for biomedical applications due to their magnetic properties and dimensions similar to the biostructures. Poly(aspartic acid) is a water-soluble, biodegradable and biocompatible polymer, which features makes it a potential candidate for biomedical applications. The nanoparticles surface modification was carried out by crosslinking polysuccinimide on the magnetite nanoparticles surface and hydrolyzing the succinimide units in mild alkaline medium to obtain the magnetic poly(aspartic acid) hydrogel. The surface modification in each step was confirmed by DRIFTS, TEM and zeta potential measurements. The hydrodynamic diameter of the nanosystems decreases as the pH value decreases. The nanosystems showed high colloidal stability in water and no cytotoxicity was detected, which make these nanosystems suitable for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH.

    Science.gov (United States)

    Allen, Eric L; Ulanet, Danielle B; Pirman, David; Mahoney, Christopher E; Coco, John; Si, Yaguang; Chen, Ying; Huang, Lingling; Ren, Jinmin; Choe, Sung; Clasquin, Michelle F; Artin, Erin; Fan, Zi Peng; Cianchetta, Giovanni; Murtie, Joshua; Dorsch, Marion; Jin, Shengfang; Smolen, Gromoslaw A

    2016-10-11

    Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    Directory of Open Access Journals (Sweden)

    Eric L. Allen

    2016-10-01

    Full Text Available Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization, via the malate-aspartate shuttle, as a predictor of whether OGDH is required for proliferation in 3D culture assays and for the growth of xenograft tumors. These findings highlight an anaplerotic role of aspartate and, more broadly, suggest that differential nutrient utilization patterns can identify subsets of cancers with distinct metabolic dependencies for potential pharmacological intervention.

  3. Onchocerca volvulus: expression and immunolocalization of a nematode cathepsin D-like lysosomal aspartic protease.

    Science.gov (United States)

    Jolodar, Abbas; Fischer, Peter; Büttner, Dietrich W; Miller, David J; Schmetz, Christel; Brattig, Norbert W

    2004-01-01

    The N-terminal region of the cathepsin D-like aspartic protease from the human filarial parasite Onchocerca volvulus was expressed as His-tag fusion protein. Light and electron microscopic immunohistology using antibodies against the recombinant protein showed labeling of lysosomes in the hypodermis and epithelia of the intestine and the reproductive organs of Onchocerca. While developing oocytes were negative, mature oocytes and early morulae showed strong labeling. In older embryos and mature microfilariae, stained lysosomes were only found in a few cells. Cell death in degenerating microfilariae of patients untreated and treated with microfilaricidal drugs was associated with strong expression of aspartic protease. IgG1, IgG4, and IgE antibodies reactive with the recombinant protein were demonstrated in sera from onchocerciasis patients indicating exposure and recognition of the enzyme by the host's defence system. The aspartic protease of O. volvulus appears to function in intestinal digestion and tissue degradation of the filaria.

  4. Blockade of N-methyl-D-aspartate induced convulsions by 1-aminocyclopropanecarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Skolnick, P.; Marvizon, J.C.G.; Jackson, B.W.; Monn, J.A.; Rice, K.C. (National Institutes of Health, Bethesda, MD (USA)); Lewin, A.H. (Research Triangle Institute, Research Triangle Park, NC (USA))

    1989-01-01

    1-Aminocyclopropanecarboxylic acid is a potent and selective ligand for the glycine modulatory site on the N-methyl-D-aspartate receptor complex. This compound blocks the convulsions and deaths produced by N-methyl-D-aspartate in a dose dependent fashion. In contrast, 1-aminocyclopropanecarboxylic acid does not protect mice against convulsions induced by pentylenetetrazole, strychnine, bicuculline, or maximal electroshock, and does not impair motor performance on either a rotarod or horizontal wire at doses of up to 2 g/kg. The methyl- and ethyl- esters of 1-aminocyclopropanecarboxylic acid are 5- and 2.3-fold more potent, respectively, than the parent compound in blocking the convulsant and lethal effects of N-methyl-D-aspartate. However, these esters are several orders of magnitude less potent than 1-aminocyclopropanecarboxylic acid as inhibitors of strychnine-insensitive ({sup 3}H)glycine binding, indicating that conversion to the parent compound may be required to elicit an anticonvulsant action.

  5. High Temperature During Rice Grain Filling Enhances Aspartate Metabolism in Grains and Results in Accumulation of Aspartate-Family Amino Acids and Protein Components

    Directory of Open Access Journals (Sweden)

    Cheng-gang LIANG

    2013-09-01

    Full Text Available Global warming causes the exacerbation of rice growing environment, which seriously affects rice growth and reproduction, and finally results in the decrease of rice yield and quality. We investigated the activities of aspartate metabolism enzymes in grains, and the contents of Aspartate-family amino acids and protein components to further understand the effects of high temperature (HT on rice nutritional quality during rice grain filling. Under HT, the average activities of aspartate aminotransferase (AAT and aspartokinase (AK in grains significantly increased, the amino acid contents of aspartate (Asp, lysine (Lys, threonine (Thr, methionine (Met and isoleucine (Ile and the protein contents of albumin, globulin, prolamin and glutelin also significantly increased. The results indicated that HT enhanced Asp metabolism during rice grain filling and the enhancement of Asp metabolism might play an important role in the increase of Asp-family amino acids and protein components in grains. In case of the partial appraisal of the change of Asp-family amino acids and protein components under HT, we introduced eight indicators (amino acid or protein content, ratio of amino acid or protein, amino acid or protein content per grain and amino acid or protein content per panicle to estimate the effects of HT. It is suggested that HT during rice grain filling was benefit for the accumulation of Asp-family amino acids and protein components. Combined with the improvement of Asp-family amino acid ratio in grains under HT, it is suggested that HT during grain filling may improve the rice nutritional quality. However, the yields of parts of Asp-family amino acids and protein components were decreased under HT during rice grain filling.

  6. Mutations that cause threonine sensitivity identify catalytic and regulatory regions of the aspartate kinase of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Arévalo-Rodríguez, M; Calderón, I L; Holmberg, S

    1999-01-01

    The HOM3 gene of Saccharomyces cerevisiae encodes aspartate kinase, which catalyses the first step in the branched pathway leading to the synthesis of threonine and methionine from aspartate. Regulation of the carbon flow into this pathway takes place mainly by feedback inhibition of this enzyme...... by threonine. We have isolated and characterized three HOM3 mutants that show growth inhibition by threonine due to a severe, threonine-induced reduction of the carbon flow into the aspartate pathway, leading to methionine limitation. One of the mutants has an aspartate kinase which is 30-fold more strongly...

  7. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Qatar cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Mohamed Hasan Daghash

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Qatar. Results: A total of 91 patients were enrolled in the study. Two insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 88, insulin detemir (n = 2, and other insulin combinations (n = 1. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.9% and insulin users (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, all the study groups showed improvement in HbA 1 c (insulin naïve: −1.8%, insulin users: −1.3%. Major hypoglycaemia did not occur in the study patients. SADRs were reported in 1.4% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  8. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N., E-mail: ichi@oist.jp [Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-0495 (Japan)

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  9. Structure-based drug design: the discovery of novel nonpeptide orally active inhibitors of human renin.

    Science.gov (United States)

    Rahuel, J; Rasetti, V; Maibaum, J; Rüeger, H; Göschke, R; Cohen, N C; Stutz, S; Cumin, F; Fuhrer, W; Wood, J M; Grütter, M G

    2000-07-01

    The aspartic proteinase renin plays an important physiological role in the regulation of blood pressure. It catalyses the first step in the conversion of angiotensinogen to the hormone angiotensin II. In the past, potent peptide inhibitors of renin have been developed, but none of these compounds has made it to the end of clinical trials. Our primary aim was to develop novel nonpeptide inhibitors. Based on the available structural information concerning renin-substrate interactions, we synthesized inhibitors in which the peptide portion was replaced by lipophilic moieties that interact with the large hydrophobic S1/S3-binding pocket in renin. Crystal structure analysis of renin-inhibitor complexes combined with computational methods were employed in the medicinal-chemistry optimisation process. Structure analysis revealed that the newly designed inhibitors bind as predicted to the S1/S3 pocket. In addition, however, these compounds interact with a hitherto unrecognised large, distinct, sub-pocket of the enzyme that extends from the S3-binding site towards the hydrophobic core of the enzyme. Binding to this S3(sp) sub-pocket was essential for high binding affinity. This unprecedented binding mode guided the drug-design process in which the mostly hydrophobic interactions within subsite S3(sp) were optimised. Our design approach led to compounds with high in vitro affinity and specificity for renin, favourable bioavailability and excellent oral efficacy in lowering blood pressure in primates. These renin inhibitors are therefore potential therapeutic agents for the treatment of hypertension and related cardiovascular diseases.

  10. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related symptoms induced by phencyclidine in mice.

    Science.gov (United States)

    Errico, F; D'Argenio, V; Sforazzini, F; Iasevoli, F; Squillace, M; Guerri, G; Napolitano, F; Angrisano, T; Di Maio, A; Keller, S; Vitucci, D; Galbusera, A; Chiariotti, L; Bertolino, A; de Bartolomeis, A; Salvatore, F; Gozzi, A; Usiello, A

    2015-02-17

    Increasing evidence points to a role for dysfunctional glutamate N-methyl-D-aspartate receptor (NMDAR) neurotransmission in schizophrenia. D-aspartate is an atypical amino acid that activates NMDARs through binding to the glutamate site on GluN2 subunits. D-aspartate is present in high amounts in the embryonic brain of mammals and rapidly decreases after birth, due to the activity of the enzyme D-aspartate oxidase (DDO). The agonistic activity exerted by D-aspartate on NMDARs and its neurodevelopmental occurrence make this D-amino acid a potential mediator for some of the NMDAR-related alterations observed in schizophrenia. Consistently, substantial reductions of D-aspartate and NMDA were recently observed in the postmortem prefrontal cortex of schizophrenic patients. Here we show that DDO mRNA expression is increased in prefrontal samples of schizophrenic patients, thus suggesting a plausible molecular event responsible for the D-aspartate imbalance previously described. To investigate whether altered D-aspartate levels can modulate schizophrenia-relevant circuits and behaviors, we also measured the psychotomimetic effects produced by the NMDAR antagonist, phencyclidine, in Ddo knockout mice (Ddo(-)(/-)), an animal model characterized by tonically increased D-aspartate levels since perinatal life. We show that Ddo(-/-) mice display a significant reduction in motor hyperactivity and prepulse inhibition deficit induced by phencyclidine, compared with controls. Furthermore, we reveal that increased levels of D-aspartate in Ddo(-/-) animals can significantly inhibit functional circuits activated by phencyclidine, and affect the development of cortico-hippocampal connectivity networks potentially involved in schizophrenia. Collectively, the present results suggest that altered D-aspartate levels can influence neurodevelopmental brain processes relevant to schizophrenia.

  11. Persistent elevation of D-Aspartate enhances NMDA receptor-mediated responses in mouse substantia nigra pars compacta dopamine neurons.

    Science.gov (United States)

    Krashia, Paraskevi; Ledonne, Ada; Nobili, Annalisa; Cordella, Alberto; Errico, Francesco; Usiello, Alessandro; D'Amelio, Marcello; Mercuri, Nicola Biagio; Guatteo, Ezia; Carunchio, Irene

    2016-04-01

    Dopamine neurons in the substantia nigra pars compacta regulate not only motor but also cognitive functions. NMDA receptors play a crucial role in modulating the activity of these cells. Considering that the amino-acid D-Aspartate has been recently shown to be an endogenous NMDA receptor agonist, the aim of the present study was to examine the effects of D-Aspartate on the functional properties of nigral dopamine neurons. We compared the electrophysiological actions of D-Aspartate in control and D-aspartate oxidase gene (Ddo(-/-)) knock-out mice that show a concomitant increase in brain D-Aspartate levels, improved synaptic plasticity and cognition. Finally, we analyzed the effects of L-Aspartate, a known dopamine neuron endogenous agonist in control and Ddo(-/-) mice. We show that D- and L-Aspartate excite dopamine neurons by activating NMDA, AMPA and metabotropic glutamate receptors. Ddo deletion did not alter the intrinsic properties or dopamine sensitivity of dopamine neurons. However, NMDA-induced currents were enhanced and membrane levels of the NMDA receptor GluN1 and GluN2A subunits were increased. Inhibition of excitatory amino-acid transporters caused a marked potentiation of D-Aspartate, but not L-Aspartate currents, in Ddo(-/-) neurons. This is the first study to show the actions of D-Aspartate on midbrain dopamine neurons, activating not only NMDA but also non-NMDA receptors. Our data suggest that dopamine neurons, under conditions of high D-Aspartate levels, build a protective uptake mechanism to compensate for increased NMDA receptor numbers and cell hyper-excitation, which could prevent the consequent hyper-dopaminergia in target zones that can lead to neuronal degeneration, motor and cognitive alterations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pušnik, Klementina; Goršak, Tanja [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia); Drofenik, Miha [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia)

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe{sup 3+} ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe{sup 3+} ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  13. Secretory Aspartyl Proteinases Cause Vaginitis and Can Mediate Vaginitis Caused by Candida albicans in Mice.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Amacker, Mario; Kasper, Lydia; Roselletti, Elena; Luciano, Eugenio; Sabbatini, Samuele; Kaeser, Matthias; Moser, Christian; Hube, Bernhard; Vecchiarelli, Anna; Cassone, Antonio

    2015-06-02

    Vaginal inflammation (vaginitis) is the most common disease caused by the human-pathogenic fungus Candida albicans. Secretory aspartyl proteinases (Sap) are major virulence traits of C. albicans that have been suggested to play a role in vaginitis. To dissect the mechanisms by which Sap play this role, Sap2, a dominantly expressed member of the Sap family and a putative constituent of an anti-Candida vaccine, was used. Injection of full-length Sap2 into the mouse vagina caused local neutrophil influx and accumulation of the inflammasome-dependent interleukin-1β (IL-1β) but not of inflammasome-independent tumor necrosis factor alpha. Sap2 could be replaced by other Sap, while no inflammation was induced by the vaccine antigen, the N-terminal-truncated, enzymatically inactive tSap2. Anti-Sap2 antibodies, in particular Fab from a human combinatorial antibody library, inhibited or abolished the inflammatory response, provided the antibodies were able, like the Sap inhibitor Pepstatin A, to inhibit Sap enzyme activity. The same antibodies and Pepstatin A also inhibited neutrophil influx and cytokine production stimulated by C. albicans intravaginal injection, and a mutant strain lacking SAP1, SAP2, and SAP3 was unable to cause vaginal inflammation. Sap2 induced expression of activated caspase-1 in murine and human vaginal epithelial cells. Caspase-1 inhibition downregulated IL-1β and IL-18 production by vaginal epithelial cells, and blockade of the IL-1β receptor strongly reduced neutrophil influx. Overall, the data suggest that some Sap, particularly Sap2, are proinflammatory proteins in vivo and can mediate the inflammasome-dependent, acute inflammatory response of vaginal epithelial cells to C. albicans. These findings support the notion that vaccine-induced or passively administered anti-Sap antibodies could contribute to control vaginitis. Candidal vaginitis is an acute inflammatory disease that affects many women of fertile age, with no definitive cure and, in

  14. Mandatory role of proteinase-activated receptor 1 in experimental bladder inflammation

    Directory of Open Access Journals (Sweden)

    Davis Carole A

    2007-03-01

    Full Text Available Abstract Background In general, inflammation plays a role in most bladder pathologies and represents a defense reaction to injury that often times is two edged. In particular, bladder neurogenic inflammation involves the participation of mast cells and sensory nerves. Increased mast cell numbers and tryptase release represent one of the prevalent etiologic theories for interstitial cystitis and other urinary bladder inflammatory conditions. The activity of mast cell-derived tryptase as well as thrombin is significantly increased during inflammation. Those enzymes activate specific G-protein coupled proteinase-activated receptors (PARs. Four PARs have been cloned so far, and not only are all four receptors highly expressed in different cell types of the mouse urinary bladder, but their expression is altered during experimental bladder inflammation. We hypothesize that PARs may link mast cell-derived proteases to bladder inflammation and, therefore, play a fundamental role in the pathogenesis of cystitis. Results Here, we demonstrate that in addition to the mouse urinary bladder, all four PA receptors are also expressed in the J82 human urothelial cell line. Intravesical administration of PAR-activating peptides in mice leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS, substance P, and antigen was strongly attenuated by PAR1-, and to a lesser extent, by PAR2-deficiency. Conclusion Our results reveal an overriding participation of PAR1 in bladder inflammation, provide a working model for the involvement of downstream signaling, and evoke testable hypotheses regarding the role of PARs in bladder inflammation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestations of cystitis.

  15. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Directory of Open Access Journals (Sweden)

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  16. Characterization of a serine proteinase homologous (SPH) in Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Qin, Chuanjie; Chen, Liqiao; Qin, Jian G; Zhao, Daxian; Zhang, Hao; Wu, Ping; Li, Erchao

    2010-01-01

    The serine protease homologous (SPH) is an important cofactor of prophenoloxidase-activating enzyme (PPAE). The gene of SPH of Chinese mitten crab Eriocheir sinensis (EsSPH) in hemocytes was cloned and characterized using reverse transcript polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The SPH cDNA consisted of 1386 bp with an open reading frame (ORF) encoded a protein of 378 amino acids, 154 bp 5'-untranslated region, and 95 bp 3'-untranslated region. Sequence comparisons against the GenBank database showed that EsSPH deduced amino acids had an overall identity to the gene of serine protease family from 41% to 70% of 15 invertebrate species. The protein had the structural characteristics of SPH, including the conserved six cysteine residues in the N-terminal clip domain and the functional activity (His157, Asp209, Gly311) in the C-terminal serine proteinase-like domain. To analyze the role of EsSPH in an acute infection, the temporal expression of the EsSPH gene after the Aeromonas hydrophila challenge was measured by real-time RT-PCR. The EsSPH transcripts in hemocytes significantly increased at 6 h, 12 h and 48 h over time after the A. hydrophila injection. This expression pattern shows that EsSPH has the potential to defend against invading microorganisms. The mRNA transcripts of EsSPH were detected in all tissues with the highest in the hepatopancreas. Interestingly, the mRNA transcripts of EsSPH and proPO were found in ova and expressed in oosperms, suggesting that the maternal transfer of EsSPH and proPO may exit in crab, but this warrants confirmation in further research.

  17. Wound-induced proteinase inhibitor in Salix viminalis and its association with defence against insects

    Energy Technology Data Exchange (ETDEWEB)

    Saarikoski, P. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics

    1997-09-01

    For successful traditional breeding, the plant material has to be screened for genetic variation for the desired traits. By screening Salix clones for wound-induced proteinase inhibitor (PI) activity and ethylene evolution, it was possible to identify variation for both characters among the Salix clones tested. However, no correlation was observed with insect and pathogen resistance. Since there was no simple relationship between wound-induced ethylene production, accumulation of PI and pest resistance, a more systematic investigation of Salix PIs was begun. A gene (swin1.1) encoding a 21 kDa trypsin inhibitor with characteristics of Kunitz-type of PI was sequenced. The trypsin inhibitor encoded by the isolated swin1.1 gene was shown to be functional in vitro and exhibit specificity for trypsin. It is therefore likely that this PI is involved in the plant defence in Salix, since many insects have trypsin as their major digestive protease. In further support of this view, in bio-tests with poplar the mortality of the first instar larvae (Lymantria dispar) was significantly increased, both after application of the trypsin inhibitor encoded by swin1.1 directly on poplar leaves and after feeding the larvae with transgenic poplar over-expressing the swin1.1 gene. In Salix, the swin1.1 gene was shown to be induced by mechanical wounding, insect feeding and by treatment with the signalling substances salicylic and jasmonic acid. The locally wound-induced response (mechanical and insect) was greater than the systemic response. Other swin1 gene family members were also differentially expressed after the inductive treatment. 187 refs., 3 figs., 2 tabs.

  18. Effects of proteinase A on cultivation and viability characteristics of industrial Saccharomyces cerevisiae WZ65.

    Science.gov (United States)

    Zhang, Hong-bo; Zhang, Hai-feng; Chen, Qi-he; Ruan, Hui; Fu, Ming-liang; He, Guo-qing

    2009-10-01

    Proteinase A (PrA), encoded by PEP4 gene, is a key enzyme in the vacuoles of Saccharomyces cerevisiae. We characterized the effects of PrA on cell growth and glucose metabolism in the industrial S. cerevisiae WZ65. It was observed that the lag phase of cell growth of partial PEP4 gene deletion mutant (36 h) and PrA-negative mutant (48 h) was significantly extended, compared with the wild type strain (24 h) (Pcerevisiae cell growth, and PrA was found to promote cell growth against insufficient oxygen condition in steady state cultivation, but had no effect in shaking cultivation. The effects of glucose starvation on cell growth of partial PEP4 gene deletion strain and PrA-negative mutant were also evaluated. The results show that PrA partial deficiency increased the adaption of S. cerevisiae to unfavorable nutrient environment, but had no effect on glucose metabolism under the stress of low glucose. During heat shock test, at 60 degrees C the reduced cell viability rate (RCVR) was 10% for the wild type S. cerevisiae and 90% for both mutant strains (Pcerevisiae cells to survive under heat shock. As temperatures rose from 60 degrees C to 70 degrees C, the wild type S. cerevisiae had significantly lower relative glucose consumption rate (RGCR) (61.0% and 80.0%) than the partial mutant (78.0% and 98.5%) and the complete mutant (80.0% and 98.0%) (Pcerevisiae physiology is complex and needs to be further investigated.

  19. The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release

    NARCIS (Netherlands)

    Halmos, Gyorgy; Horvath, T.; Polony, G.; Fekete, A.; Kittel, A.; Vizi, E. S.; van der Laan, B. F. A. M.; Zelles, T.; Lendvai, B.

    2008-01-01

    Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-D-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [(3)H]DA from isolated mouse

  20. Regulation of aspartate-derived amino-acid metabolism in Zygosaccharomyces rouxii compared to Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Sluis, van der C.; Smit, B.A.; Hartmans, S.; Schure, ter E.G.; Tramper, J.; Wijffels, R.H.

    2000-01-01

    To elucidate the growth inhibitory effect of threonine, the regulation of the aspartate-derived amino-acid metabolism in Zygosaccharomyces rouxii, an important yeast for the flavor development in soy sauce, was investigated. It was shown that threonine inhibited the growth of Z. rouxii by blocking

  1. Tweaking agonist efficacy at N-methyl-D-aspartate receptors by site-directed mutagenesis

    DEFF Research Database (Denmark)

    Hansen, Kasper B; Clausen, Rasmus P; Bjerrum, Esben J

    2005-01-01

    The structural basis for partial agonism at N-methyl-D-aspartate (NMDA) receptors is currently unresolved. We have characterized several partial agonists at the NR1/NR2B receptor and investigated the mechanisms underlying their reduced efficacy by introducing mutations in the glutamate binding si...

  2. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group.

    Science.gov (United States)

    Bungard, Christopher J; Williams, Peter D; Ballard, Jeanine E; Bennett, David J; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S; Chang, Ronald K; Dubost, David C; Fay, John F; Diamond, Tracy L; Greshock, Thomas J; Hao, Li; Holloway, M Katharine; Felock, Peter J; Gesell, Jennifer J; Su, Hua-Poo; Manikowski, Jesse J; McKay, Daniel J; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M; Nantermet, Philippe G; Nadeau, Christian; Sanchez, Rosa I; Satyanarayana, Tummanapalli; Shipe, William D; Singh, Sanjay K; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M; Vacca, Joseph P; Crane, Sheldon N; McCauley, John A

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  3. Utilization of L-aspartate, L-malate and fumarate by Pasteurella multocida

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, M.; Flossmann, K.D. (Akademie der Landwirtschaftswissenschaften der DDR, Jena. Inst. fuer Bakterielle Tierseuchenforschung)

    1981-01-01

    Strains of Pasteurella multocida use L-aspartate, L-malate and furmarate, respectively, as substrates for production of succinic acid which accumulates in the medium. As was established by studies with /sup 14/C- and /sup 3/H-labelled substrates, the degradation of these substances proceeds analogously via the citric acid cycle.

  4. Preparation and evaluation of glycosylated arginine-glycine-aspartate (RGD) derivatives for integrin targeting.

    NARCIS (Netherlands)

    Kuijpers, B.H.M.; Groothuys, S.; Soede, A.C.; Laverman, P.; Boerman, O.C.; Delft, F.L. van; Rutjes, F.P.J.T.

    2007-01-01

    Arginine-glycine-aspartate (RGD) derivatives were prepared by a combination of solid-phase and solution-phase synthesis for selective targeting of alpha vbeta 3 integrin expressed in tumors. In order to evaluate the value of a triazole moiety as a proposed amide isostere, the side chain glycosylated

  5. Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke

    NARCIS (Netherlands)

    Stevens, H; Jakobs, C; de Jager, AEJ; Cunningham, RT; Korf, J

    Background After stroke, brain-specific proteins (including neurone-specific enolase) leak into the blood. The question addressed in the present study was whether N-acetyl-aspartate (amino acid derivative localized in cerebral neurones) could also serve as a peripheral marker of ischaemic damage.

  6. Kinetics of reactions of aquacobalamin with aspartic and glutamic acids and their amides in water solutions

    Science.gov (United States)

    Bui, T. T. T.; Sal'nikov, D. S.; Dereven'kov, I. A.; Makarov, S. V.

    2017-04-01

    The kinetics of aquacobalamin reaction with aspartic and glutamic acids, and with their amides in water solutions, is studied via spectrophotometry. The kinetic and activation parameters of the process are determined. It is shown that the reaction product is cobalamin-amino acid complex. The data are compared to results on the reaction between aquacobalamin and primary amines.

  7. Hypoglycemia in type 1 diabetic pregnancy: role of preconception insulin aspart treatment in a randomized study

    DEFF Research Database (Denmark)

    Heller, Simon; Damm, Peter; Mersebach, Henriette

    2010-01-01

    OBJECTIVE A recent randomized trial compared prandial insulin aspart (IAsp) with human insulin in type 1 diabetic pregnancy. The aim of this exploratory analysis was to investigate the incidence of severe hypoglycemia during pregnancy and compare women enrolled preconception with women enrolled...

  8. Aspartate buffer and divalent metal ions affect oxytocin in aqueous solution and protect it from degradation

    NARCIS (Netherlands)

    Avanti, Christina; Oktaviani, Nur Alia; Hinrichs, Wouter L J; Frijlink, Henderik W; Mulder, Frans A A

    2013-01-01

    Oxytocin is a peptide drug used to induce labor and prevent bleeding after childbirth. Due to its instability, transport and storage of oxytocin formulations under tropical conditions is problematic. In a previous study, we have found that the stability of oxytocin in aspartate buffered formulation

  9. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    The survival of cerebellar granule cells in culture is promoted by chronic exposure to N-methyl-D-aspartate (NMDA). The effect is due to the stimulation of 'conventional' NMDA receptor-ionophore complex: it is concentration dependent, voltage dependent and blocked by the selective antagonists D-2...

  10. Discovery of MK-8718, an HIV Protease Inhibitor Containing a Novel Morpholine Aspartate Binding Group

    Energy Technology Data Exchange (ETDEWEB)

    Bungard, Christopher J.; Williams, Peter D.; Ballard, Jeanine E.; Bennett, David J.; Beaulieu, Christian; Bahnck-Teets, Carolyn; Carroll, Steve S.; Chang, Ronald K.; Dubost, David C.; Fay, John F.; Diamond, Tracy L.; Greshock, Thomas J.; Hao, Li; Holloway, M. Katharine; Felock, Peter J.; Gesell, Jennifer J.; Su, Hua-Poo; Manikowski, Jesse J.; McKay, Daniel J.; Miller, Mike; Min, Xu; Molinaro, Carmela; Moradei, Oscar M.; Nantermet, Philippe G.; Nadeau, Christian; Sanchez, Rosa I.; Satyanarayana, Tummanapalli; Shipe, William D.; Singh, Sanjay K.; Truong, Vouy Linh; Vijayasaradhi, Sivalenka; Wiscount, Catherine M.; Vacca, Joseph P.; Crane, Sheldon N.; McCauley, John A. (Merck); (Albany MR)

    2016-07-14

    A novel HIV protease inhibitor was designed using a morpholine core as the aspartate binding group. Analysis of the crystal structure of the initial lead bound to HIV protease enabled optimization of enzyme potency and antiviral activity. This afforded a series of potent orally bioavailable inhibitors of which MK-8718 was identified as a compound with a favorable overall profile.

  11. A randomized trial of insulin aspart with intensified basal NPH insulin supplementation in people with Type 1 diabetes

    NARCIS (Netherlands)

    DeVries, J. H.; Lindholm, A.; Jacobsen, J. L.; Heine, R. J.; Home, P. D.

    2003-01-01

    Aims Insulin aspart has been shown to improve post-prandial and overall glycaemic control in people with Type 1 diabetes. We hypothesized that insulin aspart with intensified basal NPH insulin supplementation would result in better overall glycaemic control than human regular insulin with standard

  12. A study on the applicability of L-aspartate alpha-decarboxylase in the biobased production of nitrogen containing chemicals

    NARCIS (Netherlands)

    Könst, P.M.; Franssen, M.C.R.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    -Alanine could serve as an intermediate in the biobased production of nitrogen containing chemicals from L-aspartic acid. Following the biorefinery concept, L-aspartic acid could become widely available from biomass waste streams via the nitrogen storage polypeptide cyanophycin. Since

  13. [Anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma: Description of a case and anesthetic implications].

    Science.gov (United States)

    Arteche Andrés, M A; Zugasti Echarte, O; de Carlos Errea, J; Pérez Rodríguez, M; Leyún Pérez de Zabalza, R; Azcona Calahorra, M A

    2015-10-01

    N-methyl-D-aspartate receptor encephalitis is an autoimmune encephalitis relationated or not with a neoplasm. Although its incidence is unknown, probably remains underdiagnosed. Epidemiological studies place it as the second cause of immune-mediated encephalitis and the first in patients aged less of 30 years. It shows neuropsychiatric symptoms and autonomic instability. After diagnosis, based on the detection of antibodies in serum or cerebrospinal fluid, an occult malignancy must be investigated. While increasing number of cases have been diagnosed and the important role of this receptor in general anesthesia mechanisms, the interaction of the disease with anesthetic agents and perioperative stress is unknown. We describe the case of a patient with encephalitis associated to ovarian teratoma that underwent gynaecological laparoscopy. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Distribution of serum concentrations reported for macroenzyme aspartate aminotransferase (macro-AST).

    Science.gov (United States)

    Rubin, Asa S; Sass, David A; Stickle, Douglas F

    2017-08-01

    The presence of macroenzyme (M) is often the explanation of an isolated elevation of aspartate aminotransferase (AST). Where M is identified, it is reasonable for the clinician to ask where an individual patient's result fits in with known concentrations of M. In this context, we conducted a survey of literature to examine the distribution of reported serum concentrations of macro-AST. We also analyzed the distribution data to examine whether elevations were consistent with simple alteration of circulatory half-life (t1/2) of M relative to normal AST. Distributions of M were compiled from the literature. These distributions were compared to predictions based on fixed changes in t1/2 applied to the reference interval for AST. There was a bimodal distribution of literature values for M (n =51), comprised roughly of populations A (M 200 U/L; 40% of total). The two distributions were reasonably well characterized by a simple projection to the right of the reference interval for AST according to increased t1/2 (A: t1/2 =3.3 days; B: t1/2 =19.8 days) relative to AST (t1/2 =0.7 days). Knowledge of distributions for M may be useful in discussion with clinicians regarding significance of M for individual patients. Distributions for M were consistent with the simplest explanation for elevated AST due strictly to an extended circulatory lifetime for M. Caveats to analysis, however, include selection within literature data mainly for patients with various co-morbidities.

  15. Overlapping demyelinating syndromes and anti–N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Titulaer, Maarten J; Höftberger, Romana; Iizuka, Takahiro; Leypoldt, Frank; McCracken, Lindsey; Cellucci, Tania; Benson, Leslie A; Shu, Huidy; Irioka, Takashi; Hirano, Makito; Singh, Gagandeep; Cobo Calvo, Alvaro; Kaida, Kenichi; Morales, Pamela S; Wirtz, Paul W; Yamamoto, Tomotaka; Reindl, Markus; Rosenfeld, Myrna R; Graus, Francesc; Saiz, Albert; Dalmau, Josep

    2014-03-01

    To report the clinical, radiological, and immunological association of demyelinating disorders with anti–Nmethyl- D-aspartate receptor (NMDAR) encephalitis. Clinical and radiological analysis was done of a cohort of 691 patients with anti-NMDAR encephalitis. Determination of antibodies to NMDAR, aquaporin-4 (AQP4), and myelin oligodendrocyte glycoprotein (MOG) was performed using brain immunohistochemistry and cell-based assays. Twenty-three of 691 patients with anti-NMDAR encephalitis had prominent magnetic resonance imaging (MRI) and/or clinical features of demyelination. Group 1 included 12 patients in whom anti-NMDAR encephalitis was preceded or followed by independent episodes of neuromyelitis optica (NMO) spectrum disorder (5 cases, 4 anti-AQP4 positive) or brainstem or multifocal demyelinating syndromes (7 cases, all anti-MOG positive). Group 2 included 11 patients in whom anti-NMDAR encephalitis occurred simultaneously with MRI and symptoms compatible with demyelination (5 AQ4 positive, 2 MOG positive). Group 3 (136 controls) included 50 randomly selected patients with typical anti-NMDAR encephalitis, 56 with NMO, and 30 with multiple sclerosis; NMDAR antibodies were detected only in the 50 anti-NMDAR patients, MOG antibodies in 3 of 50 anti-NMDAR and 1 of 56 NMO patients, and AQP4 antibodies in 48 of 56 NMO and 1 of 50 anti-NMDAR patients (pdemyelinating episodes required more intensive therapy and resulted in more residual deficits. Only 1 of 23 NMDAR patients with signs of demyelination had ovarian teratoma compared with 18 of 50 anti-NMDAR controls (p50.011). Patients with anti-NMDAR encephalitis may develop concurrent or separate episodes of demyelinating disorders, and conversely patients with NMO or demyelinating disorders with atypical symptoms (eg, dyskinesias, psychosis) may have anti-NMDAR encephalitis.

  16. Injectable dopamine-modified poly(α,β-aspartic acid) nanocomposite hydrogel as bioadhesive drug delivery system.

    Science.gov (United States)

    Gong, Chu; Lu, Caicai; Li, Bingqiang; Shan, Meng; Wu, Guolin

    2017-04-01

    Hydrogel systems based on cross-linked polymeric materials with adhesive properties in wet environments have been considered as promising candidates for tissue adhesives. The 3,4-dihydroxyphenylalanine (DOPA) is believed to be responsible for the water-resistant adhesive characteristics of mussel adhesive proteins. Under the inspiration of DOPA containing adhesive proteins, a dopamine-modified poly(α,β-aspartic acid) derivative (PDAEA) was successfully synthesized by successive ring-opening reactions of polysuccinimide (PSI) with dopamine and ethanolamine, and an injectable bioadhesive hydrogel was prepared via simply mixing PDAEA and FeCl3 solutions. The formation mechanism of the hydrogel was investigated by ultraviolet-visible (UV-vis) spectroscopic, Fourier transformation infrared (FT-IR) spectroscopic, visual colorimetric measurements and EDTA immersion methods. The study demonstrated that the PDAEA-Fe3+ hydrogel is a dual cross-linking system composed of covalent and coordination crosslinks. The PDAEA-Fe3+ hydrogel is suitable to serve as a bioadhesive agent according to the rheological behaviors and the observed significant shear adhesive strength. The slow and sustained release of the model drug curcumin from the hydrogel in vitro demonstrated the hydrogel could also be potentially used for drug delivery. Moreover, the cytotoxicity tests in vitro suggested the prepared polymer and hydrogel possessed excellent cytocompatibility. All the results indicated that the dopamine modified poly(α,β-aspartic acid) derivative based hydrogel was a promising candidate for bioadhesive drug delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1000-1008, 2017. © 2017 Wiley Periodicals, Inc.

  17. Aspartic acid racemization rate in narwhal (Monodon monoceros eye lens nuclei estimated by counting of growth layers in tusks

    Directory of Open Access Journals (Sweden)

    Eva Garde

    2012-11-01

    Full Text Available Ages of marine mammals have traditionally been estimated by counting dentinal growth layers in teeth. However, this method is difficult to use on narwhals (Monodon monoceros because of their special tooth structures. Alternative methods are therefore needed. The aspartic acid racemization (AAR technique has been used in age estimation studies of cetaceans, including narwhals. The purpose of this study was to estimate a species-specific racemization rate for narwhals by regressing aspartic acid d/l ratios in eye lens nuclei against growth layer groups in tusks (n=9. Two racemization rates were estimated: one by linear regression (r2=0.98 based on the assumption that age was known without error, and one based on a bootstrap study, taking into account the uncertainty in the age estimation (r2 between 0.88 and 0.98. The two estimated 2kAsp values were identical up to two significant figures. The 2k Asp value from the bootstrap study was found to be 0.00229±0.000089 SE, which corresponds to a racemization rate of 0.00114−yr±0.000044 SE. The intercept of 0.0580±0.00185 SE corresponds to twice the (d/l0 value, which is then 0.0290±0.00093 SE. We propose that this species-specific racemization rate and (d/l0 value be used in future AAR age estimation studies of narwhals, but also recommend the collection of tusks and eyes of narwhals for further improving the (d/l0 and 2kAsp estimates obtained in this study.

  18. Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers.

    Directory of Open Access Journals (Sweden)

    Kazuma Ogawa

    Full Text Available (68Ga (T 1/2 = 68 min, a generator-produced nuclide has great potential as a radionuclide for clinical positron emission tomography (PET. Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting (68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Aspn (n = 2, 5, 8, 11, or 14 with easy-to-handle (67Ga, with the previously described (67Ga-DOTA complex conjugated bisphosphonate, (67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Aspn by a Fmoc-based solid-phase method, complexes were formed with (67Ga, resulting in (67Ga-DOTA-(Aspn with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of (67Ga-DOTA-(Aspn increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, (67Ga-DOTA-(Asp8, (67Ga-DOTA-(Asp11, and (67Ga-DOTA-(Asp14 showed high accumulation in bone (10.5 ± 1.5, 15.1 ± 2.6, and 12.8 ± 1.7% ID/g, respectively but were barely observed in other tissues at 60 min after injection. Although bone accumulation of (67Ga-DOTA-(Aspn was lower than that of (67Ga-DOTA-Bn-SCN-HBP, blood clearance of (67Ga-DOTA-(Aspn was more rapid. Accordingly, the bone/blood ratios of (67Ga-DOTA-(Asp11 and (67Ga-DOTA-(Asp14 were comparable with those of (67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of (68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases.

  19. In vitro effects of zinc, D-aspartic acid, and coenzyme-Q10 on sperm function.

    Science.gov (United States)

    Giacone, Filippo; Condorelli, Rosita A; Mongioì, Laura M; Bullara, Valentina; La Vignera, Sandro; Calogero, Aldo E

    2017-05-01

    Reactive oxygen species favor reproductive processes at low concentrations, but damage spermatozoa and decrease their fertilizing capacity at high concentrations. During infection and/or inflammation of the accessory sex glands reactive oxygen species overproduction may occur which, in turn, may negatively impact on sperm motility, sperm DNA fragmentation, and lipid peroxidation. A number of nutraceutical formulations containing antioxidant molecules have been developed to counteract the deleterious effects of the oxidative stress. A recent formulation containing zinc, D-aspartic acid, and coenzyme-Q10 is present in the pharmaceutical market. Based on these premises, the aim of the present study was to evaluate the effects of this combination on spermatozoa in vitro. The study was conducted on 24 men (32.2 ± 5.5 years): 12 normozoospermic men and 12 asthenozoospermic patients. Spermatozoa from each sample were divided into two control aliquots (aliquot A and B) and an aliquot incubated with zinc, D-aspartic acid, and coenzyme-Q10 (aliquot C). After 3 h of incubation, the following parameters were evaluated: progressive motility, number of spermatozoa with progressive motility recovered after swim-up, lipid peroxidation, and DNA fragmentation. Incubation with zinc, D-aspartic acid, and coenzyme-Q10 maintained sperm motility in normozoospermic men (37.7 ± 1.2 % vs. 35.8 ± 2.3 % at time zero) and improved it significantly in asthenozoospermic patients (26.5 ± 1.9 % vs. 18.8 ± 2.0 % at time zero) (p coenzyme-Q10 (p < 0.05) in both normozospermic men (1.0 ± 0.4 % vs. 2.4 ± 0.9 %) and asthenozooseprmic patients (0.2 ± 0.1 % vs. 0.6 ± 0.2 %). No statistically significant effect was observed on sperm DNA fragmentation. This nutraceutical formulation may be indicated in vitro during the separation of the spermatozoa in the assisted reproduction techniques, during which the spermatozoa undergo an increased

  20. Proteinase-Activated Receptor 2 Is a Novel Regulator of TGF-β Signaling in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    David Witte

    2016-11-01

    Full Text Available TGF-β has a dual role in tumorigenesis, acting as a tumor suppressor in normal cells and in the early stages of tumor development while promoting carcinogenesis and metastasis in advanced tumor stages. The final outcome of the TGF-β response is determined by cell-autonomous mechanisms and genetic alterations such as genomic instability and somatic mutations, but also by a plethora of external signals derived from the tumor microenvironment, such as cell-to-cell interactions, growth factors and extracellular matrix proteins and proteolytic enzymes. Serine proteinases mediate their cellular effects via activation of proteinase-activated receptors (PARs, a subclass of G protein-coupled receptors that are activated by proteolytic cleavage. We have recently identified PAR2 as a factor required for TGF-β1-dependent cell motility in ductal pancreatic adenocarcinoma (PDAC cells. In this article, we review what is known on the TGF-β-PAR2 signaling crosstalk and its relevance for tumor growth and metastasis. Since PAR2 is activated through various serine proteinases, it may couple TGF-β signaling to a diverse range of other physiological processes, such as local inflammation, systemic coagulation or pathogen infection. Moreover, since PAR2 controls expression of the TGF-β type I receptor ALK5, PAR2 may also impact signaling by other TGF-β superfamily members that signal through ALK5, such as myostatin and GDF15/MIC-1. If so, PAR2 could represent a molecular linker between PDAC development and cancer-related cachexia.

  1. Evaluation of the efficacy of a recombinant Entamoeba histolytica cysteine proteinase (EhCP112) antigen in minipig.

    Science.gov (United States)

    He, Guang-Zhi; Deng, Shu-Xuan; An, Chuan-Wei

    2012-06-01

    Cysteine proteinases 112 (EhCP112) of Entamoeba histolytica are considered important for ameba pathogenicity. The recombinant gene was obtained by cloning and expression of the EhCP112 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in minipig against challenge infection in a minipig-E. histolytica model. There was a 46.29% reduction (Pcoli, to immunize a minipig model of E. histolytica, and there is significant protection. This study may help to understand the EhCP112 for human in the future. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL. PMID:26197085

  3. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Science.gov (United States)

    Shahbazi, Mehdi; Zahedifard, Farnaz; Taheri, Tahereh; Taslimi, Yasaman; Jamshidi, Shahram; Shirian, Sadegh; Mahdavi, Niousha; Hassankhani, Mehdi; Daneshbod, Yahya; Zarkesh-Esfahani, Sayyed Hamid; Papadopoulou, Barbara; Rafati, Sima

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) is a major veterinary and public health problem caused by Leishmania infantum (L. infantum) in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE) and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  4. Evaluation of Live Recombinant Nonpathogenic Leishmania tarentolae Expressing Cysteine Proteinase and A2 Genes as a Candidate Vaccine against Experimental Canine Visceral Leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Mehdi Shahbazi

    Full Text Available Canine Visceral Leishmaniasis (CVL is a major veterinary and public health problem caused by Leishmania infantum (L. infantum in many endemic countries. It is a severe chronic disease with generalized parasite spread to the reticuloendothelial system, such as spleen, liver and bone marrow and is often fatal when left untreated. Control of VL in dogs would dramatically decrease infection pressure of L. infantum for humans, since dogs are the main domestic reservoir. In the past decade, various subunits and DNA antigens have been identified as potential vaccine candidates in experimental animal models, but none has been approved for human use so far. In this study, we vaccinated outbreed dogs with a prime-boost regimen based on recombinant L. tarentolae expressing the L. donovani A2 antigen along with cysteine proteinase genes (CPA and CPB without its unusual C-terminal extension (CPB-CTE and evaluated its immunogenicity and protective immunity against L. infantum infectious challenge. We showed that vaccinated animals produced significantly higher levels of IgG2, but not IgG1, and also IFN-γ and TNF-α, but low IL-10 levels, before and after challenge as compared to control animals. Protection in dogs was also correlated with a strong DTH response and low parasite burden in the vaccinated group. Altogether, immunization with recombinant L. tarentolae A2-CPA-CPB-CTE was proven to be immunogenic and induced partial protection in dogs, hence representing a promising live vaccine candidate against CVL.

  5. Global proteome changes in larvae of Callosobruchus maculatus Coleoptera:Chrysomelidae:Bruchinae) following ingestion of a cysteine proteinase inhibitor

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Silva, Carlos P; Alexandre, Daniel

    2012-01-01

    The seed-feeding beetle Callosobruchus maculatus is an important cowpea pest (Vigna unguiculata) as well as an interesting model to study insect digestive physiology. The larvae of C. maculatus rely on cysteine and aspartic peptidases to digest proteins in their diet. In this work, the global...

  6. Allosteric modulation of proteinase 3 activity by anti-neutrophil cytoplasmic antibodies in granulomatosis with polyangiitis.

    Science.gov (United States)

    Hinkofer, Lisa C; Hummel, Amber M; Stone, John H; Hoffman, Gary S; Merkel, Peter A; Spiera, E Robert F; St Clair, William; McCune, Joseph W; Davis, John C; Specks, Ulrich; Jenne, Dieter E

    2015-05-01

    Anti-neutrophil cytoplasmic antibodies (ANCA) with proteinase 3 (PR3) specificity are a useful laboratory biomarker for the diagnosis of Granulomatosis with Polyangiitis (GPA) and are believed to be implicated in the pathogenesis. It has been repeatedly suggested that disease activity of GPA is more closely related to the appearance and rise of PR3-inhibiting ANCA than to an increase of total ANCA. Previous studies on a limited number of patient samples, however, have yielded inconclusive results. To overcome the previous methodological limitations, we established a new ultrasensitive method to quantify the inhibitory capacity of PR3-ANCA using small volumes of plasma from patients with GPA. A large collection of longitudinally-collected samples from the Wegener Granulomatosis Etanercept Trial (WGET) became available to us to determine the functional effects of ANCA on PR3 in comparison to clinical disease manifestations. In these patient samples we not only detected PR3-ANCA with inhibitory capacity, but also PR3-ANCA with enhancing effects on PR3 activity. However no correlation of these activity-modulating PR3-ANCA with disease activity at either the time of enrollment or over the course of disease was found. Only patients with pulmonary involvement, especially patients with nodule formation in the respiratory tract, showed a slight, but not significant, decrease of inhibitory capacity. Epitope mapping of the activity-modulating PR3-ANCA revealed a binding on the active site surface of PR3. Yet these ANCA were able to bind to PR3 with an occupied active site cleft, indicating an allosteric mechanism of inhibition. The recently described signal ratio between the MCPR3-3 and MCPR3-2 capture ELISA was consistent with the binding of activity-modulating ANCA to the active site surface. Evidence for a shared epitope between activity-modulating PR3-ANCA and MCPR3-7, however, was very limited, suggesting that a majority of PR3-ANCA species do not inhibit PR3 by the same

  7. Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification.

    OpenAIRE

    Schaad, M C; Haldeman-Cahill, R; Cronin, S; Carrington, J C

    1996-01-01

    A mutational analysis was conducted to investigate the functions of the tobacco etch potyvirus VPg-proteinase (NIa) protein in vivo. The NIa N-terminal domain contains the VPg attachment site, whereas the C-terminal domain contains a picornavirus 3C-like proteinase. Cleavage at an internal site separating the two domains occurs in a subset of NIa molecules. The majority of NIa molecules in TEV-infected cells accumulate within the nucleus. By using a reporter fusion strategy, the NIa nuclear l...

  8. Overexpression of a Weed (Solanum americanum) Proteinase Inhibitor in Transgenic Tobacco Results in Increased Glandular Trichome Density and Enhanced Resistance to Helicoverpa armigera and Spodoptera litura

    OpenAIRE

    Luo, Ming; Wang, Zhaoyu; Li, Huapeng; Xia, Kuai-Fei; Cai, Yinpeng; Xu, Zeng-Fu

    2009-01-01

    In this study we produced transgenic tobacco plants by overexpressing a serine proteinase inhibitor gene, SaPIN2a, from the American black nightshade Solanum americanum under the control of the CaMV 35S promoter using Agrobacterium tumefaciens-mediated transformation. SaPIN2a was properly transcribed and translated as indicated by Northern blot and Western blot analyses. Functional integrity of SaPIN2a in transgenic plants was confirmed by proteinase inhibitory activity assay. Bioassays for i...

  9. Changes in D-aspartic acid and D-glutamic acid levels in the tissues and physiological fluids of mice with various D-aspartate oxidase activities.

    Science.gov (United States)

    Han, Hai; Miyoshi, Yurika; Koga, Reiko; Mita, Masashi; Konno, Ryuichi; Hamase, Kenji

    2015-12-10

    D-Aspartic acid (D-Asp) and D-glutamic acid (D-Glu) are currently paid attention as modulators of neuronal transmission and hormonal secretion. These two D-amino acids are metabolized only by D-aspartate oxidase (DDO) in mammals. Therefore, in order to design and develop new drugs controlling the D-Asp and D-Glu amounts via regulation of the DDO activities, changes in these acidic D-amino acid amounts in various tissues are expected to be clarified in model animals having various DDO activities. In the present study, the amounts of Asp and Glu enantiomers in 6 brain tissues, 11 peripheral tissues and 2 physiological fluids of DDO(+/+), DDO(+/-) and DDO(-/-) mice were determined using a sensitive and selective two-dimensional HPLC system. As a result, the amounts of D-Asp were drastically increased with the decrease in the DDO activity in all the tested tissues and physiological fluids. On the other hand, the amounts of D-Glu were almost the same among the 3 strains of mice. The present results are useful for designing new drug candidates, such as DDO inhibitors, and further studies are expected. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Differential actions of proteinases and neuraminidase on mammalian erythrocyte surface and its impact on erythrocyte agglutination by concanavalin A.

    Science.gov (United States)

    Sharma, Savita; Gokhale, Sadashiv M

    2012-12-01

    Action of proteinases viz. trypsin and chymotrypsin, and neuraminidase on intact erythrocyte membrane proteins and glycophorins (sialoglycoproteins) exposed to cell surface and its impact on lectin (concanavalin A)-mediated agglutination were studied in Homo sapiens (human), Capra aegagrus hircus (goat) and Bubalus bubalis (buffalo). Membrane proteins and glycophorins analysis by SDS-PAGE as visualized by coomassie brilliant blue and periodic acid-schiff stains, respectively, and agglutination behaviour revealed marked differences: 1) there were prominent dissimilarities in the number and molecular weights of glycophorins in human, goat and buffalo erythrocyte membranes; 2) proteinase action(s) on human and buffalo erythrocyte surface membrane proteins and glycophorins showed similarity but was found different in goat; 3) significant differences in erythrocyte agglutinability with concanavalin A can be attributed to differences in membrane composition and alterations in the surface proteins after enzyme treatment; 4) a direct correlation was found between degradation of glycophorins and concanavalin A agglutinability; 5) action of neuraminidase specifically indicated the negative role of cell surface sialic acids in determining concanavalin A agglutinability of goat and buffalo erythrocytes, similar to human. Present studies clearly indicate that there are some basic differences in human, goat and buffalo erythrocyte membrane proteins, especially with respect to glycophorins, which determine the concanavalin A-mediated agglutination in enzyme treated erythrocytes.

  11. Contact of Entamoeba histolytica with baby hamster kidney-21 (BHK-21) cell line on cysteine proteinase activity.

    Science.gov (United States)

    Singh, Divyendu; Naik, S R; Naik, Sita

    2004-04-01

    Entamoeba histolytica, the causative agent of amoebiasis and amoebic liver abscess, lyses host cells by direct contact using surface lectins and releases cysteine proteinase (CP). Virulence of E. histolytica is directly related to activity of its CP. The relationship of CP activity and cytotoxicity has not been established. The present study was carried out to explore the events following contact of E. histolytica with target cells. Protease activity of E. histolytica was measured by azocaseine and haemoglobin assays, and cysteine proteinase activity was assessed by substrate gel electrophoresis. Target cell lysis was measured by chromium release assay. Protease activity of E. histolytica was increased 2.5-fold following contact with BHK-21 cell line. CP activity of trophozoites alone was visualized at position 56, 35 and 29 kDa in substrate gel electrophoresis. Contact of trophozoites with target cells augmented the cytotoxic activity of amoebic CP. The increase in CP activity seen by substrate gel electrophoresis and cytotoxicity assay was blocked by pretreatment with E 64, a specific CP inhibitor and GalNAc, a contact inhibitor. The present data showed the involvement of amoebic CP in cytotoxicity and that the CP activity was enhanced on lectin-mediated contact of E. histolytica to the target cells. Further studies need to be done to understand the mechanism at the molecular level.

  12. Assessing Proteinase K Resistance of Fish Prion Proteins in a Scrapie-Infected Mouse Neuroblastoma Cell Line

    Directory of Open Access Journals (Sweden)

    Evgenia Salta

    2014-11-01

    Full Text Available The key event in prion pathogenesis is the structural conversion of the normal cellular protein, PrPC, into an aberrant and partially proteinase K resistant isoform, PrPSc. Since the minimum requirement for a prion disease phenotype is the expression of endogenous PrP in the host, species carrying orthologue prion genes, such as fish, could in theory support prion pathogenesis. Our previous work has demonstrated the development of abnormal protein deposition in sea bream brain, following oral challenge of the fish with natural prion infectious material. In this study, we used a prion-infected mouse neuroblastoma cell line for the expression of three different mature fish PrP proteins and the evaluation of the resistance of the exogenously expressed proteins to proteinase K treatment (PK, as an indicator of a possible prion conversion. No evidence of resistance to PK was detected for any of the studied recombinant proteins. Although not indicative of an absolute inability of the fish PrPs to structurally convert to pathogenic isoforms, the absence of PK-resistance may be due to supramolecular and conformational differences between the mammalian and piscine PrPs.

  13. BMP-1/tolloid-like proteinases synchronize matrix assembly with growth factor activation to promote morphogenesis and tissue remodeling.

    Science.gov (United States)

    Vadon-Le Goff, Sandrine; Hulmes, David J S; Moali, Catherine

    2015-01-01

    Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases, here called BTPs, include the proteases originally identified for their roles in the C-terminal maturation of fibrillar procollagens ("procollagen C-proteinase"). Though numerous other substrates have since been discovered, the BTPs remain the main proteases involved in extracellular matrix assembly with little or no implication in matrix degradation. During the same period however, the BTPs have also become established as important proteases in the activation of growth factors, including TGF-β1, BMP-2/-4, GDF-8/-11 and IGFs, as well as the release of anti-angiogenic fragments from parent proteins. The BTPs are therefore key players in many pathophysiological processes such as morphogenesis, tissue repair and tumor progression. This mini-review summarizes our current knowledge of the functions of BTPs, their substrates and unusual mechanisms of regulation, and discusses their potential as new targets for future therapies. Copyright © 2015 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  14. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    Science.gov (United States)

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato.

  15. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    Science.gov (United States)

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  16. Identification of a serine proteinase homolog (Sp-SPH) involved in immune defense in the mud crab Scylla paramamosain.

    Science.gov (United States)

    Zhang, Qiu-xia; Liu, Hai-peng; Chen, Rong-yuan; Shen, Kai-li; Wang, Ke-jian

    2013-01-01

    Clip domain serine proteinase homologs are involved in many biological processes including immune response. To identify the immune function of a serine proteinase homolog (Sp-SPH), originally isolated from hemocytes of the mud crab, Scylla paramamosain, the Sp-SPH was expressed recombinantly and purified for further studies. It was found that the Sp-SPH protein could bind to a number of bacteria (including Aeromonas hydrophila, Escherichia coli, Staphylococcus aureus, Vibrio fluvialis, Vibrio harveyi and Vibrio parahemolyticus), bacterial cell wall components such as lipopolysaccharide or peptidoglycan (PGN), and β-1, 3-glucan of fungus. But no direct antibacterial activity of Sp-SPH protein was shown by using minimum inhibitory concentration or minimum bactericidal concentration assays. Nevertheless, the Sp-SPH protein was found to significantly enhance the crab hemocyte adhesion activity (paired t-test, PSPH protein was demonstrated to promote the survival rate of the animals after challenge with A. hydrophila or V. parahemolyticus which were both recognized by Sp-SPH protein, if pre-incubated with Sp-SPH protein, respectively. Whereas, the crabs died much faster when challenged with Vibrio alginolyiicus, a pathogenic bacterium not recognized by Sp-SPH protein, compared to those of crabs challenged with A. hydrophila or V. parahemolyticus when pre-coated with Sp-SPH protein. Taken together, these data suggested that Sp-SPH molecule might play an important role in immune defense against bacterial infection in the mud crab S. paramamosain.

  17. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom.

    Science.gov (United States)

    Zhang, Guangmei; Lu, Zhi-Qiang; Jiang, Haobo; Asgari, Sassan

    2004-05-01

    Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 h after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C. rubecula to negatively impact the proPO activation reaction in its natural host.

  18. Effects of Glutamate and Aspartate on Serum Antioxidative Enzyme, Sex Hormones, and Genital Inflammation in Boars Challenged with Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Hengjia Ni

    2016-01-01

    Full Text Available Background. Oxidative stress is associated with infertility. This study was conducted to determine the effects of glutamate and aspartate on serum antioxidative enzymes, sex hormones, and genital inflammation in boars suffering from oxidative stress. Methods. Boars were randomly divided into 4 groups: the nonchallenged control (CON and H2O2-challenged control (BD groups were fed a basal diet supplemented with 2% alanine; the other two groups were fed the basal diet supplemented with 2% glutamate (GLU or 2% aspartate (ASP. The BD, GLU, and ASP groups were injected with hydrogen peroxide (H2O2 on day 15. The CON group was injected with 0.9% sodium chloride solution on the same day. Results. Dietary aspartate decreased the malondialdehyde (MDA level in serum (P<0.05 compared with the BD group. Additionally, aspartate maintained serum luteinizing hormone (LH at a relatively stable level. Moreover, glutamate and aspartate increased transforming growth factor-β1 (TGF-β1 and interleukin-10 (IL-10 levels in the epididymis and testis (P<0.05 compared with the BD group. Conclusion. Both glutamate and aspartate promoted genital mRNA expressions of anti-inflammatory factors after oxidative stress. Aspartate more effectively decreased serum MDA and prevented fluctuations in serum sex hormones after H2O2 challenge than did glutamate.

  19. Neutron reflectivity and external reflection FTIR studies of DL-aspartic acid crystallization beneath nylon 6 spread films.

    Science.gov (United States)

    Jamieson, Matthew J; Cooper, Sharon J; Miller, Aline F; Holt, Stephen A

    2004-04-27

    The crystallization of DL-aspartic acid beneath nylon 6 spread films has been studied for 150% supersaturated systems using neutron reflectivity and external reflection FTIR. The neutron reflectivity data showed the gradual incorporation of DL-aspartic acid within a nylon 6 spread film layer over a period of 6-8 h, culminating in over 50 vol % of the "film" layer comprising DL-aspartic acid. Accumulation of further DL-aspartic acid material to produce microscopic/macroscopic surface crystals occurred, but on a more limited scale, resulting in approximately 1-5% surface coverage of crystals over the same period. External reflection FTIR studies revealed very weak bands attributable to DL-aspartic acid in surface regions devoid of visible crystals, in agreement with the neutron reflectivity studies. In regions with visible crystals, much larger and sharper DL-aspartic acid bands were seen. Changes in the intensity of the nylon 6 NH stretch band were often observed during the visible crystallization and dissolution of DL-aspartic acid and were consistent with the reversible accumulation of nylon 6 around the growing crystals.

  20. Mechanistic study of competitive releases of H2O, NH3 and CO2 from deprotonated aspartic and glutamic acids: Role of conformation.

    Science.gov (United States)

    Barbier Saint Hilaire, Pierre; Warnet, Anna; Gimbert, Yves; Hohenester, Ulli Martin; Giorgi, Gianluca; Olivier, Marie-Françoise; Fenaille, François; Colsch, Benoît; Junot, Christophe; Tabet, Jean-Claude

    2017-03-15

    The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms. Therefore, we compared fragmentations of deprotonated aspartic and glutamic acids generated in negative electrospray ionization. Energy-resolved mass spectrometry breakdown curves were recorded and MS3 experiments performed on an Orbitrap Fusion for high-resolution and high-mass accuracy measurements. Activated fragmentations were performed using both the resonant and non-resonant excitation modes (i.e., CID and HCD, respectively) in order to get complementary information on the competitive and consecutive dissociative pathways. These experiments showed a specific loss of ammonia from the activated aspartate but not from the activated glutamate. We mainly focused on this specific observed loss from aspartate. Two different mechanisms based on intramolecular reactions (similar to those occurring in organic chemistry) were proposed, such as intramolecular elimination (i.e. Ei-like) and nucleophilic substitution (i.e. SNi-like) reactions, respectively, yielding anions as fumarate and α lactone from a particular conformation with the lowest steric hindrance (i.e. with antiperiplanar carboxyl groups). The detected deaminated aspartate anion can then release CO2 as observed in the MS3 experimental spectra. However, quantum calculations did not indicate the formation of such a deaminated aspartate product ion without loss of carbon dioxide. Actually, calculations displayed the double neutral (NH3+CO2) loss as a concomitant pathway (from a particular conformation) with relative high activation energy instead of a consecutive process. This disagreement is apparent since the concomitant pathway may be changed into consecutive dissociations according to the collision energy i.e., at higher collision energy

  1. Aspartic protease activities of schistosomes cleave mammalian hemoglobins in a host-specific manner

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2007-02-01

    Full Text Available We examined the efficiency of digestion of hemoglobin from four mammalian species, human, cow, sheep, and horse by acidic extracts of mixed sex adults of Schistosoma japonicum and S. mansoni. Activity ascribable to aspartic protease(s from S. japonicum and S. mansoni cleaved human hemoglobin. In addition, aspartic protease activities from S. japonicum cleaved hemoglobin from bovine, sheep, and horse blood more efficiently than did the activity from extracts of S. mansoni. These findings support the hypothesis that substrate specificity of hemoglobin-degrading proteases employed by blood feeding helminth parasites influences parasite host species range; differences in amino acid sequences in key sites of the parasite proteases interact less or more efficiently with the hemoglobins of permissive or non-permissive hosts.

  2. Crystallographic Snapshots of the Complete Catalytic Cycle of the Unregulated Aspartate Transcarbamoylase from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    K Harris; G Cockrell; D Puleo; E Kantrowitz

    2011-12-31

    Here, we report high-resolution X-ray structures of Bacillus subtilis aspartate transcarbamoylase (ATCase), an enzyme that catalyzes one of the first reactions in pyrimidine nucleotide biosynthesis. Structures of the enzyme have been determined in the absence of ligands, in the presence of the substrate carbamoyl phosphate, and in the presence of the bisubstrate/transition state analog N-phosphonacetyl-L-aspartate. Combining the structural data with in silico docking and electrostatic calculations, we have been able to visualize each step in the catalytic cycle of ATCase, from the ordered binding of the substrates, to the formation and decomposition of the tetrahedral intermediate, to the ordered release of the products from the active site. Analysis of the conformational changes associated with these steps provides a rationale for the lack of cooperativity in trimeric ATCases that do not possess regulatory subunits.

  3. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    Science.gov (United States)

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria.

  4. Interaction Studies of Secreted Aspartic Proteases (Saps) from Candida albicans : Application for Drug Discovery

    OpenAIRE

    Backman, Dan

    2005-01-01

    This thesis is focused on enzymatic studies of the secreted aspartic proteases (Saps) from Candida albicans as a tool for discovery of anti-candida drugs. C. albicans causes infections in a number of different locations, which differ widely in the protein substrates available and pH. Since C. albicans needs Saps during virulent growth, these enzymes are good targets for drug development. In order to investigate the catalytic characteristics of Saps and their inhibitor affinities, substrate-ba...

  5. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis.

    Science.gov (United States)

    Rabinovich, Shiran; Adler, Lital; Yizhak, Keren; Sarver, Alona; Silberman, Alon; Agron, Shani; Stettner, Noa; Sun, Qin; Brandis, Alexander; Helbling, Daniel; Korman, Stanley; Itzkovitz, Shalev; Dimmock, David; Ulitsky, Igor; Nagamani, Sandesh Cs; Ruppin, Eytan; Erez, Ayelet

    2015-11-19

    Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.

  6. Lowered circulating aspartate is a metabolic feature of human breast cancer

    OpenAIRE

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 brea...

  7. Differential Aspartate Usage Identifies a Subset of Cancer Cells Particularly Dependent on OGDH

    OpenAIRE

    Eric L. Allen; Danielle B. Ulanet; David Pirman; Christopher E. Mahoney; John Coco; Yaguang Si; Ying Chen; Lingling Huang; Jinmin Ren; Sung Choe; Michelle F. Clasquin; Erin Artin; Zi Peng Fan; Giovanni Cianchetta; Joshua Murtie

    2016-01-01

    Although aberrant metabolism in tumors has been well described, the identification of cancer subsets with particular metabolic vulnerabilities has remained challenging. Here, we conducted an siRNA screen focusing on enzymes involved in the tricarboxylic acid (TCA) cycle and uncovered a striking range of cancer cell dependencies on OGDH, the E1 subunit of the alpha-ketoglutarate dehydrogenase complex. Using an integrative metabolomics approach, we identified differential aspartate utilization,...

  8. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells

    OpenAIRE

    Sullivan, Lucas B.; Gui, Dan Y.; Hosios, Aaron M.; Bush, Lauren N.; Freinkman, Elizaveta; Vander Heiden, Matthew G.

    2015-01-01

    Mitochondrial respiration is important for cell proliferation, however the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the p...

  9. Anti-N-methyl-D-aspartate receptor encephalitis with favorable outcome despite prolonged status epilepticus

    OpenAIRE

    Finné Lenoir, Xavier; Sindic, Christian; Van Pesch, Vincent; El Sankari, Souraya; de Tourtchaninoff, Marianne; Denays, Roger; Hantson, Philippe

    2013-01-01

    BACKGROUND: To describe a case of auto-immune encephalitis in an adolescent with favorable outcome despite prolonged status epilepticus. METHODS: A 17 year old Asian man without previous medical history developed alteration of consciousness and partial seizures. The diagnosis of anti-N-methyl-D-aspartate receptor encephalitis was confirmed by the detection of specific antibodies in both cerebrospinal fluid and serum. RESULTS: The clinical course was complicated by prolonged status epilepticus...

  10. In vitro effects of sodium benzoate on the activities of aspartate and ...

    African Journals Online (AJOL)

    The in vitro effects of varying concentrations sodium benzoate on the activities of aspartate (E.C. 2.6.1.1) and alanine (E.C. 2.6.1.2) aminotransferases (AST and ALT, respectively) and alkaline phosphatase (E.C. 3.1.3.1; abbreviated as ALP) from human erythrocytes of different genotypes (HbAA, HbAS and HbSS) were ...

  11. N-(Fluoren-9-ylmethoxycarbonyl-l-aspartic acid 4-tert-butyl ester

    Directory of Open Access Journals (Sweden)

    Kazuhiko Yamada

    2009-11-01

    Full Text Available The bond distances and bond angles of the title compound, C23H25NO6, are consistent with values typically found for fluoren-9-ylmethoxycarbonyl-protected amino acids. The conformations of the backbone and the side chain are slightly different from those of l-aspartic acid. The crystal structure exhibits two intermolecular hydrogen bonds, forming a two-dimensional sheet structure parallel to the ab plane.

  12. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    Energy Technology Data Exchange (ETDEWEB)

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  13. Combination of aspartic acid and glutamic acid inhibits tumor cell proliferation.

    Science.gov (United States)

    Yamaguchi, Yoshie; Yamamoto, Katsunori; Sato, Yoshinori; Inoue, Shinjiro; Morinaga, Tetsuo; Hirano, Eiichi

    2016-01-01

    Placental extract contains several biologically active compounds, and pharmacological induction of placental extract has therapeutic effects, such as improving liver function in patients with hepatitis or cirrhosis. Here, we searched for novel molecules with an anti-tumor activity in placental extracts. Active molecules were separated by chromatographic analysis, and their antiproliferative activities were determined by a colorimetric assay. We identified aspartic acid and glutamic acid to possess the antiproliferative activity against human hepatoma cells. Furthermore, we showed that the combination of aspartic acid and glutamic acid exhibited enhanced antiproliferative activity, and inhibited Akt phosphorylation. We also examined in vivo tumor inhibition activity using the rabbit VX2 liver tumor model. The treatment mixture (emulsion of the amino acids with Lipiodol) administered by hepatic artery injection inhibited tumor cell growth of the rabbit VX2 liver. These results suggest that the combination of aspartic acid and glutamic acid may be useful for induction of tumor cell death, and has the potential for clinical use as a cancer therapeutic agent.

  14. The Pathway of Product Release from the R State of Aspartate Transcarbamoylase

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, K.; Kantrowitz, E

    2010-01-01

    The pathway of product release from the R state of aspartate transcarbamoylase (ATCase; EC 2.1.3.2, aspartate carbamoyltransferase) has been determined here by solving the crystal structure of Escherichia coli ATCase locked in the R quaternary structure by specific introduction of disulfide bonds. ATCase displays ordered substrate binding and product release, remaining in the R state until substrates are exhausted. The structure reported here represents ATCase in the R state bound to the final product molecule, phosphate. This structure has been difficult to obtain previously because the enzyme relaxes back to the T state after the substrates are exhausted. Hence, cocrystallizing the wild-type enzyme with phosphate results in a T-state structure. In this structure of the enzyme trapped in the R state with specific disulfide bonds, we observe two phosphate molecules per active site. The position of the first phosphate corresponds to the position of the phosphate of carbamoyl phosphate (CP) and the position of the phosphonate of N-phosphonacetyl-L-aspartate. However, the second, more weakly bound phosphate is bound in a positively charged pocket that is more accessible to the surface than the other phosphate. The second phosphate appears to be on the path that phosphate would have to take to exit the active site. Our results suggest that phosphate dissociation and CP binding can occur simultaneously and that the dissociation of phosphate may actually promote the binding of CP for more efficient catalysis.

  15. Characterization of Aspartate Kinase from Corynebacterium pekinense and the Critical Site of Arg169

    Directory of Open Access Journals (Sweden)

    Weihong Min

    2015-11-01

    Full Text Available Aspartate kinase (AK is the key enzyme in the biosynthesis of aspartate-derived amino acids. Recombinant AK was efficiently purified and systematically characterized through analysis under optimal conditions combined with steady-state kinetics study. Homogeneous AK was predicted as a decamer with a molecular weight of ~48 kDa and a half-life of 4.5 h. The enzymatic activity was enhanced by ethanol and Ni2+. Moreover, steady-state kinetic study confirmed that AK is an allosteric enzyme, and its activity was inhibited by allosteric inhibitors, such as Lys, Met, and Thr. Theoretical results indicated the binding mode of AK and showed that Arg169 is an important residue in substrate binding, catalytic domain, and inhibitor binding. The values of the kinetic parameter Vmax of R169 mutants, namely, R169Y, R169P, R169D, and R169H AK, with l-aspartate as the substrate, were 4.71-, 2.25-, 2.57-, and 2.13-fold higher, respectively, than that of the wild-type AK. Furthermore, experimental and theoretical data showed that Arg169 formed a hydrogen bond with Glu92, which functions as the entrance gate. This study provides a basis to develop new enzymes and elucidate the corresponding amino acid production.

  16. New insights into the metabolism of aspartate-family amino acids in plant seeds.

    Science.gov (United States)

    Wang, Wenyi; Xu, Mengyun; Wang, Guoping; Galili, Gad

    2018-02-05

    Aspartate-family amino acids. Aspartate (Asp)-family pathway, via several metabolic branches, leads to four key essential amino acids: Lys, Met, Thr, and Ile. Among these, Lys and Met have received the most attention, as they are the most limiting amino acid in cereals and legumes crops, respectively. The metabolic pathways of these four essential amino acids and their interactions with regulatory networks have been well characterized. Using this knowledge, extensive efforts have been devoted to augmenting the levels of these amino acids in various plant organs, especially seeds, which serve as the main source of human food and livestock feed. Seeds store a number of storage proteins, which are utilized as nutrient and energy resources. Storage proteins are composed of amino acids, to guarantee the continuation of plant progeny. Thus, understanding the seed metabolism, especially with respect to the accumulation of aspartate-derived amino acids Lys and Met, is a crucial factor for sustainable agriculture. In this review, we summarized the Asp-family pathway, with some new examples of accumulated Asp-family amino acids, particularly Lys and Met, in plant seeds. We also discuss the recent advances in understanding the roles of Asp-family amino acids during seed development.

  17. N-Methyl-D-aspartic Acid (NMDA in the nervous system of the amphioxus Branchiostoma lanceolatum

    Directory of Open Access Journals (Sweden)

    Garcia-Fernàndez Jordi

    2007-12-01

    Full Text Available Abstract Background NMDA (N-methyl-D-aspartic acid is a widely known agonist for a class of glutamate receptors, the NMDA type. Synthetic NMDA elicits very strong activity for the induction of hypothalamic factors and hypophyseal hormones in mammals. Moreover, endogenous NMDA has been found in rat, where it has a role in the induction of GnRH (Gonadotropin Releasing Hormone in the hypothalamus, and of LH (Luteinizing Hormone and PRL (Prolactin in the pituitary gland. Results In this study we show evidence for the occurrence of endogenous NMDA in the amphioxus Branchiostoma lanceolatum. A relatively high concentration of NMDA occurs in the nervous system of this species (3.08 ± 0.37 nmol/g tissue in the nerve cord and 10.52 ± 1.41 nmol/g tissue in the cephalic vesicle. As in rat, in amphioxus NMDA is also biosynthesized from D-aspartic acid (D-Asp by a NMDA synthase (also called D-aspartate methyl transferase. Conclusion Given the simplicity of the amphioxus nervous and endocrine systems compared to mammalian, the discovery of NMDA in this protochordate is important to gain insights into the role of endogenous NMDA in the nervous and endocrine systems of metazoans and particularly in the chordate lineage.

  18. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.

    Science.gov (United States)

    Greenhouse, W V; Lehninger, A L

    1977-11-01

    Measurements of respiration, CO2 and lactate production, and changes in the levels of various key metabolites of the glycolytic sequence and tricarboxylic acid cycle were made on five lines of rodent ascites tumor cells (two strains of Ehrlich ascites tumor cells, Krebs II carcinoma, AS-30D carcinoma, and L1210 cells) incubated aerobically in the presence of uniformly labeled D-[14C]glucose. From these data, as well as earlier evidence demonstrating that the reduced nicotinamide adenine dinucleotide (NADH) shuttle in these cells requires a transaminase step and is thus identified as the malate-aspartate shuttle (W.V.V. Greenhouse and A.L. Lehninger, Cancer Res., 36: 1392-1396, 1976), metabolic flux diagrams were constructed for the five cell lines. These diagrams show the relative rates of glycolysis, the tricarboxylic acid cycle, electron transport, and the malate-aspartate shuttle in these tumors. Large amounts of cytosolic NADH were oxidized by the mitochondrial respiratory chain via the NADH shuttle, comprising anywhere from about 20 to 80% of the total flow of reducing equivalents to oxygen in these tumors. Calculations of the sources of energy for adenosine triphosphate synthesis indicated that on the average about one-third of the respiratory adenosine triphosphate is generated by electron flow originating from cytosolic NADH via the malate-aspartate shuttle.

  19. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval Western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris

    NARCIS (Netherlands)

    Bown, D.P.; Wilkinson, H.S.; Jongsma, M.A.; Gatehouse, J.A.

    2004-01-01

    Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by

  20. Interleukin-21, B cell activating factor and unmethylated CPG oligodeoxynucleotides synergize in promoting anti-proteinase 3 autoantibody production in vitro

    NARCIS (Netherlands)

    Lepse, Nikola; Land, Judith; Rutgers, Abraham; Kallenberg, Cornelis; Stegeman, Coen A.; Heeringa, Peter; Abdulahad, Wayel H.

    2012-01-01

    Background/Purpose: Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitides (AAV) are characterized by the presence of circulating autoantibodies that are often directed against proteinase 3 (PR3). Although the mechanisms that lead to ANCA production in AAV are not clear, bacterial

  1. Elastase, but not proteinase 3 (PR3), induces proteinuria associated with loss of glomerular basement membrane heparan sulphate after in vivo renal perfusion in rats

    NARCIS (Netherlands)

    Heeringa, P; VanDenBorn, J; Brouwer, E; Dolman, KM; Klok, PA; Huitema, MG; Limburg, PC; Bakker, MAH; Berden, JHM; Daha, MR; Kallenberg, CGM

    Elastase, but not PR3, induces proteinuria associated with loss of glomerular basement membrane (GEM) heparan sulphate after in vivo renal perfusion in rats. PR3 and elastase are cationic neutral serine proteinases present in the azurophilic granules of polymorphonuclear leucocytes. Release of these

  2. Glucocorticoid receptor activation selectively hampers N-methyl-d-aspartate receptor dependent hippocampal synaptic plasticity in vitro.

    NARCIS (Netherlands)

    Wiegert, O.; Pu, Z.; Shor, S.; Joëls, M.; Krugers, H.

    2005-01-01

    Corticosterone and exposure to stressful experiences have been reported to decrease hippocampal synaptic plasticity, in particular when relatively mild stimulation paradigms-presumably activating predominantly N-methyl-d-aspartate receptors-are being used. Using various stimulation paradigms and

  3. Sequence, Structural Analysis and Metrics to Define the Unique Dynamic Features of the Flap Regions Among Aspartic Proteases.

    Science.gov (United States)

    McGillewie, Lara; Ramesh, Muthusamy; Soliman, Mahmoud E

    2017-10-01

    Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.

  4. Anesthesia in anti-N-methyl-D-aspartate receptor encephalitis - is general anesthesia a requisite? A case report

    Directory of Open Access Journals (Sweden)

    Sook Hui Chaw

    Full Text Available Abstract Anti-N-methyl-D-aspartate receptor encephalitis is a recently described neurological disorder and an increasingly recognized cause of psychosis, movement disorders and autonomic dysfunction. We report 20-year-old Chinese female who presented with generalized tonic-clonic seizures, recent memory loss, visual hallucinations and abnormal behavior. Anti-N-methyl-D-aspartate receptor encephalitis was diagnosed and a computed tomography scan of abdomen reviewed a left adnexal tumor. We describe the first such case report of a patient with anti-N-methyl-D-aspartate receptor encephalitis who was given a bilateral transversus abdominis plane block as the sole anesthetic for removal of ovarian tumor. We also discuss the anesthetic issues associated with anti-N-methyl-D-aspartate receptor encephalitis. As discovery of tumor and its removal is the focus of initial treatment in this group of patients, anesthetists will encounter more such cases in the near future.

  5. Gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase as markers of alcohol consumption in out-patient alcoholics

    DEFF Research Database (Denmark)

    Gluud, C; Andersen, I; Dietrichson, O

    1981-01-01

    Serum activity of gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase were determined in 316 patients attending an out-patients clinic for treatment of alcoholism. The activity of gamma-glutamyltransferase was raised in 34% and that of aspartate aminotransferase...... and alkaline phosphatase in 18% and 7%. Neither the activity of gamma-glutamyltransferase, aspartate aminotransferase nor alkaline phosphatase showed any significant (P greater than 0.05) correlation with the history of alcohol consumption. The activities of gamma-glutamyltransferase and aspartate...... aminotransferase were raised significantly more often in patients with recent alcohol consumption than in patients who had abstained for more than 9 days. The concentration of alkaline phosphatase was not significantly (P greater than 0.05) different in these groups. The predictive value of raised and normal...

  6. Effects of D-aspartate treatment on D-aspartate oxidase, superoxide dismutase, and caspase 3 activities in frog (Rana esculenta) tissues.

    Science.gov (United States)

    Burrone, Lavinia; Di Giovanni, Marcello; Di Fiore, M Maddalena; Baccari, Gabriella Chieffi; Santillo, Alessandra

    2010-06-01

    Although D-aspartate (D-Asp) has been recognized to have a physiological role within different organs, high concentrations could elicit detrimental effects on those same organs. In this study, we examined the D-aspartate oxidase (D-AspO) activity and the expression of superoxide dismutase 1 (SOD1) and caspase 3 in different tissues of the frog Rana esculenta after chronic D-Asp treatment. Our in vivo experiments, consisting of intraperitoneal (ip) injections of D-Asp (2.0 micromol/g b.w.) in frogs for ten consecutive days, revealed that all examined tissues can take up and accumulate D-Asp. Further, in D-Asp treated frogs, i) the D-AspO activity significantly increased in all tissues (kidney, heart, testis, liver, and brain), ii) the SOD1 expression (antioxidant enzyme) significantly increased in the kidney, and iii) the caspase 3 level (indicative of apoptosis) increased in both brain and heart. Particularly, after the D-Asp treatment we found in both brain and heart (which showed the lowest SOD1 levels) a significant increase of the caspase 3 expression and, vice versa, in the kidney (which showed the highest SOD1 expression) a significant decrease of the caspase 3 expression. Therefore, we speculate that, in frog tissue, D-AspO plays an essential role in modulating the D-Asp concentration. In addition, exaggerated D-Asp concentrations activated SOD1 as cytoprotective mechanism in the kidney, whereas, in the brain and in the heart, where the antioxidant action of SOD1 is limited, caspase 3 was activated.

  7. An aspartic protease of the scabies mite Sarcoptes scabiei is involved in the digestion of host skin and blood macromolecules.

    Directory of Open Access Journals (Sweden)

    Wajahat Mahmood

    2013-11-01

    Full Text Available BACKGROUND: Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. METHODOLOGY/PRINCIPLE FINDINGS: We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. CONCLUSIONS/SIGNIFICANCE: The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival.

  8. A general strategy to prepare different types of polysaccharide-graft-poly(aspartic acid) as degradable gene carriers.

    Science.gov (United States)

    Song, Hai-Qing; Dou, Xue-Bo; Li, Rui-Quan; Yu, Bing-Ran; Zhao, Na-Na; Xu, Fu-Jian

    2015-01-01

    Owing to their unique properties such as low cytotoxicity and excellent biocompatibility, poly(aspartic acid) (PAsp) and polysaccharides are good candidates for the development of new biomaterials. In order to construct better gene delivery systems by combining polysaccharides with PAsp, in this work, a general strategy is described for preparing series of polysaccharide-graft-PAsp (including cyclodextrin (CD), dextran (Dex) and chitosan (CS)) gene vectors. Such different polysaccharide-based vectors are compared systematically through a series of experiments including degradability, pDNA condensation capability, cytotoxicity and gene transfection ability. They possess good degradability, which would benefit the release of pDNA from the complexes. They exhibit significantly lower cytotoxicity than the control 'gold-standard' polyethylenimine (PEI, ∼25kDa). More importantly, the gene transfection efficiency of Dex- and CS-based vectors is 12-14-fold higher than CD-based ones. This present study indicates that properly grafting degradable PAsp from polysaccharide backbones is an effective means of producing a new class of degradable biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Insights into how CUB domains can exert specific functions while sharing a common fold: conserved and specific features of the CUB1 domain contribute to the molecular basis of procollagen C-proteinase enhancer-1 activity.

    Science.gov (United States)

    Blanc, Guillaume; Font, Bernard; Eichenberger, Denise; Moreau, Christophe; Ricard-Blum, Sylvie; Hulmes, David J S; Moali, Catherine

    2007-06-08

    Procollagen C-proteinase enhancers (PCPE-1 and -2) are extracellular glycoproteins that can stimulate the C-terminal processing of fibrillar procollagens by tolloid proteinases such as bone morphogenetic protein-1. They consist of two CUB domains (CUB1 and -2) that alone account for PCPE-enhancing activity and one C-terminal NTR domain. CUB domains are found in several extracellular and plasma membrane-associated proteins, many of which are proteases. We have modeled the structure of the CUB1 domain of PCPE-1 based on known three-dimensional structures of CUB-containing proteins. Sequence alignment shows conserved amino acids, notably two acidic residues (Asp-68 and Asp-109) involved in a putative surface-located calcium binding site, as well as a conserved tyrosine residue (Tyr-67). In addition, three residues (Glu-26, Thr-89, and Phe-90) are found only in PCPE CUB1 domains, in putative surface-exposed loops. Among the conserved residues, it was found that mutations of Asp-68 and Asp-109 to alanine almost completely abolished PCPE-1 stimulating activity, whereas mutation of Tyr-67 led to a smaller reduction of activity. Among residues specific to PCPEs, mutation of Glu-26 and Thr-89 had little effect, whereas mutation of Phe-90 dramatically decreased the activity. Changes in activity were paralleled by changes in binding of different PCPE-1 mutants to a mini-procollagen III substrate, as shown by surface plasmon resonance. We conclude that PCPE-stimulating activity requires a calcium binding motif in the CUB1 domain that is highly conserved among CUB-containing proteins but also that PCPEs contain specific sites that could become targets for the development of novel anti-fibrotic therapies.

  10. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress.

    Science.gov (United States)

    Sun, Xiaoli; Yang, Shanshan; Sun, Mingzhe; Wang, Sunting; Ding, Xiaodong; Zhu, Dan; Ji, Wei; Cai, Hua; Zhao, Chaoyue; Wang, Xuedong; Zhu, Yanming

    2014-05-01

    It has been well demonstrated that cystatins regulated plant stress tolerance through inhibiting the cysteine proteinase activity under environmental stress. However, there was limited information about the role of cystatins in plant alkali stress response, especially in wild soybean. Here, in this study, we focused on the biological characterization of a novel Glycine soja cystatin protein GsCPI14, which interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and positively regulated plant alkali stress tolerance. The protein-protein interaction between GsCBRLK and GsCPI14 was confirmed by using split-ubiquitin based membrane yeast two-hybrid analysis and bimolecular fluorescence complementation assay. Expression of GsCPI14 was greatly induced by salt, ABA and alkali stress in G. soja, and GsCBRLK overexpression (OX) in Glycine max promoted the stress induction of GmCPI14 expression under stress conditions. Furthermore, we found that GsCPI14-eGFP fusion protein localized in the entire Arabidopsis protoplast and onion epidermal cell, and GsCPI14 showed ubiquitous expression in different tissues of G. soja. In addition, we gave evidence that the GST-GsCPI14 fusion protein inhibited the proteolytic activity of papain in vitro. At last, we demonstrated that OX of GsCPI14 in Arabidopsis promoted the seed germination under alkali stress, as evidenced by higher germination rates. GsCPI14 transgenic Arabidopsis seedlings also displayed better growth performance and physiological index under alkali stress. Taken together, results presented in this study demonstrated that the G. soja cysteine proteinase inhibitor GsCPI14 interacted with the calcium/calmodulin-binding receptor-like kinase GsCBRLK and regulated plant tolerance to alkali stress.

  11. 18F-FDG PET/CT findings preceded elevation of serum proteinase 3 antineutrophil cytoplasmic antibodies in Wegener granulomatosis.

    Science.gov (United States)

    Ito, Kimiteru; Minamimoto, Ryogo; Yamashita, Hiroyuki; Morooka, Miyako; Okasaki, Momoko; Mimori, Akio; Kubota, Kazuo

    2014-01-01

    A 67-year-old woman underwent F-FDG PET/CT after developing a fever of unknown origin. PET/CT revealed intensive FDG uptake at the nasal and lung lesions. On the laboratory data, serum myeloperoxidase antineutrophil cytoplasmic antibodies (ANCA) titer was elevated, although serum directed against proteinase 3 (PR3) ANCA titer was within normal limits. One month after treatment, follow-up PET/CT revealed decreased FDG uptake at the lesions. One year later, serum PR3-ANCA titer elevated, which finally led to a diagnosis of Wegener granulomatosis (WG). WG lesions may be detected earlier by FDG PET/CT than by serum PR3-ANCA titers.

  12. Synthesis of the proteinase inhibitor LEKTI domain 6 by the fragment condensation method and regioselective disulfide bond formation.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas K; Gatos, Dimitrios; Adermann, Knut; Deraison, Celine; Barlos, Kleomenis

    2010-01-01

    Proteinase inhibitors are of high pharmaceutical interest and are drug candidates for a variety of indications. Specific kallikrein inhibitors are important for their antitumor activity and their potential application to the treatment of skin diseases. In this study we describe the synthesis of domain 6 of the kallikrein inhibitor Lympho-Epithilial Kazal-Type Inhibitor (LEKTI) by the fragment condensation method and site-directed cystine bridge formation. To obtain the linear LEKTI precursor, the condensation was best performed in solution, coupling the protected fragment 1-22 to 23-68. This method yielded LEKTI domain 6 of high purity and equipotent to the recombinantly produced peptide. (c) 2010 Wiley Periodicals, Inc.

  13. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics

    DEFF Research Database (Denmark)

    Sigtryggsdóttir, Asta Rós; Papaleo, Elena; Thorbjarnardóttir, Sigríður H.

    2014-01-01

    temperatures. We also investigated protein dynamics of VPR and AQUI at an atomic level by molecular dynamics simulations. VPR contains four Trp residues, three of which are at corresponding sites in the structure of AQUI. To aid in the comparison, a Tyr at the fourth corresponding site in AQUI was mutated...... activity of cold adapted enzymes when compared to homologues from thermophiles, reflects their higher molecular flexibility. To assess a potential difference in molecular flexibility between the two homologous proteinases, we have measured their Trp fluorescence quenching by acrylamide at different...... have similar flexibility profiles, the cold adapted VPR displays higher flexibility in most regions of the protein structure. Some of these regions contain or are in proximity to some of the Trp residues (Trp6, Trp114 and Trp208) in the proteins. Thus, we observe an overall agreement between...

  14. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: protective role of dehydroepiandrosterone sulfate.

    Science.gov (United States)

    Duszczyk-Budhathoki, Michalina; Olczak, Mieszko; Lehner, Malgorzata; Majewska, Maria Dorota

    2012-02-01

    Thimerosal, a mercury-containing vaccine preservative, is a suspected factor in the etiology of neurodevelopmental disorders. We previously showed that its administration to infant rats causes behavioral, neurochemical and neuropathological abnormalities similar to those present in autism. Here we examined, using microdialysis, the effect of thimerosal on extracellular levels of neuroactive amino acids in the rat prefrontal cortex (PFC). Thimerosal administration (4 injections, i.m., 240 μg Hg/kg on postnatal days 7, 9, 11, 15) induced lasting changes in amino acid overflow: an increase of glutamate and aspartate accompanied by a decrease of glycine and alanine; measured 10-14 weeks after the injections. Four injections of thimerosal at a dose of 12.5 μg Hg/kg did not alter glutamate and aspartate concentrations at microdialysis time (but based on thimerosal pharmacokinetics, could have been effective soon after its injection). Application of thimerosal to the PFC in perfusion fluid evoked a rapid increase of glutamate overflow. Coadministration of the neurosteroid, dehydroepiandrosterone sulfate (DHEAS; 80 mg/kg; i.p.) prevented the thimerosal effect on glutamate and aspartate; the steroid alone had no influence on these amino acids. Coapplication of DHEAS with thimerosal in perfusion fluid also blocked the acute action of thimerosal on glutamate. In contrast, DHEAS alone reduced overflow of glycine and alanine, somewhat potentiating the thimerosal effect on these amino acids. Since excessive accumulation of extracellular glutamate is linked with excitotoxicity, our data imply that neonatal exposure to thimerosal-containing vaccines might induce excitotoxic brain injuries, leading to neurodevelopmental disorders. DHEAS may partially protect against mercurials-induced neurotoxicity.

  15. Enhanced protective efficacy of nonpathogenic recombinant leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen.

    Science.gov (United States)

    Zahedifard, Farnaz; Gholami, Elham; Taheri, Tahereh; Taslimi, Yasaman; Doustdari, Fatemeh; Seyed, Negar; Torkashvand, Fatemeh; Meneses, Claudio; Papadopoulou, Barbara; Kamhawi, Shaden; Valenzuela, Jesus G; Rafati, Sima

    2014-03-01

    Novel vaccination approaches are needed to prevent leishmaniasis. Live attenuated vaccines are the gold standard for protection against intracellular pathogens such as Leishmania and there have been new developments in this field. The nonpathogenic to humans lizard protozoan parasite, Leishmania (L) tarentolae, has been used effectively as a vaccine platform against visceral leishmaniasis in experimental animal models. Correspondingly, pre-exposure to sand fly saliva or immunization with a salivary protein has been shown to protect mice against cutaneous leishmaniasis. Here, we tested the efficacy of a novel combination of established protective parasite antigens expressed by L. tarentolae together with a sand fly salivary antigen as a vaccine strategy against L. major infection. The immunogenicity and protective efficacy of different DNA/Live and Live/Live prime-boost vaccination modalities with live recombinant L. tarentolae stably expressing cysteine proteinases (type I and II, CPA/CPB) and PpSP15, an immunogenic salivary protein from Phlebotomus papatasi, a natural vector of L. major, were tested both in susceptible BALB/c and resistant C57BL/6 mice. Both humoral and cellular immune responses were assessed before challenge and at 3 and 10 weeks after Leishmania infection. In both strains of mice, the strongest protective effect was observed when priming with PpSP15 DNA and boosting with PpSP15 DNA and live recombinant L. tarentolae stably expressing cysteine proteinase genes. The present study is the first to use a combination of recombinant L. tarentolae with a sand fly salivary antigen (PpSP15) and represents a novel promising vaccination approach against leishmaniasis.

  16. Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions.

    Science.gov (United States)

    Wang, Fei; Yang, Fan; Hu, Yunfei; Wang, Xu; Wang, Xinhe; Jin, Changwen; Ma, Jiyan

    2007-06-12

    The conversion of prion protein (PrP) to the pathogenic PrPSc conformation is central to prion disease. Previous studies revealed that PrP interacts with lipids and the interaction induces PrP conformational changes, yet it remains unclear whether in the absence of any denaturing treatment, PrP-lipid interaction is sufficient to convert PrP to the classic proteinase K-resistant conformation. Using recombinant mouse PrP, we analyzed PrP-lipid interaction under physiological conditions and followed lipid-induced PrP conformational change with proteinase K (PK) digestion. We found that the PrP-lipid interaction was initiated by electrostatic contact and followed by hydrophobic interaction. The PrP-lipid interaction converted full-length alpha-helix-rich recombinant PrP to different forms. A significant portion of PrP gained a conformation reminiscent of PrPSc, with a PrPSc-like PK-resistant core and increased beta-sheet content. The efficiency for lipid-induced PrP conversion depended on lipid headgroup structure and/or the arrangement of lipids on the surface of vesicles. When lipid vesicles were disrupted by Triton X-100, PrP aggregation was necessary to maintain the lipid-induced PrPSc-like conformation. However, the PK resistance of lipid-induced PrPSc-like conformation does not depend on amyloid fiber formation. Our results clearly revealed that the lipid interaction can overcome the energy barrier and convert full-length alpha-helix-rich PrP to a PrPSc-like conformation under physiological conditions, supporting the relevance of lipid-induced PrP conformational change to in vivo PrP conversion.

  17. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice

    Science.gov (United States)

    Theodoro-Junior, Osmar A.; Oliveira, Bruno T. M.; Oliva, Leandro V.; Toledo-Arruda, Alessandra C.; Bonturi, Camila R.; Brito, Marlon V.; Prado, Carla M.; Florencio, Ariana C.; Martins, Mílton A.; Owen, Caroline A.; Oliva, Maria L. V.

    2017-01-01

    Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease. PMID:28466019

  18. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics.

    Science.gov (United States)

    Sigtryggsdóttir, Asta Rós; Papaleo, Elena; Thorbjarnardóttir, Sigríður H; Kristjánsson, Magnús M

    2014-04-01

    The subtilisin-like serine proteinases, VPR, from a psychrotrophic Vibrio species and aqualysin I (AQUI) from the thermophile Thermus aquaticus, are structural homologues, but differ significantly with respect to stability and catalytic properties. It has been postulated that the higher catalytic activity of cold adapted enzymes when compared to homologues from thermophiles, reflects their higher molecular flexibility. To assess a potential difference in molecular flexibility between the two homologous proteinases, we have measured their Trp fluorescence quenching by acrylamide at different temperatures. We also investigated protein dynamics of VPR and AQUI at an atomic level by molecular dynamics simulations. VPR contains four Trp residues, three of which are at corresponding sites in the structure of AQUI. To aid in the comparison, a Tyr at the fourth corresponding site in AQUI was mutated to Trp (Y191W). A lower quenching effect of acrylamide on the intrinsic fluorescence of the thermophilic AQUI_Y191W was observed at all temperatures measured (10-55°C), suggesting that it possesses a more rigid structure than VPR. The MD analysis (Cα rmsf profiles) showed that even though VPR and AQUI have similar flexibility profiles, the cold adapted VPR displays higher flexibility in most regions of the protein structure. Some of these regions contain or are in proximity to some of the Trp residues (Trp6, Trp114 and Trp208) in the proteins. Thus, we observe an overall agreement between the fluorescence quenching data and the flexibility profiles obtained from the MD simulations to different flexibilities of specific regions in the proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Strong cooperativity and loose geometry between CUB domains are the basis for procollagen c-proteinase enhancer activity.

    Science.gov (United States)

    Kronenberg, Daniel; Vadon-Le Goff, Sandrine; Bourhis, Jean-Marie; Font, Bernard; Eichenberger, Denise; Hulmes, David J S; Moali, Catherine

    2009-11-27

    Procollagen C-proteinase enhancers (PCPE-1 and -2) specifically activate bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family during C-terminal processing of fibrillar collagen precursors. PCPEs consist of two CUB domains (CUB1 and CUB2) and one NTR domain separated by one short and one long linker. It was previously shown that PCPEs can strongly interact with procollagen molecules, but the exact mechanism by which they enhance BMP-1 activity remains largely unknown. Here, we used a series of deletion mutants of PCPE-1 and two chimeric constructs with repetitions of the same CUB domain to study the role of each domain and linker. Out of all the forms tested, only those containing both CUB1 and CUB2 were capable of enhancing BMP-1 activity and binding to a mini-procollagen substrate with nanomolar affinity. Both these properties were lost by individual CUB domains, which had dissociation constants at least three orders of magnitude higher. In addition, none of the constructs tested could inhibit PCPE activity, although CUB2CUB2NTR was found to modulate BMP-1 activity through direct complex formation with the enzyme, resulting in a decreased rate of substrate processing. Finally, increasing the length of the short linker between CUB1 and CUB2 was without detrimental effect on both activity and substrate binding. These data support the conclusion that CUB1 and CUB2 bind to the procollagen substrate in a cooperative manner, involving the short linker that provides a flexible tether linking the two binding regions.

  20. Plant Proteinase Inhibitor BbCI Modulates Lung Inflammatory Responses and Mechanic and Remodeling Alterations Induced by Elastase in Mice.

    Science.gov (United States)

    Almeida-Reis, Rafael; Theodoro-Junior, Osmar A; Oliveira, Bruno T M; Oliva, Leandro V; Toledo-Arruda, Alessandra C; Bonturi, Camila R; Brito, Marlon V; Lopes, Fernanda D T Q S; Prado, Carla M; Florencio, Ariana C; Martins, Mílton A; Owen, Caroline A; Leick, Edna A; Oliva, Maria L V; Tibério, Iolanda F L C

    2017-01-01

    Background. Proteinases play a key role in emphysema. Bauhinia bauhinioides cruzipain inhibitor (BbCI) is a serine-cysteine proteinase inhibitor. We evaluated BbCI treatment in elastase-induced pulmonary alterations. Methods.  C57BL/6 mice received intratracheal elastase (ELA group) or saline (SAL group). One group of mice was treated with BbCI (days 1, 15, and 21 after elastase instillation, ELABC group). Controls received saline and BbCI (SALBC group). After 28 days, we evaluated respiratory mechanics, exhaled nitric oxide, and bronchoalveolar lavage fluid. In lung tissue we measured airspace enlargement, quantified neutrophils, TNFα-, MMP-9-, MMP-12-, TIMP-1-, iNOS-, and eNOS-positive cells, 8-iso-PGF2α, collagen, and elastic fibers in alveolar septa and airways. MUC-5-positive cells were quantified only in airways. Results. BbCI reduced elastase-induced changes in pulmonary mechanics, airspace enlargement and elastase-induced increases in total cells, and neutrophils in BALF. BbCI reduced macrophages and neutrophils positive cells in alveolar septa and neutrophils and TNFα-positive cells in airways. BbCI attenuated elastic and collagen fibers, MMP-9- and MMP-12-positive cells, and isoprostane and iNOS-positive cells in alveolar septa and airways. BbCI reduced MUC5ac-positive cells in airways. Conclusions. BbCI improved lung mechanics and reduced lung inflammation and airspace enlargement and increased oxidative stress levels induced by elastase. BbCI may have therapeutic potential in chronic obstructive pulmonary disease.

  1. The 3D structure and function of digestive cathepsin L-like proteinases of Tenebrio molitor larval midgut.

    Science.gov (United States)

    Beton, Daniela; Guzzo, Cristiane R; Ribeiro, Alberto F; Farah, Chuck S; Terra, Walter R

    2012-09-01

    Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coli, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAL3) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut. Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut. CAL3 hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C26S) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 Å, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Influence of Genetic Variants of the N-Methyl-D-Aspartate Receptor on Emotion and Social Behavior in Adolescents

    Directory of Open Access Journals (Sweden)

    Li-Ching Lee

    2016-01-01

    Full Text Available Considerable evidence has suggested that the epigenetic regulation of N-methyl-D-aspartate (NMDA glutamate receptors plays a crucial role in neuropsychiatric disorders. Previous exploratory studies have been primarily based on evidence from patients and have rarely sampled the general population. This exploratory study examined the relationship of single-nucleotide polymorphism (SNP variations in the genes encoding the NMDA receptor (i.e., GRIN1, GRIN2A, GRIN2B, GRIN2C, and GRIN2D with emotion and social behavior in adolescents. For this study, 832 tenth-grade Taiwanese volunteers were recruited, and their scores from the Beck Youth Inventories were used to evaluate their emotional and social impairments. Based on these scores, GRIN1 (rs4880213 was significantly associated with depression and disruptive behavior. In addition, GRIN2B (rs7301328 was significantly associated with disruptive behavior. Because emotional and social impairment greatly influence learning ability, the findings of this study provide important information for clinical treatment and the development of promising prevention and treatment strategies, especially in the area of psychological adjustment.

  3. Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.

    Science.gov (United States)

    Qian, Qin; Deng, Jingjing; Wang, Dalei; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-11-06

    Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 μL) of cysteine or aspartic acid alone to a 200 μL Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 μM with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 μM. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.

  4. Insulin aspart in patients with gestational diabetes mellitus and pregestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    M C Deepaklal

    2015-01-01

    Full Text Available Aims: This study was undertaken to assess the effectiveness and safety of insulin aspart in patients with gestational and pregestational diabetes. Settings and Design: An open-label, prospective, nonrandomized, comparative, and observational study conducted at single center in India. Subjects and Methods: A total of 276 patients were in gestational diabetes mellitus (GDM group, 79 were in the pre-GDM group. Patients were started on insulin therapy (insulin aspart ± neutral protamine hagedorn once medical nutrition therapy for 2 weeks failed to achieve control, that is., fasting plasma glucose ≥90 mg/dL and/or 1.0 h postprandial plasma glucose ≥130 mg/dL. Insulin dose was titrated to keep the blood glucose values between 90 and 130 mg/dL. Patients were followed once every 4 weeks until the 28 th week, then once every 2 weeks until 32 nd week, then once every week until delivery, and the final visit was on 60 ± 7 days. The final outcome was assessed in terms of incidence of macrosomia (>3.5 kg body weight between the two groups and episodes of confirmed (blood glucose <56 mg/dL minor or major maternal hypoglycemia. Results: There was no statistically significant difference among the two groups in terms of incidence of macrosomia that is., it was 5.1%, 8.9% in GDM, pre-GDM group, respectively. Conclusions: Insulin aspart was found safe in pregnancy, however, more studies with double-blind, standard controlled studies are required to confirm the findings of this study.

  5. Structure of the Catalytic Trimer of Methanococcus jannaschii Aspartate Transcarbamoylase in an Orthorhombic Crystal Form

    Energy Technology Data Exchange (ETDEWEB)

    Vitali,J.; Colaneri, M.

    2008-01-01

    Crystals of the catalytic subunit of Methanococcus jannaschii aspartate transcarbamoylase in an orthorhombic crystal form contain four crystallographically independent trimers which associate in pairs to form stable staggered complexes that are similar to each other and to a previously determined monoclinic C2 form. Each subunit has a sulfate in the central channel. The catalytic subunits in these complexes show flexibility, with the elbow angles of the monomers differing by up to 7.4 between crystal forms. Moreover, there is also flexibility in the relative orientation of the trimers around their threefold axis in the complexes, with a difference of 4 between crystal forms.

  6. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    DEFF Research Database (Denmark)

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø

    2008-01-01

    glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools....... For example, 4-propyl NHP5G is an antagonist at the NR1/NR2A subtype but an agonist at the NR1/NR2D subtype. Molecular docking studies indicate that the substituent protrudes into a region that may be further exploited to improve subtype selectivity, thereby opening up a design strategy for ligands which can...

  7. Zinc aspartate suppresses T cell activation in vitro and relapsing experimental autoimmune encephalomyelitis in SJL/J mice.

    Science.gov (United States)

    Stoye, Diana; Schubert, Claudia; Goihl, Alexander; Guttek, Karina; Reinhold, Annegret; Brocke, Stefan; Grüngreiff, Kurt; Reinhold, Dirk

    2012-06-01

    Zinc is an essential trace element with a critical role in normal growth and development and in immune homeostasis. Zinc deficiency impairs both the innate and the adaptive immune system and can be normalized by zinc supplementation. On the other end of the spectrum, high dosages of zinc diminish immune cell functions similar to zinc deficiency. Here, we investigated the influence of zinc aspartate on proliferation and cytokine production of stimulated human T cells and mouse splenocytes in vitro. Furthermore, the effect of zinc aspartate was examined in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS) with a Th1/Th17 T cell-mediated immunopathogenesis. Zinc aspartate suppressed proliferation as well as IL-2, IL-10 and IL-17 production in stimulated human T cells and mouse splenocytes. Importantly, administration of a medium range dose of 30 μg/day zinc aspartate [1.5 mg/kg body weight (BW)] in a therapeutic manner led to a significant reduction of the clinical severity of the EAE during the first relapse of the disease. A lower zinc aspartate dose (6 μg/day, 0.3 mg/kg BW) had no significant therapeutic effect on the severity of the EAE, while administration of higher zinc aspartate amounts (120 μg/day, 6 mg/kg BW) led to more severe disease. Taken together, our data suggest that zinc aspartate can modulate activation, proliferation and cytokine production of effector T cells in vitro and in vivo and that activated autoreactive T cells may be potential therapeutic targets of tightly controlled zinc supplementation in autoimmune diseases like MS.

  8. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Andhra Pradesh cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Mohammed Abubaker

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Andhra Pradesh, India. Results: A total of 3077 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 2452, insulin detemir (n = 308, insulin aspart (n = 226, basal insulin plus insulin aspart (n = 21 and other insulin combinations (n = 68. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 8.9% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −1.2%, insulin users: −1.1%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  9. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the North India cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Surender Kumar

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from North India. Results: A total of 4912 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Patients had started on or were switched to biphasic insulin aspart (n = 3619, insulin detemir (n = 880, insulin aspart (n = 331, basal insulin plus insulin aspart (n = 37 and other insulin combinations (n = 44. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.8% and insulin user (mean HbA 1 c: 9.8% groups. After 24 weeks of treatment, both the study groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −2.6%. SADRs including major hypoglycaemic events or episodes did not occur in any of the study patients. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  10. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Eastern Saudi Arabia cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Faisal Hashim

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Eastern Saudi Arabia. Results: A total of 1040 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 489, insulin detemir (n = 360, insulin aspart (n = 37, basal insulin plus insulin aspart (n = 96 and other insulin combinations (n = 57. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.0% and insulin user (mean HbA 1 c: 9.2% groups. After 24 weeks of treatment, both the groups showed improvement in HbA 1 c (insulin naïve: −2.7%, insulin users: −1.7%. No major hypoglycaemic episodes were observed at 24 weeks. SADR was reported in 0.6% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  11. Clinical experience with insulin detemir type 2 diabetes mellitus, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Rabat-Sale-Zemmour-Zaer Region cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Abdelmjid Chraibi

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66 726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Rabat-Sale-Zemmour-Zaer region, Morocco. Results: A total of 424 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 177, insulin detemir (n = 150, insulin aspart (n = 11, basal insulin plus insulin aspart (n = 45 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 10.1% and insulin user (mean HbA 1 c: 9.4% groups. After 24 weeks of treatment, all the study groups showed improvement in HbA 1 c (insulin naïve: −2.5%, insulin users: −1.8%. Major hypoglycaemia was observed in the insulin user group after 24 weeks (0.1 events/patient-year. SADRs were reported in 0.5% of insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  12. Acetic Acid Can Catalyze Succinimide Formation from Aspartic Acid Residues by a Concerted Bond Reorganization Mechanism: A Computational Study

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2015-01-01

    Full Text Available Succinimide formation from aspartic acid (Asp residues is a concern in the formulation of protein drugs. Based on density functional theory calculations using Ace-Asp-Nme (Ace = acetyl, Nme = NHMe as a model compound, we propose the possibility that acetic acid (AA, which is often used in protein drug formulation for mildly acidic buffer solutions, catalyzes the succinimide formation from Asp residues by acting as a proton-transfer mediator. The proposed mechanism comprises two steps: cyclization (intramolecular addition to form a gem-diol tetrahedral intermediate and dehydration of the intermediate. Both steps are catalyzed by an AA molecule, and the first step was predicted to be rate-determining. The cyclization results from a bond formation between the amide nitrogen on the C-terminal side and the side-chain carboxyl carbon, which is part of an extensive bond reorganization (formation and breaking of single bonds and the interchange of single and double bonds occurring concertedly in a cyclic structure formed by the amide NH bond, the AA molecule and the side-chain C=O group and involving a double proton transfer. The second step also involves an AA-mediated bond reorganization. Carboxylic acids other than AA are also expected to catalyze the succinimide formation by a similar mechanism.

  13. Aspartate aminotransferase-to-platelet ratio index for fibrosis and cirrhosis prediction in chronic hepatitis C patients

    Directory of Open Access Journals (Sweden)

    Roberto Gomes da Silva Junior

    Full Text Available In chronic hepatitis C (CHC, liver biopsy is the gold standard method for assessing liver histology, however it is invasive and can have complications. Non-invasive markers have been proposed and aspartate aminotransferase (AST-to-platelet ratio index (APRI has been shown as an easy and inexpensive marker of liver fibrosis. This study evaluated the diagnostic performance of APRI for significant fibrosis and cirrhosis prediction in CHC patients. This study included treatment-naive CHC patients who had undergone liver biopsy from January 2000 to August 2006. All histological slides were reviewed according to the METAVIR system. APRI was calculated based on laboratory results performed within four months from the biopsy. Twenty-eight (56% patients had significant fibrosis (F2-F4 and 13 (26% had cirrhosis (F4. The area under ROC curves of APRI for predicting significant fibrosis and cirrhosis were 0.92 (0.83-1.00 and 0.92 (0.85-1.00, respectively. Using cut-off values recommended by prior studies, significant fibrosis could be identified, in accordance with liver biopsy, in 44% and cirrhosis in 66% of patients. APRI could identify significant fibrosis and cirrhosis at a high degree of accuracy in studied patients.

  14. Optimized method for measuring aspartate aminotransferase activity with the CentrifiChem Analyzer, with automatic preincubation of serum.

    Science.gov (United States)

    Ertingshausen, G; Amsellem-Winzelberg, L; Richert, J F; Davids, R

    1978-07-01

    We propose a routine method for the mechanized measurement of aspartate aminotransferase with the CentrifiChem Analyzer, which is based on the recommendations of both the International Federation of Clinical Chemistry and the Société Française de Biologie Clinique. A modification of the CentrifiChem pipettor permits simultaneous pipetting of two reagents, thus achieving automatic preincubation of the serum in the transfer disk. Owing to the fixed reagent volumes dispensed by the pipettor, preincubation conditions had to be modified, but the recommendations for the final reagent concentrations in the assay cuvet were observed. The totally automated method correlates very well with one involving manual pipetting to reproduce the detailed step-by-step recommendations of the International Federation of Clinical Chemistry. Intra-assay precision ranged from 3.4 to 4.9% and interassay precision from 1.7 to 7.5%. We assayed 135 sera and obtained a correlation coefficient of 0.996 (a = 1.025, b = 0.08).

  15. Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress

    Directory of Open Access Journals (Sweden)

    François Héricourt

    2016-12-01

    Full Text Available Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress.

  16. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia.

    Science.gov (United States)

    Di Fiore, Maria Maddalena; Santillo, Alessandra; Falvo, Sara; Longobardi, Salvatore; Chieffi Baccari, Gabriella

    2016-07-14

    A bulk of evidence suggests that d-aspartate (d-Asp) regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR) in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK) pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA) and aurora kinase B (AURKB). Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2) interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  17. Molecular Mechanisms Elicited by d-Aspartate in Leydig Cells and Spermatogonia

    Directory of Open Access Journals (Sweden)

    Maria Maddalena Di Fiore

    2016-07-01

    Full Text Available A bulk of evidence suggests that d-aspartate (d-Asp regulates steroidogenesis and spermatogenesis in vertebrate testes. This review article focuses on intracellular signaling mechanisms elicited by d-Asp possibly via binding to the N-methyl-d-aspartate receptor (NMDAR in both Leydig cells, and spermatogonia. In Leydig cells, the amino acid upregulates androgen production by eliciting the adenylate cyclase-cAMP and/or mitogen-activated protein kinase (MAPK pathways. d-Asp treatment enhances gene and protein expression of enzymes involved in the steroidogenic cascade. d-Asp also directly affects spermatogonial mitotic activity. In spermatogonial GC-1 cells, d-Asp induces phosphorylation of MAPK and AKT serine-threonine kinase proteins, and stimulates expression of proliferating cell nuclear antigen (PCNA and aurora kinase B (AURKB. Further stimulation of spermatogonial GC-1 cell proliferation might come from estradiol/estrogen receptor β (ESR2 interaction. d-Asp modulates androgen and estrogen levels as well as the expression of their receptors in the rat epididymis by acting on mRNA levels of Srd5a1 and Cyp19a1 enzymes, hence suggesting involvement in spermatozoa maturation.

  18. D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells.

    Science.gov (United States)

    Santillo, Alessandra; Falvo, Sara; Chieffi, Paolo; Di Fiore, Maria Maddalena; Senese, Rosalba; Chieffi Baccari, Gabriella

    2016-02-01

    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway. © 2015 Wiley Periodicals, Inc.

  19. Design and optimization of aspartate N-acetyltransferase inhibitors for the potential treatment of Canavan disease.

    Science.gov (United States)

    Thangavelu, Bharani; Mutthamsetty, Vinay; Wang, Qinzhe; Viola, Ronald E

    2017-02-01

    Canavan disease is a fatal neurological disorder caused by defects in the metabolism of N-acetyl-l-aspartate (NAA). Recent work has shown that the devastating symptoms of this disorder are correlated with the elevated levels of NAA observed in these patients, caused as a consequence of the inability of mutated forms of aspartoacylase to adequately catalyze its breakdown. The membrane-associated enzyme responsible for the synthesis of NAA, aspartate N-acetyltransferase (ANAT), has recently been purified and examined (Wang et al., Prot Expr Purif. 2016;119:11). With the availability, for the first time, of a stable and soluble form of ANAT we can now report the identification of initial inhibitors against this biosynthetic enzyme, obtained from the screening of several focused compound libraries. Two core structures of these moderate binding compounds have subsequently been optimized, with the most potent inhibitors in these series possessing sub-micromolar inhibition constants (Ki values) against ANAT. Slowing the production of NAA via the inhibition of ANAT will lower the elevated levels of this metabolite and can potentially serve as a treatment option to moderate the symptoms of Canavan disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study of the n-methyl-d-aspartate antagonistic properties of anticholinergic drugs

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, J.H.; Shih, T.M.

    1995-12-31

    A study of the N-methyl-D-aspartate antagonistic properties of anticholinergic drugs. PHARMACOL BIOCHEM BEHAV. 51(2/3) 249-253, 1995. Drugs that act at the N-methyl-D-aspartate (NMDA) receptor complex have the ability to terminate nerve agent-induced seizures and modulate the neuropathologic consequences of agent exposure. Drugs with mixed anticholinergic and anti-NMDA properties potentially provide an ideal class of compounds for development as anticonvulsant treatments for nerve agent casualties. The present experiment evaluated the potential NMDA antagonist activity of 11 anticholinergic drugs by determining whether pretreatment with the compound was capable of protecting mice from the lethal effects of NMDA. The following anticholinergic drugs antagonized NMDA lethality and are ranked according to their potency: mecamylamine > procyclidine = benactyzine > biperiden > tribexyphenidyl. The anticholinergics atropine, aprophen, azaprophen, benztropine, 3-quinudidinyl benzilate (QNB), and scopolamine failed to show NMDA antagonist properties. In addition, and unexpectedly, diazepam, ethanol, and pentobarbital were also shown to be capable of antagonizing NMDA lethality over a certain range of doses. The advantages and limitations of using antagonism of NMDA lethality in mice as a bioassay for determining the NMDA antagonist properties of drugs are also discussed.

  1. The Role of N-Methyl D-Aspartate Receptors on Pain Transmission

    Directory of Open Access Journals (Sweden)

    Yasemin Gunes

    2012-02-01

    Full Text Available Aim : In the experimental studies, NMDA (N-methyl-D-aspartate receptors play important role in the mechanism of action among the drugs used for the treatment of pain. The NMDA receptors in the dorsal horn of spinal cord is essential for central sensitization and the central facilitation of pain transmission produced by peripheral injury. The aim of this study was to evaluate the contributions of peripheral NMDA receptor agonist and antagonists in peripheral pain transmission. Material-Method : In the present study, N methyl aspartic acid (NMDA and antagonist ( MK-801 were administered intraplantarily to investigate withdrawal effects, the dose and time dependent latency using thermal plantar test method in rats. Results : MK-801 caused dose-dependent thermal anti-nociceptive effects, whereas NMDA led to reduction in the thermal nociceptive latency and hyperalgesia. Conclusion : Peripheral NMDA receptors may play a dominant role in the transmission of pain information. [Cukurova Med J 2012; 37(1.000: 9-16

  2. Nanostructured aluminium oxide powders obtained by aspartic acid-nitrate gel-combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Gardey Merino, Maria Celeste, E-mail: mcgardey@frm.utn.edu.a [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Grupo CLIOPE, Universidad Tecnologica Nacional - Facultad Regional Mendoza, Rodriguez 273, (M5502AJE) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Lascalea, Gustavo E. [Laboratorio de Investigaciones y Servicios Ambientales Mendoza (LISAMEN) - CCT - CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martin, (M5502IRA) Ciudad de Mendoza, Prov. de Mendoza (Argentina); Sanchez, Laura M. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina); Vazquez, Patricia G. [Centro de Investigacion y Desarrollo en Ciencias Aplicadas ' Dr. Jorge J. Ronco' (CINDECA), CONICET, Universidad Nacional de La Plata, Calle 47 nro. 257, (B1900AJK) La Plata, Prov. de Buenos Aires (Argentina); Cabanillas, Edgardo D. [CONICET and Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Gral. Paz 1499, (1650) San Martin, Prov. de Buenos Aires (Argentina); Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA - CONICET, J.B. de La Salle 4397, (B1603ALO) Villa Martelli, Prov. de Buenos Aires (Argentina)

    2010-04-16

    In this work, two new gel-combustion routes for the synthesis of Al{sub 2}O{sub 3} nanopowders with aspartic acid as fuel are presented. The first route is a conventional stoichiometric process, while the second one is a non-stoichiometric, pH-controlled process. These routes were compared with similar synthesis procedures using glycine as fuel, which are well-known in the literature. The samples were calcined in air at different temperatures, in a range of 600-1200 {sup o}C. They were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET specific surface area. Different phases were obtained depending on the calcination temperature: amorphous, {gamma} (metastable) or {alpha} (stable). The amorphous-to-{gamma} transition was found for calcination temperatures in the range of 700-900 {sup o}C, while the {gamma}-to-{alpha} one was observed for calcination temperatures of 1100-1200 {sup o}C. The retention of the metastable {gamma} phase is probably due to a crystallite size effect. It transforms to the {alpha} phase after the crystallite size increases over a critical size during the calcination process at 1200 {sup o}C. The highest BET specific surface areas were obtained for both nitrate-aspartic acid routes proposed in this work, reaching values of about 50 m{sup 2}/g.

  3. A group-specific inhibitor of lysosomal cysteine proteinases selectively inhibits both proteolytic degradation and presentation of the antigen dinitrophenyl-poly-L-lysine by guinea pig accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    A limited intralysosomal proteolytic degradation is probably a key event in the accessory cell processing of large protein antigens before their presentation to T cells. With the aid of highly specific inhibitors of proteinases, we have examined the role of proteolysis in the presentation...... of antigens by guinea pig accessory cells. The proteinase inhibitor benzyloxycarbonyl-phenylalanylalanine-diazomethyl-ketone, which selectively inhibits cysteine proteinases, was used to block this set of enzymes in cultured cells. We demonstrate that the selective inhibition of the cysteine proteinases...... of antigen-presenting cells causes a profound inhibition of both the proteolytic degradation and the presentation of the synthetic antigen dinitrophenyl-poly-L-lysine. In contrast, the presentation of another synthetic antigen, the copolymer of L-glutamic acid and L-alanine, was enhanced by the same...

  4. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication.

    Science.gov (United States)

    Li, Chuntian; Zhu, Zixiang; Du, Xiaoli; Cao, Weijun; Yang, Fan; Zhang, Xiangle; Feng, Huanhuan; Li, Dan; Zhang, Keshan; Liu, Xiangtao; Zheng, Haixue

    2017-09-01

    The interferon-induced double-strand RNA activated protein kinase (PKR) plays important roles in host defense against viral infection. Here we demonstrate the significant antiviral role of PKR against foot-and-mouth disease virus (FMDV) and report that FMDV infection inhibits PKR expression and activation in porcine kidney (PK-15) cells. The viral nonstructural protein 3C proteinase (3Cpro) is identified to be responsible for this inhibition. However, it is independent of the well-known proteinase activity of 3Cpro or 3Cpro-induced shutoff of host protein synthesis. We show that 3Cpro induces PKR degradation by lysosomal pathway and no interaction is determined between 3Cpro and PKR. Together, our results indicate that PKR acts an important antiviral factor during FMDV infection, and FMDV has evolved a strategy to overcome PKR-mediated antiviral role by downregulation of PKR protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. α1Proteinase inhibitor regulates CD4+ lymphocyte levels and is rate limiting in HIV-1 disease.

    Directory of Open Access Journals (Sweden)

    Cynthia L Bristow

    Full Text Available BACKGROUND: The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1 and its receptor CXCR4 (CD184. In addition, human leukocyte elastase (HLE plays a key role. When HLE is located on the cell surface (HLE(CS, it acts not as a proteinase, but as a receptor for α(1proteinase inhibitor (α(1PI, α(1antitrypsin, SerpinA1. Binding of α(1PI to HLE(CS forms a motogenic complex. We previously demonstrated that α(1PI deficiency attends HIV-1 disease and that α(1PI augmentation produces increased numbers of immunocompetent circulating CD4(+ lymphocytes. Herein we investigated the mechanism underlying the α(1PI deficiency that attends HIV-1 infection. METHODS AND FINDINGS: Active α(1PI in HIV-1 subjects (median 17 µM, n = 35 was significantly below normal (median 36 µM, p220 CD4 cells/µl, CD4(+ lymphocytes were correlated solely with active α(1PI (r(2 = 0.93, p<0.0001, n = 26. The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human α(1PI. Chimpanzee α(1PI differs from human α(1PI by a single amino acid within the 3F5-binding epitope. Unlike human α(1PI, chimpanzee α(1PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4(+ lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-α(1PI immune complexes correlated with decreased CD4(+ lymphocytes in HIV-1 subjects. CONCLUSIONS: This report identifies an autoimmune component of HIV-1 disease that can be overcome therapeutically. Importantly, results identify an achievable vaccine modification with the novel objective to protect against AIDS as opposed to the current objective to protect against HIV-1 infection.

  6. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  7. Purification and Partial Characterization of Trypsin-Specific Proteinase Inhibitors from Pigeonpea Wild Relative Cajanus platycarpus L. (Fabaceae) Active against Gut Proteases of Lepidopteran Pest Helicoverpa armigera

    OpenAIRE

    Marri Swathi; Mishra, Prashant K.; Vadthya Lokya; Swaroop Vanka; Nalini Mallikarjuna; Aparna Dutta Gupta; Kollipara Padmasree

    2016-01-01

    AbstractProteinase inhibitors (PIs) are natural defense proteins of plants found to be active against gut proteases of various insects. A pigeonpea wild relative Cajanus platycarpus was identified as a source of resistance against Helicoverpa armigera, a most devastating pest of several crops including pigeonpea. In the light of earlier studies, trypsin-specific PIs (CpPI 63) were purified from mature dry seeds of C. platycarpus (ICPW-63) and characterized their biochemical properties in cont...

  8. Gamma-glutamyltransferase, aspartate aminotransferase and alkaline phosphatase as markers of alcohol consumption in out-patient alcoholics

    DEFF Research Database (Denmark)

    Gluud, C; Andersen, I; Dietrichson, O

    1981-01-01

    and alkaline phosphatase in 18% and 7%. Neither the activity of gamma-glutamyltransferase, aspartate aminotransferase nor alkaline phosphatase showed any significant (P greater than 0.05) correlation with the history of alcohol consumption. The activities of gamma-glutamyltransferase and aspartate...... aminotransferase were raised significantly more often in patients with recent alcohol consumption than in patients who had abstained for more than 9 days. The concentration of alkaline phosphatase was not significantly (P greater than 0.05) different in these groups. The predictive value of raised and normal...... activities of gamma-glutamyltransferase, in deciding whether a patient had had recent alcohol consumption or not, was not superior to the predictive value of raised and normal activities of aspartate aminotransferase....

  9. Use of protease sensitivity to probe the conformations of newly synthesised mutant forms of mitochondrial aspartate aminotransferase.

    Science.gov (United States)

    Azzariti, A; Giannattasio, S; Doonan, S; Merafina, R S; Marra, E; Quagliariello, E

    1995-10-24

    Sensitivity to digestion with pronase has been used to show that the precursor form of mitochondrial aspartate aminotransferase, the form lacking the N-terminal presequence, that with a deletion of the first 9 residues and mutants of the mature enzyme in which residue Cys-166 is mutated to alanine or serine, all retain unfolded conformations after synthesis in a reticulocyte lysate. In the presence of lysed mitochondria the various forms of mitochondrial aspartate aminotransferase retained their susceptibilities to pronase in a way that mirrored the efficiencies with which they are imported into intact mitochondria. The results are interpreted as showing that the presequence of mitochondrial aspartate aminotransferase is not uniquely required for interaction with cytosolic factors required to maintain the newly synthesised protein in a form competent for interacting with, and being imported into, mitochondria.

  10. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Bhim Bali, E-mail: prof.bbpd@yahoo.com; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-15

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98–532.72 ng mL{sup −1}, with the minimum detection limit of 1.73–1.79 ng mL{sup −1} (S/N = 3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL{sup −1}) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Highlights: • We have adopted surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. • This approach takes advantage of the nanostructured ultrathin imprinted film. • Successful enantioselective sensing and ultratrace analysis of D- and L-aspartic acid. • Stringent detection limit without any non-specific false-positive contribution.

  11. RC1339/APRc from Rickettsia conorii is a novel aspartic protease with properties of retropepsin-like enzymes.

    Directory of Open Access Journals (Sweden)

    Rui Cruz

    2014-08-01

    Full Text Available Members of the species Rickettsia are obligate intracellular, gram-negative, arthropod-borne pathogens of humans and other mammals. The life-threatening character of diseases caused by many Rickettsia species and the lack of reliable protective vaccine against rickettsioses strengthens the importance of identifying new protein factors for the potential development of innovative therapeutic tools. Herein, we report the identification and characterization of a novel membrane-embedded retropepsin-like homologue, highly conserved in 55 Rickettsia genomes. Using R. conorii gene homologue RC1339 as our working model, we demonstrate that, despite the low overall sequence similarity to retropepsins, the gene product of rc1339 APRc (for Aspartic Protease from Rickettsia conorii is an active enzyme with features highly reminiscent of this family of aspartic proteases, such as autolytic activity impaired by mutation of the catalytic aspartate, accumulation in the dimeric form, optimal activity at pH 6, and inhibition by specific HIV-1 protease inhibitors. Moreover, specificity preferences determined by a high-throughput profiling approach confirmed common preferences between this novel rickettsial enzyme and other aspartic proteases, both retropepsins and pepsin-like. This is the first report on a retropepsin-like protease in gram-negative intracellular bacteria such as Rickettsia, contributing to the analysis of the evolutionary relationships between the two types of aspartic proteases. Additionally, we have also shown that APRc is transcribed and translated in R. conorii and R. rickettsii and is integrated into the outer membrane of both species. Finally, we demonstrated that APRc is sufficient to catalyze the in vitro processing of two conserved high molecular weight autotransporter adhesin/invasion proteins, Sca5/OmpB and Sca0/OmpA, thereby suggesting the participation of this enzyme in a relevant proteolytic pathway in rickettsial life-cycle. As a

  12. Cysteine proteinase type III is protective against Leishmania infantum infection in BALB/c mice and highly antigenic in visceral leishmaniasis individuals.

    Science.gov (United States)

    Khoshgoo, Naghmeh; Zahedifard, Farnaz; Azizi, Hiva; Taslimi, Yasaman; Alonso, Maribel Jiménez; Rafati, Sima

    2008-10-29

    Visceral leishmaniasis is the most acute form of leishmaniasis and vaccination is the best approach to control it. One of the major groups of virulence factors in Leishmania belongs to cysteine proteinase family. In this study, for the first time, the protective potential of Leishmania infantum cysteine proteinase type III (CPC) by using a prime-boost strategy is evaluated in BALB/c mice. The experiment was carried out in three groups of mice. Vaccinated group was primed with pcDNA-cpc and boosted with rCPC-DHFR in combination with CpG motif and Montanide 720 as adjuvant. Control groups received pcDNA and rDHFR or PBS. The ratio of IgG2a/IgG1, nitric oxide concentration and IFN-gamma induction in vaccinated group is significantly higher than controls. Furthermore, the parasite load of vaccinated group is significantly lower than controls. In addition, sera reactivity of visceral leishmaniasis individuals was examined and showed considerable reactivities toward rCPC in comparison with cutaneous leishmaniasis. The achieved result is highly encouraging the use of cysteine proteinases types I, II and III as vaccine candidate against visceral leishmaniasis.

  13. Overexpression of a weed (Solanum americanum) proteinase inhibitor in transgenic tobacco results in increased glandular trichome density and enhanced resistance to Helicoverpa armigera and Spodoptera litura.

    Science.gov (United States)

    Luo, Ming; Wang, Zhaoyu; Li, Huapeng; Xia, Kuai-Fei; Cai, Yinpeng; Xu, Zeng-Fu

    2009-04-23

    In this study we produced transgenic tobacco plants by overexpressing a serine proteinase inhibitor gene, SaPIN2a, from the American black nightshade Solanum americanum under the control of the CaMV 35S promoter using Agrobacterium tumefaciens-mediated transformation. SaPIN2a was properly transcribed and translated as indicated by Northern blot and Western blot analyses. Functional integrity of SaPIN2a in transgenic plants was confirmed by proteinase inhibitory activity assay. Bioassays for insect resistance showed that SaPIN2a-overexpressing transgenic tobacco plants were more resistant to cotton bollworm (Helicoverpa armigera) and tobacco cutworm (Spodoptera litura) larvae, two devastating pests of important crop plants, than the control plants. Interestingly, overexpression of SaPIN2a in transgenic tobacco plants resulted in a significant increase in glandular trichome density and a promotion of trichome branching, which could also provide an additional resistance mechanism in transgenic plants against insect pests. Therefore, SaPIN2a could be used as an alternative proteinase inhibitor for the production of insect-resistant transgenic plants.

  14. Overexpression of a Weed (Solanum americanum Proteinase Inhibitor in Transgenic Tobacco Results in Increased Glandular Trichome Density and Enhanced Resistance to Helicoverpa armigera and Spodoptera litura

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu

    2009-04-01

    Full Text Available In this study we produced transgenic tobacco plants by overexpressing a serine proteinase inhibitor gene, SaPIN2a, from the American black nightshade Solanum americanum under the control of the CaMV 35S promoter using Agrobacterium tumefaciens-mediated transformation. SaPIN2a was properly transcribed and translated as indicated by Northern blot and Western blot analyses. Functional integrity of SaPIN2a in transgenic plants was confirmed by proteinase inhibitory activity assay. Bioassays for insect resistance showed that SaPIN2a-overexpressing transgenic tobacco plants were more resistant to cotton bollworm(Helicoverpa armigera and tobacco cutworm(Spodoptera litura larvae, two devastating pests of important crop plants, than the control plants. Interestingly, overexpression of SaPIN2a in transgenic tobacco plants resulted in a significant increase in glandular trichome density and a promotion of trichome branching, which could also provide an additional resistance mechanism in transgenic plants against insect pests. Therefore, SaPIN2a could be used as an alternative proteinase inhibitor for the production of insect-resistant transgenic plants.

  15. Oral administration of a medium containing both D-aspartate-producing live bacteria and D-aspartate reduces rectal temperature in chicks.

    Science.gov (United States)

    Do, P H; Tran, P V; Bahry, M A; Yang, H; Han, G; Tsuchiya, A; Asami, Y; Furuse, M; Chowdhury, V S

    2017-10-01

    1. The aim of this study was to investigate the effects on the rectal temperature of young chicks of the oral administration of a medium that contained both live bacteria that produce D-aspartate (D-Asp) and D-Asp. 2. In Experiment 1, chicks were subjected to chronic oral administration of either the medium (containing live bacteria and 2.46 μmol D-Asp) or water from 7 to 14 d of age. Plasma-free amino acids as well as mitochondrial biogenic gene expression in the breast muscle were analysed. In Experiment 2, 7-d-old chicks were subjected to acute oral administration of the above medium or of an equimolar amount of D-Asp to examine their effect on changes in rectal temperature. In Experiment 3, after 1 week of chronic oral administration of the medium, 14-d-old chicks were exposed to either high ambient temperature (HT; 40 ± 1°C, 3 h) or control thermoneutral temperature (CT; 30 ± 1°C, 3 h) to monitor the changes in rectal temperature. 3. Chronic, but not acute, oral administration of the medium significantly reduced rectal temperature in chicks, and a chronic effect also appeared under HT conditions. 4. Chronic oral administration of the medium significantly reduced the mRNA abundance of the avian uncoupling protein (avUCP) in the breast muscle, but led to a significant increase in avian adenine nucleotide translocator (avANT) mRNA in the same muscle. 5. (a) These results indicate that the medium can reduce body temperature through the decline in avUCP mRNA expression in the breast muscle that may be involved in reduced mitochondrial proton leaks and heat production. (b) The increase in avANT further suggests a possible enhancement of adenosine triphosphate (ATP) synthesis.

  16. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis.

    Science.gov (United States)

    Cardaci, Simone; Zheng, Liang; MacKay, Gillian; van den Broek, Niels J F; MacKenzie, Elaine D; Nixon, Colin; Stevenson, David; Tumanov, Sergey; Bulusu, Vinay; Kamphorst, Jurre J; Vazquez, Alexei; Fleming, Stewart; Schiavi, Francesca; Kalna, Gabriela; Blyth, Karen; Strathdee, Douglas; Gottlieb, Eyal

    2015-10-01

    Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.

  17. Expansion of the aspartate [beta]-semialdehyde dehydrogenase family: the first structure of a fungal ortholog

    Energy Technology Data Exchange (ETDEWEB)

    Arachea, B.T.; Liu, X.; Pavlovsky, A.G.; Viola, R.E. (Toledo)

    2010-08-13

    The enzyme aspartate semialdehyde dehydrogenase (ASADH) catalyzes a critical transformation that produces the first branch-point intermediate in an essential microbial amino-acid biosynthetic pathway. The first structure of an ASADH isolated from a fungal species (Candida albicans) has been determined as a complex with its pyridine nucleotide cofactor. This enzyme is a functional dimer, with a similar overall fold and domain organization to the structurally characterized bacterial ASADHs. However, there are differences in the secondary-structural elements and in cofactor binding that are likely to cause the lower catalytic efficiency of this fungal enzyme. Alterations in the dimer interface, through deletion of a helical subdomain and replacement of amino acids that participate in a hydrogen-bonding network, interrupt the intersubunit-communication channels required to support an alternating-site catalytic mechanism. The detailed functional information derived from this new structure will allow an assessment of ASADH as a possible target for antifungal drug development.

  18. Pseudoallosteric modulation by (+)-MK801 of NMDA (N-methyl-D-aspartate)-coupled phencyclidine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Reid, A.A.; Monn, J.A.; Jacobson, A.E.; Rice, K.C.; Rothman, R.B. (National Institutes of Health, Bethesda, MD (USA))

    1990-01-01

    Two high affinity phencyclidine (PCP) binding sites, labeled by ({sup 3}H)1-(1-(2-thienyl)cyclohexyl)piperidine (({sup 3}H)TCP), have been identified in guinea pig brain, with one site coupled to the N-methyl-D-aspartate (NMDA) receptor (site 1) and the other site associated with the dopamine reuptake carrier complex (site 2). In this study, PCP enhanced the dissociation of ({sup 3}H)TCP from PCP site 1 and site 2, while (+){minus}MK801 only enhanced dissociation of ({sup 3}H)TCP from PCP site 1. Although additional studies will be required to determine the exact mechanism(s) of these effects, these data demonstrate that the interactions of PCP with both site 1 and site 2 are more complex than previously appreciated.

  19. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  20. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in HIV Infection.

    Science.gov (United States)

    Patarata, Eunice; Bernardino, Vera; Martins, Ana; Pereira, Rui; Loureiro, Conceição; Moraes-Fontes, Maria Francisca

    2016-01-01

    Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is a rare condition characterized by emotional and behavioral disturbances, dyskinesias, and extrapyramidal signs. It occurs in young women of reproductive age and is classically described as a paraneoplastic phenomenon. We present a 36-year-old, HIV-positive female who was admitted to the hospital in an acute confusional state, with a stiff posture, periods of motor agitation, and myoclonic jerks of the hands. Her mental state progressively deteriorated. Without evidence of infection, the presence of anti-NMDAR antibodies both in serum and cerebrospinal fluid clinched the diagnosis of autoimmune encephalitis. No evidence of neoplastic disease was found, and the beneficial response to immunosuppressive therapy was exceptional. This is the first report of anti-NMDAR encephalitis in an HIV-infected individual, reminding us that autoimmune encephalitis should be included in the differential diagnosis of a young patient presenting in an acute confusional state.

  1. Synthesis, Characterization, and Antimicrobial Activities of Coordination Compounds of Aspartic Acid

    Directory of Open Access Journals (Sweden)

    T. O. Aiyelabola

    2016-01-01

    Full Text Available Coordination compounds of aspartic acid were synthesized in basic and acidic media, with metal ligand M : L stoichiometric ratio 1 : 2. The complexes were characterized using infrared, electronic and magnetic susceptibility measurements, and mass spectrometry. Antimicrobial activity of the compounds was determined against three Gram-positive and three Gram-negative bacteria and one fungus. The results obtained indicated that the availability of donor atoms used for coordination was a function of the pH of the solution in which the reaction was carried out. This resulted in varying geometrical structures for the complexes. The compounds exhibited a broad spectrum of activity and in some cases better activity than the standard.

  2. [Subcellular localization, purification, and various catalitic properties of aspartate aminotransferase from Spirodela polyrhiza].

    Science.gov (United States)

    Rakhmanova, T I; Popova, T N; Semenikhina, A V

    2006-01-01

    Intracellular distribution of aspartate aminotransferase (AAT) in Spirodela polyrhiza (Lemnaceae), strain SJ, has been studied by differential centrifugation. The bulk of the enzyme (73% of total cellular content) was localized in the cytoplasm and 24% activity was localized in chloroplasts. Purified cytoplasmic and chloroplastic isozymes differed by their affinity for substrates. The reaction balance was shifted towards direct and reverse transamination in the cytoplasm and chloroplast, respectively. Competitive inhibition of AAT by excessive substrates and enzyme affinity modulation by certain intermediates of the tricarboxylic acid cycle (isocitrate, succinate, and citrate) were observed. Possible involvement of AAT isozymes in the coordination of carbon and nitrogen metabolism through the regulation of 2-oxoglutarate synthesis and utilization in different cellular compartments is discussed.

  3. Stability of binary complexes of L-aspartic acid in dioxan–water mixtures

    Directory of Open Access Journals (Sweden)

    R.S. Rani

    2013-09-01

    Full Text Available Speciation of binary complexes of Co(II, Ni(II and Cu(II with L-aspartic acid in (0–60% v/v 1,4-dioxan (Dox-water mixtures was studied pH metrically at 303±0.1 K and at an ionic strength of 0.16 M. The models contained ML, ML2, ML2H2, ML2H3 and ML2H4 species. The trend in the variation of stability constants with Dox content was explained on the basis of electrostatic and non-electrostatic forces. Distribution of the species with pH at different compositions of Dox-water media was also presented.DOI: http://dx.doi.org/10.4314/bcse.v27i3.5

  4. Anti-N-Methyl-D-Aspartate Receptor Encephalitis in HIV Infection

    Directory of Open Access Journals (Sweden)

    Eunice Patarata

    2016-12-01

    Full Text Available Anti-N-methyl-D-aspartate receptor (anti-NMDAR encephalitis is a rare condition characterized by emotional and behavioral disturbances, dyskinesias, and extrapyramidal signs. It occurs in young women of reproductive age and is classically described as a paraneoplastic phenomenon. We present a 36-year-old, HIV-positive female who was admitted to the hospital in an acute confusional state, with a stiff posture, periods of motor agitation, and myoclonic jerks of the hands. Her mental state progressively deteriorated. Without evidence of infection, the presence of anti-NMDAR antibodies both in serum and cerebrospinal fluid clinched the diagnosis of autoimmune encephalitis. No evidence of neoplastic disease was found, and the beneficial response to immunosuppressive therapy was exceptional. This is the first report of anti-NMDAR encephalitis in an HIV-infected individual, reminding us that autoimmune encephalitis should be included in the differential diagnosis of a young patient presenting in an acute confusional state.

  5. Correlation of Global N-Acetyl Aspartate With Cognitive Impairment in Multiple Sclerosis

    DEFF Research Database (Denmark)

    Kahr Mathiesen, Henrik; Jonsson, Agnete; Tscherning, Thomas

    2006-01-01

    than conventional magnetic resonance imaging measures. DESIGN: Survey. SETTING: Research-oriented hospitals.Patients Twenty patients, 16 women and 4 men (mean age, 36 years), with early relapsing-remitting multiple sclerosis (mean Expanded Disability Status Scale score, 2.5). MAIN OUTCOME MEASURES......BACKGROUND: Whole-brain N-acetyl aspartate (NAA), a measure of neuronal function, can be assessed by multislice echo-planar spectroscopic imaging. OBJECTIVE: To test the hypothesis that the global brain NAA/creatine (Cr) ratio is a better predictor of cognitive dysfunction in multiple sclerosis......: Correlation between the global NAA/Cr ratio and a cognitive dysfunction factor comprising 16 measures from an extensive neuropsychological test battery that best distinguished patients with multiple sclerosis from healthy control subjects. RESULTS: A significant partial correlation between the global NAA...

  6. Cumulative effects of mutations in newly synthesised mitochondrial aspartate aminotransferase on uptake into mitochondria.

    Science.gov (United States)

    Marra, E; Azzariti, A; Giannattasio, S; Doonan, S; Quagliariello, E

    1995-09-14

    Mutant genes were constructed which coded for the precursor form of mitochondrial aspartate aminotransferase in which residue cysteine 166 was mutated to either serine or alanine and for forms of the protein lacking both the presequence and residues 1-9 of the mature protein but carrying the same cysteine mutations. The protein products of all of these mutant genes were imported into mitochondria that had been added to the expression system but with varying degrees of efficiency. The results showed that the effects of mutation of cysteine 166 and of deletion of residues 1-9 of the mature protein on sequestration into mitochondria were essentially cumulative, suggesting that these parts of the protein are involved in distinct steps on the recognition/uptake pathway.

  7. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  8. A novel proteinase, SNOWY COTYLEDON4, is required for photosynthetic acclimation to higher light intensities in Arabidopsis.

    Science.gov (United States)

    Albrecht-Borth, Verónica; Kauss, Dominika; Fan, Dayong; Hu, Yuanyuan; Collinge, Derek; Marri, Shashikanth; Liebers, Monique; Apel, Klaus; Pfannschmidt, Thomas; Chow, Wah S; Pogson, Barry J

    2013-10-01

    Excess light can have a negative impact on photosynthesis; thus, plants have evolved many different ways to adapt to different light conditions to both optimize energy use and avoid damage caused by excess light. Analysis of the Arabidopsis (Arabidopsis thaliana) mutant snowy cotyledon4 (sco4) revealed a mutation in a chloroplast-targeted protein that shares limited homology with CaaX-type endopeptidases. The SCO4 protein possesses an important function in photosynthesis and development, with point mutations rendering the seedlings and adult plants susceptible to photooxidative stress. The sco4 mutation impairs the acclimation of chloroplasts and their photosystems to excess light, evidenced in a reduction in photosystem I function, decreased linear electron transfer, yet increased nonphotochemical quenching. SCO4 is localized to the chloroplasts, which suggests the existence of an unreported type of protein modification within this organelle. Phylogenetic and yeast complementation analyses of SCO4-like proteins reveal that SCO4 is a member of an unknown group of higher plant-specific proteinases quite distinct from the well-described CaaX-type endopeptidases RAS Converting Enzyme1 (RCE1) and zinc metallopeptidase STE24 and lacks canonical CaaX activity. Therefore, we hypothesize that SCO4 is a novel endopeptidase required for critical protein modifications within chloroplasts, influencing the function of proteins involved in photosynthesis required for tolerance to excess light.

  9. A Novel Proteinase, SNOWY COTYLEDON4, Is Required for Photosynthetic Acclimation to Higher Light Intensities in Arabidopsis1[W

    Science.gov (United States)

    Albrecht-Borth, Verónica; Kauss, Dominika; Fan, Dayong; Hu, Yuanyuan; Collinge, Derek; Marri, Shashikanth; Liebers, Monique; Apel, Klaus; Pfannschmidt, Thomas; Chow, Wah S.; Pogson, Barry J.

    2013-01-01

    Excess light can have a negative impact on photosynthesis; thus, plants have evolved many different ways to adapt to different light conditions to both optimize energy use and avoid damage caused by excess light. Analysis of the Arabidopsis (Arabidopsis thaliana) mutant snowy cotyledon4 (sco4) revealed a mutation in a chloroplast-targeted protein that shares limited homology with CaaX-type endopeptidases. The SCO4 protein possesses an important function in photosynthesis and development, with point mutations rendering the seedlings and adult plants susceptible to photooxidative stress. The sco4 mutation impairs the acclimation of chloroplasts and their photosystems to excess light, evidenced in a reduction in photosystem I function, decreased linear electron transfer, yet increased nonphotochemical quenching. SCO4 is localized to the chloroplasts, which suggests the existence of an unreported type of protein modification within this organelle. Phylogenetic and yeast complementation analyses of SCO4-like proteins reveal that SCO4 is a member of an unknown group of higher plant-specific proteinases quite distinct from the well-described CaaX-type endopeptidases RAS Converting Enzyme1 (RCE1) and zinc metallopeptidase STE24 and lacks canonical CaaX activity. Therefore, we hypothesize that SCO4 is a novel endopeptidase required for critical protein modifications within chloroplasts, influencing the function of proteins involved in photosynthesis required for tolerance to excess light. PMID:23940253

  10. Cysteine Proteinase-1 and Cut Protein Isoform Control Dendritic Innervation of Two Distinct Sensory Fields by a Single Neuron

    Directory of Open Access Journals (Sweden)

    Gray R. Lyons

    2014-03-01

    Full Text Available Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1 as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.

  11. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Bertha Isabel Carvajal-Gamez

    Full Text Available Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB (an inhibitor of putrescine biosynthesis, diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  12. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Science.gov (United States)

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  13. Distinct proteinase 3-induced cytokine patterns in Wegener´s granulomatosis, Churg-Strauss syndrome, and healthy controls.

    Science.gov (United States)

    Fagin, Ursula; Csernok, Elena; Müller, Antje; Pitann, Silke; Fazio, Juliane; Krause, Kristina; Bremer, Philip; Wipfler-Freissmuth, Edith; Moosig, Frank; Gross, Wolfgang L; Lamprecht, Peter

    2011-01-01

    To analyse whether a specific cytokine pattern is elicited in response to the autoantigen proteinase 3 (PR3) in active Wegener's granulomatosis (WG). Six-colour flow cytometry was used to analyse cytokine production and surface markers of the total CD4+ T-cell population ex vivo and in PR3-stimulated T-cell lines of patients with active PR3-ANCA-positive WG, PR3-ANCA-negative Churg-Strauss syndrome (CSS), and healthy controls (HC). The cytokine response of the total PB CD4+ T cell population was skewed towards distinct pro-inflammatory cytokine patterns in WG (Th1-type) and CSS (Th17, Th1-/Th2-type). Th2-type as well as Th17 cell populations including Th17/Th1, Th17/Th2 and Th22 cells were elicited in response to PR3 stimulation in WG. In contrast, CSS patients displayed a Th2-type dominated response following PR3 stimulation. These data suggest that the cytokine response of the total CD4+ T-cell population and PR3-specific cells is influenced by the underlying disorder.

  14. Renal proteinase-activated receptor 2, a new actor in the control of blood pressure and plasma potassium level.

    Science.gov (United States)

    Morla, Luciana; Brideau, Gaëlle; Fila, Marc; Crambert, Gilles; Cheval, Lydie; Houillier, Pascal; Ramakrishnan, Sureshkrishna; Imbert-Teboul, Martine; Doucet, Alain

    2013-04-05

    Proteinase-activated receptor 2 (PAR2) is a G protein-coupled membrane receptor that is activated upon cleavage of its extracellular N-terminal domain by trypsin and related proteases. PAR2 is expressed in kidney collecting ducts, a main site of control of Na(+) and K(+) homeostasis, but its function remains unknown. We evaluated whether and how PAR2 might control electrolyte transport in collecting ducts, and thereby participate in the regulation of blood pressure and plasma K(+) concentration. PAR2 is expressed at the basolateral border of principal and intercalated cells of the collecting duct where it inhibits K(+) secretion and stimulates Na(+) reabsorption, respectively. Invalidation of PAR2 gene impairs the ability of the kidney to control Na(+) and K(+) balance and promotes hypotension and hypokalemia in response to Na(+) and K(+) depletion, respectively. This study not only reveals a new role of proteases in the control of blood pressure and plasma potassium level, but it also identifies a second membrane receptor, after angiotensin 2 receptor, that differentially controls sodium reabsorption and potassium secretion in the late distal tubule. Conversely to angiotensin 2 receptor, PAR2 is involved in the regulation of sodium and potassium balance in the context of either stimulation or nonstimulation of the renin/angiotensin/aldosterone system. Therefore PAR2 appears not only as a new actor of the aldosterone paradox, but also as an aldosterone-independent modulator of blood pressure and plasma potassium.

  15. Procollagen C-Proteinase Enhancer 1 (PCPE-1 as a Plasma Marker of Muscle and Liver Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Eyal Hassoun

    Full Text Available Current non-invasive diagnostic methods of fibrosis are limited in their ability to identify early and intermediate stages of fibrosis and assess the efficacy of therapy. New biomarkers of fibrosis are therefore constantly sought for, leading us to evaluate procollagen C-proteinase enhancer 1 (PCPE-1, a fibrosis-related extracellular matrix glycoprotein, as a plasma marker of fibrosis. A sandwich ELISA that permitted accurate measurements of PCPE-1 concentrations in mouse plasma was established. Tissue fibrosis was assessed using histochemical, immunofluorescence, and immunoblotting analyses for type I collagen and PCPE-1. The normal plasma concentration of PCPE-1 in 6 weeks to 4 months old mice was ~200 ng/ml (189.5 ± 11.3 to 206.8 ± 13.8 ng/ml. PCPE-1 plasma concentrations in four and 8.5 months old mdx mice displaying fibrotic diaphragms increased 27 and 40% respectively relatively to age-matched control mice, an increase comparable to that of the N-propeptide of procollagen type III (PIIINP, a known blood marker of fibrosis. PCPE-1 plasma levels in mice with CCl4-induced liver fibrosis increased 34 to 50% relatively to respective controls and reflected the severity of the disease, namely increased gradually during the progression of fibrosis and went down to basal levels during recovery, in parallel to changes in the liver content of collagen I and PCPE-1. The results favor PCPE-1 as a potential new clinically valuable fibrosis biomarker.

  16. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  17. A Histidine Aspartate Ionic Lock Gates the Iron Passage in Miniferritins from Mycobacterium smegmatis*

    Science.gov (United States)

    Williams, Sunanda Margrett; Chandran, Anu V.; Vijayabaskar, Mahalingam S.; Roy, Sourav; Balaram, Hemalatha; Vishveshwara, Saraswathi; Vijayan, Mamannamana; Chatterji, Dipankar

    2014-01-01

    Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8–2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release. PMID:24573673

  18. Structural Model of the R State of Escherichia coli Aspartate Transcarbamoylase with Substrates Bound

    Energy Technology Data Exchange (ETDEWEB)

    Wang,J.; Eldo, J.; Kantrowitz, E.

    2007-01-01

    The allosteric enzyme aspartate transcarbamoylase (ATCase) exists in two conformational states. The enzyme, in the absence of substrates is primarily in the low-activity T state, is converted to the high-activity R state upon substrate binding, and remains in the R state until substrates are exhausted. These conformational changes have made it difficult to obtain structural data on R-state active-site complexes. Here we report the R-state structure of ATCase with the substrate Asp and the substrate analog phosphonoactamide (PAM) bound. This R-state structure represents the stage in the catalytic mechanism immediately before the formation of the covalent bond between the nitrogen of the amino group of Asp and the carbonyl carbon of carbamoyl phosphate. The binding mode of the PAM is similar to the binding mode of the phosphonate moiety of N-(phosphonoacetyl)-l-aspartate (PALA), the carboxylates of Asp interact with the same residues that interact with the carboxylates of PALA, although the position and orientations are shifted. The amino group of Asp is 2.9 {angstrom} away from the carbonyl oxygen of PAM, positioned correctly for the nucleophilic attack. Arg105 and Leu267 in the catalytic chain interact with PAM and Asp and help to position the substrates correctly for catalysis. This structure fills a key gap in the structural determination of each of the steps in the catalytic cycle. By combining these data with previously determined structures we can now visualize the allosteric transition through detailed atomic motions that underlie the molecular mechanism.

  19. Production and Characterization of Monoclonal Antibodies against Aspartate Aminotransferase-P1 from Lupin Root Nodules.

    Science.gov (United States)

    Jones, W. T.; Jones, S. D.; Harvey, D.; Rodber, K. R.; Ryan, G. B.; Reynolds, PHS.

    1994-01-01

    Six hybridoma clones were obtained that secreted monoclonal antibodies against the aspartate aminotransferase-P1 (AAT-P1) isoenzyme from root nodules of Lupinus angustifolius [L.] cv Uniharvest. This enzyme is found constitutively in the plant cytosol fraction. The monoclonal antibodies produced were all of the immunoglobulin G1 class, recognized two distinct epitopes on the protein, and represented the major paratopes found in the immunoglobulin fraction of sera taken from mice and rabbits immunized with the pure AAT-P1 protein. One of these epitopes was unique to lupin nodule AAT-P1. The other epitope was shown to be present on enzyme from lupin bean, white clover and tobacco leaves, lupin roots and nodules, and potato tubers. Both epitopes were recognized by the appropriate monoclonal antibodies in both their native and denatured forms. None of the monoclonal antibodies produced reacted with Rhizobium lupini NZP2257, Escherichia coli extracts, or with the inducible aspartate aminotransferase-P2 (AAT-P2) isoform also found in root nodules. A sandwich enzyme-linked immunosorbent assay utilizing two monoclonal antibodies recognizing the two distinct epitopes was developed and was capable of quantitating AAT-P1 in plant extracts. The limit of detection of AAT-P1 was less than 15 pg/mL and AAT-P1 protein could be quantified in the range 80 to 1000 pg/mL. Using this assay, AAT-P1 protein was shown to remain relatively constant during nodule development. Use of an AAT-P2-specific monoclonal antibody that inhibits the enzyme activity of this isoform enabled the direct determination of AAT-P1 enzyme activity in nodule extracts. Using these assays, specific activities of the individual isoforms were calculated; that of the AAT-P1 isoform was shown to be 7.5-fold higher than that of the AAT-P2 isoform. PMID:12232065

  20. Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris.

    Science.gov (United States)

    Feijoo-Siota, Lucía; Rama, José Luis R; Sánchez-Pérez, Angeles; Villa, Tomás G

    2018-02-20

    Galium verum, also known as Lady's Bedstraw or Cheese Rennet, is an herbaceous perennial plant traditionally used in cheese-making. We used RACE PCR to isolate novel enzymes from Galium verum with the ability to clot milk. This approach generated two cDNA sequences (named preprogaline A and B) encoding proteins displaying the typical plant aspartic protease primary structure. Preprogaline B was expressed in the yeast Pichia pastoris, after deleting and replacing its original signal peptide with the yeast α-factor signal peptide from Saccharomyces cerevisiae. The secreted recombinant protein was obtained by growing P. pastoris in YPD medium and had the ability to clot milk. The mature form of progaline B is a heterodimeric glycosylated enzyme, with a molecular weight of approximately 48 kDa, that contains a heavy (30.7 kDa) and a light (13.5 kDa) polypeptide chains linked by disulfide bonds. Western blot analysis revealed that progaline B is activated by the acidification of the yeast culture medium and that enzymatic activation requires two steps. First the precursor protein is cleaved into two polypeptide chains by partial removal of the plant-specific insert (PSI) present in plant aspartic proteases; this is later followed by propeptide removal. By altering the pH of the P. pastoris culture medium, we were able to obtain either active or inactive forms of the enzyme. Recombinant progaline B displayed a κ-casein hydrolysis pattern analogous to those produced by the animal and microbial coagulants currently used in the dairy industry, but it exhibited a different digestion profile on α- and β-caseins. The plant protease progaline B displays milk-clotting activities suitable for the production of novel dairy products. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Rapid method for DNA extraction from the honey bee Apis mellifera and the parasitic bee mite Varroa destructor using lysis buffer and proteinase K.

    Science.gov (United States)

    Issa, M R C; Figueiredo, V L C; De Jong, D; Sakamoto, C H; Simões, Z L P

    2013-10-22

    We developed a rapid method for extraction of DNA from honey bees, Apis mellifera, and from the parasitic bee mite, Varroa destructor. The advantages include fast processing and low toxicity of the substances that are utilized. We used lysis buffer with nonionic detergents to lyse cell walls and proteinase K to digest proteins. We tested whole thorax, thoracic muscle mass, legs, and antennae from individual bees; the mites were processed whole (1 mite/sample). Each thorax was incubated whole, without cutting, because exocuticle color pigment darkened the extraction solution, interfering with PCR results. The procedure was performed with autoclaved equipment and laboratory gloves. For each sample, we used 100 µL lysis buffer (2 mL stock solution of 0.5 M Tris/HCl, pH 8.5, 10 mL stock solution of 2 M KCl, 500 µL solution of 1 M MgCl2, 2 mL NP40, and 27.6 g sucrose, completed to 200 mL with bidistilled water and autoclaved) and 2 µL proteinase K (10 mg/mL in bidistilled water previously autoclaved, as proteinase K cannot be autoclaved). Tissues were incubated in the solutions for 1-2 h in a water bath (62°-68 °C) or overnight at 37 °C. After incubation, the tissues were removed from the extraction solution (lysis buffer + proteinase K) and the solution heated to 92 °C for 10 min, for proteinase K inactivation. Then, the solution with the extracted DNA was stored in a refrigerator (4°-8 °C) or a freezer (-20 °C). This method does not require centrifugation or phenol/chloroform extraction. The reduced number of steps allowed us to sample many individuals/day. Whole mites and bee antennae were the most rapidly processed. All bee tissues gave the same quality DNA. This method, even using a single bee antenna or a single mite, was adequate for extraction and analysis of bee genomic and mitochondrial DNA and mite genomic DNA.

  2. Cost comparison of insulin glargine with insulin detemir in a basal-bolus regime with mealtime insulin aspart in type 2 diabetes in Germany

    Directory of Open Access Journals (Sweden)

    Dippel, Franz-Werner

    2010-01-01

    Full Text Available Objective: To compare the treatment costs of insulin glargine (IG; Lantus® to detemir (ID; Levemir®, both combined with bolus insulin aspart (NovoRapid® in type 2 diabetes (T2D in Germany. Methods: Cost comparison was based on data of a 1-year randomised controlled trial [1]. IG was administered once daily and ID once (57% of patients or twice daily (43% according to treatment response. At the end of the trial, mean daily basal insulin doses were 0.59 U/kg (IG and 0.82 U/kg (ID. Aspart doses were 0.32 U/kg (IG and 0.36 U/kg (ID. Costs were calculated from the German statutory health insurance (SHI perspective using official 2008 prices. Sensitivity analyses were performed to test robustness of the results. Results: Annual basal and bolus insulin costs per patient were € 1,473 (IG and € 1,940 (ID. The cost of lancets and blood glucose test strips were € 1,125 (IG and € 1,286 (ID. Annual costs for needles were € 393 (IG and € 449 (ID. The total annual cost per patient of administering IG was € 2,991 compared with € 3,675 for ID, translating into a 19% annual cost difference of € 684/patient. Base case results were robust to varying assumptions for insulin dose, insulin price, change in weight and proportion of ID once daily administrations. Conclusion: IG and ID basal-bolus regimes have comparative safety and efficacy, based on the Hollander study, IG however may represent a significantly more cost saving option for T2D patients in Germany requiring basal-bolus insulin analogue therapy with potential annual cost savings of € 684/patient compared to ID.

  3. Differential subcellular targeting of recombinant human α₁-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants.

    Science.gov (United States)

    Jha, Shweta; Agarwal, Saurabh; Sanyal, Indraneel; Jain, G K; Amla, D V

    2012-11-01

    The response of protein accumulation site on yield, biological activity and in planta stability of therapeutic recombinant human proteinase inhibitor (α₁-PI) was analyzed via targeting to different subcellular locations, like endoplasmic reticulum (ER), apoplast, vacuole and cytosol in leaves of transgenic tomato plants. In situ localization of the recombinant α₁-PI protein in transgenic plant cells was monitored by immunohistochemical staining. Maximum accumulation of recombinant α₁-PI in T₀ and T₁ transgenic tomato plants was achieved from 1.5 to 3.2% of total soluble protein (TSP) by retention in ER lumen, followed by vacuole and apoplast, whereas cytosolic targeting resulted into degradation of the protein. The plant-derived recombinant α₁-PI showed biological activity for elastase inhibition, as monitored by residual porcine pancreatic elastase (PPE) activity assay and band-shift assay. Recombinant α₁-PI was purified from transgenic tomato plants with high yield, homogeneity and biological activity. Purified protein appeared as a single band of ∼48-50 kDa on SDS-PAGE with pI value ranging between 5.1 and 5.3. Results of mass spectrometry and optical spectroscopy of purified recombinant α₁-PI revealed the structural integrity of the recombinant protein comparable to native serum α₁-PI. Enzymatic deglycosylation and lectin-binding assays with the purified recombinant α₁-PI showed compartment-specific N-glycosylation of the protein targeted to ER, apoplast and vacuole. Conformational studies based on urea-induced denaturation and circular dichroism (CD) spectroscopy revealed relatively lower stability of the recombinant α₁-PI protein, compared to its serum counterpart. Pharmacokinetic evaluation of plant derived recombinant and human plasma-purified α₁-PI in rat, by intravenous route, revealed significantly faster plasma clearance and lower area under curve (AUC) of recombinant protein. Our data suggested significance of

  4. Clinical experience with insulin detemir, biphasic insulin aspart and insulin aspart in people with type 2 diabetes: Results from the Abu Dhabi cohort of the A 1 chieve study

    Directory of Open Access Journals (Sweden)

    Oula Alhabian

    2013-01-01

    Full Text Available Background: The A 1 chieve, a multicentric (28 countries, 24-week, non-interventional study evaluated the safety and effectiveness of insulin detemir, biphasic insulin aspart and insulin aspart in people with T2DM (n = 66,726 in routine clinical care across four continents. Materials and Methods: Data was collected at baseline, at 12 weeks and at 24 weeks. This short communication presents the results for patients enrolled from Abu Dhabi. Results: A total of 383 patients were enrolled in the study. Four different insulin analogue regimens were used in the study. Study patients had started on or were switched to biphasic insulin aspart (n = 134, insulin detemir (n = 152, insulin aspart (n = 13, basal insulin plus insulin aspart (n = 42 and other insulin combinations (n = 41. At baseline glycaemic control was poor for both insulin naïve (mean HbA 1 c: 9.4% and insulin user (mean HbA 1 c: 9.1% groups. After 24 weeks of treatment, both groups showed improvement in HbA 1 c (insulin naïve: −2.1%, insulin users: −1.8%. SADRs did not occur in any of the study patients. Major hypoglycaemic events remained same as that of baseline (0.1 events/patient-year for insulin naïve group whereas major hypoglycaemia reduced from 0.1 events/patient-year to 0.0 events/patient-year in insulin users. Conclusion: Starting or switching to insulin analogues was associated with improvement in glycaemic control with a low rate of hypoglycaemia.

  5. Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid

    NARCIS (Netherlands)

    Sivan, S.-S.; Wachtel, E.; Tsitron, E.; Sakkee, N.; Ham, F. van der; Groot, J.de; Roberts, S.; Maroudas, A.

    2008-01-01

    Knowledge of rates of protein turnover is important for a quantitative understanding of tissue synthesis and catabolism. In this work, we have used the racemization of aspartic acid as a marker for the turnover of collagen obtained from healthy and pathological human intervertebral disc matrices. We

  6. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    Science.gov (United States)

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  7. Inhibition of Calpain Prevents N-Methyl-D-aspartate-Induced Degeneration of the Nucleus Basalis and Associated Behavioral Dysfunction

    NARCIS (Netherlands)

    Nimmrich, Volker; Szabo, Robert; Nyakas, Csaba; Granic, Ivica; Reymann, Klaus G.; Schroeder, Ulrich H.; Gross, Gerhard; Schoemaker, Hans; Wicke, Karsten; Moeller, Achim; Luiten, Paul

    2008-01-01

    N-Methyl-D-aspartate( NMDA) receptor-mediated excitotoxicity is thought to underlie a variety of neurological disorders, and inhibition of either the NMDA receptor itself, or molecules of the intracellular cascade, may attenuate neurodegeneration in these diseases. Calpain, a calcium-dependent

  8. [Anesthesia in anti-N-methyl-d-aspartate receptor encephalitis - is general anesthesia a requisite? A case report].

    Science.gov (United States)

    Chaw, Sook Hui; Foo, Li Lian; Chan, Lucy; Wong, Kang Kwong; Abdullah, Suhailah; Lim, Boon Kiong

    Anti-N-methyl-d-aspartate receptor encephalitis is a recently described neurological disorder and an increasingly recognized cause of psychosis, movement disorders and autonomic dysfunction. We report 20-year-old Chinese female who presented with generalized tonic-clonic seizures, recent memory loss, visual hallucinations and abnormal behavior. Anti-N-methyl-d-aspartate receptor encephalitis was diagnosed and a computed tomography scan of abdomen reviewed a left adnexal tumor. We describe the first such case report of a patient with anti-N-methyl-d-aspartate receptor encephalitis who was given a bilateral transversus abdominis plane block as the sole anesthetic for removal of ovarian tumor. We also discuss the anesthetic issues associated with anti-N-methyl-d-aspartate receptor encephalitis. As discovery of tumor and its removal is the focus of initial treatment in this group of patients, anesthetists will encounter more such cases in the near future. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  9. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1988-01-01

    N-methyl-D-aspartate (NMDA) supplementation of cerebellar cultures enriched in granule neurones (about 90%) prevented the extensive cell loss which occurs when cultivation takes place, in serum containing media, in the presence of 'low' K+ (5-15 mM). Estimation of tetanus toxin receptors and N-CA...

  10. Pre-ischemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischemia-reperfusion

    DEFF Research Database (Denmark)

    Jespersen, Nichlas Riise; Yokota, Takashi; Støttrup, Nicolaj Brejnholt

    2017-01-01

    KEY POINTS: Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia and...

  11. Rescue of Na+ and H+ binding in Na+,K+-ATPase M8 aspartate mutants by secondary mutation

    DEFF Research Database (Denmark)

    Holm, Rikke; Einholm, Anja P.; Andersen, Jens Peter

    A mutation replacing the aspartate in transmembrane segment M8 in the a3-isoform of Na,K-ATPase with asparagine has been found in patients with rapid-onset dystonia parkinsonism or alternating hemiplegia of childhood. This aspartate may be a critical Na+ coordinating residue, but the crystal...

  12. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The efficacy of aspartate aminotransferase-toplatelet ratio index for assessing hepatic fibrosis in childhood nonalcoholic steatohepatitis for medical practice

    Directory of Open Access Journals (Sweden)

    Earl Kim

    2013-01-01

    Full Text Available Purpose: Childhood obesity is associated with nonalcoholic fatty liver disease (NAFLD, and it has become one of the most common causes of childhood chronic liver diseases which significant as a cause of liver related mortality and morbidity in children in the United States. The development of simpler and easier clinical indices for medical practice is needed to identify advanced hepatic fibrosis in childhood NAFLD instead of invasive method like liver biopsy. FibroScan and aspartate aminotransferase (AST-to-platelet ratio index (APRI have been proposed as a simple and noninvasive predictor to evaluate hepatic fibrosis in several liver diseases. APRI could be a good alternative to detect pathologic change in childhood NAFLD. The purpose of this study is to validate the efficacy of APRI for assessing hepatic fibrosis in childhood NAFLD based on FibroScan. Methods: This study included 23 children with NAFLD who underwent FibroScan. Clinical, laboratory and radiological evaluation including APRI was performed. To confirm the result of this study, 6 patients received liver biopsy. Results: Factors associated with hepatic fibrosis (stiffness measurement &gt;5.9 kPa Fibroscan were triglyceride, AST, alanine aminotransferase, platelet count, APRI and collagen IV. In multivariate analysis, APRI were correlated with hepatic fibrosis (&gt;5.9 kPa. In receiver operating characteristics curve, APRI of meaningful fibrosis (cutoff value, 0.4669; area under the receiver operating characteristics, 0.875 presented sensitivity of 94%, specificity of 66%, positive predictive value of 94%, and negative predictive value of 64%. Conclusion: APRI might be a noninvasive, simple, and readily available method for medical practice to predict hepatic fibrosis of childhood NAFLD.

  14. Preoperative Aspartate Aminotransferase-to-Platelet Ratio Index Predicts Perioperative Liver-Related Complications Following Liver Resection for Colorectal Cancer Metastases

    DEFF Research Database (Denmark)

    Amptoulach, S.; Gross, G.; Sturesson, C.

    2017-01-01

    -related). In multivariate regression analysis, the aspartate aminotransferase-to-platelet ratio index was independently associated with liver-related complications (odds ratio: 1.149, p = 0.003) and perioperative liver failure (odds ratio: 1.155, p = 0.012). The latter was also true in the subcohort of patients...... with neoadjuvant chemotherapy (odds ratio: 1.157, p = 0.004) but not in those without such therapy (p = 0.062). The aspartate-to-alanine aminotransferase ratio was not related to liver-related complications (p = 0.929). The area under the receiver operating characteristics curve for the aspartate aminotransferase.......175) or steatosis (p = 0.173) in the nontumorous liver in surgical specimens. Conclusion: The preoperative aspartate aminotransferase-to-platelet ratio index, but not the aspartate-to-alanine aminotransferase ratio, predicts perioperative liver-related complications following hepatectomy due to colorectal cancer...

  15. Absence of proteinase-activated receptor-1 signaling in mice confers protection from fMLP-induced goblet cell metaplasia.

    Science.gov (United States)

    Atzori, Luigi; Lucattelli, Monica; Scotton, Chris J; Laurent, Geoffrey J; Bartalesi, Barbara; De Cunto, Giovanna; Lunghi, Benedetta; Chambers, Rachel C; Lungarella, Giuseppe

    2009-12-01

    The morphological features of chronic obstructive pulmonary disease in man include emphysema and chronic bronchitis associated with mucus hypersecretion. These alterations can be induced in mice by a single intratracheal instillation of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), a chemoattractant and degranulating agent for neutrophils. The mechanisms underlying excessive mucus production and, in particular, goblet cell hyperplasia/metaplasia in chronic obstructive pulmonary disease remain poorly understood. The proteinase-activated receptors (PARs) are widely recognized for their modulatory properties during inflammation. In this study, we examined whether PAR-1 contributes to inflammation and lung damage induced by fMLP by comparing the response of PAR-1-deficient (PAR-1(-/-)) mice with that of wild-type (WT) mice. Mice were killed at various time points after fMLP instillation (200 microg/50 microl). WT mice developed emphysema and goblet cell metaplasia. The onset of pulmonary lesions was preceded by an increase in thrombin immunoreactivity in bronchial airways and alveolar tissue. This was followed by a decrease in PAR-1 immunoreactivity, and by an increase in IL-13 immunostaining on the luminal surface of airway epithelial cells. In PAR-1(-/-) mice, fMLP administration induced similar responses in terms of inflammation and emphysema, but these mice were protected from the development of goblet cell metaplasia. The involvement of PAR-1 in airway epithelial cell transdifferentiation was confirmed by demonstrating that intratracheal instillation of the selective PAR-1 agonist (TFLLR) induced goblet cell metaplasia in the airways of WT mice only. These data suggest that emphysema and goblet cell metaplasia occur independently, and that PAR-1 signaling through IL-13 stimulation may play an important role in inducing goblet cell metaplasia.

  16. Expression of the enzymatically active legumain-like cysteine proteinase TvLEGU-1 of Trichomonas vaginalis in Pichia pastoris.

    Science.gov (United States)

    Reséndiz-Cardiel, Gerardo; Arroyo, Rossana; Ortega-López, Jaime

    2017-06-01

    The legumain-like cysteine proteinase TvLEGU-1 from Trichomonas vaginalis plays a major role in trichomonal cytoadherence. However, its structure-function characterization has been limited by the lack of a reliable recombinant expression platform to produce this protein in its native folded conformation. TvLEGU-1 has been expressed in Escherichia coli as inclusion bodies and all efforts to refold it have failed. Here, we describe the expression of the synthetic codon-optimized tvlegu-1 (tvlegu-1-opt) gene in Pichia pastoris strain X-33 (Mut+) under the inducible AOX1 promoter. The active TvLEGU-1 recombinant protein (rTvLEGU-1) was secreted into the medium when tvlegu-1-opt was fused to the Aspergillus niger alpha-amylase signal peptide. The rTvLEGU-1 secretion was influenced by the gene copy number and induction temperature. Data indicate that increasing tvlegu-1-opt gene copy number was detrimental for heterologous expression of the enzymatically active TvLEGU-1. Indeed, expression of TvLEGU-1 had a greater impact on cell viability for those clones with 26 or 29 gene copy number, and cell lysis was observed when the induction was carried out at 30 °C. The enzyme activity in the medium was higher when the induction was carried out at 16 °C and in P. pastoris clones with lower gene copy number. The results presented here suggest that both copy number and induction temperature affect the rTvLEGU-1 expression in its native-like and active conformation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The TvLEGU-1, a Legumain-Like Cysteine Proteinase, Plays a Key Role in Trichomonas vaginalis Cytoadherence

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rendón-Gandarilla

    2013-01-01

    Full Text Available The goal of this paper was to characterize a Trichomonas vaginalis cysteine proteinase (CP legumain-1 (TvLEGU-1 and determine its potential role as a virulence factor during T. vaginalis infection. A 30-kDa band, which migrates in three protein spots (pI~6.3, ~6.5, and ~6.7 with a different type and level of phosphorylation, was identified as TvLEGU-1 by one- and two-dimensional Western blot (WB assays, using a protease-rich trichomonad extract and polyclonal antibodies produced against the recombinant TvLEGU-1 (anti-TvLEGU-1r. Its identification was confirmed by mass spectrometry. Immunofluorescence, cell binding, and WB assays showed that TvLEGU-1 is upregulated by iron at the protein level, localized on the trichomonad surface and in lysosomes and Golgi complex, bound to the surface of HeLa cells, and was found in vaginal secretions. Additionally, the IgG and Fab fractions of the anti-TvLEGU-1r antibody inhibited trichomonal cytoadherence up to 45%. Moreover, the Aza-Peptidyl Michael Acceptor that inhibited legumain proteolytic activity in live parasites also reduced levels of trichomonal cytoadherence up to 80%. In conclusion, our data show that the proteolytic activity of TvLEGU-1 is necessary for trichomonal adherence. Thus, TvLEGU-1 is a novel virulence factor upregulated by iron. This is the first report that a legumain-like CP plays a role in a pathogen cytoadherence.

  18. Redundant signaling mechanisms contribute to the vasodilatory response of the afferent arteriole to proteinase-activated receptor-2.

    Science.gov (United States)

    Wang, Xuemei; Hollenberg, Morley D; Loutzenhiser, Rodger

    2005-01-01

    We previously demonstrated that stimulation of proteinase-activated receptor-2 (PAR-2) by SLIGRL-NH(2) elicits afferent arteriolar vasodilation, in part, by elaborating nitric oxide (NO), suggesting an endothelium-dependent mechanism (Trottier G, Hollenberg M, Wang X, Gui Y, Loutzenhiser K, and Loutzenhiser R. Am J Physiol Renal Physiol 282: F891-F897, 2002). In the present study, we characterized the NO-independent component of this response, using the in vitro perfused hydronephrotic rat kidney. SLIGRL-NH(2) (10 mumol/l) dilated afferent arterioles preconstricted with ANG II, and the initial transient component of this response was resistant to NO synthase (NOS) and cyclooxygenase inhibition. This NO-independent response was not prevented by treatment with 10 nmol/l charybdotoxin and 1 mumol/l apamin, a manipulation that prevents the endothelium-derived hyperpolarizing factor (EDHF)-like response of the afferent arteriole to acetylcholine, nor was it blocked by the addition of 1 mmol/l tetraethylammonium (TEA) or 50 mumol/l 17-octadecynoic acid, treatments that block the EDHF-like response to bradykinin. To determine whether the PAR-2 response additionally involves the electrogenic Na(+)-K(+)-ATPase, responses were evaluated in the presence of 3 mmol/l ouabain. In this setting, SLIGRL-NH(2) induced a biphasic dilation in control and a transient response after NOS inhibition. The latter was not prevented by charybdotoxin plus apamin or by TEA alone but was abolished by combined treatment with charybdotoxin, apamin, and TEA. This treatment did not prevent the NO-dependent dilation evoked in the absence of NOS inhibition. Our findings indicate a remarkable redundancy in the signaling cascade mediating PAR-2 -induced afferent arteriolar vasodilation, suggesting an importance in settings such as inflamation or ischemia, in which vascular mechanisms might be impaired and the PAR system is thought to be activated.

  19. Adhesion molecules, chemokines and matrix metallo-proteinases response after albendazole and albendazole plus steroid therapy in swine neurocysticercosis.

    Science.gov (United States)

    Singh, Satyendra K; Prasad, Kashi N; Singh, Aloukick K; Gupta, Kamlesh K; Singh, Amrita; Tripathi, Mukesh; Gupta, Rakesh K

    2017-11-01

    The treatment of neurocysticercosis (NCC) varies with location, number and stage of the Taenia solium cysticerci (cysts). Albendazole (ABZ) effectively kills cysticerci, and subsequently induces neuro-inflammation facilitated by leukocyte infiltration. We hypothesize that immune response varies around drug responder (degenerating/dying) and non-responder (viable) cysts after ABZ and ABZ plus steroid (ABZS) therapy, which may determine the disease pathogenesis. Twenty cysticercotic swine were treated with ABZ (n = 10; group1) and ABZS (n = 10; group2). Expression of adhesion molecules, chemokines and matrix metallo-proteinases (MMPs) was measured by qRT-PCR (quantitative reverse transcriptase-polymerase chain reaction) and ELISA. Gelatin gel zymography was performed to detect the activity of MMP-2 and -9. In group1, ABZ therapy induced higher expressions of ICAM-1 (intercellular adhesion molecule-1), VCAM-1 (vascular cell adhesion molecule-1), E-selectin, MCP-1 (monocyte chemotactic protein-1), Eotaxin-1, MIP-1α (macrophage inflammatory protein-1α), RANTES (regulated on activation, normal T cell expressed and secreted), MMP-2 and MMP-9 around ABZ responder (AR) cysts. Three pigs with cyst burdens ≥10 died following ABZ therapy. However, in group2, moderate expressions of ICAM-1, VCAM-1, E-selectin, RANTES and MMP-9 were associated with ABZS responder (ASR), whereas low expressions of these molecules were associated with ABZS non-responder (ASNR) cysts. In conclusion, ABZ alone therapy is not safe since it causes death of pigs due to higher inflammatory immune response around dying cysts. However, combination therapy is an effective treatment regimen even with the high cyst burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Endocrine roles of D-aspartic acid in the testis of lizard Podarcis s. sicula.

    Science.gov (United States)

    Raucci, F; D'Aniello, S; Di Fiore, M M

    2005-12-01

    In the lizard Podarcis s. sicula, a substantial amount of D-aspartate (D-Asp) is endogenous to the testis and shows cyclic changes of activity connected with sex hormone profiles during the annual reproductive phases. Testicular D-Asp content shows a direct correlation with testosterone titres and a reverse correlation with 17beta-estradiol titres. In vivo experiments, consisting of i.p. injections of 2.0 micromol/g body weight of D-Asp or other amino acids, in lizards collected during the three main phases of the reproductive cycle (pre-reproductive, reproductive and post-reproductive period), revealed that the testis can specifically take up and accumulate D-Asp alone. Moreover, this amino acid influences the synthesis of testosterone and 17beta-estradiol in all phases of the cycle. This phenomenon is particularly evident during the pre- and post-reproductive period, when endogenous testosterone levels observed in both testis and plasma were the lowest and 17beta-estradiol concentrations were the highest. D-Asp rapidly induces a fall in 17beta-estradiol and a rise in testosterone at 3 h post-injection in the testis and at 6 h post-injection in the blood. In vitro experiments show that testicular tissue converted L-Asp into D-Asp through an aspartate racemase. D-Asp synthesis was measured in all phases of the cycle, but was significantly higher during the reproductive period with a peak at pH 6.0. The exogenous D-Asp also induces a significant increase in the mitotic activity of the testis at 3 h (P proliferation cell nuclear antigen (PCNA). The effects of D-Asp on the testis appear to be specific since they were not seen in lizards injected with other D- or L-forms of amino acids with known excitatory effects on neurosecretion. Our results suggest a regulatory role for D-Asp in the steroido-genesis and spermatogenesis of the testis of the lizard Podarcis s. sicula.