WorldWideScience

Sample records for asotin creek watershed

  1. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  2. Asotin Creek model watershed plan: Asotin County, Washington

    International Nuclear Information System (INIS)

    The Northwest Power Planning Council completed its ''Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ''four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ''Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity

  3. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  4. Riparian Planting Projects Completed within Asotin Creek Watershed : 2000-2002 Asotin Creek Riparian Final Report of Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. J. (Bradley J.)

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for threatened and endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for threatened salmonids since 1994. The Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00 teamed BPA and the Governor

  5. BPA Instream Habitat Projects Completed within Asotin Creek Watershed, 1999-2001 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2002-10-23

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority WRIA in southeastern WA. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve, because no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps Members have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, southeastern Washington had been dealing with endangered fall and spring chinook salmon since 1994. The Asotin Creek In-Stream Habitat Project teamed BPA and Governor's Salmon Recovery Funding on four instream habitat projects in the Asotin Creek Watershed. These projects provide complex instream habitat for steelhead, bull trout and spring chinook in the stream

  6. BPA riparian fencing and alternative water development projects completed within Asotin Creek Watershed ; 2000 and 2001 Asotin Creek fencing final report of accomplishments

    International Nuclear Information System (INIS)

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor's Salmon Recovery Funding to plant approximately 84

  7. BPA Riparian Fencing and Alternative Water Development Projects Completed within Asotin Creek Watershed, 2000 and 2001 Asotin Creek Fencing Final Report of Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.J. (Bradley J.)

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for endangered salmonids since 1994. The ''Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00'' teamed BPA and the Governor

  8. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  9. 1998 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1998 BPA Completion Report - November 1999

    International Nuclear Information System (INIS)

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed

  10. 1999 BPA habitat projects completed within the Asotin Creek Watershed, WA; Ridge-Top to Ridge-Top Habitat Projects; 1999 BPA Completion Report - January 2000

    International Nuclear Information System (INIS)

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed

  11. Couse/Tenmile Creeks Watershed Project Implementation : 2007 Conservtion Projects. [2007 Habitat Projects Completed].

    Energy Technology Data Exchange (ETDEWEB)

    Asotin County Conservation District

    2008-12-10

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on private lands within Asotin County watersheds. The Tenmile Creek watershed is a 42 square mile tributary to the Snake River, located between Asotin Creek and the Grande Ronde River. Couse Creek watershed is a 24 square mile tributary to the Snake River, located between Tenmile Creek and the Grande Ronde River. Both watersheds are almost exclusively under private ownership. The Washington Department of Fish and Wildlife has documented wild steelhead and rainbow/redband trout spawning and rearing in Tenmile Creek and Couse Creek. The project also provides Best Management Practice (BMP) implementation throughout Asotin County, but the primary focus is for the Couse and Tenmile Creek watersheds. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Farm Service Agency (FSA), Salmon Recovery Funding Board (SRFB), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Washington Department of Ecology (DOE), National Marine Fisheries Service (NOAA Fisheries), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. The Asotin Subbasin Plan identified priority areas and actions for ESA listed streams within Asotin County. Couse Creek and Tenmile Creek are identified as protection areas in the plan. The Conservation Reserve Enhancement Program (CREP) has been successful in working with landowners to protect riparian areas throughout Asotin County. Funding from BPA and other agencies has also been instrumental in protecting streams throughout Asotin County by utilizing the ridge top to ridge top approach.

  12. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  13. Asotin Creek Instream Habitat Alteration Projects : Habitat Evaluation, Adult and Juvenile Habitat Utilization and Water Temperature Monitoring : 2001 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  14. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  15. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  16. 76 FR 71936 - Upper Deckers Creek Watershed, Preston County, WV

    Science.gov (United States)

    2011-11-21

    ... Natural Resources Conservation Service Upper Deckers Creek Watershed, Preston County, WV AGENCY: Natural... notice that an environmental impact statement is being prepared for the Upper Deckers Creek Watershed... Domestic Assistance under No. 10.904--Watershed Protection and Flood Prevention--and is subject to...

  17. Fish Creek Watershed Lake Classification; NPRA, Alaska, 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This study focuses on the development of a 20 attribute lake cover classification scheme for the Fish Creek Watershed (FCW), which is located in the National...

  18. EAARL Topography--Potato Creek Watershed, Georgia, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation...

  19. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  20. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  1. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  2. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Science.gov (United States)

    2011-10-11

    ... Forest Service Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans... of mining Plans of Operation in the Granite Creek Watershed Mining Plans analysis area on the Whitman... proposed mining Plans in the portions of the Granite Creek Watershed under their administration. As...

  3. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    Science.gov (United States)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  4. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  5. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  6. 75 FR 38768 - Rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed, Ellis...

    Science.gov (United States)

    2010-07-06

    ... Mountain Creek Watershed, Ellis County, TX AGENCY: Natural Resources Conservation Service. ACTION: Notice... prepared for the rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed... authority of the Small Watershed Rehabilitation Amendments of 2000 (Section 313, Pub. L. 106- 472)....

  7. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  8. Water Quality Analysis of Yosemite Creek Watershed, San Francisco, California

    Science.gov (United States)

    Davis, J. R.; Snow, M. K.; Aquino, A.; Huang, C.; Thai, A.; Yuen, C.

    2003-12-01

    Surface water quality in urban settings can become contaminated by anthropogenic inputs. Yosemite Creek watershed is situated on the east side of San Francisco near Bayview Hunters Point and provides an ideal location for water quality investigations in urban environments. Accordingly, students from Philip and Sala Burton High School monitored water quality at three locations for their physicochemical and biological characteristics. Water was tested for pH, dissolved oxygen, conductivity, total dissolved solids, salinity, and oxidation reduction potential. In addition, a Hach DR 850 digital colorimeter was utilized to measure chlorine, fluorine, nitrogen, phosphorous, and sulfate. The biological component was assessed via monitoring benthic macro invertebrates. Specifically, the presence of caddisfly (Trichoptera) were used to indicate low levels of contaminants and good water quality. Our results indicate that water quality and macro invertebrate populations varied spatially within the watershed. Further investigation is needed to pinpoint the precise location of contaminant inputs.

  9. Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

  10. The Impacts of Acid Mine Drainage on the Black Creek Watershed, Wise County, Virginia

    OpenAIRE

    Yeager, Jessica Lynn

    2003-01-01

    Black Creek is a small watershed located in Wise County, Virginia, west of the town of Norton. At the time of this survey, the watershed encompassed approximately 929 hectares of mine and forest lands with a small recreational area. Black Creek proper is a third-order stream approximately 6.7 km in length from its headwaters to its confluence with the Powell River in Kent Junction. Black Creek and several of the tributaries within the watershed were previously identified as areas impacted b...

  11. White Oak Creek Watershed topographic map and related materials

    International Nuclear Information System (INIS)

    On March 22, 1978 a contract was let to Accu-Air Surveys, Inc., of Seymour, Indiana, to produce a topographic map of the White Oak Creek Watershed. Working from photography and ground control surveys, Accu-Air produced a map to ORNL's specifications. The map is in four sections (N.W., N.E., S.W., S.E.) at a scale of 1:2400. Contour intervals are 5 ft (1.5 m) with accented delineations every 25 ft (7.6 m). The scribe method was used for the finished map. Planimetric features, roads, major fence lines, drainage features, and tree lines are included. The ORNL grid is the primary coordinate system which is superimposed on the state plain coordinates

  12. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  13. A water-quality assessment of the Feather Creek watershed, Vermillion County, Indiana

    Science.gov (United States)

    Eikenberry, Stephen E.

    1977-01-01

    Chemical quality of surface water within the Feather Creek watershed is generally good. However, fecal bacteria concentrations are high enough to represent a potential problem, especially because of the high water-contact recreation proposed for the future reservoir.

  14. 76 FR 50170 - Pohick Creek Watershed Dam No. 8, Fairfax County, Virginia; Finding of No Significant Impact

    Science.gov (United States)

    2011-08-12

    ... Natural Resources Conservation Service Pohick Creek Watershed Dam No. 8, Fairfax County, Virginia; Finding... Creek Watershed Dam No. 8, Fairfax County, Virginia. FOR FURTHER INFORMATION CONTACT: John A. Bricker... Assistance under 10.904, Watershed Protection and Flood Prevention, and is subject to the provisions...

  15. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  16. Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.

  17. Coal resources of a portion of the Pawpaw Creek watershed, Monroe, Noble, and Washington Counties

    Energy Technology Data Exchange (ETDEWEB)

    Struble, R.A.; Collins, H.R.; DeLong, R.M.

    1976-01-01

    A coal-resource evaluation of a portion of the Pawpaw Creek watershed was undertaken to provide data on which to base future land-use decisions for the area. An earlier investigation (Struble, et al., 1971) suggested strongly that a large resource of coal existed beneath portions of Monroe, Morgan, Noble, and Washington Counties, Ohio. The Pawpaw Creek area of investigation lies within this potential coal-resource area. Core borings in the watershed area verified the existence of a potential underground mineable coal resource - Middle Kittanning (No. 6) and Lower Kittanning (No. 5) coals - in the Pawpaw Creek area of investigation. A strippable coal resource - Meigs Creek (No. 9) - is also present in the watershed area. The strippable coal-resource estimates for the watershed are reported in three thickness categories, two overburden categories, and two reliability categories. The same thickness categories, along with three reliability categories, are used in reporting the underground mineable resource. Analyses were performed for all coals of mineable thickness and include data on major, minor, and trace elements in the coal ash and major, minor, and trace elements in the whole coal. Standard quality data such as proximate and ultimate analyses, ash and sulfur content, forms of sulfur, and Btu are given also. 8 figures, 8 tables.

  18. FARMERS’ MOTIVATIONS FOR ADOPTING MANAGEMENT PRACTICES IN THE GOODWATER CREEK EXPERIMENTAL WATERSHED

    Science.gov (United States)

    The purpose of this work was to evaluate farm operator opinions relative to soil and water conservation practices in the Goodwater Creek Watershed in Central Missouri. This study reveals the outcome of structured interviews conducted with 25 farm operators within the Conservation Effects Assessment...

  19. Acid mine drainage and its impact in the Black Creek watershed, Virginia

    International Nuclear Information System (INIS)

    A one-year study was conducted to determine the impacts of acid min drainage (AMD) on the Black Creek watershed in Wise County, Virginia. Water quality, metal content of sediment and water column, soil pH, macroinvertebrate assemblages, habitat assessment and toxicity testing were used to assess the impact in the watershed. A total of 22 sites in the creek and surrounding watershed were actively monitored. This included six primary sources of AMD. Conductivity measurements > 1,000 microhmos/cm were found at eight sites and pH was consistently below 6.0 at seven. Of six metals analyzed, magnesium was highest in the water column, ranging from 16.5 mg/L to 130 mg/L. Aluminum and iron were both elevated in the sediment with iron concentrations as high as 176,000 mg/kg. An increase in sediment metal concentrations was noted when progressing downstream in the creek. Of nine high wall and spoils areas sampled, soil pH was acidic in eight sites, ranging from 5.5 to 3.1. Macroinvertebrate assemblages and habitat assessment indicate that much of the creek is impacted by AMD or heavy siltation. Laboratory bioassays with Daphnia magna and Chironomus tentans have indicated both acute and chronic toxicity of water and sediment samples from selected sites within the creek. Potential recovery of the system is being addressed through a sediment purging study. Restoration options will be considered once the degree of impact is fully characterized

  20. Walnut Creek Watershed Restoration and Water Quality Monitoring Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this project is to establish a nonpoint source monitoring program in relation to the watershed habitat restoration and agricultural...

  1. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    Science.gov (United States)

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Suspended-sediment concentrations (SSCs) and turbidity were measured for 2 to 3 years at 14 monitoring sites throughout the upper Esopus Creek watershed in the Catskill Mountains of New York State. The upper Esopus Creek watershed is part of the New York City water-supply system that supplies water to more than 9 million people every day. Turbidity, caused primarily by high concentrations of inorganic suspended particles, is a potential water-quality concern because it colors the water and can reduce the effectiveness of drinking-water disinfection. The purposes of this study were to quantify concentrations of suspended sediment and turbidity levels, to estimate suspended-sediment loads within the upper Esopus Creek watershed, and to investigate the relations between SSC and turbidity. Samples were collected at four locations along the main channel of Esopus Creek and at all of the principal tributaries. Samples were collected monthly and during storms and were analyzed for SSC and turbidity in the laboratory. Turbidity was also measured every 15 minutes at six of the sampling stations with in situ turbidity probes.

  2. DEVELOPING A SERVICE-LEARNING PROGRAM FOR WATERSHED MANAGEMENT: Lessons from the Stroubles Creek Watershed Initiative

    OpenAIRE

    de Leon, Raymond F.

    2002-01-01

    There has been a growing interest and support by many state and local programs to address aquatic resource protection and restoration at a watershed level. The desire by many programs to implement watershed management programs has become more than just a need, rather a necessity to ensure suitable water resources. However, many challenges arise when developing and sustaining watershed programs. One such challenge is that watershed programs are resource intensive. These programs require si...

  3. Research data collection at the Reynolds Creek Experimental Watershed

    Science.gov (United States)

    To understand how variations in climate, land use, and land cover will impact water, ecosystem, and natural resources in snow-dominated regions we must have access to long-term hydrologic and climatic databases. Data from watersheds that include significant human activities, such as grazing, farmin...

  4. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  5. Long-term agroecosystem research in the Central Mississippi River Basin: Goodwater Creek Experimental Watershed flow data

    Science.gov (United States)

    Flow monitoring in Goodwater Creek Experimental Watershed started in 1971 at three nested watersheds ranging from 12 to 73 km2 in drainage area. Since then, flow has been measured at 14 plots, 3 fields, and 12 additional stream sites ranging from 0.0034 to 6067 km2 in the Central Mississippi River B...

  6. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    Science.gov (United States)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  7. Benthic macroinvertebrate assemblages and sediment toxicity testing in the Ely Creek watershed restoration project

    International Nuclear Information System (INIS)

    The Ely Creek watershed in Lee County, Virginia, contains an abundance of abandoned mined land (AML) seeps that contaminate the majority of the creek and its confluence into Big Stone Creek. Contaminated sediments had high concentrations of iron (∼10,000 mg/kg), aluminum (∼1,500 mg/kg), magnesium (∼400 mg/kg) and manganese (∼150 mg/kg). Copper and zinc generally ranged from 3 to 20 mg/kg. Benthic macroinvertebrates surveys at six of 20 sites sampled in the watershed yielded no macroinvertebrates, while eight others had total abundances of 1 to 9 organisms. Four reference sites contained ≥100 organisms and at least 14 different taxa. Laboratory, 10-day survival/impairment sediments tests with Daphnia magna did not support the field data. Mortality of 92 to 100% for D. magna occurred in samples collected from six cities. Daphnid reproduction was more sensitive than laboratory test organism survivorship; however, neither daphnid survivorship nor reproduction were good predictors of taxa richness. Laboratory test concerns included the use of a reference diluent water rather than site specific diluent water

  8. Preliminary hydrologic budget studies, Indian Creek watershed and vicinity, Western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Preliminary quantitative estimates of ground-water discharge into the Colorado River System in the western Paradox Basin were prepared on the basis of existing climatological and streamflow records. Ground-water outflow to the river was deduced as a residual from hydrologic budget equations for two different study areas: (1) the region between gaging stations at Cisco, Green River, and Hite, Utah; and (2) the Indian Creek watershed. An empirical correlation between recharge rates and precipitation amounts derived for several basins in eastern Nevada was applied to estimate recharge amounts for the Indian Creek watershed. A simple Darcian flow model was then used to approximate the ground-water flux outward from the watershed for comparison. Salinity measurements in the Colorado River were also used to approximate ground-water outflow to a river reach in Cataract Canyon in order to provide another comparison with the hydrologic budget results. Although these estimates should be considered only gross approximations, all approaches used provide values of ground-water outflow that are much less than estimates of similar parameters provided by the US Geological Survey in recent hydrologic reconnaissance reports. Estimates contained herein will be refined in future numerical modeling and data collection studies

  9. Geochemical Indicators of Urban Development in Tributaries and Springs along the Bull Creek Watershed, Austin, TX

    Science.gov (United States)

    Senison, J. J.; Banner, J. L.; Reyes, D.; Sharp, J. M.

    2012-12-01

    Urbanization can cause significant changes to both flow and water quality in streams and tributaries. In the Austin, Texas, area, previous studies have demonstrated that streamwater strontium isotope compositions (87Sr/86Sr) correlate with measures of urbanization when comparing non-urbanized streams to their urban counterparts. The inclusion of municipal water into natural surface water is inferred from the mean 87Sr/86Sr value found in urbanized streams, which falls between the high value in treated municipal water and the lower values found in local surface streams sourcing from non-urbanized catchments. Fluoride is added to municipal tap water in the treatment process, and a correlation between 87Sr/86Sr and fluoride is observed in streamwater sampled from the watersheds around Austin. These relationships represent some of the principal findings reported in Christian et al. (2011). Current research is testing the hypothesis that municipal water influx in urban areas is a primary modifier of stream- and spring-water chemistry in a single watershed that contains a strong gradient in land use. We compare 87Sr/86Sr and other chemical constituents with potential contributing endmembers, such as municipal tap water and wastewater, local soil and rock leachates, and land use within the Bull Creek watershed. As a consequence of the history of land development, some Bull Creek tributaries are sourced and flow almost entirely in fully-developed areas, whereas others are located in protected natural areas. Thirteen tributaries were monitored and classified as either urbanized or non-urbanized based upon land use within the tributary catchment. Springs in the Bull Creek watershed were also sampled and are similarly classified. The Bull Creek watershed is composed of Lower Cretaceous limestone with significantly lower 87Sr/86Sr than that of municipal water taken from the Lower Colorado River, which is underlain in part by Precambrian rocks upstream of Austin. There are

  10. Cliff swallows Petrochelidon pyrrhonota as bioindicators of environmental mercury, Cache Creek Watershed, California

    Science.gov (United States)

    Hothem, R.L.; Trejo, B.S.; Bauer, M.L.; Crayon, J.J.

    2008-01-01

    To evaluate mercury (Hg) and other element exposure in cliff swallows (Petrochelidon pyrrhonota), eggs were collected from 16 sites within the mining-impacted Cache Creek watershed, Colusa, Lake, and Yolo counties, California, USA, in 1997-1998. Nestlings were collected from seven sites in 1998. Geometric mean total Hg (THg) concentrations ranged from 0.013 to 0.208 ??g/g wet weight (ww) in cliff swallow eggs and from 0.047 to 0.347 ??g/g ww in nestlings. Mercury detected in eggs generally followed the spatial distribution of Hg in the watershed based on proximity to both anthropogenic and natural sources. Mean Hg concentrations in samples of eggs and nestlings collected from sites near Hg sources were up to five and seven times higher, respectively, than in samples from reference sites within the watershed. Concentrations of other detected elements, including aluminum, beryllium, boron, calcium, manganese, strontium, and vanadium, were more frequently elevated at sites near Hg sources. Overall, Hg concentrations in eggs from Cache Creek were lower than those reported in eggs of tree swallows (Tachycineta bicolor) from highly contaminated locations in North America. Total Hg concentrations were lower in all Cache Creek egg samples than adverse effects levels established for other species. Total Hg concentrations in bullfrogs (Rana catesbeiana) and foothill yellow-legged frogs (Rana boylii) collected from 10 of the study sites were both positively correlated with THg concentrations in cliff swallow eggs. Our data suggest that cliff swallows are reliable bioindicators of environmental Hg. ?? Springer Science+Business Media, LLC 2007.

  11. A water-quality assessment of the Burnham Creek Watershed, Polk County, Minnesota

    Science.gov (United States)

    Have, M.R.

    1975-01-01

    A water-quality assessment of the Burnham Creek watershed, Polk County, Minn., was made in May 1975. Surface waters were calcium magnesium bicarbonate types with 0.11 mg/liter or less of nitrite plus nitrate nitrogen and 0.10 mg/liter or less of total phosphorous. Fecal coliform bacteria concentrations were between 3 and 720 colonies per 100 milliliters and fecal Streptococci concentrations ranged between 19 and 1600 colonies per 100 milliliters. Pesticide concentrations were low in the stream bottom materials, but an increasing trend was apparent in the downstream direction. The benthic community was dominated by blackfly larvae.

  12. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  13. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    Science.gov (United States)

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  14. Bioaccumulation of Selenium by the Bryophyte Hygrohypnum ochraceum in the Fountain Creek Watershed, Colorado

    Science.gov (United States)

    Herrmann, S. J.; Turner, J. A.; Carsella, J. S.; Lehmpuhl, D. W.; Nimmo, D. R.

    2012-12-01

    Aquatic bryophytes, Hygrohypnum ochraceum, were deployed "in situ" at 14 sites in the Fountain Creek Watershed, spring and fall, 2007 to study selenium (Se) accumulation. Dissolved, total, and pore (sediment derived) water samples were collected and water quality parameters determined while plants were exposed to the water for 10 days. There was a trend showing plant tissue-Se uptake with distance downstream and we found a strong correlation between Se in the water with total hardness in both seasons. There was a modest association between Se-uptake in plants with hardness in the spring of 2007 but not the fall. Plants bioconcentrated Se from the water by a factor of 5.8 × 103 at Green Mountain Falls and 1.5 × 104 at Manitou Springs in the fall of 2007. Both are examples of the bioconcentration abilities of the plants, primarily in the upper reaches of the watershed where bioconcentration factors were highest. However, the mean minima and maxima of Se in the plants in each of the three watershed segments appeared similar during both seasons. We found direct relationships between the pore and dissolved Se in water in the spring ( R 2 = 0.84) and fall ( R 2 = 0.95) and dissolved Se and total hardness in the spring and fall ( R 2 = 0.92). The data indicate that H. ochraceum was a suitable indicator of Se bioavailability and Se uptake in other trophic levels in the Fountain Creek Watershed based on a subsequent study of Se accumulation in fish tissues at all 14 sites.

  15. Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed, Technical Report 2003-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn

    2007-02-01

    The Restoring Anadromous Fish Habitat in the Lapwai Creek Watershed is a multi-phase project to enhance steelhead trout in the Lapwai Creek watershed by improving salmonid spawning and rearing habitat. Habitat is limited by extreme high runoff events, low summer flows, high water temperatures, poor instream cover, spawning gravel siltation, and sediment, nutrient and bacteria loading. Funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council's Fish and Wildlife Program, the project assists in mitigating damage to steelhead runs caused by the Columbia River hydroelectric dams. The project is sponsored by the Nez Perce Soil and Water Conservation District (District). Target fish species include steelhead trout (Oncorhynchus mykiss). Steelhead trout within the Snake River Basin were listed in 1997 as threatened under the Endangered Species Act. Accomplishments for the contract period December 1, 2003 through February 28, 2004 include; seven grade stabilization structures, 0.67 acres of wetland plantings, ten acres tree planting, 500 linear feet streambank erosion control, two acres grass seeding, and 120 acres weed control.

  16. Land Use Change and Stream Water Quality in Hinkson Creek Watershed in Missouri

    Science.gov (United States)

    Liu, F.; Huang, D.; Yang, J.; Zheng, G.; Hua, B.

    2013-12-01

    Impact of land use and land cover (LULC) changes on hydrologic regime and water quality over the past two decades was examined for Hinkson Creek Watershed in Missouri. The watershed was divided into seven subbasins above sampling locations at one of tributaries dominated by forests and along main stream from headwaters to the watershed outlet. LULC percentages of each subbasin area were calculated following eight categories: water, urban, barren, forest, shrub, grassland, cropland, and wetland. The results indicate that the area of cropland for the entire watershed has decreased 20% while that of forest land increased 11% from 1976 to 1992. The area of cropland has decreased 13%, while that of urban areas increased 12% from 1992 to 2006. Mean annual runoff coefficient (ratio of runoff to precipitation) has significantly increased (p = 0.02) since 1967, as a result of an increase in urban area, which reduces rainwater infiltration and increases surface runoff. Concentrations of electric conductivity (EC), total nitrogen (TN), and total organic carbon (TOC) in stream water were highest in the headwaters subbasin, where cropland is dominated. EC values in stream water at seven subbasins was negatively correlated with forest and grassland percentages (R2 = 0.63, p = 0.03 and R2 = 0.69, p = 0.02, respectively); TN increased with an increase of cropland (R2 = 0.83, p = 0.004); and TOC decreased with an increase of urban percentage (R2 = 0.58, p = 0.046). E. coli values were positively correlated to runoff. E. coli values in early spring from forested-dominated subbasin became highest among all subbasins, which is likely caused by 'runoff washing' effect of animal wastes accumulated throughout dry winter season. Land use dictates stream water quality not only for nutrient concentrations but also for total chemistry and E. coli. Such information is deemed to be helpful for managing land and water quality in agricultural watersheds across the U.S. Midwest.

  17. Recovery and enhancement plan development for the Leading Creek watershed, Meigs County, Ohio

    International Nuclear Information System (INIS)

    Following the flooding of the Meigs No. 31 coal mine in Meigs County, Ohio, a proactive plan was developed to evaluate initial dewatering effects, recovery and development of a watershed enhancement plan. Approximately half of the 31-mile Leading Creek mainstem received ∼one billion gallons of coal mine discharge, including sludge and slurry. Damage to the stream system resulted from high conductivity (∼6,000 micromhos/cm), low pH (2.5--3.5), high metals (aluminum, cadmium, copper, iron and iron floc, lead, manganese, nickel and zinc) and total suspended solids. Most forms of aquatic life were depleted in the impacted areas. Four years after the incident, many forms of benthic macroinvertebrates and fish have recovered in the creek, with sediments purged of metals by stormwater events. The enhancement plan involves a reconnaissance of the creek and tributaries pinpointing areas of agricultural sedimentation and abandoned minedland discharges (AMD). Seventeen tributary and ten mainstem stations were addressed as point source discharges with water/sediment toxicity and in-situ testing of Asian clams. One-third of the stations were intermittently toxic from rainfall runoff and the degree of AMD input. Benthic macroinvertebrates in many tributaries were stressed and comprised 1--5 taxa. Erosion/sedimentation was addressed by the USEPA 1-Dimensional Hydrologic Simulation Program Fortran (HSPF) model, as well as incorporating land use management/habitat assessment, and data management by Geographical Information Systems

  18. Estimation of runoff and sediment yield in the Redrock Creek watershed using AnnAGNPS and GIS

    Institute of Scientific and Technical Information of China (English)

    Tsou Ming-Shu; ZHAN Xiao-yong

    2004-01-01

    Sediment has been identified as a significant threat to water quality and channel clogging that in turn may lead to river flooding. With the increasing awareness of the impairment from sediment to water bodies in a watershed, identifying the locations of the major sediment sources and reducing the sediment through management practices will be important for an effective watershed management. The annualized agricultural non-point source pollution(AnnAGNPS) model and newly developed GIS interface for it were applied in a small agricultural watershed, Redrock Creek watershed, Kansas, in this pilot study for exploring the effectiveness of using this model as a management tool. The calibrated model appropriately simulated monthly runoff and sediment yield through the practices in this study and potentially suggested the ways of sediment reduction through evaluating the changes of land use and field operation in the model for the purpose of watershed management.

  19. Sources of fine-grained sediment in the Linganore Creek watershed, Frederick and Carroll Counties, Maryland, 2008-10

    Science.gov (United States)

    Gellis, Allen C.; Noe, Gregory B.; Clune, John W.; Myers, Michael K.; Hupp, Cliff R.; Schenk, Edward R.; Schwarz, Gregory E.

    2015-01-01

    Sediment fingerprinting quantifies the delivery of fine-grained sediment from a watershed and sediment-budget measurements quantify the erosion and deposition of fine-grained sediment. Both approaches were used in the agricultural and forested 147-square-kilometer (km2) Linganore Creek watershed in Maryland from August 1, 2008 through December 31, 2010, to determine the sources of fine-grained (less than 63 microns) sediment, and the amount of fine-grained sediment eroded from and deposited on streambanks, flood plains, channel beds, and agricultural and forested uplands. Sediment-weighted results of sediment fingerprinting for 194 suspended-sediment samples collected during 36 storms indicate that streambanks contributed 52 percent of the annual fine-grained suspended-sediment load, agriculture (cropland and pasture) contributed 45 percent, and forests contributed 3 percent. Fifty-four percent of the Linganore Creek watershed is agriculture and 27 percent is forest.

  20. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  1. Escherichia coli Concentrations in the Mill Creek Watershed, Cleveland, Ohio, 2001-2004

    Science.gov (United States)

    Brady, Amie M.G.

    2007-01-01

    Mill Creek in Cleveland, Ohio, receives discharges from combined-sewer overflows (CSOs) and other sanitary-sewage inputs. These discharges affect the water quality of the creek and that of its receiving stream, the Cuyahoga River. In an effort to mitigate this problem, the Northeast Ohio Regional Sewer District implemented a project to eliminate or control (by reducing the number of overflows) all of the CSOs in the Mill Creek watershed. This study focused on monitoring the microbiological water quality of the creek before and during sewage-collection system modifications. Routine samples were collected semimonthly from August 2001 through September 2004 at a site near a U.S. Geological Survey stream gage near the mouth of Mill Creek. In addition, event samples were collected September 19 and 22, 2003, when rainfall accumulations were 0.5 inches (in.) or greater. Concentrations of Escherichia coli (E. coli) were determined and instantaneous discharges were calculated. Streamflow and water-quality characteristics were measured at the time of sampling, and precipitation data measured at a nearby precipitation gage were obtained from the National Oceanic and Atmospheric Administration. Concentrations of E. coli were greater than Ohio's single-sample maximum for primary-contact recreation (298 colony-forming units per 100 milliliters (CFU/100 mL)) in 84 percent of the routine samples collected. In all but one routine sample E. coli concentrations in samples collected when instantaneous streamflows were greater than 20 cubic feet per second (ft3/s) were greater than Ohio's single-sample maximum. When precipitation occurred in the 24-hour period before routine sample collection, concentrations were greater than the maximum in 89 percent of the samples as compared to 73 percent when rainfall was absent during the 24 hours prior to routine sample collection. Before modifications to the sewage-collection system in the watershed began, E. coli concentrations in Mill Creek

  2. Using sediment particle size distribution to evaluate sediment sources in the Tobacco Creek Watershed

    Science.gov (United States)

    Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou

    2014-05-01

    Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by

  3. Estimating sediment, nitrogen, and phosphorous loads from the Pipestem Creek watershed, North Dakota, using AnnAGNPS

    Science.gov (United States)

    Pease, Lyndon M.; Oduor, P.; Padmanabhan, G.

    2010-03-01

    Agricultural pollution is a significant problem in North Dakota. Water quality in the Pipestem Creek watershed upstream of Pingree, North Dakota, USA, has been a major environmental concern amongst other adjacent watersheds within the region. The annualized agricultural non-point source (AnnAGNPS) model, a large-scale watershed model designed to predict sediment and nutrient loads, was used to evaluate non-point source pollution in a typical agricultural watershed. The best available data were assembled and used in the analysis. The model predicted runoff of 0.31 m 3/s, compared to a measured value of 0.46 m 3/s. A poor correlation was observed when comparing the model's predicted nitrogen, phosphorus, and sediment with the observed counterparts. The model's poor performance was most likely a result of the large size of the study area and the high variability in land use and management practices.

  4. Geographic information system data sets of hydrogeologic conditions in Pequea and Mill Creek watersheds, Pennsylvania; Part I, basic data

    Science.gov (United States)

    Dugas, Diana L.; Char, Stephen J.; Baumbach, Gary E.

    1995-01-01

    This report describes basic data used to develop Geographic Information System data sets of bedrock geology, sinkholes and closed depressions, and spring and well locations attributed with hydro- geologic and water-quality data in the Pequea and Mill Creek watersheds, a 210-square-mile area in Lancaster and Chester Counties, Pa. The data sets, which do not contain hydrogeologic interpretations, were developed by the use of ARC/INFO software during 1990-93 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Resources. The U.S. Environmental Protection Agency proposes to use these noninter- pretive and interpretive data sets, and those from other sources, to aid in the assessment of ground- water vulnerability to pesticides in the Pequea and Mill Creek watersheds.

  5. Geographic information system data sets of hydrogeologic conditions in Pequea and Mill Creek watersheds, Pennsylvania; Part II, Hydrogeologic interpretations

    Science.gov (United States)

    Low, Dennis J.; Chichester, Douglas C.; Char, Stephen J.

    1995-01-01

    This report describes Geographic Information System data sets of ground-water levels, unsaturated-zone thickness, and regolith thickness in the Pequea and Mill Creek watersheds, a 210-square-mile area in Lancaster and Chester Counties, Pa. The data sets, which represent hydrogeologic interpretations, were developed by the use of ARC/INFO software during 1990-93 by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Resources. The U.S. Environmental Protection Agency proposes to use these interpretive data sets, and those from other sources, to aid in the assessment of ground-water vulnerability to pesticides in the Pequea and Mill Creek watersheds.

  6. Health Impact Assessment of the Boone Boulevard Green Street Project in the Proctor Creek Watershed of Atlanta - Urban Waters National Training Workshop

    Science.gov (United States)

    Proctor Creek is one of the most impaired creeks in metro-Atlanta due to exceedance of state water quality standards for fecal coliforms. The topography, prevalence of impervious surfaces in the watershed, and a strained combined sewer system have contributed to pervasive floodin...

  7. Determination of Meteorological and Hydrological Drought in Damlıca Creek Watershed in Çatalca-İstanbul, Turkey

    OpenAIRE

    BAKANOĞULLARI, Fatih; YEŞİLKÖY, Serhan

    2014-01-01

    Agricultural and Industrial water consumption increase with Industrial development, rapid population and urbanization in Thrace region of Turkey. Effect of drought increases with increasing of mean global temperature year by year in our region and the world. Drought is one of the most important results of climate change. The purpose of this study is to determine drought periods for Damlıca creek watershed in Çatalca. It was began in 1980 and finished in 2006. Its duration for precipitation ob...

  8. Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California

    International Nuclear Information System (INIS)

    Concentrations and loads of total mercury and methylmercury were measured in streams draining abandoned mercury mines and in the proximity of geothermal discharge in the Cache Creek watershed of California during a 17-month period from January 2000 through May 2001. Rainfall and runoff were lower than long-term averages during the study period. The greatest loading of mercury and methylmercury from upstream sources to downstream receiving waters, such as San Francisco Bay, generally occurred during or after winter rainfall events. During the study period, loads of mercury and methylmercury from geothermal sources tended to be greater than those from abandoned mining areas, a pattern attributable to the lack of large precipitation events capable of mobilizing significant amounts of either mercury-laden sediment or dissolved mercury and methylmercury from mine waste. Streambed sediments of Cache Creek are a significant source of mercury and methylmercury to downstream receiving bodies of water. Much of the mercury in these sediments is the result of deposition over the last 100-150 years by either storm-water runoff, from abandoned mines, or continuous discharges from geothermal areas. Several geochemical constituents were useful as natural tracers for mining and geothermal areas, including the aqueous concentrations of boron, chloride, lithium and sulfate, and the stable isotopes of hydrogen and oxygen in water. Stable isotopes of water in areas draining geothermal discharges showed a distinct trend toward enrichment of 18O compared with meteoric waters, whereas much of the runoff from abandoned mines indicated a stable isotopic pattern more consistent with local meteoric water

  9. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  10. Agricultural Nutrient Cycling at the Strawberry Creek Watershed: Insights Into Processes Using Stable Isotope Analysis

    Science.gov (United States)

    Thuss, E.; English, M. C.; Spoelstra, J.

    2009-05-01

    When nitrogen availability exceeds biological demand, excess nitrogen, especially nitrate, may subsequently pollute ground and surface water. Agricultural practices in Southern Ontario typically supplement soils with organic and inorganic nutrients to aid in crop development, and employ various management techniques to limit nutrient loss. Excess nitrogen has several potential fates, which are controlled by the net effects of numerous nitrogen cycling reactions in the soil that are often difficult to measure directly. Nitrogen cycling in soils is controlled in large part by soil moisture, as it affects microbial activity and soil redox conditions. Stable isotope geochemistry is a powerful tool that provides information on nitrogen sources and processes. This study uses crop nitrogen and carbon isotope ratios to provide insights into the net effects of soil nitrogen cycling and nitrogen fate. This research was conducted at the Strawberry Creek Watershed (SCW), an agricultural research watershed located between Kitchener-Waterloo and Guelph, Ontario. The SCW exhibits elevated nitrate concentrations in groundwater, tile discharge, and the stream itself. Previous isotopic work revealed that this nitrate is largely derived from chemical fertilizer and manure applications. Field-scale hydrological processes lead to areas where the fate of applied nitrogen differs, which has an isotopic effect on the residual nitrogen that is available to plants. Results of this study indicate significant patterns in the isotopic signature of plant tissue, in both temporal and spatial scales. At the plot-scale where soil conditions are similar, there is little to no variation in foliar isotope values, but at the field-scale there appears to be a significant amount of variability related to soil moisture and nitrogen loss. This relationship can potentially provide insight into ideal conditions for nitrogen uptake efficiency. Reducing agricultural nitrogen leaching to ground and surface

  11. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  12. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    International Nuclear Information System (INIS)

    This document contains Appendixes A ''Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed'' and B ''Human Health Risk Assessment for White Oak Creek / Melton Valley Area'' for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites

  13. Model evaluation of potential impacts of on-site wastewater systems on phosphorus in Turkey creek watershed.

    Science.gov (United States)

    Geza, Mengistu; McCray, John E; Murray, Kyle E

    2010-01-01

    Nutrient loading to surface water systems has traditionally been associated with agricultural sources. Sources such as on-site wastewater systems (OWS) may be of concern especially in rural, nonagricultural watersheds. The impact of various point and nonpoint sources including OWS in Turkey Creek Watershed was evaluated using the Watershed Analysis Risk Management Framework, which was calibrated using 10 yr of observed stream flow and total P concentrations. Doubling the population in the watershed or OWS septic tank effluent P concentration increased mean stream total P concentration by a factor of 1.05. Converting all the OWS to a conventional sewer system with a removal efficiency of 93% at the wastewater treatment plant increased the mean total P concentration at the watershed outlet by a factor of 1.26. Reducing the soil adsorption capacity by 50% increased the mean stream total P concentration by a factor of 3.2. Doubling the initial P concentration increased the mean stream total P concentration by a factor of 1.96. Stream flow and sediment transport also substantially affected stream P concentration. The results suggest that OWS contribution to stream P in this watershed is minimal compared with other factors within the simulated time frame of 10 yr. PMID:21043269

  14. Watershed Boundaries, Watershed areas include Rough Creek, Jonathan Creek, Campbell Creek, Allens Creek and Pigeon River, Published in 1993, 1:4800 (1in=400ft) scale, Haywood County Land Records/Geographic Information Systems.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Hardcopy Maps information as of 1993. It is described as...

  15. Diets of three species of anurans from the cache creek watershed, California, USA

    Science.gov (United States)

    Hothem, R.L.; Meckstroth, A.M.; Wegner, K.E.; Jennings, M.R.; Crayon, J.J.

    2009-01-01

    We evaluated the diets of three sympatric anuran species, the native Northern Pacific Treefrog, Pseudacris regilla, and Foothill Yellow-Legged Frog, Rana boylii, and the introduced American Bullfrog, Lithobates catesbeianus, based on stomach contents of frogs collected at 36 sites in 1997 and 1998. This investigation was part of a study of mercury bioaccumulation in the biota of the Cache Creek Watershed in north-central California, an area affected by mercury contamination from natural sources and abandoned mercury mines. We collected R. boylii at 22 sites, L. catesbeianus at 21 sites, and P. regilla at 13 sites. We collected both L. catesbeianus and R. boylii at nine sites and all three species at five sites. Pseudacris regilla had the least aquatic diet (100% of the samples had terrestrial prey vs. 5% with aquatic prey), followed by R. boylii (98% terrestrial, 28% aquatic), and L. catesbeianus, which had similar percentages of terrestrial (81%) and aquatic prey (74%). Observed predation by L. catesbeianus on R. boylii may indicate that interaction between these two species is significant. Based on their widespread abundance and their preference for aquatic foods, we suggest that, where present, L. catesbeianus should be the species of choice for all lethal biomonitoring of mercury in amphibians. Copyright ?? 2009 Society for the Study of Amphibians and Reptiles.

  16. How to build a coalition for AMD amelioration in a watershed. A case history: Mill Creek of Jefferson and Clarion Counties, PA

    International Nuclear Information System (INIS)

    Since 1990, the Mill Creek Coalition has been actively involved in the recovery of Mill Creek from the effects of AMD. This paper/presentation describes how a coalition of conservation groups, governmental agencies and private interests was formed to coordinate efforts to address the problems of AMD on a 60 square mile watershed in Western PA. Also described is how the Mill Creek Coalition obtained funding and other assistance to build a number of wetland treatment systems that are today improving the water quality of Mill Creek. Characteristics that have made this coalition successful are described and suggestions on how to build a successful coalition are shared

  17. Sequential Sediment Budgets in an Ungauged Watershed: Redwood Creek, Marin County, California

    Science.gov (United States)

    Downs, P. W.; Stallman, J.

    2005-12-01

    Sediment budgets provide an organizing framework in fluvial geomorphology and have enormous potential in environmental management. A sediment budget approach assisted in developing strategies for restoring Big Lagoon, the wetland ecosystem at the terminus of the 22.7 km2 Redwood Creek watershed in Marin County, California. Persistence of a restored lagoon largely depends on the current sediment yield relative to the reference yield prior to European settlement. Process-based, distributed sediment budgets were constructed for several historical time periods to account for accelerated sediment production from contemporary land management practices and legacy factors stemming from past resource exploitation. Sediment production, storage, and transfer were investigated using digital terrain modeling, field reconnaissance to ascertain and validate hillslope processes, mainstem channel surveys and dendrochronology to assess trends in alluvial sediment storage, application of published process rate estimates, use of short-term and prorated stream gauging records, and sediment transport modeling to validate sediment yields into Big Lagoon. Evidence suggests that the Redwood Creek valley bottom aggraded from at least 3,500 B.P., with floodplain wetlands acting as sediment sinks (average annual sediment yield of 34 t km2 yr-1). Channel incision rapidly followed European settlement and intensive hillslope disturbances beginning around 1840 (peak yield 1921-1982 of 324 t km2 yr-1). Mainstem and large tributary valley bottoms became major sediment sources during this time and remain sources despite progressive retirement of most agricultural land use (yield 1981-2000 of 198 t km2 yr-1). Numerous issues related to data availability and resolution limited quantification of some sediment sources and resulted in potential uncertainties in estimates of yield to Big Lagoon. Historical sediment budgets, however, require more than adequate data sources, they require accurate conceptual

  18. Natural Recharge to the Unconfined Aquifer System on the Hanford Site from the Greater Cold Creek Watershed: Progress Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Waichler, Scott R.; Wigmosta, Mark S.; Coleman, Andre M.

    2004-09-14

    Movement of contaminants in groundwater at the Hanford Site is heavily dependent on recharge to the unconfined aquifer. As the effects of past artificial discharges dissipate, the water table is expected to return to more natural conditions, and natural recharge will become the driving force when evaluating future groundwater flow conditions and related contaminant transport. Previous work on the relationship of natural recharge to groundwater movement at the Hanford Site has focused on direct recharge from infiltrating rainfall and snowmelt within the area represented by the Sitewide Groundwater Model (SGM) domain. However, part of the groundwater recharge at Hanford is provided by flow from Greater Cold Creek watershed (GCC), a large drainage area on the western boundary of the Hanford Site that includes Cold Creek Valley, Dry Creek Valley, and the Hanford side of Rattlesnake Mountain. This study was undertaken to estimate the recharge from GCC, which is believed to enter the unconfined aquifer as both infiltrating streamflow and shallow subsurface flow. To estimate recharge, the Distributed Hydrology-Soil-Vegetation Model (DHSVM) was used to simulate a detailed water balance of GCC from 1956 to 2001 at a spatial resolution of 200~m and a temporal resolution of one hour. For estimating natural recharge to Hanford from watersheds along its western and southwestern boundaries, the most important aspects that need to be considered are 1)~distribution and relative magnitude of precipitation and evapotranspiration over the watershed, 2)~streamflow generation at upper elevations and infiltration at lower elevations during rare runoff events, and 3)~permeability of the basalt bedrock surface underlying the soil mantle.

  19. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, USA

    Science.gov (United States)

    Zhang, H. L.; Wang, Y. J.; Wang, Y. Q.; Li, D. X.; Wang, X. K.

    2013-01-01

    In this paper, we use the Hydrologic Modeling System (HEC-HMS) to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage-IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW), which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  20. The effect of watershed scale on HEC-HMS calibrated parameters: a case study in the Clear Creek watershed in Iowa, US

    Science.gov (United States)

    Zhang, H. L.; Wang, Y. J.; Wang, Y. Q.; Li, D. X.; Wang, X. K.

    2013-07-01

    In this paper, we use the Hydrologic Modeling System (HEC-HMS) to simulate two flood events to investigate the effect of watershed subdivision in terms of performance, the calibrated parameter values, the description of hydrologic processes, and the subsequent interpretation of water balance components. We use Stage IV hourly NEXRAD precipitation as the meteorological input for ten model configurations with variable sub-basin sizes. Model parameters are automatically optimized to fit the observed data. The strategy is implemented in Clear Creek Watershed (CCW), which is located in the upper Mississippi River basin. Results show that most of the calibrated parameter values are sensitive to the basin partition scheme and that the relative relevance of physical processes, described by the model, change depending on watershed subdivision. In particular, our results show that parameters derived from different model implementations attribute losses in the system to completely different physical phenomena without a notable effect on the model's performance. Our work adds to the body of evidence demonstrating that automatically calibrated parameters in hydrological models can lead to an incorrect prescription of the internal dynamics of runoff production and transport. Furthermore, it demonstrates that model implementation adds a new dimension to the problem of non-uniqueness in hydrological models.

  1. CTUIR Grande Ronde River Basin Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1996-1998 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    1999-07-01

    This Annual Report provides a detailed overview of watershed restoration accomplishments achieved by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and project partners in the Upper Grande Ronde River Basin under contract with the Bonneville Power Administration (BPA) during the period July 1, 1997 through June 30, 1998. The Contract Agreement entitled McCoy Meadows Watershed Restoration Project (Project No.96-83-01) includes habitat restoration planning, design, and implementation in two project areas--the McCoy Meadows Ranch located in the Meadow, McCoy, and McIntyre Creek subbasins on private land and the Mainstem Grande Ronde River Habitat Enhancement Project located on private and National Forest System lands near Bird Tract Springs along the Grande Ronde River. During the contract period, the CTUIR and partners (Mark and Lorna Tipperman, landowners), Oregon Department of Environmental Quality (ODEQ), U.S. Environmental Protection Agency (EPA), Oregon Department of Fish and Wildlife (ODFW), and Natural Resource Conservation Service (NRCS) initiated phase 1 construction of the McCoy Meadows Restoration Project. Phase 1 involved reintroduction of a segment of McCoy Creek from its existing channelized configuration into a historic meander channel. Project efforts included bioengineering and tree/shrub planting and protection, transporting salvaged cottonwood tree boles and limbs from offsite source to the project area for utilization by resident beaver populations for forage and dam construction materials, relocation of existing BPA/ODFW riparian corridor fencing to outer edges of meadow floodplain, establishment of pre-project photo points, and coordination of other monitoring and evaluation efforts being led by other project partners including groundwater monitoring wells, channel cross sections, water quality monitoring stations, juvenile population sampling index sites, redd surveys, and habitat surveys. Project activities also included

  2. Bacterial Composition in Urban Watershed Creeks Impacted by Contaminants from different Sources.

    Science.gov (United States)

    This study was conducted to monitor changes in microbial and chemical composition along Chino Creek Reach 1 region, which, in 2002, was placed on the 303(d) list as an impaired waterbody. Pollutants in the Chino Creek basin mainly consist of pathogens and nutrients due to the densely populated areas...

  3. Mercury and methylmercury related to historical mercury mining in three tributaries to Lake Berryessa, Putah Creek Watershed, California

    Science.gov (United States)

    Sparks, G. C.; Horner, T.; Cornwell, K.; Izzo, V.; Alpers, C. N.

    2014-12-01

    This study examined the relative contribution of total mercury (THg) and mono-methylmercury (MMHg) from upstream historical mercury-mining districts to Lake Berryessa, a reservoir with impaired water quality because of mercury. The third and fourth largest historical mercury-producing mining districts in California are within Lake Berryessa's three largest tributary watersheds: Pope, (Upper) Putah, and Knoxville-Eticuera Creeks. Downstream of the reservoir, Putah Creek drains into the Yolo Bypass, a major source of THg and MMHg to the Sacramento-San Joaquin Delta. Water samples were collected from October 2012 to May 2014 during 37 non-storm and 8 storm events along Pope, (Upper) Putah, and Knoxville-Eticuera Creeks and analyzed for field parameters (temperature, pH, specific conductance, dissolved oxygen, and turbidity). Additionally, water samples collected during five of the non-storm and storm events were analyzed for unfiltered THg and MMHg and total suspended solids (TSS). Discharge was measured during sampling to calculate instantaneous loads. More than 120 streambed sediment samples were collected to determine the spatial variation of THg and organic carbon content (loss on ignition). Across the watersheds, unfiltered THg (in water) samples ranged from 2.3 to 125 ng/L and unfiltered MMHg (in water) samples from 0.12 to 1.0 ng/L. Concentrations of THg ranged from less than 0.0001 to 122 mg/kg in streambed sediment. Tributary reaches with elevated mercury concentrations ("hot spots") are near or downstream of historical mercury mines and have: (1) strong positive correlations between THg (in water) or MMHg (in water) and TSS (R2> 0.88, n=5); (2) higher instantaneous loads of suspended sediment, THg and MMHg than reaches with low THg and MMHg concentrations; and (3) elevated sediment organic carbon content. Tributary reaches with weaker correlations among THg, MMHg, and TSS in unfiltered water may reflect non-mining sources of dissolved THg and MMHg, such as

  4. Soil bacterial and archaeal communities of the Stringer Creek Watershed in relation to soil moisture, chemistry, and gas fluxes

    Science.gov (United States)

    Jones, R. T.; Du, Z.; Riveros-Iregui, D.; Dore, J. E.; Emanuel, R. E.; McGlynn, B. L.; McDermott, T.; Li, X.

    2013-12-01

    The Stringer Creek watershed within the Tenderfoot Creek Experimental Forest (Montana) is a highly instrumented watershed with long-term hydrologic and gas flux measurements, and is an ideal study system to incorporate microbiological characterizations into landscape scale hydrological and biogeochemical studies. As a first attempt to determine how hydrological processes, soil chemistry, and gas fluxes are correlated with bacterial and archaeal lineages in soil, we collected soil samples across the watershed (July 9 - 11, 2012) and used barcoded high-throughput DNA sequencing to characterize the bacterial and archaeal communities. Soils were collected adjacent to gas well sites at 5 cm, 20 cm, and 50 cm depths, corresponding to the depths of the wells. Gas measurements included CO2, CH4, O2, and N2O; soil measurements included water content, % carbon, and % nitrogen. We analyzed 775,000 16S rRNA gene sequences from 28 soil samples. Relative abundances of certain microbial lineages or groups (e.g. methanotrophs, methanogens, Acidobacteria, Bacteroidetes, Firmicutes, Proteobacteria, etc.) varied significantly with CO2, CH4, and O2 concentrations. Furthermore, beta-diversity analyses showed that microbial community composition was significantly governed by water content, % nitrogen, and % carbon; community composition also significantly varied with CO2, CH4, and O2 concentrations. Together, our results suggest that soil environmental factors such as water content, % carbon, and % nitrogen affect microbial community composition, and that microbial community composition correlates with CO2, O2, and CH4 concentrations. Future work will focus on characterizing microbial communities across the entire summer season as soil conditions drastically change from fully saturated to very dry.

  5. Impacts to Humboldt Bay NWR from forestry and dairy activities in the Salmon Creek Watershed

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The freshwater creeks, brackish water sloughs, saltwater marshes and mud flats found on the Humboldt Bay National Refuge provide habitats for at least 110 species...

  6. Recovery, restoration, and development of an enhancement plan for the Leading Creek watershed after dewatering of the Meigs number-sign 31 coal mine in Ohio

    International Nuclear Information System (INIS)

    Following the flooding of the Meigs number-sign 31 deep coal mine in Meigs County, Ohio, a proactive plan was developed to evaluate effects of initial dewatering, recovery, and development of a watershed enhancement plan. Approximately half of the 31-mile Leading Creek mainstem received coal mine discharge of high conductivity, low pH, high metals and total suspended solids loading. Most forms of aquatic life were depleted in the impacted areas of the creek. After three years since the incident, many forms of benthic macroinvertebrates and fish have returned to the creek, and sediments have been purged of metal loading by storm water events. The enhancement plan involves a reconnaissance of the creek and tributaries pinpointing areas of agricultural sedimentation and abandoned mined land (AML) influences in the lower half. Research activities involved sampling water and sediment in 10 stations of the creek and 17 major tributaries. The tributaries were addressed as point source discharges with water/sediment toxicity testing conducted. In-situ testing included growth impairment evaluation of Asian clams at 27 stations in the watershed. Several tributaries were intermittently toxic depending upon rainfall and the degree of AML input. Benthic macroinvertebrate assembles in most tributaries were stressed and comprised 0--3 taxa. Erosion/sedimentation loading was being addressed by hydrological modeling of the creek, land use management/habitat assessment, and data management by geographic information systems

  7. A Watershed Approach to Urban River Restoration: A Conceptual Restoration Plan for Sausal Creek

    OpenAIRE

    Ippolito, Teresa; Podolak, Kristen

    2008-01-01

    There are many sources of urban river degradation from channel straightening and culverting for flood control and development, to point and non-point source pollution, and altered flow regimes due to urbanization and increased impervious surfaces. In this study, we focus on the hydrologic impact of impervious surfaces in an urban watershed in the East Bay area. We used the Water Framework Directive (WFD), recent legislation in Europe, to understand how a watershed approach and systematic wa...

  8. Do water isotopes reflect differences in timber harvest practices? Isotope ecohydrology in the Mica Creek watershed, Idaho, USA

    International Nuclear Information System (INIS)

    The impacts of timber harvesting techniques on the water balance and flow regime were studied at the catchment scale at the Mica Creek Experimental Watershed (97 km2, 975 - 1,750 m a.s.l.) in northwestern Idaho, USA. These studies relied on stable isotopic techniques to assess the variation in water isotope fluxes of clear-cut, partial-cut (thinned), and unimpacted forest sites. Precipitation, stream flow, soil water, and sap flow, and stable isotope concentrations (deuterium and oxygen-18) of these components were measured on a monthly basis starting in fall 2004. The isotopic composition of sap flow appeared to reflect differential canopy interception losses, with greater enrichment under the densest canopies. (author)

  9. Environmental data for the White Oak Creek/White Oak Lake watershed: Environmental Sciences Division publication No. 2779

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km2 (6.5 mile2). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations since the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs

  10. Analysis of infrequent hydrologic events with regard to existing streamflow monitoring capabilities in White Oak Creek watershed

    International Nuclear Information System (INIS)

    The quantity and concentration of radionuclides released to the environment by ORNL must be monitored continuously and accurately in order to ensure compliance with legal requirements established by Federal and state guidelines. Of the five streamflow monitoring stations located within White Oak Creek watershed, stations 3, 4, and 5 are of primary importance in quantifying the flux of water, sediment, and radionuclides through the drainage basin. Currently, the maximum measurable discharge at these three stations is 1.42 m3/sec (50 cfs), 0.54 m3/sec (19 cfs), and 4.25 m3/sec (150 cfs), respectively. Estimates of flood magnitude and frequency indicate that even small floods which are expected to recur often are significantly larger than the existing monitoring system can measure. Several independent studies have shown that most of the sediment transported from a watershed is carried by larger, less frequent streamflows which occur only a small percentage of the time. It also has been shown that certain radionuclides are transported in association with fluvial sediment. Thus, the flux of radionuclides, both in solution and associated with sediment, increases significantly during flood conditions. Estimates of peak discharges resulting from recent storms indicate that the drainage system has experienced variable flood conditions during the past few years for which no accurate and reliable records exist

  11. A water-quality assessment of the Muddy Fork Silver Creek watershed, Clark, Floyd, and Washington Counties, Indiana

    Science.gov (United States)

    Hardy, Mark A.

    1978-01-01

    Data collected for a wide range of flow conditions from September 8, 1975, to July 13, 1976, reveal that human and animal waste loading of streams and pesticides use in the Muddy Fork Silver Creek watershed, Indiana, are probably the most significant water-quality problems. Generally, the type(s) of water in tributary streams in the south and southwest parts of the watershed was calcium bicarbonate and in other tributaries were calcium sulfate and magnesium sulfate. Dissolved-solids concentrations of discharge from top-spill reservoirs were lower and more consistent over a range of flows than concentrations from uncontrolled streams. Concentrations of fecal coliform bacteria and fecal streptococcal bacteria ranged from 5 to 65 ,000 colonies per 100 milliliters and from 5 to 14,000 colonies per 100 milliliters, respectively. Data on periphyton, phytoplankton, and benthic communities collected during low flow in September 1975 indicate organic loading of Muddy Fork downstream from the town of Speed. Phytoplankton community structures varied temporally and spatially. Ranges of concentration (In micrograms per kilogram) of various chlorinated hydrocarbons in samples of bed materials were: chlordane, from 0 to 14; DDT, from 0 to 19; and PCB's, from 0 to 11. Concentrations of aldrin, DDD, DDE, heptachlor, and heptachlor epoxide of 5.1 micrograms per kilogram or less were also detected. The presence of these compounds makes them potentially available for accumulation in the biological food chain. (Woodard-USGS)

  12. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    International Nuclear Information System (INIS)

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy's Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings

  13. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  14. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    Energy Technology Data Exchange (ETDEWEB)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  15. Summary statistics and graphical comparisons of historical hydrologic and water-quality data; Seco Creek Watershed, South-Central Texas

    Science.gov (United States)

    Brown, David W.; Slattery, Richard N.; Gilhousen, Jon R.

    1998-01-01

    The U.S. Geological Survey collected hydrologic (rainfall, streamflow, and reservoir content) and water-quality data in the Seco Creek watershed, south-central Texas. Most of the data from 15 sites were collected as part of a study in cooperation with the U.S. Department of Agriculture and the Texas State Soil and Water Conservation Board to evaluate the effects of agricultural best-management practices on surface- and ground-water quantity and quality in the 255-square-mile watershed. Nearly 400 best-management practices at 58 sites were implemented by landowners in the watershed during March 1990-September 1995. Most of the data are from the early 1990s, the period during and after implementation of best-management practices. Data from five sites include water quality and are summarized in tables and graphics in the text; and data from all 15 sites are summarized on a diskette. Maximum annual rainfall among the sites for which data are presented in the text (excluding one site) for the during-and-after-implementation period (March 1990-September 1995) was 53.27 inches in water year 1992. Maximum annual total streamflow among the sites for the period was 63,400 acre-feet, also in water year 1992. At the one site with water-quality data (under base-flow conditions) for both the before-implementation period and the during-and-after implementation period of best-management practices, percentiles (5, 25, 50, 75, 95) for specific conductance, nitrate concentration, and fecal coliform density were less for the during-and-after-implementation period than for the before-implementation period.

  16. Fluvial responses to land-use changes and climatic variations within the Drury Creek watershed, southern Illinois

    Science.gov (United States)

    Miller, Suzanne Orbock; Ritter, Dale F.; Kochel, R. Craig; Miller, Jerry R.

    1993-04-01

    Fluvial responses to climatic variation and Anglo-American settlement were documented for the Drury Creek watershed, southern Illinois by examining stratigraphic, geomorphic, climatic, and historical data. Regional analyses of long-term precipitation records document a period of decreasing mean annual precipitation from 1904 to about 1945, and an increasing trend in annual precipitation from 1952 to the present. The period between 1945 and 1951 experienced a large number of intense storms that resulted in high annual precipitation totals. Statistical relationships illustrate that changes in precipitation totals are transferred to the hydrologic system as fluctuations in stream discharge. Historical records of southern Illinois show that a maximum period of settlement and deforestation occurred between the 1860s and 1920s. This era ended in the 1940s when large tracts of land were revegetated in an attempt to curtail erosion which had caused extensive upland degradation. In response to hillslope erosion at least two meters of fine-grained sediments were deposited on valley floors. Average sedimentation rates, determined using decdrochronologic techniques, are estimated to be 2.11 cm/yr for the period between 1890 and 1988; rates that are 1 to 2 orders of magnitude greater than pre-settlement values calculated for other areas of the midwest. However, botanical data suggest that aggradation was episodic, possibly occurring during three periods characterized by greater annual precipitation. Since the 1940s, sedimentation rates have declined. Reduced rates of sedimentation are related to an episode of channel entrenchment that reduced overbank flooding. Entrenchment coincided with a period of: (1) reduced sediment yields associated with watershed revegetation and the introduction of soil conservation practices, and (2) intense storm activity that resulted in long periods of high discharge. As a result of channel incision and hillslope erosion, newly exposed bedrock in

  17. Prioritizing Road Treatments using the Geomorphic Roads Analysis and Inventory Package (GRAIP) to Improve Watershed Conditions in the Wall Creek Watershed, Oregon

    Science.gov (United States)

    Day, K. T.; Black, T.; Clifton, C.; Luce, C.; McCune, S.; Nelson, N.

    2010-12-01

    Wall Creek, tributary to the North Fork John Day River in eastern Oregon, was identified as a priority watershed by the Umatilla National Forest for restoration in 2002. Most streams in this 518 km2 multi-ownership watershed are designated critical habitat for threatened steelhead. Eight streams are listed on the Oregon 303(d) list for elevated temperatures and excess sedimentation. Over 1000 km of public and private roads in the watershed present a major source of potential water quality and habitat impairment. We conducted a watershed-wide inventory of roads using the Geomorphic Roads Analysis and Inventory Package (GRAIP) in 2009 to quantify sediment contributions from roads to streams. GRAIP is a field and GIS-based model developed by the Forest Service Rocky Mountain Research Station and Utah State University that georeferences and quantifies road hydrologic connectivity, sediment production and delivery, mass wasting, and risk of diversion and plugging at stream crossings. Field survey and modeling produced data for 6,473 drainage locations on 726 km of road (most of the publically owned roads) quantifying the location and mass of sediment produced and delivered to streams. Findings indicate a relatively small subset of roads deliver the majority of road-produced fine sediment; 12 percent of the road length delivers 90 percent of the total fine sediment to streams. Overall fine sediment production in the watershed is relatively low (with an estimated background erosion rate of 518,000 kg/yr for the watershed) and sediment produced and delivered from the road system appears to be a modest addition. Road surfaces produce approximately 81,455 kg of fine sediment per year, with 20,976 kg/year delivered to the stream network. Fifty-nine gullies were observed, 41 of which received road runoff. Sixteen road-related landslides were also observed. The excavated volume of these features totals 3,922,000 kg which is equivalent to 175 years of fine sediment delivery at

  18. Morphometric Analyses of Aksu Stream And Batlama Creek Watersheds That Caused Flood and Overflows in Giresun

    OpenAIRE

    AVCI, Vedat; SUNKAR, Murat

    2015-01-01

    In this study, the morphometric characteristics of Aksu stream and Batlama creek that caused flood and overflows in Giresun have been analyzed. The risk of flood of Giresun is high because it is located on Eastern Black Sea. Black Sea region is one of the areas where the most frequently floods are occurred in Turkey because of its geomorphologic features and climatic conditions. The important flood that causes the loss of life and property in Giresun stems from Aksu Stream in the east and Bat...

  19. Characterization of Stormflows and Wastewater Treatment-Plant Effluent Discharges on Water Quality, Suspended Sediment, and Stream Morphology for Fountain and Monument Creek Watersheds, Colorado, 1981-2006

    Science.gov (United States)

    Mau, David P.; Stogner, Robert W.; Edelmann, Patrick

    2007-01-01

    In 1998, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study of the Fountain and Monument Creek watersheds to characterize water quality and suspended-sediment conditions in the watershed for different flow regimes, with an emphasis on characterizing water quality during storm runoff. Water-quality and suspended-sediment samples were collected in the Fountain and Monument Creek watersheds from 1981 through 2006 to evaluate the effects of stormflows and wastewater-treatment effluent on Fountain and Monument Creeks in the Colorado Springs, Colorado, area. Water-quality data were collected at 11 sites between 1981 and 2001, and 14 tributary sites were added in 2003 to increase spatial coverage and characterize water quality throughout the watersheds. Suspended-sediment samples collected daily at 7 sites from 1998 through 2001, 6 sites daily from 2003 through 2006, and 13 tributary sites intermittently from 2003 through 2006 were used to evaluate the effects of stormflow on suspended-sediment concentrations, discharges, and yields. Data were separated into three flow regimes: base flow, normal flow, and stormflow. Stormflow concentrations from 1998 through 2006 were compared to Colorado acute instream standards and, with the exception of a few isolated cases, did not exceed water-quality standards for inorganic constituents that were analyzed. However, stormflow concentrations of both fecal coliform and Escherichia coli (E. coli) frequently exceeded water-quality standards during 1998 through 2006 on main-stem and tributary sites by more than an order of magnitude. There were two sites on Cottonwood Creek, a tributary to Monument Creek, with elevated concentrations of dissolved nitrite plus nitrate: site 07103985 (TbCr), a tributary to Cottonwood Creek and site 07103990 (lower_CoCr), downstream from site 07103985 (TbCr), and near the confluence with Monument Creek. During base-flow and normal-flow conditions, the median

  20. Recovery and reconnaissance of the Leading Creek watershed, Meigs County, Ohio, following a dewatering of Meigs number-sign 31 coal mine

    International Nuclear Information System (INIS)

    A database has been developed before and after the dewatering of the Meigs number-sign 31 deep coal mine in Meigs County, Ohio, three years ago. This strategy was to compare potential recovery of the watershed in the mainstem of Leading Creek as well as to reconnaissance the tributaries for point-source input into the creek. After the dewatering process, ∼ half of the 31-mile Leading Creek mainstem received a discharge of conductivity, low pH, high metals (iron, manganese, copper, aluminum), and total suspended solids (TSS). Most forms of aquatic life in the creek were depleted in the impacted areas, but recovery has been encouraging. Relative fish abundance has returned to pre-event levels, while benthic macroinvertebrates show recovery in two key stream segments. Reconnaissance of the watershed indicated that the system is uniquely segregated with high sedimentation from agricultural input in the upper half and abandoned mined land (AML) discharges in the lower. The AML-influenced tributaries were intermittently toxic throughout the year with 48-hr LC50 values of 14.6--6.0% effluent at Thomas Fork tributary. Macroinvertebrate assemblages in many of the AML and agriculturally influenced tributaries ranged from 0--3 taxa. The consequence of erosion/sedimentation loading is being addressed relative to autochromous input of in-stream AML/TSS input versus that from allochthomous input from stream bank/land use management

  1. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    International Nuclear Information System (INIS)

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions

  2. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed

    Directory of Open Access Journals (Sweden)

    Ratajczak Mehdy

    2010-08-01

    Full Text Available Abstract Background Escherichia coli is a commensal bacterium of the gastro-intestinal tract of human and vertebrate animals, although the aquatic environment could be a secondary habitat. The aim of this study was to investigate the effect of hydrological conditions on the structure of the E. coli population in the water of a creek on a small rural watershed in France composed of pasture and with human occupation. Results It became apparent, after studying the distribution in the four main E. coli phylo-groups (A, B1, B2, D, the presence of the hly (hemolysin gene and the antibiotic resistance pattern, that the E. coli population structure was modified not only by the hydrological conditions (dry versus wet periods, rainfall events, but also by how the watershed was used (presence or absence of cattle. Isolates of the B1 phylo-group devoid of hly and sensitive to antibiotics were particularly abundant during the dry period. During the wet period and the rainfall events, contamination from human sources was predominantly characterized by strains of the A phylo-group, whereas contamination by cattle mainly involved B1 phylo-group strains resistant to antibiotics and exhibiting hly. As E. coli B1 was the main phylo-group isolated in water, the diversity of 112 E. coli B1 isolates was further investigated by studying uidA alleles (beta-D-glucuronidase, the presence of hly, the O-type, and antibiotic resistance. Among the forty epidemiolgical types (ETs identified, five E. coli B1 ETs were more abundant in slightly contaminated water. Conclusions The structure of an E. coli population in water is not stable, but depends on the hydrological conditions and on current use of the land on the watershed. In our study it was the ratio of A to B1 phylo-groups that changed. However, a set of B1 phylo-group isolates seems to be persistent in water, strengthening the hypothesis that they may correspond to specifically adapted strains.

  3. Geographic isolation of Escherichia coli genotypes in sediments and water of the Seven Mile Creek - A constructed riverine watershed.

    Science.gov (United States)

    Chandrasekaran, Ramyavardhanee; Hamilton, Matthew J; Wang, Ping; Staley, Christopher; Matteson, Scott; Birr, Adam; Sadowsky, Michael J

    2015-12-15

    Escherichia coli is used to indicate fecal contamination in freshwater systems and is an indicator of the potential presence of human pathogens. However, naturalized E. coli strains that persist and grow in the environment confound the use of this bacterium as a fecal indicator. Here we examined the spatial and temporal distribution of E. coli in water and sediments of the Seven Mile Creek (SMC), a constructed, ephemeral watershed. E. coli concentrations showed variation by site and date, likely due to changes in temperature and rainfall. Horizontal fluorophore enhanced rep-PCR (HFERP) DNA fingerprint analyses indicated that E. coli populations were very diverse and consisted of transient and naturalized strains, which were especially prevalent in sediment. E. coli fingerprints from water and sediment collected in the same year clustered together with significant overlap, indicating exchange of strains between matrices. Isolates obtained during periods of flow, but not during non-flow conditions, clustered together regardless of sample site, indicating that transport between sites occurred. Naturalized E. coli strains were found in the SMC and strains become geographically isolated and distinct during non-flow conditions. Isolates collected during late spring to fall clustered together at each site, suggesting that temperature and growth of naturalized strains are likely factors affecting population dynamics. Results of this study show that newly introduced and naturalized E. coli strains are present in the SMC. Results of this study highlight an important concern for resource managers using this species for water quality monitoring. PMID:26298250

  4. Water balance dynamics of a boreal forest watershed: White Gull Creek basin, 1994-1996

    Science.gov (United States)

    Nijssen, Bart; Lettenmaier, Dennis P.

    2002-11-01

    Field measurements from the Boreal Ecosystem-Atmosphere Study (BOREAS) were combined to calculate the water balance of the White Gull Creek basin for the three year period 1994-1996. Evapotranspiration was mapped from the observations made at the BOREAS flux towers to the basin using a simple evaporation model with a bulk canopy resistance based on tower observations. Runoff ratios were low, and evapotranspiration accounted for most of the precipitation over the area. The accumulated storage change, over the 3 year period, was 47 mm or 3.4% of the total precipitation, but precipitation exceeded the sum of discharge and evapotranspiration by 80 mm or 15% of the precipitation in 1994. Five possible explanations for the discrepancy in the water balance are identified, with the most likely cause an underestimation of the evapotranspiration in 1994, especially during periods when the basin is wet.

  5. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    Science.gov (United States)

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  6. Validated analytical data summary report for White Oak Creek Watershed remedial investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    CDM Federal Programs Corporation (CDM Federal) was tasked by the Environmental Restoration Program of Lockheed Martin Energy Systems Inc. (Energy Systems), to collect supplemental surface soil data for the remedial investigation/feasibility study (RI/FS) for the White Oak Creek (WOC) watershed. The WOC watershed RI/FS is being conducted to define a remediation approach for complying with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Oak Ridge National Laboratory (ORNL). The data generated from these supplemental sampling activities will be incorporated into the RUFS to aid decision makers and stakeholders with the selection of remedial alternatives and establish remediation goals for the WOC watershed. A series of Data Quality Objective (DQO) meetings were held in February 1996 to determine data needs for the WOC watershed RI/FS. The meetings were attended by representatives from the Tennessee Department of Environment and Conservation, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and contractors to DOE. During the DQO meetings, it was determined that the human health risk associated with exposure to radionuclides was high enough to establish a baseline for action; however, it was also determined that the impacts associated with other analytes (mainly metals) were insufficient for determining the baseline ecological risk. Based on this premise, it was determined that additional sampling would be required at four of the Waste Area Groupings (WAGs) included in the WOC watershed to fulfill this data gap.

  7. Denitrification rates in marsh soils and hydrologic and water quality data for Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    Science.gov (United States)

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2011-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in estuaries. Water-quality degradation has been observed at the park's Bass Harbor Marsh estuary but minimal degradation is observed in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential nutrient source. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in situ denitrification rates in marsh soils in Northeast Creek and Bass Harbor Marsh watersheds during the summer seasons of 2008 and 2009. Denitrification was measured under ambient conditions and following inorganic nitrogen and glucose additions. Laboratory incubations of marsh soils with and without acetylene were conducted to determine average ratios of nitrous oxide (N2O) to nitrogen (N2) produced during denitrification. Surface water and groundwater samples were analyzed for nutrients, specific conductance, temperature, and dissolved oxygen. Water level was recorded continuously during the growing season in Fresh Meadow Marsh in the Northeast Creek Watershed.

  8. Areal distribution of 60Co, 137Cs, and 90Sr in streambed gravels of White Oak Creek Watershed, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    The concentrations of 90Sr, 60Co, and 137Cs in streambed gravels from contaminated drainages in White Oak Creek Watershed were determined. Methods to determine the relative contributions of various sources to the total discharge from the watershed were developed. Principal sources of 90Sr were: ORNL plant effluents (50%), leaching from solid waste disposal area (SWDA) 4 (30%), and leaching from SWDA 5 (10%). Minor sources included SWDA 3, the Molten Salt Reactor Facility, and intermediate-level liquid waste pit 1 with each representing 4% or less of the total basin discharge. The cooling water effluent from the High-Flux Isotope Reactor was the dominant source of 60Co contamination in the watershed. ORNL plant effluents accounted for almost all the 137Cs discharge from White Oak Creek basin. Downstream radionuclide concentrations were constant until significant dilution by other tributaries occurred. Any future activities giving rise to additional contamination can now be identified. Distribution coefficients between streambed gravels and streamwater for 85Sr, 60Co, and 137Cs were 50, 560, and 8460 ml/g, respectively. An abridged radiochemical fractionation developed for 90Sr was found to be as accurate and precise for these samples as the standard 90Sr method above levels of 2 dpm/g

  9. A water-quality assessment of the Busseron Creek watershed, Sullivan, Vigo, Greene, and Clay Counties, Indiana

    Science.gov (United States)

    Eikenberry, Stephen E.

    1978-01-01

    Chemical quality of surface water in the 237-square mile Busseron Creek watershed, in Indiana, is significantly affected by drainage from coal mines and municipalities. Drainage from coal mines is primarily a problem of higher than normal dissolved-solids concentration, whereas, drainage from municipalities is generally a problem of bacteria and phytoplankton. Generally, the water is calcium bicarbonate type, except in streams affected by drainage from coal mines, where the water is a mixed calcium and magnesium sulfate type. Ranges of concentration (in milligrams per liter) of dissolved solids and of some of the chemical constituents dissolved in streams from September 1975 to July 1976 were: dissolved solids, from 104 to 2,610; iron, from 0.00 to 150; sulfate, from 14 to 1,900; chloride, from 3.3 to 130; nitrate (as nitroglen), from 0.01 to 5.3; phosphate (as phosphorus), from 0.1 to 1.7; and total organic carbon, from 2.4 to 60. Range of pH was from 2.7 to 9.6 Ranges of concentration of chlorinated hydrocarbons (in micrograms per kilogram) detected in bed material of streams were: aldrin, from 0.2 to 0.4; chlordane, from 0 to 13; DDE, from 0.0 to 0.3; dieldrin, from 0.0 to 9.8; and heptachlor epoxide, from 0 to 1.0. Streams draining municipalities had high populations of fecal coliform bacteria (as many as 46,000 colonies per 100 milliliter) and phytoplankton (as many as 190 ,000 cells per milliliter). Dissolved-oxygen concentration ranged from 2.8 to 15.0 milligrams per liter. 

  10. Hydrologic data summary for the White Oak Creek Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1992

    International Nuclear Information System (INIS)

    This report summarizes, for the 12-month period (January through December 1992), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: characterize the quantity and quality of water in the flow system; assist with the planning and assessment of remedial action activities; and provide long-term availability of data and quality assurance

  11. Data visualization, time-series analysis, and mass-balance modeling of hydrologic and water-quality data for the McTier Creek watershed, South Carolina, 2007-2009

    Science.gov (United States)

    Benedict, Stephen T.; Conrads, Paul A.; Feaster, Toby D.; Journey, Celeste A.; Golden, Heather E.; Knightes, Christopher D.; Davis, Gary M.; Bradley, Paul M.

    2012-01-01

    The McTier Creek watershed is located in the headwaters of the Edisto River Basin, which is in the Coastal Plain region of South Carolina. The Edisto ecosystem has some of the highest recorded fish-tissue mercury concentrations in the United States. In an effort to advance the understanding of the fate and transport of mercury in stream ecosystems, the U.S. Geological Survey, as part of its National Water-Quality Assessment Program, initiated a field investigation of mercury in the McTier Creek watershed in 2006. The initial efforts of the investigation included the collection of extensive hydrologic and water-quality field data, along with the development of several hydrologic and water-quality models. This series of measured and modeled data forms the primary source of information for this investigation to assess the fate and transport of mercury within the McTier Creek watershed.

  12. Impacts of Land Cover Changes on Runoff and Sediment in the Cedar Creek Watershed, St. Joseph River,Indiana, United States

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiaobo; Chi-hua Huang; Fushui Ruan

    2008-01-01

    The relation between runoff and sediment and land cover is investigated in the Cedar Creek Watershed (CCW), located in Northeastern Indiana, United States. The major land cover types in this watershed are cultivated land, woodland and pasture/Conservation Reserve Program (CRP), which account for approximate 90% of the total area in the region. Moreover, land use was changed tremendously from 2ooo to 2004, even without regarding the effect of the crop rotation system (corn & soybean). At least 49% of land cover types were changed into other types in this period. The land cover types, ranking by changing area from high to low series, are rye, soybean, corn, woodland and pasture/CRP. The CCW is divided into 21 sub-watersheds, and soil and water loss in each sub-watershed is computed by using Soil and Water Assessment Tool (SWAT). The results indicate that the variations in runoff and sediment have positive relation to the area of crops (especially corn and soybean); sediment is more sensitive to land cover changes than runoff; more heavy rainfall does not always mean more runoff because the combination of different land cover types always modify runoff coefficient; and rye, soybean and corn are the key land cover types, which affected the variation in runoff and sediment in the CCW.

  13. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Science.gov (United States)

    Paschke, Suzanne S.; Walton-Day, Katie; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  14. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Love, E. (Shaw Environmental, Monroeville, PA); Hammack, R.W.; Harbert, W.P. (Univ. of Pittsburgh); Sams, J.I.; Veloski, G.A.; Ackman, T.E.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  15. Cache Creek mercury investigation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Cache Creek watershed is located in the California Coastal range approximately 100 miles north of San Francisco in Lake, Colusa and Yolo Counties. Wildlife...

  16. Identification of Ecosystem Stressors in Developing an Enhancement Plan for the Leading Creek Watershed, Meigs County, Ohio

    OpenAIRE

    Currie, Rebecca J.

    1999-01-01

    In July of 1993 an underground coal mine owned and operated by Southern Ohio coal company (SOCCO) underwent emergency recovery operations due to flash flooding of the mine from an adjacent abandoned mine. During mine dewatering operations, approximately 132,650 liters per minute of acid mine water was released into the Parker Run tributary draining into Leading Creek. The 24.2-km section of Leading Creek was heavily impacted eradicating most aquatic organisms. An acutely toxic impact resul...

  17. Water quality of the Canchim’s creek watershed in São Carlos, SP, Brazil, occupied by beef and dairy cattle activities

    Directory of Open Access Journals (Sweden)

    Odo Primavesi

    2002-06-01

    Full Text Available The Canchim’s creek watershed in São Carlos, SP, Brazil, was chosen to evaluate water quality affected by dairy and beef cattle production systems based on tropical pasture. The water samples were collected monthly, during three years, at six sampling points: spring in a tropical forest, spring in an intensive dairy production system, two dam springs, and stream water upward and at the delta. Results showed differences (P<0.01 among sampling points for the mean parameters. True color, hardness, turbidity, electric conductivity, alkalinity, pH, chemical oxygen demand and consumed oxygen explained well differences among sampling points. According to current legislation standards, water quality fitted with most of the established parameters for class 2, with exception of phosphate and iron. The high levels of total phosphorus, except in the forest spring, classified this water in an eutrophic class, even where soil and water conservation practices were considered adequate.

  18. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  19. Water quality of the Canchim?s creek watershed in São Carlos, SP, Brazil, occupied by beef and dairy cattle activities

    Directory of Open Access Journals (Sweden)

    Primavesi Odo

    2002-01-01

    Full Text Available The Canchim?s creek watershed in São Carlos, SP, Brazil, was chosen to evaluate water quality affected by dairy and beef cattle production systems based on tropical pasture. The water samples were collected monthly, during three years, at six sampling points: spring in a tropical forest, spring in an intensive dairy production system, two dam springs, and stream water upward and at the delta. Results showed differences (P<0.01 among sampling points for the mean parameters. True color, hardness, turbidity, electric conductivity, alkalinity, pH, chemical oxygen demand and consumed oxygen explained well differences among sampling points. According to current legislation standards, water quality fitted with most of the established parameters for class 2, with exception of phosphate and iron. The high levels of total phosphorus, except in the forest spring, classified this water in an eutrophic class, even where soil and water conservation practices were considered adequate.

  20. Combining Long-Term Watershed Monitoring at Buck Creek with Spatially Extensive Ecosystem Data to Understand the Processes of Acid Rain Effects and Recovery

    Science.gov (United States)

    Lawrence, G. B.; Ross, D. S.; Sullivan, T. J.; McDonnell, T. C.; Bailey, S. W.; Dukett, J. E.

    2014-12-01

    The Buck Creek Monitoring Watershed, in the western Adirondack Region of New York, has provided long-term data back to 1982 for tracking acid rain effects and recovery, and for supporting fundamental research on environmental change. At Buck Creek, monitoring acidic deposition effects as they worsened, then diminished, has advanced our understanding of key biogeochemical processes such as Al mobilization. Although Al mobilization has been one of the primary adverse effects of acidic deposition, in the recovery phase it is now affecting terrestrial and aquatic ecosystems in new ways that could be both positive and negative, as soils and surface waters respond to further declines in acidic deposition. Using stream Al measurements from Buck Creek over varying seasons and flows, a new index, the base cation surplus (BCS), was developed to account for dissolved organic carbon (DOC) effects on the relationship between ANC and inorganic Al. Mobilization of inorganic Al, the form toxic to biota, occurs below a BCS of zero, regardless of DOC concentrations. Soil and stream data from Adirondack surveys showed that a BCS value of zero corresponds to a soil base saturation value in the B horizon of approximately 12%. Additional Adirondack survey work indicated that, where sugar maple stands grew in soils with base saturation values below 12%, seedling regeneration was nearly zero, suggesting a link between Al mobilization and impairment of tree regeneration. In recovering Adirondack lakes, the BCS was also used to show that increasing trends in DOC were accelerating decreases of inorganic Al beyond what would be expected from the increasing trends of ANC. Similar decreases of inorganic Al in Buck Creek, were coupled with increases in organic Al concentrations, which resulted in no trend in total Al concentrations despite a strong increase in pH. Sampling of Buck Creek soils in 1997, and again in 2009-2010, indicated a substantial decrease in forest floor exchangeable Al, of

  1. Natural and Anthropogenic Controls on the Ecosystem Services Provided by Dissolved Organic Matter: A Case Study of the Boulder Creek Watershed

    Science.gov (United States)

    Gabor, R. S.; McKnight, D. M.

    2011-12-01

    Dissolved organic matter (DOM) performs a number of vital functions in aquatic ecosystems, playing a substantial role in carbon and nitrogen cycles and the bioavailability of metals as well as generally affecting water chemistry. Additionally, it is considered the main cause of the the formation of harmful disinfection byproducts during water treatment processes. Because DOM is vital for ecosystem functioning, but potentially problematic for some direct human uses of water, it proves a complex case study for the application of the ecosystem services framework. To add to the complexity, human behavior can affect the amount and composition of DOM in water. Increasing concentrations of DOM have been observed in many areas of Northern Europe and North America. Hypotheses which have been suggested to explain these increased concentrations include changing land use, thawing peatlands, increased nitrogen deposition, and a lessening of acid rain, a particularly interesting idea because it would be an unintended consequence of a policy designed to protect other ecosystem functions. This multi-year study investigates DOM in the Boulder Creek Watershed in Colorado to better understand seasonal cycling of DOM and the link between DOM in the river and organic matter in the catchment, which is a substantial DOM source. Fluorescence spectroscopy was used to analyze the chemical character of the DOM in an attempt to elucidate the watershed processes driving changes in DOM concentration. Because flow in Boulder Creek is partially controlled by Barker dam and reservoir, this study site provides an opportunity to investigate both natural DOM cycling and the impact of an anthropogenic influence. By better understanding DOM cycling and the ecosystem services it provides, we can better predict how DOM dynamics may shift in the future and be prepared to adjust our behavior and water treatment processes accordingly.

  2. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  3. The seasonal fluctuations and accumulation of iodine-129 in relation to the hydrogeochemistry of the Wolf Creek Research Basin, a discontinuous permafrost watershed.

    Science.gov (United States)

    Herod, Matthew N; Li, Tianjiao; Pellerin, André; Kieser, William E; Clark, Ian D

    2016-11-01

    The long lived radioisotope (129)I is a uranium fission product, and an environmental contaminant of the nuclear age. Consequently, it can trace anthropogenic releases of (129)I in watersheds, and has been identified as a potential means to distinguish water sources in discharge (Nimz, 1998). The purpose of this work was to identify the sources and mass input of (129)I and trace the transport, partitioning and mass balance of (129)I over time in a remote watershed. We monitored (129)I and other geochemical and isotope tracers (e.g. δ(14)CDIC, δ(13)CDIC, δ(2)H, δ(18)O, etc.) in precipitation and discharge from the Wolf Creek Research Basin (WCRB), a discontinuous permafrost watershed in the Yukon Territory, Canada, and evaluated the use of (129)I as a water end-member tracer. Radiocarbon and geochemical tracers of weathering show that discharge is comprised of (i) groundwater baseflow that has recharged under open system conditions, (ii) spring freshet meltwater that has derived solutes through closed-system interaction with saturated soils, and (iii) active layer drainage. The abundance of (129)I and the (129)I/(127)I ratio correlated with geochemical tracers suggests varying contributions of these three water end-members to discharge. The (129)I concentration was highest at the onset of freshet, reaching 17.4×10(6) atoms/L, and likely reflects the lack of interaction between meltwater and organic matter at that time. This peak in (129)I was followed by a decline over the summer to its lowest value. Mass balance calculations of the (129)I budget show that the input to the watershed via precipitation is nearly one order of magnitude higher than the output suggesting that such arctic watersheds accumulate nearly 90% of the annual input, primarily in soil organic matter. Temporal variations in discharge (129)I concentrations correlated with changes in discharge water sources suggesting that (129)I is a promising hydrologic tracer, particularly when used in

  4. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    Science.gov (United States)

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and

  5. The Mica Creek Experimental Watershed: An Outdoor Laboratory for the Investigation of Hydrologic Processes in a Continental/Maritime Mountainous Environment

    Science.gov (United States)

    Link, T. E.; Gravelle, J.; Hubbart, J.; Warnsing, A.; Du, E.; Boll, J.; Brooks, E.; Cundy, T.

    2004-12-01

    Experimental catchments have proven to be extremely useful for investigations focused on fundamental hydrologic processes and on the impacts of land cover change on hydrologic regimes and water quality. Recent studies have illustrated how watershed responses to experimental treatments vary greatly between watersheds with differing physical, ecological and hydroclimatic characteristics. Meteorological and hydrological data within catchments are needed to help identify how hydrologic mechanisms may be altered by land cover alterations, and to both constrain and develop spatially-distributed physically based models. Existing instrumentation at the Mica Creek Experimental Watershed (MCEW) in northern Idaho is a fourth-order catchment that is undergoing expansion to produce a comprehensive dataset for model development and testing. The experimental catchments encompass a 28 km2 area spanning elevations from 975 to 1725 m msl. Snow processes dominate the hydrology of the catchment and climate conditions in the winter alternate between cold, dry continental and warm, moist maritime weather systems. Landcover is dominated by 80 year old second growth conifer forests, with partially cut (thinned) and clear-cut sub-catchments. Climate and precipitation data are collected at a SNOTEL site, three primary, and seven supplemental meteorological stations stratified by elevation and canopy cover. Manual snow depth measurements are recorded every 1-2 weeks during snowmelt, stratified by aspect, elevation and canopy cover. An air temperature transect spans three second-order sub-catchments to track air temperature lapse rate dynamics. Precipitation gauge arrays are installed within thinned and closed-canopy stands to track throughfall and interception loss. Nine paired and nested sub-catchments are monitored for flow, temperature, sediment, and nutrients. Hydroclimatic data are augmented by LiDAR and hyperspectral imagery for determination of canopy and topographic structure

  6. A methodology to reduce uncertainties in the high-flow portion of the rating curve for Goodwater Creek Watershed

    Science.gov (United States)

    Flow monitoring at watershed scale relies on the establishment of a rating curve that describes the relationship between stage and flow and is developed from actual flow measurements at various stages. Measurement errors increase with out-of-bank flow conditions because of safety concerns and diffic...

  7. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs

  8. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  9. An Environment-based Education Approach to Professional Development: A Mixed Methods Analysis of the Creeks and Kids Watershed Workshop and Its Impact on K-12 Teachers

    Science.gov (United States)

    Austin, Tiffany Bridgette

    This research is an in-depth study of an environment-based education (EBE) professional development program titled "Creeks and Kids" that models how to employ thematic instruction about watersheds using the environment of a school and its community as a context to integrate teaching and learning about water across core subject areas. This case study investigates the EBE characteristics of the Creeks and Kids Workshop and explores how they adhere to the National Research Council's Standards for Professional Development for Teachers of Science. A mixed-methods analysis gathered qualitative data about the overall experience of teacher-participants during the Creeks and Kids Workshop and employed quantitative measures to identify evidence of success related to teachers' gains in knowledge, affect, confidence and intent to act to implement water-focused EBE curriculum in their classrooms. The findings of the study build upon existing research about what teachers need to implement EBE and their beliefs regarding what professional development should provide in relation to those needs. Qualitative results revealed that teachers need an EBE professional development program to include: 1) practical ways to integrate environmental education into their existing curricula and school settings; and, 2) direct experience with activities and field studies that are interdisciplinary, hands-on and inquiry-driven. Teacher-participants identified these characteristics as vital for them to effect a change in teaching practice and build their confidence to engage their students in EBE when they return to the classroom. Quantitative results revealed statistically significant gains across knowledge, affect, confidence and intent to act variables using the t-test statistic to compare means of participants' responses from the pre- to post-workshop questionnaires. The results of this study have broader implications for future educational research on: 1) the ways in which EBE professional

  10. Trends in precipitation and streamwater chemistry in East Creek watershed in southwestern British Columbia, 1971–2008

    Directory of Open Access Journals (Sweden)

    Michael C. FELLER

    2010-08-01

    Full Text Available Bulk precipitation and streamwater in a small, undisturbed, forested watershed in southwestern British Columbia were sampled regularly and analyzed for dissolved chemical constituents from 1971 to 2008. Concentrations and fluxes of most chemicals in precipitation and streamwater have exhibited considerable yearly variation. Temporal trends, when they have occurred, have rarely been consistent for the entire 1972–2008 time period. Precipitation has exhibited a decline in electrical conductivity, a decline in NH4, inorganic-N, and total-N concentrations and fluxes since the 1980s, an increase in pH, a decline in acid H fluxes since ~1990, and a decrease in SO4 concentrations and fluxes from 1980 until the late 1990s. Streamwater has exhibited an increase in NO3 concentrations and fluxes until the late 1990s, an increase in pH and decrease in acid H fluxes since the early 1990s, a decrease in SO4 concentrations and fluxes from ~1980 until ~2000, and increases in Na and Cl concentrations and fluxes until ~2000. Critical precipitation SO4 and inorganic-N loads have probably been exceeded for most years. East Ck. watershed has continuously experienced net inflows of all forms of N and acid H, and net outflows of dissolved Si, Na, Mg, and Ca. Net inflows of inorganic forms of N and total-N have decreased since the early 1980s. Net acid H inflows have decreased since the early 1990s, while net Na and Cl outflows increased until ~2000. The contribution of nutrient cycling processes within the watershed to the changes is currently unknown.

  11. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  12. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    International Nuclear Information System (INIS)

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site

  13. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    International Nuclear Information System (INIS)

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs

  14. Simulation of climate change effects on streamflow, groundwater, and stream temperature using GSFLOW and SNTEMP in the Black Earth Creek Watershed, Wisconsin

    Science.gov (United States)

    Hunt, Randall J.; Westenbroek, Stephen M.; Walker, John F.; Selbig, William R.; Regan, R. Steven; Leaf, Andrew T.; Saad, David A.

    2016-01-01

    A groundwater/surface-water model was constructed and calibrated for the Black Earth Creek watershed in south-central Wisconsin. The model was then run to simulate scenarios representing common societal concerns in the basin, focusing on maintaining a cold-water resource in an urbanizing fringe near its upper stream reaches and minimizing downstream flooding. Although groundwater and surface water are considered a single resource, many hydrologic models simplistically simulate feedback loops between the groundwater system and other hydrologic processes. These feedbacks include timing and rates of evapotranspiration, surface runoff, soil-zone flow, and interactions with the groundwater system; however, computer models can now routinely and iteratively couple the surface-water and groundwater systems—albeit with longer model run times. In this study, preliminary calibrations of uncoupled transient surface-water and steady-state groundwater models were used to form the starting point for final calibration of one transient computer simulation that iteratively couples groundwater and surface water. The computer code GSFLOW (Groundwater/Surface-water FLOW) was used to simulate the coupled hydrologic system; a surface-water model represented hydrologic processes in the atmosphere, at land surface, and within the soil zone, and a groundwater-flow model represented the unsaturated zone, saturated zone, and streams. The coupled GSFLOW model was run on a daily time step during water years 1985–2007. Early simulation times (1985–2000) were used for spin-up to make the simulation results less sensitive to initial conditions specified; the spin-up period was not included in the model calibration. Model calibration used observed heads, streamflows, solar radiation, and snowpack measurements from 2000 to 2007 for history matching. Calibration was performed by using the PEST parameter estimation software suite.

  15. An analysis of potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes in the Muskingum River Watershed, Ohio

    Science.gov (United States)

    Koltun, G.F.

    2014-01-01

    This report presents the results of a study to assess potential water availability from the Charles Mill, Clendening, Piedmont, Pleasant Hill, Senecaville, and Wills Creek Lakes, located within the Muskingum River Watershed, Ohio. The assessment was based on the criterion that water withdrawals should not appreciably affect maintenance of recreation-season pool levels in current use. To facilitate and simplify the assessment, it was assumed that historical lake operations were successful in maintaining seasonal pool levels, and that any discharges from lakes constituted either water that was discharged to prevent exceeding seasonal pool levels or discharges intended to meet minimum in-stream flow targets downstream from the lakes. It further was assumed that the volume of water discharged in excess of the minimum in-stream flow target is available for use without negatively impacting seasonal pool levels or downstream water uses and that all or part of it is subject to withdrawal. Historical daily outflow data for the lakes were used to determine the quantity of water that potentially could be withdrawn and the resulting quantity of water that would flow downstream (referred to as “flow-by”) on a daily basis as a function of all combinations of three hypothetical target minimum flow-by amounts (1, 2, and 3 times current minimum in-stream flow targets) and three pumping capacities (1, 2, and 3 million gallons per day). Using both U.S. Geological Survey streamgage data (where available) and lake-outflow data provided by the U.S. Army Corps of Engineers resulted in analytical periods ranging from 51 calendar years for Charles Mill, Clendening, and Piedmont Lakes to 74 calendar years for Pleasant Hill, Senecaville, and Wills Creek Lakes. The observed outflow time series and the computed time series of daily flow-by amounts and potential withdrawals were analyzed to compute and report order statistics (95th, 75th, 50th, 25th, 10th, and 5th percentiles) and means for

  16. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  17. Evaluation of soil loss by erosion in three production systems in the watershed of the Chilcapamba creek, Canton Chillanes, Bolivar Porvincia

    OpenAIRE

    E.E.C. Morocho

    2008-01-01

    This thesis examines the impact on soil erosion of a variety of soil erosion reduction practices. These include: live barriers, deviation ditches, contour planting and cultural practices. LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  18. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987

  19. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K. [Oak Ridge National Lab., TN (United States); Appellanis, S.M.; Jimenez, B.D. [Puerto Rico Univ., San Juan (Puerto Rico); Huq, M.V. [Connecticut Dept. of Environmental Protection, Hamden, CT (United States); Meyers-Schone, L.J. [Frankfurter, Gross-Gerau (Germany); Mohrbacher, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Olsen, C.R. [USDOE Office of Energy Research, Washington, DC (United States). Environmental Sciences Div.; Stout, J.G. [Cincinnati Univ., OH (United States)

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  20. Restoring Anadromous Fish Habitat in Big Canyon Creek Watershed; Anadromous Fish Habitat Restoration in the Nichols Canyon Subwatershed, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Koziol, Deb (Nez Perce Soil and Water Conservation District, Lewiston, ID)

    2001-02-01

    Nez Perce Soil & Water Conservation District (NPSWCD) undertook the Nichols Canyon Subwatershed Steelhead Trout Habitat Improvement Project in the spring of 1999 with funding from a grant through the Bonneville Power Administration. The Project's purpose is to install and implement agricultural best management practices (MBPS) and riparian restorations with the goal of improving steelhead trout spawning and rearing habitat in the subwatershed. Improvements to fish habitat in the Big Canyon Creek tributaries enhances natural production of the species in Big Canyon Creek and ultimately the Clearwater River. This report is a summation of the progress made by the NPSWCD in the Project's second year.

  1. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  2. Investigations on Soil Erodibility and Some Properties of the Soils Under Different Land use Types in Söğütlüdere Creek Watershed Near Trabzon

    OpenAIRE

    1999-01-01

    In this study, effects of different land use types on some soil properties in the Trabzon-Sögütlüdere watershed were studied. The study area, is located in the East Black Sea Region, 30 kilometers far from Trabzon. Soil samples evaluated in this research were taken from areas under three different land use types; forestland, rangeland and, cultivated land at different altitudes and physio-graphical conditions in such a way that they represent general conditions of the watershed area. Tota...

  3. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge

  4. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M. [ed.; Adams, S.M.; Bailey, R.D. [and others

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  5. Real-time forecast of hydrologically sensitive areas in the Salmon Creek watershed, New York State, using an online prediction tool

    OpenAIRE

    Dahlke, HE; Easton, ZM; Fuka, DR; Walter, MT; Steenhuis, TS

    2013-01-01

    In the northeastern United States (U.S.), watersheds and ecosystems are impacted by nonpoint source pollution (NPS) from agricultural activity. Where agricultural fields coincide with runoff-producing areas-so called hydrologically sensitive areas (HSA)-there is a potential risk of NPS contaminant transport to streams during rainfall events. Although improvements have been made, water management practices implemented to reduce NPS pollution generally do not account for the highly variable, sp...

  6. Short Term Effectiveness of High Density Large Woody Debris in Asotin Creek as a Cheap and Cheerful Restoration Restoration Action

    OpenAIRE

    Camp, Reid

    2015-01-01

    In response to human impacts, river restoration and rehabilitation actions have become a priority in the United States. In the Pacific Northwest, most restoration actions are focused on repairing degraded freshwater habitat to increase or improve Pacific salmonid production. However, traditional river restoration actions remained largely unchanged for over 100 years despite a lack of definitive evidence that the actions were effective. More recently, there has been a surge in process-based re...

  7. Spatial and temporal variability of heavy metals in streams of the Flint Creek and Flint River Watersheds from non-point sources

    Directory of Open Access Journals (Sweden)

    W. Tadesse

    2009-02-01

    Full Text Available Throughout the United States, non-point pollution is responsible for large quantities of heavy metals entering bodies of water. Pollution as a result of heavy metals can impact drinking water supplies, recreation, fisheries, and aquatic species. Presence of heavy metals such as lead (Pb, cadmium (Cd, and chromium (Cr, in surface water may pose great risks to human health as well as to aquatic animals. In order to understand water quality changes due to heavy metal elements and pH as a result of spatial and temporal variability and land use/land cover changes, there is a need to monitor water bodies on a constant basis. The purpose of this investigation was to assess the impacts of spatial and temporal variability on heavy metals and pH as a result of land use/land cover changes and provide a baseline for future water quality study from non-point sources in two watersheds. Spatial and temporal variability factors were not significant for all the heavy metal elements. Significant water quality changes occurred between 2003 and 2004 for the two of the five heavy metals (Pb, and Ni and pH. However, this was not true for the other of heavy metals investigated (Cd, Cr, and Zn. There was no influence of watershed observed for any of the heavy metals and pH in this study. To accurately quantify environmental impacts of heavy metals as well as pH, land use changes, and natural processes leading to spatial and temporal variability of water quality variables, continuous monitoring of surface water is necessary to improve the water quality of these watersheds.

  8. Historical flows for Bridge Creek above East Canal, Oregon

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Bridge Creek originates along the northwestern slopes of Steens Mountain. It drains an area a fraction of the size of the Blitzen River watershed approximately 30...

  9. Aquatic Invertebrates - Thornton Creek Restoration Project Effectiveness Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA has designed and is currently implementing a hyporheic monitoring plan for the Thornton Creek watershed in North Seattle. This work is being conducted for...

  10. Using environmental isotopes to characterize hydrologic processes of the Nelson Tunnel acid mine drainage site, West Willow Creek watershed, Creede, CO

    Science.gov (United States)

    Krupicka, A.; Williams, M. W.

    2010-12-01

    Acid mine drainage continues to be a pressing ecological issue across the Mountain West. Traditional remediation strategies usually involve the installation of an expensive and unsightly “end-of-pipe” water treatment plant without a full understanding of the overall hydrology of the system. In this study we show how applying water chemistry techniques to investigate water sources, ages, flow paths and residence times in a watershed affected by acid mine drainage can lead to alternative, less expensive methods of reclamation. We use both radiogenic (3H and 14C) and stable (18O and D) environmental isotopes to age waters and characterize the level of surface and groundwater interaction. Tritium content for waters collected in the tunnel was largely found to be 0-3 TU, indicating an age of greater than 50 years. This was supported by 14C values of DIC in tunnel samples that indicated ages and a hydraulic residence time on the order of hundreds to thousands of years. Stable isotopes 18O and D plotted closely to the Global Meteoric Water Line (GMWL). Combined with the heavy faulting and dominant welded volcanic tuffs of the region, this all indicates a system with very little surface-ground water interaction and a long, deep, likely channelized flow path. A future up-gradient pumping test would help confirm these findings and further elucidate the location and mechanism of the system’s primary recharge to the mine workings.

  11. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  12. Why has streamflow in a northern Idaho creek increased while flows from many other watersheds in the US Pacific Northwest have decreased over the past sixty years?

    Science.gov (United States)

    Wei, L.; Hudak, A. T.; Link, T. E.; Marshall, J. D.; Kavanagh, K.; Zhou, H.; Abatzoglou, J. T.; Pangle, R. E.; Flerchinger, G. N.; Denner, R. J.

    2014-12-01

    As global warming proceeds, evapotranspiration demand will increase, the precipitation regime may change, and water cycling in many ecosystems may be affected. Streamflow in the Pacific Northwest (PNW) region of the USA decreased in the last ~60 year possibly due to decreasing precipitation at high elevations and/or increasing evapotranspiration. However, an increasing trend of streamflow was observed at a 4km2 watershed in the Priest River Experimental Forest (PREF) in northern Idaho. We used the process-based soil-vegetation-atmosphere Simultaneous Heat and Water (SHAW) model, to simulate the changes in the water cycle at PREF. Independent measurements were used to parameterize the model, including forest transpiration, stomatal responses to vapor pressure, forest properties (height, leaf area index, and biomass), soil properties, soil moisture, snow depth, and snow water equivalent. The model reasonably simulated the streamflow dynamics during the evaluation period from 2003 to 2010, which verified the ability of SHAW to simulate the water cycle at PREF. We then ran the model using historical vegetation cover and climate data to reveal the drivers of the changes in water budget of PREF over the past 60 years. Historical vegetation cover was obtained from a 1939 digitized historical vegetation map. The biggest change was the decline of western white pine (Pinus monticola Dougl. ex D. Don), a fast growing and deep rooted species with high transpiration rates, which was once a predominant species in PREF in the early 20th century. This was followed by a subsequent increase and decrease in fir species, followed by the emergence of western red cedar (Thuja plicata) as the current dominant tree species. The tree species shifts under this successional trajectory would have produced continually decreasing transpiration rates, which may explain the steady increase in observed runoff over the last ~60 years, which was likewise simulated with the SHAW model.

  13. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana.

    Science.gov (United States)

    Liu, Yaoze; Theller, Lawrence O; Pijanowski, Bryan C; Engel, Bernard A

    2016-05-15

    The adverse impacts of urbanization and climate change on hydrology and water quality can be mitigated by applying green infrastructure practices. In this study, the impacts of land use change and climate change on hydrology and water quality in the 153.2km(2) Trail Creek watershed located in northwest Indiana were estimated using the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for the following environmental concerns: runoff volume, Total Suspended Solids (TSS), Total Phosphorous (TP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). Using a recent 2001 land use map and 2050 land use forecasts, we found that land use change resulted in increased runoff volume and pollutant loads (8.0% to 17.9% increase). Climate change reduced runoff and nonpoint source pollutant loads (5.6% to 10.2% reduction). The 2050 forecasted land use with current rainfall resulted in the largest runoff volume and pollutant loads. The optimal selection and placement of green infrastructure practices using L-THIA-LID 2.1 model were conducted. Costs of applying green infrastructure were estimated using the L-THIA-LID 2.1 model considering construction, maintenance, and opportunity costs. To attain the same runoff volume and pollutant loads as in 2001 land uses for 2050 land uses, the runoff volume, TSS, TP, TKN, and NOx for 2050 needed to be reduced by 10.8%, 14.4%, 13.1%, 15.2%, and 9.0%, respectively. The corresponding annual costs of implementing green infrastructure to achieve the goals were $2.1, $0.8, $1.6, $1.9, and $0.8 million, respectively. Annual costs of reducing 2050 runoff volume/pollutant loads were estimated, and results show green infrastructure annual cost greatly increased for larger reductions in runoff volume and pollutant loads. During optimization, the most cost-efficient green infrastructure practices were selected and implementation levels increased for greater reductions of runoff and nonpoint source pollutants

  14. Cicatih Watershed

    OpenAIRE

    CIFOR

    2007-01-01

    On the 15 of March, IPB and CIFOR organized a workshop as an initial effort to invite all stakeholders of CICATIH watershed (Sukabumi - West Java) to discuss potentials and constrains in protecting the watershed and improving the quality of life of the people residing within the watershed. PES-1 (Payments for Environmental Services Associate Award)

  15. Watershed Seasons

    Science.gov (United States)

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  16. A Creek to Bay Biological Assessment in Oakland, California

    Science.gov (United States)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  17. Boulder Creek Critical Zone Observatory Data Management Plan

    OpenAIRE

    Fey, Jeri; Anderson, Suzanne

    2016-01-01

    This Data Management Plan (DMP) was created using the DMPTool. It describes all data collected as part of the the Boulder Creek Critical Zone Observatory (CZO) project, which focuses on research in the Boulder Creek watershed. The project is hosted at the Institute or Arctic and Alpine Research (INSTAAR), University of Colorado at Boulder, USA.The goal for the Boulder Creek CZO is to create and collect meaningful and interesting research of the Earth’s critical zone by making this diverse dat...

  18. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    Energy Technology Data Exchange (ETDEWEB)

    Hinzman, R.L. [ed.; Beauchamp, J.J.; Cada, G.F.; Peterson, M.J. [and others

    1996-04-01

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities.

  19. Report on the biological monitoring program for Bear Creek at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, 1989-1994

    International Nuclear Information System (INIS)

    The Bear Creek Valley watershed drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in the Bear Creek Valley resulted in the contamination of Bear Creek and consequent ecological damage. Ecological monitoring by the Biological Monitoring and Abatement Program (BMAP) was initiated in the Bear Creek watershed in May 1984 and continues at present. Studies conducted during the first year provided a detailed characterization of the benthic invertebrate and fish communities in Bear Creek. The initial characterization was followed by a biological monitoring phase in which studies were conducted at reduced intensities

  20. Water quality analysis of a highly acidic watershed in southeast Ohio

    International Nuclear Information System (INIS)

    Due to acid mine drainage from abandoned coal mines, the 301 square mile Moxahala Creek watershed in southeast Ohio is one of the most acidic watersheds in the state. A watershed evaluation plan is being developed so that the most influential tributaries can be identified for restoration. Moxahala Creek has an upstream pH of 6.0 and a downstream of pH of 4.0. Forty monthly sampling and flowrate measurements for 12 months are being taken. The samples are taken where each major tributary enters Moxahala Creek, and the creek itself is sampled in selected locations. The goal of this watershed study is to determine which tributaries have the most adverse effect on Moxahala Creek's water quality. By analyzing the chemical loads and other characteristics of the tributaries, those of poorest quality and most influence on Moxahala Creek will be determined. Eventually, a geographic information system for the watershed will be developed to provide the capability to visually examine the impact of each tributary on Moxahala Creek. Three tributaries that have the greatest adverse impact on Moxahala Creek have been identified using the collected data. These three tributaries may be the targets of future reclamation strategies

  1. Pine Creek Ranch, FY 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  2. Tennessee Hollow Watershed in the Presidio: Science Education Partnership

    Science.gov (United States)

    Berry, W. B.; Kern, D.

    2007-12-01

    Planning for restoration of the Tennessee Hollow watershed in the Presidio of San Francisco, an urban national park, has been used in teaching and research in environmental science courses at University of California Berkeley for several years. Scientists and staff with the Urban Watershed Project, The National Park Service, and the Presidio Trust have collaborated with UC Berkeley faculty and students in discussing the watershed restoration and the first steps in implementation of it. Scientists come to the Berkeley campus to talk to classes about the geology, hydrology, and features of the vegetation of the watershed as well as the many aspects of "daylighting" a creek buried in a culvert many tens of feet under soil and other forms of landfill. The many social and political issues involved in implementing restoration are also presented and discussed. Students are conducted through the watershed by Urban Watershed staff not only to view the several features of the watershed but also to obtain data for individual studies. Students have made water quality analyses of the creek waters. Students have worked collaboratively with Urban Watershed staff in developing studies of the watershed that will be of use in future education programs and also in developing features that may interest visitors to the national park.

  3. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  4. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    Science.gov (United States)

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  5. Ecological effects of contaminants and remedial actions in Bear Creek

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. (Oak Ridge National Lab., TN (United States)); Burris, J.A. (C. E. Environmental, Inc., Tallahassee, FL (United States))

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  6. Ecological effects of contaminants and remedial actions in Bear Creek

    International Nuclear Information System (INIS)

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report

  7. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  8. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    Science.gov (United States)

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    A 3-year study was conducted by the U.S. Geological Survey and the University of Wisconsin-Green Bay to characterize water quality in agricultural streams in the Fox/Wolf watershed in northeastern Wisconsin and provide information to assist in the calibration of a watershed model for the area. Streamflow, phosphorus, and suspended solids data were collected between October 1, 2003, and September 30, 2006, in five streams, including Apple Creek, Ashwaubenon Creek, Baird Creek, Duck Creek, and the East River. During this study, total annual precipitation was close to the 30-year normal of 29.12 inches. The 3-year mean streamflow was highest in the East River (113 ft3/s), followed by Duck Creek (58.2 ft3/s), Apple Creek (26.9 ft3/s), Baird Creek (12.8 ft3/s), and Ashwaubenon Creek (9.1 ft3/s). On a yield basis, during these three years, the East River had the highest flow (0.78 ft3/s/mi2), followed by Baird Creek (0.61 ft3/s/mi2), Apple Creek (0.59 ft3/s/mi2), Duck Creek (0.54 ft3/s/mi2), and Ashwaubenon Creek (0.46 ft3/s/mi2). The overall median total suspended solids (TSS) concentration was highest in Baird Creek (73.5 mg/L), followed by Apple and Ashwaubenon Creeks (65 mg/L), East River (40 mg/L), and Duck Creek (30 mg/L). The median total phosphorus (TP) concentration was highest in Ashwaubenon Creek (0.60 mg/L), followed by Baird Creek (0.47 mg/L), Apple Creek (0.37 mg/L), East River (0.26 mg/L), and Duck Creek (0.22 mg/L).

  9. [Little Dry Creek Drainage

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map of the drainage boundary, direction of flow, canals and ditches, and streets for the drainage study plan and profile for Little Dry Creek sub area in the North...

  10. Big Creek Pit Tags

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The BCPITTAGS database is used to store data from an Oncorhynchus mykiss (steelhead/rainbow trout) population dynamics study in Big Creek, a coastal stream along...

  11. Evaluation of Operations Scenarios for Managing the Big Creek Marsh

    Science.gov (United States)

    Wilson, Ian; Rahman, Masihur; Wychreschuk, Jeremy; Lebedyk, Dan; Bolisetti, Tirupati

    2013-04-01

    Wetland management in changing climate is important for maintaining sustainable ecosystem as well as for reducing the impact of climate change on the environment as wetlands act as natural carbon sinks. The Big Creek Marsh within the Essex County is a Provincially Significant Wetland (PSW) in Ontario, Canada. The marsh is approximately 900 hectares in area and is primarily fed by streamflow from the Big Creek Watershed. The water level of this wetland has been managed by the stakeholders using a system of pumps, dykes and a controlled outlet to the Lake Erie. In order to adequately manage the Big Creek Marsh and conserve diverse aquatic plant species, Essex Region Conservation Authority (ERCA), Ontario has embarked on developing an Operations Plan to maintain desire water depths during different marsh phases, viz., Open water, Hemi and Overgrown marsh phases. The objective of the study is to evaluate the alternatives for managing water level of the Big Creek Marsh in different marsh phases. The Soil and Water Assessment Tool (SWAT), a continuous simulation model was used to simulate streamflow entering into the marsh from the Big Creek watershed. A Water Budget (WB) model was developed for the Big Creek Marsh to facilitate in operational management of the marsh. The WB model was applied to simulate the marsh level based on operations schedules, and available weather and hydrologic data aiming to attain the target water depths for the marsh phases. This paper presents the results of simulated and target water levels, streamflow entering into the marsh, water releasing from the marsh, and water pumping into and out of the marsh under different hydrologic conditions.

  12. Conservation practice establishment in two northeast Iowa watersheds: Strategies, water quality implications, and lessons learned

    Science.gov (United States)

    Gassman, P.W.; Tisl, J.A.; Palas, E.A.; Fields, C.L.; Isenhart, T.M.; Schilling, K.E.; Wolter, C.F.; Seigley, L.S.; Helmers, M.J.

    2010-01-01

    Coldwater trout streams are important natural resources in northeast Iowa. Extensive efforts have been made by state and federal agencies to protect and improve water quality in northeast Iowa streams that include Sny Magill Creek and Bloody Run Creek, which are located in Clayton County. A series of three water quality projects were implemented in Sny Magill Creek watershed during 1988 to 1999, which were supported by multiple agencies and focused on best management practice (BMP) adoption. Water quality monitoring was performed during 1992 to 2001 to assess the impact of these installed BMPs in the Sny Magill Creek watershed using a paired watershed approach, where the Bloody Run Creek watershed served as the control. Conservation practice adoption still occurred in the Bloody Run Creek watershed during the 10-year monitoring project and accelerated after the project ended, when a multiagency supported water quality project was implemented during 2002 to 2007. Statistical analysis of the paired watershed results using a pre/post model indicated that discharge increased 8% in Sny Magill Creek watershed relative to the Bloody Run Creek watershed, turbidity declined 41%, total suspended sediment declined 7%, and NOx-N (nitrate-nitrogen plus nitrite-nitrogen) increased 15%. Similar results were obtained with a gradual change statistical model.The weak sediment reductions and increased NOx-N levels were both unexpected and indicate that dynamics between adopted BMPs and stream systems need to be better understood. Fish surveys indicate that conditions for supporting trout fisheries have improved in both streams. Important lessons to be taken from the overall study include (1) committed project coordinators, agency collaborators, and landowners/producers are all needed for successful water quality projects; (2) smaller watershed areas should be used in paired studies; (3) reductions in stream discharge may be required in these systems in order for significant sediment

  13. Development of the University of Delaware Experimental Watershed Project

    Science.gov (United States)

    Campagnini, J. L.; Kauffman, G. J.; Corrozi, M.; Bower, J.

    2001-05-01

    In 2000, a team of University of Delaware undergraduate and graduate students developed the University of Delaware Experimental Watershed Project with a grant from the Delaware Water Resources Center. The University of Delaware (UD) is a land- and sea-grant institution in Newark, Delaware and is perched along the Atlantic seaboard's fall line. A critical mass of UD faculty and students in water resources and related disciplines are interested in the development of an experimental watershed on campus to provide (1) interdisciplinary undergraduate, graduate and faculty research opportunities, and (2) an outdoor education laboratory. Using GIS and field reconnaissance techniques, the three students delineated two small experimental watershed regions respectively located in the Piedmont and Coastal Plain provinces of the White Clay Creek Wild and Scenic River Valley on the UD campus. The Piedmont watershed drains 416 acres of the northern area of campus while the Coastal Plain watershed drains 896 acres including the central and southern sections of campus. The students then developed an ArcView GIS atlas integrating geology, soils, topography, land use, and impervious cover layers with a rating system for water quality and habitat characteristics to issue a "report-card" assessing each watershed's overall health. The White Clay Creek Wild and Scenic River Valley is an ideal on campus location for an outdoor education and research laboratory because of its manageable scale, the diversity of its characteristic land uses and physical environment, and above all its accessibility for students, faculty, researchers, and the public.

  14. Vegetation - Pine Creek WA and Fitzhugh Creek WA [ds484

    Data.gov (United States)

    California Department of Resources — This fine-scale vegetation classification and map of the Pine Creek and Fitzhugh Creek Wildlife Areas, Modoc County, California was created following FGDC and...

  15. Pine Creek Ranch, FY 2001 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring

  16. Peak discharge on Bull Creek and tributaries, Scurry and Borden Counties, Texas, flood of April 12, 13, 1954

    Science.gov (United States)

    McDaniels, L.L.

    1954-01-01

    This report contains a description of the rainfall pattern producing the flood of April 12, 13, 1954, in the Bull Creek watershed, the results of indirect determinations of peak discharges and estimates of flows at several points in that watershed, and a comparison of the peak stage at the discontinued gaging station on Bull Creek near Ira, Tex., with other floods on record. Field work consisted of transit-stadia surveys at five locations to develop high-water profiles and cross-sections, performed within two weeks after flood occurred.

  17. TERRAIN DATA, DELANEY CREEK WATERSHED, HILLSBOROUGH COUNTY, FL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Terrain data, as defined in FEMA Guidelines and Specifications, Appendix N: Data Capture Standards, describe the digital topographic data that were used to create...

  18. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  19. Interior West Watershed Management

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1981-01-01

    Habitat type classification systems are reviewed for potential use in watershed management. Information on climate, soils, and vegetation related to the classifications are discussed. Possible cooperative applications of vegetation and habitat type classifications to watershed management are explored.

  20. Mitigation of light rail transit construction on jurisdictional areas in the White Rock Creek floodplain, Dallas, Texas

    OpenAIRE

    Schieffer, Emily; Smiley, Jerry

    2001-01-01

    In 1994, Dallas Area Rapid Transit (DART) began planning for an 11.8-mile extension of its light rail transit (LRT) system from Dallas to Garland, Texas. The proposed alignment of the LRT extension traversed approximately 1.2-miles of the White Rock Creek floodplain near the confluence of three creeks and adjacent to approximately eight acres of wetlands. Because of the extensive development that has occurred within the watersheds of these creeks over the last 50 years, the conveyance of floo...

  1. Zooplankton of Mida Creek.

    OpenAIRE

    Mwaluma, J.; Osore, M.

    1996-01-01

    The objective of the zooplankton group was to establish an inventory of zooplankton resident in Mida creek, their diversity and quantify their abundance, spatial and temporal distribution. Apart from this, various hydrographic parameters were measured simultaneously in order to find out whether any correlation existed between the two. Among the hydrographic parameters measured were temperature, salinity, turbidity, and dissolved oxygen. In April 1996, the research team...

  2. Assessment of Watershed Technologies

    OpenAIRE

    Lim Suan, Medel P.

    1999-01-01

    Dealing with various topics such as watershed classification, computer simulation and modeling and computer application in watershed research, this paper assembles and summarizes technologies that are currently being used or have potential for application in the Philippines. This is in the hope of helping watershed managers, planners and researchers.

  3. Use of Ambient Contamination and Stream Tracer Injections to Assess Solute Transport in an Urbanizing Watershed

    Science.gov (United States)

    Ryan, R. J.; Packman, A. I.; Welty, C.; Kilham, S. S.

    2002-05-01

    As part of a comprehensive investigation of the effects of urbanization on Valley Creek watershed near Philadelphia, Pennsylvania, we are attempting to utilize documented historical and ongoing changes to the watershed to elucidate process-based watershed dynamics, particularly as related to the connections between the surface and groundwater systems. Valley Creek is underlain principally by fractured limestone and dolomite. The watershed is extensively developed, as quantified by 17% impervious area. This percentage is expected to increase due to ongoing and planned development projects. A variety of methods are being utilized to characterize the hydrologic and nutrient dynamics of the watershed. For example, a limestone quarry located upstream of the geographic and hydrologic center of the watershed has historically discharged accumulated groundwater seepage into the stream on an approximately 3 -1/2 hour cyclical basis. At the peak pumping rate, the quarry flow has constituted 20% to 50% of the surface water discharge of the entire watershed, as measured at a USGS gauging station located near the mouth of the main stem of Valley Creek. At the same time, a hazardous waste site on the property of an abandoned mineral processing plant located in the headwaters of the main stem of Valley Creek has resulted in a significant steady concentration of bromide entering the stream through faults and fractures of the limestone formation. This has resulted in bromide-free groundwater from the quarry entering the main stem of bromide-laden Valley Creek on a cyclical basis, thus allowing bromide from the mineral plant to be used as a tracer to assess the stream response to the quarry inflow. We measured the fluctuating bromide concentration at three stations over a 24-hour period. The decreasing amplitude and phase shift of the bromide sinusoidal wave as it moved 7 km downstream was evident. We have calibrated a transient hydrodynamic and transport model to the resulting data

  4. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    International Nuclear Information System (INIS)

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs

  5. 78 FR 36743 - Adoption of Final Environmental Assessment (UT-040-09-03) Prepared for the Upper Kanab Creek...

    Science.gov (United States)

    2013-06-19

    ... Natural Resources Conservation Service Adoption of Final Environmental Assessment (UT-040-09-03) Prepared... or postmarked concerning the adoption of this EA at the address below until July 19, 2013. ADDRESSES: You may submit comments concerning the adoption of the Kanab Creek Watershed Vegetation...

  6. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Science.gov (United States)

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  7. FECAL SOURCE TRACKING BY ANTIBIOTIC RESISTANCE ANALYSIS ON A RURAL WATERSHED

    Science.gov (United States)

    The Turkey Creek watershed located in northwestern Oklahoma, sustains approximately 40000 head of livestock. In addition, the stream receives partially-treated municipal waste from various towns. E. coli was enumerated quarterly and counts beyond EPA limit were found in spring an...

  8. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  9. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  10. Ship Creek bioassessment investigations

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  11. A GIS-based disaggregate spatial watershed analysis using RADAR data

    International Nuclear Information System (INIS)

    Hydrology is the study of water in all its forms, origins, and destinations on the earth.This paper develops a novel modeling technique using a geographic information system (GIS) to facilitate watershed hydrological routing using RADAR data. The RADAR rainfall data, segmented to 4 km by 4 km blocks, divides the watershed into several sub basins which are modeled independently. A case study for the GIS-based disaggregate spatial watershed analysis using RADAR data is provided for South Fork Cowikee Creek near Batesville, Alabama. All the data necessary to complete the analysis is maintained in the ArcView GIS software. This paper concludes that the GIS-Based disaggregate spatial watershed analysis using RADAR data is a viable method to calculate hydrological routing for large watersheds. (author)

  12. Variations in tropical cyclone-related discharge in four watersheds near Houston, Texas

    Directory of Open Access Journals (Sweden)

    Laiyin Zhu

    2015-01-01

    Full Text Available We examined a 60-year record of daily precipitation and river discharge related to tropical cyclones (TCs in four watersheds undergoing land use and land cover change near Houston, Texas. Results show that TCs are responsible for ∼20% of the annual maximum discharge events in the four selected watersheds. Although there are no trends in TC precipitation, increasing trends were observed in daily extreme discharge and TC-related discharge. The more developed watersheds (Whiteoak Bayou and Brays Bayou, tend to have higher extreme discharge and steeper trends in extreme discharge than the less developed watersheds (Cypress Creek. Increases in TC-related extreme discharges correspond with increases in developed land and decreases in vegetated land between 1980 and 2006. Therefore, changes in land cover/use in watersheds near Houston are a major cause of the increased flooding risk in recent years.

  13. Initial Ecosystem Development in an Artificial Watershed

    Science.gov (United States)

    Huettl, R.; Koegel-Knabner, I.; Zeyer, J.

    2008-12-01

    Watersheds are often used as a base for ecosystem research. However, boundaries and inner structures of natural watersheds are often insufficiently known and have to be explored indirectly e.g. by means of geophysical methods. Therefore, important parts of the system often remain 'black boxes'. In addition, natural systems are characterized by huge complexity and heterogeneity. To overcome these disadvantages artificially created watersheds may play an important role in ecosystem research. They offer the chance to investigate systems with well defined boundary conditions and inner structures. Furthermore, artificial watersheds might be an important link between lysimeter research and investigations at the landscape scale. The artificial catchment "Chicken Creek" ('Huehnerwasser') is one of the world's largest man-made catchments for scientific purposes. It was established in 2005 with an area of 6 ha (450 m x 150 m) including a small lake. The site is located in the Eastern German lignite mining district near Cottbus, about 150 km southeast of Berlin. The watershed was constructed by Vattenfall Europe Mining AG as the operator of the still active lignite open-cast mine Welzow-South. Construction work was done by means of large mining machines in co-operation with the Brandenburg University of Technology at Cottbus. The inner structure of this new landscape element is relatively simple: A clay layer was dumped as a barrier for seepage water overlaid by a 3 m sandy layer consisting of Quaternary substrate from Pleistocene sediments. The surface of the site has been flattened and the area was fenced to prevent disturbances. Neither amelioration nor any reclamation measures were carried out afterwards. The site has been left for an unrestricted natural succession. In 2007 the Transregional Collaborative Research Centre (SFB/TRR 38) as a joint project between 3 Universities (BTU Cottbus, TU Munich and ETH Zurich) was launched and is funded by the German Research

  14. Watershed-based systems

    OpenAIRE

    Walker, S; Mostaghimi, S.

    2009-01-01

    Metadata only record This chapter discusses the application of adaptive watershed management strategies and their importance to maintaining water supply. The watershed, which is an area of land that drains to a particular point or outlet, can be any size and is physically governed by topography. Thoroughly understanding these physical properties is essential to formulating an effective management plan for a watershed. In turn, proper management can improve and maintain soil quality and wat...

  15. Hydrologic and Land Surface Modeling of the Semi-Arid Urban Environment: Ballona Creek, Los Angeles, CA

    Science.gov (United States)

    Reyes, B.; Hogue, T. S.; Maxwell, R. M.; Peters-Lidard, C. D.

    2013-12-01

    The objective of this work is to assess and improve the water and energy budgets produced by a coupled hydrologic-land surface model (LSM), ParFlow.CLM (PF.CLM), when applied to an urban semiarid environment, Ballona Creek watershed in Los Angeles, CA, and to compare these results to remotely sensed data. To accomplish this, we have worked with various traditional LSMs within the Land Information System (LIS) framework. These models include the Noah 3.2 LSM and the Community Land Model (CLM) 2. The domain is a 22-km by 22-km square fully encompassing Ballona Creek watershed run at a 1-km spatial resolution for the traditional LSMs and 30-m resolution for PF.CLM at an hourly timestep. To improve modeling of the watershed and represent urban processes, representations of urban irrigation and the storm-drainage network were included in PF.CLM modeling. Comparison datasets of relevant variables were acquired at similar resolutions and timescales and statistically compared to modeling results. These datasets consist of: (1) prior modeling work conducted at a 30-m resolution with the irrigated and non-irrigated Noah Urban Canopy Model (Noah-UCM), in a subset domain of the Ballona Creek watershed near downtown Los Angeles; (2) a historic watershed study of Ballona Creek watershed; and (3) remote sensing products (land surface temperature) obtained from various MODIS and Landsat sensors. The effects of introducing urban processes into land surface and fully distributed, high-resolution hydrologic modeling is assessed and understood.

  16. Bridge Creek IMW database - Bridge Creek Restoration and Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The incised and degraded habitat of Bridge Creek is thought to be limiting a population of ESA-listed steelhead (Oncorhynchus mykiss). A logical restoration...

  17. Applying Physically Representative Watershed Modelling to Assess Peak and Low Flow Response to Timber Harvest: Application for Watershed Assessments

    Science.gov (United States)

    MacDonald, R. J.; Anderson, A.; Silins, U.; Craig, J. R.

    2014-12-01

    Forest harvesting, insects, disease, wildfire, and other disturbances can combine with climate change to cause unknown changes to the amount and timing of streamflow from critical forested watersheds. Southern Alberta forest and alpine areas provide downstream water supply for agriculture and water utilities that supply approximately two thirds of the Alberta population. This project uses datasets from intensely monitored study watersheds and hydrological model platforms to extend our understanding of how disturbances and climate change may impact various aspects of the streamflow regime that are of importance to downstream users. The objectives are 1) to use the model output of watershed response to disturbances to inform assessments of forested watersheds in the region, and 2) to investigate the use of a new flexible modelling platform as a tool for detailed watershed assessments and hypothesis testing. Here we applied the RAVEN hydrological modelling framework to quantify changes in key hydrological processes driving peak and low flows in a headwater catchment along the eastern slopes of the Canadian Rocky Mountains. The model was applied to simulate the period from 2006 to 2011 using data from the Star Creek watershed in southwestern Alberta. The representation of relevant hydrological processes was verified using snow survey, meteorological, and vegetation data collected through the Southern Rockies Watershed Project. Timber harvest scenarios were developed to estimate the effects of cut levels ranging from 20 to 100% over a range of elevations, slopes, and aspects. We quantified changes in the timing and magnitude of low flow and high flow events during the 2006 to 2011 period. Future work will assess changes in the probability of low and high flow events using a long-term meteorological record. This modelling framework enables relevant processes at the watershed scale to be accounted in a physically robust and computational efficient manner. Hydrologic

  18. WATERSHED INFORMATION NETWORK

    Science.gov (United States)

    Resource Purpose:The Watershed Information Network is a set of about 30 web pages that are organized by topic. These pages access existing databases like the American Heritage Rivers Services database and Surf Your Watershed. WIN in itself has no data or data sets.L...

  19. Developing a Watershed Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  20. Maasin Watershed Rehabilitation Project

    OpenAIRE

    Iloilo City

    2007-01-01

    Metadata only record "Iloilo city government had great interest in preserving the main source of water for the city and the Maasin municipality wanted support to manage the watershed reserve. Degradation of the watershed is seen as the cause of increasing water scarcity and frequent floods. PES-1 (Payments for Environmental Services Associate Award)

  1. Tidal Creek Sentinel Habitat Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ecological Research, Assessment and Prediction's Tidal Creeks: Sentinel Habitat Database was developed to support the National Oceanic and Atmospheric...

  2. Rattlesnake Creek management program proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Partnership has concentrated its efforts on a voluntary approach for lowering the total water use in the Rattlesnake Creek subbasin. This will occur through the...

  3. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  4. Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination.

    Science.gov (United States)

    Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K

    2016-10-01

    Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. PMID:27475081

  5. GIS Spatial Analysis of Water Quality at Courtland Creek in Oakland, California

    Science.gov (United States)

    Matias, F.; Perez, L.; Martinez, E.; Rivera Soto, E.; McDonald, K.; Garcia, D.; Ruiz, I.

    2015-12-01

    Courtland Creek is a channelized stream that traverses residential and industrial sections of East Oakland, California. Segments of the creek are exposed on the surface and have been designated as City of Oakland park land. Since 2012, the quality of creek waters has been monitored through measurement and analysis of nutrient and other possible contaminant levels in samples collected in these exposed segments. Throughout the three-year period during which monitoring efforts have been undertaken, high concentration levels of nitrate have been observed. The primary aim of our research is to gain an overall indication of creek health in relation to its surrounding environment through the use of Geographic Information Systems (GIS) analysis of nutrient concentrations at the four sites. Investigating the relationship between Courtland Creek and the environmental factors influencing its health will enable us to develop a better sense of the actions that can be taken by the City of Oakland to create sustainable park land and healthy communities. During the summer of 2015, our group continued to monitor levels of ammonia, phosphate and nitrate at four different sites along the creek, and benthic macroinvertebrates were sampled at one of these sites. Preliminary analysis of benthic macroinvertebrate data indicates that Courtland Creek is in poor health ecologically. Nitrate concentration levels measured during the study period were lower than those detected in previous years but still indicate inputs other than those associated with natural processes. The high nitrate concentration levels may be the result of human and animal waste pollution, as supported by data obtained during a recent Environmental Protection Agency (EPA) - led E. coli survey that included the watershed within which Courtland Creek is situated.

  6. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Science.gov (United States)

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an...) 805-1469. Transferees: Mr. Bernard H. Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek...

  7. Statistical Analysis and water Quality Modeling for a Drinking Water Source Watershed for the City of Houston, Texas

    Science.gov (United States)

    Teague, A.; Bedient, P.; Vieux, B. E.

    2009-12-01

    Water quality is a problem in Lake Houston, the primary source of drinking water for the City of Houston, due to pollutant loads coming from the influent watersheds, including Cypress Creek. Water quality issues in the watershed that are of concern for the lake include nutrient enrichment bacterial impairment, both of which present operational challenges for the drinking water treatment plant operations. Statistical analysis of the historic water quality data was developed in order to understand the source characterization and seasonality of the watershed. Multivariate analysis including principal component, cluster, and discriminant analysis provided a unique seasonal assessment of the watershed leading to refined loading curves have been analyzed using data collected by the USGS at 3 sites in Cypress Creek with corresponding City of Houston water quality data at the sites for the past 5 years to characterize the behavior of the pollutant source and watershed. A VfloTM hydrologic model from Vieux & Assoc., Inc for the watershed of the influent stream Cypress Creek was developed to predict the watershed flows into Lake Houston. A distributed model of a large scale watershed, it uses finite element analysis to solve the kinematic wave equation. The model incorporates land use relationships to predict runoff from Radar rainfall data. Continuous VfloTM was run for storm events and the distributed discharge of the watershed simulated. From the spatial discharge output, nutrient wash-off and convective transport was simulated. The simulated nutrient transport was then compared to storm sampling data at a downstream location to assess the water quality model and determine needed future refinements.

  8. Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

    OpenAIRE

    Cousty, Jean; Bertrand, Gilles; Najman, Laurent; Couprie, Michel

    2010-01-01

    International audience We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: the first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a n...

  9. Watersheds in disordered media

    Science.gov (United States)

    Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian

    2015-02-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.

  10. A Corresponding Study of Water Quality Evaluation of the Pasquotank Watershed in Northeastern North Carolina

    Science.gov (United States)

    Stevenson, J.; Walthall, S.; McKenzie, R.; Dixon, R.

    2015-12-01

    The Pasquotank River Watershed covers 450 sq miles in the Coastal Plain of NE North Carolina. It flows from the Great Dismal Swamp at the VA/NC border into the Albemarle Sound. The watershed provides a transition between spawning grounds and waters of the Albemarle Sound. Forested swamp wetlands border much of the waterways. Increased agricultural and urban development has greatly affected water quality during recent years. Test were completed along the tributaries and the river itself, adding to the previously data from 2011, 2013, and 2014. Streams tested were the Newbegun Creek, Knobbs Creek, Areneuse Creek, Mill Dam Creek, and Sawyers Creek. These streams cover a large area of the watershed and provide a wide variety of shore development from swampland and farmland to industrial development. Samples were tested for pH, salinity, total dissolved solids, and conductivity. Air/water temperature, dissolved oxygen, wind speed/direction, and turbidity/clarity measurements were taken in the field. The results were placed into an online database and correlated to the location of the sample using Google Maps®. Analysis tools were developed to compare the data from all years. Excel spreadsheets were developed to look more closely at individual points and tests for each point. This database was connected to a data visualization page utilizing Google Maps®. The results show variations for the individual water quality scores, but the overall water quality score for all the tested water sources remained at a comparable level from previous years. Mill Dam Creek rose above the previous three scores of 48 (2011), 47 (2013), and 49 (2014) and achieved a medium water quality score of 57. Areneuse Creek improved in water quality with a medium water quality score of 60. Sawyers Creek became the lowest scoring waterway tested at 35. Knobbs Creek decreased from previous years with a water quality score of 42. For a fourth consecutive testing year, Newbegun Creek fell within the

  11. Improvement of Anadromous Fish Habitat and Passage in Omak Creek, 2008 Annual Report : February 1, 2008 to January 31, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Dasher, Rhonda; Fisher, Christopher [Colville Confederated Tribes

    2009-06-09

    During the 2008 season, projects completed under BPA project 2000-100-00 included installation of riparian fencing, maintenance of existing riparian fencing, monitoring of at-risk culverts and installation of riparian vegetation along impacted sections of Omak Creek. Redd and snorkel surveys were conducted in Omak Creek to determine steelhead production. Canopy closure surveys were conducted to monitor riparian vegetation recovery after exclusion of cattle since 2000 from a study area commonly known as the Moomaw property. Additional redd and fry surveys were conducted above Mission Falls and in the lower portion of Stapaloop Creek to try and determine whether there has been successful passage at Mission Falls. Monitoring adult steelhead trying to navigate the falls resulted in the discovery of shallow pool depth at an upper pool that is preventing many fish from successfully navigating the entire falls. The Omak Creek Habitat and Passage Project has worked with NRCS to obtain additional funds to implement projects in 2009 that will address passage at Mission Falls, culvert replacement, as well as additional riparian planting. The Omak Creek Technical Advisory Group (TAG) is currently revising the Omak Creek Watershed Assessment. In addition, the group is revising strategy to focus efforts in targeted areas to provide a greater positive impact within the watershed. In 2008 the NRCS Riparian Technical Team was supposed to assess areas within the watershed that have unique problems and require special treatments to successfully resolve the issues involved. The technical team will be scheduled for 2009 to assist the TAG in developing strategies for these special areas.

  12. Evaluating watershed management projects:

    OpenAIRE

    Kerr, John; Chung, Kimberly

    2001-01-01

    Watershed projects play an increasingly important role in managing soil and water resources throughout the world. Research is needed to ensure that new projects draw upon lessons from their predecessors' experiences. However, the technical and social complexities of watershed projects make evaluation difficult. Quantitative and qualitative evaluation methods, which traditionally have been used separately, both have strengths and weaknesses. Combining them can make evaluation more effective, p...

  13. The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality

    Science.gov (United States)

    Just, C.; Muste, M.; Kruger, A.

    2007-12-01

    As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP

  14. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Science.gov (United States)

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application Accepted for Filing, Soliciting Motions To Intervene, Protests, and Comments Take notice that...

  15. Bioassessment of Black Creek, Holmes County, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical, chemical and biological components at four stations on Black Creek and one station on Harland Creek (reference site), Holmes County, Mississippi were...

  16. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY: Commodity Credit Corporation and... program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The Commodity Credit Corporation (CCC... Watershed Initiative for agricultural producers in the Chesapeake Bay watershed in the States of...

  17. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    Energy Technology Data Exchange (ETDEWEB)

    Watson, David B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mathews, Teresa J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ketelle, Richard [East Tennessee Technology Park (ETTP), Oak Ridge, TN (United States)

    2016-06-01

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not address the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain

  18. Watershed Boundaries, Yadkin County watersheds, Published in 1999, Yadkin County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset as of 1999. It is described as 'Yadkin County watersheds'. Data by this publisher are often provided in State Plane coordinate...

  19. 78 FR 12714 - Intermountain Region, Payette National Forest, New Meadows Ranger District, Idaho; Lost Creek...

    Science.gov (United States)

    2013-02-25

    ... District, Idaho; Lost Creek-Boulder Creek Landscape Restoration Project AGENCY: Forest Service, USDA... Creek-Boulder Creek Landscape Restoration Project. The Lost Creek- Boulder Creek Landscape Restoration... action alternative is selected, the Responsible Official will determine what design features,...

  20. Realities of the Watershed Management Approach: The Magat Watershed Experience

    OpenAIRE

    Elazegui, Dulce D.; Combalicer, Edwin A.

    2004-01-01

    This paper aims to showcase the experience of the Magat watershed in the implementation of the watershed management approach. Magat watershed was declared as a forest-reservation area through Proclamation No. 573 on June 26, 1969 because of its great importance to human survival and environmental balance in the region. The Magat case demonstrates the important role that ‘champions’ like the local government unit (LGU) could play in managing the country’s watersheds. With the Nueva Viscaya pro...

  1. The Impact of Microbial Communities on Water Quality in an Acid Mine Drainage Impacted Watershed

    Science.gov (United States)

    McDaniel, G. R.; Rademacher, L. K.; Faul, K. L.; Brunell, M.; Burmeister, K. C.

    2011-12-01

    Acid mine drainage (AMD) from the former Leona Heights Sulfur mine in Oakland, CA, contributes toxic levels of Cu, Cd, and Zn and elevated levels of Fe2+ and SO42- to downstream reaches of Lion Creek via Leona Creek. To investigate the extent of AMD and its relationship to microbial community structure, water samples were collected from three tributaries (two natural, and one with AMD) as well as the inlet and outlet of Lake Aliso (a reservoir downstream of the confluence of the three tributaries) beginning in July 2009. Lake Aliso was dammed in the late 1800s but since the early 1990s it has been full during the dry season and drained during the wet season, thus dramatically altering the geochemical conditions on a seasonal basis. Natural waters from Lion Creek and Horseshoe Creek tributaries dilute the water from Leona Creek, thus reducing concentrations of major ions and metals below toxic levels before water discharges into Lake Aliso. Precipitation events lead to episodes of increased mobilization of Cu and Cd in Leona Creek and produce toxic levels of these metals below the confluence with Lion Creek. Tributary mixing calculations suggest that even though Leona Creek contributes the smallest volume of water of the three tributaries, it is the main source of metals entering Lake Aliso. The input of the metal-rich AMD from Leona Creek changes the redox conditions of Lion Creek. In addition, Lake Aliso has a significant impact on water quality in the Lion Creek watershed. Observations of temperature, conductivity, pH, and dissolved oxygen in lake depth profiles indicate that Lake Aliso is stratified during the dry season when the lake is full. Based on concentration differences between the inlet and outlet of the lake, Na, Mg, SO42-, Ca, Mn, Zn, Cd, Cu and Ni are removed from the water while K, As, Pb and Fe are mobilized when Lake Aliso is full. Geochemical modeling using PhreeqcI suggests the deposition of minerals containing the metals that are being removed

  2. Habitat requirements of the endangered California freshwater shrimp (Syncaris pacifica) in lagunitas and Olema creeks, Marin County, California, USA

    Science.gov (United States)

    Martin, Barbara A.; Saiki, Michael K.; Fong, Darren

    2009-01-01

    This study was conducted to better understand the habitat requirements and environmental limiting factors of Syncaris pacifica, the California freshwater shrimp. This federally listed endangered species is native to perennial lowland streams in a few watersheds in northern California. Field sampling occurred in Lagunitas and Olema creeks at seasonal intervals from February 2003 to November 2004. Ten glides, five pools, and five riffles served as fixed sampling reaches, with eight glides, four pools, and four riffles located in Lagunitas Creek and the remainder in Olema Creek. A total of 1773 S. pacifica was counted during this study, all of which were captured along vegetated banks in Lagunitas Creek. Syncaris pacifica was most numerous in glides (64), then in pools (31), and lastly in riffles (5). According to logistic regression analysis, S. pacifica was mostly associated with submerged portions of streambank vegetation (especially overhanging vegetation such as ferns and blackberries, emergent vegetation such as sedge and brooklime, and fine roots associated with water hemlock, willow, sedge, and blackberries) along with low water current velocity and a sandy substrate. These seemingly favorable habitat conditions for S. pacifica were present in glides and pools in Lagunitas Creek, but not in Olema Creek. ?? 2009 The Crustacean Society.

  3. The Use of Numerical Modeling to Address Surface and Subsurface Water Contamination due to Fracwater Spills in Larry's Creek, Pennsylvania

    Science.gov (United States)

    Simon, C. A.; Arjmand, S.; Abad, J. D.

    2012-12-01

    Because of its relatively low carbon dioxide emissions, natural gas is considered to be more efficient and environmentally friendly than other non-renewable fuels. As a result of this, among other factors, in recent years natural gas has become one of the world's primary energy sources. In the United States, drilling to extract natural gas has substantially increased over the past few years. In the Marcellus Shale, unconventional gas is currently extracted by using two new techniques: horizontal drilling and hydraulic fracturing. Today, fracking fluids which have been applied as part of the hydraulic fracturing process to fracture the shale rock and release the gas, pose a major environmental concern. These fluids are highly contaminated with radionuclides and toxic metals and any exposure of this highly polluted water to surface water or soil could heavily contaminate the media. The area selected for the current study is the Larry's Creek, located in Lycoming County in Pennsylvania. Larry's Creek Watershed was adversely affected by coal and iron mines activities in the 19th century. Though, the water quality in this creek was considered to be good as of 2006. Recently, oil and gas drilling activities have raised concerns about the creek's water quality again. A major environmental hazard is the freshwater contamination by frac/flowback water. Drilling companies are using impoundments on site to keep fracwater, and to store and evaporate flowback water. However, these ponds may fail or leak due to construction problems and/or accidents. Close to Saladasburg, Larry's Creek's stream was observed running rich with clay in October 19, 2011. Historical measurements show very high turbidity during this period which has raised questions about water contamination by the gas industry activities in the upper stream of the watershed. An interstate watershed agency has reported spills in Wolf Run in different drilling sites in the Larry's Creek basin. The focus of this study

  4. FAST WATERSHED-BASED DILATION

    OpenAIRE

    Jakub Smołka

    2014-01-01

    A watershed-based region growing image segmentation algorithm requires a fast watershed-based dilation implementation for effective operation. This paper presents a new way for watershed image representation and uses this representation for effective implementation of dilation. Methods for improving the algorithm speed are discussed. Presented solutions may also be used for solving other problems where fast set summation is required.

  5. Groundwater and Surface Water Contributions to Metals Loading in Bayhorse Creek at the Abandoned Ramshorn Mine Site Near Bayhorse, Idaho

    OpenAIRE

    McDonough, Hannah L.

    2015-01-01

    Many abandoned mines in the United States are littered with waste metals that leach into watersheds and degrade habitats. Although metals-laden waters may appear pristine, fish bioaccumulate high concentrations of metals in their tissues, which create health risks if consumed by humans. This study examines the source and fate of metals in Bayhorse Creek near the abandoned Ramshorn mine outside of Challis, Idaho. In 2003, the U.S. Geological Survey found high levels of arsenic, cadmium, chromi...

  6. Simulation of contaminated sediment transport in White Oak Creek basin

    International Nuclear Information System (INIS)

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 (137Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of 137Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies

  7. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  8. Assessment of water-quality conditions in the J.B. Converse Lake watershed, Mobile County, Alabama, 1990-98

    Science.gov (United States)

    Journey, Celeste A.; Gill, Amy C.

    2001-01-01

    J.B. Converse (Converse) Lake is a 3,600-acre, tributary-storage reservoir in Mobile County, southwestern Alabama. The lake serves as the primary drinking-water supply for the city of Mobile. The Converse Lake watershed lies within the Coastal Plain Physiographic Province. Semiconsolidated to unconsolidated sediments of sand, silt, gravel, and clay underlie the watershed, and are covered by acidic soils. Land use in the watershed is mainly forest (64 percent) and agriculture (31 percent). Residential and commercial development account for only 1 percent of the total land use in the watershed. Converse Lake receives inflow from seven major tributaries. The greatest inflows are from Big Creek, Crooked Creek, and Hamilton Creek that had mean annual streamflows of 72.2, 19.4, and 25.0 cubic feet per second, respectively, for the period 1990 to 1998, which represents about 72 percent of the total annual streamflow to the lake. The total mean annual inflow to the lake is estimated to be about 163 cubic feet per second. In general, water quality in Converse Lake and its tributaries meets the criteria established by the Alabama Department of Environmental Management (ADEM) for drinking-water supplies, whole-body contact, and aquatic life. The exceptions include acidic pH levels, iron and manganese levels above secondary or aesthetic criteria, and fecal bacterial levels in some tributaries above whole-body contact (swimmable) criteria. The pH levels throughout the watershed were commonly below the criteria level of 6.0, but this appears to have been a naturally occurring phenomenon caused by poorly buffered soil types, resistant sediments, and forested land use. Median iron and manganese levels were above aesthetic criteria levels of 300 and 50 micrograms per liter, respectively, in some tributaries. All tributary sites in the Converse Lake watershed had median and minimum dissolved-oxygen concentrations above the ADEM criteria level of 5 milligrams per liter except for

  9. STRUCTURE AND COMPOSITION OF A WATERSHED-SCALE SEDIMENT INFORMATION NETWORK

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A "Watershed-Scale Sediment Information Network" (WaSSIN), designed to complement UNESCO's International Sedimentation Initiative, was endorsed as an initial project by the World Association for Sedimentation and Erosion Research. WaSSIN is to address global fluvial-sediment information needs through a network approach based on consistent protocols for the collection,analysis, and storage of fluvial-sediment and ancillary information at smaller spatial scales than those of the International Sedimentation Initiative. As a second step of implementation, it is proposed herein that the WaSSIN have a general structure of two components, (1) monitoring and data acquisition and (2) research. Monitoring is to be conducted in small watersheds, each of which has an established database for discharge of water and suspended sediment and possibly for bed load, bed material, and bed topography. Ideally, documented protocols have been used for collecting,analyzing, storing, and sharing the derivative data. The research component is to continue the collection and interpretation of data, to compare those data among candidate watersheds, and to determine gradients of fluxes and processes among the selected watersheds. To define gradients and evaluate processes, the initial watersheds will have several common attributes. Watersheds of the first group will be: (1) six to ten in number, (2) less than 1000 km2 in area, (3) generally in mid-latitudes of continents, and (4) of semiarid climate. Potential candidate watersheds presently include the Weany Creek Basin, northeastern Australia, the Zhi Fanggou catchment, northern China,the Eshtemoa Watershed, southern Israel, the Metsemotlhaba River Basin, Botswana, the Aiuaba Experimental Basin, Brazil, and the Walnut Gulch Experimental Watershed, southwestern United States.

  10. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  11. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  12. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Effors; US Geological Survey Reports, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Munz, Carrie S. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-02-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the third year of at least a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  13. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  14. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2003-01-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1914. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for future genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the first year of a three-year study, this report is restricted to describing our work on the first two objectives only.

  15. Report on the Watershed Monitoring Program at the Paducah Site January-December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon, M.G.; Southworth, G.R.

    1999-03-01

    Watershed Monitoring of Big Bayou and Little Bayou creeks has been conducted since 1987. The monitoring was conducted by the University of Kentucky between 1987 and 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 to present. The goals of monitoring are to (1) demonstrate that the effluent limitations established for DOE protect and maintain the use of Little Bayour and Big Bayou creeks for frowth and propagation of fish and other aquatic life, (2) characterize potential environmental impacts, and (3) document the effects of pollution abatement facilities on stream biota. The watershed (biological) monitoring discussed in this report was conducted under DOE Order 5400.1, General Environmental Protection Program. Future monitoring will be conducted as required by the Kentucky Pollutant Discharge Elimination System (KPDES) permit issued to the Department of Energy (DOE) in March 1998. A draft Watershed Monitoring Program plan was approved by the Kentucky Division of Water and will be finalized in 1999. The DOE permit also requires toxicity monitoring of one continuous outfall and of three intermittent outfalls on a quarterly basis. The Watershed Monitoring Program for the Paducah Site during calendar year 1998 consisted of three major tasks: (1) effluent toxicity monitoring, (2) bioaccumulation studies, and (3) ecological surveys of fish communities. This report focuses on ESD activities occurring from january 1998 to December 1998, although activities conducted outside this time period are included as appropriate.

  16. Remedial investigation work plan for Bear Creek (Y02-S600) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    As part of its response to Resource Conservation and Recovery Act (RCRA), the US Department of Energy had agreed to further investigate contamination of Bear Creek and its floodplain resulting from releases of hazardous waste or hazardous constituents from the Y-12 Plant solid waste management units (SWMU) located in the Bear Creek watershed. That proposed RCRA Facility Investigation has been modified to incorporate the requirements of Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) into a Remedial Investigation (RI) Plan for Bear Creek. This document is the RI Plan for Bear Creek and its flood-of-record floodplain. The following assumptions were made in the preparation of this RI Plan: (1) That source-area groundwater monitoring will be conducted as a part of the comprehensive groundwater monitoring plan for the Bear Creek Hydrogeologic Regime; and (2) that postclosure activities associated with each SWMU do not explicitly include a comprehensive assessment of surface water, sediment, and floodplain soil contamination in Bear Creek and its tributaries. The RI Plan is thus intended to provide a more comprehensive evaluation of Bear Creek and its floodplain than that provided by the investigative monitoring and risk assessment activities associated with the ten individual SWMUs. RI activities will be carefully coordinated with other monitoring and assessment activities to avoid redundancy and to maximize the utility of data gathered during the investigation. 121 refs., 61 figs., 46 tabs

  17. Analysis of water quality in the Blue River watershed, Colorado, 1984 through 2007

    Science.gov (United States)

    Bauch, Nancy J.; Miller, Lisa D.; Yacob, Sharon

    2014-01-01

    Water quality of streams, reservoirs, and groundwater in the Blue River watershed in the central Rocky Mountains of Colorado has been affected by local geologic conditions, historical hard-rock metal mining, and recent urban development. With these considerations, the U.S. Geological Survey, in cooperation with the Summit Water Quality Committee, conducted a study to compile historical water-quality data and assess water-quality conditions in the watershed. To assess water-quality conditions, stream data were primarily analyzed from October 1995 through December 2006, groundwater data from May 1996 through September 2004, and reservoir data from May 1984 through November 2007. Stream data for the Snake River, upper Blue River, and Tenmile Creek subwatersheds upstream from Dillon Reservoir and the lower Blue River watershed downstream from Dillon Reservoir were analyzed separately. (The complete abstract is provided in the report)

  18. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  19. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    This project addresses existing habitat conditions, fish population status, and restoration priority sites within the Rattlesnake Creek watershed, a sub-basin of the White Salmon River. Our partners in this project are the United States Geological Service (USGS), and the Yakama Indian Nation (YIN). Underwood Conservation District (UCD) is involved in the project via accomplishment of water quality monitoring, sampling for stable isotopes, and characterization of the watershed geomorphology. These work items are part of an effort to characterize the stream and riparian habitat conditions in Rattlesnake Creek, to help guide habitat and fish restoration work. Water chemistry and temperature information is being collected both on Rattlesnake Creek, and on other tributaries and the main stem of the White Salmon River. Information on the entire system enables us to compare results obtained from Rattlesnake Creek with the rest of the White Salmon system. Water chemistry and temperature data have been collected in a manner that is comparable with data gathered in previous years. The results from data gathered in the 2001-2002 performance period are reported in appendix A at the end of this 2002-2003 report. Additional work being conducted as part of this study includes; an estimate of salmonid population abundance (YIN and USGS); a determination of fish species composition, distribution, and life history (YIN and USGS), and a determination of existing kinds, distribution, and severity of fish diseases (YIN and USGS). The overall objective is to utilize the above information to prioritize restoration efforts in Rattlesnake Creek.

  20. Microbial source tracking in a rural watershed dominated by cattle.

    Science.gov (United States)

    Graves, A K; Hagedorn, C; Brooks, A; Hagedorn, R L; Martin, E

    2007-08-01

    Antibiotic resistance analysis (ARA), frequency of sampling, and seasonality were evaluated in a rural Virginia watershed dominated by cattle. The selected watershed (Mill Creek) was 3767 ha in size, included two small communities (one sewered and one unsewered), and several farms that when combined contained over 3800 beef and dairy cattle. Monthly monitoring of fecal coliforms at two sampling sites in Mill Creek from January to December, 2001, revealed that the recreational standard (1000 colony forming units, CFUs/100 ml) was exceeded a total of eight times for a 33% violation rate at each site. In addition, stream samples were collected weekly for 4 consecutive weeks during seasonal high flows (March) and seasonal low flows (September-October), plus daily for 7 consecutive days within the weekly schedules for a combined total of 60 stream samples (30 at each of two sites). The recreational standard was exceeded once during seasonal high flow and nine times during seasonal low flow. Microbial source tracking (MST) was performed by ARA to assess the impact of cattle on water quality within the different sampling routines. The resistance patterns of 2880 water isolates and 1158 known source (host-origin) isolates were determined with seven antibiotics at 28 different concentrations. The 1158 isolate database was reduced to 562 unique isolates when clonal ARA patterns were removed. This database of 562 unique isolates had an average rate of correct classification (ARCC) of 95.4%, and several statistical procedures confirmed the library as accurate and representative. Sixty-five percent of 50 challenge-set isolates from sources, but not samples, used in the library were correctly identified. The 562 unique pattern database was used to classify Escherichia coli isolates from water samples into six host source categories. The ARA results showed that cattle were the major source of pollution in the stream and cattle were the dominant source in over 60% of the water

  1. A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado

    Science.gov (United States)

    Runkel, R.L.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.

    2007-01-01

    Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model

  2. Effects of urbanization on groundwater evolution in an urbanizing watershed

    Science.gov (United States)

    Reyes, D.; Banner, J. L.; Bendik, N.

    2011-12-01

    The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and

  3. Remediation scenarios for attenuating peak flows and reducing sediment transport in Fountain Creek, Colorado, 2013

    Science.gov (United States)

    Kohn, Michael S.; Fulton, John W.; Williams, Cory A.; Stogner, Robert W.

    2014-01-01

    The U.S. Geological Survey (USGS) in cooperation with the Fountain Creek Watershed, Flood Control and Greenway District assessed remediation scenarios to attenuate peak flows and reduce sediment loads in the Fountain Creek watershed. To evaluate these strategies, the U.S. Army Corps of Engineers Hydrologic Engineering Center (HEC) hydrologic and hydraulic models were employed. The U.S. Army Corps of Engineers modeling system HEC-HMS (Hydrologic Modeling System) version 3.5 was used to simulate runoff in the Fountain Creek watershed, Colorado, associated with storms of varying magnitude and duration. Rain-gage precipitation data and radar-based precipitation data from the April 28–30, 1999, and September 14–15, 2011, storm events were used in the calibration process for the HEC-HMS model. The curve number and lag time for each subwatershed and Manning's roughness coefficients for each channel reach were adjusted within an acceptable range so that the simulated and measured streamflow hydrographs for each of the 12 USGS streamgages approximated each other. The U.S. Army Corps of Engineers modeling system HEC-RAS (River Analysis System) versions 4.1 and 4.2 were used to simulate streamflow and sediment transport, respectively, for the Fountain Creek watershed generated by a particular storm event. Data from 15 USGS streamgages were used for model calibration and 7 of those USGS streamgages were used for model validation. The calibration process consisted of comparing the simulated water-surface elevations and the cross-section-averaged velocities from the model with those surveyed in the field at the cross section at the corresponding 15 and 7 streamgages, respectively. The final Manning’s roughness coefficients were adjusted between –30 and 30 percent at the 15 calibration streamgages from the original left, right, and channel-averaged Manning's roughness coefficients upon completion of calibration. The U.S. Army Corps of Engineers modeling system HEC

  4. Pine Creek Ranch; Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  5. 33 CFR 117.917 - Battery Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  6. 33 CFR 117.543 - Bear Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  7. WATERSHED MANAGEMENT RESEARCH TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The Urban Watershed Management Branch researches, develops, and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the risk management aspects of WWF research.One...

  8. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-12-01

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. PMID:19616876

  9. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT

    International Nuclear Information System (INIS)

    The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed. - Selected structural BMPs are recommended for reducing loads of OP pesticides.

  10. SPECIFIC DEGRADATION OF WATERSHEDS

    Institute of Scientific and Technical Information of China (English)

    Boubacar KANE; Pierre Y.JULIEN

    2007-01-01

    An extensive database of reservoir sedimentation surveys throughout continental United States is compiled and analyzed to determine specific degradation SD relationships as function of mean annual rainfall R, drainage area A, and watershed slope S. The database contains 1463 field measurements and specific degradation relationships are defined as function of A, R and S. Weak trends and significant variability in the data are noticeable. Specific degradation measurements are log normally distributed with respect to R, A, and S and 95% confidence intervals are determined accordingly. The accuracy of the predictions does not significantly increase as more independent variables are added to the regression analyses.

  11. WATERSHED SELECTION FOR ENVIRONMENTAL REHABILITATION USING MULTICRITERIA ANALYSIS

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo da Silva Francisco

    2009-10-01

    Full Text Available The Anhumas creek watershed, in the region of Campinas, São Paulo State, Brazil, is degraded also as a result of unplanned land use of its riparian zones, considered Permanent Preservation Areas (APP. Therefore, river flow is unstable, promoting frequent flood damages, besides the lack of several environmental functions of its APPs. Environmental recovery of a degraded area requires a comprehensive effort, often multidisciplinary. Multicriterial analysis is a tool which allows gathering a diversity of attributes of the studied subject, weighing and valuating them, helping in the decision making effort. This work aims to apply two methods of multicriteria analysis to optimize the selection of a watershed for an environmental recovery study of APPs in the Anhumas watershed. The Anhumas watershed was divided in 7 sub-basins aiming the selection of one of those to implement an environmental planning study and to establish and rank areas that should be prioritized for recovery. Thirteen environmental criteria were selected for application of multicriteria analysis using the methods of Compromise Programming (PC and Cooperative Game Theory (CGT. Relevance of each criterion to the analysis was given by a questionnaire answered by specialists. Basin selection results showed no difference neither between PC and CGT nor between mean or mode used to standardize weights given by specialists. Multicriteria analysis was effective, but allowed enough flexibility for the decision maker (DM to adjust undesired analysis distortions. After DM adjustments, the priority basins were ranked as basins 4 > 7 > 5 > 6 > 2 > 3 > 1. Important procedures when carrying out such an analysis were to avoid conceptual overlapping among different criteria, to implement appropriate value judgment for each criterion and to use decision maker expertise to supplement weights obtained with specialists.

  12. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    Science.gov (United States)

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  13. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    Science.gov (United States)

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health. PMID:26734840

  14. Wind River Watershed Restoration : 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2003-02-01

    This report focuses on work conducted in 2000 and 2001 by the U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) as part of the Wind River Watershed Restoration Project. The project started in the early 1990s, and has been funded through the Bonneville Power Administration (BPA) since 1998. The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the Wind River subbasin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. In addition to USGS-CRRL, other BPA-funded entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), and Washington Department of Fish and Wildlife (WDFW). To describe the activities and accomplishments of the USGS-CRRL portion of the project, we partitioned the 2000-2001 annual report into two pieces: Report A and Report B. In Report A, we provide information on flow, temperature, and habitat conditions in the Wind River subbasin. Personnel from CRRL monitored flows at 12 sites in 2000 and 17 sites in 2001. Flow measurements were generally taken every two weeks during June through October, which allowed tracking of the descending limb of the hydrograph in late spring, through the base low flow period in summer, and the start of the ascending limb of the hydrograph in fall. We maintained a large array of water-temperature sites in the Wind River subbasin, including data from 25 thermographs in 2000 and 27 thermographs in 2001. We completed stream reach surveys on 14.0 km in 2000 and 6.1 km in 2001. Our focus for these reach surveys has been on the upper Trout Creek and upper Wind River watersheds, though some reach surveys have occurred in the Panther Creek watershed. Data generated by these reach surveys include stream width, stream gradient, large woody debris frequency, pool frequency, canopy

  15. WATER QUALITY MODELING OF SUZHOU CREEK

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Water-quality models are important tools for improving river environment. In this paper, the project "Water Quality Modeling of the Suzhou Creek" was briefly described, including the choice and the principle of the model, the model study and methods, the calibration and verification of the stream model. A set of parameters about water environmental characteristic of the Suzhou Creek were put forward in the period of the third water dispatch experiment in 1999. It is necessary to point out that these parameters will change with the rehabilitation and construction of the Suzhou Creek.

  16. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  17. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  18. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    International Nuclear Information System (INIS)

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ''Whiteoak'' Creek)

  19. CREEK Project's Internal Creek Habitat Survey for Eight Creeks in the North Inlet Estuary, South Carolina: January 1998.

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight intertidal creeks with high densities of oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a...

  20. Copper Concentrations in Tidal Creeks and Estuaries of the Eastern Shore and the Relationship to Plasticulture and Copper-based Crop Protectants

    OpenAIRE

    Klawiter, Kathryn Alyce

    1998-01-01

    This project investigates the effect of plasticulture and copper-based crop protectants on water quality on the Eastern Shore of Virginia. Water and sediment copper concentrations in both plasticulture and non-plasticulture containing watersheds were measured to determine the scope of copper in Eastern Shore tidal creeks. Runoff from a variety of land-uses including agricultural, plasticultural, residential and natural areas were collected and measure...

  1. The Effect of Climate Change on the Hydrology of a Mountainous Catchment in the Western United States: A Case Study at Reynolds Creek, Idaho

    OpenAIRE

    Nayak, Anurag

    2008-01-01

    This research is focused on understanding the sensitivity of a hydrologic regime at the Reynolds Creek Experimental Watershed (RCEW), a snowmelt dominated semi-arid mountain basin located in southwest Idaho, to climate warming. Climate data, collected during 1962 to 2006 at many locations in the RCEW, was carefully checked, preprocessed, and corrected for errors and noise signals introduced by the instrument malfunctioning and extreme weather conditions. An Automated Precipitation Correcti...

  2. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Huntington, Charles W.

    2000-02-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  3. Watershed evaluation and habitat response to recent storms; annual report for 1999

    International Nuclear Information System (INIS)

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995--96, triggering flooding, mass erosion, and, alteration of salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin. The storms and flooding in 1995--96 provide a prime opportunity to examine whether habitat conditions are improving, because the effects of land management activities on streams and salmon habitat are often not fully expressed until triggered by storms and floods. To address these issues, they are studying the recent storm responses of watersheds and salmon habitat in systematically selected subbasins and watersheds within the Snake River system. The study watersheds include several in the Wenaha and Tucannon subbasins in Washington and Oregon, and the watersheds of Squaw Creek (roaded) and Weir Creek (unroaded) in the Lochsa River subbasin, Idaho. The study was designed to examine possible differences in the effects of the storms in broadly comparable watersheds with differing magnitudes or types of disturbance. Watershed response is examined by comparing storm response mechanisms, such as rates of mass failure, among watersheds with similar attributes, but different levels of land management. The response of salmon habitat conditions is being examined by comparing habitat conditions before and after the storms in a stream and among streams in watersheds with similar attributes but different levels of land management. If appropriate to the results, the study will identify priority measures for reducing the severity of storm responses in watersheds within the Snake River Basin with habitat for at-risk salmon. This annual report describes the attributes of the study watersheds and the criteria and methods used to select them. The report also describes the watershed and fish habitat attributes

  4. Mercury and selenium in fish of Fountain Creek, Colorado (USA): possible sources and implications.

    Science.gov (United States)

    Nimmo, D R; Herrmann, S J; Carsella, J S; McGarvy, C M; Foutz, H P; Herrmann-Hoesing, L M; Gregorich, J M; Turner, J A; Vanden Heuvel, B D

    2016-01-01

    Fountain Creek in Colorado USA is a major tributary that confluences with the Arkansas River at Pueblo, Colorado, the result being the tributary's influence on Arkansas River water quality affecting down-stream users. In a previous study, we found that bryophytes (aquatic plants) accumulated selenium in Fountain Creek watershed and this finding prompted us to investigate the extent of the metalloid in the whole-body tissues of fish. One hundred 11 fish (six species) were collected and analyzed for Se by inductively-coupled plasma emission mass spectrometry. Analysis of all analytical data also showed mercury in all of the fish whole bodies and selected tissues. There was a general increase in selenium but a decrease in mercury in fish with downstream travel-distance. The highest whole-body selenium was in Pueblo, Colorado (3393 µg/kg, dry weight; 906 µg/kg, wet weight); the highest mercury in fish was in the Monument Creek tributary north of Colorado Springs, Colorado (71 µg/kg, dry weight; 19 µg/kg, wet weight). In four tissues of 11 female fish captured, selenium was highest in the livers at eight sites but highest in the ovaries at three sites. Mercury was highest in the epaxial muscle at all sites. Selenium availability could be due to the watershed lithology and land uses; however, mercury could be carried by atmospheric deposition from coal-fired power plants and historic mining activities. Selenium in fish tissues and water samples were compared to U.S. national water quality criteria. PMID:27104125

  5. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Sayers, R.E. Jr.; Mealing, H.G. III [Normandeau Associates, Inc., New Ellenton, SC (United States)

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  6. Runoff processes and small watersheds

    International Nuclear Information System (INIS)

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)

  7. Controls on nitrate-N concentrations in groundwater in a Missourian claypan watershed

    Science.gov (United States)

    Al-Qudah, Omar M.; Liu, Fengjing; Lerch, Robert N.; Kitchen, Newell; Yang, John

    2016-03-01

    Nitrogen (N) fertilizer applications have resulted in widespread groundwater nitrate-N (NO3-N) contamination in the U.S. Corn Belt. Goodwater Creek Experimental Watershed (GCEW) is an agricultural watershed in the claypan soil region of northeastern Missouri with a network of 96 wells at depths of 2.7-15.7 m. The objectives of this study were to (1) inspect the spatial and temporal variations of NO3-N concentrations in GCEW's groundwater, particularly with well depth at scales ranging from individual well, well nest, and field to the entire watershed during the period 1991 to 2004; (2) understand the processes controlling the variability of NO3-N concentrations in groundwater at various scales within GCEW; and (3) compare groundwater NO3-N concentrations in GCEW to other agricultural watersheds in the U.S. Nitrate-N concentrations were determined in more than 2000 samples collected from 1991 to 2004. Despite the low hydraulic conductivity of the claypan soils, considerable NO3-N contamination of the glacial till aquifer occurred, with 38% of the wells exceeding 10 mg L-1. Groundwater recharge by preferential pathways through the claypan appeared to be the primary mechanism for NO3-N movement to the aquifer. Changes in concentration with depth steadily increased to 8.5-10 m and then decreased with further depth. This pattern was consistent with decreased hydraulic conductivity in the Paleosol layer at 8.5-10 m, denitrification below this layer, and mixing of recent contaminated water with older uncontaminated water in the lowest strata. Only 19-23% of sampled wells exceeded 10 mg L-1 in nonclaypan agricultural watersheds over the continental U.S., suggesting that groundwater in GCEW was more susceptible to NO3-N contamination than nonclaypan watersheds. These results demonstrated that preferential flow through the soil and hydraulic conductivity of the subsurface strata controlled NO3-N transport in this claypan watershed.

  8. Habitat--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the habitat map of the seafloor of the Offshore of Scott Creek map area, California. The vector data file is included in...

  9. Folds--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the folds for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  10. Land Cover Classification for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban...

  11. Stream Centerline for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban...

  12. Water sample locations for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban...

  13. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols...

  14. Solid sample locations for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban...

  15. Active Channel for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban...

  16. Rattlesnake Creek Management Program 12-year review

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Rattlesnake Creek Partnership (Partnership) was formed over 18 years ago to cooperatively develop and implement solutions to water resource problems within the...

  17. Faults--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  18. Ottawa National Wildlife Refuge. 1963. [Crane Creek].

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This aerial photograph shows the mouth of Crane Creek, facing east. Parts of Lake Erie, Willow Point, Searle, Dewey, and B T Inc. are also shown in this photo.

  19. Watershed Boundaries - MO 2015 Metro No Discharge Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for streams listed in Table F - Metropolitan No-Discharge Streams of the Water...

  20. Wolf Creek Generating Station containment model

    International Nuclear Information System (INIS)

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project

  1. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    OpenAIRE

    Surendra Kumar Chandniha; M. L Kansal; G. Anvesh

    2014-01-01

    In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and en...

  2. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  3. Values, Watersheds and Justification

    DEFF Research Database (Denmark)

    Wiberg, Katrina

    2015-01-01

    systems of water provision, sewagesystems etc. Under conditions of climate change this ‘undergrounding’ approach has shown its limitations. In extreme weather conditions water is ‘resurfacing’ which creates both problems and a new condition of HOW in urban landscapes. Problems of water cannot be ‘buried......The aim of this paper is to articulate and present some arguments for the following main hypothesis concerning the handling of water (HOW) in the urban landscapes of our times of climate change. During industrialism water in urban areas to a very high degree was handled by ‘undergrounding’ it in......’ anymore; they also have to be handled at surface levels. This has two interconnected implications: firstly, watersheds gains new importance for HOW at surface-levels, and secondly, such surfacing of water problems leads to a rise in the potential levels of value-disputes and conflicts of interest...

  4. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc

    International Nuclear Information System (INIS)

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary

  5. Third annual Walker Branch Watershed research symposium. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The methods and concepts of watershed research, originally applied in an experimental or monitoring mode to relatively small catchments, are increasingly being used at larger scales and for specific applied problems. Research at Oak Ridge National Laboratory, the Tennessee Valley Authority, the US Forest Service, and other agencies and institutions participating in this symposium reflects research over a broad range of spatial scales that is being integrated through large-scale experiments along with computer modeling and graphical interfaces. These research projects address the basic atmospheric, geophysical, biogeochemical, and biological processes that regulate the responses of forested ecosystems to natural environmental variation and anthropogenic stresses. Regional and global issues addressed by presentations include emissions of carbon dioxide, methane, and other hydrocarbons; deposition of sulfate, nitrate, and mercury; land-use changes; biological diversity; droughts; and water quality. The reports presented in this symposium illustrate a wide range of methods and approaches and focus more on concepts and techniques than on a specific physical site. Sites and projects that have contributed research results to this symposium include Walker Branch Watershed (DOE), the Coweeta Hydrologic Laboratory and LTER site (USFS and NSF), Great Smoky Mountains National Park (research funded by NPS, TVA, and EPRI), Imnavait Creek, Alaska (DOE), the TVA-Norris Whole-tree Facility (TVA and EPRI), and DOE`s Biomass Program.

  6. Effects of flood controls proposed for West Branch Brandywine Creek, Chester County, Pennsylvania

    Science.gov (United States)

    Sloto, R.A.

    1988-01-01

    Twenty-four-hour rainfall, distributed over time according to the U.S. Soil Conservation Service type II rainfall distribution, was used as input to calibrated rainfall-runoff models of three subbasins in the West Branch Brandywine Creek watershed. The effects of four proposed flood controls were evaluated by using these rainfalls to simulate discharge hydrographs with and without the flood controls and comparing the simulated peak discharges. In the Honey Brook subbasin, 2-, 10-, and 100-year flood-discharge hydrographs were generated for station West Branch Brandywine Creek at Coatesville. For the 2- and 10-year floods, proposed flood controls would reduce the peak discharge from 1 to 8 percent. The combination of all three flood controls proposed for the Coatesville subbasin would reduce the 100-year peak discharge 44 percent. In the Modena subbasin, 2-, 10-, and 100-year flood-discharge hydrographs were generated for station West Branch Brandywine Creek at Modena. A flood control proposed for Sucker Run, a tributary, would reduce the peak discharge of Sucker Run at State Route 82 by 22, 25, and 27 percent and the peak discharge of West Branch Brandywine Creek at Modena by 10, 6, and less than 1 percent for the 2-, 10-, and 100-year floods, respectively. For the 2- and 10- year floods, flood control proposed for the Coatesville subbasin would have little effect on the peak discharge of West Branch Brandywine Creek at Modena. For the 100-year flood, the combination of all three flood controls proposed for the Coatesville subbasin would reduce the peak discharge at Modena 25 percent. When flood control in the Modena subbasin was combined with flood control in the Coatesville subbasin, the 10-percent reduction in the 2-year flood peak of West Branch Brandywine Creek at Modena was due almost entirely to flood control in the Modena subbasin. For the 10-year flood, flood control in the Modena subbasin would reduce the peak discharge 6 percent, and any single flood

  7. Flathead River Focus Watershed Coordinator, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2006-06-26

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through

  8. Flathead River Focus Watershed Coordinator, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2006-05-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through

  9. Flathead River Focus Watershed Coordinator, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2003-04-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NPPC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through

  10. Flathead River Focus Watershed Coordinator, 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    DuCharme, Lynn (Confederated Salish and Kootenai Tribes of the Flathead Nation, Pablo, MT)

    2004-06-01

    The Bonneville Power Administration (BPA) has long been involved with funding of the Cooperative Habitat Protection and Improvement with Private Landowners program in accordance with the Northwest Power Planning Council's (NPPC) Fish & Wildlife Program (Section 7.7). Section 7.7B.1 requires the establishment of ''at least one model watershed coordinator selected by each representative state''. This project was initiated in 1997 with the purpose of fulfilling the NWPCC's watershed program within the Flathead River basin in western Montana. Currently, the Flathead watershed has been radically altered by hydropower and other land uses. With the construction of Hungry Horse, Bigfork and Kerr dams, the Flathead River system has been divided into isolated populations. Bull trout have been listed as threatened by the US Fish and Wildlife Service and westslope cutthroat trout have been petitioned for listing. Many streams in the drainage have been destabilized during recent decades. Past legal and illegal species introductions are also causing problems. This project fosters in-kind, out-of-place mitigation to offset the impacts of hydroelectric power to 72 miles of the South Fork of the Flathead River and its tributaries upstream of Hungry Horse Dam. Key subbasins within the Flathead drainage, which are critical to native species restoration, are experiencing rapid changes in land ownership and management direction. Subdivision and residential development of agricultural and timber lands adjacent to waterways in the drainage pose one of the greatest threats to weak but recoverable stocks of trout species. Plum Creek Timber Company, a major landholder in the Flathead drainage is currently divesting itself of large tracks of its lakeshore and streamside holdings. Growth of small tract development throughout the area and its tributaries is occurring at a record rate. Immediate to short-term action is required to protect stream corridors through

  11. McKenzie River Focus Watershed Coordination: Year-End Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Thrailkil, Jim

    2000-01-01

    This report summarizes accomplishments of the McKenzie River Focus Watershed Council (MWC) in the areas of coordination and administration during Fiscal Year 2000. Coordination and administration consist of prioritization and planning for projects; project management and implementation; procurement of funding for long-term support of the Council; and watershed education/outreach program for residents and local schools. Key accomplishments in the area of project planning include coordinating: monthly Council and executive committee meetings; staffing the Upper Willamette Spring Chinook Working Group; staffing the water quality technical committee; and guiding education and stewardship projects. Key accomplishments in the area of project management include the completion of the McKenzie-Willamette Confluence Assessment; securing funds for project planning in the confluence area; near completion of the BPA funded McKenzie sub-basin assessment; development of a framework for a McKenzie Watershed Conservation Strategy; an evaluation of Council's monitoring programs - ambient water quality, storm-event water quality, Tier III water quality, and macroinvertebrate monitoring. The Council, in cooperation with the McKenzie River Cooperative, completed habitat enhancements in the Gate Creek and Deer Creek sub-watersheds. This partnership recently submitted Bring Back the Natives grant for initiation of projects in other McKenzie tributaries. The Council will also be working with a local business to develop a river-side riparian enhancement and native landscaping project on the lodge grounds. This will serve as a demonstration project for blending fish and wildlife habitat concerns with maintaining grounds for business opportunities. Accomplishments in the area of procurement of funding included developing the FY2000 Scope of Work and budget for approval by the Council and BPA; providing quarterly budget and work program progress reports to the Council; and securing

  12. Environmental restoration of mercury contamination of East Fork Poplar Creek at the Department of Energy's Oak Ridge, Tennessee, reservation

    International Nuclear Information System (INIS)

    During the open-quotes Cold Warclose quotes era, approximately 239,000 pounds of mercury were released from the Y-12 Nuclear Weapons Plant to the East Fork Poplar Creek watershed. As a result, approximately 75 tons of the contaminant resides within the floodplain soils beyond the confines of the DOE reservation, a Federal Superfund Site. The EFPC watershed encompasses multiple land uses whose ownership varies from private citizens, municipal government, and federal government. DOE, in cooperation with the State of Tennessee and EPA, proposes to clean up the contamination to a risk based standard of 400 ppm. This level has been determined to be protective of human health and the environment. The remedial process and development of the remedial alternative are the result of close interagency cooperation between the State, EPA, U.S. Fish ampersand Wildlife Service, and the Army Corps of Engineers. This case study outlines that process

  13. 2013 Bridge Creek, OR 4-Band Imagery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In March 2012, WSI (Watershed Sciences, Inc.) was contracted by Woolpert, Inc. (Woolpert) to collect Light Detection and Ranging (LiDAR) data and digital imagery in...

  14. Assessment of water quality, benthic invertebrates, and periphyton in the Threemile Creek basin, Mobile, Alabama, 1999-2003

    Science.gov (United States)

    McPherson, Ann K.; Gill, Amy C.; Moreland, Richard S.

    2005-01-01

    The U.S. Geological Survey conducted a 4-year investigation of water quality and aquatic-community structure in Threemile Creek, an urban stream that drains residential areas in Mobile, Alabama. Water-quality samples were collected between March 2000 and September 2003 at four sites on Threemile Creek, and between March 2000 and October 2001 at two tributary sites that drain heavily urbanized areas in the watershed. Stream samples were analyzed for major ions, nutrients, fecal-indicator bacteria, and selected organic wastewater compounds. Continuous measurements of dissolved-oxygen concentrations, water temperature, specific conductance, and turbidity were recorded at three sites on Threemile Creek during 1999?2003. Aquatic-community structure was evaluated by conducting one survey of the benthic invertebrate community and multiple surveys of the algal community (periphyton). Benthic invertebrate samples were collected in July 2000 at four sites on Threemile Creek; periphyton samples were collected at four sites on Threemile Creek and the two tributary sites during 2000 ?2003. The occurrence and distribution of chemical constituents in the water column provided an initial assessment of water quality in the streams; the structure of the benthic invertebrate and algal communities provided an indication of the cumulative effects of water quality on the aquatic biota. Information contained in this report can be used by planners and resource managers in the evaluation of proposed total maximum daily loads and other restoration efforts that may be implemented on Threemile Creek. The three most upstream sites on Threemile Creek had similar water chemistry, characterized by a strong calcium-bicarbonate component; the most downstream site on Threemile Creek was affected by tidal fluctuations and mixing from Mobile Bay and had a strong sodium-chloride component. The water chemistry at the tributary site on Center Street was characterized by a strong sodium-chloride component

  15. Atmospheric deposition and solute export in giant sequoia: mixed conifer watersheds in the Sierra Nevada, California

    Science.gov (United States)

    Stohlgren, Thomas J.; Melack, John M.; Esperanza, Anne M.; Parsons, David J.

    1991-01-01

    Atmospheric depostion and stream discharge and solutes were measured for three years (September 1984 - August 1987) in two mixed conifer watersheds in Sequoia National Park, in the southern Sierra Nevada of California. The Log Creek watershed (50 ha, 2067-2397 m elev.) is drained by a perennial stream, while Tharp's Creek watershed (13 ha, 2067-2255 m elev.) contains an intermittent stream. Dominant trees in the area include Abies concolor (white fir), Sequoiadendron giganteum (giant sequoia), A. magnifica (red fir), and Pinus lambertiana (sugar pine). Bedrock is predominantly granite and granodiorite, and the soils are mostly Pachic Xerumbrepts. Over the three year period, sulfate (SO42-), nitrate (NO3-), and chloride (Cl-) were the major anions in bulk precipitation with volume-weighted average concentrations of 12.6, 12.3 and 10.0 μeq/1, respectively. Annual inputs of NO3-N, NH4-N and SO4-S from wet deposition were about 60 to 75% of those reported from bulk deposition collectors. Discharge from the two watersheds occurs primarily during spring snowmelt. Solute exports from Log and Tharp's Creeks were dominated by HCO3-, Ca2+ and Na+, while H+, NO3-, NH4+ and PO43- outputs were relatively small. Solute concentrations were weakly correlated with instantaneous stream flow for all solutes (r2 3- (Log Cr. r2=0.72; Tharp's Cr. r2=0.38), Na+ (Log Cr. r2=0.56; Tharp's Cr. r2=0.47), and silicate (Log Cr. r2=0.71; Tharp's Cr. r2=0.49). Mean annual atmospheric contributions of NO3-N (1.6 kg ha-1), NH4-N (1.7 kg ha-1), and SO4-S (1.8 kg ha-1), which are associated with acidic deposition, greatly exceed hydrologic losses. Annual watershed yields (expressed as eq ha-1) of HCO3- exceeded by factors of 2.5 to 37 the annual atmospheric deposition of H+.

  16. Wind River Watershed Restoration Project; Underwood Conservation District, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    White, Jim

    2004-02-01

    The goal of the Wind River project is to preserve, protect and restore Wind River steelhead. In March, 1998, the National Marine Fisheries Service listed the steelhead of the lower Columbia as 'threatened' under the Endangered Species Act. In 1997, the Washington Department of Fish and Wildlife rated the status of the Wind River summer run steelhead as critical. Due to the status of this stock, the Wind River summer steelhead have the highest priority for recovery and restoration in the state of Washington's Lower Columbia Steelhead Conservation Initiative. The Wind River Project includes four cooperating agencies. Those are the Underwood Conservation District (UCD), United States Geological Service (USGS), US Forest Service (USFS), and Washington State Department of Fish & Wildlife (WDFW). Tasks include monitoring steelhead populations (USGS and WDFW), Coordinating a Watershed Committee and Technical Advisory Group (UCD), evaluating physical habitat conditions (USFS and UCD), assessing watershed health (all), reducing road sediments sources (USFS), rehabilitating riparian corridors, floodplains, and channel geometry (UCD, USFS), evaluate removal of Hemlock Dam (USFS), and promote local watershed stewardship (UCD, USFS). UCD's major efforts have included coordination of the Wind River Watershed Committee and Technical Advisory Committee (TAC), water temperature and water chemistry monitoring, riparian habitat improvement projects, and educational activities. Our coordination work enables the local Watershed Committee and TAC to function and provide essential input to Agencies, and our habitat improvement work focuses on riparian revegetation. Water chemistry and temperature data collection provide information for monitoring watershed conditions and fish habitat, and are comparable with data gathered in previous years. Water chemistry information collected on Trout Creek should, with 2 years data, determine whether pH levels make conditions

  17. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast

    Directory of Open Access Journals (Sweden)

    Donizete dos Reis Pereira

    2014-08-01

    Full Text Available The Brazilian East coast was intensely affected by deforestation, which drastically cut back the original biome. The possible impacts of this process on water resources are still unknown. The purpose of this study was an evaluation of the impacts of deforestation on the main water balance components of the Galo creek watershed, in the State of Espírito Santo, on the East coast of Brazil. Considering the real conditions of the watershed, the SWAT model was calibrated with data from 1997 to 2000 and validated for the period between 2001 and 2003. The calibration and validation processes were evaluated by the Nash-Sutcliffe efficiency coefficient and by the statistical parameters (determination coefficient, slope coefficient and F test of the regression model adjusted for estimated and measured flow data. After calibration and validation of the model, new simulations were carried out for three different land use scenarios: a scenario in compliance with the law (C1, assuming the preservation of PPAs (permanent preservation areas; an optimistic scenario (C2, which considers the watershed to be almost entirely covered by native vegetation; and a pessimistic scenario (C3, in which the watershed would be almost entirely covered by pasture. The scenarios C1, C2 and C3 represent a soil cover of native forest of 76, 97 and 0 %, respectively. The results were compared with the simulation, considering the real scenario (C0 with 54 % forest cover. The Nash-Sutcliffe coefficients were 0.65 and 0.70 for calibration and validation, respectively, indicating satisfactory results in the flow simulation. A mean reduction of 10 % of the native forest cover would cause a mean annual increase of approximately 11.5 mm in total runoff at the watershed outlet. Reforestation would ensure minimum flows in the dry period and regulate the maximum flow of the main watercourse of the watershed.

  18. Effect of GIS data quality on small watershed stream flow and sediment simulations

    Science.gov (United States)

    di Luzio, Mauro; Arnold, Jeffrey G.; Srinivasan, Raghavan

    2005-02-01

    Simulations of total runoff and fine sediment yield in Goodwin Creek watershed, which covers 21.3 km2 in Mississippi, were carried out using a hydrological model-GIS system. The system includes the recently released Soil and Water Assessment Tool (SWAT) model version 2000 and AVSWAT version 1.0, the supporting interface with ArcView GIS. Among the required GIS input, some are commonly available in the United States with multiple options and characteristics. In our study, two available digital elevation models, three land use-land cover maps and two soil maps were grouped in all possible ways to obtain 12 applied input combinations.The objective of this study was to assess the impact of GIS input variation on the uncalibrated water runoff and sediment yield outputs and compare them with the respective observed data. The implicated issues are significant wherever multiple choices of GIS input are available. In the United States, agencies are developing TMDL (total maximum daily load) programmes at the watershed scale and are also using supporting tools along with the available GIS data. In addition, the involved water quality appraisals often include assessment of limited size watersheds, i.e. draining into a specific stream segment. This watershed, operated by the United States Department of Agriculture, Agriculture Research Service, is highly instrumented, thereby representing a severe test and a primary verification of the new system.The GIS data had a varying impact on model results. DEM choice was critical for a realistic definition of the watershed and subwatershed boundaries and topographic input, and consequently simulated outputs. Land use-land cover maps had a significant effect on both runoff and sediment yield prediction. Soil maps showed a limited influence on model results.While evidences and basic justifications of the results are provided, further investigations are needed to determine the influence of the input GIS data distribution on watersheds

  19. Rainfall Runoff Modelling for Cedar Creek using HEC-HMS model

    Science.gov (United States)

    Pathak, P.; Kalra, A.

    2015-12-01

    Rainfall-runoff modelling studies are carried out for the purpose of basin and river management. Different models have been effectively used to examine relationships between rainfall and runoff. Cedar Creek Watershed Basin, the largest tributary of St. Josephs River, located in northeastern Indiana, was selected as a study area. The HEC-HMS model developed by US Army Corps of Engineers was used for the hydrological modelling. The national elevation and national hydrography data was obtained from United States Geological Survey National Map Viewer and the SSURGO soil data was obtained from United States Department of Agriculture. The watershed received hypothetical uniform rainfall for a duration of 13 hours. The Soil Conservation Service Curve Number and Unit Hydrograph methods were used for simulating surface runoff. The simulation provided hydrological details about the quantity and variability of runoff in the watershed. The runoff for different curve numbers was computed for the same basin and rainfall, and it was found that outflow peaked at an earlier time with a higher value for higher curve numbers than for smaller curve numbers. It was also noticed that the impact on outflow values nearly doubled with an increase of curve number of 10 for each subbasin in the watershed. The results from the current analysis may aid water managers in effectively managing the water resources within the basin. 1 Graduate Student, Department of Civil and Environmental Engineering, Southern Illinois University Carbondale, Carbondale, Illinois, 62901-6603 2 Development Review Division, Clark County Public Works, 500 S. Grand Central Parkway, Las Vegas, NV 89155, USA

  20. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  1. Land Use Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan outlines the various land uses at Squaw Creek National Wildlife Refuge. The Land Use Plan for Squaw Creek National Wildlife Refuge provides a description...

  2. Geology of the Quartz Creek Pegmatite District, Gunnison County Colorado

    Science.gov (United States)

    Staatz, Mortimer H.; Trites, A.F.

    1952-01-01

    The Quartz Creek pegmatite district includes an area about 29 square miles in the vicinity of Quartz Creek in Gunnison County,. Colo. This area contains 1,803 pegmatites that are intruded into pre-Cambrian rocks.

  3. Squaw Creek National Wildlife Refuge contaminant survey results

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — As part of a baseline contaminant survey of all National Wildlife Refuges (NWR) in Missouri, fish were collected at the Squaw Creek NWR from Davis and Squaw creeks...

  4. Preliminary Biotic Survey of Cane Creek, Calhoun County, AL

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A biotic survey of Cane Creek (Calhoun County, AL) was completed in the Fall (1992) and Winter (1993) at six sites within Cane Creek to determine the effects of...

  5. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    Science.gov (United States)

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  6. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    Science.gov (United States)

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  7. SIR2005-5073_CBRWM_watersheds

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is an ArcGIS dataset depicting watershed segments in the Chesapeake Bay Watershed and adjacent states of New York, Pennsylvania, Maryland, West Virginia,...

  8. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  9. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  10. The Watershed Algorithm for Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    OU Yan; LIN Nan

    2007-01-01

    This article introduced the watershed algorithm for the segmentation, illustrated the segmation process by implementing this algorithm. By comparing with another three related algorithm, this article revealed both the advantages and drawbacks of the watershed algorithm.

  11. Suzhou Creek Rehabilitation Project ECOLOGICAL STUDY 1998 Biological monitoring program

    OpenAIRE

    Lien, L.; Haowen, Yin

    1998-01-01

    Suzhou Creek, flowing through the central parts of Shanghai, is heavy polluted by sewage, metals and organic micro pollutants. Due to the pollution, lower parts of the creek have virtually no life of fish or macro-invertebrates, and the other biological communities are totally disturbed. Even at upstream sections the flora and fauna suffer from pollution. During the last decade the contamination has been slightly reduced in the creek. A biological monitoring program was designed for the creek...

  12. Garfield County Habitat for Fall Chinook and Steelhead, Annual Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane

    2007-01-01

    The objectives and tasks outlined in detail in this project report were implemented during calendar year 2006 in all the watersheds of Garfield County. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by the Northwest Power and Conservation Council (NPCC). In the years since 1993, other watersheds in Garfield County have been designated as salmon bearing streams and have received numerous practices formerly just designated for the Pataha Creek Watershed. The following sections show the individual practices, quantity of practices implemented, total costs, BPA costs and tons of soil saved for all the BPA funds used to protect and enhance the natural resources in the salmon bearing watersheds of Garfield County. In the year 2006, 55% of the funding received from BPA went into cost share practices. Of all the cost share received in the county, 22% came from BPA. This is largely due to other funding programs becoming available to address livestock influenced water quality problems and riparian health improvement. Over 95% of the sediment entering the streams can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek, Deadman Creek, and Alpowa Creek have had steelhead runs in the past. The Pataha Creek has native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow, and shiners inhabit the lower portion of Pataha Creek because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat through the CREP, CCRP, and DOE grants has improved habitat for all the fish species. The lower portion of the Pataha Creek is slowly developing into spawning and rearing habitat for Chinook salmon. With the future removal of some migration barriers on the lower portion of the Deadman and Pataha, more stream miles will become useful spawning and rearing habitat. The upland projects completed during 2006 were practices that significantly reduce

  13. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    Science.gov (United States)

    Peters, Arin J.; Studley, Seth E.

    2015-01-01

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  14. Analysis of Hollinshed watershed using GIS software

    OpenAIRE

    Hipp, Michael.

    1999-01-01

    CIVINS The objective of this study is to apply GIS and storm water modeling software to develop an accurate hydrologic model of the Hollinshed watershed. Use of GIS will allow the user to quickly change the land use of specific areas within in the watershed to determine the hydrologic effects throughout the watershed using the storm water model. Specific objectives were to: (1) develop a GIS database for the Hollinshed watershed; (2) Develop an appropriate link/ node diagram and correspond...

  15. User participation in watershed management and research:

    OpenAIRE

    Johnson, Nancy; Ravnborg, Helle Munk; Westermann, Olaf; Probst, Kirsten

    2001-01-01

    Many watershed development projects around the world have performed poorly because they failed to take into account the needs, constraints, and practices of local people. Participatory watershed management—in which users help to define problems, set priorities, select technologies and policies, and monitor and evaluate impacts—is expected to improve performance. User participation in watershed management raises new questions for watershed research, including how to design appropriate mechanis...

  16. Water and Poverty in Two Colombian Watersheds

    OpenAIRE

    Nancy Johnson; James Garcia; Jorge E. Rubiano; Marcela Quintero; Ruben Dario Estrada; Esther Mwangi; Adriana Morena; Alexandra Peralta; Sara Granados

    2009-01-01

    Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Result...

  17. CREEK Project's Phytoplankton Pigment Monitoring Database for Eight Creeks in the North Inlet Estuary, South Carolina: 1997-1999

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — The CREEK Project began in January of 1996 and was designed to help determine the role of oysters, Crassostrea virginica, in tidal creeks of the North Inlet...

  18. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-06-11

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... a Final Environmental Impact Statement (EIS) for the proposed Deer Creek Station project in... interconnection agreement to construct the proposed 300 megawatt (MW) Deer Creek Station in Brookings and...

  19. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-02-26

    ...; ] DEPARTMENT OF AGRICULTURE Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY... a Draft Environmental Impact Statement (DEIS) for the proposed Deer Creek Station in White...) Deer Creek Station in Brookings and Deuel Counties, South Dakota (Project). The proposed facility...

  20. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Science.gov (United States)

    2010-07-27

    ... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... Impact Statement (EIS) for the proposed Deer Creek Station Energy Facility project (Project) in Brookings... to construct, own, operate, and maintain the Deer Creek Station Energy Facility, a 300 MW...

  1. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Science.gov (United States)

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  2. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-12-12

    ... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD....

  3. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  4. Watershed Education for Broadcast Meteorologists

    Science.gov (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  5. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Science.gov (United States)

    2013-04-03

    ... and soils; water resources; ecological resources; visual and scenic resources; noise; historic and... COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming... in-situ recovery (ISR) of uranium at the Lost Creek Project in Sweetwater County, Wyoming....

  6. CREEK Project's Oyster Biomass Database for Eight Creeks in the North Inlet Estuary, South Carolina

    Data.gov (United States)

    Baruch Institute for Marine and Coastal Sciences, Univ of South Carolina — A group of eight tidal creeks dominated by oysters, Crassostrea virginica, in North Inlet Estuary, South Carolina, USA were studied using a replicated BACI (Before...

  7. Contaminants in sediment, food-chain biota, and bird eggs from the Newport Bay watershed, Orange County, California.

    Science.gov (United States)

    Santolo, Gary M; Byron, Earl R; Ohlendorf, Harry M

    2016-02-01

    Groundwater-related discharges in the San Diego Creek/Newport Bay watershed in Orange County, California have the potential to adversely affect the surface waters within the watershed and would likely not comply with the established total maximum daily loads (TMDLs) for the watershed. In 2004 and 2005, we studied the concentrations of contaminants of TMDL concern (particularly selenium [Se]) in birds that are at risk of exposure to contaminated food items because they feed and nest in the Newport Bay watershed. Most bioaccumulation is from elevated Se in groundwater downstream of a historic terminal swamp. Se bioaccumulation was observed in all biota tested, and DDE was found in fish and bird egg samples. Effects of contaminants on fish and birds are inconclusive due to the management disturbances in the watershed (e.g., flood control) and lack of bird nesting habitat. Although a significant relationship was observed between DDE concentrations and eggshell thinning in American avocet (Recurvirostra americana) eggs, the shell thinning in avocet and other species examined was not enough to result in hatching failure. Further focused monitoring efforts will be needed to characterize the exposure and risk levels. PMID:26803663

  8. Hydrologic study and evaluation of Ish Creek watershed (West Chestnut Ridge proposed disposal site)

    International Nuclear Information System (INIS)

    As part of site characterization work for the proposed West Chestnut Ridge Central Waste Disposal Facility, hydrologic information has been assembled from literature sources and direct field measurements. Earlier studies provide the basis for estimating flow frequency and expected high and low flows for catchments on Knox Group formations. Seven waterflow-gaging installations were established and used to characterize runoff patterns in the study area. Based on findings of this study, a practical design capacity for a flume to measure site runoff would range between 1 and 3000 L/s, although flows up to 4500 L/s (10-year recurrence interval) may be encountered. 7 references, 2 figures, 5 tables

  9. Linkages between denitrification and dissolved organic matter quality, Boulder Creek watershed, Colorado

    Science.gov (United States)

    Barnes, Rebecca T.; Smith, Richard L.; Aiken, George R.

    2012-03-01

    Dissolved organic matter (DOM) fuels the majority of in-stream microbial processes, including the removal of nitrate via denitrification. However, little is known about how the chemical composition of DOM influences denitrification rates. Water and sediment samples were collected across an ecosystem gradient, spanning the alpine to plains, in central Colorado to determine whether the chemical composition of DOM was related to denitrification rates. Laboratory bioassays measured denitrification potentials using the acetylene block technique and carbon mineralization via aerobic bioassays, while organic matter characteristics were evaluated using spectroscopic and fractionation methods. Denitrification potentials under ambient and elevated nitrate concentrations were strongly correlated with aerobic respiration rates and the percent mineralized carbon, suggesting that information about the aerobic metabolism of a system can provide valuable insight regarding the ability of the system to additionally reduce nitrate. Multiple linear regressions (MLR) revealed that under elevated nitrate concentrations denitrification potentials were positively related to the presence of protein-like fluorophores and negatively related to more aromatic and oxidized fractions of the DOM pool. Using MLR, the chemical composition of DOM, carbon, and nitrate concentrations explained 70% and 78% of the observed variability in denitrification potential under elevated and ambient nitrate conditions, respectively. Thus, it seems likely that DOM optical properties could help to improve predictions of nitrate removal in the environment. Finally, fluorescence measurements revealed that bacteria used both protein and humic-like organic molecules during denitrification providing further evidence that larger, more aromatic molecules are not necessarily recalcitrant in the environment.

  10. Impact of targeted removal of residue cover on water quality in the sand creek watershed

    Science.gov (United States)

    Conservation tillage methods are recommended by environmental protection agencies to reduce soil erosion and runoff from highly erodible cropland. Consequently, it gained wide acceptance among producers in the Upper Midwest and elsewhere. However, remote sensing based tillage mapping studies have sh...

  11. Geochemical and stable isotope variations in baseflow from an urbanized watershed: White Rock Creek, Dallas, Texas

    International Nuclear Information System (INIS)

    Public concerns about surface water quality and its impact on health issues have put a premium on the ability to predict surface and groundwater quality in urban areas. The movement of toxins and nutrients in urban areas is largely controlled by interactions with soil and aquifer minerals along hydrologic pathways. Despite progress in theoretical modeling of the effects of these interactions on water chemistry, it is presently impossible to predict overall trends in urban water quality. Determining the controls on stream water chemistry is problematic due to the interplay between different hydrologic reservoirs which cannot be easily observed or measured. Natural tracers, such as dissolved ions and isotopes, provide an indirect method for observing subsurface interactions and are useful for time series analysis of stream water composition. Ionic species are generally nonconservative components because of chemical reactions and are thus useful for discerning the overall discharge chemistry affected by the relationship

  12. A Contaminants Survey of Three Lentic Systems within the Cypress Creek Watershed, Texas, 1993 - 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1993, a study was initiated by the U.S. Fish and Wildlife Service, Arlington, Texas, Field Office to determine organic and metal contaminant levels within three...

  13. Multiagent distributed watershed management

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  14. Water resources of the English River, Old Mans Creek, and Clear Creek basins in Iowa

    Science.gov (United States)

    Schwob, H.H.

    1964-01-01

    The surface and ground water resources of a 991 square mile area comprising the drainage basins of English River, Old Mans Creek and Clear Creek are presented. These basins lie to the west and southwest of Iowa City, Iowa, and all three streams are tributary to the Iowa River. The area is comprised of rolling uplands with relatively broad valleys and is devoted mainly to agriculture and livestock farming.

  15. Species status of Mill Creek Elliptio

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G.M. [Academy of Natural Sciences (United States); Mulvey, M. [Savannah River Ecology Lab., Aiken, SC (United States)

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  16. Impacts of wildfire on runoff and sediment loads at Little Granite Creek, western Wyoming

    Science.gov (United States)

    Ryan, Sandra E.; Dwire, Kathleen A.; Dixon, Mark K.

    2011-06-01

    Baseline data on rates of sediment transport provide useful information on the inherent variability of stream processes and may be used to assess departure in channel form or process from disturbances. In August 2000, wildfire burned portions of the Little Granite Creek watershed near Bondurant, WY where bedload and suspended sediment measurements had been collected during 13 previous runoff seasons. This presented an opportunity to quantify increases in sediment loads associated with a large-scale natural disturbance. The first three years post-fire were warm and dry, with low snowpacks and few significant summer storms. Despite relatively low flows during the first runoff season, the estimated sediment load was about five times that predicted from regression of data from the pre-burn record. Increased sediment loading occurred during the rising limb and peak of snowmelt (54%) and during the few summer storms (44%). While high during the first post-fire year, total annual sediment yield decreased during the next two years, indicating an eventual return to baseline levels. The results from this sediment monitoring lacked some of the more dramatic responses that have been observed in other watersheds following fire. In other environments, moderate-to-high intensity rainstorms caused significant flooding, widespread debris flows and channel incision and aggradation. A few moderate intensity storms (debris flows, as defined by channel incision into previously unchanneled areas. Speculatively, the sedimentation pattern and geomorphic response in Little Granite Creek may be fairly typical of stream responses to wildfire during times of continued drought and in the absence of widespread, significant rainfall, representing one type of response on a continuum of effects following wildfire.

  17. A comparison of pre- and post-remediation water quality, Mineral Creek, Colorado

    Science.gov (United States)

    Runkel, R.L.; Bencala, K.E.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.

    2009-01-01

    Pre- and post-remediation data sets are used herein to assess the effectiveness of remedial measures implemented in the headwaters of the Mineral Creek watershed, where contamination from hard rock mining has led to elevated metal concentrations and acidic pH. Collection of pre- and post-remediation data sets generally followed the synoptic mass balance approach, in which numerous stream and inflow locations are sampled for the constituents of interest and estimates of streamflow are determined by tracer dilution. The comparison of pre- and post-remediation data sets is confounded by hydrologic effects and the effects of temporal variation. Hydrologic effects arise due to the relatively wet conditions that preceded the collection of pre-remediation data, and the relatively dry conditions associated with the post-remediation data set. This difference leads to a dilution effect in the upper part of the study reach, where pre-remediation concentrations were diluted by rainfall, and a source area effect in the lower part of the study reach, where a smaller portion of the watershed may have been contributing constituent mass during the drier post-remediation period. A second confounding factor, temporal variability, violates the steady-state assumption that underlies the synoptic mass balance approach, leading to false identification of constituent sources and sinks. Despite these complications, remedial actions completed in the Mineral Creek headwaters appear to have led to improvements in stream water quality, as post-remediation profiles of instream load are consistently lower than the pre-remediation profiles over the entire study reach for six of the eight constituents considered (aluminium, arsenic, cadmium, copper, iron, and zinc). Concentrations of aluminium, cadmium, copper, lead, and zinc remain above chronic aquatic-life standards, however, and additional remedial actions may be needed. Future implementations of the synoptic mass balance approach should be

  18. Identifying Linkages Between Land Use, Geomorphology, and Aquatic Habitat in a Mixed-Use Watershed

    Science.gov (United States)

    McIlroy, Susan K.; Montagne, Cliff; Jones, Clain A.; McGlynn, Brian L.

    2008-11-01

    The potential impacts of land use on large woody debris (LWD) were examined in Sourdough Creek Watershed, a rapidly growing area encompassing Bozeman, Montana, USA. We identified six land classes within a 250 m buffer extending on either side of Sourdough Creek and assessed aquatic habitat and geomorphologic variables within each class. All LWD pieces were counted, and we examined 14 other variables, including undercut bank, sinuosity, and substrate composition. LWD numbers were generally low and ranged from 0 to 8.2 pieces per 50 m of stream. Linear regression showed that LWD increased with distance from headwaters, riparian forest width, and sinuosity in four of the six land classes. Statistically significant differences between land classes for many aquatic habitat and geomorphologic variables indicated the impacts of different land uses on stream structure. We also found that practices such as active wood removal played a key role in LWD abundance. This finding suggests that managers should prioritize public education and outreach concerning the importance of in-stream wood, especially in mixed-use watersheds where wood is removed for either aesthetic reasons or to prevent stream flooding.

  19. Discover a Watershed: The Everglades.

    Science.gov (United States)

    Robinson, George B.; And Others

    This publication is designed for both classroom teachers and nonformal educators of young people in grades 6 through 12. It can provide a 6- to 8-week course of study on the watershed with students participating in activities as they are ordered in the guide, or activities may be used in any order with educators selecting those appropriate for the…

  20. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-01-01

    A geo-referenced modeling system was developed in this study to investigate the spatiotemporal variability of pesticide distributions and associated ecosystem risks. In the modeling system, pesticide fate and transport processes in soil-canopy system were simulated at field scale by the pesticide root zone model (PRZM). Edge-of-field mass fluxes were up-scaled with a spatially distributed flow-routing model to predict pesticide contaminations in surface water. The developed model was applied to the field conditions of the Orestimba Creek watershed, an agriculturally-dominated area in California's Central Valley during 1990 through 2006, with the organophosphate insecticides diazinon and chlorpyrifos as test agents. High concentrations of dissolved pesticides were predicted at the watershed outlet during the irrigation season of April through November, due to the intensive pesticide use and low stream flow. Concentration violations, according to the California aquatic life criteria, were observed for diazinon before 2001, and for chlorpyrifos during the entire simulation period. Predicted pesticide exposure levels showed potential adverse effects on certain genera of sensitive aquatic invertebrates in the ecosystem of the Orestimba Creek. Modeling assessments were conducted to identify the factors governing spatial patterns and seasonal trends on pesticide distribution and contamination potentials to the studied aquatic ecosystem. Areas with high pesticide yields to surface water were indicated for future research and additional studies focused on monitoring and mitigation efforts within the watershed. Improved irrigation techniques and management practices were also suggested to reduce the violations of pesticide concentrations during irrigation seasons. PMID:19244487

  1. Test of newly developed conceptual hydrological model for simulation of rain-on-snow events in forested watershed

    Directory of Open Access Journals (Sweden)

    Si-min QU

    2013-01-01

    Full Text Available A conceptual hydrological model that links the Xin’anjiang hydrological model and a physically based snow energy and mass balance model, described as the XINSNOBAL model, was developed in this study for simulating rain-on-snow events that commonly occur in the Pacific Northwest of the United States. The resultant model was applied to the Lookout Creek Watershed in the H. J. Andrews Experimental Forest in the western Cascade Mountains of Oregon, and its ability to simulate streamflow was evaluated. The simulation was conducted at 24-hour and one-hour time scales for the period of 1996 to 2005. The results indicated that runoff and peak discharge could be underestimated if snowpack accumulation and snowmelt under rain-on-snow conditions were not taken into account. The average deterministic coefficient of the hourly model in streamflow simulation in the calibration stage was 0.837, which was significantly improved over the value of 0.762 when the Xin’anjiang model was used alone. Good simulation performance of the XINSNOBAL model in the WS10 catchment, using the calibrated parameter of the Lookout Creek Watershed for proxy-basin testing, demonstrates that transplanting model parameters between similar watersheds can provide a useful tool for discharge forecasting in ungauged basins.

  2. Stream channel surface water - groundwater interactions in a fire impacted watershed

    Science.gov (United States)

    Russo, T. A.; Fisher, A. T.

    2010-12-01

    We are conducting a study of surface water - groundwater interactions within the Scott Creek watershed, a 4th order catchment of 76.6 km2 in central coastal California, to assess the impacts of fire on channel and riparian conditions. Scott Creek and its tributaries are valuable spawning habitat for Coho salmon and Steelhead trout. The Scott Creek watershed is located on the western (windward) side of the Santa Cruz Mountains, where the most intense precipitation falls from November to April, and includes a mixture of protected land and areas used for agriculture, grazing, and selective timber harvesting. 37% of the watershed was burned in a fire in August 2009, and we hypothesize that this could result in enhanced delivery of fine grained hill slope sediments to stream channels for several years post fire, reducing the extent of hyporheic exchange downstream of burned areas. This could reduce the survival rates of Coho and Steelhead redds (egg nests), which are dependent on surface water - groundwater exchange for regulation of water nutrient content and temperature. We are monitoring streambed seepage rates and hydraulic conductivity, and performing repeated tracer discharge experiments at three sites on Scott Creek, two within and one upstream of the area burned in the 2009 fire. Streambed seepage rates are calculated using a time series method applied to heat as a tracer, using naturally occurring diurnal changes in stream temperature, and extended to calculations of streambed hydraulic conductivity based on measured head gradients. Hyporheic exchange parameters are assessed using tracer breakthrough data, as fit by an optimized model of one-dimensional advection, dispersion and transient storage. Variations in hydrologic characteristics (e.g., transient storage area, exchange coefficient) over time at each site are being used to assess the magnitude and timing of channel modifications independent to, and associated with, the burning of catchment hill slopes

  3. Assessment of nonpoint-source nutrient discharges from the Switzer Creek basin, Steuben County, New York

    Science.gov (United States)

    Sherwood, D.A.

    1984-01-01

    Switzer Creek, tributary to the upper Susquehanna River basin, drains a 3.55 sq mi watershed that is 51% agricultural and 49% forested. From November 1978 to September 1980, Switzer Creek discharged 1,000 tons of suspended sediment, or 0.44 tons/acre. The maximum instantaneous suspended sediment concentration of 3 ,840 mg/L occurred during high water on September 14, 1979. Nitrogen loads, composed of nitrite plus nitrate total kjeldahl nitrogen, totaled 11 and 3.5 pounds/acre, respectively. Eighty percent of the total nitrogen load was transported during base flow. Of the nitrogen load transported during base flow, 88% was nitrite plus nitrate; of the total nitrogen load transported during high flows, 85% was organic nitrogen. Nearly 90% of the phosphorus load was transported during high flows as a result of its affinity for particulate matter. The load of total phosphorus as P totaled 0.63 pounds/acre, and total orthophosphorus as P totaled 0.19 pounds/acre. Nitrite plus nitrate from atmospheric sources totaled 8.4 pounds/acre, and ammonium totaled 3.9 pounds/acre. Equations relate streamflow to concentration and load of eight selected nutrients. (USGS)

  4. Stream health of Courtland Creek, Oakland, California utilizing benthic macroinvertebrates as ecological indicators

    Science.gov (United States)

    White, K.; Ahumada, A.; Lopez, C.; Phillips, A.; Varella, N.; Torres, E.; Quintero, D.; Bracho, H.

    2012-12-01

    An initial benthic macroinvertebrate and water quality survey was conducted on Courtland Creek, Oakland, California. Samples were collected from 3 sites between Brookdale avenue and 45th street at accessible sections of this largely culverted stream. To collect macroinvertebrates, brass frame kick nets with 500 micron netting were placed in the stream and substrate was disturbed for 1 minute in front of the opening of the kick net. The kick net was rinsed into a tub and invertebrates were identified and sorted on site. Organisms were ranked using a biotic index and average index was determined for each site. The biotic index of each site ranked the stream overall as poor. Dissolved oxygen and Nitrates were measured using wet chemistry procedures. Dissolved oxygen levels in the stream are sufficient for invertebrates but low for a stream at 4-5ppm. Nitrate levels were significantly high concentrations of 40 ppm for all sites. Nitrate levels recorded could reflect the presence of animal waste in the water or agricultural fertilizer from private homes and gardens that adjoin the stream. The presence of animal waste was observed at all sites in the study area and may have caused the levels of nitrates observed. Nitrate levels are not at toxic levels but at this level affect immunological functions of invertebrates. Results indicate that the habitat and water quality of Courtland Creek is in poor condition and restoration is recommended in order to increase the ecological health or this urban watershed.

  5. Watershed Boundaries - WATERSHEDS_HUC11__USGS_IN: Watersheds, 11-digit Hydrologic Units, in Indiana, (Derived from US Geological Survey, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WATERSHEDS_HUC11_USGS_IN is a polygon shapefile showing the boundaries of watersheds in Southwestern Indiana. Watersheds are noted by a 11-digit hydrologic unit....

  6. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    Science.gov (United States)

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.

  7. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    International Nuclear Information System (INIS)

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  8. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, Kent; Daniel, Anamary [Professional Project Services, Inc., Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio [Florida International University, Applied Research Center 10555 W. Flagler St., EC 2100 Miami Florida 33174 (United States); Malek-Mohammadi, Siamak [Bradley University, 413A Jobst Hall, Preoria, IL 61625 (United States)

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The model also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude

  9. Effects of surface mining on water quality in a small watershed, Sullivan County, Indiana

    Science.gov (United States)

    Peters, James G.

    1981-01-01

    The water quality in an unnamed tributary to Spencer Creek upstream and downstream from a surface mine and in South Lake adjacent to the mine were monitored during a 5-year study (1975-79) in the 1,210-acre watershed of the tributary. Compared with the background values, pH and concentrations of all major dissolved ions and dissolved, suspended, and streambed metals generally increased in Spencer Creek tributary downstream from the mine. Median dissolved-sodium and sulfate concentrations increased as much as eighteenfold and fourteenfold, respectively , and median dissolved-manganese and suspended aluminum concentrations increased as much as sevenfold and more than twofold. Concentrations of suspended metals decreased more than 50% after installation of sediment ponds by the mine operator. During high streamflow, concentrations of major ions at background and at mined sites on Spencer Creek tributary decreased, but dissolved- and suspended-metal concentrations increased downstream from the mine. South Lake exhibited seasonal stratification and mixing characteristics of other lakes at a similar latitude. However, the bottom 3 feet of the water column demonstrated persistent chemical stratification. Phytoplankton populations of the lake varied seasonally, and the population density patterns resembled those in other lakes at latitudes similar to that of South Lake. (USGS)

  10. Mercury in the soil of two contrasting watersheds in the eastern United States.

    Directory of Open Access Journals (Sweden)

    Douglas A Burns

    Full Text Available Soil represents the largest store of mercury (Hg in terrestrial ecosystems, and further study of the factors associated with soil Hg storage is needed to address concerns about the magnitude and persistence of global environmental Hg bioaccumulation. To address this need, we compared total Hg and methyl Hg concentrations and stores in the soil of different landscapes in two watersheds in different geographic settings with similar and relatively high methyl Hg concentrations in surface waters and biota, Fishing Brook, Adirondack Mountains, New York, and McTier Creek, Coastal Plain, South Carolina. Median total Hg concentrations and stores in organic and mineral soil samples were three-fold greater at Fishing Brook than at McTier Creek. Similarly, median methyl Hg concentrations were about two-fold greater in Fishing Brook soil than in McTier Creek soil, but this difference was significant only for mineral soil samples, and methyl Hg stores were not significantly different among these watersheds. In contrast, the methyl Hg/total Hg ratio was significantly greater at McTier Creek suggesting greater climate-driven methylation efficiency in the Coastal Plain soil than that of the Adirondack Mountains. The Adirondack soil had eight-fold greater soil organic matter than that of the Coastal Plain, consistent with greater total Hg stores in the northern soil, but soil organic matter - total Hg relations differed among the sites. A strong linear relation was evident at McTier Creek (r(2 = 0.68; p<0.001, but a linear relation at Fishing Brook was weak (r(2 = 0.13; p<0.001 and highly variable across the soil organic matter content range, suggesting excess Hg binding capacity in the Adirondack soil. These results suggest greater total Hg turnover time in Adirondack soil than that of the Coastal Plain, and that future declines in stream water Hg concentrations driven by declines in atmospheric Hg deposition will be more gradual and prolonged in the

  11. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    International Nuclear Information System (INIS)

    West-central Indiana is underlain by coal-bearing Pennsylvanian rocks. Nearly all of the area has been glaciated at least once and is characterized by wide flood plains and broad, flat uplands. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has > 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. More than 50,000 acres in west-central Indiana were disturbed by surface coal mining from 1941 through 1980. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined,agricultural land. Soils are very well drained shaly silty loams that have formed on steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation

  12. Realities of the Watershed Management Approach: The Manupali Watershed Experience

    OpenAIRE

    Rola, Agnes C.; Suminguit, Vel J.; Sumbalan, Antonio T.

    2004-01-01

    Local research in the Manupali watershed, with about 60% of its land area belonging to the upland municipality of Lantapan, Bukidnon, found that water quantity and quality declined due to soil erosion and domestic waste contamination. As population grows and agriculture becomes more integrated to the market, water deterioration is projected to worsen. Both economic and environmental sustainability then depend on the following management bodies: 1) the management of the Mt. Kitanglad range, th...

  13. Landscape position influences microbial composition and function via redistribution of soil water across a watershed.

    Science.gov (United States)

    Du, Zhe; Riveros-Iregui, Diego A; Jones, Ryan T; McDermott, Timothy R; Dore, John E; McGlynn, Brian L; Emanuel, Ryan E; Li, Xu

    2015-12-01

    Subalpine forest ecosystems influence global carbon cycling. However, little is known about the compositions of their soil microbial communities and how these may vary with soil environmental conditions. The goal of this study was to characterize the soil microbial communities in a subalpine forest watershed in central Montana (Stringer Creek Watershed within the Tenderfoot Creek Experimental Forest) and to investigate their relationships with environmental conditions and soil carbonaceous gases. As assessed by tagged Illumina sequencing of the 16S rRNA gene, community composition and structure differed significantly among three landscape positions: high upland zones (HUZ), low upland zones (LUZ), and riparian zones (RZ). Soil depth effects on phylogenetic diversity and β-diversity varied across landscape positions, being more evident in RZ than in HUZ. Mantel tests revealed significant correlations between microbial community assembly patterns and the soil environmental factors tested (water content, temperature, oxygen, and pH) and soil carbonaceous gases (carbon dioxide concentration and efflux and methane concentration). With one exception, methanogens were detected only in RZ soils. In contrast, methanotrophs were detected in all three landscape positions. Type I methanotrophs dominated RZ soils, while type II methanotrophs dominated LUZ and HUZ soils. The relative abundances of methanotroph populations correlated positively with soil water content (R = 0.72, P < 0.001) and negatively with soil oxygen (R = -0.53, P = 0.008). Our results suggest the coherence of soil microbial communities within and differences in communities between landscape positions in a subalpine forested watershed that reflect historical and contemporary environmental conditions. PMID:26431971

  14. Benthic macroinvertebrate richness along Sausal Creek, Oakland, California

    Science.gov (United States)

    Lara, D.; Ahumada, E.; Leon, Y.; Bracho, H.; Telles, C.

    2012-12-01

    Sausal Creek, 5.0 km long, is one of the principal watercourses in Oakland, California. The headwaters of Sausal Creek arise in the Oakland Hills and the creek flows southwestward through the city, discharging into the tidal canal that separates the island of Alameda from Oakland; the creek ultimately flows into San Francisco Bay. Due to the presence of rainbow trout, the stream health of Sausal Creek is a local conservation priority. In the present study, a survey of benthic macroinvertebrates in the creek was conducted and possible correlations between environmental variables and taxonomic richness were analyzed. Three stations along the creek were sampled using a 30.5cm 500 micron aquatic d-net, and temperature, pH and dissolved oxygen levels were measured in creek samples obtained at each station. Temperature, pH and dissolved oxygen levels remained constant along the creek. Taxonomic richness was highest at the upstream site of Palo Seco, located in an eastern section of the creek, and furthest downstream at Dimond Park, in the western portion of the creek. The Monterrey site, just west of Palo Seco was found to be significantly low in benthic macroinvertebrates. The Palo Seco and Monterrey sites are separated by Highway 13 and storm drain inputs may bring contaminants into the creek at this site. At the Monterrey site Sausal Creek follows the Hayward Fault, gas emissions or change in substrate may also affect the local population of benthic invertebrates. Further research will be conducted to determine what factors are contributing to this local anomaly.

  15. Wolf Creek electricity will shock ratepayers

    International Nuclear Information System (INIS)

    When the Wolf Creek nuclear plant in Topeka, Kansas starts up in 1984, ratepayers will have a 60 to 100% rate increase to cover construction costs because the state prohibits the inclusion of construction work in progress (CWIP) in the rate base. This illustrates the plight of small utilities that build nuclear plants. Kansas commissioners favor legislation that will give them the flexibility to exclude any new excess plant capacity from the rate base on the grounds that it will encourage utilities to sell excess capacity. Kansas utilities could adopt a trending, or phased-in approach, rather than ask for a single large increase in rates. The Wolf Creek utilities have not made a final decision on how to handle the impact on customers

  16. The macroinvertebrates of Magela Creek, Northern Territory

    International Nuclear Information System (INIS)

    The littoral zones of five permanent billabongs in Magela Creek were sampled monthly for macroinvertebrates. Greatest numbers of taxa and individuals were caught in the late wet season and early dry season in the shallow billabongs; in the deep billabongs, seasonal variations were not so marked. These changes appeared to be associated with the development of macrophytes, which offered food and shelter to the invertebrate fauna. The dominant groups were the Chironomidae, Oligochaetae and Ephemeroptera. The seasonal patterns of the catches were sufficiently consistent for future samples to be able to be compared with these initial ones with some confidence that any changes are real. This work is part of a larger study into the biota and water quality of Magela Creek designed to provide data on aquatic communities before mining of the Ranger uranium deposit starts

  17. Frogs of the Magela Creek system

    International Nuclear Information System (INIS)

    Facets of the reproductive biology of 24 species of frogs from the Magela Creek system were examined over two Wet seasons. Data are presented for the onset, duration and termination of activity, calling and breeding, and are correlated with temperature and relative humidity. Most species breed at the onset of the Wet season before the flood plain is completely inundated. For each species the eggs and form of the spawn clump are described

  18. Soils of Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lietzke, D.A.

    1994-01-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 using a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research

  19. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years' data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143

  20. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Toole, M.A.; van Duyn, Y. [Normandeau Associates Inc., New Ellenton, SC (United States)

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  1. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  2. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Energy Technology Data Exchange (ETDEWEB)

    Shanley, James B. [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: jshanley@usgs.gov; Alisa Mast, M. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: mamast@usgs.gov; Campbell, Donald H. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dhcampbe@usgs.gov; Aiken, George R. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: graiken@usgs.gov; Krabbenhoft, David P. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: dpkrabbe@usgs.gov; Hunt, Randall J. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: rjhunt@usgs.gov; Walker, John F. [US Geological Survey, 8505 Research Way, Middleton, WI 53562 (United States)], E-mail: jfwalker@usgs.gov; Schuster, Paul F. [US Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303 (United States)], E-mail: pschuste@usgs.gov; Chalmers, Ann [US Geological Survey, PO Box 628, Montpelier, VT 05601 (United States)], E-mail: chalmers@usgs.gov; Aulenbach, Brent T. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: btaulenb@usgs.gov; Peters, Norman E. [US Geological Survey, 3039 Amwiler Road, Suite 130, Atlanta, GA 30360 (United States)], E-mail: nepeters@usgs.gov; Marvin-DiPasquale, Mark [US Geological Survey, 345 Middlefield Rd., MS 480, Menlo Park, CA 94025 (United States)], E-mail: mmarvin@usgs.gov; Clow, David W. [US Geological Survey, MS 415 Denver Federal Center, Denver, CO 80225 (United States)], E-mail: dwclow@usgs.gov; Shafer, Martin M. [Environmental Chemistry and Technology and Wisconsin State Laboratory of Hygiene, University of Wisconsin, Madison, WI 53706 (United States)], E-mail: mmshafer@wisc.edu

    2008-07-15

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L{sup -1} and MeHg was less than 0.2 ng L{sup -1}. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L{sup -1} at Sleepers River, Vermont; 112 (0.75) ng L{sup -1} at Rio Icacos, Puerto Rico; and 55 (0.80) ng L{sup -1} at Panola Mt., Georgia. Filtered (<0.7 {mu}m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L{sup -1} at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. - High-flow sampling reveals strong contrasts in total

  3. Environmental Management of Agricultural Watersheds

    OpenAIRE

    Golubev, G.N.

    1983-01-01

    It is well known that agricultural activity has a considerable influence on hydrological processes such as run-off and its regime, erosion and sedimentation, transport of dissolved chemicals, etc. But the influence goes beyond hydrology. Water just plays the role of an agent or carrier in geoecosystems. That is why we have chosen the watershed as a natural territorial unit where the components are united by hydrological processes. The policy usually adopted for normal agricultural dev...

  4. Seasonal occurrence of antibiotics and a beta agonist in an agriculturally-intensive watershed

    International Nuclear Information System (INIS)

    We evaluated the occurrence of 12 veterinary antibiotics and a beta agonist over spatial and temporal scales in Shell Creek, an intensively agricultural watershed in Nebraska, using Polar Organic Chemical Integrative Samplers (POCIS). Twelve pharmaceuticals were detected with concentrations ranging from 0.0003 ng/L to 68 ng/L. The antibiotics measured at the highest time-weighted average concentrations were lincomycin (68 ng/L) and monensin (49 ng/L), and both compounds were detected at increased concentrations in summer months. Analysis of variance indicates that mean concentrations of detected pharmaceuticals have no significant (p > 0.01) spatial variation. However, significant temporal differences (p < 0.01) were observed. This study demonstrates the utility of passive samplers such as POCIS for monitoring ambient levels of pharmaceuticals in surface waters. - Highlights: • Passive samplers were used to evaluate veterinary pharmaceuticals in an agricultural watershed. • Monensin and lincomycin were detected at the highest TWA concentrations. • Significantly higher concentrations were detected in summer months. • Pulses of antibiotics correspond with rainfall-runoff events. - The spatial and temporal differences in the occurrence of thirteen veterinary pharmaceuticals was evaluated in an intensively agricultural watershed

  5. Realities of Watershed Management in the Philippines: The Case of the Iloilo-Maasin Watershed

    OpenAIRE

    Francisco, Herminia A.; Salas, Jessica C.

    2004-01-01

    The paper analyzed the presence or absence of elements needed to have an effective system of watershed management in the Maasin Watershed, Iloilo Province. IT concluded that: a) both the legal and institutional structures needed support watershed management effort are in place; b) there is evidence of a strong social capital existing in the upland and lowland communities; c) there is an adequate level of technical capital investment to sustainably manage the watershed; and d) there is suffici...

  6. Steel creek macroinvertebrates: L Lake/steel creek biological monitoring program January 1986--December 1987

    Energy Technology Data Exchange (ETDEWEB)

    O' Hop, J.R.; Lauritsen, D.; Magoulik, D.

    1988-04-01

    The macroinvertebrate community in Steel Creek was monitored at 13 sampling stations from January 1986 to December 1987 to assess the effects of L-Lake impoundment on the biological community downstream from the dam. The benthic macroinvertebrate communities were sampled monthly at 13 stations in Steel Creek using artificial substrates. Macroinvertebrates suspended in the water column were collected monthly at seven stations using drift nets. Emerging aquatic insects were sampled monthly at seven stations with floating emergence traps. Invertebrates on natural substrates (bottom sediments, snags, and macrophytes) were collected at seven stations in May and September in both 1986 and 1987. Macroinvertebrates were collected in February and August of 1986 and 1987 at 13 stations in Steel Creek using dip nets. 61 refs., 79 figs., 18 tabs.

  7. Investigating the sources of sediment in a Canadian agricultural watershed using a colour-based fingerprinting technique

    Science.gov (United States)

    Barthod, Louise; Lobb, David; Owens, Philip; Martinez-Carreras, Nuria; Koiter, Alexander; Petticrew, Ellen; McCullough, Gregory

    2014-05-01

    The development of beneficial management practises to minimize adverse impacts of agriculture on soil and water quality requires information on the sources of sediment at the watershed scale. Sediment fingerprinting allows for the determination of sediment sources and apportionment of their contribution within a watershed, using unique physical, radiochemical or biogeochemical properties, or fingerprints, of the potential sediment sources. The use of sediment colour as a fingerprint is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. This technique is currently being utilized to determine sediment sources within the South Tobacco Creek Watershed, an agricultural watershed located in the Canadian prairies (south-central Manitoba). Suspended sediment and potential source (topsoil, channel bank and shale bedrock material) samples were collected between 2009 and 2011 at six locations along the main stem of the creek. Sample colour was quantified from diffuse reflectance spectrometry measurements over the visible wavelength range using a spectroradiometer (ASD Field Spec Pro, 400-2500 nm). Sixteen colour coefficients were derived from several colour space models (CIE XYZ, CIE xyY, CIE Lab, CIE Luv, CIE Lch, Landsat RGB, Redness Index). The individual discrimination power of the colour coefficients, after passing several prerequisite tests (e.g., linearly additive behaviour), was assessed using discriminant function analysis. A stepwise discriminant analysis, based on the Wilk's lambda criterion, was then performed in order to determine the best-suited colour coefficient fingerprints which maximized the discrimination between the potential sources. The selected fingerprints classified the source samples in the correct category 86% of the time. The misclassification is due to intra-source variability and source overlap which can lead to higher uncertainty in sediment source apportionment. The selected fingerprints

  8. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  9. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  10. Water Exchange and Circulation in Selected Kenyan Creeks.

    OpenAIRE

    Nguli, Michael Mutua

    2002-01-01

    Tides, currents, salinities and temperatures were studied from 1995-1998 in three selected creeks on the Kenya coast (Gazi Bay, Tudor and Kilifi Creeks) in order to improve knowledge on circulation and water exchange between the creeks and the ocean. Locally available meteorological data, tide gauge data and historical cruise data were also analysed. A meteorological mast was used for detailed studies of sea surface heat fluxes. The studies were carried out focussing on the monsoon seasons; t...

  11. Community-Based Integrated Watershed Management

    Institute of Scientific and Technical Information of China (English)

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  12. Assessment of Water-Quality Conditions in Fivemile Creek in the Vicinity of the Fivemile Creek Greenway, Jefferson County, Alabama, 2003-2005

    Science.gov (United States)

    Gill, Amy C.; Robinson, John A.; Redmond, Jymalyn E.; Bradley, Michael W.

    2008-01-01

    The watershed of Fivemile Creek (FMC), a tributary to the Locust Fork of the Black Warrior River, is located north of Birmingham, Alabama. Areas that have been previously coal-mined border the creek, and portions of the upper watershed have been and are currently (2007) being used for industrial and urban uses. The U.S. Geological Survey (USGS), in cooperation with the City of Tarrant, the Freshwater Land Trust, and the Jefferson County Commission, conducted a water-quality assessment of 12 sites along FMC during 2003?2005. Water samples were analyzed for basic physical and chemical properties and concentrations of major ions, nutrients, fecal indicator bacteria, organic wastewater compounds, pesticides, trace elements, and semivolatile organic compounds. Streambed-sediment samples were analyzed for concentrations of trace elements and semivolatile organic compounds. Benthic invertebrate communities were evaluated for taxonomic composition and relation to water-quality conditions. Nutrient concentrations in the FMC watershed reflect the influences of natural and anthropogenic sources. Concentrations of total nitrogen in all samples and total Kjeldahl nitrogen in at least one sample each collected from FMC at Hewitt Park, FMC below Springdale Road, FMC at Lewisburg, FMC near Republic, FMC at Brookside, and FMC at Linn Crossing exceeded U.S. Environmental Protection Agency (USEPA) ecoregion nutrient criteria. Total phosphorus concentrations in about 58 percent of all samples were above the ecoregion nutrient criteria. Concentrations of chlorophyll a, an indicator of algal biomass, in the FMC watershed were below the appropriate USEPA ecoregion criteria. Fecal indicator bacteria concentrations occasionally exceeded criteria established by the Alabama Department of Environmental Management (ADEM) and the USEPA to protect human health and aquatic life. Median fecal-coliform concentrations equaled or exceeded USEPA criteria at four of the six sites with multiple samples

  13. Concentration of metals in fishes from Thane and Bassein creeks of Bombay, India

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnamurti, A.J.; Nair, V.R.

    feeders, compared to plankton feeders and other pelagic carnivores. In general, fish from Bassein creek showed higher concentration of metals than those colected from Thane creek. As Thane-Bassein creek system experiences stress due to anthropogenic waste...

  14. Estimating greenhouse gas emissions at the soil-atmosphere interface in forested watersheds of the US Northeast.

    Science.gov (United States)

    Gomez, Joshua; Vidon, Philippe; Gross, Jordan; Beier, Colin; Caputo, Jesse; Mitchell, Myron

    2016-05-01

    Although anthropogenic emissions of greenhouse gases (GHG: CO2, CH4, N2O) are unequivocally tied to climate change, natural systems such as forests have the potential to affect GHG concentration in the atmosphere. Our study reports GHG emissions as CO2, CH4, N2O, and CO2eq fluxes across a range of landscape hydrogeomorphic classes (wetlands, riparian areas, lower hillslopes, upper hillslopes) in a forested watershed of the Northeastern USA and assesses the usability of the topographic wetness index (TWI) as a tool to identify distinct landscape geomorphic classes to aid in the development of GHG budgets at the soil atmosphere interface at the watershed scale. Wetlands were hot spots of GHG production (in CO2eq) in the landscape owing to large CH4 emission. However, on an areal basis, the lower hillslope class had the greatest influence on the net watershed CO2eq efflux, mainly because it encompassed the largest proportion of the study watershed (54 %) and had high CO2 fluxes relative to other land classes. On an annual basis, summer, fall, winter, and spring accounted for 40, 27, 9, and 24 % of total CO2eq emissions, respectively. When compared to other approaches (e.g., random or systematic sampling design), the TWI landscape classification method was successful in identifying dominant landscape hydrogeomorphic classes and offered the possibility of systematically accounting for small areas of the watershed (e.g., wetlands) that have a disproportionate effect on total GHG emissions. Overall, results indicate that soil CO2eq efflux in the Archer Creek Watershed may exceed C uptake by live trees under current conditions. PMID:27085717

  15. Hydrologic analysis of Steel Creek and L Lake and the effects of flow reduction on Steel Creek habitat

    Energy Technology Data Exchange (ETDEWEB)

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    This report was prepared to support a proposal to eliminate the EIS mandated spring flow requirements in Steel Creek below L Lake. The base flow in Steel Creek below L Lake was estimated using historical data. The water balance of L Lake was studied to evaluate the effects of flow reduction on the Steel Creek hydrologic system. The base flow in Steel Creek below L Lake is estimated as 0.28 cms (10 cfs). A reduction in L Lake discharge to 0.28 cms will result in a fish community similar to the one that existed before the impoundment of L Lake.

  16. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001-10

    Science.gov (United States)

    Banta, J. Ryan; Slattery, Richard N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Region Grazing Lands Conservation Initiative, the Texas State Soil and Water Conservation Board, the San Antonio River Authority, the Edwards Aquifer Authority, Texas Parks and Wildlife, the Guadalupe Blanco River Authority, and the San Antonio Water System, evaluated the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in and adjacent to the Honey Creek State Natural Area in Comal County, Tex. By removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice, the hydrology in the watershed might change. Using a simplified mass balance approach of the hydrologic cycle, the incoming rainfall was distributed to surface water runoff, evapotranspiration, or groundwater recharge. After hydrologic data were collected in adjacent watersheds for 3 years, brush management occurred on the treatment watershed while the reference watershed was left in its original condition. Hydrologic data were collected for another 6 years. Hydrologic data include rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured but potential groundwater recharge was calculated using a simplified mass balance approach. The resulting hydrologic datasets were examined for differences between the watersheds and between pre- and post-treatment periods to assess the effects of brush management. The streamflow to rainfall relation (expressed as event unit runoff to event rainfall relation) did not change between the watersheds during pre- and post-treatment periods. The daily evapotranspiration rates at the reference watershed and treatment watershed sites exhibited a seasonal cycle during the pre- and post-treatment periods, with intra- and interannual variability. Statistical analyses indicate the mean

  17. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  18. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences betw

  19. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  20. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  1. Uncertainty Consideration in Watershed Scale Models

    Science.gov (United States)

    Watershed scale hydrologic and water quality models have been used with increasing frequency to devise alternative pollution control strategies. With recent reenactment of the 1972 Clean Water Act’s TMDL (total maximum daily load) component, some of the watershed scale models are being recommended ...

  2. Retrospect and prospect of watershed hydrological model

    Institute of Scientific and Technical Information of China (English)

    B.CHEN; Z.F.YANG; 等

    2001-01-01

    A brief review is presented of the development of watershed hydrological models,COnventional Hydrological Model,Grey Hydrological Model,Digital Hydrological Model and Intelligent Hydrological Model are analyzed.The Frameworks of Fuzzy Cognitive Hydrological Model and Integrated Digital Watershed Hydrological Model are presented.

  3. 36 CFR 251.35 - Petersburg watershed.

    Science.gov (United States)

    2010-07-01

    ... Forest timber (36 CFR part 223). In any removal of timber from the watershed, the Forest Supervisor shall... 36 CFR 261.1b. (e) The Forest Supervisor of the Stikine Area of the Tongass National Forest may... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Petersburg watershed....

  4. Watershed Conservation Management Planning Using AGNPS

    Science.gov (United States)

    A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending best management practices to agricultural producers. The environmental benefits of these practices have not been widely quantified at the watershed scale, which would require extens...

  5. Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India

    Science.gov (United States)

    Chandniha, Surendra Kumar; Kansal, Mitthan Lal

    2014-11-01

    Hydrological investigation and behavior of watershed depend upon geo-morphometric characteristics of catchment. Morphometric analysis is commonly used for development of regional hydrological model of ungauged watershed. A critical valuation and assessment of geo-morphometric constraints has been carried out. Prioritization of watersheds based on water plot capacity of Piperiya watershed has been evaluated by linear, aerial and relief aspects. Morphometric analysis has been attempted for prioritization for nine sub-watersheds of Piperiya watershed in Hasdeo river basin, which is a tributary of the Mahanadi. Sub-watersheds are delineated by ArcMap 9.3 software as per digital elevation model (DEM). Assessment of drainages and their relative parameters such as stream order, stream length, stream frequency, drainage density, texture ratio, form factor, circulatory ratio, elongation ratio, bifurcation ratio and compactness ratio has been calculated separately for each sub-watershed using the Remote Sensing (RS) and Geospatial techniques. Finally, the prioritized score on the basis of morphometric behavior of each sub-watershed is assigned and thereafter consolidated scores have been estimated to identify the most sensitive parameters. The analysis reveals that stream order varies from 1 to 5; however, the first-order stream covers maximum area of about 87.7 %. Total number of stream segment of all order is 1,264 in the watershed. The study emphasizes the prioritization of the sub-watersheds on the basis of morphometric analysis. The final score of entire nine sub-watersheds is assigned as per erosion threat. The sub-watershed with the least compound parameter value was assigned as highest priority. However, the sub-watersheds has been categorized into three classes as high (4.1-4.7), medium (4.8-5.3) and low (>5.4) priority on the basis of their maximum (6.0) and minimum (4.1) prioritized score.

  6. Bear Creek Project. Final environmental statement

    International Nuclear Information System (INIS)

    The Bear Creek Project consists of certain mining and milling operations involving uranium ore deposits located in Converse County, Wyoming. Mining of uranium from nine known ore bodies will take place over a period of ten years (estimated); a mill with a nominal capacity of 1000 tons per day of ore will be constructed and operated as long as ore is available. The waste material (tailings) from the mill, also produced at a rate of about 1000 tons per day, will be stored onsite in an impoundment. Environmental impacts and adverse effects are summarized

  7. Oyster Creek augmented offgas system startup

    International Nuclear Information System (INIS)

    Oyster Creek Nuclear Station was one of several boiling water reactors requiring backfit with an augmented offgas processing system. Engineering studies conducted during the first half of 1973 resulted in a performance specification for a system with a decontamination factor of 150. The system selected utilized catalytic recombiners with refrigerated charcoal adsorber tanks. Features of the system, up to the startup effort (April of 1977), are described. The various tests established to evaluate system performance under all modes of operation are described along with the results of the completed tests and status of the test program

  8. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  9. Atmospheric Mercury Concentrations Near Salmon Falls Creek Reservoir - Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    M. L. Abbott

    2005-10-01

    Elemental and reactive gaseous mercury (EGM/RGM) were measured in ambient air concentrations over a two-week period in July/August 2005 near Salmon Falls Creek Reservoir, a popular fishery located 50 km southwest of Twin Falls, Idaho. A fish consumption advisory for mercury was posted at the reservoir in 2002 by the Idaho Department of Health and Welfare. The air measurements were part of a multi-media (water, sediment, precipitation, air) study initiated by the Idaho Department of Environmental Quality and the U.S. Environmental Protection Agency (EPA) Region 10 to identify potential sources of mercury contamination to the reservoir. The sampling site is located about 150 km northeast of large gold mining operations in Nevada, which are known to emit large amounts of mercury to the atmosphere (est. 2,200 kg/y from EPA 2003 Toxic Release Inventory). The work was co-funded by the Idaho National Laboratory’s Community Assistance Program and has a secondary objective to better understand mercury inputs to the environment near the INL, which lies approximately 230 km to the northeast. Sampling results showed that both EGM and RGM concentrations were significantly elevated (~ 30 – 70%, P<0.05) compared to known regional background concentrations. Elevated short-term RGM concentrations (the primary form that deposits) were likely due to atmospheric oxidation of high EGM concentrations, which suggests that EGM loading from upwind sources could increase Hg deposition in the area. Back-trajectory analyses indicated that elevated EGM and RGM occurred when air parcels came out of north-central and northeastern Nevada. One EGM peak occurred when the air parcels came out of northwestern Utah. Background concentrations occurred when the air was from upwind locations in Idaho (both northwest and northeast). Based on 2003 EPA Toxic Release Inventory data, it is likely that most of the observed peaks were from Nevada gold mine sources. Emissions from known large natural mercury

  10. Zooplankton composition in Dharamtar creek adjoining Bombay harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    Dharamtar creek (Bombay, India) creek maintained rich zooplankton standing stock (av. 30.3 ml 100 m/3) with peak production during August-November. Zooplankton production rate for the entire system amounted to 10.32 mg C.100 m/3 d/1 with an annual...

  11. 33 CFR 117.1001 - Cat Point Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  12. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Science.gov (United States)

    2012-02-02

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD. The proposed change will alter...

  13. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Science.gov (United States)

    2013-12-19

    ...The Coast Guard has issued a temporary deviation from the operating schedule that governs the Burlington Northern Santa Fe (BNSF) Chambers Creek Railway Bridge across Chambers Creek, mile 0.0, at Steilacoom, WA. The deviation is necessary to allow BNSF to perform maintenance and upgrade items to this vertical lift bridge in support of Positive Train Control requirements per the Rail Safety......

  14. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    Science.gov (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon

    2015-01-01

    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  15. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  16. Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach

    Science.gov (United States)

    Shanley, J.B.; Alisa, Mast M.; Campbell, D.H.; Aiken, G.R.; Krabbenhoft, D.P.; Hunt, R.J.; Walker, J.F.; Schuster, P.F.; Chalmers, A.; Aulenbach, Brent T.; Peters, N.E.; Marvin-DiPasquale, M.; Clow, D.W.; Shafer, M.M.

    2008-01-01

    The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L-1 and MeHg was less than 0.2 ng L-1. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L-1 at Sleepers River, Vermont; 112 (0.75) ng L-1 at Rio Icacos, Puerto Rico; and 55 (0.80) ng L-1 at Panola Mt., Georgia. Filtered (<0.7 ??m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L-1 at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. ?? 2008 Elsevier Ltd. All rights reserved.

  17. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir : Summary of the Skookumchuck Creek Bull Trout Enumeration Project, Annual Report 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, James S.; Baxter, Jeremy

    2001-02-01

    An enumeration fence and traps were installed on Skookumchuck Creek from September 7 th to October 16 th to enable the capture of post-spawning bull trout emigrating out of the watershed. During the study period, a total of 252 bull trout were sampled through the enumeration fence. Length, weight, and sex were determined for all but one of the 252 bull trout captured. In total, one fish of undetermined sex, 63 males and 188 females were processed through the fence. A total of 67 bull trout were observed on a snorkel survey prior to the fence being removed on October 16 th . Coupled with the fence count, the total bull trout count during this project was 319 fish. Several other species of fish were captured at the enumeration fence including westslope cutthroat trout, Rocky Mountain whitefish, kokanee, sucker, and Eastern brook trout. Redds were observed during ground surveys in three different locations (river km 27.5- 28.5, km 29-30, and km 24-25). The largest concentration of redds were noted in the upper two sections which have served as the index sections over the past four years. A total of 197 bull trout redds were enumerated on the ground on October 4 th . The majority of redds (n=189) were observed in the 3.0 km index section (river km 27.5-30.5) that has been surveyed over the past four years. The additional 8 redds were observed in a 1.5 km section (river km 24.0-25.5). Summary plots of water temperature for Bradford Creek, Sandown Creek, Skookumchuck Creek at km 39.5, and Skookumchuck Creek at the fence site suggested that water temperatures were within the range preferred by bull trout for spawning, egg incubation, and rearing.

  18. Respirators, internal dose, and Oyster Creek

    International Nuclear Information System (INIS)

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation's Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission's 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. open-quotes It basically delineates that dose is dose,close quotes Shaw said, open-quotes regardless of whether it is acquired externally or internally.close quotes The revision of Part 20 changed the industry's attitude toward internal dose, which had always been viewed negatively. open-quotes Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,close quotes Shaw said, open-quotes whereas external dose, although reduced where practical, was seen as a fact of the job.close quotes

  19. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334.240 Section 334.240 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED...

  20. Coho Salmon Habitat in a Changing Environment-Green Valley Creek, Graton, California

    Science.gov (United States)

    O'Connor, M. D.; Kobor, J. S.; Sherwood, M. N.

    2013-12-01

    Green Valley Creek (GVC) is a small (101 sq km) aquatic habitat refugium in the Russian River watershed (3,840 sq km) in coastal northern California. Coho salmon (Onchorhynchus kisutch) is endangered per the Federal Endangered Species Act, and GVC is one stream where coho have persisted. Fish surveys in GVC have found high species diversity, growth rates, and over-summer survival. The upper portion of GVC comprises a principal tributary (20 sq km) that provides spawning and rearing habitat for coho. The second principal tributary, Atascadero Creek, is comparable in size, but has few fish. Atascadero Creek and lower GVC have broad, densely vegetated floodplains. A Recovery Plan for the Central Coastal California coho Evolutionarily Significant Unit has been developed by the National Marine Fisheries Service (NMFS), which applies to the Russian River and its tributaries. Cooperative research regarding fish populations and habitat, a captive breeding and release program for native coho salmon, and efforts to plan for and restore habitat are ongoing. These regional efforts are particularly active in GVC, and participants include NMFS, the California Department of Fish and Wildlife, the Gold Ridge Resource Conservation District, the California Coastal Conservancy, the University of California Cooperative Extension, and the National Fish and Wildlife Foundation, among others. Our research focuses on hydrologic, geomorphic and hydrogeologic characteristics of the watershed in relation to aquatic habitat. Natural watershed factors contributing to habitat for coho include proximity to the coastal summer fog belt with cool temperatures, the Wilson Grove Formation aquifer that maintains dry season stream flow, and structural geology favorable for active floodplain morphology. Human impacts include water use and agriculture and rural residential development. Historic human impacts include stream clearing and draining of wetlands and floodplain for agriculture, which likely

  1. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hillson, Todd D. [Washington Department of Fish and Wildlife

    2009-06-12

    Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be

  2. 7 CFR 622.11 - Eligible watershed projects.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Eligible watershed projects. 622.11 Section 622.11..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed projects. (a) To be eligible for Federal assistance, a watershed project must: (1) Meet the definition of...

  3. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning; Yearsley, John; Voisin, Nathalie; Lettenmaier, D. P.

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well as a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.

  4. Ecological Health and Water Quality Assessments in Big Creek Lake, AL

    Science.gov (United States)

    Childs, L. M.; Frey, J. W.; Jones, J. B.; Maki, A. E.; Brozen, M. W.; Malik, S.; Allain, M.; Mitchell, B.; Batina, M.; Brooks, A. O.

    2008-12-01

    Big Creek Lake (aka J.B. Converse Reservoir) serves as the water supply for the majority of residents in Mobile County, Alabama. The area surrounding the reservoir serves as a gopher tortoise mitigation bank and is protected from further development, however, impacts from previous disasters and construction have greatly impacted the Big Creek Lake area. The Escatawpa Watershed drains into the lake, and of the seven drainage streams, three have received a 303 (d) (impaired water bodies) designation in the past. In the adjacent ecosystem, the forest is experiencing major stress from drought and pine bark beetle infestations. Various agencies are using control methods such as pesticide treatment to eradicate the beetles. There are many concerns about these control methods and the run-off into the ecosystem. In addition to pesticide control methods, the Highway 98 construction projects cross the north area of the lake. The community has expressed concern about both direct and indirect impacts of these construction projects on the lake. This project addresses concerns about water quality, increasing drought in the Southeastern U.S., forest health as it relates to vegetation stress, and state and federal needs for improved assessment methods supported by remotely sensed data to determine coastal forest susceptibility to pine bark beetles. Landsat TM, ASTER, MODIS, and EO-1/ALI imagery was employed in Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI), as well as to detect concentration of suspended solids, chlorophyll and water turbidity. This study utilizes NASA Earth Observation Systems to determine how environmental conditions and human activity relate to pine tree stress and the onset of pine beetle invasion, as well as relate current water quality data to community concerns and gain a better understanding of human impacts upon water resources.

  5. Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin

    Science.gov (United States)

    Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul A.

    2014-01-01

    The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST

  6. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 6: Appendix G -- Baseline ecological risk assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix G contains ecological risks for fish, benthic invertebrates, soil invertebrates, plants, small mammals, deer, and predator/scavengers (hawks and fox). This risk assessment identified significant ecological risks from chemicals in water, sediment, soil, and shallow ground water. Metals and PCBs are the primary contaminants of concern.

  7. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    International Nuclear Information System (INIS)

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV

  8. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.

  9. Epizootiology of Myxobolus cerebralis, the causative agent of salmonid whirling disease in the Rock Creek drainage of west-central Montana: 2004-2008.

    Science.gov (United States)

    Granath, Willard O; Vincent, E Richard

    2010-04-01

    Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis , remains a serious health threat to salmonid fish in the western United States. A previously published study on the epizootiology of whirling disease in the Rock Creek watershed of west-central Montana, conducted from 1998 to 2003, showed that the intensity of M. cerebralis infections in sentinel trout increased significantly throughout the drainage and that the range of M. cerebralis had expanded considerably. In addition, the parasite had apparently caused a dramatic decline in rainbow trout densities, but the brown trout population numbers had increased. This earlier study was continued from 2004 to 2008 and the results are reported here. It now appears that the disease intensity may have peaked in 2006 and is on the decline in this watershed. The decline cannot be directly attributed to a change in the prevalence of M. cerebralis-infected Tubifex tubifex, as these numbers remained statistically the same from 1998 to 2008. Similarly, changes in water temperature and water flow do not account for the decrease in disease intensity. However, it is possible that wild rainbow trout are developing resistance to the parasite, a phenomenon recently documented to be occurring in the Willow Creek Reservoir of southwest Montana. PMID:19891515

  10. Geology of the Cane Branch and Helton Branch watershed areas, McCreary County, Kentucky

    Science.gov (United States)

    Lyons, Erwin J.

    1957-01-01

    Cane Branch and Helton Branch in McCreary County, Kentucky, are about 1.4 miles apart (fig. 1). Can Branch, which is about 2.1 miles long, emptied into Hughes Fork of Beaver Creek. Its watershed area of about 1.5 square miles lies largely in the Wiborf 7 1/2-minute quadrangle (SW/4 Cumberland Falls 15-minute quadrangle), but the downstream part of the area extends northward into the Hail 7 1/2-minute quadrangle (NW/4 Cumberland Falls 15-minute quadrangle). Helton Branch, which is about 1.1 miles long, has two tributaries and empties into Little Hurricane Fork of Beaver Creek. It drains an area of about 0.8 square mile of while about 0.5 square mile is in the Hail quadrangle and the remainder in the Wilborg quadrangle. The total relief in the Can Branch area is about 500 feet and in the Helton Branch area about 400 feet. Narrow, steep-sided to canyon-like valley and winding ridges, typical of the Pottsville escarpment region, are characteristic of both areas. Thick woods and dense undergrowth cover much of the two areas. Field mapping was done on U.S. Geological Survey 7 1/2-minute maps having a scale of 1:24,000 and a contour interval of 20 feet. Elevations of lithologic contacts were determined with a barometer and a hand level. Aerial photographs were used principally to trace the cliffs formed by sandstone and conglomerate ledges. Exposures, except for those of the cliff- and ledge-forming sandstone and conglomerates, are not abundant. The most complete stratigraphic sections (secs. 3 and 4, fig. 2) in the two areas are exposed in cuts of newly completed Forest Service roads, but the rick in the upper parts of the exposures is weathered. To supplement these sections, additional sections were measured in cuts along the railroad and main highways in nor near the watersheds.

  11. Watershed model calibration to the base flow recession curve with and without evapotranspiration effects

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Shi, Y.

    2016-04-01

    Calibration of watershed models to the shape of the base flow recession curve is a way to capture the important relationship between groundwater discharge and subsurface water storage in a catchment. In some montane Mediterranean regions, such as the midelevation Providence Creek catchment in the southern Sierra Nevada of California (USA), nearly all base flow recession occurs after snowmelt, and during this time evapotranspiration (ET) usually exceeds base flow. We assess the accuracy to which watershed models can be calibrated to ET-dominated base flow recession in Providence Creek, both in terms of fitting a discharge time-series and realistically capturing the observed discharge-storage relationship for the catchment. Model parameters estimated from calibrations to ET-dominated recession are compared to parameters estimated from reference calibrations to base flow recession with ET-effects removed ("potential recession"). We employ the Penn State Integrated Hydrologic Model (PIHM) for simulations of base flow and ET, and methods that are otherwise general in nature. In models calibrated to ET-dominated recession, simulation errors in ET and the targeted relationship for recession (-dQ/dt versus Q) contribute substantially (up to 57% and 46%, respectively) to overestimates in the discharge-storage differential, defined as d(lnQ)/dS, relative to that derived from water flux observations. These errors result in overestimates of deep-subsurface hydraulic conductivity in models calibrated to ET-dominated recession, by up to an order of magnitude, relative to reference calibrations to potential recession. These results illustrate a potential opportunity for improving model representation of discharge-storage dynamics by calibrating to the shape of base flow recession after removing the complicating effects of ET.

  12. Sherman Creek Hatchery, annual report 2002

    International Nuclear Information System (INIS)

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. The Lake Roosevelt Fisheries Evaluation Program (LRFEP) is responsible for monitoring and evaluation on the Lake Roosevelt Projects. From 1988 to 1998, the principal sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year

  13. Sherman Creek Hatchery, annual report 2001

    International Nuclear Information System (INIS)

    Sherman Creek Hatchery's primary objective is the restoration and enhancement of the recreational and subsistence fishery in Lake Roosevelt and Banks Lake. The Sherman Creek Hatchery (SCH) was designed to rear 1.7 million kokanee fry for acclimation and imprinting during the spring and early summer. Additionally, it was designed to trap all available returning adult kokanee during the fall for broodstock operations and evaluations. Since the start of this program, the operations on Lake Roosevelt have been modified to better achieve program goals. The Washington Department of Fish and Wildlife, Spokane Tribe of Indians and the Colville Confederated Tribe form the interagency Lake Roosevelt Hatcheries Coordination Team (LRHCT) which sets goals and objectives for both Sherman Creek and the Spokane Tribal Hatchery and serves to coordinate enhancement efforts on Lake Roosevelt and Banks Lake. The primary changes have been to replace the kokanee fingerling program with a yearling (post smolt) program of up to 1,000,000 fish. To construct and operate twenty net pens to handle the increased production. The second significant change was to rear up to 300,000 rainbow trout fingerling at SCH from July through October, for stocking into the volunteer net pens. This enables the Spokane Tribal Hatchery (STH) to rear additional kokanee to further the enhancement efforts on Lake Roosevelt. Current objectives include increased use of native/indigenous stocks where available for propagation into Upper Columbia River Basin Waters. Monitoring and evaluation is preformed by the Lake Roosevelt Fisheries Monitoring Program. From 1988 to 1998, the principle sport fishery on Lake Roosevelt has shifted from walleye to include rainbow trout and kokanee salmon (Underwood et al. 1997, Tilson and Scholz 1997). The angler use, harvest rates for rainbow and kokanee and the economic value of the fishery has increased substantially during this 10-year period. The most recent information from the

  14. LEAST-COST WATERSHED MANAGEMENT SOLUTIONS: USING GIS DATA IN ECONOMIC MODELING OF A WATERSHED

    OpenAIRE

    Ancev, Tihomir; Stoecker, Arthur L.

    2003-01-01

    Phosphorus pollution from excessive litter application causes eutorphication of lakes in the Eucha-Spavinaw watershed in eastern Oklahoma and western Arkansas. Consequent algal blooms impair the taste of municipal water supply drawn from the watershed. The paper shows how GIS data based biophysical modeling can be used to derive spatially optimal, least-cost allocation of management practices to reduce phosphorus runoff in the watershed. Transportation activities were added to the model so th...

  15. Statewide Watershed Management Effects on Local Watershed Groups: A Comparison of Wisconsin, Kentucky, and Virginia

    OpenAIRE

    Gorder, Joel Steven

    2001-01-01

    While there are no federal mandates for states to establish watershed management frameworks, many states see the benefits of doing so and have established such approaches. The main advantage of statewide watershed management over traditional resource management is the cost effectiveness and the formation of integrated solutions to water quality problems. Statewide watershed frameworks provide a geographic focus and partnerships in order to develop comprehensive solutions...

  16. Development of watershed compensation programs

    International Nuclear Information System (INIS)

    British Columbia Hydro is developing fish and wildlife watershed compensation programs to address water license requirements of recent hydroelectric developments and outstanding issues associated with older projects. Historically, no funding was provided for environmental impacts. In more recent times, a one-time payment was made to the appropriate government agencies. With no long-term commitment by B.C. Hydro, fish and wildlife resource needs were often not addressed, leading to the degradation or loss of the resource and the perception that B.C. Hydro was not addressing its responsibilities with respect to other water users. B.C. Hydro's activities are reviewed with respect to developing ongoing fisheries compensation or mitigation programs through trust funds that ensure a long term commitment towards replacing or improving, and maintaining fish resources associated with B.C. Hydro's hydroelectric developments. 2 figs

  17. A Comprehensive Land-Use/Hydrological Modeling System for Scenario Simulations in the Elbow River Watershed, Alberta, Canada

    Science.gov (United States)

    Wijesekara, Gayan Nishad; Farjad, Babak; Gupta, Anil; Qiao, Ying; Delaney, Patrick; Marceau, Danielle J.

    2014-02-01

    The Elbow River watershed in Alberta covers an area of 1,238 km2 and represents an important source of water for irrigation and municipal use. In addition to being located within the driest area of southern Canada, it is also subjected to considerable pressure for land development due to the rapid population growth in the City of Calgary. In this study, a comprehensive modeling system was developed to investigate the impact of past and future land-use changes on hydrological processes considering the complex surface-groundwater interactions existing in the watershed. Specifically, a spatially explicit land-use change model was coupled with MIKE SHE/MIKE 11, a distributed physically based catchment and channel flow model. Following a rigorous sensitivity analysis along with the calibration and validation of these models, four land-use change scenarios were simulated from 2010 to 2031: business as usual (BAU), new development concentrated within the Rocky View County (RV-LUC) and in Bragg Creek (BC-LUC), respectively, and development based on projected population growth (P-LUC). The simulation results reveal that the rapid urbanization and deforestation create an increase in overland flow, and a decrease in evapotranspiration (ET), baseflow, and infiltration mainly in the east sub-catchment of the watershed. The land-use scenarios affect the hydrology of the watershed differently. This study is the most comprehensive investigation of its nature done so far in the Elbow River watershed. The results obtained are in accordance with similar studies conducted in Canadian contexts. The proposed modeling system represents a unique and flexible framework for investigating a variety of water related sustainability issues.

  18. Predicting Spatial Distribution of Soil Texture with Electromagnetic Induction Mapping and Terrain Analysis Models in Small Watersheds

    Science.gov (United States)

    Abdu, H.; Robinson, D. A.; Seyfried, M.; Jones, S. B.

    2006-05-01

    Spatial pattern modeling of catchment hydrological processes is limited by the availability of time-sensitive high resolution maps of subsurface architecture. Electromagnetic induction (EMI) instruments are gaining wider use for this purpose due to their non-destructive nature, rapid response and ease of integration into mobile platforms. Real-time measurements can infer soil spatial heterogeneity at the small watershed scale. From EMI measurements the soil apparent electrical conductivity (ECa) can be calculated and calibrated to a number of soil properties including: soil salinity, moisture and clay content. The objective of the study is to: 1) infer the textural properties of a watershed through EMI mapping, and 2) compare the topography with the textural distribution using terrain analysis models. The DUALEM 1-S ground conductivity meter along with a Trimble ProXT GPS unit were used to make non-invasive geo-referenced EMI measurements of the 36 ha Reynolds Mountain East watershed on the south side of the larger Reynolds Creek Experimental Watershed in southwestern Idaho. The geo-referenced ECa readings were input into a salinity modeling statistical software package (ESAP) in order to generate an optimal soil sampling plan. Based on this plan, 20 soil samples were obtained and analyzed for soil moisture content, electrical conductivity of the saturation paste extract (ECe) and particle size for clay percentage determination. ESAP was used to estimate the theoretical strength of correlation between ECa and ECe, clay percentage and gravimetric soil moisture content. Terrain analysis software (TauDEM and ArcHydro) were used to evaluate digital elevation models (DEMs) in inferring the influence of topography on the observed field-scale patterns. The results indicate a strong link between clay percentage and the major flow paths due to the movement of finer particles into low lying areas. EMI mapping in conjunction with ESAP statistical sampling analysis provides

  19. Selenium concentrations and loads from coal mining operations in the Elk River Watershed, Southeastern BC : 2004-2009

    International Nuclear Information System (INIS)

    This presentation reported on a study in which selenium concentrations were measured at 27 receiving and 40 discharge water stations in British Columbia's Elk River watershed, where Teck Coal Ltd. operates 5 coal mines. Monthly measurements were taken in the Elk River and its major tributaries from 2004 to 2009 to evaluate trends for selenium concentrations in receiving waters, and for concentrations and loads at selected discharges. Selenium concentrations were found to be much higher than background levels of 1 g/L in areas downstream of mine discharges in the Fording River, Line Creek, Michel Creek and in the lower Elk River below its confluence with the Fording River. Concentrations increased considerably over time in the Fording and lower Elk Rivers, and in Line Creek. Most of the selenium loads discharged to the Elk River and its tributaries were found to originate from less than 10 major sources. Concentrations increased with time at most major sources. At some sources, selenium loads increased with time, but decreased at others. The increase in concentrations in the lower Elk River and at several major sources from 2007 to 2009 may be attributed in part to a decrease in flow. Options for reducing selenium loads discharged to downstream receiving waters are being investigated by the mines.

  20. Mercury issues related to NPDES and the CERCLA watershed project at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    The purpose of this document is to present the current understanding of the issues and options surrounding compliance with the current National Pollutant Discharge Elimination System (NPDES) permit conditions. This is a complicated issue that directly impacts, and will be directly impacted by, ongoing CERCLA activities in Lower East Fork Poplar Creek and the Clinch River/Poplar Creek. It may be necessary to reconstitute the whole and combine actions and decisions regarding the entire creek (origin to confluence with the Clinch River) to develop a viable long-term strategy that meets regulatory goals and requirements as well as those of DOE's 10-Year Plan and the new watershed management permitting approach. This document presents background information on the Reduction of Mercury in Plant Effluents (RMPE) and NPDES programs insofar as it is needed to understand the issues and options. A tremendous amount of data has been collected to support the NPDES/RMPE and CERCLA programs. These data are not presented, although they may be referenced and conclusions based on them may be presented, as necessary, to support discussion of the options

  1. Didymosphenia geminata in the Upper Esopus Creek: Current Status, Variability, and Controlling Factors.

    Directory of Open Access Journals (Sweden)

    Scott Daniel George

    Full Text Available In May of 2009, the bloom-forming diatom Didymosphenia geminata was first identified in the Upper Esopus Creek, a key tributary to the New York City water-supply and a popular recreational stream. The Upper Esopus receives supplemental flows from the Shandaken Portal, an underground aqueduct delivering waters from a nearby basin. The presence of D. geminata is a concern for the local economy, water supply, and aquatic ecosystem because nuisance blooms have been linked to degraded stream condition in other regions. Here we ascertain the extent and severity of the D. geminata invasion, determine the impact of supplemental flows from the Portal on D. geminata, and identify potential factors that may limit D. geminata in the watershed. Stream temperature, discharge, and water quality were characterized at select sites and periphyton samples were collected five times at 6 to 20 study sites between 2009 and 2010 to assess standing crop, diatom community structure, and density of D. geminata and all diatoms. Density of D. geminata ranged from 0-12 cells cm(-2 at tributary sites, 0-781 cells cm(-2 at sites upstream of the Portal, and 0-2,574 cells cm(-2 at sites downstream of the Portal. Survey period and Portal (upstream or downstream each significantly affected D. geminata cell density. In general, D. geminata was most abundant during the November 2009 and June 2010 surveys and at sites immediately downstream of the Portal. We found that D. geminata did not reach nuisance levels or strongly affect the periphyton community. Similarly, companion studies showed that local macroinvertebrate and fish communities were generally unaffected. A number of abiotic factors including variable flows and moderate levels of phosphorous and suspended sediment may limit blooms of D. geminata in this watershed.

  2. Bear Creek Project. Draft environmental statement

    International Nuclear Information System (INIS)

    The Bear Creek Project consists of mining and milling operations involving uranium ore deposits located in Converse County, Wyoming. Mining of uranium from six known ore bodies will take place over ten years; a 1000 tons ore/day will be constructed and operated as long as ore is available. The tailings will be stored onsite in an impoundment. The project would convert 2700 acres from grazing use to mining/milling activities for about ten years. Mining would disturb a total of 1600 acres but, because of reclamation, the max acreage disturbed at any one time would be about 1000 acres, the average being about 650 acres. Dose rates were computed for an individual in a ranch house at the nearest ranch. Conditions for the protection of the environment are proposed. Possible environmental impacts evaluated cover air, land, water, soil, vegetation, wildlife, and community. A benefit-cost analysis is made

  3. Fisheries Enhancement on the Coeur d'Alene Indian Reservation; Hangman Creek, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Ronald; Kinkead, Bruce; Stanger, Mark

    2003-07-01

    Historically, Hangman Creek produced Chinook salmon (Oncorhynchus tshawytscha) and Steelhead trout (Oncorhynchus mykiss) for the Upper Columbia Basin Tribes. One weir, located at the mouth of Hangman Creek was reported to catch 1,000 salmon a day for a period of 30 days a year (Scholz et al. 1985). The current town of Tekoa, Washington, near the state border with Idaho, was the location of one of the principle anadromous fisheries for the Coeur d'Alene Tribe (Scholz et al. 1985). The construction, in 1909, of Little Falls Dam, which was not equipped with a fish passage system, blocked anadromous fish access to the Hangman Watershed. The fisheries were further removed with the construction of Chief Joseph and Grand Coulee Dams. As a result, the Coeur d'Alene Indian Tribe was forced to rely more heavily on native fish stocks such as Redband trout (Oncorhynchus mykiss gairdneri), Westslope Cutthroat trout (O. clarki lewisii), Bull trout (Salvelinus confluentus) and other terrestrial wildlife. Historically, Redband and Cutthroat trout comprised a great deal of the Coeur d'Alene Tribe's diet (Power 1997).

  4. Preliminary study of heavy metal pollution from Fe-Al oxides in Peihuang Creek, North Taiwan

    Science.gov (United States)

    Lai, B.

    2012-12-01

    Tatun Volcano Group (TVG) is not active since late Pleistocene but the post-volcanic activities, such as hot spring and sulfur gas, still widespread around the volcano province. Peihuang Creek is the main watershed system in TVG. The creek water is characterized by higher temperature, low pH values (3.0-4.5) and high SO4 content (60-400 ppm) due to the mixing of hotspring. This would promote the geochemical interaction between water and andesitic rocks and results in waters with highly enriched iron, aluminum and silica. These elements prefer to form suspended colloidal particles in water and adsorb heavy metals. Once the pH of water increases under oxidation condition, the colloid would precipitate in the form of ochre colored powder on the riverbed. The previous study reports that the arsenic content can reach as high as hundreds ppm. It is very important to evaluate the desorption behavior of heavy metals, especially for the study area with highly developed agriculture. For the preliminary analysis, five samples of ochre colored powder were sampled along the creek. The results of XRF demonstrate that the powder is mainly composed of iron, aluminum and silica, which is Fe-Al hydroxide. The iron content of Fe-Al hydroxide decreases from 63% to 25% while the aluminum and silica contents gradually increase from 5% to 20% and from 9% to 30%, respectively. To evaluate the desorption of heavy metals, the sequential extraction procedure was conducted. In the first step for determining leachable metals, the Fe-Al oxides were extracted with deionized water in the room temperature for one week. All of the metals are in ppb level except copper. For determining reducible phase, Step 2 used reagent solution of 0.5 mol/L hydroxylamine hydrochloride, which was adjusted to pH=2 with ultrapure nitric acid, for one week. The extracted chromium, arsenic, lead and copper are in the dangerous level of tens to hundreds ppm. It is believed that only very small amounts of heavy metals

  5. A watershed approach to ecosystem monitoring in Denali National Park and preserve, Alaska

    Science.gov (United States)

    Thorsteinson, L.K.; Taylor, D.L.

    1997-01-01

    The National Park Service and the National Biological Service initiated research in Denali National Park and Preserve, a 2.4 million-hectare park in southcentral Alaska, to develop ecological monitoring protocols for national parks in the Arctic/Subarctic biogeographic area. We are focusing pilot studies on design questions, on scaling issues and regionalization, ecosystem structure and function, indicator selection and evaluation, and monitoring technologies. Rock Creek, a headwater stream near Denali headquarters, is the ecological scale for initial testing of a watershed ecosystem approach. Our conceptual model embraces principles of the hydrological cycle, hypotheses of global climate change, and biological interactions of organisms occupying intermediate, but poorly studied, positions in Alaskan food webs. The field approach includes hydrological and depositional considerations and a suite of integrated measures linking key aquatic and terrestrial biota, environmental variables, or defined ecological processes, in order to establish ecological conditions and detect, track, and understand mechanisms of environmental change. Our sampling activities include corresponding measures of physical, chemical, and biological attributes in four Rock Creek habitats believed characteristic of the greater system diversity of Denali. This paper gives examples of data sets, program integration and scaling, and research needs.

  6. Southern Watersheds Common Reedgrass Project Progress Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Southern Watersheds includes the drainages of the Northwest River, the North Landing River, and Back Bay in the southeastern corner of Virginia. Common...

  7. Southern Watersheds Common Reedgrass Monitoring Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Southern Watersheds Common Reedgrass Project is an interagency effort to increase public awareness of the common reedgrass problem, demonstrate effective...

  8. Watershed Boundaries, Published in unknown, SWGRC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, was produced all or in part from Road Centerline Files information as of unknown. Data by this publisher are often provided in...

  9. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  10. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices

  11. Blob Objects Analysis Using Watershed Transformation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a novel method for overlapping or touching blob object ( particles ) segmentation. It is based on the watershed transformation, one of the most powerful image analysis tools provided by mathematical morphology. In this method, we first build the distance function of the blob image, and then extract the regional minima as markers, and finally the watershed transformation is performed. The applications of this algorithm illustrated using the examples of red blood cell segmentation and broken medicine pill detection.

  12. Does social capital improve watershed environmental governance?

    OpenAIRE

    Monteiro, Fernando

    2006-01-01

    International audience In Brazil, water management has been both sectored and centralized. In the 1990s, a series of state level reforms granted substantial participation to civil society and water users' organizations by incorporating Integrated Water Resourse Management principles and Watershed Committees as its guideline. However, its full implementation should produce quite different outcomes, understood as improved or poorer watershed environmental governance. That means that the key ...

  13. Sustainable Practices in Watershed Management: Global Experiences

    OpenAIRE

    Menon, Sudha

    2007-01-01

    Watershed management is considered by scholars as well as practitioners across the world as the most appropriate approach to ensure the preservation, conservation and sustainability of all land based resources and for improving the living conditions of the people in uplands and low lands. More over watershed management technologies have proven to be effective for mitigating erosion on sloping land, stabilizing landscapes, providing clean water, stabilizing and improving agrarian production sy...

  14. A fine-scale assessment of using barriers to conserve native stream salmonids: a case study in Akokala Creek, Glacier National Park, USA

    Science.gov (United States)

    Muhlfeld, Clint C.; D'Angelo, Vincent S.; S. T. Kalinowski; Landguth, Erin L.; C. C. Downs; J. Tohtz; Kershner, Jeffrey L.

    2012-01-01

    Biologists are often faced with the difficult decision in managing native salmonids of where and when to install barriers as a conservation action to prevent upstream invasion of nonnative fishes. However, fine-scale approaches to assess long-term persistence of populations within streams and watersheds chosen for isolation management are often lacking. We employed a spatially-explicit approach to evaluate stream habitat conditions, relative abundance, and genetic diversity of native westslope cutthroat trout (Oncorhynchus clarkii lewisi) within the Akokala Creek watershed in Glacier National Park- a population threatened by introgressive hybridization with nonnative rainbow trout (O. mykiss) from nearby sources. The systematic survey of 24 stream reaches showed broad overlap in fish population and suitable habitat characteristics among reaches and no natural barriers to fish migration were found. Analysis of population structure using 16 microsatellite loci showed modest amounts of genetic diversity among reaches, and that fish from Long Bow Creek were the only moderately distinct genetic group. We then used this information to assess the potential impacts of three barrier placement scenarios on long-term population persistence and genetic diversity. The two barrier placement scenarios in headwater areas generally failed to meet general persistence criteria for minimum population size (2,500 individuals, Ne = 500), maintenance of long-term genetic diversity (He), and no population subdivision. Conversely, placing a barrier near the stream mouth and selectively passing non-hybridized, migratory spawners entering Akokala Creek met all persistence criteria and may offer the best option to conserve native trout populations and life history diversity. Systematic, fine-scale stream habitat, fish distribution, and genetic assessments in streams chosen for barrier installation are needed in conjunction with broader scale assessments to understand the potential impacts of

  15. Remedial investigation work plan for the Upper East Fork Poplar Creek characterization area, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Oak Ridge Y-12 Plant, located within the Oak Ridge Reservation (ORR), is owned by the US Department of Energy (DOE) and managed by Lockheed Martin Energy Systems, Inc. The entire ORR was placed on the National Priorities List (NPL) of CERCLA sites in November 1989. Following CERCLA guidelines, sites under investigation require a remedial investigation (RI) to define the nature and extent of contamination, evaluate the risks to public health and the environment, and determine the goals for a feasibility study (FS) of potential remedial actions. The need to complete RIs in a timely manner resulted in the establishment of the Upper East Fork Poplar Creek (UEFPC) Characterization Area (CA) and the Bear Creek CA. The CA approach considers the entire watershed and examines all appropriate media within it. The UEFPC CA, which includes the main Y-12 Plant area, is an operationally and hydrogeologically complex area that contains numerous contaminants and containment sources, as well as ongoing industrial and defense-related activities. The UEFPC CA also is the suspected point of origin for off-site groundwater and surface-water contamination. The UEFPC CA RI also will address a carbon-tetrachloride/chloroform-dominated groundwater plume that extends east of the DOE property line into Union Valley, which appears to be connected with springs in the valley. In addition, surface water in UEFPC to the Lower East Fork Poplar Creek CA boundary will be addressed. Through investigation of the entire watershed as one ``site,`` data gaps and contaminated areas will be identified and prioritized more efficiently than through separate investigations of many discrete units.

  16. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  17. Hydrologic and water-quality data, Honey Creek State Natural Area, Comal County, Texas, August 2001-September 2003

    Science.gov (United States)

    Slattery, Richard N.; Furlow, Allen L.; Ockerman, Darwin J.

    2006-01-01

    The U.S. Geological Survey collected rainfall, streamflow, evapotranspiration, and rainfall and stormflow water-quality data from seven sites in two adjacent watersheds in the Honey Creek State Natural Area, Comal County, Texas, during August 2001-September 2003, in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service, and the San Antonio Water System. Data collected during this period represent baseline hydrologic and water-quality conditions before proposed removal of ashe juniper (Juniperus ashei) from one of the two watersheds. Juniper removal is intended as a best-management practice to increase water quantity (aquifer recharge and streamflow) and to protect water quality. Continuous (5-minute interval) rainfall data are collected at four sites; continuous (5-minute interval) streamflow data are collected at three sites. Fifteen-minute averages of meteorological and solar-energy-related data recorded at two sites are used to compute moving 30-minute evapotranspiration values on the basis of the energy-balance Bowen ratio method. Periodic rainfall water-quality data are collected at one site and stormflow water-quality data at three sites. Daily rainfall, streamflow, and evapotranspiration totals are presented in tables; detailed data are listed in an appendix. Results of analyses of the periodic rainfall and stormflow water-quality samples collected during runoff events are summarized in the appendix; not all data types were collected at all sites nor were all data types collected during the entire 26-month period.

  18. Fishery management assessment Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides an assessment for fishery management on Squaw Creek National Wildlife Refuge. The assessment concluded that existing Refuge waters are...

  19. BackscatterB [7125]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  20. BackscatterC [SWATH]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  1. Bitter Creek National Wildlife Refuge Water Infrastructure Assessment Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a visit to Bitter Creek NWR on October 15th-18th, 2012, to locate and GPS water structures, springs, and other water sources. This report...

  2. Cross Creeks National Wildlife Refuge [Land Status Map

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This map was produced by the Division of Realty to depict landownership at Cross Creeks National Wildlife Refuge. It was generated from rectified aerial...

  3. [Squaw Creek National Wildlife Refuge Narrative report: May - August, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1960. The report begins by summarizing the...

  4. [Squaw Creek National Wildlife Refuge Narrative report: May - August, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1961. The report begins by summarizing the...

  5. 1972 narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1972 calendar year. The report begins by...

  6. [Squaw Creek National Wildlife Refuge Narrative report: September - December, 1943

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1943. The report begins by...

  7. [Squaw Creek National Wildlife Refuge Narrative report: September - December, 1951

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1951. The report begins by...

  8. Wildlife Inventory Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document outlines wildlife monitoring guidelines for Squaw Creek National Wildlife Refuge. The objectives of this plan are; 1 to standardize inventory...

  9. Channel centerline for Hunter Creek, Oregon in 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  10. Channel centerline for Hunter Creek, Oregon in 2005

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  11. Aerial photo mosaic of Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  12. Channel centerline for Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  13. Channel centerline for Hunter Creek, Oregon in 1940

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  14. Geology and geomorphology--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is included in...

  15. Land Acquisition Priority Plan for Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan discusses land acquisition priorities for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge). The proposed alternatives...

  16. Autumn floral inventory : Walnut Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is an autumn floral inventory conducted on Neal Smith National Wildlife Refuge formerly Walnut Creek National Wildlife Refuge in 1991.

  17. Welcome to the Walnut Creek Nonbreeding Bird Monitoring Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a summary of the bird monitoring project at Walnut Creek National Wildlife Refuge Neal Smith National Wildlife Refuge. The refuge is divided into 28...

  18. Normalized Difference Vegetation Index for Fanno Creek, Oregon

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban...

  19. Williams Creek National Fish Hatchery [Land Status Map

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This map depicts lands owned andor administered by the U.S. Fish and Wildlife Service at Alchesaywilliams Creek National Fish Hatchery Complex.

  20. Recreational Fishing Plan : Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is the Recreational Fishing Plan for Cypress Creek NWR. The Plan provides an introduction to the Refuge, information about conformance with statutory...

  1. Ecology of phytoplankton from Dharmatar Creek, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, L.R.; Nair, V.R.

    Phytoplankton pigment, cell count and species diversity wee studied at five locations in Dharamtar Creek during September 1984 to November 1985. Chemical parameters indicated a healthy system free of any environmental stress. The water...

  2. Snake Creek National Wildlife Refuge [Narrative report: January - April 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1957. The report begins by summarizing...

  3. Floodplain and wetlands assessment of the White Oak Creek Embayment

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

  4. St. Catherine Creek National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan CCP was written to guide management on St. Catherine Creek NWR for the next 15 years. This plan outlines the Refuge vision and...

  5. Habitat Management Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Squaw Creek National Wildlife Refuge Habitat Management Plan provides a longterm vision and specific guidance on managing habitats for the resources of concern...

  6. Erosion and deposition for Fanno Creek, Oregon 2012

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — In 2010, the U.S. Geological Survey (USGS) began investigating the sources and sinks of organic matter in Fanno Creek, a tributary of the Tualatin River, Oregon....

  7. Walnut Creek National Wildlife Refuge : Interim hunting plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This interim hunting plan for Neal Smith National Wildlife Refuge (formerly Walnut Creek National Wildlife Refuge) outlines hunting guidelines for the Refuge....

  8. Cross Creeks National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Cross Creeks NWR for the next 15 years. This plan outlines the Refuge vision and...

  9. 1984 Cropland Management Plan Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Squaw Creek National Wildlife Refuge Cropland Management Plan focuses on the production of supplemental grain and browse foods to maintain wildlife populations...

  10. Narrative report Squaw Creek Refuge: September - December, 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  11. Snake Creek National Wildlife Refuge [Narrative report: September - December 1956

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Snake Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1956. The report begins by...

  12. Pond Creek National Wildlife Refuge: Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Pond Creek NWR for the next 15 years. This plan outlines the Refuge vision and purpose...

  13. BackscatterA [8101]--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the acoustic-backscatter map of Offshore of Scott Creek map area, California. Backscatter data are provided as three separate...

  14. Whittlesey Creek National Wildlife Refuge Habitat Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Whittlesey Creek National Wildlife Refuge Habitat Management Plan provides a longterm vision and specific guidance on managing habitats for the resources of...

  15. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar year 2000

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar year 2000. The report begins with an...

  16. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar year 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar year 1999. The report begins with an...

  17. Cypress Creek National Wildlife Refuge: Annual Narrative: Calendar year 1998

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during calendar year 1998. The report begins with an...

  18. Narrative report Squaw Creek Refuge: May - August, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1958. The report begins by summarizing the...

  19. Narrative report Squaw Creek National Wildlife Refuge: January - April, 1962

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1962. The report begins by summarizing...

  20. [Narrative report Squaw Creek Refuge: January through April, 1960

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1960. The report begins by summarizing...

  1. Narrative report Squaw Creek Refuge: January through April, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1959. The report begins by summarizing...

  2. [Narrative report Squaw Creek Refuge: September - December, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1959. The report begins by...

  3. [Squaw Creek National Wildlife Refuge Narrative report: May - August, 1959

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from May through August of 1959. The report begins by summarizing the...

  4. [Narrative report Squaw Creek Refuge: January through April, 1961

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1961. The report begins by summarizing...

  5. Narrative report Squaw Creek Refuge: January through April, 1958

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1958. The report begins by summarizing...

  6. Cypress Creek National Wildlife Refuge: Annual Narrative: Fiscal year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Cypress Creek National Wildlife Refuge summarizes refuge activities during fiscal year 1997. The report begins with an introduction...

  7. 1964 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1964 calendar year. The report begins by...

  8. Aerial photo mosaic of Hunter Creek, Oregon in 1965

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Hunter Creek is an unregulated system that drains 115 square kilometers of southwestern Oregon before flowing into the Pacific Ocean south of the town of Gold...

  9. Survey of breeding birds, Walnut Creek National Wildlife Refuge, 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a summary of the results of the third annual survey of breeding birds of Walnut Creek National Wildlife Refuge conducted in 1996. Information on...

  10. Fish Creek Federally Endangered Freshwater Mussel Impact Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment toxicity was evaluated for one site upstream and three sites downstream of a diesel fuel spill that occurred in Fish Creek (OH and IN) in September 1993...

  11. Narrative report Squaw Creek Refuge: January - April, 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1954. The report begins by summarizing...

  12. 1965 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1965 calendar year. The report begins by...

  13. 1966 Narrative report: Squaw Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments during the 1966 calendar year. The report begins by...

  14. Cypress Creek National Wildlife Refuge: Comprehensive Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Comprehensive Management Plan CMP for Cypress Creek National Wildlife Refuge NWR was prepared to guide management direction of the Refuge over the next 15...

  15. Sediment contaminant assessment for Shoal Creek, Lawrence County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment samples were collected from ten locations along Shoal Creek and analyzed for l9 metals and 20 organochlorine compounds. For the organic analyses,...

  16. St. Catherine Creek NWR Hunting Season Harvest Totals

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data summaries from hunting that occurs on St. Catherine Creek NWR. Reports include summarized harvest and hunter effort data and basic analysis of these data.

  17. [Squaw Creek National Wildlife Refuge Narrative report: January - April, 1944

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from January through April of 1944. The report begins by summarizing...

  18. St. Catherine Creek NWR Deer Hunt Harvest Data Summaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Data summaries from deer hunts that occur on St. Catherine Creek NWR. Reports include summarized deer harvest data and basic analysis of these data.

  19. Narrative report Squaw Creek Refuge: September - December, 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Squaw Creek National Wildlife Refuge outlines Refuge accomplishments from September through December of 1954. The report begins by...

  20. Habitat Management Plan for Pond Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Pond Creek National Wildlife Refuge Habitat Management Plan provides a longterm vision and specific guidance on managing habitats for the resources of concern...