WorldWideScience

Sample records for asian malaria mosquito

  1. A Physical Map for an Asian Malaria Mosquito, Anopheles stephensi

    OpenAIRE

    Maria V Sharakhova; Xia, Ai; Tu, Zhijian; Shouche, Yogesh S.; Unger, Maria F; Sharakhov, Igor V

    2010-01-01

    Physical mapping is a useful approach for studying genome organization and evolution as well as for genome sequence assembly. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to develop high-resolution physical maps. We report a 0.6-Mb-resolution physical map consisting of 422 DNA markers hybridized to 379 chromosomal sites of the Anopheles stephensi polytene chromosomes. This makes An. stephensi second only to Anopheles gambiae in density of a phys...

  2. Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy

    OpenAIRE

    Martínez de la Puente, Josué; Muñoz, Joaquín; Capelli, Gioia; Montarsi, Frabrizio; Ramón C Soriguer; Arnoldi, Daniele; Rizzoli, Annapaola; Figuerola, Jordi

    2015-01-01

    Background The invasive Asian tiger mosquito Aedes albopictus has dramatically expanded its distribution range, being catalogued as one of the world’s 100 worst invasive alien species. As vectors of pathogens, Ae. albopictus may create novel epidemiological scenarios in the invaded areas. Methods Here, the frequency of encounters of Ae. albopictus with the avian malaria parasite Plasmodium and the related Haemoproteus was studied in an area with established populations in northeaste...

  3. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Tu Zhijian

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are non-coding RNAs that are now recognized as a major class of gene-regulating molecules widely distributed in metozoans and plants. miRNAs have been found to play important roles in apoptosis, cancer, development, differentiation, inflammation, longevity, and viral infection. There are a few reports describing miRNAs in the African malaria mosquito, Anopheles gambiae, on the basis of similarity to known miRNAs from other species. An. stephensi is the most important malaria vector in Asia and it is becoming a model Anopheline species for physiological and genetics studies. Results We report the cloning and characterization of 27 distinct miRNAs from 17-day old An. stephensi female mosquitoes. Seventeen of the 27 miRNAs matched previously predicted An. gambiae miRNAs, offering the first experimental verification of miRNAs from mosquito species. Ten of the 27 are miRNAs previously unknown to mosquitoes, four of which did not match any known miRNAs in any organism. Twenty-five of the 27 Anopheles miRNAs had conserved sequences in the genome of a divergent relative, the yellow fever mosquito Aedes aegypti. Two clusters of miRNAs were found within introns of orthologous genes in An. gambiae, Ae. aegypti, and Drosophila melanogaster. Mature miRNAs were detected in An. stephensi for all of the nine selected miRNAs, including the four novel miRNAs (miR-x1- miR-x4, either by northern blot or by Ribonuclease Protection Assay. Expression profile analysis of eight of these miRNAs revealed distinct expression patterns from early embryo to adult stages in An. stephensi. In both An. stephensi and Ae. aegypti, the expression of miR-x2 was restricted to adult females and predominantly in the ovaries. A significant reduction of miR-x2 level was observed 72 hrs after a blood meal. Thus miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. A mosquito homolog of miR-14, a

  4. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    Science.gov (United States)

    Yamamoto, Daisuke S; Sumitani, Megumi; Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-09-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  5. Malaria Parasites Produce Volatile Mosquito Attractants

    OpenAIRE

    Kelly, Megan; Su, Chih-Ying; Schaber, Chad; Crowley, Jan R.; Hsu, Fong-Fu; Carlson, John R.; Odom, Audrey R.

    2015-01-01

    ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular ident...

  6. Mass mosquito trapping for malaria control in western Kenya

    NARCIS (Netherlands)

    Hiscox, Alexandra; Homan, Tobias; Mweresa, Collins K.; Maire, Nicolas; Pasquale, Di Aurelio; Masiga, Daniel; Oria, Prisca A.; Alaii, Jane; Leeuwis, Cees; Mukabana, Wolfgang R.; Takken, Willem; Smith, Thomas A.

    2016-01-01

    Background: Increasing levels of insecticide resistance as well as outdoor, residual transmission of malaria threaten the efficacy of existing vector control tools used against malaria mosquitoes. The development of odour-baited mosquito traps has led to the possibility of controlling malaria thr

  7. Adult vector control, mosquito ecology and malaria transmission.

    OpenAIRE

    Brady, OJ; Godfray, HC; Tatem, AJ; Gething, PW; Cohen, JM; McKENZIE, FE; Alex Perkins, T.; Reiner, RC; Tusting, LS; Scott, TW; Lindsay, SW; Hay, SI; Smith, DL

    2015-01-01

    BACKGROUND: Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model...

  8. Challenges and Approaches for Mosquito Targeted Malaria Control

    OpenAIRE

    Ramirez, José L.; Garver, Lindsey S.; Dimopoulos, George

    2009-01-01

    Malaria is one of today’s most serious diseases with an enormous socioeconomic impact. While anti-malarial drugs have existed for some time and vaccines development may be underway, the most successful malaria eradication programs have thus far relied on attacking the mosquito vector that spreads the disease causing agent Plasmodium. Here we will review past, current and future perspectives of malaria vector control strategies and how these approaches have taken a promising turn thanks recent...

  9. Novel acetylcholinesterase target site for malaria mosquito control.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  10. Fungal infection counters insecticide resistance in African malaria mosquitoes

    OpenAIRE

    Farenhorst, M.; J. C. Mouatcho; Kikankie, C.K.; Brooke, B.D.; Hunt, R. H.; M. B. Thomas; Koekemoer, L.L.; Knols, B.G.J.; M. Coetzee

    2009-01-01

    The evolution of insecticide resistance in mosquitoes is threatening the effectiveness and sustainability of malaria control programs in various parts of the world. Through their unique mode of action, entomopathogenic fungi provide promising alternatives to chemical control. However, potential interactions between fungal infection and insecticide resistance, such as cross-resistance, have not been investigated. We show that insecticide-resistant Anopheles mosquitoes remain susceptible to inf...

  11. Highly evolvable malaria vectors : the genomes of 16 Anopheles mosquitoes

    OpenAIRE

    Neafsey, Daniel E; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning similar to 100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromos...

  12. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes

    OpenAIRE

    Wang, Sibao; Ghosh, Anil K.; Bongio, Nicholas; Stebbings, Kevin A.; Lampe, David J.; Jacobs-Lorena, Marcelo

    2012-01-01

    The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mos...

  13. Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Ai Xia

    Full Text Available BACKGROUND: Nonrandom distribution of rearrangements is a common feature of eukaryotic chromosomes that is not well understood in terms of genome organization and evolution. In the major African malaria vector Anopheles gambiae, polymorphic inversions are highly nonuniformly distributed among five chromosomal arms and are associated with epidemiologically important adaptations. However, it is not clear whether the genomic content of the chromosomal arms is associated with inversion polymorphism and fixation rates. METHODOLOGY/PRINCIPAL FINDINGS: To better understand the evolutionary dynamics of chromosomal inversions, we created a physical map for an Asian malaria mosquito, Anopheles stephensi, and compared it with the genome of An. gambiae. We also developed and deployed novel Bayesian statistical models to analyze genome landscapes in individual chromosomal arms An. gambiae. Here, we demonstrate that, despite the paucity of inversion polymorphisms on the X chromosome, this chromosome has the fastest rate of inversion fixation and the highest density of transposable elements, simple DNA repeats, and GC content. The highly polymorphic and rapidly evolving autosomal 2R arm had overrepresentation of genes involved in cellular response to stress supporting the role of natural selection in maintaining adaptive polymorphic inversions. In addition, the 2R arm had the highest density of regions involved in segmental duplications that clustered in the breakpoint-rich zone of the arm. In contrast, the slower evolving 2L, 3R, and 3L, arms were enriched with matrix-attachment regions that potentially contribute to chromosome stability in the cell nucleus. CONCLUSIONS/SIGNIFICANCE: These results highlight fundamental differences in evolutionary dynamics of the sex chromosome and autosomes and revealed the strong association between characteristics of the genome landscape and rates of chromosomal evolution. We conclude that a unique combination of various

  14. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  15. Malaria Situation and Anopheline Mosquitoes in Qom Province, Central Iran

    Directory of Open Access Journals (Sweden)

    B Farzinnia

    2010-12-01

    Methods: This study was carried out in two parts. First stage was data collection about malaria cases using recorded documents of patients in the Province health center, during 2001–2008. The second stage was entomological survey conducted by mosquito larval collection method in 4 villages with different geographical positions in 2008. Data were analyzed using Excel software. Results: Of 4456 blood slides, 10.9% out were positive. Most of cases were imported from other countries (90.4%, mainly from Afghanistan (56.5% and Pakistan (16.3%. Slide positive rate showed a maximum of 16.9% and a minimum of 2.9% in 2008 and 2007, respectively. Plasmodium vivax was causative agent of 93.75% of cases, fol­lowed by P. falciparum (6.25%. More than 15 years old age group contained the most malaria reported cases (66.7%. Two Anopheles species, An. superpictus and An. claviger were collected and identified. This is the first report of Anopheles claviger in Qom Province. Conclusion: Malaria is in the control stage in Qom Province. The rate of local transmission is very low (only 1 case, shows Anopheles superpictus, as the main malaria vector of central part of Iran, can play its role in malaria transmission in the area.

  16. A systematic review of knowledge, attitudes and beliefs about malaria among the South Asian population

    Science.gov (United States)

    Regmi, Krishna; Kunwar, Anju; Ortega, Leonard

    2016-01-01

    Background Malaria is one of the deadliest mosquito-borne diseases in the world. More than 80% of the total populations are at risk of malaria in the 22 countries in Asia and the Pacific. South Asia alone is home to an estimated 1.4 billion people at risk of contracting malaria. Despite the remarkable progress in reducing the burden of malaria, evidence of the disease based on knowledge of the social and cultural contexts from a South Asian perspective is limited. Our objective was to understand the knowledge, attitudes and beliefs about malaria in South Asian communities. Methodology We conducted a systematic literature review, searching six databases, between 1990 and 2015, focusing on knowledge, attitudes and beliefs about malaria in South Asia. Databases were searched using both ‘free terms’ and ‘index terms’ funnelled using Boolean operators and truncations. Inclusion and exclusion criteria were set, and included papers were scrutinised, employing a critical appraisal tool to find the best available evidences to support the study purpose. Results and discussion Evidence from 32 articles (26 quantitative, four qualitative and two mixed methods). General knowledge and awareness of the disease, its transmission, and control and preventative measures were generally found to be lacking amongst both the general public and healthcare professionals. In addition, the study shows that poor socio-economic factors – including limited access to services due to poor/limited availability – and issues of affordability are considered as major risk factors. Conclusion This review suggests the importance of increasing health awareness, mobilising the local or community healthcare professionals, for prevention as well as early detection and effective treatment of malaria among people who are at risk. Malaria is also a disease associated with poverty and socio-cultural factors; therefore, strong political will, wider partnerships between health and non-health sectors

  17. A systematic review of knowledge, attitudes and beliefs about malaria among the South Asian population

    Directory of Open Access Journals (Sweden)

    Krishna Regmi

    2016-05-01

    Full Text Available Background: Malaria is one of the deadliest mosquito-borne diseases in the world. More than 80% of the total populations are at risk of malaria in the 22 countries in Asia and the Pacific. South Asia alone is home to an estimated 1.4 billion people at risk of contracting malaria. Despite the remarkable progress in reducing the burden of malaria, evidence of the disease based on knowledge of the social and cultural contexts from a South Asian perspective is limited. Our objective was to understand the knowledge, attitudes and beliefs about malaria in South Asian communities. Methodology: We conducted a systematic literature review, searching six databases, between 1990 and 2015, focusing on knowledge, attitudes and beliefs about malaria in South Asia. Databases were searched using both ‘free terms’ and ‘index terms’ funnelled using Boolean operators and truncations. Inclusion and exclusion criteria were set, and included papers were scrutinised, employing a critical appraisal tool to find the best available evidences to support the study purpose. Results and discussion: Evidence from 32 articles (26 quantitative, four qualitative and two mixed methods. General knowledge and awareness of the disease, its transmission, and control and preventative measures were generally found to be lacking amongst both the general public and healthcare professionals. In addition, the study shows that poor socio-economic factors – including limited access to services due to poor/limited availability – and issues of affordability are considered as major risk factors. Conclusion: This review suggests the importance of increasing health awareness, mobilising the local or community healthcare professionals, for prevention as well as early detection and effective treatment of malaria among people who are at risk. Malaria is also a disease associated with poverty and socio-cultural factors; therefore, strong political will, wider partnerships between health

  18. A multi-detection assay for malaria transmitting mosquitoes.

    Science.gov (United States)

    Lee, Yoosook; Weakley, Allison M; Nieman, Catelyn C; Malvick, Julia; Lanzaro, Gregory C

    2015-01-01

    The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays. PMID:25867057

  19. Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto

    OpenAIRE

    Xu, Wei; Cornel, Anthony J; Leal, Walter S.

    2010-01-01

    Background The mosquito Anopheles funestus is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly...

  20. A maleness gene in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Krzywinska, Elzbieta; Dennison, Nathan J; Lycett, Gareth J; Krzywinski, Jaroslaw

    2016-07-01

    The molecular pathways controlling gender are highly variable and have been identified in only a few nonmammalian model species. In many insects, maleness is conferred by a Y chromosome-linked M factor of unknown nature. We have isolated and characterized a gene, Yob, for the M factor in the malaria mosquito Anopheles gambiae Yob, activated at the beginning of zygotic transcription and expressed throughout a male's life, controls male-specific splicing of the doublesex gene. Silencing embryonic Yob expression is male-lethal, whereas ectopic embryonic delivery of Yob transcripts yields male-only broods. This female-killing property may be an invaluable tool for creation of conditional male-only transgenic Anopheles strains for malaria control programs. PMID:27365445

  1. Signatures of aestivation and migration in Sahelian malaria mosquito populations.

    Science.gov (United States)

    Dao, A; Yaro, A S; Diallo, M; Timbiné, S; Huestis, D L; Kassogué, Y; Traoré, A I; Sanogo, Z L; Samaké, D; Lehmann, T

    2014-12-18

    During the long Sahelian dry season, mosquito vectors of malaria are expected to perish when no larval sites are available; yet, days after the first rains, mosquitoes reappear in large numbers. How these vectors persist over the 3-6-month long dry season has not been resolved, despite extensive research for over a century. Hypotheses for vector persistence include dry-season diapause (aestivation) and long-distance migration (LDM); both are facets of vector biology that have been highly controversial owing to lack of concrete evidence. Here we show that certain species persist by a form of aestivation, while others engage in LDM. Using time-series analyses, the seasonal cycles of Anopheles coluzzii, Anopheles gambiae sensu stricto (s.s.), and Anopheles arabiensis were estimated, and their effects were found to be significant, stable and highly species-specific. Contrary to all expectations, the most complex dynamics occurred during the dry season, when the density of A. coluzzii fluctuated markedly, peaking when migration would seem highly unlikely, whereas A. gambiae s.s. was undetected. The population growth of A. coluzzii followed the first rains closely, consistent with aestivation, whereas the growth phase of both A. gambiae s.s. and A. arabiensis lagged by two months. Such a delay is incompatible with local persistence, but fits LDM. Surviving the long dry season in situ allows A. coluzzii to predominate and form the primary force of malaria transmission. Our results reveal profound ecological divergence between A. coluzzii and A. gambiae s.s., whose standing as distinct species has been challenged, and suggest that climate is one of the selective pressures that led to their speciation. Incorporating vector dormancy and LDM is key to predicting shifts in the range of malaria due to global climate change, and to the elimination of malaria from Africa. PMID:25470038

  2. The development of malaria parasites in the mosquito midgut.

    Science.gov (United States)

    Bennink, Sandra; Kiesow, Meike J; Pradel, Gabriele

    2016-07-01

    The mosquito midgut stages of malaria parasites are crucial for establishing an infection in the insect vector and to thus ensure further spread of the pathogen. Parasite development in the midgut starts with the activation of the intraerythrocytic gametocytes immediately after take-up and ends with traversal of the midgut epithelium by the invasive ookinetes less than 24 h later. During this time period, the plasmodia undergo two processes of stage conversion, from gametocytes to gametes and from zygotes to ookinetes, both accompanied by dramatic morphological changes. Further, gamete formation requires parasite egress from the enveloping erythrocytes, rendering them vulnerable to the aggressive factors of the insect gut, like components of the human blood meal. The mosquito midgut stages of malaria parasites are unprecedented objects to study a variety of cell biological aspects, including signal perception, cell conversion, parasite/host co-adaptation and immune evasion. This review highlights recent insights into the molecules involved in gametocyte activation and gamete formation as well as in zygote-to-ookinete conversion and ookinete midgut exit; it further discusses factors that can harm the extracellular midgut stages as well as the measures of the parasites to protect themselves from any damage. PMID:27111866

  3. Mosquito Heparan Sulfate and Its Potential Role in Malaria Infection and Transmission*

    OpenAIRE

    Sinnis, Photini; Coppi, Alida; Toida, Toshihiko; Toyoda, Hidenao; Kinoshita-Toyoda, Akiko; Xie, Jin; Kemp, Melissa M.; Linhardt, Robert J.

    2007-01-01

    Heparan sulfate has been isolated for the first time from the mosquito Anopheles stephensi, a known vector for Plasmodium parasites, the causative agents of malaria. Chondroitin sulfate, but not dermatan sulfate or hyaluronan, was also present in the mosquito. The glycosaminoglycans were isolated, from salivary glands and midguts of the mosquito in quantities sufficient for disaccharide microanalysis. Both of these organs are invaded at different stages of the Plasmodium life cycle. Mosquito ...

  4. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory

    OpenAIRE

    Molina-Cruz, Alvaro; Canepa, Gaspar E.; Kamath, Nitin; Pavlovic, Noelle V.; Mu, Jianbing; Ramphul, Urvashi N.; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-01-01

    Plasmodium falciparum malaria originated in Africa but became global as humans migrated around the world. It is now transmitted by many different anopheline mosquito species, but little is known about the adaptation of Plasmodium to different vectors. Here, we show that the mosquito immune system is a major barrier for some P. falciparum isolates to infect mosquitoes from a different continent. Pfs47 is a protein that makes parasites “invisible” to the mosquito immune system. We found that pa...

  5. Hemolytic C-Type Lectin CEL-III from Sea Cucumber Expressed in Transgenic Mosquitoes Impairs Malaria Parasite Development

    OpenAIRE

    Shigeto Yoshida; Yohei Shimada; Daisuke Kondoh; Yoshiaki Kouzuma; Ghosh, Anil K.; Marcelo Jacobs-Lorena; Sinden, Robert E.

    2007-01-01

    The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and ra...

  6. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    Science.gov (United States)

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  7. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria.

    Science.gov (United States)

    Gendrin, Mathilde; Rodgers, Faye H; Yerbanga, Rakiswendé S; Ouédraogo, Jean Bosco; Basáñez, María-Gloria; Cohuet, Anna; Christophides, George K

    2015-01-01

    Malaria reduction is most efficiently achieved by vector control whereby human populations at high risk of contracting and transmitting the disease are protected from mosquito bites. Here, we identify the presence of antibiotics in the blood of malaria-infected people as a new risk of increasing disease transmission. We show that antibiotics in ingested blood enhance the susceptibility of Anopheles gambiae mosquitoes to malaria infection by disturbing their gut microbiota. This effect is confirmed in a semi-natural setting by feeding mosquitoes with blood of children naturally infected with Plasmodium falciparum. Antibiotic exposure additionally increases mosquito survival and fecundity, which are known to augment vectorial capacity. These findings suggest that malaria transmission may be exacerbated in areas of high antibiotic usage, and that regions targeted by mass drug administration programs against communicable diseases may necessitate increased vector control. PMID:25562286

  8. Daily Rhythms in Mosquitoes and Their Consequences for Malaria Transmission.

    Science.gov (United States)

    Rund, Samuel S C; O'Donnell, Aidan J; Gentile, James E; Reece, Sarah E

    2016-01-01

    The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control. PMID:27089370

  9. Novel Selective and Irreversible Mosquito Acetylcholinesterase Inhibitors for Controlling Malaria and Other Mosquito-Borne Diseases

    Science.gov (United States)

    Dou, Dengfeng; Park, Jewn Giew; Rana, Sandeep; Madden, Benjamin J.; Jiang, Haobo; Pang, Yuan-Ping

    2013-01-01

    We reported previously that insect acetylcholinesterases (AChEs) could be selectively and irreversibly inhibited by methanethiosulfonates presumably through conjugation to an insect-specific cysteine in these enzymes. However, no direct proof for the conjugation has been published to date, and doubts remain about whether such cysteine-targeting inhibitors have desirable kinetic properties for insecticide use. Here we report mass spectrometric proof of the conjugation and new chemicals that irreversibly inhibited African malaria mosquito AChE with bimolecular inhibition rate constants (kinact/KI) of 3,604-458,597 M-1sec-1 but spared human AChE. In comparison, the insecticide paraoxon irreversibly inhibited mosquito and human AChEs with kinact/KI values of 1,915 and 1,507 M-1sec-1, respectively, under the same assay conditions. These results further support our hypothesis that the insect-specific AChE cysteine is a unique and unexplored target to develop new insecticides with reduced insecticide resistance and low toxicity to mammals, fish, and birds for the control of mosquito-borne diseases.

  10. Estimating a mosquito repellent’s potential to reduce malaria in communities

    OpenAIRE

    A.E. Kiszewski, S.T. Darling

    2010-01-01

    Background & objectives: Probability models for assessing a mosquito repellent’s potential toreduce malaria transmission are not readily available to public health researchers. To provide ameans for estimating the epidemiological efficacy of mosquito repellents in communities, wedeveloped a simple mathematical model.Study design: A static probability model is presented to simulate malaria infection in a communityduring a single transmission season. The model includes five parameters—sporozoit...

  11. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis

    OpenAIRE

    Knols Bart GJ; Parker Andrew G; Helinski Michelle EH

    2006-01-01

    Abstract Background In the context of the Sterile Insect Technique (SIT), radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae) was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods Pupae were irradiated shortly before emergence (at 22–26 hrs of age), and adults

  12. Rationalizing Historical successes of malaria control in Africa in terms of mosquito resource availabilty management

    NARCIS (Netherlands)

    Killeen, G.F.; Seyoum, A.; Knols, B.G.J.

    2004-01-01

    Environmental management of mosquito resources is a promising approach with which to control malaria, but it has seen little application in Africa for more than half a century. Here we present a kinetic model of mosquito foraging for aquatic habitats and vertebrate hosts that allows estimation of ma

  13. A push-pull system to reduce house entry of malaria mosquitoes

    NARCIS (Netherlands)

    Menger, D.J.; Otieno, B.; Rijk, de M.; Mukabana, W.R.; Loon, van J.J.A.; Takken, W.

    2014-01-01

    Background. Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull

  14. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector

    NARCIS (Netherlands)

    Boëte, C.H.J.J.; Paul, R.E.L.; Koëlla, J.C.

    2004-01-01

    Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito's immune responses during their long development? Whereas older oocysts might camouflage themsel

  15. Stable isotope-mass spectrometric determination of semen transfer in malaria mosquitoes

    NARCIS (Netherlands)

    Helinski, M.E.H.; Hood-Nowotny, R.C.; Mayr, L.; Knols, B.G.J.

    2007-01-01

    The potential use of stable isotopes to study mosquito mating was investigated by tracing the fate of labelled semen into spermathecae. [13C]glucose was incorporated in the diet of the malaria mosquito Anopheles arabiensis. Treatments included labelling of either the larval water or adult sugar wate

  16. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world

    NARCIS (Netherlands)

    Knols, B.G.J.; Bossin, H.C.; Mukabana, W.R.; Robinson, A.S.

    2007-01-01

    Genetic modification (GM) of mosquitoes (which renders them genetically modified organisms, GMOs) offers opportunities for controlling malaria. Transgenic strains of mosquitoes have been developed and evaluation of these to 1) replace or suppress wild vector populations and 2) reduce transmission an

  17. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control

    OpenAIRE

    Famenini Shannon; Traore Mohamed M; Touré Mahamoudou B; Marshall John M; Taylor Charles E

    2010-01-01

    Abstract Background Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives ...

  18. Deforestation and Vectorial Capacity of Anopheles gambiae Giles Mosquitoes in Malaria Transmission, Kenya

    OpenAIRE

    Afrane, Yaw A; Little, Tom J.; Lawson, Bernard W; Githeko, Andrew K; Yan, Guiyun

    2008-01-01

    We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had hig...

  19. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...

  20. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease.

    Science.gov (United States)

    Crompton, Peter D; Moebius, Jacqueline; Portugal, Silvia; Waisberg, Michael; Hart, Geoffrey; Garver, Lindsey S; Miller, Louis H; Barillas-Mury, Carolina; Pierce, Susan K

    2014-01-01

    Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease. PMID:24655294

  1. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease

    Science.gov (United States)

    Crompton, Peter D.; Moebius, Jacqueline; Portugal, Silvia; Waisberg, Michael; Hart, Geoffrey; Garver, Lindsey S.; Miller, Louis H.; Barillas, Carolina; Pierce, Susan K.

    2014-01-01

    Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa family, the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world’s most vulnerable populations, claiming the lives of nearly a million children and pregnant women each year in Africa alone. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite’s complex life cycle with a view towards developing the tools that will contribute to the prevention of disease and death and ultimately the goal of malaria eradication. In so doing we hope to inspire immunologists to participate in defeating this devastating disease. PMID:24655294

  2. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease

    OpenAIRE

    Crompton, Peter D.; Moebius, Jacqueline; Portugal, Silvia; Waisberg, Michael; Hart, Geoffrey; Garver, Lindsey S.; Louis H Miller; Barillas, Carolina; Pierce, Susan K.

    2014-01-01

    Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa family, the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world’s most vulnerable populations, claiming the lives of nearly a million children and pregnant women each year in Africa alone. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malar...

  3. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-01

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed. PMID:26598665

  4. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E.; Kamath, Nitin; Pavlovic, Noelle V.; Mu, Jianbing; Ramphul, Urvashi N.; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-01-01

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the “lock-and-key theory” of P. falciparum globalization, is proposed, and its implications are discussed. PMID:26598665

  5. 2D and 3D Chromosome Painting in Malaria Mosquitoes

    Science.gov (United States)

    George, Phillip; Sharma, Atashi; Sharakhov, Igor V

    2014-01-01

    Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies. PMID:24429496

  6. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control

    Directory of Open Access Journals (Sweden)

    Famenini Shannon

    2010-05-01

    Full Text Available Abstract Background Genetically-modified (GM mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009. Methods The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes. Results Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was

  7. Simulating the spread of malaria using a generic transmission model for mosquito-borne infectious diseases

    Science.gov (United States)

    Kon, Cynthia Mui Lian; Labadin, Jane

    2016-06-01

    Malaria is a critical infection caused by parasites which are spread to humans through mosquito bites. Approximately half of the world's population is in peril of getting infected by malaria. Mosquito-borne diseases have a standard behavior where they are transmitted in the same manner, only through vector mosquito. Taking this into account, a generic spatial-temporal model for transmission of multiple mosquito-borne diseases had been formulated. Our interest is to reproduce the actual cases of different mosquito-borne diseases using the generic model and then predict future cases so as to improve control and target measures competently. In this paper, we utilize notified weekly malaria cases in four districts in Sarawak, Malaysia, namely Kapit, Song, Belaga and Marudi. The actual cases for 36 weeks, which is from week 39 in 2012 to week 22 in 2013, are compared with simulations of the generic spatial-temporal transmission mosquito-borne diseases model. We observe that the simulation results display corresponding result to the actual malaria cases in the four districts.

  8. The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Directory of Open Access Journals (Sweden)

    Thomas Matthew B

    2011-07-01

    Full Text Available Abstract Background The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors. Presentation of hypothesis If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor vs outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate. Testing the hypothesis Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude. Implications of the hypothesis Differences in indoor vs outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.

  9. Larval food quantity affects the capacity of adult mosquitoes to transmit human malaria

    Science.gov (United States)

    Shapiro, Lillian L. M.; Murdock, Courtney C.; Jacobs, Gregory R.; Thomas, Rachel J.; Thomas, Matthew B.

    2016-01-01

    Adult traits of holometabolous insects are shaped by conditions experienced during larval development, which might impact interactions between adult insect hosts and parasites. However, the ecology of larval insects that vector disease remains poorly understood. Here, we used Anopheles stephensi mosquitoes and the human malaria parasite Plasmodium falciparum, to investigate whether larval conditions affect the capacity of adult mosquitoes to transmit malaria. We reared larvae in two groups; one group received a standard laboratory rearing diet, whereas the other received a reduced diet. Emerging adult females were then provided an infectious blood meal. We assessed mosquito longevity, parasite development rate and prevalence of infectious mosquitoes over time. Reduced larval food led to increased adult mortality and caused a delay in parasite development and a slowing in the rate at which parasites invaded the mosquito salivary glands, extending the time it took for mosquitoes to become infectious. Together, these effects increased transmission potential of mosquitoes in the high food regime by 260–330%. Such effects have not, to our knowledge, been shown previously for human malaria and highlight the importance of improving knowledge of larval ecology to better understand vector-borne disease transmission dynamics. PMID:27412284

  10. Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes

    Directory of Open Access Journals (Sweden)

    Lorenz Lena M

    2011-12-01

    Full Text Available Abstract Background It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. Methods In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto on their offspring's development, survival and susceptibility to malaria were studied. Results The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection. Conclusions Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria.

  11. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria.

    Science.gov (United States)

    Hien, Domonbabele F D S; Dabiré, Kounbobr R; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S; Cohuet, Anna; Yameogo, Bienvenue K; Gouagna, Louis-Clément; Hopkins, Richard J; Ouedraogo, Georges A; Simard, Frédéric; Ouedraogo, Jean-Bosco; Ignell, Rickard; Lefevre, Thierry

    2016-08-01

    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374

  12. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria

    Science.gov (United States)

    Hien, Domonbabele F. d. S.; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S.; Cohuet, Anna; Yameogo, Bienvenue K.; Gouagna, Louis-Clément; Hopkins, Richard J.; Ouedraogo, Georges A.; Simard, Frédéric; Ignell, Rickard; Lefevre, Thierry

    2016-01-01

    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374

  13. Arm-specific dynamics of chromosome evolution in malaria mosquitoes

    Directory of Open Access Journals (Sweden)

    Xia Ai

    2011-04-01

    Full Text Available Abstract Background The malaria mosquito species of subgenus Cellia have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in Anopheles gambiae and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus Cellia nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints. Results To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among Anopheles gambiae, Anopheles funestus, and Anopheles stephensi. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of An. gambiae and on the homologous arms of An. funestus and An. stephensi. Conclusions Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with

  14. Arm-specific dynamics of chromosome evolution in malaria mosquitoes

    Science.gov (United States)

    2011-01-01

    Background The malaria mosquito species of subgenus Cellia have rich inversion polymorphisms that correlate with environmental variables. Polymorphic inversions tend to cluster on the chromosomal arms 2R and 2L but not on X, 3R and 3L in Anopheles gambiae and homologous arms in other species. However, it is unknown whether polymorphic inversions on homologous chromosomal arms of distantly related species from subgenus Cellia nonrandomly share similar sets of genes. It is also unclear if the evolutionary breakage of inversion-poor chromosomal arms is under constraints. Results To gain a better understanding of the arm-specific differences in the rates of genome rearrangements, we compared gene orders and established syntenic relationships among Anopheles gambiae, Anopheles funestus, and Anopheles stephensi. We provided evidence that polymorphic inversions on the 2R arms in these three species nonrandomly captured similar sets of genes. This nonrandom distribution of genes was not only a result of preservation of ancestral gene order but also an outcome of extensive reshuffling of gene orders that created new combinations of homologous genes within independently originated polymorphic inversions. The statistical analysis of distribution of conserved gene orders demonstrated that the autosomal arms differ in their tolerance to generating evolutionary breakpoints. The fastest evolving 2R autosomal arm was enriched with gene blocks conserved between only a pair of species. In contrast, all identified syntenic blocks were preserved on the slowly evolving 3R arm of An. gambiae and on the homologous arms of An. funestus and An. stephensi. Conclusions Our results suggest that natural selection favors specific gene combinations within polymorphic inversions when distant species are exposed to similar environmental pressures. This knowledge could be useful for the discovery of genes responsible for an association of inversion polymorphisms with phenotypic variations in

  15. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Garver, Lindsey S; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C L; Sauerwein, Robert W; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-05-24

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito, and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  16. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System

    Science.gov (United States)

    Molina-Cruz, Alvaro; Garver, Lindsey S.; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C. L.; Sauerwein, Robert W.; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-01-01

    Summary The surface protein Pfs47 mediates Plasmodium falciparum evasion of the Anopheles gambiae complement-like immune system. Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  17. Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto

    Science.gov (United States)

    Xu, Wei; Cornel, Anthony J.; Leal, Walter S.

    2010-01-01

    Background The mosquito Anopheles funestus is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly mosquito controlling strategies. Methodology In this study, a large screening of over 50 ecologically significant odorant compounds led to the identification of 12 ligands that elicit significant electroantennographic (EAG) responses from An. funestus female antennae. To compare the absolute efficiency/potency of these chemicals, corrections were made for differences in volatility by determining the exact amount in a stimulus puff. Fourteen AfunOBP genes were cloned and their expression patterns were analyzed. AfunOBP1, 3, 7, 20 and 66 showed olfactory tissue specificity by reverse transcriptase PCR (RT-PCR). Quantitative real-time PCR (qRT-PCR) analysis showed that among olfactory-specific OBPs, AfunOBP1 and 3 are the most enriched OBPs in female antennae. Binding assay experiments showed that at pH 7, AfunOBP1 significantly binds to 2-undecanone, nonyl acetate, octyl acetate and 1-octen-3-ol but AfunOBP3, which shares 68% identify with AfunOBP1 at amino acid level, showed nearly no binding activity to the selected 12 EAG-active odorant compounds. Conclusion This work presents for the first time a study on the odorants and OBPs of the malaria vector mosquito An. funestus, which may provide insight into the An. funestus olfactory research, assist in a comparative study between major malaria mosquitoes An. gambiae and An. funestus olfactory system, and help developing new mosquito control strategies to reduce malaria transmission. PMID:21042539

  18. Ecological immunology of mosquito-malaria interactions: Of non-natural versus natural model systems and their inferences

    OpenAIRE

    Tripet, F.

    2009-01-01

    There has been a recent shift in the literature on mosquito/Plasmodium interactions with an increasingly large number of theoretical and experimental studies focusing on their population biology and evolutionary processes. Ecological immunology of mosquito-malaria interactions - the study of the mechanisms and function of mosquito immune responses to Plasmodium in their ecological and evolutionary context - is particularly important for our understanding of malaria transmission and how to con...

  19. A push-pull system to reduce house entry of malaria mosquitoes

    OpenAIRE

    Menger, D.J.; Otieno, B.; Rijk, De; Mukabana, W.R.; Loon, van, J.J.W.A.; Takken, W.

    2014-01-01

    Background. Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results. Experiments were carried out in a semi-field set-up: a traditional house wh...

  20. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Rund, Samuel SC; James E. Gentile; Duffield, Giles E.

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vec...

  1. Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes

    OpenAIRE

    James, Anthony A.

    2007-01-01

    In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.

  2. Prevalence of Malaria, Dengue, and Chikungunya Significantly Associated with Mosquito Breeding Sites

    OpenAIRE

    Islam, Mohammad Nazrul; Zulkifle, Mohammad; Sherwani, Arish Mohammad Khan; Ghosh, Susanta Kumar; Tiwari, Satyanarayan

    2011-01-01

    Objectives: To observe the prevalence of malaria, dengue, and chikungunya and their association with mosquito breeding sites. Methods: The study was observational and analytical. A total of 162 houses and 670 subjects were observed during the study period. One hundred forty-two febrile patients were eligible for the study. After obtaining informed consent from all febrile patients, 140 blood samples were collected to diagnose malaria, dengue, and chikungunya. Larval samples were collected by ...

  3. Interplay between insecticide-treated bed-nets and mosquito demography: implications for malaria control.

    Science.gov (United States)

    Ngonghala, Calistus N; Mohammed-Awel, Jemal; Zhao, Ruijun; Prosper, Olivia

    2016-05-21

    Although malaria prevalence has witnessed a significant reduction within the past decade, malaria still constitutes a major health and economic problem, especially to low-income countries. Insecticide-treated nets (ITNs) remain one of the primary measures for preventing the malignant disease. Unfortunately, the success of ITN campaigns is hampered by improper use and natural decay in ITN-efficacy over time. Many models aimed at studying malaria transmission and control fail to account for this decay, as well as mosquito demography and feeding preferences exhibited by mosquitoes towards humans. Omitting these factors can misrepresent disease risk, while understanding their effects on malaria dynamics can inform control policy. We present a model for malaria dynamics that incorporates these factors, and a systematic analysis, including stability and sensitivity analyses of the model under different conditions. The model with constant ITN-efficacy exhibits a backward bifurcation emphasizing the need for sustained control measures until the basic reproduction number, R0, drops below a critical value at which control is feasible. The infectious and partially immune human populations and R0 are highly sensitive to the probability that a mosquito feeds successfully on a human, ITN coverage and the maximum biting rate of mosquitoes, irrespective of whether ITN-efficacy is constant or declines over time. This implies that ITNs play an important role in disease control. When ITN-efficacy wanes over time, we identify disease risks and corresponding ITN coverage, as well as feeding preference levels for which the disease can be controlled or eradicated. Our study leads to important insights that could assist in the design and implementation of better malaria control strategies. We conclude that ITNs that can retain their effectiveness for longer periods will be more appropriate in the fight against malaria and that making more ITNs available to highly endemic regions is

  4. Malaria

    Science.gov (United States)

    ... and Prevention (CDC) web site for information about travel health concerns for international locations before you go. Prevention ... in the evening, when mosquitoes are typically more active. Medicine is also ... malaria? If you plan to travel to a country where malaria is common, you' ...

  5. Whither genome research: Of man, mosquito and malaria

    OpenAIRE

    Tatu, Utpal; Jain, Samta; Priya, Padma P

    2005-01-01

    Malaria continues to be a global health challenge. More number of people die of malaria than any other single infectious disease world over. While the occurrence of malaria is mainly localized to tropical and sub-tropical regions of the world, the numbers of people infected with malaria are very large. Recent WHO survey reports over 500 million cases of malaria annually, resulting in more than 2 million deaths, of which about a million are children in sub-saharan Africa. Global warming togeth...

  6. Declining Malaria, Rising of Dengue and Zika virus: Insights for Mosquito Vector Control.

    OpenAIRE

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-01-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve a...

  7. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  8. Push-pull tactics to disrupt the host-seeking behaviour of malaria mosquitoes

    NARCIS (Netherlands)

    Menger, D.J.

    2015-01-01

    Malaria remains a major health burden, especially in sub-Saharan Africa. The efficacy of the main vector control tools, insecticide-treated bed nets (ITNs) and indoor residual spraying (IRS), is compromised by the development of physiological and behavioural resistance in the target mosquito species

  9. Selection of mosquito life-histories: a hidden weapon against malaria?

    NARCIS (Netherlands)

    Ferguson, H.M.; Maire, N.; Takken, W.; Lyimo, I.N.; Briet, O.; Lindsay, S.W.; Smith, T.A.

    2012-01-01

    Background There has recently been a substantial decline in malaria incidence in much of Africa. While the decline can clearly be linked to increasing coverage of mosquito vector control interventions and effective drug treatment in most settings, the ubiquity of reduction raises the possibility tha

  10. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    NARCIS (Netherlands)

    Meijerink, J.

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. T

  11. Scepticism towards insecticide treated mosquito nets for malaria control in a rural community in northwestern Tanzania

    DEFF Research Database (Denmark)

    Nnko, Soori; Whyte, Susan Reynolds; Geissler, Wenzel;

    2012-01-01

    in Mwanza region, North-Western Tanzania. The study explores reasons for scepticism and low uptake of insecticide treated mosquito nets (ITNs) that were promoted through social marketing strategy for malaria control prior to the introduction of long lasting nets (LLN). The paper breaks from...

  12. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    Science.gov (United States)

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  13. Estimating the malaria risk of African mosquito movement by air travel

    Directory of Open Access Journals (Sweden)

    Rogers David J

    2006-07-01

    Full Text Available Abstract Background The expansion of global travel has resulted in the importation of African Anopheles mosquitoes, giving rise to cases of local malaria transmission. Here, cases of 'airport malaria' are used to quantify, using a combination of global climate and air traffic volume, where and when are the greatest risks of a Plasmodium falciparum-carrying mosquito being importated by air. This prioritises areas at risk of further airport malaria and possible importation or reemergence of the disease. Methods Monthly data on climate at the World's major airports were combined with air traffic information and African malaria seasonality maps to identify, month-by-month, those existing and future air routes at greatest risk of African malaria-carrying mosquito importation and temporary establishment. Results The location and timing of recorded airport malaria cases proved predictable using a combination of climate and air traffic data. Extending the analysis beyond the current air network architecture enabled identification of the airports and months with greatest climatic similarity to P. falciparum endemic regions of Africa within their principal transmission seasons, and therefore at risk should new aviation routes become operational. Conclusion With the growth of long haul air travel from Africa, the identification of the seasonality and routes of mosquito importation is important in guiding effective aircraft disinsection and vector control. The recent and continued addition of air routes from Africa to more climatically similar regions than Europe will increase movement risks. The approach outlined here is capable of identifying when and where these risks are greatest.

  14. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Alvaro Molina-Cruz

    2014-08-01

    Full Text Available Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.

  15. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-08-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  16. The remarkable journey of adaptation of the Plasmodium falciparum malaria parasite to New World anopheline mosquitoes

    Science.gov (United States)

    Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas. PMID:25185006

  17. Malaria mosquito control using edible fish in western Kenya: preliminary findings of a controlled study

    Directory of Open Access Journals (Sweden)

    Omlin Francois X

    2007-08-01

    Full Text Available Abstract Background Biological control methods are once again being given much research focus for malaria vector control. This is largely due to the emerging threat of strong resistance to pesticides. Larvivorous fish have been used for over 100 years in mosquito control and many species have proved effective. In the western Kenyan highlands the larvivorous fish Oreochromis niloticus L. (Perciformes: Cichlidae (formerly Tilapia nilotica is commonly farmed and eaten but has not been previously tested in the field for malaria mosquito control. Methods This fish was introduced into abandoned fishponds at an altitude of 1,880 m and the effect measured over six months on the numbers of mosquito immatures. For comparison an untreated control pond was used. During this time, all ponds were regularly cleared of emergent vegetation and fish re-stocking was not needed. Significant autocorrelation was removed from the time series data, and t-tests were used to investigate within a pond and within a mosquito type any differences before and after the introduction of O. niloticus. Mulla's formula was also used on the raw data to calculate the percentage reduction of the mosquito larvae. Results After O. niloticus introduction, mosquito densities immediately dropped in the treated ponds but increased in the control pond. This increase was apparently due to climatic factors. Mulla's formula was applied which corrects for that natural tendency to increase. The results showed that after 15 weeks the fish caused a more than 94% reduction in both Anopheles gambiae s.l. and Anopheles funestus (Diptera: Culicidae in the treated ponds, and more than 75% reduction in culicine mosquitoes. There was a highly significantly reduction in A. gambiae s.l. numbers when compared to pre-treatment levels. Conclusion This study reports the first field trial data on O. niloticus for malaria mosquito control and shows that this species, already a popular food fish in western Kenya

  18. Effect of combining mosquito repellent and insecticide treated net on malaria prevalence in Southern Ethiopia: a cluster-randomised trial

    OpenAIRE

    Deressa, Wakgari; Yihdego, Yemane Y; Kebede, Zelalem; Batisso, Esey; Tekalegne, Agonafer; Dagne, Getachew A.

    2014-01-01

    Background A mosquito repellent has the potential to prevent malaria infection, but there has been few studies demonstrating the effectiveness of combining this strategy with the highly effective long-lasting insecticidal nets (LLINs). This study aimed to determine the effect of combining community-based mosquito repellent with LLINs in the reduction of malaria. Methods A community-based clustered-randomised trial was conducted in 16 rural villages with 1,235 households in southern Ethiopia b...

  19. The trial detection of malaria sporozoit in field-collected mosquito by immunoradiometric assay in Thailand

    International Nuclear Information System (INIS)

    The sporozoite rate, species of parasite and vector are important in the epidemiology of malaria. The investigation of sporozoite by dissection and examination under a microscope is time-consuming and it could be done only on freshly killed mosquitoes. Immunoradiometric assay (IRMA) that can detect, identify and quantify malaria sporozoite (Zavala et al., 1982) was therefore applied to detect sporozoite in laboratory-maintained Anopheles dirus and wild-caught mosquitoes. Study on P. falciparum-infected An. dirus showed that the circumsporozoite (CS) antigen was first found in the abdomen on the 10th day post-infection, whilst the sporozoites were examined in salivary glands from day 15 onwards. The malaria infection in wild-caught mosquitoes were investigated in Anopheles spp collected by human baites from three endemic areas in Thailand. Since the sporozoite rate refers to the presence of sporozoite in the salivary gland, then only head-thorax part of the specimens were detected by IRMA to prevent an exaggeration over the true results. It was found that none of mosquitoes collected from Phrae was positive for malaria. Four out of 1243 An. dirus among eight species collected from Chantaburi were positive for P. falciparum with sporozoites ranged from 270 to 3875. Of all ten species collected from Kanchanaburi, two and one out of 3123 An. minimus were positive for P. falciparum and P. vivax with sporozoites found in head-thorax portions were 1880, 2380 and 1026 respectively. It is evident that the IRMA is suitable for the investigation of malaria sporozoites in this region. The application of this technique in the further epidemiological study is in progress

  20. Combination therapy counteracts the enhanced transmission of drug-resistant malaria parasites to mosquitoes.

    Science.gov (United States)

    Hallett, Rachel L; Sutherland, Colin J; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J; Pinder, Margaret; Walraven, Gijs; Targett, Geoffrey A T; Alloueche, Ali

    2004-10-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resistant parasites from treated patients to mosquito vectors has not been measured directly. In a trial comparing CQ monotherapy to the combination CQ plus artesunate (AS) in Gambian children with uncomplicated falciparum malaria, we measured transmissibility by feeding Anopheles gambiae mosquitoes with blood from 43 gametocyte-positive patients through a membrane. In the CQ-treated group, gametocytes from patients carrying parasites with the CQ resistance-associated allele pfcrt-76T prior to treatment produced infected mosquitoes with 38 times higher Plasmodium falciparum oocyst burdens than mosquitoes fed on gametocytes from patients infected with sensitive parasites (P < 0.001). Gametocytes from parasites carrying the resistance-associated allele pfmdr1-86Y produced 14-fold higher oocyst burdens than gametocytes from patients infected with sensitive parasites (P = 0.011). However, parasites carrying either of these resistance-associated alleles pretreatment were not associated with higher mosquito oocyst burdens in the CQ-AS-treated group. Thus, combination therapy overcomes the transmission advantage enjoyed by drug-resistant parasites. PMID:15388456

  1. The effects of zooprophylaxis and other mosquito control measures against malaria in Nouna, Burkina Faso

    Directory of Open Access Journals (Sweden)

    Sié Ali

    2009-12-01

    Full Text Available Abstract Background In the absence of large scale, organized vector control programmes, individual protective measures against mosquitoes are essential for reducing the transmission of diseases like malaria. Knowledge of the types and effectiveness of mosquito control methods used by households can aid in the development and promotion of preventive measures. Methods A matched, population-based case control study was carried out in the semi-urban region of Nouna, Burkina Faso. Surveys and mosquito captures were conducted for each participating household. Data were analysed using conditional logistic regression and Pearson's product-moment correlations. Results In Nouna, Burkina Faso, the main types of reported mosquito control measures used included sleeping under bed nets (insecticide-treated and untreated and burning mosquito coils. Most of the study households kept animals within the compound or house at night. Insecticide house sprays, donkeys, rabbits and pigs were significantly associated with a reduced risk of malaria only in univariate analyses. Conclusion Given the conflicting results of the effects of zooprophylaxis from previous studies, other community-based preventive measures, such as bed nets, coils and insecticide house-spraying, may be of more benefit.

  2. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    Directory of Open Access Journals (Sweden)

    Shigeto Yoshida

    2007-12-01

    Full Text Available The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50 of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions.

  3. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.

    Science.gov (United States)

    Yoshida, Shigeto; Shimada, Yohei; Kondoh, Daisuke; Kouzuma, Yoshiaki; Ghosh, Anil K; Jacobs-Lorena, Marcelo; Sinden, Robert E

    2007-12-01

    The midgut environment of anopheline mosquitoes plays an important role in the development of the malaria parasite. Using genetic manipulation of anopheline mosquitoes to change the environment in the mosquito midgut may inhibit development of the malaria parasite, thus blocking malaria transmission. Here we generate transgenic Anopheles stephensi mosquitoes that express the C-type lectin CEL-III from the sea cucumber, Cucumaria echinata, in a midgut-specific manner. CEL-III has strong and rapid hemolytic activity toward human and rat erythrocytes in the presence of serum. Importantly, CEL-III binds to ookinetes, leading to strong inhibition of ookinete formation in vitro with an IC(50) of 15 nM. Thus, CEL-III exhibits not only hemolytic activity but also cytotoxicity toward ookinetes. In these transgenic mosquitoes, sporogonic development of Plasmodium berghei is severely impaired. Moderate, but significant inhibition was found against Plasmodium falciparum. To our knowledge, this is the first demonstration of stably engineered anophelines that affect the Plasmodium transmission dynamics of human malaria. Although our laboratory-based research does not have immediate applications to block natural malaria transmission, these findings have significant implications for the generation of refractory mosquitoes to all species of human Plasmodium and elucidation of mosquito-parasite interactions. PMID:18159942

  4. Analysis of a Malaria Model with Mosquito-Dependent Transmission Coefficient for Humans

    Indian Academy of Sciences (India)

    G C Hazarika; Anuradha Bhattacharjee

    2011-02-01

    In this paper, we discuss an ordinary differential equation mathematical model for the spread of malaria in human and mosquito population. We suppose the human population to act as a reservoir. Both the species follow a logistic population model. The transmission coefficient or the interaction coefficient of humans is considered to be dependent on the mosquito population. It is seen that as the factors governing the transmission coefficient of humans increase, so does the number of infected humans. Further, it is observed that as the immigration constant increases, it leads to a rise in infected humans, giving an endemic shape to the disease.

  5. Rodent malaria-resistant strains of the mosquito, Anopheles gambiae, have slower population growth than -susceptible strains

    Directory of Open Access Journals (Sweden)

    Taylor Pam J

    2009-04-01

    Full Text Available Abstract Background Trade-offs between anti-parasite defence mechanisms and other life history traits limit the evolution of host resistance to parasites and have important implications for understanding diseases such as malaria. Mosquitoes have not evolved complete resistance to malaria parasites and one hypothesis is that anti-malaria defence mechanisms are costly. Results We used matrix population models to compare the population growth rates among lines of Anopheles gambiae that had been selected for resistance or high susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The population growth rate of the resistant line was significantly lower than that of the highly susceptible and the unselected control lines, regardless of whether mosquitoes were infected with Plasmodium or not. The lower population growth of malaria-resistant mosquitoes was caused by reduced post blood-feeding survival of females and poor egg hatching. Conclusion With respect to eradicating malaria, the strategy of releasing Plasmodium-resistant Anopheles mosquitoes is unlikely to be successful if the costs of Plasmodium-resistance in the field are as great as the ones measured in this study. High densities of malaria-resistant mosquitoes would have to be maintained by continuous release from captive breeding facilities.

  6. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential

    OpenAIRE

    Cator, Lauren J.; Pietri, Jose E.; Murdock, Courtney C.; Ohm, Johanna R.; Lewis, Edwin E.; Read, Andrew F; Shirley Luckhart; Thomas, Matthew B.

    2015-01-01

    Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes i...

  7. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    OpenAIRE

    Meijerink, J

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. These cuticular extensions, called sensilla, contain numerous pores through which the odours can enter the sensillum and reach the olfactory receptor neuron membrane. Despite the fact that these mos...

  8. A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Gimonneau, Geoffrey; Bouyer, Jérémy; Morand, Serge; Besansky, Nora J.; Diabate, Abdoulaye; Simard, Frédéric

    2010-01-01

    Disruptive selection mediated by predation on aquatic immature stages has been proposed as a major force driving ecological divergence and fostering speciation between the M and S molecular forms of the African malaria mosquito, Anopheles gambiae. In the dry savannahs of West Africa where both molecular forms co-occur, the S form thrives in temporary pools filled with rainwater, whereas the M form preferentially breeds in permanent freshwater habitats where predator pressure is higher. Here, ...

  9. Gal4-based Enhancer-Trapping in the Malaria Mosquito Anopheles stephensi

    OpenAIRE

    O’Brochta, David A.; Pilitt, Kristina L.; Harrell, Robert A.; Aluvihare, Channa; Alford, Robert T.

    2012-01-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with...

  10. Application of X-ray imaging techniques for studying the morphology of malaria-transmitting mosquitoes

    International Nuclear Information System (INIS)

    The X-ray phase contrast tomography technique was applied to examine the morphology of malaria transmitting mosquitoes in support of the development of the sterile insect technique (SIT). The aim of the experiment was to detect possible damage induced by the sample preparation procedures, to perform X-ray phase-contrast imaging on freshly prepared (not fixed) and live mosquito species, and to test the new beam line set up, which was not yet fully commissioned at the time of the experiment. The ability to perform X-ray phase-contrast imaging of live mosquito specimens was confirmed. The collected still images provided data on a relatively large population of mosquitoes. The CT data were very useful to compare selected mosquito species. They confirmed that the sample preparation procedures are critical for examining the morphological details. The procedures must be further optimized in order to stabilize the sample without inducing significant damage. The most interesting results should be obtained with the high-resolution (∼ 0.5 micrometer) set up using the FReloN camera to be commissioned at the TOPO beam line in the 3rd quarter of 2007. If there are differences between the control and irradiated populations of mosquitoes they should show up first at the tissue level. Using the high-resolution setup it should be possible to detect such differences, if present

  11. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes.

    Directory of Open Access Journals (Sweden)

    Changchun Liu

    Full Text Available BACKGROUND: Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. METHODOLOGY/PRINCIPAL FINDINGS: An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. CONCLUSIONS/SIGNIFICANCE: The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to

  12. Phenylalanine metabolism regulates reproduction and parasite melanization in the malaria mosquito.

    Directory of Open Access Journals (Sweden)

    Silke Fuchs

    Full Text Available The blood meal of the female malaria mosquito is a pre-requisite to egg production and also represents the transmission route for the malaria parasite. The proper and rapid assimilation of proteins and nutrients in the blood meal creates a significant metabolic challenge for the mosquito. To better understand this process we generated a global profile of metabolite changes in response to blood meal of Anopheles gambiae, using Gas Chromatography-Mass Spectrometry (GC-MS. To disrupt a key pathway of amino acid metabolism we silenced the gene phenylalanine hydroxylase (PAH involved in the conversion of the amino acid phenylalanine into tyrosine. We observed increased levels of phenylalanine and the potentially toxic metabolites phenylpyruvate and phenyllactate as well as a reduction in the amount of tyrosine available for melanin synthesis. This in turn resulted in a significant impairment of the melanotic encapsulation response against the rodent malaria parasite Plasmodium berghei. Furthermore silencing of PAH resulted in a significant impairment of mosquito fertility associated with reduction of laid eggs, retarded vitellogenesis and impaired melanisation of the chorion. Carbidopa, an inhibitor of the downstream enzyme DOPA decarboxylase that coverts DOPA into dopamine, produced similar effects on egg melanization and hatching rate suggesting that egg chorion maturation is mainly regulated via dopamine. This study sheds new light on the role of amino acid metabolism in regulating reproduction and immunity.

  13. Transgenic mosquitoes and the fight against malaria: managing technology push in a turbulent GMO world.

    Science.gov (United States)

    Knols, Bart G J; Bossin, Hervé C; Mukabana, Wolfgang R; Robinson, Alan S

    2007-12-01

    Genetic modification (GM) of mosquitoes (which renders them genetically modified organisms, GMOs) offers opportunities for controlling malaria. Transgenic strains of mosquitoes have been developed and evaluation of these to 1) replace or suppress wild vector populations and 2) reduce transmission and deliver public health gains are an imminent prospect. The transition of this approach from confined laboratory settings to open field trials in disease-endemic countries (DECs) is a staged process that aims to maximize the likelihood of epidemiologic benefits while minimizing potential pitfalls during implementation. Unlike conventional approaches to vector control, application of GM mosquitoes will face contrasting expectations of multiple stakeholders, the management of which will prove critical to safeguard support and avoid antagonism, so that potential public health benefits can be fully evaluated. Inclusion of key stakeholders in decision-making processes, transfer of problem-ownership to DECs, and increased support from the wider malaria research community are important prerequisites for this. It is argued that the many developments in this field require coordination by an international entity to serve as a guiding coalition to stimulate collaborative research and facilitate stakeholder involvement. Contemporary developments in the field of modern biotechnology, and in particular GM, requires competencies beyond the field of biology, and the future of transgenic mosquitoes will hinge on the ability to govern the process of their introduction in societies in which perceived risks may outweigh rational and responsible involvement. PMID:18165498

  14. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector.

    Directory of Open Access Journals (Sweden)

    Laura C Pollitt

    2015-07-01

    Full Text Available Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors.

  15. Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Olsen, Stine S; Cazzamali, Giuseppe; Williamson, Michael;

    2007-01-01

    We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1 (GPTVGLFAFPRVa......We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1...... (GPTVGLFAFPRVamide) and Ang-capa-2 (pQGLVPFPRVamide) with EC(50) values of 8.6x10(-9)M and 3.3x10(-9)M, respectively, but not by any other known mosquito neuropeptide. The second receptor, Ang-PK-1-R, was selectively activated by the Anopheles pyrokinin-1 peptides Ang-PK-1-1 (AGGTGANSAMWFGPRLamide) and Ang-PK-1......-2 (AAAMWFGPRLamide) with EC(50) values of 3.3x10(-8)M and 2.5x10(-8)M, respectively, but not by mosquito capa or pyrokinin-2 peptides. For the third receptor, Ang-PK-2-R, the most potent ligands were the pyrokinin-2 peptides Ang-PK-2-1 (DSVGENHQRPPFAPRLamide) and Ang-PK-2-2 (NLPFSPRLamide) with EC(50) values of 5.2x...

  16. Existing Infection Facilitates Establishment and Density of Malaria Parasites in Their Mosquito Vector.

    Science.gov (United States)

    Pollitt, Laura C; Bram, Joshua T; Blanford, Simon; Jones, Matthew J; Read, Andrew F

    2015-07-01

    Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors. PMID:26181518

  17. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    International Nuclear Information System (INIS)

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems. (letter)

  18. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    Science.gov (United States)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  19. Risk and Control of Mosquito-Borne Diseases in Southeast Asian Rubber Plantations.

    Science.gov (United States)

    Tangena, Julie-Anne A; Thammavong, Phoutmany; Wilson, Anne L; Brey, Paul T; Lindsay, Steve W

    2016-05-01

    Unprecedented economic growth in Southeast Asia (SEA) has encouraged the expansion of rubber plantations. This land-use transformation is changing the risk of mosquito-borne diseases. Mature plantations provide ideal habitats for the mosquito vectors of malaria, dengue, and chikungunya. Migrant workers may introduce pathogens into plantation areas, most worryingly artemisinin-resistant malaria parasites. The close proximity of rubber plantations to natural forest also increases the threat from zoonoses, where new vector-borne pathogens spill over from wild animals into humans. There is therefore an urgent need to scale up vector control and access to health care for rubber workers. This requires an intersectoral approach with strong collaboration between the health sector, rubber industry, and local communities. PMID:26907494

  20. Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control.

    Science.gov (United States)

    Benelli, Giovanni; Mehlhorn, Heinz

    2016-05-01

    The fight against mosquito-borne diseases is a challenge of huge public health importance. To our mind, 2015 was an extraordinary year for malaria control, due to three hot news: the Nobel Prize to Youyou Tu for the discovery of artemisinin, the development of the first vaccine against Plasmodium falciparum malaria [i.e. RTS,S/AS01 (RTS,S)], and the fall of malaria infection rates worldwide, with special reference to sub-Saharan Africa. However, there are major challenges that still deserve attention, in order to boost malaria prevention and control. Indeed, parasite strains resistant to artemisinin have been detected, and RTS,S vaccine does not offer protection against Plasmodium vivax malaria, which predominates in many countries outside of Africa. Furthermore, the recent outbreaks of Zika virus infections, occurring in South America, Central America and the Caribbean, represent the most recent of four arrivals of important arboviruses in the Western Hemisphere, over the last 20 years. Zika virus follows dengue (which slyly arrived in the hemisphere over decades and became more aggressive in the 1990s), West Nile virus (emerged in 1999) and chikungunya (emerged in 2013). Notably, there are no specific treatments for these arboviruses. The emerging scenario highlights that the effective and eco-friendly control of mosquito vectors, with special reference to highly invasive species such as Aedes aegypti and Aedes albopictus, is crucial. The concrete potential of screening plant species as sources of metabolites for parasitological purposes is worthy of attention, as elucidated by the Y. Tu's example. Notably, plant-borne molecules are often effective at few parts per million against Aedes, Ochlerotatus, Anopheles and Culex young instars, can be used for the rapid synthesis of mosquitocidal nanoformulations and even employed to prepare cheap repellents with low human toxicity. In addition, behaviour-based control tools relying to the employ of sound traps and the

  1. Insecticide resistance in malaria-transmitting mosquitoes in Zimbabwe: a review.

    Science.gov (United States)

    Soko, White; Chimbari, Moses J; Mukaratirwa, Samson

    2015-01-01

    Malaria is a global public health problem, with about 3.2 billion people at risk of infection. The populations at risk mainly reside in Africa, Asia and America, with African populations accounting for the largest burden of the disease. In 2013, close to 198 million malaria cases were reported, leading to 584,000 deaths. Much (90 %) of the mortality rates were recorded from the World Health Organization (WHO) database in the African region and 78 % of these occurred in children under the age of five. In Zimbabwe, approximately half of the population is at risk of infection with malaria.Insecticide residual spraying (IRS) has been documented as an effective way to control malaria and has been adopted globally by the WHO and national governments. However, both insecticide resistance and climate change threaten to reverse the progress made by IRS in malaria control. Resistance has been reported in all four classes of insecticides approved by the WHO for vector control intervention. Variability of environmental temperature is suspected to complicate the situation through alteration in the genetic structure, and enzyme and protein profiles of mosquitoes. In Zimbabwe, little research has been done on the interaction between climate change, temperature variability and insecticide resistance in malarial mosquitoes over time. Such information is important for informing policies on insecticide selection for IRS.We reviewed literature on insecticide sensitivity among malarial mosquitoes in Zimbabwe from 1972 to 2014. International peer-reviewed articles on insecticide sensitivity in Zimbabwe, published in English in this time period, were searched using MEDLINE® (PubMed), Google Scholar, Google and grey literature. Eight publications were eligible for the present study, with one of the articles being a review paper. Six articles covered insecticide resistance, while the other two articles, published in 2000, were about the absence of resistance. Contradicting resistance

  2. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Fabrizio Lombardo

    2013-01-01

    Full Text Available Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase, pattern recognition (fibrinogen-domain lectins and Nimrod, immune modulation (peptidase and serine protease homolog, immune signaling (Eiger and LPS-induced factor, cell adhesion and communication (Laminin B1 and Ninjurin and immune homeostasis (Lipophorin receptor. The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.

  3. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    Full Text Available BACKGROUND: Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs. METHODS AND FINDINGS: Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative. CONCLUSIONS: The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite. TRIAL REGISTRATION: ClinicalTrials.gov NCT00744133.

  4. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination

    Directory of Open Access Journals (Sweden)

    Nicodem James Govella

    2012-06-01

    Full Text Available By definition, elimination of malaria means permanent reduction to zero of locally incidence of infections. Achieving this goal among other reasons, it requires fully understanding on where and when persons are most exposed to malaria vectors as these are fundamental for targeting interventions to achieve maximum impact. While elimination can be possible in some settings with low malaria transmission intensity and dominated with late and indoor biting of vectors using Long Lasting Insecticidal Nets (LLIN and Indoor Residual Spraying (IRs, it’s difficult and even impossible in areas with high and where majority of human exposure to transmission occurs outside human dwellings. Recently in response to wide spread use of LLIN and IRS, human risk of exposure to transmission is increasingly spread across the entire night so that much of it occurs outdoors and before bed time. This modification of vector populations and behaviour has now been reported from across Africa, Asia and from the Solomon Islands. Historical evidence shows that even in areas with intervention coverage exceeding 90% of human population it was so hard to even push prevalence down below the pre elimination threshold of 1% being compromised mainly with the outdoor residual transmission. Malaria control experts must however continue to deliver interventions that tackle indoor transmission but considerable amount of resources that target mosquitoes outside of houses and outside of sleeping hours will therefore be required to sustain and go beyond existing levels of malaria control and achieve elimination.

  5. The effects of climate change and globalization on mosquito vectors: evidence from Jeju Island, South Korea on the potential for Asian tiger mosquito (Aedes albopictus influxes and survival from Vietnam rather than Japan.

    Directory of Open Access Journals (Sweden)

    Su Hyun Lee

    Full Text Available BACKGROUND: Climate change affects the survival and transmission of arthropod vectors as well as the development rates of vector-borne pathogens. Increased international travel is also an important factor in the spread of vector-borne diseases (VBDs such as dengue, West Nile, yellow fever, chikungunya, and malaria. Dengue is the most important vector-borne viral disease. An estimated 2.5 billion people are at risk of infection in the world and there are approximately 50 million dengue infections and an estimated 500,000 individuals are hospitalized with dengue haemorrhagic fever annually. The Asian tiger mosquito (Aedes albopictus is one of the vectors of dengue virus, and populations already exist on Jeju Island, South Korea. Currently, colder winter temperatures kill off Asian tiger mosquito populations and there is no evidence of the mosquitos being vectors for the dengue virus in this location. However, dengue virus-bearing mosquito vectors can inflow to Jeju Island from endemic area such as Vietnam by increased international travel, and this mosquito vector's survival during colder winter months will likely occur due to the effects of climate change. METHODS AND RESULTS: In this section, we show the geographical distribution of medically important mosquito vectors such as Ae. albopictus, a vector of both dengue and chikungunya viruses; Culex pipiens, a vector of West Nile virus; and Anopheles sinensis, a vector of Plasmodium vivax, within Jeju Island, South Korea. We found a significant association between the mean temperature, amount of precipitation, and density of mosquitoes. The phylogenetic analyses show that an Ae. albopictus, collected in southern area of Jeju Island, was identical to specimens found in Ho Chi Minh, Vietnam, and not Nagasaki, Japan. CONCLUSION: Our results suggest that mosquito vectors or virus-bearing vectors can transmit from epidemic regions of Southeast Asia to Jeju Island and can survive during colder winter

  6. Differential Effects of Azithromycin, Doxycycline, and Cotrimoxazole in Ingested Blood on the Vectorial Capacity of Malaria Mosquitoes

    Science.gov (United States)

    Gendrin, Mathilde; Yerbanga, Rakiswendé Serge; Ouedraogo, Jean Bosco; Lefèvre, Thierry; Cohuet, Anna; Christophides, George K.

    2016-01-01

    Background. The gut microbiota of malaria vector mosquitoes grows after a blood meal and limits Plasmodium infection. We previously showed that penicillin and streptomycin in the ingested blood affect bacterial growth and positively impact mosquito survival and permissiveness to Plasmodium. In this study, we examine the effects of doxycycline, azithromycin, and co-trimoxazole. All 3 antibiotics are used in mass drug administration programs and have antimicrobial activities against bacteria and various stages of malaria parasites. Methods. The effects of blood meal supplementation with antibiotics on the mosquito microbiota, lifespan, and permissiveness to Plasmodium falciparum were assessed. Results. Ingestion of any of the 3 antibiotics significantly affected the mosquito microbiota. Azithromycin decreased P falciparum infection load and mosquito lifespan, whereas at high concentrations, doxycycline increased P falciparum infection load. Co-trimoxazole negatively impacted infection intensity but had no reproducible effect on mosquito lifespan. Conclusions. Our data suggest that the overall effect of antibiotic treatment on parameters critical for mosquito vectorial capacity is drug specific. The negative effect of azithromycin on malaria transmission is consistent with current efforts for disease elimination, whereas additional, larger scale investigations are required before conclusions can be drawn about doxycycline.

  7. Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut

    Institute of Scientific and Technical Information of China (English)

    Ingrid Rupp; Gabriele Pradel; Ludmilla Sologub; Kim C Williamson; Matthias Scheuermayer; Luc Reininger; Christian Doerig; Saliha Eksi; Davy U Kombilaa; Matthias Frank

    2011-01-01

    Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of>100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut.

  8. GENETIC ISOLATION WITHIN THE MALARIA MOSQUITO ANOPHELES MELAS

    Science.gov (United States)

    Deitz, Kevin C; Athrey, Giri; Reddy, Michael R; Overgaard, Hans J; Matias, Abrahan; Jawara, Musa; della Torre, Alessandra; Petrarca, Vincenzo; Pinto, Joao; Kiszewski, Anthony; Kengne, Pierre; Costantini, Carlo; Caccone, Adalgisa; Slotman, Michel A

    2014-01-01

    Anopheles melas is a brackish water-breeding member of the An. gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analyzed 15 microsatellite markers and 1,161 bp of mtDNA in 11 An. melas populations collected throughout its range. Compared to its sibling species An. gambiae, An. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat which is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa, and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three An. melas clusters is on par with levels of divergence between other species of the An. gambiae complex, and no support for monophyly was observed in a maximum likelihood phylogenetic analysis. Finally, an Approximate Bayesian Analysis of microsatellite data indicates that Bioko Island An. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10,000-11,000 years ago). This study has exposed species level genetic divergence within An. melas, and also has implications for control of this malaria vector. PMID:22882458

  9. Investigations on anopheline mosquitoes close to the nest sites of chimpanzees subject to malaria infection in Ugandan Highlands

    Directory of Open Access Journals (Sweden)

    Krief Sabrina

    2012-04-01

    Full Text Available Abstract Background Malaria parasites (Plasmodium sp., including new species, have recently been discovered as low grade mixed infections in three wild chimpanzees (Pan troglodytes schweinfurthii sampled randomly in Kibale National Park, Uganda. This suggested a high prevalence of malaria infection in this community. The clinical course of malaria in chimpanzees and the species of the vectors that transmit their parasites are not known. The fact that these apes display a specific behaviour in which they consume plant parts of low nutritional value but that contain compounds with anti-malarial properties suggests that the apes health might be affected by the parasite. The avoidance of the night-biting anopheline mosquitoes is another potential behavioural adaptation that would lead to a decrease in the number of infectious bites and consequently malaria. Methods Mosquitoes were collected over two years using suction-light traps and yeast-generated CO2 traps at the nesting and the feeding sites of two chimpanzee communities in Kibale National Park. The species of the female Anopheles caught were then determined and the presence of Plasmodium was sought in these insects by PCR amplification. Results The mosquito catches yielded a total of 309 female Anopheles specimens, the only known vectors of malaria parasites of mammalians. These specimens belonged to 10 species, of which Anopheles implexus, Anopheles vinckei and Anopheles demeilloni dominated. Sensitive DNA amplification techniques failed to detect any Plasmodium-positive Anopheles specimens. Humidity and trap height influenced the Anopheles capture success, and there was a negative correlation between nest numbers and mosquito abundance. The anopheline mosquitoes were also less diverse and numerous in sites where chimpanzees were nesting as compared to those where they were feeding. Conclusions These observations suggest that the sites where chimpanzees build their nests every night might be

  10. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus.

    Science.gov (United States)

    Caraballo, Hector; King, Kevin

    2014-05-01

    Up to 700 million people are infected and more than a million die each year from mosquito-borne illness. While the vast majority of cases occur in endemic tropical and subtropical regions, international travel and migration patterns have increased their prevalence in North America. This review discusses the diagnosis and treatment of the 3 most common mosquito-borne illnesses seen in the United States: Plasmodium falciparum malaria, dengue, and West Nile virus. With no pathognomonic findings, it is critical that emergency clinicians in nonendemic areas maintain a high index of suspicion, conduct a thorough history/travel history, and interpret indirect findings to initiate prompt and appropriate treatment. This review gathers the best evidence from international public health resources, surveillance studies, guidelines, and academic research to give emergency clinicians tools to combat these potentially lethal infections. PMID:25207355

  11. Chromosome evolution in malaria mosquitoes inferred from physically mapped genome assemblies.

    Science.gov (United States)

    Sharakhov, Igor V; Artemov, Gleb N; Sharakhova, Maria V

    2016-04-01

    Polymorphic inversions in mosquitoes are distributed nonrandomly among chromosomes and are associated with ecological, behavioral, and physiological adaptations related to pathogen transmission. Despite their significance, the patterns and mechanism of genome rearrangements are not well understood. Recent sequencing and physical mapping of the genomes for 16 Anopheles mosquito species provided an opportunity to study chromosome evolution at the highest resolution. New studies revealed that fixed rearrangement accumulated [Formula: see text]3 times faster on the X chromosome than on autosomes. The highest densities of transposable elements (TEs) and satellites of different sizes have also been found on the X chromosome, suggesting a mechanism for the inversion generation. The high rate of X chromosome rearrangements is in sharp contrast with the paucity of polymorphic inversions on the X in the majority of anopheline species. This paper highlights the advances in understanding chromosome evolution in malaria vectors and discusses possible future directions in studying mechanisms and biological roles of genome rearrangements. PMID:27021248

  12. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae)

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Loon, van J.J.A.; Takken, W.

    2005-01-01

    Host odours play a major role in the orientation and host location of blood-feeding mosquitoes. Anopheles gambiae Giles sensu stricto, which is the most important malaria vector in Africa, is a highly anthropophilic mosquito species, and the host-seeking behaviour of the females of this mosquito is

  13. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

    Science.gov (United States)

    Hall, Andrew Brantley; Papathanos, Philippos-Aris; Sharma, Atashi; Cheng, Changde; Akbari, Omar S; Assour, Lauren; Bergman, Nicholas H; Cagnetti, Alessia; Crisanti, Andrea; Dottorini, Tania; Fiorentini, Elisa; Galizi, Roberto; Hnath, Jonathan; Jiang, Xiaofang; Koren, Sergey; Nolan, Tony; Radune, Diane; Sharakhova, Maria V; Steele, Aaron; Timoshevskiy, Vladimir A; Windbichler, Nikolai; Zhang, Simo; Hahn, Matthew W; Phillippy, Adam M; Emrich, Scott J; Sharakhov, Igor V; Tu, Zhijian Jake; Besansky, Nora J

    2016-04-12

    Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes. PMID:27035980

  14. Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Zhengxi Li; Zuorui Shen; Jingjiang Zhou; Lin Field

    2003-01-01

    Chemosensory proteins (CSPs) are identifiable by four spatially conserved Cysteine residues in their primary structure or by two disulfide bridges in their tertiary structure according to the previously identified olfactory specific-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that five out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identification of Anopheles CSPs, though all of these candidates need additional experimental verification.

  15. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe;

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two......, showing that the receptor was quite selective for myosuppressin. These results also showed that the myosuppressin receptor needs a much larger portion than the C-terminal FLRFamide sequence for its activation. The insect myosuppressins are often grouped together with the insect FMRFamides under the name...

  16. Standardizing Operational Vector Sampling Techniques for Measuring Malaria Transmission Intensity: Evaluation of six Mosquito Collection Methods in Western Kenya.

    OpenAIRE

    Wong, Jacklyn; Bayoh, Nabie; Olang, George; Killeen, Gerry F.; Hamel, Mary J; Vulule, John M.; Gimnig, John E.

    2013-01-01

    Background Operational vector sampling methods lack standardization, making quantitative comparisons of malaria transmission across different settings difficult. Human landing catch (HLC) is considered the research gold standard for measuring human-mosquito contact, but is unsuitable for large-scale sampling. This study assessed mosquito catch rates of CDC light trap (CDC-LT), Ifakara tent trap (ITT), window exit trap (WET), pot resting trap (PRT), and box resting trap (BRT) relative to HLC i...

  17. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Mathenge Evan

    2006-11-01

    Full Text Available Abstract Background African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. Methods High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997 and after (2004 implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. Results An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. Conclusion As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.

  18. Field Evaluation of Picaridin Repellents Reveals Differences in Repellent Sensitivity between Southeast Asian Vectors of Malaria and Arboviruses

    OpenAIRE

    Karel Van Roey; Mao Sokny; Leen Denis; Nick Van den Broeck; Somony Heng; Sovannaroth Siv; Vincent Sluydts; Tho Sochantha; Marc Coosemans; Lies Durnez

    2014-01-01

    Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, inc...

  19. Persistent oscillations and backward bifurcation in a malaria model with varying human and mosquito populations: implications for control.

    Science.gov (United States)

    Ngonghala, Calistus N; Teboh-Ewungkem, Miranda I; Ngwa, Gideon A

    2015-06-01

    We derive and study a deterministic compartmental model for malaria transmission with varying human and mosquito populations. Our model considers disease-related deaths, asymptomatic immune humans who are also infectious, as well as mosquito demography, reproduction and feeding habits. Analysis of the model reveals the existence of a backward bifurcation and persistent limit cycles whose period and size is determined by two threshold parameters: the vectorial basic reproduction number Rm, and the disease basic reproduction number R0, whose size can be reduced by reducing Rm. We conclude that malaria dynamics are indeed oscillatory when the methodology of explicitly incorporating the mosquito's demography, feeding and reproductive patterns is considered in modeling the mosquito population dynamics. A sensitivity analysis reveals important control parameters that can affect the magnitudes of Rm and R0, threshold quantities to be taken into consideration when designing control strategies. Both Rm and the intrinsic period of oscillation are shown to be highly sensitive to the mosquito's birth constant λm and the mosquito's feeding success probability pw. Control of λm can be achieved by spraying, eliminating breeding sites or moving them away from human habitats, while pw can be controlled via the use of mosquito repellant and insecticide-treated bed-nets. The disease threshold parameter R0 is shown to be highly sensitive to pw, and the intrinsic period of oscillation is also sensitive to the rate at which reproducing mosquitoes return to breeding sites. A global sensitivity and uncertainty analysis reveals that the ability of the mosquito to reproduce and uncertainties in the estimations of the rates at which exposed humans become infectious and infectious humans recover from malaria are critical in generating uncertainties in the disease classes. PMID:24992885

  20. Insecticide resistance and malaria transmission: infection rate and oocyst burden in Culex pipiens mosquitoes infected with Plasmodium relictum

    Directory of Open Access Journals (Sweden)

    Rivero Ana

    2010-12-01

    Full Text Available Abstract Background The control of most vectors of malaria is threatened by the spread of insecticide resistance. One factor that has been hitherto largely overlooked is the potential effects of insecticide resistance on the ability of mosquitoes to transmit malaria: are insecticide-resistant mosquitoes as good vectors of Plasmodium as susceptible ones? The drastic physiological changes that accompany the evolution of insecticide resistance may indeed alter the ability of vectors to transmit diseases, a possibility that, if confirmed, could have major epidemiological consequences. Methods Using a novel experimental system consisting of the avian malaria parasite (Plasmodium relictum and its natural vector (the mosquito Culex pipiens, two of the most common mechanisms of insecticide resistance (esterase overproduction and acetylcholinesterase modification were investigated for their effect on mosquito infection rate and parasite burden. For this purpose two types of experiments were carried out using (i insecticide-resistant and susceptible laboratory isogenic lines of Cx. pipiens and (ii wild Cx. pipiens collected from a population where insecticide resistant and susceptible mosquitoes coexist in sympatry. Results The isogenic line and wild-caught mosquito experiments were highly consistent in showing no effect of either esterase overproduction or of acetylcholinesterase modification on either the infection rate or on the oocyst burden of mosquitoes. The only determinant of these traits was blood meal size, which was similar across the different insecticide resistant categories in both experiments. Conclusions Insecticide resistance was found to have no effect on Plasmodium development within the mosquito. This is the first time this question has been addressed using a natural mosquito-Plasmodium combination, while taking care to standardize the genetic background against which the insecticide resistance genes operate. Infection rate and oocyst

  1. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  2. Laboratory evaluation of Indian medicinal plants as repellents against malaria, dengue, and filariasis vector mosquitoes.

    Science.gov (United States)

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2015-02-01

    Mosquito-borne diseases have an economic impact, including loss in commercial and labor outputs, particularly in countries with tropical and subtropical climates; however, no part of the world is free from vector-borne diseases. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus, and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. In view of the recently increased interest in developing plant origin insecticides as an alternative to chemical insecticides, in the present study, the repellent activity of crude hexane, ethyl acetate, benzene, chloroform, and methanol extracts of leaf of Erythrina indica and root of Asparagus racemosus were assayed for their repellency against three important vector mosquitoes, viz., Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The crude extract was applied on a membrane used for membrane feeding of unfed mosquitoes in a 1-ft cage. About 50 unfed 3-4-day-old laboratory-reared pathogen-free strains of A. stephensi, A. aegypti, and C. quinquefasciatus were introduced in a 1-ft cage fitted with a membrane with blood for feeding with temperature maintained at 37 °C through circulating water bath maintained at 40-45 °C. Three concentrations (1.0, 2.0, and 5.0 mg/cm(2)) of the crude extracts were evaluated. Repellents in E. indica afforded longer protection time against A. stephensi, A. aegypti, and C. quinquefasciatus than those in A. racemosus at 5.0 mg/cm(2) concentration, and the mean complete protection time ranged from 120 to 210 min with the different extracts tested. In this observation, these two plant crude extracts gave protection against mosquito bites; also, the repellent activity is dependent on the strength of the plant extracts. These results suggest that the leaf extract of E. indica and root extract of A. racemosus have the potential to

  3. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Mohan Rajeswary

    2016-03-01

    Full Text Available Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce leaf and seed against Anopheles stephensi (An. stephensi. Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. dulce were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the concentration of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 leaf and seed methanol extract of P. dulce provided over 180 min and 150 min protection, respectively. Conclusions: Crude extracts of P. dulce exhibit the potential for controlling malaria vector mosquito An. stephensi.

  4. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  5. The role of proboscis of the malaria vector mosquito Anopheles stephensi in host-seeking behavior

    Directory of Open Access Journals (Sweden)

    Yoshimura Aya

    2011-01-01

    Full Text Available Abstract Background The proboscis is an essential head appendage in insects that processes gustatory code during food intake, particularly useful considering that blood-sucking arthropods routinely reach vessels under the host skin using this proboscis as a probe. Results Here, using an automated device able to quantify CO2-activated thermo (35°C-sensing behavior of the malaria vector Anopheles stephensi, we uncovered that the protruding proboscis of mosquitoes contributes unexpectedly to host identification from a distance. Ablation experiments indicated that not only antennae and maxillary palps, but also proboscis were required for the identification of pseudo-thermo targets. Furthermore, the function of the proboscis during this behavior can be segregated from CO2 detection required to evoke mosquito activation, suggesting that the proboscis of mosquitoes divide the proboscis into a "thermo-antenna" in addition to a "thermo-probe". Conclusions Our findings support an emerging view with a possible role of proboscis as important equipment during host-seeking, and give us an insight into how these appendages likely evolved from a common origin in order to function as antenna organs.

  6. Absence of Close-Range Excitorepellent Effects in Malaria Mosquitoes Exposed to Deltamethrin-Treated Bed Nets

    NARCIS (Netherlands)

    Spitzen, J.; Ponzio, C.A.M.; Koenraadt, C.J.M.; Pates Jamet, H.V.; Takken, W.

    2014-01-01

    Flight behavior of insecticide-resistant and susceptible malaria mosquitoes approaching deltamethrin-treated nets was examined using a wind tunnel. Behavior was linked to health status (dead or alive) using comparisons between outcomes from free-flight assays and standard World Health Organization (

  7. Communications: Mosquito Habitats, Land Use, and Malaria Risk in Belize from Satellite Imagery

    Science.gov (United States)

    Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald

    2004-01-01

    Satellite imagery of northern Belize is used to examine the distribution of land use and breeding habitats of the malaria vector the Anopheles mosquito. A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats, and one, Eleocharis spp. marsh, is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of Typha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. Thus, land use induced expansion of Anopheles vestitipennis larval habitat is potentially increasing malaria risk in Belize, and in other regions where Anopheles vestitipennis is a major malaria vector.

  8. Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions

    Directory of Open Access Journals (Sweden)

    Godfray H Charles J

    2007-07-01

    Full Text Available Abstract A series of models of malaria-mosquito-human interactions using the Lumped Age-Class technique of Gurney & Nisbet are developed. The models explicitly include sub-adult mosquito dynamics and assume that population regulation occurs at the larval stage. A challenge for modelling mosquito dynamics in continuous time is that the insect has discrete life-history stages (egg, larva, pupa & adult, the sub-adult stages of relatively fixed duration, which are subject to very different demographic rates. The Lumped Age-Class technique provides a natural way to treat this type of population structure. The resulting model, phrased as a system of delay-differential equations, is only slightly harder to analyse than traditional ordinary differential equations and much easier than the alternative partial differential equation approach. The Lumped Age-Class technique also allows the natural treatment of the relatively fixed time delay between the mosquito ingesting Plasmodium and it becoming infective. Three models are developed to illustrate the application of this approach: one including just the mosquito dynamics, the second including Plasmodium but no human dynamics, and the third including the interaction of the malaria pathogen and the human population (though only in a simple classical Ross-Macdonald manner. A range of epidemiological quantities used in studying malaria such as the vectorial capacity, the entomological inoculation rate and the basic reproductive number (R0 are derived, and examples given of the analysis and simulation of model dynamics. Assumptions and extensions are discussed. It is suggested that this modelling framework may be a natural and useful tool for exploring a variety of issues in malaria-vector epidemiology, especially in circumstances where a dynamic representation of mosquito recruitment is required.

  9. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2006-05-01

    Full Text Available Abstract Background In the context of the Sterile Insect Technique (SIT, radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods Pupae were irradiated shortly before emergence (at 22–26 hrs of age, and adults Results Irradiation of pupae, for all doses tested, had no effect on adult emergence. Survival curves of males irradiated as pupae or adults were similar or even slightly higher than non-irradiated males. Overall, adults appeared to be slightly more susceptible to irradiation, although no significant differences for individual doses were observed. In the pupal stage, a significant negative correlation was found between insemination and dose, but the correlation-coefficient was associated with less than 25% of the total variation. A review of the literature indicated that An. arabiensis is more radiation resistant than other anopheline mosquitoes. Conclusion The optimal dose for male insects to be released in an SIT programme depends on their level of sterility and competitiveness. The use of semi-sterilizing doses to produce more competitive insects is discussed. The most convenient developmental stage for mosquito irradiation on a mass-scale are pupae, but pupal irradiation resulted in a lower insemination rate at the highest dose compared to adult irradiation. On the basis of this study, a suitable dose range that includes semi-sterilizing doses is identified to initiate competitiveness experiments for males irradiated at both developmental stages.

  10. First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus.

    Science.gov (United States)

    Benelli, Giovanni; Romano, Donato; Messing, Russell H; Canale, Angelo

    2015-04-01

    Lateralisation (i.e. functional and/or structural specialisations of left and right sides of the brain) of aggressive traits has been studied in a number of vertebrates, while evidence for invertebrates is scarce. Mosquito females display aggressive responses against undesired males, performing rejection kicks with the hind legs. In this research, we examined lateralisation of kicking behaviour in females of the Asian tiger mosquito, Aedes albopictus. We found a right-biased population-level lateralisation of kicking behaviour. Four repeated testing phases on mosquito females confirmed the preferential use of right legs. However, when left legs were used, the mean number of kicks per rejection event was not different to that performed with right legs. Both left and right kicking behaviour lead to successful displacement of undesired partners. This is the first report about behavioural lateralisation in mosquitoes. PMID:25648446

  11. Environmental characteristics of anopheline mosquito larval habitats in a malaria endemic area in Iran

    Institute of Scientific and Technical Information of China (English)

    Moussa Soleimani-Ahmadi; Hassan Vatandoost; Ahmad-Ali Hanafi-Bojd; Mehdi Zare; Reza Safari; Abdolrasul Mojahedi; Fatemeh Poorahmad-Garbandi

    2013-01-01

    Objective: To determine the effects of environmental parameters of larval habitats on distribution and abundance of anopheline mosquitoes in Rudan county of Iran. Methods: This cross-sectional study was conducted during the mosquito breeding season from February 2010 to October 2011. The anopheline larvae were collected using the standard dipping method. The specimens were identified using a morphological-based key. Simultaneously with larval collection, environmental parameters of the larval habitats including water current and turbidity, sunlight situation, and substrate type of habitats were recorded. Water samples were taken from breeding sites during larval collection. Before collection of samples, the water temperature was measured. The water samples were analysed for turbidity, conductivity, total alkalinity, total dissolved solid, pH and ions including chloride, sulphate, calcium, and magnesium. Statistical correlation analysis and ANOVA test were used to analyze the association between environmental parameters and larval mosquito abundance. Results: In total 2 973 larvae of the genus Anopheles were collected from 25 larval habitats and identified using morphological characters. They comprised of six species:An. dthali turkhudi (3.30%), and An. apoci (1.14%). The most abundant species was An. dthali which were collected from all of the study areas. Larvae of two malaria vectors, An. dthali and An. stephensi, co-existed and collected in a wide range of habitats with different physico-chemical parameters. The most common larval habitats were man-made sites such as sand mining pools with clean and still water. The anopheline mosquitoes also preferred permanent habitats in sunlight with sandy substrates. The results indicated that there was a significant relationship between mean physico-chemical parameters such as water temperature, conductivity, total alkalinity, sulphate, chloride, and mosquito distribution and abundance. Conclusions: The results of this

  12. Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Overgaard Hans J

    2012-02-01

    Full Text Available Abstract Background The human biting rate (HBR, an important parameter for assessing malaria transmission and evaluating vector control interventions, is commonly estimated by human landing collections (HLC. Although intense efforts have been made to find alternative non-exposure mosquito collection methods, HLC remains the standard for providing reliable and consistent HBRs. The aim of this study was to assess the relationship between human landing and light trap collections (LTC, in an attempt to estimate operationally feasible conversion factors between the two. The study was conducted as part of the operational research component of the Bioko Island Malaria Control Project (BIMCP, Equatorial Guinea. Methods Malaria mosquitoes were collected indoors and outdoors by HLCs and LTCs in three villages on Bioko Island, Equatorial Guinea during five bimonthly collections in 2009. Indoor light traps were suspended adjacent to occupied long-lasting, insecticide-treated bed nets. Outdoor light traps were placed close to the outer wall under the roof of the collection house. Collected specimens were subjected to DNA extraction and diagnostic PCR to identify species within the Anopheles gambiae complex. Data were analysed by simple regression of log-transformed values and by Bayesian regression analysis. Results There was a poor correlation between the two collection methods. Results varied by location, venue, month, house, but also by the statistical method used. The more robust Bayesian analyses indicated non-linear relationships and relative sampling efficiencies being density dependent for the indoor collections, implying that straight-forward and simple conversion factors could not be calculated for any of the locations. Outdoor LTC:HLC relationships were weak, but could be estimated at 0.10 and 0.07 for each of two locations. Conclusions Light trap collections in combination with bed nets are not recommended as a reliable method to assess human

  13. The Insect Growth Regulator Pyriproxyfen Terminates Egg Diapause in the Asian Tiger Mosquito, Aedes albopictus.

    Science.gov (United States)

    Suman, Devi S; Wang, Yi; Gaugler, Randy

    2015-01-01

    The Asian tiger mosquito, Aedes albopictus, is a highly invasive mosquito species that transmits chikungunya and dengue. This species overwinters as diapausing eggs in temperate climates. Early diapause termination may be a beneficial strategy for winter mosquito control; however, a mechanism to terminate the diapause process using chemicals is not known. We tested the hypothesis that a hormonal imbalance caused by the administration of juvenile hormone analog would terminate egg diapause in A. albopictus. We tested the insect growth regulator pyriproxyfen on all developmental stages to identify a susceptible stage for diapause termination. We found that pyriproxyfen treatment of mosquito eggs terminated embryonic diapause. The highest rates of diapause termination were recorded in newly deposited (78.9%) and fully embryonated (74.7%) eggs at 0.1 and 1 ppm, respectively. Hatching was completed earlier in newly deposited eggs (25-30 days) compared to fully embryonated eggs (71-80 days). The combined mortality from premature diapause termination and ovicidal activity was 98.2% in newly deposited and >98.9% in fully embryonated eggs at 1 ppm. The control diapause eggs did not hatch under diapausing conditions. Pyriproxyfen exposure to larvae, pupae and adults did not prevent the females from ovipositing diapausing eggs. There was no effect of pyriproxyfen on diapausing egg embryonic developmental time. We also observed mortality in diapausing eggs laid by females exposed to pyriproxyfen immediately after blood feeding. There was no mortality in eggs laid by females that survived larval and pupal exposures. In conclusion, diapausing eggs were the more susceptible to pyriproxyfen diapause termination compared to other life stages. This is the first report of diapause termination in A. albopictus with a juvenile hormone analog. We believe our findings will be useful in developing a new control strategy against overwintering mosquito populations. PMID:26090954

  14. The Insect Growth Regulator Pyriproxyfen Terminates Egg Diapause in the Asian Tiger Mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Devi S Suman

    Full Text Available The Asian tiger mosquito, Aedes albopictus, is a highly invasive mosquito species that transmits chikungunya and dengue. This species overwinters as diapausing eggs in temperate climates. Early diapause termination may be a beneficial strategy for winter mosquito control; however, a mechanism to terminate the diapause process using chemicals is not known. We tested the hypothesis that a hormonal imbalance caused by the administration of juvenile hormone analog would terminate egg diapause in A. albopictus. We tested the insect growth regulator pyriproxyfen on all developmental stages to identify a susceptible stage for diapause termination. We found that pyriproxyfen treatment of mosquito eggs terminated embryonic diapause. The highest rates of diapause termination were recorded in newly deposited (78.9% and fully embryonated (74.7% eggs at 0.1 and 1 ppm, respectively. Hatching was completed earlier in newly deposited eggs (25-30 days compared to fully embryonated eggs (71-80 days. The combined mortality from premature diapause termination and ovicidal activity was 98.2% in newly deposited and >98.9% in fully embryonated eggs at 1 ppm. The control diapause eggs did not hatch under diapausing conditions. Pyriproxyfen exposure to larvae, pupae and adults did not prevent the females from ovipositing diapausing eggs. There was no effect of pyriproxyfen on diapausing egg embryonic developmental time. We also observed mortality in diapausing eggs laid by females exposed to pyriproxyfen immediately after blood feeding. There was no mortality in eggs laid by females that survived larval and pupal exposures. In conclusion, diapausing eggs were the more susceptible to pyriproxyfen diapause termination compared to other life stages. This is the first report of diapause termination in A. albopictus with a juvenile hormone analog. We believe our findings will be useful in developing a new control strategy against overwintering mosquito populations.

  15. Analysis of Trend of Malaria Prevalence in the Ten Asian Countries from 2006 to 2011: A Longitudinal Study

    Directory of Open Access Journals (Sweden)

    Shongkour Roy

    2015-01-01

    Full Text Available Background. To control the malaria mortality, the global and national communities have worked together and produced impressive results in the world. Some of the Asian counties’ malaria mortality rate is more compared to countries with high health facilities around the world. This paper’s main aim is to describe trend of malaria cases and mortality in 10 Asian countries using the World Health Organization data. Methods. Malaria mortality data was collected systematically from WHO and UN database for the period 2006–2011. We estimated malaria mortality by age and countries. We also explored the dynamic relationships among malaria death rate, total populations, and geographical region using a map. During 2006–2011, the average malaria death per 10,000 population of all ages was 0.239 (95% CI 0.104 to 0.373, of children aged less than 5 year 1.143 (0.598 to 1.687, and of age greater than 5 years 0.089 (0.043 to 0.137 in Asian countries. Malaria prevalence per 10,000 populations steadily decreased from 486.7 in 2006 to 298.9 in 2011. Conclusion. The findings show that malaria mortality is higher for children aged less than 5 years compared with with adults selected in Asian countries except Sri Lanka.

  16. Mosquito Larval Habitats, Land Use, and Potential Malaria Risk in Northern Belize from Satellite Image Analyses

    Science.gov (United States)

    Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald

    2004-01-01

    The distribution of Anopheles mosquito habitats and land use in northern Belize is examined with satellite data. -A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats. Eleocharis spp. marsh is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of T-ha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. This expansion of Anopheles vestitipennis larval habitat may in turn cause an increase in malaria risk in the region.

  17. High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major and mosquitoes (Culex pipiens.

    Directory of Open Access Journals (Sweden)

    Olivier Glaizot

    Full Text Available Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts. The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries.

  18. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.

    Science.gov (United States)

    O'Brochta, David A; Pilitt, Kristina L; Harrell, Robert A; Aluvihare, Channa; Alford, Robert T

    2012-11-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts. PMID:23173082

  19. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds.

    Science.gov (United States)

    Verhulst, Niels O; Weldegergis, Berhane T; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person's attractiveness to mosquitoes. PMID:27251017

  20. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds

    Science.gov (United States)

    Verhulst, Niels O.; Weldegergis, Berhane T.; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person’s attractiveness to mosquitoes. PMID:27251017

  1. The Potential for Genetic Control of Malaria-Transmitting Mosquitoes. Report of a Consultants Group Meeting. Working Material

    International Nuclear Information System (INIS)

    Since the beginning of the Joint FAO/IAEA Division Programme on the research and development of insect pest control methodology, emphasis has been placed on the basic and applied aspects of implementing the Sterile Insect Technique (SIT). Special emphasis has always been directed at the assembly of technological progress into workable systems that can be implemented in developing countries. The general intention is to solve problems associated with insect pests that have an adverse impact on public health and the production of food and fibre. For certain insects, SIT has proven to be a powerful method for control, but for a variety of reasons this technology has not been tried on an operational scale for most of the pest species of insects that exact a toll on the endeavors of humans. The Joint FAO/IAEA Division convened a Consultants Group Meeting to examine 'The Potential for Genetic Control of Malaria-Transmitting Mosquitoes', with emphasis to be placed on the SIT. A group of five scientists met, 26-30 April 1993, to examine the current status and the future potential of genetic control for malaria mosquitoes. In most of the tropical, developing countries, and to some extent in temperate regions of the world, Anopheles mosquitoes cause havoc by transmitting malaria, a dreaded disease that causes high mortality amongst children and diminishes productivity of adults. The importance of malaria as a deterrent to further economic growth in a large part of the world cannot be over-emphasized. Malaria is a severe problem because there are inadequacies in the technology available for control. As a result of the deliberations at the meeting, the consultants prepared a list of recommendations concerning the consensus opinions about the development of genetic control for malaria vector control. This report presents the findings and recommendations of the Consultants Group Meeting.

  2. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    NARCIS (Netherlands)

    Bongaerts, G.P.A.

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this pr

  3. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    OpenAIRE

    Mweresa, C. K.; Omusula, P.; Otieno, B.; Loon, van, R.R.; Takken, W.; Mukabana, W.R.

    2014-01-01

    Background. Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods. The attraction of laboratory-reared and w...

  4. Feeding and indoor resting behaviour of the mosquito Anopheles longipalpis in an area of hyperendemic malaria transmission in southern Zambia

    OpenAIRE

    Kent, R.J.; Coetzee, M.; Mharakurwa, S.; Norris, D. E.

    2006-01-01

    Anopheles longipalpis (Theobald) (Diptera: Culicidae) is a predominantly zoophilic mosquito that has not been implicated in malaria transmission. However, this species was collected indoors with An. funestus s.l. in southern Zambia, where transmission of Plasmodium falciparum is hyperendemic, and we initially misidentified it morphologically and molecularly as An. funestus s.l. The indoor resting density and blood-feeding behaviour of An. longipalpis were investigated during the 2004 – 05 and...

  5. Tools for delivering entomopathogenic fungi to malaria mosquitoes: effects of delivery surfaces on fungal efficacy and persistence

    Directory of Open Access Journals (Sweden)

    Mnyone Ladslaus L

    2010-08-01

    Full Text Available Abstract Background Entomopathogenic fungi infection on malaria vectors increases daily mortality rates and thus represents a control measure that could be used in integrated programmes alongside insecticide-treated bed nets (ITNs and indoor residual spraying (IRS. Before entomopathogenic fungi can be integrated into control programmes, an effective delivery system must be developed. Methods The efficacy of Metarhizium anisopliae ICIPE-30 and Beauveria bassiana I93-825 (IMI 391510 (2 × 1010 conidia m-2 applied on mud panels (simulating walls of traditional Tanzanian houses, black cotton cloth and polyester netting was evaluated against adult Anopheles gambiae sensu stricto. Mosquitoes were exposed to the treated surfaces 2, 14 and 28 d after conidia were applied. Survival of mosquitoes was monitored daily. Results All fungal treatments caused a significantly increased mortality in the exposed mosquitoes, descending with time since fungal application. Mosquitoes exposed to M. anisopliae conidia on mud panels had a greater daily risk of dying compared to those exposed to conidia on either netting or cotton cloth (p B. bassiana conidia on mud panels or cotton cloth had similar daily risk of death (p = 0.14, and a higher risk than those exposed to treated polyester netting (p Conclusion Both fungal isolates reduced mosquito survival on immediate exposure and up to 28 d after application. Conidia were more effective when applied on mud panels and cotton cloth compared with polyester netting. Cotton cloth and mud, therefore, represent potential substrates for delivering fungi to mosquitoes in the field.

  6. Life-table analysis of Anopheles malaria vectors: generational mortality as tool in mosquito vector abundance and control studies

    Directory of Open Access Journals (Sweden)

    Godwin Ray Anugboba Okogun

    2005-06-01

    Full Text Available Background & objectives: Vector control will for sometime remain a primary weapon in the waragainst vector borne diseases. Malaria is of paramount importance in this with its associated highmorbidity and mortality especially in sub-Saharan Africa. This study on generational mortality associatedfactors in Anopheles mosquitoes life-table analysis was designed to investigate the fecundity,levels of mortality and mortality associated factors at the aquatic stages of anopheline malaria vectors.Methods: Mortality associated factors were investigated at the eggs, I and II instar larval, III and IVinstar larval and pupal stages of two anopheline species— Anopheles pseudopunctipennis (Theobaldand An. gambiae life-cycles in screen cages. Adult male and female mosquitoes were membrane filterfedand algae in culture medium formed the bulk of food substances for the larval stage. Environmentaltemperature of culture media, pH and some associated physio-chemical factors were also determined.Results: Results showed significant mortality rates at various aquatic stages. Infertility, cannibalismand environmental factors were the major factors responsible for mortality at the egg, larval and pupalstages respectively.Interpretation & conclusion: The aquatic stages of Anopheles mosquito mortality factor K and themortality factors at the various stages investigated k1, k2, k3 and k4 are discussed. Our recommendationsinclude further studies on the possible genetic modification of predacious An. pseudopunctipennislarvae and/or its modification for the production of sterile/infertile eggs as possible alternativesin the reduction and control of anopheline malaria burden.

  7. A Novel Xenomonitoring Technique Using Mosquito Excreta/Feces for the Detection of Filarial Parasites and Malaria

    Science.gov (United States)

    Pilotte, Nils; Zaky, Weam I.; Abrams, Brian P.; Chadee, Dave D.; Williams, Steven A.

    2016-01-01

    Background Given the continued successes of the world’s lymphatic filariasis (LF) elimination programs and the growing successes of many malaria elimination efforts, the necessity of low cost tools and methodologies applicable to long-term disease surveillance is greater than ever before. As many countries reach the end of their LF mass drug administration programs and a growing number of countries realize unprecedented successes in their malaria intervention efforts, the need for practical molecular xenomonitoring (MX), capable of providing surveillance for disease recrudescence in settings of decreased parasite prevalence is increasingly clear. Current protocols, however, require testing of mosquitoes in pools of 25 or fewer, making high-throughput examination a challenge. The new method we present here screens the excreta/feces from hundreds of mosquitoes per pool and provides proof-of-concept for a practical alternative to traditional methodologies resulting in significant cost and labor savings. Methodology/Principal Findings Excreta/feces of laboratory reared Aedes aegypti or Anopheles stephensi mosquitoes provided with a Brugia malayi microfilaria-positive or Plasmodium vivax-positive blood meal respectively were tested for the presence of parasite DNA using real-time PCR. A titration of samples containing various volumes of B. malayi-negative mosquito feces mixed with positive excreta/feces was also tested to determine sensitivity of detection. Real-time PCR amplification of B. malayi and P. vivax DNA from the excreta/feces of infected mosquitoes was demonstrated, and B. malayi DNA in excreta/feces from one to two mf-positive blood meal-receiving mosquitoes was detected when pooled with volumes of feces from as many as 500 uninfected mosquitoes. Conclusions/Significance While the operationalizing of excreta/feces testing may require the development of new strategies for sample collection, the high-throughput nature of this new methodology has the

  8. Effect of ingested human antibodies induced by RTS, S/AS01 malaria vaccination in children on Plasmodium falciparum oocyst formation and sporogony in mosquitoes

    DEFF Research Database (Denmark)

    Miura, Kazutoyo; Jongert, Erik; Deng, Bingbing;

    2014-01-01

    BACKGROUND: The circumsporozoite protein (CS protein) on the malaria parasites in mosquitoes plays an important role in sporogony in mosquitoes. The RTS,S/AS01 malaria vaccine candidate, which has shown significant efficacy against clinical malaria in a large Phase 3 trial, targets the Plasmodium...... falciparum CS protein, but the ability of serum from vaccinated individuals to inhibit sporogony in mosquitoes has not been evaluated. METHODS: Previously a double-blind, randomized trial of RTS,S/AS01 vaccine, as compared with rabies vaccine, in five- to 17-month old children in Tanzania was conducted. In...... antibodies to inhibit P. falciparum oocyst formation and/or sporogony in the mosquito host was evaluated by a standard membrane-feeding assay. The test antibodies were fed on day 0 (at the same time as the gametocyte feed), or on days 3 or 6 (serial-feed experiments). The oocyst and sporozoite counts were...

  9. Characterizing the relationship between Asian tiger mosquito abundance and habitat in urban New Jersey

    Science.gov (United States)

    Ferwerda, Carolin

    2009-12-01

    Since its introduction to North America in 1987, the Asian tiger mosquito (Aedes albopictus) has spread rapidly. Due to its unique ecology and preference for container breeding sites, Ae. albopictus commonly inhabits urban/suburban areas and is often in close contact with humans. An aggressive pest, this mosquito species is a vector of multiple arboviruses. In order for mosquito control efforts to remain effective, control of this important vector must be guided by spatially explicit habitat models that aid in predicting mosquito outbreaks. Using linear regression, I determined the relationship between adult Ae. albopictus abundance and climate, census, and land use factors in nine urban/suburban study sites in central New Jersey. Systematically collected adult counts (females and males) from July to October 2008, served as estimates of abundance. Fine-scale land use/land cover data were obtained from object-oriented classifications of 2007 CIR orthophotos in Definiens eCognition. Mosquito abundance data were tested for spatial autocorrelation via Moran's I, semivariograms, and hotspot analysis in order to reveal consistent patterns in abundance. Spatial pattern analysis produced little evidence of consistent spatial autocorrelation, though several sites exhibited recurring hotspots, especially in areas near residential housing and vegetation. Stepwise multiple regression was able to explain 20-25 percent of variation in Ae. albopictus abundance at the 'backyard' or cell level and 72-78 percent of variation in abundance at the 'neighborhood' or study site level. Meteorological variables (temperature on the trap date and precipitation), census variables (vacant housing units and population density), and more detailed land use/land cover classes (deciduous woody vegetation, rights-of-way and vacant lots) were frequently selected in all eight models, though many other independent variables were included in the individual models. The results of the spatial statistics

  10. The Potential of the Sterile Insect Technique and other Genetic Methods for Control of Malaria-Transmitting Mosquitoes. Report of a Consultants Meeting

    International Nuclear Information System (INIS)

    This report updates information provided by a 1993 consultant group on the use of genetic methods for control of malaria-transmitting mosquitoes. Human malaria parasites of the genus Plasmodium are exclusively transmitted by mosquitoes of the genus Anopheles. Where these two groups co-exist, the transmission of the parasite to humans can create a major health problem. Malaria currently causes 2 million deaths world-wide and approximately 400 million clinical cases annually. There are ca. 15 major vector species and 30-40 vectors of lesser importance. This report considers the practicality of developing the sterile insect technique (SIT) or other genetic mechanisms in order to eradicate mosquito vectors from specific areas. This would interrupt transmission and eliminate malaria in those areas.

  11. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  12. Modeling the Spread and Control of the Asian Tiger Mosquito in Los Angeles

    Science.gov (United States)

    Barker, C.; Montecino, D.; Marcantonio, M.

    2015-12-01

    The Asian tiger mosquito, Aedes albopictus, is among the world's most invasive species. Its spread has been facilitated by rapid global transport of cargo and potentially by the warming of climate, and it is now established on every continent except Antarctica. This species represents a "triple threat" to human health, being a day-biting pest, a competent vector of globally important dengue and chikungunya viruses, and a potential bridge vector of several zoonotic arboviruses. As a result of its importance, the biology of Ae. albopictus is also well-studied, but the fine-scale processes by which it becomes established in a given location are poorly understood. This is because even intensive surveillance systems yield limited information during the early phase of invasions when densities are low, and detection often occurs after populations are relatively widespread. Fine-scale spatial models for mosquito dynamics and movement offer a way forward, marrying our understanding of Ae. albopictus biology with surveillance paradigms and detailed data on the real landscapes where invasions occur. This presentation will consider the impacts of climate on the biology of Ae. albopictus and explore their implications for the ongoing invasion and establishment of Ae. albopictus in Los Angeles since 2011. We have used hierarchical modeling to account for heterogeneities in household-level suitability, then we modeled the stochastic dynamics of Ae. albopictus on this landscape using the suitability surface and a temperature-dependent, dynamical model for reproduction and spread. I will discuss the modeling approach and use the model results to answer policy-relevant questions related to our ability to detect and control these highly invasive mosquitoes.

  13. Trends in malaria research in 11 Asian Pacific countries: an analysis of peer-reviewed publications over two decades

    Directory of Open Access Journals (Sweden)

    Taleo George

    2011-05-01

    Full Text Available Abstract Background Quantitative data are lacking on published malaria research. The purpose of the study is to characterize trends in malaria-related literature from 1990 to 2009 in 11 Asian-Pacific countries that are committed to malaria elimination as a national goal. Methods A systematic search was conducted for articles published from January 1990 to December 2009 in PubMed/MEDLINE using terms for malaria and 11 target countries (Bhutan, China, North Korea, Indonesia, Malaysia, Philippines, Solomon Islands, South Korea, Sri Lanka, Thailand and Vanuatu. The references were collated and categorized according to subject, Plasmodium species, and whether they contained original or derivative data. Results 2,700 articles published between 1990 and 2009 related to malaria in the target countries. The annual output of malaria-related papers increased linearly whereas the overall biomedical output from these countries grew exponentially. The percentage of malaria-related publications was nearly 3% (111/3741 of all biomedical publications in 1992 and decreased to less than 1% (118/12171; p Conclusions The proportion of malaria-related publications out of the overall biomedical output from the 11 target Asian-Pacific countries is decreasing. The discovery and evaluation of new, safe and effective drugs and vaccines is paramount. In addition the elimination of malaria will require operational research to implement and scale up interventions.

  14. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Eldering, Maarten; Morlais, Isabelle; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Graumans, Wouter; Siebelink-Stoter, Rianne; Vos, Martijn; Abate, Luc; Roeffen, Will; Bousema, Teun; Levashina, Elena A; Sauerwein, Robert W

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3-5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites. PMID:26861587

  15. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    Directory of Open Access Journals (Sweden)

    Eunho Suh

    Full Text Available Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS, dimethyl trisulfide (DMTS and 6-methyl-5-hepten-2-one (sulcatone each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  16. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A.arabiensis

    Institute of Scientific and Technical Information of China (English)

    LI; Zhengxi; Jing-Jiang; ZHOU; SHEN; Zuorui; Lin; FIELD

    2004-01-01

    Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informatics-based genome-wide analysis of odorant-binding protein (OBP) homologues is undertaken,and 32 putative OBP genes in total in the whole genome sequences of Anopheles gambiae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene as internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression patterns of all putative anopheline OBPs are also studied in two of the most important malaria vectors in A. gambiae complex, i.e.A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A.gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (varying from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and species-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.

  17. Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2002-06-01

    Full Text Available Abstract Background Based on sensitivity analysis of the MacDonald-Ross model, it has long been argued that the best way to reduce malaria transmission is to target adult female mosquitoes with insecticides that can reduce the longevity and human-feeding frequency of vectors. However, these analyses have ignored a fundamental biological difference between mosquito adults and the immature stages that precede them: adults are highly mobile flying insects that can readily detect and avoid many intervention measures whereas mosquito eggs, larvae and pupae are confined within relatively small aquatic habitats and cannot readily escape control measures. Presentation of the hypothesis We hypothesize that the control of adult but not immature mosquitoes is compromised by their ability to avoid interventions such as excito-repellant insecticides. Testing the hypothesis We apply a simple model of intervention avoidance by mosquitoes and demonstrate that this can substantially reduce effective coverage, in terms of the proportion of the vector population that is covered, and overall impact on malaria transmission. We review historical evidence that larval control of African malaria vectors can be effective and conclude that the only limitations to the effective coverage of larval control are practical rather than fundamental. Implications of the hypothesis Larval control strategies against the vectors of malaria in sub-Saharan Africa could be highly effective, complementary to adult control interventions, and should be prioritized for further development, evaluation and implementation as an integral part of Rolling Back Malaria.

  18. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Mshinda Hassan

    2007-09-01

    Full Text Available Abstract Background Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN is estimated. Methods Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors. Results Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%. More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38% were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa. Conclusion In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.

  19. First Planning Meeting on Development of the Sterile Insect Techniques for Control of Malaria-Transmitting Mosquitoes

    International Nuclear Information System (INIS)

    At the request of Member States a series of consultant's reports were commisioned over the past 10 years to assess the potential of developing and using the Sterile Insect Technique (SIT) for the control of vectors of malaria. The experts reports recommended that the Agency proceed with such an evaluation. The rationale for the possible inclusion of SIT into malaria vector control were detailed in these reports. All the reports emphasized that significant R and D would be required to develop and evaluate the SIT technology for mosquitoes before operational pilot projects could be initiated. Following the last of these meetings a document was prepared in which the essential R and D components were identified. This plan also included the collection of baseline data from a potential field site in Africa and the proposal that the target species should be Anopheles arabiensis. On the basis of these activities a Technical Co-operation (TC) project was developed which focused on the identification of a potential field site and provided funds for initiation of the collection of epidemiological and entomological data from the site. The R and D requirements for mosquito SIT were addressed in two ways. Firstly by undertaking limited R and D activities at the Agency's Laboratories in Seibersdorf and secondly by elaborating a Co-ordinated Research Project (CRP). The first planning meeting was thus held in Vienna from 5-8 June 2001 with representatives from Ethiopia, Mali, Namibia, Niger, Nigeria, Senegal, South Africa and Sudan; as well as experts from the UK and the USA; and a representative from the World Health Organisation (WHO). The meeting provided a forum for the participants to summarize the current malaria situation, its control and the importance of An. arabiensis in their respective countries. The outside experts complemented these presentations by dealing with specific issues. The objectives of the meeting were to: Review the status of the control of malaria

  20. Habitat characterization and mapping of Anopheles maculatus (Theobald) mosquito larvae in malaria endemic areas in Kuala Lipis, Pahang, Malaysia.

    Science.gov (United States)

    Rohani, A; Wan Najdah, W M A; Zamree, I; Azahari, A H; Mohd Noor, I; Rahimi, H; Lee, H L

    2010-07-01

    In Peninsular Malaysia, a large proportion of malaria cases occur in the central mountainous and forested parts of the country. As part of a study to assess remote sensing data as a tool for vector mapping, we conducted entomological surveys to determine the type of mosquitoes, their characteristics and the abundance of habitats of the vector Anopheles maculatus in malaria endemic areas in Pos Senderot. An. maculatus mosquitoes were collected from 49 breeding sites in Pos Senderot. An. maculatus preferred to breed in water pockets formed on the bank of rivers and waterfalls. The most common larval habitats were shallow pools 5.0-15.0 cm deep with clear water, mud substrate and plants or floatage. The mosquito also preferred open or partially shaded habitats. Breeding habitats were generally located at 100-400 m from the nearest human settlement. Changes in breeding characteristics were also observed. Instead of breeding in slow flowing streams, most larvae bred in small water pockets along the river margin. PMID:21073056

  1. Controlling Malaria in Western Pacific with Mosquito Nets Treated with Pyrethroids in Village Communities, 1979-1999.

    Science.gov (United States)

    Self, Lee

    2016-07-01

    Insecticide-treated mosquito nets were first put to practical use in the Western Pacific Region. Less than a decade after conducting workshops and other promotional activities, millions of people were protected by 1989. This occurred before the availability of commercially produced pretreated nets and before global funding for mass net distribution. This paper describes the sequence of steps leading to regional control success. The beginning stages in 1979 recognized that treating torn mosquito nets was a viable control option. Basic net treatment procedures were established by 1983 and workshops were held the next 2 years in China, Cambodia, Laos, Malaysia, Papua New Guinea, Philippines, Solomon Islands, Vanuatu, and Vietnam. Malaria staff became convinced of net benefits and were motivated to impart their knowledge to others. Village inhabitants soaked the nets in washbasins containing permethrin or deltamethrin solution, then dried them horizontally on mats. By the 1990s, the population protected by nets had appreciably increased, and regional malaria cases confirmed by microscopy were markedly reduced. This coincided with commercial interest to mass-produce pretreated mosquito nets for worldwide use. PMID:26880771

  2. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Spitzen Jeroen

    2010-10-01

    Full Text Available Abstract Background Carbon dioxide (CO2 plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2. Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials

  3. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito.

    Directory of Open Access Journals (Sweden)

    Emilie Deletre

    Full Text Available Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.

  4. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Reddy Vamsi P

    2011-07-01

    Full Text Available Abstract Background Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by Anopheles gambiae sensu lato (s.l. mosquitoes where indoor vector suppression measures are employed. This paper describes the host seeking activity of anopheline mosquito vectors in the Punta Europa region of Bioko Island, Equatorial Guinea. In this area, An. gambiae sensu stricto (s.s. is the primary malaria vector. The goal of the paper is to evaluate the importance of An gambiae s.l. outdoor host seeking behaviour and discuss its implications for anti-vector interventions. Methods The venue and temporal characteristics of host seeking by anopheline vectors in a hyperendemic setting was evaluated using human landing collections conducted inside and outside homes in three villages during both the wet and dry seasons in 2007 and 2008. Additionally, five bi-monthly human landing collections were conducted throughout 2009. Collections were segregated hourly to provide a time distribution of host-seeking behaviour. Results Surprisingly high levels of outdoor biting by An. gambiae senso stricto and An. melas vectors were observed throughout the night, including during the early evening and morning hours when human hosts are often outdoors. As reported previously, An. gambiae s.s. is the primary malaria vector in the Punta Europa region, where it seeks hosts outdoors at least as much as it does indoors. Further, approximately 40% of An. gambiae s.l. are feeding at times when people are often outdoors, where they are not protected by IRS or LLINs. Repeated sampling over two consecutive dry-wet season cycles indicates that this result is independent of seasonality. Conclusions

  5. Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia

    Directory of Open Access Journals (Sweden)

    Ahmad Rohani

    2011-12-01

    Full Text Available Abstract Background The application of the Geographic Information Systems (GIS to the study of vector transmitted diseases considerably improves the management of the information obtained from the field survey and facilitates the study of the distribution patterns of the vector species. Methods As part of a study to assess remote sensing data as a tool for vector mapping, geographical features like rivers, small streams, forest, roads and residential area were digitized from the satellite images and overlaid with entomological data. Map of larval breeding habitats distribution and map of malaria transmission risk area were developed using a combination of field data, satellite image analysis and GIS technique. All digital data in the GIS were displayed in the WGS 1984 coordinate system. Six occasions of larval surveillance were also conducted to determine the species of mosquitoes, their characteristics and the abundance of habitats. Results Larval survey studies showed that anopheline and culicine larvae were collected and mapped from 79 and 67 breeding sites respectively. Breeding habitats were located at 100-400 m from human settlement. Map of villages with 400 m buffer zone visualizes that more than 80% of Anopheles maculatus s.s. immature habitats were found within the buffer zone. Conclusions This study amplifies the need for a broadening of the GIS approach which is emphasized with the aim of rejuvenating the dynamic aspect of entomological studies in Malaysia. In fact, the use of such basic GIS platforms promote a more rational basis for strategic planning and management in the control of endemic diseases at the national level.

  6. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  7. Behavioural effects of fungal infection by Metarhizium anisopliae in adult malaria mosquitoes

    OpenAIRE

    Ondiaka, S.N.

    2012-01-01

    Malaria remains a major global health problem with the burden of disease greatest in Sub-Saharan Africa. The strategies for malaria control differ throughout the world according to levels of endemicity and the magnitude of disease but the focus remains either to control malaria parasites or vectors. A high degree of drug resistance and the absence of malaria vaccines are a major hindrance to control of the disease. In such circumstances, vector control becomes an alternative and has remained ...

  8. Behavioural effects of fungal infection by Metarhizium anisopliae in adult malaria mosquitoes

    NARCIS (Netherlands)

    Ondiaka, S.N.

    2012-01-01

    Malaria remains a major global health problem with the burden of disease greatest in Sub-Saharan Africa. The strategies for malaria control differ throughout the world according to levels of endemicity and the magnitude of disease but the focus remains either to control malaria parasites or vectors.

  9. Population genetics of the Asian tiger mosquito Aedes albopictus, an invasive vector of human diseases.

    Science.gov (United States)

    Goubert, C; Minard, G; Vieira, C; Boulesteix, M

    2016-09-01

    The Asian tiger mosquito Aedes albopictus is currently one of the most threatening invasive species in the world. Native to Southeast Asia, the species has spread throughout the world in the past 30 years and is now present in every continent but Antarctica. Because it was the main vector of recent Dengue and Chikungunya outbreaks, and because of its competency for numerous other viruses and pathogens such as the Zika virus, A. albopictus stands out as a model species for invasive diseases vector studies. A synthesis of the current knowledge about the genetic diversity of A. albopictus is needed, knowing the interplays between the vector, the pathogens, the environment and their epidemiological consequences. Such resources are also valuable for assessing the role of genetic diversity in the invasive success. We review here the large but sometimes dispersed literature about the population genetics of A. albopictus. We first debate about the experimental design of these studies and present an up-to-date assessment of the available molecular markers. We then summarize the main genetic characteristics of natural populations and synthesize the available data regarding the worldwide structuring of the vector. Finally, we pinpoint the gaps that remain to be addressed and suggest possible research directions. PMID:27273325

  10. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-07-10

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission. PMID:22623529

  11. Concurrent Malaria and Dengue Fever: A Need for Rapid Diagnostic Methods

    OpenAIRE

    BHAGAT, Manish; Kanhere, Sujata; Phadke, Varsha; GEORGE, Riya

    2014-01-01

    Malaria and dengue fever are endemic in the South-East Asian region including India. Both the illnesses share similar symptomatology, but differ in certain respects such as different- causative organisms and mosquito vector with diverse habitat. Hence, concurrent malaria and dengue fever in the same patient is said to be unusual. There have been cases of concurrent malaria and dengue, but they are scarce from highly endemic region like ours. Here, we describe three unusual cases of Plasmodium...

  12. Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development.

    Science.gov (United States)

    Barillas-Mury, C; Wizel, B; Han, Y S

    2000-06-01

    The introduction of novel biochemical, genetic, molecular and cell biology tools to the study of insect immunity has generated an information explosion in recent years. Due to the biodiversity of insects, complementary model systems have been developed. The conceptual framework built based on these systems is used to discuss our current understanding of mosquito immune responses and their implications for malaria transmission. The areas of insect and vertebrate innate immunity are merging as new information confirms the remarkable extent of the evolutionary conservation, at a molecular level, in the signaling pathways mediating these responses in such distant species. Our current understanding of the molecular language that allows the vertebrate innate immune system to identify parasites, such as malaria, and direct the acquired immune system to mount a protective immune response is very limited. Insect vectors of parasitic diseases, such as mosquitoes, could represent excellent models to understand the molecular responses of epithelial cells to parasite invasion. This information could broaden our understanding of vertebrate responses to parasitic infection and could have extensive implications for anti-malarial vaccine development. PMID:10802234

  13. Malaria entomological profile in Tanzania from 1950 to 2010: a review of mosquito distribution, vectorial capacity and insecticide resistance.

    Science.gov (United States)

    Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N

    2011-12-01

    In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and

  14. A quantitative risk assessment approach for mosquito-borne diseases: malaria re-emergence in southern France

    Directory of Open Access Journals (Sweden)

    Luty Adrian JF

    2008-08-01

    Full Text Available Abstract Background The Camargue region is a former malaria endemic area, where potential Anopheles vectors are still abundant. Considering the importation of Plasmodium due to the high number of imported malaria cases in France, the aim of this article was to make some predictions regarding the risk of malaria re-emergence in the Camargue. Methods Receptivity (vectorial capacity and infectivity (vector susceptibility were inferred using an innovative probabilistic approach and considering both Plasmodium falciparum and Plasmodium vivax. Each parameter of receptivity (human biting rate, anthropophily, length of trophogonic cycle, survival rate, length of sporogonic cycle and infectivity were estimated based on field survey, bibliographic data and expert knowledge and fitted with probability distributions taking into account the variability and the uncertainty of the estimation. Spatial and temporal variations of the parameters were determined using environmental factors derived from satellite imagery, meteorological data and entomological field data. The entomological risk (receptivity/infectivity was calculated using 10,000 different randomly selected sets of values extracted from the probability distributions. The result was mapped in the Camargue area. Finally, vulnerability (number of malaria imported cases was inferred using data collected in regional hospitals. Results The entomological risk presented large spatial, temporal and Plasmodium species-dependent variations. The sensitivity analysis showed that susceptibility, survival rate and human biting rate were the three most influential parameters for entomological risk. Assessment of vulnerability showed that among the imported cases in the region, only very few were imported in at-risk areas. Conclusion The current risk of malaria re-emergence seems negligible due to the very low number of imported Plasmodium. This model demonstrated its efficiency for mosquito-borne diseases risk

  15. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  16. Field evaluation of picaridin repellents reveals differences in repellent sensitivity between Southeast Asian vectors of malaria and arboviruses.

    Directory of Open Access Journals (Sweden)

    Karel Van Roey

    2014-12-01

    Full Text Available Scaling up of insecticide treated nets has contributed to a substantial malaria decline. However, some malaria vectors, and most arbovirus vectors, bite outdoors and in the early evening. Therefore, topically applied insect repellents may provide crucial additional protection against mosquito-borne pathogens. Among topical repellents, DEET is the most commonly used, followed by others such as picaridin. The protective efficacy of two formulated picaridin repellents against mosquito bites, including arbovirus and malaria vectors, was evaluated in a field study in Cambodia. Over a period of two years, human landing collections were performed on repellent treated persons, with rotation to account for the effect of collection place, time and individual collector. Based on a total of 4996 mosquitoes collected on negative control persons, the overall five hour protection rate was 97.4% [95%CI: 97.1-97.8%], not decreasing over time. Picaridin 20% performed equally well as DEET 20% and better than picaridin 10%. Repellents performed better against Mansonia and Culex spp. as compared to aedines and anophelines. A lower performance was observed against Aedes albopictus as compared to Aedes aegypti, and against Anopheles barbirostris as compared to several vector species. Parity rates were higher in vectors collected on repellent treated person as compared to control persons. As such, field evaluation shows that repellents can provide additional personal protection against early and outdoor biting malaria and arbovirus vectors, with excellent protection up to five hours after application. The heterogeneity in repellent sensitivity between mosquito genera and vector species could however impact the efficacy of repellents in public health programs. Considering its excellent performance and potential to protect against early and outdoor biting vectors, as well as its higher acceptability as compared to DEET, picaridin is an appropriate product to evaluate the

  17. Mosquito repellent potential ofPithecellobium dulce leaf and seed against malaria vectorAnopheles stephensi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective:To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract ofPithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi(An. stephensi). Methods:Repellent activity assay was carried out in a net cage (45 cmí30 cmí25 cm) containing 100 blood starved female mosquitoes ofAn. stephensi. This assay was carried out in the laboratory conditions according to theWHO 2009 protocol. Plant crude extracts ofP. dulce were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the concentration of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 leaf and seed methanol extract ofP. dulceprovided over 180 min and 150 min protection, respectively. Conclusions: Crude extracts ofP. dulceexhibit the potential for controlling malaria vector mosquitoAn. stephensi.

  18. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Bukovinszkine-Kiss, G.; Loon, van J.J.A.; Takken, W.

    2009-01-01

    The role of aliphatic carboxylic acids in host-seeking response of the malaria mosquito Anopheles gambiae sensu stricto was examined both in a dual-choice olfactometer and with indoor traps. A basic attractive blend of ammonia + lactic acid served as internal standard odor. Single carboxylic acids w

  19. The influence of late-stage pupal irradiation and increased irradiated:un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments

  20. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2011-02-01

    a suitable carrier are a promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how to make use of the entomopathogenic potential of these fungi against anopheline larvae.

  1. Urban Agriculture and Operational Mosquito Larvae Control: Mitigating Malaria Risk in Dar es Salaam, Tanzania

    OpenAIRE

    Dongus, Stefan

    2009-01-01

    Global commitment, political will and financial support to reduce the burden of malaria, a disease which kills about one million people each year, have reached an unprecedented level. Although global malaria eradication appears to be a distant goal, there are promising efforts towards regional control and local elimination of the disease. Sub-Saharan Africa (SSA) is the region with the world’s highest malaria burden, as well as the world’s fastest growing cities. Rapid urbanisation brings eno...

  2. Urban agriculture and operational mosquito larvae control. mitigating malaria risk in Dar es Salaam, Tanzania

    OpenAIRE

    Dongus, Stefan

    2009-01-01

    Global commitment, political will and financial support to reduce the burden of malaria, a disease which kills about one million people each year, have reached an unprecedented level. Although global malaria eradication appears to be a distant goal, there are promising efforts towards regional control and local elimination of the disease. Sub-Saharan Africa (SSA) is the region with the world’s highest malaria burden, as well as the world’s fastest growing cities. Rapid urbanisation brings eno...

  3. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes

    Directory of Open Access Journals (Sweden)

    Martin Beatrice

    2006-03-01

    Full Text Available Abstract Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.

  4. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania.

    NARCIS (Netherlands)

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer survival

  5. Neem cake: chemical composition and larvicidal activity on Asian tiger mosquito.

    Science.gov (United States)

    Nicoletti, Marcello; Mariani, Susanna; Maccioni, Oliviero; Coccioletti, Tiziana; Murugan, Kardaray

    2012-07-01

    New pesticides based on natural products are urgently needed, in consideration of their environmental care and lower collateral effects. Neem oil, the main product obtained from Azadiractha indica A. Juss, commonly known as neem tree, is mainly used in medical devices, cosmetics and soaps, as well as important insecticide. Manufacturing of neem oil first includes the collection of the neem seeds as raw material used for the extraction. Neem cake is the waste by-product remaining after extraction processes. The quality of the oil, as that of the cake, strictly depends from the quality of seeds as well as from the type of extraction processes used, which strongly influences the chemical composition of the product. Currently, the different types of commercial neem cake on the market are roughly identified as oiled and deoiled cake, but several other differences can be detected. The differences are relevant and must be determined, to obtain the necessary correlation between chemical constitution and larvicidal activities. Six different batches of neem cake, marketed by several Indian and European companies, were analyzed by HPLC and HPTLC, and their fingerprints compared, obtaining information about the different compositions, focusing in particular on nortriterpenes, considered as the main active components of neem oil. Therefore, the chemical composition of each cake was connected with the biological activitiy, i.e., the effects of the extracts of the six neem cakes were tested on eggs and larvae of Aedes albopictus (Stegomyia albopicta) (Diptera: Culicidae), commonly known as Asian tiger mosquito. The results confirmed the previously reported larvicide effects of neem cake that, however, can now be related to the chemical composition, in particular with nortriterpenes, allowing in that way to discriminate between the quality of the various marketed products, as potential domestic insecticides. PMID:22422292

  6. Play the Mosquito Game

    Science.gov (United States)

    ... Life and Work Teachers' Questionnaire Malaria Play the Mosquito Game Play the Parasite Game About the games ... that is transmitted to humans by a female mosquito's bite. Read More » The Nobel Prize The 1902 ...

  7. Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes.

    Science.gov (United States)

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L

    2015-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. The present study was carried out to establish the larvicidal potential of leaf extracts of Gmelina asiatica and synthesized silver nanoparticles using aqueous leaf extract against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis support the biosynthesis and characterization of AgNPs. The maximum efficacy was observed in synthesized AgNPs against the larvae of An. stephensi (lethal dose (LC₅₀) = 22.44 μg/mL; LC₉₀ 40.65 μg/mL), Ae. aegypti (LC₅₀ = 25.77 μg/mL; LC₉₀ 45.98 μg/mL), and C. quinquefasciatus (LC₅₀ = 27.83 μg/mL; LC₉₀ 48.92 μg/mL), respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of G. asiatica to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach and the AgNps formed can be potential mosquito larvicidal agents. PMID:25666372

  8. An analysis of diet quality, how it controls fatty acid profiles, isotope signatures and stoichiometry in the malaria mosquito Anopheles arabiensis.

    Directory of Open Access Journals (Sweden)

    Rebecca Hood-Nowotny

    Full Text Available BACKGROUND: Knowing the underlying mechanisms of mosquito ecology will ensure effective vector management and contribute to the overall goal of malaria control. Mosquito populations show a high degree of population plasticity in response to environmental variability. However, the principle factors controlling population size and fecundity are for the most part unknown. Larval habitat and diet play a crucial role in subsequent mosquito fitness. Developing the most competitive insects for sterile insect technique programmes requires a "production" orientated perspective, to deduce the most effective larval diet formulation; the information gained from this process offers us some insight into the mechanisms and processes taking place in natural native mosquito habitats. METHODOLOGY/PRINCIPAL FINDINGS: Fatty acid profiles and de-novo or direct assimilation pathways, of whole-individual mosquitoes reared on a range of larval diets were determined using pyrolysis gas chromatograph/mass spectrometry. We used elemental analysis and isotope ratio mass spectrometry to measure individual-whole-body carbon, nitrogen and phosphorous values and to assess the impact of dietary quality on subsequent population stoichiometry, size, quality and isotopic signature. Diet had the greatest impact on fatty acid (FA profiles of the mosquitoes, which exhibited a high degree of dietary routing, characteristic of generalist feeders. De-novo synthesis of a number of important FAs was observed. Mosquito C:N stoichiometry was fixed in the teneral stage. Dietary N content had significant influence on mosquito size, and P was shown to be a flexible pool which limited overall population size. CONCLUSIONS/SIGNIFICANCE: Direct routing of FAs was evident but there was ubiquitous de-novo synthesis suggesting mosquito larvae are competent generalist feeders capable of survival on diet with varying characteristics. It was concluded that nitrogen availability in the larval diet

  9. Do ownership of mosquito nets, dwelling characteristics and mothers’ socio-economic status influence malaria morbidity among children under the age of 5 in Cameroon?

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2015-06-01

    Full Text Available Objectives: This study analyzed the effect of the number of mosquito nets that are owned by households, dwelling characteristics and maternal demographic characteristics on malaria infections. Material and Methods: The 2011 Demographic and Health Survey (DHS data for children under 5 years of age were used. The children were subjected to haemoglobin test and rapid diagnostic test (RDT to ascertain the presence of malaria parasites. Data were analyzed using probit regression method. Results: It was found that 2.43% and 8.68% of the children were living in houses that were prone to landslide and flooding, respectively. Also, 19.93%, 17.08% and 16.26% of the children lived in houses without windows, with broken windows, and with a hole in the roof, respectively. Only 5.59% and 23.96% of the children lived in houses with window and door nets, respectively. Mosquito nets were owned by 64.03% of the households, where Adamawa Region had the lowest coverage (52.23%. Reasons for not owning mosquito nets by all the households included: lack of financial means (25.17%, using something else (1.80% and not having many mosquitoes in the vicinity (5.53%. In the probit regression, variables that significantly reduced malaria infections among the children (p < 0.05 included: the number of mosquito nets, urban residence, improved toilet, ownership of a radio, residence in flood-prone area, mother’s secondary education, mother’s tertiary education and residence in areas with not many mosquitoes, while infections increased along with the household size, residence in areas prone to landslide, severe anaemia, moderate anaemia, mild anaemia and age of the children. Conclusions: Ownership of mosquito nets and dwelling characteristics are critical factors influencing infections with malaria. There is a need to ensure compliance with its use since there are disparities between access and actual usage. Also, addressing malaria problem in Cameroon should consider

  10. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania.

    OpenAIRE

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer survival (Steinwascher, 1982; Nasci, 1986a; 1986b; 1987) but in others large size did not result in longer survival (Walker et al ., 1987; Landry et al ., 1988; Pumpuni & Walker, 1989). Similar data were fo...

  11. Sequence analysis of the rDNA internal transcribed spacer 2 of five species of South American human malaria mosquitoes.

    Science.gov (United States)

    Fritz, G N

    1998-03-01

    The rDNA internal transcribed spacer 2 (ITS2) was sequenced for 5 species of mosquitoes that may be important vectors of human malaria in certain regions of South America and are difficult to distinguish by morphology: Anopheles evansae, An. nuneztovari, An. rangeli, An. strodei and An. trinkae. ITS2 sequences from samples collected in Ecuador, Bolivia, Venezuela and Brazil were aligned and compared in order to determine the usefulness of this spacer for the elaboration of species specific primers and DNA probes. The ITS2 was found to be different in size (ranging from 333 to 397 bp) and sequence between all pairs of species. Highly variable regions were found primarily at the 3' end of the spacer and were interspersed with relatively conserved sites. Instraspecific sequence variation was limited to a single transversion between specimens of An. rangeli from distant geographic locations suggesting concerted evolution and homogenization of the ITS2. PMID:10520449

  12. Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae, a vector of malaria disease

    Directory of Open Access Journals (Sweden)

    Kayode David Ileke

    2015-07-01

    Full Text Available Objective: To evaluate the insecticidal potential of Alstonia boonei (A. boonei oils and derivatives against different life stages of a malaria vector, Anopheles gambiae. Methods: The leaf, stem bark and root bark of A. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity of A. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  13. Alstonia booneiDe Wildoil extract in the management of mosquito (Anopheles gambiae), a vector of malaria disease

    Institute of Scientific and Technical Information of China (English)

    Kayode David Ileke; Olaniyi Charles Ogungbite

    2015-01-01

    Objective:To evaluate the insecticidal potential ofAlstonia boonei(A. boonei)oils and derivatives against different life stages of a malaria vector,Anopheles gambiae. Methods:The leaf, stem bark and root bark ofA. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity ofA. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  14. Wash resistance and residual efficacy of long-lasting polyester netting coated with alpha-cypermethrin (Interceptor) against malaria-transmitting mosquitoes in Assam, northeast India.

    Science.gov (United States)

    Dev, V; Raghavendra, K; Singh, S P; Phookan, S; Khound, K; Dash, A P

    2010-04-01

    Malaria is endemic in Assam, northeast India, with low-to-moderate transmission of the causative parasites, mostly by Anopheles minimus. Plasmodium falciparum is the predominant parasite (>60%), with remaining cases being due to P. vivax. As an alternative intervention for malaria control, long-lasting insecticidal nets [Interceptor coated with alpha-cypermethrin 10% suspension concentrate (SC), 0.667% w/w, 0.2g/m(2)] underwent field evaluation for laboratory wash resistance and residual efficacy in field conditions against malaria-transmitting mosquitoes. Based on entomological observations, the Interceptor net intervention was the most effective, corresponding to the lowest mosquito vector density in experimental villages. There was virtual disappearance of A. minimus in Interceptor net villages in contrast to the untreated net intervention and the no-net control. Contact cone bioassay tests revealed 100% mortality in the A.minimus group of mosquito species in the community using the Interceptor net, which was consistent during the follow-up monitoring period (October 2006 to April 2007) in field conditions. Similar levels of mortality were observed in laboratory-washed nets compared with unwashed nets, and wash resistance was consistent even after the 20th serial wash at fortnightly intervals. Community compliance and acceptance of the Interceptor net was high, with decreased nuisance due to biting mosquitoes and other household insect pests being reported. PMID:19762058

  15. Select small core structure carbamates exhibit high contact toxicity to "carbamate-resistant" strain malaria mosquitoes, Anopheles gambiae (Akron.

    Directory of Open Access Journals (Sweden)

    Dawn M Wong

    Full Text Available Acetylcholinesterase (AChE is a proven target for control of the malaria mosquito (Anopheles gambiae. Unfortunately, a single amino acid mutation (G119S in An. gambiae AChE-1 (AgAChE confers resistance to the AChE inhibitors currently approved by the World Health Organization for indoor residual spraying. In this report, we describe several carbamate inhibitors that potently inhibit G119S AgAChE and that are contact-toxic to carbamate-resistant An. gambiae. PCR-RFLP analysis was used to confirm that carbamate-susceptible G3 and carbamate-resistant Akron strains of An. gambiae carry wild-type (WT and G119S AChE, respectively. G119S AgAChE was expressed and purified for the first time, and was shown to have only 3% of the turnover number (k(cat of the WT enzyme. Twelve carbamates were then assayed for inhibition of these enzymes. High resistance ratios (>2,500-fold were observed for carbamates bearing a benzene ring core, consistent with the carbamate-resistant phenotype of the G119S enzyme. Interestingly, resistance ratios for two oxime methylcarbamates, and for five pyrazol-4-yl methylcarbamates were found to be much lower (4- to 65-fold. The toxicities of these carbamates to live G3 and Akron strain An. gambiae were determined. As expected from the enzyme resistance ratios, carbamates bearing a benzene ring core showed low toxicity to Akron strain An. gambiae (LC(50>5,000 μg/mL. However, one oxime methylcarbamate (aldicarb and five pyrazol-4-yl methylcarbamates (4a-e showed good to excellent toxicity to the Akron strain (LC(50 = 32-650 μg/mL. These results suggest that appropriately functionalized "small-core" carbamates could function as a resistance-breaking anticholinesterase insecticides against the malaria mosquito.

  16. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.

    Directory of Open Access Journals (Sweden)

    Colin J Sutherland

    2005-04-01

    Full Text Available BACKGROUND: Resistance of malaria parasites to chloroquine (CQ and sulphadoxine-pyrimethamine (SP is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs. METHODS AND FINDINGS: In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91, or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet] (n = 406. Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001. Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001 and were less infectious to mosquitoes at day 7 (p < 0.001 than carriers who had received CQ/SP. CONCLUSIONS: Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.

  17. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2012-12-01

    Full Text Available Abstract Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality was observed at 12, 24 and 48 h after exposure period with the concentrations of 3.125, 6.25, 12.5, 25, 50 and 100 ppm. Findings Larval mortality rates of the essential oil was entirely time and dose dependent. The LC50 values of the laboratory colony were 98.56 (after 12h 55.20 (after 24 h and 32.41 ppm (after 48 h and the LC90 values were 147.40 (after 12h, 99.09 (after 24 h and 98.84 ppm (after 48 h. The LC50 and LC90 values of the wild population were 119.52, 179.85 (after 12h 67.53, 107.60 (after 24 h and 25.51, 111.17 ppm (after 48 h respectively. The oil showed good larvicidal potential after 48 h of exposure period against An. gambiae. The essential oil of Indian borage is a renowned natural source of larvicides for the control of the African malaria vector mosquito, An. gambiae. Conclusion The larvicidal efficacy shown by plant extracts against An. gambiae should be tested in semi field and small scale trials for effective compounds to supplement the existing larval control tools.

  18. Perspective Piece: Needs for Monitoring Mosquito Transmission of Malaria in a Pre-Elimination World

    NARCIS (Netherlands)

    James, S.; Takken, W.; Collins, F.H.; Gottlieb, M.

    2014-01-01

    As global efforts to eliminate malaria intensify, accurate information on vector populations and transmission dynamics is critical for directing control efforts, developing new control tools, and predicting the effects of these interventions under various conditions. Currently, available sampling to

  19. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Directory of Open Access Journals (Sweden)

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  20. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution.

    Science.gov (United States)

    Chen, Xiao-Guang; Jiang, Xuanting; Gu, Jinbao; Xu, Meng; Wu, Yang; Deng, Yuhua; Zhang, Chi; Bonizzoni, Mariangela; Dermauw, Wannes; Vontas, John; Armbruster, Peter; Huang, Xin; Yang, Yulan; Zhang, Hao; He, Weiming; Peng, Hongjuan; Liu, Yongfeng; Wu, Kun; Chen, Jiahua; Lirakis, Manolis; Topalis, Pantelis; Van Leeuwen, Thomas; Hall, Andrew Brantley; Jiang, Xiaofang; Thorpe, Chevon; Mueller, Rachel Lockridge; Sun, Cheng; Waterhouse, Robert Michael; Yan, Guiyun; Tu, Zhijian Jake; Fang, Xiaodong; James, Anthony A

    2015-11-01

    The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species. PMID:26483478

  1. An analysis of two island groups as potential sites for trials of transgenic mosquitoes for malaria control

    Science.gov (United States)

    Marsden, Clare D; Cornel, Anthony; Lee, Yoosook; Sanford, Michelle R; Norris, Laura C; Goodell, Parker B; Nieman, Catelyn C; Han, Sarah; Rodrigues, Amabelia; Denis, Joao; Ouledi, Ahmed; Lanzaro, Gregory C

    2013-01-01

    Considerable technological advances have been made towards the generation of genetically modified mosquitoes for vector control. In contrast, less progress has been made towards field evaluations of transformed mosquitoes which are critical for evaluating the success of, and hazards associated with, genetic modification. Oceanic islands have been highlighted as potentially the best locations for such trials. However, population genetic studies are necessary to verify isolation. Here, we used a panel of genetic markers to assess for evidence of genetic isolation of two oceanic island populations of the African malaria vector, Anopheles gambiae s.s. We found no evidence of isolation between the Bijagós archipelago and mainland Guinea-Bissau, despite separation by distances beyond the known dispersal capabilities of this taxon. Conversely, the Comoros Islands appear to be genetically isolated from the East African mainland, and thus represent a location worthy of further investigation for field trials. Based on assessments of gene flow within and between the Comoros islands, the island of Grande Comore was found to be genetically isolated from adjacent islands and also exhibited local population structure, indicating that it may be the most suitable site for trials with existing genetic modification technologies. PMID:23789035

  2. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Science.gov (United States)

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  3. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hogan James R

    2005-01-01

    Full Text Available Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. Results In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. Conclusion The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity.

  4. Comparing malaria surveillance with periodic spraying in the presence of insecticide-resistant mosquitoes: Should we spray regularly or based on human infections?

    Science.gov (United States)

    Church, Kevin E M; Smith, Robert J

    2016-06-01

    There is an urgent need for more understanding of the effects of surveillance on malaria control. Indoor residual spraying has had beneficial effects on global malaria reduction, but resistance to the insecticide poses a threat to eradication. We develop a model of impulsive differential equations to account for a resistant strain of mosquitoes that is entirely immune to the insecticide. The impulse is triggered either due to periodic spraying or when a critical number of malaria cases are detected. For small mutation rates, the mosquito-only submodel exhibits either a single mutant-only equilibrium, a mutant-only equilibrium and a single coexistence equilibrium, or a mutant-only equilibrium and a pair of coexistence equilibria. Bistability is a likely outcome, while the effect of impulses is to introduce a saddle-node bifurcation, resulting in persistence of malaria in the form of impulsive periodic orbits. If certain parameters are small, triggering the insecticide based on number of malaria cases is asymptotically equivalent to spraying periodically. PMID:27055608

  5. Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets.

    Directory of Open Access Journals (Sweden)

    Gerry F Killeen

    2007-07-01

    Full Text Available BACKGROUND: Malaria prevention in Africa merits particular attention as the world strives toward a better life for the poorest. Insecticide-treated nets (ITNs represent a practical means to prevent malaria in Africa, so scaling up coverage to at least 80% of young children and pregnant women by 2010 is integral to the Millennium Development Goals (MDG. Targeting individual protection to vulnerable groups is an accepted priority, but community-level impacts of broader population coverage are largely ignored even though they may be just as important. We therefore estimated coverage thresholds for entire populations at which individual- and community-level protection are equivalent, representing rational targets for ITN coverage beyond vulnerable groups. METHODS AND FINDINGS: Using field-parameterized malaria transmission models, we show that high (80% use but exclusively targeted coverage of young children and pregnant women (representing <20% of the population will deliver limited protection and equity for these vulnerable groups. In contrast, relatively modest coverage (35%-65% use, with this threshold depending on ecological scenario and net quality of all adults and children, rather than just vulnerable groups, can achieve equitable community-wide benefits equivalent to or greater than personal protection. CONCLUSIONS: Coverage of entire populations will be required to accomplish large reductions of the malaria burden in Africa. While coverage of vulnerable groups should still be prioritized, the equitable and communal benefits of wide-scale ITN use by older children and adults should be explicitly promoted and evaluated by national malaria control programmes. ITN use by the majority of entire populations could protect all children in such communities, even those not actually covered by achieving existing personal protection targets of the MDG, Roll Back Malaria Partnership, or the US President's Malaria Initiative.

  6. Malaria.

    Science.gov (United States)

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  7. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    OpenAIRE

    Kweka Eliningaya J; Senthilkumar Annadurai; Venkatesalu Venugopalan

    2012-01-01

    Abstract Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus) was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality w...

  8. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae

    OpenAIRE

    K. P. Paaijmans; Takken, W.; Githeko, A.K.; Jacobs, A. F. G.

    2008-01-01

    Water temperature is an important determinant in many aquatic biological processes, including the growth and development of malaria mosquito (Anopheles arabiensis and A. gambiae) immatures. Water turbidity affects water temperature, as suspended particles in a water column absorb and scatter sunlight and hence determine the extinction of solar radiation. To get a better understanding of the relationship between water turbidity and water temperature, a series of semi-natural larval habitats (d...

  9. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. PMID:26995063

  10. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Benelli, Giovanni

    2016-11-01

    Mosquitoes (Diptera: Culicidae) are a key threat for millions of people and animals worldwide, since they act as vectors for devastating pathogens and parasites, including malaria, dengue, Japanese encephalitis, filiariasis and Zika virus. Mosquito young instars are usually targeted using organophosphates, insect growth regulators and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. In this scenario, newer and safer tools have been recently implemented to enhance mosquito control. The concrete potential of screening plant species as sources of metabolites for entomological and parasitological purposes is worthy of attention, as recently elucidated by the Y. Tu's example. Here we investigated the toxicity of Heracleum sprengelianum (Apiaceae) leaf essential oil and its major compounds toward third instar larvae of the malaria vector Anopheles subpictus, the arbovirus vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. GC-MS analysis showed that EO major components were lavandulyl acetate (17.8%) and bicyclogermacrene (12.9%). The EO was toxic to A. subpictus, A. albopictus, and C. tritaeniorhynchus, with LC50 of 33.4, 37.5 and 40.9µg/ml, respectively. Lavandulyl acetate was more toxic to mosquito larvae if compared to bicyclogermacrene. Their LC50 were 4.17 and 10.3µg/ml for A. subpictus, 4.60 and 11.1µg/ml for A. albopictus, 5.11 and 12.5µg/ml for C. tritaeniorhynchus. Notably, the EO and its major compounds were safer to three non-target mosquito predators, Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 ranging from 206 to 4219µg/ml. Overall, this study highlights that H. sprengelianum EO is a promising source of eco-friendly larvicides against three important mosquito vectors with moderate toxicity against non-target aquatic

  11. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi (An. stephensi). Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm) containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. ...

  12. Assessing the Health Effects of Long-Term Exposure to Insecticide-Treated Mosquito Nets in the Control of Malaria in Endemic Regions

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2004-01-01

    Full Text Available Malaria is a protozoan disease caused in humans by the genus Plasmodium of which four species are known: P. falciparum, P. vivax, P. ovale, and P. malariae. It is transmitted through the bite of infected female mosquitoes of the genus Anopheles. Malaria is endemic in tropical and subtropical regions of the world. It is characterized by extreme exhaustion associated with paroxysms of high fever, sweating, shaking chills, and anemia. Approximately 40% of the world's population, mostly those living in the poorest nations, are at risk. Much of the deaths due to malaria occur in Africa, mostly among children. The search for prevention and control interventions that are effective and sustainable remains an abiding challenge for national governments and international health agencies. To this end, the World Health Organization and several nongovernmental organizations are investing in the use of insecticide-treated mosquito nets (ITMNs as a viable option. Trials of ITMNs in the 1980s and 1990s showed that they reduce deaths in young children by an average of 20% and multilateral agencies, spearheaded by Roll Back Malaria (RBM, seek to have 60% of the populations at risk sleeping under ITMNs by 2005. All pesticides are toxic by nature and present risks of adverse effects that depend on toxicity of the chemical and the degree of exposure. While there is agreement that ITMNs can be effective in reducing malaria morbidity and mortality under field trials, a number of factors relating to their sustainability and contribution to health improvement in less-developed countries have yet to be determined. In particular, the adverse effects associated with their long-term use and misuse has yet to be fully evaluated. Although this paper examines potential neurotoxic and neurobehavioral effects of long-term use of ITMNs and discusses priority public health actions for protecting the health of users, it forms the basis for further research.

  13. Extended Malaria Parasite Clearance Time in African Children Following Artemisinincombination Therapy Enhances Transmission to Anopheles Mosquitoes

    OpenAIRE

    Beshir Khalid B; Sawa Patrick; Drakeley Chris J; Baidjoe Amrish Y; Mweresa Collins K; Yussuf Rahma U; Omar Sabah A; Hermsen Cornelus C; Shekalaghe Seif A; Schallig Henk DFH; Sauerwein Robert W; Sutherland Colin J; Hallett Rachel L; Bousema Teun

    2012-01-01

    Artemisinin resistance was recently shown to have spread or emerged on the Thailand/Myanmar border. Evidence is accumulating that the parasite clearance time after artemisinin-based combination therapy (ACT) is increasing in settings in Asia and Africa. It is currently unknown if an extended parasite clearance time after ACTs has consequences for the individual patient or confers a higher malaria transmission potential. 298 children in Mbita, Western Kenya, with uncomplicated falciparum malar...

  14. Combination Therapy Counteracts the Enhanced Transmission of Drug-Resistant Malaria Parasites to Mosquitoes

    OpenAIRE

    Hallett, Rachel L; Colin J Sutherland; Alexander, Neal; Ord, Rosalynn; Jawara, Musa; Drakeley, Chris J.; Pinder, Margaret; Walraven, Gijs; Geoffrey A T Targett; Alloueche, Ali

    2004-01-01

    Malaria parasites carrying genes conferring resistance to antimalarials are thought to have a selective advantage which leads to higher rates of transmissibility from the drug-treated host. This is a likely mechanism for the increasing prevalence of parasites with resistance to chloroquine (CQ) and sulfadoxine-pyrimethamine in sub-Saharan Africa. Combination therapy is the key strategy being implemented to reduce the impact of resistance, but its effect on the transmission of genetically resi...

  15. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  16. First field trial of an immunoradiometric assay for the detection of malaria sporozoites in mosquitoes

    International Nuclear Information System (INIS)

    An immunoradiometric assay (IRMA) using a monoclonal antibody to the major surface protein of Plasmodium falciparum sporozoites was used to assess the P. falciparum sporozoite rate in a West African population of Anopheles gambiae (s.1.). Unlike current dissection techniques, the IRMA could detect sporozoite antigen in dried as well as fresh mosquitoes. In a controlled comparison, the sensitivity of the IRMA was comparable that of the dissection technique. Additionally, the IRMA was species specific and quantitative. Sensitivity of the assay was sufficient to detect sporozoite infections resulting from the development of a single oocyst

  17. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Hogan James R; Lobo Neil F; Harker Brent W; Hillenmeyer Maureen E; Kern Marcia K; Hong Young S; Dana Ali N; Romans Patricia; Collins Frank H

    2005-01-01

    Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of t...

  18. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation

    Directory of Open Access Journals (Sweden)

    Poelchau Monica F

    2011-12-01

    Full Text Available Abstract Background Many temperate insects survive the harsh conditions of winter by undergoing photoperiodic diapause, a pre-programmed developmental arrest initiated by short day lengths. Despite the well-established ecological significance of photoperiodic diapause, the molecular basis of this crucial adaptation remains largely unresolved. The Asian tiger mosquito, Aedes albopictus (Skuse, represents an outstanding emerging model to investigate the molecular basis of photoperiodic diapause in a well-defined ecological and evolutionary context. Ae. albopictus is a medically significant vector and is currently considered the most invasive mosquito in the world. Traits related to diapause appear to be important factors contributing to the rapid spread of this mosquito. To generate novel sequence information for this species, as well as to discover transcripts involved in diapause preparation, we sequenced the transcriptome of Ae. albopictus oocytes destined to become diapausing or non-diapausing pharate larvae. Results 454 GS-FLX transcriptome sequencing yielded >1.1 million quality-filtered reads, which we assembled into 69,474 contigs (N50 = 1,009 bp. Our contig filtering approach, where we took advantage of strong sequence similarity to the fully sequenced genome of Aedes aegypti, as well as other reference organisms, resulted in 11,561 high-quality, conservative ESTs. Differential expression estimates based on normalized read counts revealed 57 genes with higher expression, and 257 with lower expression under diapause-inducing conditions. Analysis of expression by qPCR for 47 of these genes indicated a high correlation of expression levels between 454 sequence data and qPCR, but congruence of statistically significant differential expression was low. Seven genes identified as differentially expressed based on qPCR have putative functions that are consistent with the insect diapause syndrome; three genes have unknown function and represent

  19. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes.

    Science.gov (United States)

    Murugan, Kadarkarai; Benelli, Giovanni; Panneerselvam, Chellasamy; Subramaniam, Jayapal; Jeyalalitha, Tirupathi; Dinesh, Devakumar; Nicoletti, Marcello; Hwang, Jiang-Shiou; Suresh, Udaiyan; Madhiyazhagan, Pari

    2015-06-01

    Plant-borne compounds can be employed to synthesize mosquitocidal nanoparticles that are effective at low doses. However, how they affect the activity of mosquito predators in the aquatic environment is unknown. In this study, we synthesized gold nanoparticles (AuN) using the leaf extract of Cymbopogon citratus, which acted as a reducing and capping agent. AuN were characterized by a variety of biophysical methods and sorted for size in order to confirm structural integrity. C. citratus extract and biosynthesized AuN were tested against larvae and pupae of the malaria vector Anopheles stephensi and the dengue vector Aedes aegypti. LC₅₀ of C. citratus extract ranged from 219.32 ppm to 471.36 ppm. LC₅₀ of AuN ranged from 18.80 ppm to 41.52 ppm. In laboratory, the predatory efficiency of the cyclopoid crustacean Mesocyclops aspericornis against A. stephensi larvae was 26.8% (larva I) and 17% (larva II), while against A. aegypti was 56% (I) and 35.1% (II). Predation against late-instar larvae was minimal. In AuN-contaminated environment,predation efficiency against A. stephensi was 45.6% (I) and 26.7% (II), while against A. aegypti was 77.3% (I) and 51.6% (II). Overall, low doses of AuN may help to boost the control of Anopheles and Aedes larval populations in copepod-based control programs. PMID:25819295

  20. The mosquito vectors of malaria transmission in China:past and present%我国传疟蚊媒研究:过去与现在

    Institute of Scientific and Technical Information of China (English)

    瞿逢伊

    2009-01-01

    This paper presented a historical review for development of the conceptions of human malaria transmission,from "bad air" or so-called "changchi" in China,anopheline mosquitoes equaled the meaning vectors and then to the special anopheline vectors,determination through the past one hundred years.The ideas of malaria vector,the vector species and mistakes record in China during the years of 1926-1958 were discussed briefly.The discrimination of malaria vectors is an important research programme for malaria control,only if the vectors be confirmed rightly in different local malaria endemic area,the clear mosquito vector target could be determined,and stopping transmission could be an efficient control activity.Now,the old routine detection techniques were still in use for vector determination such as identification of mosquito species,the source of the mosquito blood meals,and natural sporozoite rate.However,the results suggested that those methods are unstable and of low efficiency,therefore the new qualified efficient techniques must be developed to provide the stable and reliable data for analysis.The species identification of important malaria vectors relating to mosquito complex is a troublesome problem.The molecular detection methods such as polymerase chain reaction (PCR) can be used for correction and standardization of the results of mosquito species identification among the important samples.As the view focused on the development of the malaria control,some new detection techniques in vector determination were proposed for use.%该文对人类疟疾传播的认识发展作了历史回顾,从过去的"瘴气"、按蚊即媒介以及现今专门的按蚊媒介判定,经历了100多年.对我国1926-1958年间的疟疾媒介概念、媒介蚊种记录及其错误等作了评述.辨别传疟媒介是疟疾防制中的重要研究课题,阻断传播才会是有效的控制措施,正确认定不同疟区的媒介,可以获得清晰的蚊媒靶标.目前,媒介判

  1. Absorption and transport of radioactive tracers in the midgut of the malaria mosquito, Anopheles stephensi

    International Nuclear Information System (INIS)

    Three radiolabeled substances were mixed with fresh heparinized mouse blood and fed to female Anopheles stephensi through a chicken crop membrane. Resorption and transport in the anterior (A) and posterior (P, stomach) parts of the midgut were investigated by means of electron microscopic autoradiography. Digestion products of 125I-labeled bovine serum albumin (BSA) were resorbed only in the P-part, showing a biphasic pattern with maximal values 4 and 18 hr after feeding. Uptake of 3H-labeled amino acids started immediately after feeding in both midgut parts. [14C]glucose was mainly absorbed in the P-part. Labeled carbohydrate storage deposits formed during the initial phase of digestion and were mobilized around 36 hr after feeding. After feeding the mosquitoes on 125I-BSA, oocyte protein yolk spheres and abdominal cuticle became labeled. Ingestion of 3H-labeled amino acids caused the formation of silver grains over follicles and fat body lipids. Feeding on [14C]glucose resulted in labeled fat body carbohydrates and oocyte protein yolk spheres

  2. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors?

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Arivoli, Subramanian; Tennyson, Samuel; Benelli, Giovanni

    2016-05-01

    Mosquitoes (Diptera: Culicidae) are important vectors of terms of public health relevance, especially in tropical and sub-tropical regions. The continuous and indiscriminate use of conventional pesticides for the control of mosquito vectors has resulted in the development of resistance and negative impacts on non-target organisms and the environment. Therefore, there is a need for development of effective mosquito control tools. In this study, the larvicidal and repellent activity of Zingiber nimmonii rhizome essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti, and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the Z. nimmonii EO contained at least 33 compounds. Major constituents were myrcene, β-caryophyllene, α-humulene, and α-cadinol. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus, with LC50 values of 41.19, 44.46, and 48.26 μg/ml, respectively. Repellency bioassays at 1.0, 2.0, and 5.0 mg/cm(2) of Z. nimmonii EO gave 100 % protection up to 120, 150, and 180 min. against An. stephensi, followed by Ae. aegypti (90, 120, and 150 min) and Cx. quinquefasciatus (60, 90, and 120 min). Furthermore, the EO was safer towards two non-target aquatic organisms, Diplonychus indicus and Gambusia affinis, with LC50 values of 3241.53 and 9250.12 μg/ml, respectively. Overall, this research adds basic knowledge to develop newer and safer natural larvicides and repellent from Zingiberaceae plants against malaria, dengue, and filariasis mosquito vectors. PMID:26792432

  3. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.

    Science.gov (United States)

    Ruktanonchai, Nick W; Smith, David L; De Leenheer, Patrick

    2016-09-01

    We consider the dynamics of a mosquito-transmitted pathogen in a multi-patch Ross-Macdonald malaria model with mobile human hosts, mobile vectors, and a heterogeneous environment. We show the existence of a globally stable steady state, and a threshold that determines whether a pathogen is either absent from all patches, or endemic and present at some level in all patches. Each patch is characterized by a local basic reproduction number, whose value predicts whether the disease is cleared or not when the patch is isolated: patches are known as "demographic sinks" if they have a local basic reproduction number less than one, and hence would clear the disease if isolated; patches with a basic reproduction number above one would sustain endemic infection in isolation, and become "demographic sources" of parasites when connected to other patches. Sources are also considered focal areas of transmission for the larger landscape, as they export excess parasites to other areas and can sustain parasite populations. We show how to determine the various basic reproduction numbers from steady state estimates in the patched network and knowledge of additional model parameters, hereby identifying parasite sources in the process. This is useful in the context of control of the infection on natural landscapes, because a commonly suggested strategy is to target focal areas, in order to make their corresponding basic reproduction numbers less than one, effectively turning them into sinks. We show that this is indeed a successful control strategy-albeit a conservative and possibly expensive one-in case either the human host, or the vector does not move. However, we also show that when both humans and vectors move, this strategy may fail, depending on the specific movement patterns exhibited by hosts and vectors. PMID:27436636

  4. Susceptibility of Culicidae Mosquitoes to Some Insecticides Recommended by WHO in a Malaria Endemic Area of Southeastern Iran

    Directory of Open Access Journals (Sweden)

    Mousa Fathian

    2015-10-01

    Full Text Available Background: According to the national strategy plan on monitoring of insecticides resistance, this study was carried out to determine the base line susceptibility of the Culicidae mosquitoes to the WHO-recommended insecticides in an endemic focus of malaria in southeastern Iran.Methods: Larval collection was carried out by dipping method and adult collection occurred by suction tube from January to December 2010. The susceptibility test was assessed to DDT 4 %, malathion 5 %, propoxur 0.1 %, deltamethrin 0.05 %, lambda-cyhalothrin 0.05 %, and cyfluthrin 0.15 % at different interval times (discriminative dose followed by 24 h recovery period . The LT50 and LT90 values were calculated for plotting the regression line using Microsoft office Excel software ver. 2007.Results: Anopheles stephensi was quite resistant to DDT and showed susceptible or tolerant to other insecticides. The LT50 and LT90 values to DDT in this species were 29.07, and 98.26 minutes, respectively. Anopheles culicifacies and Anopheles dthali were found susceptible or tolerant to insecticides. Culex pipiens was found resistance to DDT, propoxur, lambda-cyhalothrin and cyfluthrin whereas observed susceptible to malathion and tolerant to deltamethrin. Ochlerotatus caspius sl. was resistant to DDT, whereas found susceptible to other insecticides. Culisita longiareolatawas susceptible to deltamethrin, whereas tolerant to other insecticides. The LT50 and LT90 values of Cs. longiareolata to DDT were 17.82, and 51.26 minutes.Conclusion: We suggested the same study in different parts of the country for monitoring and evaluation of control measures.

  5. A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Govella Nico J

    2008-01-01

    Full Text Available Abstract Background As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. Methods A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs. New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. Results The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04. Conclusion This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience.

  6. The Eye of the Tiger, the Thrill of the Fight: Effective Larval and Adult Control Measures Against the Asian Tiger Mosquito, Aedes albopictus (Diptera: Culicidae), in North America.

    Science.gov (United States)

    Faraji, Ary; Unlu, Isik

    2016-09-01

    The Asian tiger mosquito, Aedes albopictus (Skuse), is a highly invasive container-inhabiting species with a global distribution. This mosquito, similar to other Stegomyia species such as Aedes aegypti (L.), is highly adapted to urban and suburban areas, and commonly oviposits in artificial containers, which are ubiquitous in these peridomestic environments. The increase in speed and amount of international travel and commerce, coupled with global climate change, have aided in the resurgence and expansion of Stegomyia species into new areas of North America. In many parts of their range, both species are implicated as significant vectors of emerging and re-emerging arboviruses such as dengue, chikungunya, and now Zika. Although rapid and major advances have been made in the field of biology, ecology, genetics, taxonomy, and virology, relatively little has changed in the field of mosquito control in recent decades. This is particularly discouraging in regards to container-inhabiting mosquitoes, because traditional integrated mosquito management (IMM) approaches have not been effective against these species. Many mosquito control programs simply do not possess the man-power or necessary financial resources needed to suppress Ae. albopictus effectively. Therefore, control of mosquito larvae, which is the foundation of IMM approaches, is exceptionally difficult over large areas. This review paper addresses larval habitats, use of geographic information systems for habitat preference detection, door-to-door control efforts, source reduction, direct application of larvicides, biological control agents, area-wide low-volume application of larvicides, hot spot treatments, autodissemination stations, public education, adult traps, attractive-toxic sugar bait methods, lethal ovitraps, barrier-residual adulticides, hand-held ultra-low-volume adulticides, area-wide adulticides applied by ground or air, and genetic control methods. The review concludes with future

  7. Chromosome Inversions, Genomic Differentiation and Speciation in the African Malaria Mosquito Anopheles gambiae

    Science.gov (United States)

    Lee, Yoosook; Collier, Travis C.; Sanford, Michelle R.; Marsden, Clare D.; Fofana, Abdrahamane; Cornel, Anthony J.; Lanzaro, Gregory C.

    2013-01-01

    The African malaria vector, Anopheles gambiae, is characterized by multiple polymorphic chromosomal inversions and has become widely studied as a system for exploring models of speciation. Near complete reproductive isolation between different inversion types, known as chromosomal forms, has led to the suggestion that A. gambiae is in early stages of speciation, with divergence evolving in the face of considerable gene flow. We compared the standard chromosomal arrangement (Savanna form) with genomes homozygous for j, b, c, and u inversions (Bamako form) in order to identify regions of genomic divergence with respect to inversion polymorphism. We found levels of divergence between the two sub-taxa within some of these inversions (2Rj and 2Rb), but at a level lower than expected and confined near the inversion breakpoints, consistent with a gene flux model. Unexpectedly, we found that the majority of diverged regions were located on the X chromosome, which contained half of all significantly diverged regions, with much of this divergence located within exons. This is surprising given that the Bamako and Savanna chromosomal forms are both within the S molecular form that is defined by a locus near centromere of X chromosome. Two X-linked genes (a heat shock protein and P450 encoding genes) involved in reproductive isolation between the M and S molecular forms of A. gambiae were also significantly diverged between the two chromosomal forms. These results suggest that genes mediating reproductive isolation are likely located on the X chromosome, as is thought to be the case for the M and S molecular forms. We conclude that genes located on the sex chromosome may be the major force driving speciation between these chromosomal forms of A. gambiae. PMID:23526957

  8. Chromosome inversions, genomic differentiation and speciation in the African malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Yoosook Lee

    Full Text Available The African malaria vector, Anopheles gambiae, is characterized by multiple polymorphic chromosomal inversions and has become widely studied as a system for exploring models of speciation. Near complete reproductive isolation between different inversion types, known as chromosomal forms, has led to the suggestion that A. gambiae is in early stages of speciation, with divergence evolving in the face of considerable gene flow. We compared the standard chromosomal arrangement (Savanna form with genomes homozygous for j, b, c, and u inversions (Bamako form in order to identify regions of genomic divergence with respect to inversion polymorphism. We found levels of divergence between the two sub-taxa within some of these inversions (2Rj and 2Rb, but at a level lower than expected and confined near the inversion breakpoints, consistent with a gene flux model. Unexpectedly, we found that the majority of diverged regions were located on the X chromosome, which contained half of all significantly diverged regions, with much of this divergence located within exons. This is surprising given that the Bamako and Savanna chromosomal forms are both within the S molecular form that is defined by a locus near centromere of X chromosome. Two X-linked genes (a heat shock protein and P450 encoding genes involved in reproductive isolation between the M and S molecular forms of A. gambiae were also significantly diverged between the two chromosomal forms. These results suggest that genes mediating reproductive isolation are likely located on the X chromosome, as is thought to be the case for the M and S molecular forms. We conclude that genes located on the sex chromosome may be the major force driving speciation between these chromosomal forms of A. gambiae.

  9. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  10. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  11. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Dongus Stefan

    2007-09-01

    Full Text Available Abstract Background Half of the population of Africa will soon live in towns and cities where it can be protected from malaria by controlling aquatic stages of mosquitoes. Rigorous but affordable and scaleable methods for mapping and managing mosquito habitats are required to enable effective larval control in urban Africa. Methods A simple community-based mapping procedure that requires no electronic devices in the field was developed to facilitate routine larval surveillance in Dar es Salaam, Tanzania. The mapping procedure included (1 community-based development of sketch maps and (2 verification of sketch maps through technical teams using laminated aerial photographs in the field which were later digitized and analysed using Geographical Information Systems (GIS. Results Three urban wards of Dar es Salaam were comprehensively mapped, covering an area of 16.8 km2. Over thirty percent of this area were not included in preliminary community-based sketch mapping, mostly because they were areas that do not appear on local government residential lists. The use of aerial photographs and basic GIS allowed rapid identification and inclusion of these key areas, as well as more equal distribution of the workload of malaria control field staff. Conclusion The procedure developed enables complete coverage of targeted areas with larval control through comprehensive spatial coverage with community-derived sketch maps. The procedure is practical, affordable, and requires minimal technical skills. This approach can be readily integrated into malaria vector control programmes, scaled up to towns and cities all over Tanzania and adapted to urban settings elsewhere in Africa.

  12. Safety and comparability of controlled human Plasmodium falciparum infection by mosquito bite in malaria-naive subjects at a new facility for sporozoite challenge.

    Directory of Open Access Journals (Sweden)

    Angela K Talley

    Full Text Available Controlled human malaria infection (CHMI studies which recapitulate mosquito-borne infection are a critical tool to identify protective vaccine and drug candidates for advancement to field trials. In partnership with the Walter Reed Army Institute of Research, the CHMI model was established at the Seattle Biomedical Research Institute's Malaria Clinical Trials Center (MCTC. Activities and reagents at both centers were aligned to ensure comparability and continued safety of the model. To demonstrate successful implementation, CHMI was performed in six healthy malaria-naïve volunteers.All volunteers received NF54 strain Plasmodium falciparum by the bite of five infected Anopheles stephensi mosquitoes under controlled conditions and were monitored for signs and symptoms of malaria and for parasitemia by peripheral blood smear. Subjects were treated upon diagnosis with chloroquine by directly observed therapy. Immunological (T cell and antibody and molecular diagnostic (real-time quantitative reverse transcriptase polymerase chain reaction [qRT-PCR] assessments were also performed.All six volunteers developed patent parasitemia and clinical malaria. No serious adverse events occurred during the study period or for six months post-infection. The mean prepatent period was 11.2 days (range 9-14 days, and geometric mean parasitemia upon diagnosis was 10.8 parasites/µL (range 2-69 by microscopy. qRT-PCR detected parasites an average of 3.7 days (range 2-4 days earlier than blood smears. All volunteers developed antibodies to the blood-stage antigen merozoite surface protein 1 (MSP-1, which persisted up to six months. Humoral and cellular responses to pre-erythrocytic antigens circumsporozoite protein (CSP and liver-stage antigen 1 (LSA-1 were limited.The CHMI model was safe, well tolerated and characterized by consistent prepatent periods, pre-symptomatic diagnosis in 3/6 subjects and adverse event profiles as reported at established centers. The MCTC

  13. Investigations on anopheline mosquitoes close to the nest sites of chimpanzees subject to malaria infection in Ugandan highlands.

    OpenAIRE

    Krief Sabrina; Levrero Florence; Krief Jean-Michel; Thanapongpichat Supinya; Imwong Mallika; Snounou Georges; Kasenene John M; Cibot Marie; Gantier Jean-Charles

    2012-01-01

    Abstract Background Malaria parasites (Plasmodium sp.), including new species, have recently been discovered as low grade mixed infections in three wild chimpanzees (Pan troglodytes schweinfurthii) sampled randomly in Kibale National Park, Uganda. This suggested a high prevalence of malaria infection in this community. The clinical course of malaria in chimpanzees and the species of the vectors that transmit their parasites are not known. The fact that these apes display a specific behaviour ...

  14. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds

    NARCIS (Netherlands)

    Verhulst, Niels O.; Weldegergis, Berhane T.; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this

  15. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes

    OpenAIRE

    Molina-Cruz, Alvaro; DeJong, Randall J.; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-01-01

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1...

  16. One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms.

    Science.gov (United States)

    Govindarajan, Marimuthu; Vijayan, Periasamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Benelli, Giovanni

    2016-09-01

    Currently, mosquito vector control is facing a number of key challenges, including the rapid development of resistance to synthetic pesticides and the recent spread of aggressive arbovirus outbreaks. The biosynthesis of silver nanoparticles (AgNPs) is currently considered an environmental friendly alternative to the employ of pyrethroids, carbamates and microbial agents (e.g. Bacillus thuringiensis var. israelensis), since AgNPs are easy to produce, effective and stable in the aquatic environment. However, their biophysical features showed wide variations according to the botanical agent using for the green synthesis, outlining the importance of screening local floral resources used as reducing and stabilizing agents. In this study, we focused on the biophysical properties and the mosquitocidal action of Quisqualis indica-fabricated AgNPs. AgNPs were characterized using spectroscopic (UV, FTIR, XRD) and microscopic (AFM, SEM, TEM and EDX) techniques. AFM, SEM and TEM confirmed the synthesis of poly-dispersed AgNPs with spherical shape and size ranging from 1 to 30nm. XRD shed light on the crystalline structure of these AgNPs. The acute toxicity of Quisqualis indica extract and AgNPs was evaluated against malaria, arbovirus, and filariasis vectors, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, as well as on three important non-target aquatic organisms. The Q. indica leaf extract showed moderate larvicidal effectiveness on Cx. quinquefasciatus (LC50=220.42), Ae. aegypti (LC50=203.63) and An. stephensi (LC50=185.98). Q. indica-fabricated AgNPs showed high toxicity against Cx. quinquefasciatus (LC50=14.63), Ae. aegypti (LC50=13.55) and An. stephensi (LC50=12.52), respectively. Notably, Q. indica-synthesized AgNPs were moderately toxic to non-target aquatic mosquito predators Anisops bouvieri (LC50=653.05μg/mL), Diplonychus indicus (LC50=860.94μg/mL) and Gambusia affinis (LC50=2183.16μg/mL), if compared to the targeted mosquitoes. Overall, the

  17. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito

    OpenAIRE

    Emilie Deletre; Thibaud Martin; Pascal Campagne; Denis Bourguet; Andy Cadin; Chantal Menut; Romain Bonafos; Fabrice Chandre

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mos...

  18. Repellent, Irritant and Toxic Effects of 20 Plant Extracts on Adults of the Malaria Vector Anopheles gambiae Mosquito

    OpenAIRE

    Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mos...

  19. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes

    OpenAIRE

    Maarten Eldering; Isabelle Morlais; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Wouter Graumans; Rianne Siebelink-Stoter; Martijn Vos; Luc Abate; Will Roeffen; Teun Bousema; Levashina, Elena A.; Sauerwein, Robert W.

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, w...

  20. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes.

    Science.gov (United States)

    Murugan, Kadarkarai; Panneerselvam, Chellasamy; Samidoss, Christina Mary; Madhiyazhagan, Pari; Suresh, Udaiyan; Roni, Mathath; Chandramohan, Balamurugan; Subramaniam, Jayapal; Dinesh, Devakumar; Rajaganesh, Rajapandian; Paulpandi, Manickam; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Pavela, Roman; Canale, Angelo; Benelli, Giovanni

    2016-06-01

    Malaria transmission is a serious emergence in urban and semiurban areas worldwide, becoming a major international public health concern. Malaria is transmitted through the bites of Anopheles mosquitoes. The extensive employ of synthetic pesticides leads to negative effects on human health and the environment. Recently, plant-synthesized nanoparticles have been proposed as highly effective mosquitocides. In this research, we synthesized silver nanoparticles (AgNP) using the Azadirachta indica seed kernel extract as reducing and stabilizing agent. AgNP were characterized by UV-vis spectrophotometry, SEM, EDX, XRD and FTIR spectroscopy. The A. indica seed kernel extract was toxic against Anopheles stephensi larvae and pupae, LC50 were 232.8ppm (larva I), 260.6ppm (II), 290.3ppm (III), 323.4ppm (IV), and 348.4ppm (pupa). AgNP LC50 were 3.9ppm (I), 4.9ppm (II), 5.6ppm (III), 6.5ppm (IV), and 8.2ppm (pupa). The antiplasmodial activity of A. indica seed kernel extract and AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of A. indica seed kernel extract were 63.18μg/ml (CQ-s) and 69.24μg/ml (CQ-r). A. indica seed kernel-synthesized AgNP achieved IC50, of 82.41μg/ml (CQ-s) and 86.12μg/ml (CQ-r). However, in vivo anti-plasmodial experiments conducted on Plasmodium berghei infecting albino mice showed moderate activity of the A. indica extract and AgNP. Overall, this study showed that the A. indica-mediated fabrication of AgNP is of interest for a wide array of purposes, ranging from IPM of mosquito vectors to the development of novel and cheap antimalarial drugs. PMID:27234530

  1. Pyrethroid resistance in mosquitoes

    Institute of Scientific and Technical Information of China (English)

    NANNAN LIU; QIANG XU; FANG ZHU; LEE ZHANG

    2006-01-01

    Repeated blood feedings throughout their life span have made mosquitoes ideal transmitters of a wide variety of disease agents. Vector control is a very important part of the current global strategy for the control of mosquito-associated diseases and insecticide application is the most important component in this effort. Pyrethroids, which account for 25% of the world insecticide market, are currently the most widely used insecticides for the indoor control of mosquitoes and are the only chemical recommended for the treatment of mosquito nets, the main tool for preventing malaria in Africa. However, mosquito-borne diseases are now resurgent, largely because of insecticide resistance that has developed in mosquito vectors and the anti-parasite drug resistance of parasites. This paper reviews our current knowledge of the molecular mechanisms governing metabolic detoxification and the development of target site insensitivity that leads to pyrethroid resistance in mosquitoes.

  2. Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Hoti, S L; Bhattacharyya, Atanu; Benelli, Giovanni

    2016-02-01

    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. Eco-friendly mosquitocides are a priority. In Ayurvedic medicine, Plectranthus species have been used to treat heart disease, convulsions, spasmodic pain and painful urination. In this research, we evaluated the acute toxicity of essential oil from Plectranthus barbatus and its major constituents, against larvae of the malaria vector Anopheles subpictus, the dengue vector Aedes albopictus and the Japanese encephalitis vector Culex tritaeniorhynchus. The chemical composition of P. barbatus essential oil was analyzed by gas chromatography-mass spectroscopy. Nineteen components were identified. Major constituents were eugenol (31.12%), α-pinene (19.38%) and β-caryophyllene (18.42%). Acute toxicity against early third-instar larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus was investigated. The essential oil had a significant toxic effect against larvae of An. subpictus, Ae. albopictus and Cx. tritaeniorhynchus, with 50% lethal concentration (LC50) values of 84.20, 87.25 and 94.34 μg/ml and 90% lethal concentration (LC90) values of 165.25, 170.56 and 179.58 μg/ml, respectively. Concerning major constituents, eugenol, α-pinene and β-caryophyllene appeared to be most effective against An. subpictus (LC50 = 25.45, 32.09 and 41.66 μg/ml, respectively), followed by Ae. albopictus (LC50 = 28.14, 34.09 and 44.77 μg/ml, respectively) and Cx. tritaeniorhynchus (LC50 = 30.80, 36.75 and 48.17 μg/ml, respectively). Overall, the chance to use metabolites from P. barbatus essential oil against mosquito vectors seems promising, since they are effective at low doses and could be an advantageous alternative to build newer and safer mosquito control tools. PMID:26518773

  3. Prevalence and distribution of pox-like lesions, avian malaria, and mosquito vectors in Kipahulu valley, Haleakala National Park, Hawai'i, USA

    Science.gov (United States)

    Aruch, Samuel; Atkinson, Carter T.; Savage, Amy F.; LaPointe, Dennis

    2007-01-01

    We determined prevalence and altitudinal distribution of introduced avian malarial infections (Plasmodium relictum) and pox-like lesions (Avipoxvirus) in forest birds from Kīpahulu Valley, Haleakalā National Park, on the island of Maui, and we identified primary larval habitat for the mosquito vector of this disease. This intensively managed wilderness area and scientific reserve is one of the most pristine areas of native forest remaining in the state of Hawai‘i, and it will become increasingly important as a site for restoration and recovery of endangered forest birds. Overall prevalence of malarial infections in the valley was 8% (11/133) in native species and 4% (4/101) in nonnative passerines; prevalence was lower than reported for comparable elevations and habitats elsewhere in the state. Infections occurred primarily in ‘Apapane (Himatione sanguinea) and Hawai‘i ‘Amakihi (Hemignathus virens) at elevations below 1,400 m. Pox-like lesions were detected in only two Hawai‘i ‘Amakihi (2%; 2/94) at elevations below 950 m. We did not detect malaria or pox in birds caught at 1,400 m in upper reaches of the valley. Adult mosquitoes (Culex quinquefasciatus) were captured at four sites at elevations of 640, 760, 915, and 975 m, respectively. Culex quinquefasciatus larvae were found only in rock holes along intermittent tributaries of the two largest streams in the valley, but not in standing surface water, pig wallows, ground pools, tree cavities, and tree fern cavities. Mosquito populations in the valley are low, and they are probably influenced by periods of high rainfall that flush stream systems.

  4. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation.

    Science.gov (United States)

    Proestos, Y; Christophides, G K; Ergüler, K; Tanarhte, M; Waldock, J; Lelieveld, J

    2015-04-01

    Climate change can influence the transmission of vector-borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian tiger mosquito (Aedes albopictus), which can transmit pathogens that cause chikungunya, dengue fever, yellow fever and various encephalitides. Using a general circulation model at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the twenty-first century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that approximately 2.4 billion individuals in a land area of nearly 20 million km(2) will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making. PMID:25688015

  5. Present and Future Projections of Habitat Suitability of the Asian Tiger Mosquito, a Vector of Viral Pathogens, from Global Climate Simulations.

    Science.gov (United States)

    Proestos, Y.; Christophides, G.; Erguler, K.; Tanarhte, M.; Waldock, J.; Lelieveld, J.

    2014-12-01

    Climate change can influence the transmission of vector borne diseases (VBDs) through altering the habitat suitability of insect vectors. Here we present global climate model simulations and evaluate the associated uncertainties in view of the main meteorological factors that may affect the distribution of the Asian Tiger mosquito (Aedes albopictus), which can transmit pathogens that cause Chikungunya, Dengue fever, yellow fever and various encephalitides. Using a general circulation model (GCM) at 50 km horizontal resolution to simulate mosquito survival variables including temperature, precipitation and relative humidity, we present both global and regional projections of the habitat suitability up to the middle of the 21st century. The model resolution of 50 km allows evaluation against previous projections for Europe and provides a basis for comparative analyses with other regions. Model uncertainties and performance are addressed in light of the recent CMIP5 ensemble climate model simulations for the RCP8.5 concentration pathway and using meteorological re-analysis data (ERA-Interim/ECMWF) for the recent past. Uncertainty ranges associated with the thresholds of meteorological variables that may affect the distribution of Ae. albopictus are diagnosed using fuzzy-logic methodology, notably to assess the influence of selected meteorological criteria and combinations of criteria that influence mosquito habitat suitability. From the climate projections for 2050, and adopting a habitat suitability index larger than 70%, we estimate that about 2.4 billion individuals in a land area of nearly 20 million square kilometres will potentially be exposed to Ae. albopictus. The synthesis of fuzzy-logic based on mosquito biology and climate change analysis provides new insights into the regional and global spreading of VBDs to support disease control and policy making.

  6. Multigene phylogenetics reveals temporal diversification of major African malaria vectors.

    Science.gov (United States)

    Kamali, Maryam; Marek, Paul E; Peery, Ashley; Antonio-Nkondjio, Christophe; Ndo, Cyrille; Tu, Zhijian; Simard, Frederic; Sharakhov, Igor V

    2014-01-01

    The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya). Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease. PMID:24705448

  7. Multigene phylogenetics reveals temporal diversification of major African malaria vectors.

    Directory of Open Access Journals (Sweden)

    Maryam Kamali

    Full Text Available The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya. Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease.

  8. An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns

    Directory of Open Access Journals (Sweden)

    Chaki Prosper P

    2012-05-01

    Full Text Available Abstract Background More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA surveys using either ITT-C or human landing catches (HLC, as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. Results Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR [95% Confidence Interval (CI] = 0.079 [0.051, 0.121], P Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P An. gambiae or Culex respectively. Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught and cost-effective (153US$ versus 187US$ per An. gambiae caught because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141. Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year, CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373. Discussion and conclusion CB trapping approaches could be improved with more sensitive traps

  9. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    Science.gov (United States)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  10. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.

    Science.gov (United States)

    Sparks, Jackson T; Dickens, Joseph C

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents. PMID:27108454

  11. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia.

    Science.gov (United States)

    Karunamoorthi, Kaliyaperumal; Mulelam, Adane; Wassie, Fentahun

    2008-08-01

    Laboratory study was carried out to evaluate the repellent efficiency of most commonly known four traditional insect/mosquito repellent plants Wogert [vernacular name (local native language, Amharic); Silene macroserene], Kebercho [vernacular name (local native language, Amharic); Echinops sp.], Tinjut [vernacular name (local native language, Amharic); Ostostegia integrifolia], and Woira[vernacular name (local native language, Amharic); Olea europaea] against Anopheles arabiensis under the laboratory conditions. One hundred (4-5 days old) female A. arabiensis were introduced into the both 'control' and 'test' repellent chamber through the hole on top. Traditional charcoal stoves were used for direct burning. The experiment was conducted by applying the smoke into the repellent "test" mosquito cage by direct burning of 25 gm of dried plant materials (leaves and roots) until plant materials completely burned. The number of mosquitoes driving away from the "test" and "control" cage was recorded for every 5 min. In the present investigation, the results clearly revealed that the roots of S. macroserene has potent repellent efficiency (93.61%) and was the most effective. The leaves of Echinops sp. (92.47%), leaves of O. integrifolia (90.10%) and O. europaea (79.78%) were also effective. Roots of S. macroserene exhibited the highest repellent efficiency by direct burning. The present study identified these four traditional indigenous insect/mosquito repellent plant materials are very promising and can be used as safer alternative to modern synthetic chemical repellents against mosquito vectors of disease. Since people have been using these plants for some medicinal purposes, no side effects have been found. PMID:18493796

  12. Ultrastructure of a microsporidium brachiola gambiae n.sp.parasitising a mosquito anopheles gamblae, a malaria vector

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Žižka, Zdeněk

    - (2003), s. 35-36. ISSN 1214-021X. [Conference on Cell Biology /5./. České Budějovice, 08.09.2003-10.09.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : anopheles gambiae * malaria * vector Subject RIV: EE - Microbiology, Virology

  13. Eradicating malaria.

    Science.gov (United States)

    Breman, Joel G

    2009-01-01

    The renewed interest in malaria research and control is based on the intolerable toll this disease takes on young children and pregnant women in Africa and other vulnerable populations; 150 to 300 children die each hour from malaria amounting to 1 to 2 million deaths yearly. Malaria-induced neurologic impairment, anemia, hypoglycemia, and low birth weight imperil normal development and survival. Resistance of Plasmodium falciparum to drugs and Anopheles mosquitoes to insecticides has stimulated discovery and development of artemisinin-based combination treatments (ACTs) and other drugs, long-lasting insecticide-treated bednets (with synthetic pyrethroids) and a search for non-toxic, long-lasting, affordable insecticides for indoor residual spraying (IRS). Malaria vaccine development and testing are progressing rapidly and a recombinant protein (RTS,S/AS02A) directed against the circumsporozoite protein is soon to be in Phase 3 trials. Support for malaria control, research, and advocacy through the Global Fund for HIV/AIDS, Tuberculosis and Malaria, the U.S. President's Malaria Initiative, the Bill & Melinda Gates Foundation, WHO and other organizations is resulting in decreasing morbidity and mortality in many malarious countries. Sustainability of effective programs through training and institution strengthening will be the key to malaria elimination coupled with improved surveillance and targeted research. PMID:19544698

  14. Reduction of Malaria Transmission to Anopheles Mosquitoes with a Six-Dose Regimen of Co-Artemether.

    OpenAIRE

    Sutherland, Colin J.; Rosalynn Ord; Sam Dunyo; Musa Jawara; Drakeley, Christopher J; Neal Alexander; Rosalind Coleman; Margaret Pinder; Gijs Walraven; Targett, Geoffrey A. T

    2005-01-01

    BACKGROUND: Resistance of malaria parasites to chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs. METHODS AND FI...

  15. Advances and challenges in malaria vaccine development

    OpenAIRE

    Wang, Ruobing; Smith, Joseph D.; Kappe, Stefan H.I.

    2010-01-01

    Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research...

  16. Bio-efficacy and operational feasibility of alphacypermethrin (Fendona impregnated mosquito nets to control rural malaria in northern India

    Directory of Open Access Journals (Sweden)

    M.A. Ansari & R.K. Razdan

    2003-03-01

    Full Text Available Bio-efficacy and operational feasibility of alphacypermethrin treated nets was evaluated in certainvillages of District Ghaziabad (U.P.. Results revealed that poly-filament nylon nets treated with alphacypermethrinsuspension concentrate (g/l formulation @ 25 mg/m2 has shown repellent action(26.5 ± 8.1, excito repellent action (93.7 ± 8.1 and killing action (100% against An. culicifacieslanded on treated nets. Significant reduction in indoor resting density of An. culicifacies in humandwellings was also observed in treated nets village (p < 0.05. Instant killing action of treated netsdid provide complete protection to inhabitants sleeping inside the net from An. culicifacies bites.The persistent use of nets by the inhabitants has also resulted significant reduction in malaria cases(p < 0.05. It was interesting to note that not even a single case of falciparum malaria was observedafter distribution of treated nets in spite of the fact that at no point of time cent per centcompliance of net usage was observed during the study period. Bio-assay tests revealed that treatednets can produce up to 70% mortality in An. culicifacies for about 22 weeks and as such onlyone treatment with insecticide is required in a year in seasonal transmission area to protect frommalaria. The study also revealed that treated nets can be stored at room temperature for about 10months without loosing their efficacy suggesting thereby that malaria outbreaks can be tackled bythe nets if adequate treated nets are stored in core problem districts. It was also revealed that An.culicifacies is a late night biter and as such treated nets can be used successfully against this species.

  17. Identification, characterisation, and function of adipokinetic hormones and receptor in the African malaria mosquito, "Anopheles Gambiae" (Diptera)

    OpenAIRE

    Kaufmann, Christian; Betschart, Bruno

    2007-01-01

    En utilisant la bioinformatique et la biologie moléculaire, nous avons pu identifier chez le principal vecteur africain de la malaria, le moustique, Anopheles gambiae deux hormones adipokinétiques (AKHs): l'octapeptide, Anoga-AKH-I (pQLTFTPAWa) et le décapeptide, Anoga-AKH-II, (pQVTFSRDWNAa). La fonction principale des AKHs est d’induire une hyperlipémie (effet d’adipokinétique), ainsi qu’une hypertrehalosémie et une hyperprolinémie. En tant que membres de la famille des AKH, les deux neurope...

  18. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae

    OpenAIRE

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2015-01-01

    Gene-drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years [AU please provide a real estimate, this seems vague]. We describe CRISPR-Cas9 endonuclease constructs that function as gene-drive systems in Anopheles gambiae, the main vector for malaria [AU:OK?]. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female sterility phenotype upon disruption, and insert...

  19. Can Wolbachia be used to control malaria?

    Directory of Open Access Journals (Sweden)

    Thomas Walker

    2011-08-01

    Full Text Available Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.

  20. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets.

    Science.gov (United States)

    Norris, Laura C; Main, Bradley J; Lee, Yoosook; Collier, Travis C; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2015-01-20

    Animal species adapt to changes in their environment, including man-made changes such as the introduction of insecticides, through selection for advantageous genes already present in populations or newly arisen through mutation. A possible alternative mechanism is the acquisition of adaptive genes from related species via a process known as adaptive introgression. Differing levels of insecticide resistance between two African malaria vectors, Anopheles coluzzii and Anopheles gambiae, have been attributed to assortative mating between the two species. In a previous study, we reported two bouts of hybridization observed in the town of Selinkenyi, Mali in 2002 and 2006. These hybridization events did not appear to be directly associated with insecticide-resistance genes. We demonstrate that during a brief breakdown in assortative mating in 2006, A. coluzzii inherited the entire A. gambiae-associated 2L divergence island, which includes a suite of insecticide-resistance alleles. In this case, introgression was coincident with the start of a major insecticide-treated bed net distribution campaign in Mali. This suggests that insecticide exposure altered the fitness landscape, favoring the survival of A. coluzzii/A. gambiae hybrids, and provided selection pressure that swept the 2L divergence island through A. coluzzii populations in Mali. We propose that the work described herein presents a unique description of the temporal dynamics of adaptive introgression in an animal species and represents a mechanism for the rapid evolution of insecticide resistance in this important vector of human malaria in Africa. PMID:25561525

  1. Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes.

    Science.gov (United States)

    Jaganathan, Anitha; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Madhiyazhagan, Pari; Dinesh, Devakumar; Vadivalagan, Chithravel; Aziz, Al Thabiani; Chandramohan, Balamurugan; Suresh, Udaiyan; Rajaganesh, Rajapandian; Subramaniam, Jayapal; Nicoletti, Marcello; Higuchi, Akon; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh; Benelli, Giovanni

    2016-06-01

    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC50 were 4.8ppm (I), 5.8ppm (II), 6.9ppm (III), 8.5ppm (IV), and 15.5ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC50 were 49.3μg/ml (CQ-s) and 55.5μg/ml (CQ-r), while chloroquine IC50 were 81.5μg/ml (CQ-s) and 86.5μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies. PMID:26873539

  2. Malaria and Tropical Travel

    Centers for Disease Control (CDC) Podcasts

    2008-05-15

    Malaria is a serious mosquito-borne disease that can lead to death. This podcast discusses malaria risk when traveling to tropical areas, as well as how to protect yourself and your family from malaria infection.  Created: 5/15/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/29/2008.

  3. Economic evaluation of an area-wide integrated pest management program to control the Asian tiger mosquito in New Jersey.

    Directory of Open Access Journals (Sweden)

    Donald S Shepard

    Full Text Available Aedes albopictus is the most invasive mosquito in the world, an important disease vector, and a biting nuisance that limits outdoor activities. Area-wide integrated pest management (AW-IPM is the recommended control strategy. We conducted an economic evaluation of the AW-IPM project in Mercer and Monmouth Counties, New Jersey with a controlled design (AW-IPM vs. control from 2009 through 2011. The study analyzed financial documents and staff time for AW-IPM and surveyed an average of 415 randomly chosen households in AW-IPM and control areas each fall from 2008 through 2011. Hours lost from yard and porch activities were calculated as differences between actual and potential hours of these activities in an average summer week if there had been no mosquito concerns. Net estimated benefits of AW-IPM were based on cross-over and difference-in-difference analyses. Reductions in hours lost were valued based on respondents' willingness to pay for a hypothetical extra hour free of mosquitoes spent on yard or porch activities and literature on valuation of a quality adjusted life year (QALY. The incremental cost of AW-IPM per adult was $41.18 per year. Number of hours lost due to mosquitoes in AW-IPM areas between the base year (2008 and the intervention years (2009-2011 declined by 3.30 hours per summer week in AW-IPM areas compared to control areas. Survey respondents valued this improvement at $27.37 per adult per summer week. Over the 13-week summer, an average adult resident gained 42.96 hours of yard and porch time, worth $355.82. The net benefit over the summer was $314.63. With an average of 0.0027 QALYs gained per adult per year, AW-IPM was cost effective at $15,300 per QALY gained. The benefit-cost ratio from hours gained was 8.64, indicating that each $1 spent on AW-IPM gave adults additional porch and yard time worth over $8.

  4. Mosquito species geographical distribution in Iraq 2009

    OpenAIRE

    Haidar A. Hantosh, Hameeda M. Hassan, Bushra Ahma & Ali Al-fatlawy

    2012-01-01

    Background & objectives: Mosquitoes transmit diseases to >700 million people annually. Malaria kills threemillion persons every year, including one child every 30 sec. Worldwide there are >3000 mosquito species.In Iraq, 37 species have been identified in different surveys over several decades. We conducted an entomologicalsurvey to determine the mosquito species and their distribution in Iraq in 2009.Methods: Between January 20 and December 31, 2009, mosquitoes in houses in 12 Iraqi...

  5. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Okumu Fredros O

    2013-01-01

    Full Text Available Abstract Background Indoor residual insecticide spraying (IRS and long-lasting insecticide treated nets (LLINs are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets with IRS (pirimiphos methyl, lambda cyhalothrin, DDT, in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used, but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used or even regressive (e.g. when DDT is used for the IRS. Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of

  6. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    Directory of Open Access Journals (Sweden)

    Gleb Artemov

    Full Text Available Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC and 3R chromosomes (32D attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  7. Sustained reduction in prevalence of lymphatic filariasis infection in spite of missed rounds of mass drug administration in an area under mosquito nets for malaria control

    Directory of Open Access Journals (Sweden)

    Shimada Masaaki

    2011-05-01

    Full Text Available Abstract Background The Global Programme to Eliminate Lymphatic Filariasis (GPELF was established by the World Health Organisation (WHO in 2000 with the goal of eliminating lymphatic filariasis (LF as a public health problem globally by 2020. Mass drug administration (MDA of antifilarial drugs is the principal strategy recommended for global elimination. Kenya launched a National Programme for Elimination of Lymphatic Filariasis (NPELF in Coast Region in 2002. During the same year a longitudinal research project to monitor trends of LF infection during MDA started in a highly endemic area in Malindi District. High coverage of insecticide treated nets (ITNs in the coastal region has been associated with dramatic decline in hospital admissions due to malaria; high usage of ITNs is also expected to have an impact on LF infection, also transmitted by mosquitoes. Results Four rounds of MDA with diethylcarbamazine citrate (DEC and albendazole were given to 8 study villages over an 8-year period. Although annual MDA was not administered for several years the overall prevalence of microfilariae declined significantly from 20.9% in 2002 to 0.9% in 2009. Similarly, the prevalence of filarial antigenaemia declined from 34.6% in 2002 to 10.8% in 2009. All the examined children born since the start of the programme were negative for filarial antigen in 2009. Conclusions Despite the fact that the study villages missed MDA in some of the years, significant reductions in infection prevalence and intensity were observed at each survey. More importantly, there were no rebounds in infection prevalence between treatment rounds. However, because of confounding variables such as insecticide-treated bed nets (ITNs, it is difficult to attribute the reduction to MDA alone as ITNs can lead to a significant reduction in exposure to filariasis vectors. The results indicate that national LF elimination programmes should be encouraged to continue provision of MDA albeit

  8. Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae.

    Science.gov (United States)

    Lee, Yoosook; Marsden, Clare D; Norris, Laura C; Collier, Travis C; Main, Bradley J; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2013-12-01

    The M and S forms of Anopheles gambiae have been the focus of intense study by malaria researchers and evolutionary biologists interested in ecological speciation. Divergence occurs at three discrete islands in genomes that are otherwise nearly identical. An "islands of speciation" model proposes that diverged regions contain genes that are maintained by selection in the face of gene flow. An alternative "incidental island" model maintains that gene flow between M and S is effectively zero and that divergence islands are unrelated to speciation. A "divergence island SNP" assay was used to explore the spatial and temporal distributions of hybrid genotypes. Results revealed that hybrid individuals occur at frequencies ranging between 5% and 97% in every population examined. A temporal analysis revealed that assortative mating is unstable and periodically breaks down, resulting in extensive hybridization. Results suggest that hybrids suffer a fitness disadvantage, but at least some hybrid genotypes are viable. Stable introgression of the 2L speciation island occurred at one site following a hybridization event. PMID:24248386

  9. Effects of diapause and cold acclimation on egg ultrastructure: new insights into the cold hardiness mechanisms of the Asian tiger mosquito Aedes (Stegomyia) albopictus.

    Science.gov (United States)

    Kreß, Aljoscha; Kuch, Ulrich; Oehlmann, Jörg; Müller, Ruth

    2016-06-01

    The Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae, SKUSE), is an important threat to public health due to its rapid spread and its potential as a vector. The eggs of Ae. albopictus are the most cold resistant life stage and thus, the cold hardiness of eggs is used to predict the future occurrence of the species in distribution models. However, the mechanism of cold hardiness has yet to be revealed. To address this question, we analyzed the layers of diapausing and cold acclimatized eggs of a temperate population of Ae. albopictus in a full factorial test design using transmission electron microscopy. We reviewed the hypotheses that a thickened wax layer or chorion is the cause of cold hardiness but found no evidence. As a result of the induced diapause, the thickness of the dark endochorion as a layer of high electron density and thus an assumed location for waxes was decreasing. We therefore hypothesized a qualitative alteration of the wax layer due to compaction. Cold acclimation was causing an increase in the thickness of the middle serosa cuticle indicating a detachment of serosa membrane from the endochorion as a potential adaptation strategy to isolate inoculating ice formations in the inter-membranous space. PMID:27232137

  10. A de novo transcriptome of the Malpighian tubules in non-blood-fed and blood-fed Asian tiger mosquitoes Aedes albopictus: insights into diuresis, detoxification, and blood meal processing

    Science.gov (United States)

    Esquivel, Carlos J.; Cassone, Bryan J.

    2016-01-01

    Background. In adult female mosquitoes, the renal (Malpighian) tubules play an important role in the post-prandial diuresis, which removes excess ions and water from the hemolymph of mosquitoes following a blood meal. After the post-prandial diuresis, the roles that Malpighian tubules play in the processing of blood meals are not well described. Methods. We used a combination of next-generation sequencing (paired-end RNA sequencing) and physiological/biochemical assays in adult female Asian tiger mosquitoes (Aedes albopictus) to generate molecular and functional insights into the Malpighian tubules and how they may contribute to blood meal processing (3–24 h after blood ingestion). Results/Discussion. Using RNA sequencing, we sequenced and assembled the first de novo transcriptome of Malpighian tubules from non-blood-fed (NBF) and blood-fed (BF) mosquitoes. We identified a total of 8,232 non-redundant transcripts. The Malpighian tubules of NBF mosquitoes were characterized by the expression of transcripts associated with active transepithelial fluid secretion/diuresis (e.g., ion transporters, water channels, V-type H+-ATPase subunits), xenobiotic detoxification (e.g., cytochrome P450 monoxygenases, glutathione S-transferases, ATP-binding cassette transporters), and purine metabolism (e.g., xanthine dehydrogenase). We also detected the expression of transcripts encoding sodium calcium exchangers, G protein coupled-receptors, and septate junctional proteins not previously described in mosquito Malpighian tubules. Within 24 h after a blood meal, transcripts associated with active transepithelial fluid secretion/diuresis exhibited a general downregulation, whereas those associated with xenobiotic detoxification and purine catabolism exhibited a general upregulation, suggesting a reinvestment of the Malpighian tubules’ molecular resources from diuresis to detoxification. Physiological and biochemical assays were conducted in mosquitoes and isolated Malpighian

  11. Concurrent malaria and dengue infection: a brief summary and comment

    OpenAIRE

    Wiwanitkit, Viroj

    2011-01-01

    There are several tropical mosquito borne infections. Malaria and dengue are the two common mosquito infections that are very important and cause high morbidity and mortality for many patients around the world. Concurrent malaria and dengue infection is an important condition that is seldom reported. In this specific article, the author hereby summarizes on the topic of concurrent malaria and dengue infection.

  12. Mosquito gut antiparasitic and antiviral immunity.

    Science.gov (United States)

    Saraiva, Raúl G; Kang, Seokyoung; Simões, Maria L; Angleró-Rodríguez, Yesseinia I; Dimopoulos, George

    2016-11-01

    Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response. PMID:26827888

  13. Transcriptome Profiling and Genetic Study Reveal Amplified Carboxylesterase Genes Implicated in Temephos Resistance, in the Asian Tiger Mosquito Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Linda Grigoraki

    2015-05-01

    Full Text Available The control of Aedes albopictus, a major vector for viral diseases, such as dengue fever and chikungunya, has been largely reliant on the use of the larvicide temephos for many decades. This insecticide remains a primary control tool for several countries and it is a potential reliable reserve, for emergency epidemics or new invasion cases, in regions such as Europe which have banned its use. Resistance to temephos has been detected in some regions, but the mechanism responsible for the trait has not been investigated.Temephos resistance was identified in an Aedes albopictus population isolated from Greece, and subsequently selected in the laboratory for a few generations. Biochemical assays suggested the association of elevated carboxylesterases (CCE, but not target site resistance (altered AChE, with this phenotype. Illumina transcriptomic analysis revealed the up-regulation of three transcripts encoding CCE genes in the temephos resistant strain. CCEae3a and CCEae6a showed the most striking up-regulation (27- and 12-folds respectively, compared to the reference susceptible strain; these genes have been previously shown to be involved in temephos resistance also in Ae. aegypti. Gene amplification was associated with elevated transcription levels of both CCEae6a and CCEae3a genes. Genetic crosses confirmed the genetic link between CCEae6a and CCEae3a amplification and temephos resistance, by demonstrating a strong association between survival to temephos exposure and gene copy numbers in the F2 generation. Other transcripts, encoding cytochrome P450s, UDP-glycosyltransferases (UGTs, cuticle and lipid biosynthesis proteins, were upregulated in resistant mosquitoes, indicating that the co-evolution of multiple mechanisms might contribute to resistance.The identification of specific genes associated with insecticide resistance in Ae. albopictus for the first time is an important pre-requirement for insecticide resistance management. The genomic

  14. Mosquito, adult feeding on the skin (image)

    Science.gov (United States)

    There are many different species of mosquito, which can carry some of the world's most common and significant infectious diseases, including West Nile, Malaria, yellow fever, viral encephalitis, and ...

  15. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Tene Fossog Billy

    2013-01-01

    Full Text Available Abstract Background Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. Results Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form, and in slope (steeper for the S form and shallower for the M form. These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting

  16. Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally-driven changes in mosquito vector populations, and the mandate for sustainable control strategies

    OpenAIRE

    da Silva-Nunes, Mônica; Moreno, Marta; Jan E Conn; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M.; Ferreira, Marcelo U.

    2011-01-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite P. vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is place...

  17. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Science.gov (United States)

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (puseful to ensure their role in malaria transmission. PMID:27010649

  18. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut

    DEFF Research Database (Denmark)

    Ghosh, Anil K; Coppens, Isabelle; Gårdsvoll, Henrik;

    2011-01-01

    Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibo...

  19. EFFECTS OF MOSQUITO REPELLENTS ON PULMONARY FUNCTIONS

    OpenAIRE

    Venkatesh,; Puneeth

    2014-01-01

    Mosquito bite transmits diseases like Malaria, Filaria, Dengue etc. and usage of repellents is very common and has been in use for a long time. The smoke contains Polyaromatic Hydrocarbons, Aldehydes and Ketones. Review of literature has shown ill effects of this smoke. Hence we intended to study the effect of mosquito repellents on lung functions. This study would be important to create awareness regarding usage of mosquito repellent and to adapt to non-harmful methods of...

  20. Application of mosquito repellent coils and associated self-reported health issues in Ghana

    OpenAIRE

    Hogarh, Jonathan N.; Antwi-Agyei, Philip; Obiri-Danso, Kwasi

    2016-01-01

    Background The use of mosquito coils has gained widespread patronage in malaria-endemic countries, even though it is not a recommended preventive measure for avoiding mosquitoes. Mosquito coils contain insecticides, which are expected to vaporize slowly once the coil is lit, to provide protection against the mosquito. The mosquito coil base material contains a variety of compounds capable of burning slowly to gradually release the insecticide. The mosquito coil smoke, however, is potentially ...

  1. Malaria in Highlands of Ecuador since 1900

    OpenAIRE

    Lauren L. Pinault; Hunter, Fiona F.

    2012-01-01

    A recent epidemic of malaria in the highlands of Bolivia and establishment of multiple Anopheles species mosquitoes in the highlands of Ecuador highlights the reemergence of malaria in the Andes Mountains in South America. Because malaria was endemic to many highland valleys at the beginning of the 20th century, this review outlines the 20th century history of malaria in the highlands of Ecuador, and focuses on its incidence (e.g., geographic distribution) and elimination from the northern hi...

  2. Exploring environmental factors concerning mosquito-borne diseases in Western Europe

    NARCIS (Netherlands)

    Venema, Anne

    2011-01-01

    SUMMARY Worldwide mosquitoes are transmitting a wide variety of infections to humans. Not only tropical regions, but also Western Europe has a history of malaria. Nowadays malaria has disappeared from the latter region but new infections may be introduce

  3. Paratransgenesis: a promising new strategy for mosquito vector control

    OpenAIRE

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-01-01

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal g...

  4. The role of mosquito behaviour on parasite transmission

    OpenAIRE

    Ma, Brian Oh-Bong

    2010-01-01

    I use a combination of theory and experiments to explore the role of various aspects of mosquito behaviour on the ability of mosquitoes to transmit parasites. Special focus is given to the mosquito Anopheles gambiae s.s., the principal vector for Plasmodium falciparum, a parasite that causes human malaria. Female mosquitoes require host blood for egg production, but also use sugar from nectar sources; however, the extent of sugar use is poorly understood. Sugar can be used to fuel somatic mai...

  5. Source Reduction Behavior as an Independent Measurement of the Impact of a Public Health Education Campaign in an Integrated Vector Management Program for the Asian Tiger Mosquito

    Directory of Open Access Journals (Sweden)

    Daniel Strickman

    2011-05-01

    Full Text Available The goal of this study was to evaluate the effectiveness of a public health educational campaign to reduce backyard mosquito-larval habitats. Three communities each, within two New Jersey counties, were randomly selected to receive: (1 both education and mosquito control, (2 education only, and (3 no education or mosquito control. Four separate educational events included a 5-day elementary school curriculum in the spring, and three door to door distributions of educational brochures. Before and after each educational event, the numbers of mosquito-larval container habitats were counted in 50 randomly selected homes per study area. Container surveys allowed us to measure source reduction behavior. Although we saw reductions in container habitats in sites receiving education, they were not significantly different from the control. Our results suggest that traditional passive means of public education, which were often considered the gold standard for mosquito control programs, are not sufficient to motivate residents to reduce backyard mosquito-larval habitats.

  6. Field efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0 against pyrethroid-resistant malaria vectors: a multi centre study in Western and Central Africa

    Directory of Open Access Journals (Sweden)

    Pigeon Olivier

    2010-04-01

    Full Text Available Abstract Background Due to the spread of pyrethroid-resistance in malaria vectors in Africa, new strategies and tools are urgently needed to better control malaria transmission. The aim of this study was to evaluate the performances of a new mosaic long-lasting insecticidal net (LLIN, i.e. PermaNet® 3.0, against wild pyrethroid-resistant Anopheles gambiae s.l. in West and Central Africa. Methods A multi centre experimental hut trial was conducted in Malanville (Benin, Vallée du Kou (Burkina Faso and Pitoa (Cameroon to investigate the exophily, blood feeding inhibition and mortality induced by PermaNet® 3.0 (i.e. a mosaic net containing piperonyl butoxide and deltamethrin on the roof comparatively to the WHO recommended PermaNet® 2.0 (unwashed and washed 20-times and a conventionally deltamethrin-treated net (CTN. Results The personal protection and insecticidal activity of PermaNet 3.0 and PermaNet® 2.0 were excellent (>80% in the "pyrethroid-tolerant" area of Malanville. In the pyrethroid-resistance areas of Pitoa (metabolic resistance and Vallée du Kou (presence of the L1014F kdr mutation, PermaNet® 3.0 showed equal or better performances than PermaNet® 2.0. It should be noted however that the deltamethrin content on PermaNet® 3.0 was up to twice higher than that of PermaNet® 2.0. Significant reduction of efficacy of both LLIN was noted after 20 washes although PermaNet® 3.0 still fulfilled the WHO requirement for LLIN. Conclusion The use of combination nets for malaria control offers promising prospects. However, further investigations are needed to demonstrate the benefits of using PermaNet® 3.0 for the control of pyrethroid resistant mosquito populations in Africa.

  7. Concurrent malaria and dengue infection:a brief summary and comment

    Institute of Scientific and Technical Information of China (English)

    Viroj Wiwanitkit

    2011-01-01

    There are several tropical mosquito borne infections. Malaria and dengue are the two common mosquito infections that are very important and cause high morbidity and mortality for many patients around the world. Concurrent malaria and dengue infection is an important condition that is seldom reported. In this specific article, the author hereby summarizes on the topic of concurrent malaria and dengue infection.

  8. Molecular characterisation and chromosomal mapping of transcripts having tissue-specific expression in the malaria mosquito Anopheles gambiae: possible involvement in visual or olfactory processes.

    Science.gov (United States)

    Ricci, Irene; Santolamazza, Federica; Costantini, Carlo; Favia, Guido

    2002-01-01

    We have compared the transcriptional activity of heads, antennae + palps, and carcasses in the mosquito Anopheles gambiae by means of differential display PCR (DD-PCR). Three transcripts specifically or preferentially expressed in the heads and in the antennae + palps have been selected. All are very similar to genes related to visual and olfactory mechanisms of several different organisms. They have been named Ag arrestin, Ag rLDL, and Ag dynamin. The potential of the DD-PCR technique in identifying genes involved in mosquito behaviour and the usefulness of the molecular characterisation of these transcripts are discussed. PMID:11822731

  9. Assessment of Pregnancy Status, Malaria Knowledge and Malaria Fever Morbidity among Women of Reproductive Ages in Nigeria.

    Directory of Open Access Journals (Sweden)

    Abayomi Samuel Oyekale

    2014-09-01

    Full Text Available Malaria is one the major health problem in Nigeria. During pregnancy, it poses serious threat to the survival of both unborn foetus and the mothers. This study determined the effect of adequate malaria knowledge and pregnancy status of women on use of mosquito nets and reported malaria fever morbidity.The data were collected during the Malaria Indicator Survey (MIS from 4632 women. Data analyses were carried out with descriptive statistics and Seemingly Unrelated Bivariate Probit regression.Results show that 13.19% of the women were pregnant, of which about one-third slept under mosquito nets. Also, 25.26% reported malaria associated fever in the previous two weeks to the time of interview, while 78.28% correctly answered that mosquitoes are responsible for malaria. Knowledge on malaria prevention was low with 55.70% and 14.93% indicating sleeping under mosquito nets and ITN, respectively. Probability of sleeping under mosquito nets significantly increased with knowing that sleeping under mosquito nets and ITN could prevent malaria while it decreased with having fever, age, urban residence and knowing that use of mosquito spray and coil can prevent malaria. The probability of having fever increased significantly with household size, being pregnant and age at first birth but decreased with age, knowing that sleeping under ITN, cutting grasses and closing door/windows would prevent malaria.Use of mosquito nets among the women was low. Also, efforts to enhance their knowledge on malaria prevention and ensuring adequate access to mosquito nets especially for pregnant women would curtail the impact of malaria.

  10. Malaria ecology along the Thailand–Myanmar border

    OpenAIRE

    Parker, DM; Carrara, VI; Pukrittayakamee, S.; McGready, R.; Nosten, FH

    2015-01-01

    © 2015 Parker et al. Background: Malaria in Southeast Asia frequently clusters along international borders. For example, while most of Thailand is malaria free, the border region shared with Myanmar continues to have endemic malaria. This spatial pattern is the result of complex interactions between landscape, humans, mosquito vectors, and malaria parasites. An understanding of these complex ecological and socio-cultural interactions is important for designing and implementing malaria elimina...

  11. A review of concurrent infections of malaria and dengue in Asia

    Institute of Scientific and Technical Information of China (English)

    Aruchana AP Selvaretnam; Priyadarshi Soumyaranjan Sahu; Madhusmita Sahu; Stephen Ambu

    2016-01-01

    Concurrent infections of malaria and dengue are when both of these mosquito-borne diseases occur simultaneously in an individual. In this review, reported cases with these co-infections in Asia are discussed. The focus is on the overlapping clinical presentations and the difficulties encountered in differential diagnosis. Also, cases reported in some special conditions, viz., pregnancy, foetal infections, and co-infections with one or more other infectious agents are highlighted. Due to similar clinical presentations of malaria and dengue, these co-infections may give rise to an incorrect diagnosis. Moreover, the treatment regimens for these co-infections are not the same as those for mono-infections. Hence, a delay in implementing the appropriate treatment regimen for these concurrent infections due to poor diagnosis can be fatal. The present review is intended to increase awareness about the clinical significance and the importance of these co-infections among clinicians, public health workers and health authorities in the Asian region. Though malaria-dengue concurrent infections are seldom reported from the Asian region, it is probably increasing particularly in the countries known to be endemic for both of the above diseases. A compulsory reporting of the incidences of malaria-dengue concurrent infections is recommended.

  12. Early warnings of the potential for malaria transmission in rural Africa using the hydrology, entomology and malaria transmission simulator (HYDREMATS)

    OpenAIRE

    Eltahir Elfatih AB; Yamana Teresa K

    2010-01-01

    Abstract Background Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. Methods HYDREMATS is used to make predictions of mosquito populations and vectorial capaci...

  13. Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays

    NARCIS (Netherlands)

    Smallegange, R.C.; Bukovinszkine Kiss, G.; Otieno, B.; Mbadi, P.A.; Takken, W.; Mukabana, W.R.; Loon, van J.J.A.

    2012-01-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the most important vector of human malaria in sub-Saharan Africa, affecting the lives of millions of people. Existing tools such as insecticide-treated nets and indoor-residual sprays are not only effective, but also have limitations as a

  14. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi.

    Science.gov (United States)

    Carballar-Lejarazú, R; Brennock, P; James, A A

    2016-08-01

    DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes. PMID:27110891

  15. Anopheline and culicine mosquitoes are not repelled by surfaces treated with the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    NARCIS (Netherlands)

    Mnyone, L.L.; Koenraadt, C.J.M.; Lyimo, I.N.; Mpingwa, M.W.; Takken, W.; Russell, T.L.

    2010-01-01

    Background - Entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana, are promising bio-pesticides for application against adult malaria mosquito vectors. An understanding of the behavioural responses of mosquitoes towards these fungi is necessary to guide development of fungi beyond t

  16. The microsporidian parasite Vavraia culicis as a potential late life–acting control agent of malaria

    OpenAIRE

    Lorenz, Lena M; Koella, Jacob C

    2011-01-01

    Microsporidian parasites are being considered as alternatives to conventional insecticides for malaria control. They should reduce malaria transmission by shortening the lifespan of female mosquitoes and thus killing them before they transmit malaria. As the parasite replicates throughout the mosquito's life, it should have little detrimental effects on young mosquitoes, thus putting less selection pressure on the hosts to evolve resistance. Here, we examined these expectations for the micros...

  17. The Relationship and Malaria Distribution Map in Ambon City, Indonesia 2014.

    OpenAIRE

    Arsunan

    2015-01-01

    Malaria is still a problem of Indonesian people especially in the region of east Indonesian, province of Maluku, Ambon city which is still classified Malaria high endemic area. The study aims to investigate the relationship between physical conditions of houses, the breeding of mosquitoes, the habit of going out at night, the use of insecticide mosquito nets, and the use of mosquito repellent and the occurrence of malaria. The research was a cross sectional study where the population consiste...

  18. Agent-based modeling of malaria vectors: the importance of spatial simulation

    OpenAIRE

    Bomblies, Arne

    2014-01-01

    Background The modeling of malaria vector mosquito populations yields great insight into drivers of malaria transmission at the village scale. Simulation of individual mosquitoes as “agents” in a distributed, dynamic model domain may be greatly beneficial for simulation of spatial relationships of vectors and hosts. Methods In this study, an agent-based model is used to simulate the life cycle and movement of individual malaria vector mosquitoes in a Niger Sahel village, with individual simul...

  19. Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection

    OpenAIRE

    Romans Patricia A; Kern Marcia K; Hillenmeyer Maureen E; Lobo Neil F; Dana Ali N; Collins Frank H

    2006-01-01

    Abstract Background Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the bloo...

  20. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae

    OpenAIRE

    Stone Chris M; Jackson Bryan T; Foster Woodbridge A

    2012-01-01

    Abstract Background The purpose of this study was to determine whether the sugar-or-blood meal choice of Anopheles gambiae females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female An. gambiae is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources. Methods Females and ...

  1. Use of integrated malaria management reduces malaria in Kenya.

    Directory of Open Access Journals (Sweden)

    Bernard A Okech

    Full Text Available BACKGROUND: During an entomological survey in preparation for malaria control interventions in Mwea division, the number of malaria cases at the Kimbimbi sub-district hospital was in a steady decline. The underlying factors for this reduction were unknown and needed to be identified before any malaria intervention tools were deployed in the area. We therefore set out to investigate the potential factors that could have contributed to the decline of malaria cases in the hospital by analyzing the malaria control knowledge, attitudes and practices (KAP that the residents in Mwea applied in an integrated fashion, also known as integrated malaria management (IMM. METHODS: Integrated Malaria Management was assessed among community members of Mwea division, central Kenya using KAP survey. The KAP study evaluated community members' malaria disease management practices at the home and hospitals, personal protection measures used at the household level and malaria transmission prevention methods relating to vector control. Concurrently, we also passively examined the prevalence of malaria parasite infection via outpatient admission records at the major referral hospital in the area. In addition we studied the mosquito vector population dynamics, the malaria sporozoite infection status and entomological inoculation rates (EIR over an 8 month period in 6 villages to determine the risk of malaria transmission in the entire division. RESULTS: A total of 389 households in Mwea division were interviewed in the KAP study while 90 houses were surveyed in the entomological study. Ninety eight percent of the households knew about malaria disease while approximately 70% of households knew its symptoms and methods to manage it. Ninety seven percent of the interviewed households went to a health center for malaria diagnosis and treatment. Similarly a higher proportion (81% used anti-malarial medicines bought from local pharmacies. Almost 90% of households reported

  2. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control are...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know their...

  3. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    Full Text Available During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC and Balipara primary health centre (BPHC areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05 and An. vagus in BPHC (χ2 = 25.3; p = 0.0, and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004. Minimum infection rate (MIR of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  4. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    Science.gov (United States)

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (pp = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  5. Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    OpenAIRE

    Tikar, S. N.; M J Mendki; Sharma, A K; D. Sukumaran; Veer, Vijay; Prakash, Shri; Parashar, B. D.

    2011-01-01

    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the...

  6. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    OpenAIRE

    Ageep, T.B.; Cox, J; M.M. Hassan; Knols, B.G.J.; Benedict, M.Q.; Malcolm, C. A.; Babiker, A.; Sayed, El, B.B.

    2009-01-01

    Background - Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were carrie...

  7. The genetics of green thorax, a new larval colour mutant, non-linked with ruby-eye locus in the malaria mosquito, Anopheles stephensi Liston

    OpenAIRE

    Sanil, D.; N. J. Shetty

    2009-01-01

    Background & objectives: Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishmen...

  8. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    OpenAIRE

    Malcolm Colin A; Benedict Mark Q; Knols Bart GJ; Hassan M'oawia M; Cox Jonathan; Ageep Tellal B; Babiker Ahmed; El Sayed Badria B

    2009-01-01

    Abstract Background Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were...

  9. Coadaptation and malaria control

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Tosta

    2007-06-01

    Full Text Available Malaria emerges from a disequilibrium of the system 'human-plasmodium-mosquito' (HPM. If the equilibrium is maintained, malaria does not ensue and the result is asymptomatic plasmodium infection. The relationships among the components of the system involve coadaptive linkages that lead to equilibrium. A vast body of evidence supports this assumption, including the strategies involved in the relationships between plasmodium and human and mosquito immune systems, and the emergence of resistance of plasmodia to antimalarial drugs and of mosquitoes to insecticides. Coadaptive strategies for malaria control are based on the following principles: (1 the system HPM is composed of three highly complex and dynamic components, whose interplay involves coadaptive linkages that tend to maintain the equilibrium of the system; (2 human and mosquito immune systems play a central role in the coadaptive interplay with plasmodium, and hence, in the mainten-ance of the system's equilibrium; the under- or overfunction of human immune system may result in malaria and influence its severity; (3 coadaptation depends on genetic and epigenetic phenomena occurring at the interfaces of the components of the system, and may involve exchange of infectrons (genes or gene fragments between the partners; (4 plasmodia and mosquitoes have been submitted to selective pressures, leading to adaptation, for an extremely long while and are, therefore, endowed with the capacity to circumvent both natural (immunity and artificial (drugs, insecticides, vaccines measures aiming at destroying them; (5 since malaria represents disequilibrium of the system HPM, its control should aim at maintaining or restoring this equilibrium; (6 the disequilibrium of integrated systems involves the disequilibrium of their components, therefore the maintenance or restoration of the system's equilibrium depend on the adoption of integrated and coordinated measures acting on all components, that means

  10. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    2007-01-24

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.  Created: 1/24/2007 by Emerging Infectious Diseases.   Date Released: 3/13/2007.

  11. Plasmodium falciparum Malaria, Southern Algeria, 2007

    OpenAIRE

    Boubidi, Saïd C.; Gassen, Ibrahim; Khechache, Yacine; Lamali, Karima; Tchicha, Boualem; Brengues, Cécile; Menegon, Michela; Severini, Carlo; Fontenille, Didier; Harrat, Zoubir

    2010-01-01

    An outbreak of Plasmodium falciparum malaria occurred in Tinzaouatine in southern Algeria in 2007. The likely vector, Anopheles gambiae mosquitoes, had not been detected in Algeria. Genes for resistance to chloroquine were detected in the parasite. The outbreak shows the potential for an increase in malaria vectors in Algeria.

  12. Immunoinformatics of Placental Malaria Vaccine Development

    DEFF Research Database (Denmark)

    Jessen, Leon Eyrich

    Malaria is an infectious disease caused by a protozoan parasite of the genus Plasmodium, which is transferred by female Anopheles mosquitos. WHO estimates that in 2012 there were 207 million cases of malaria, of which 627,000 were fatal. People living in malaria-endemic areas, gradually acquire...... immunity with multiple infections. Placental malaria (PM) is caused by P. falciparum sequestering in the placenta of pregnant women due to the presence of novel receptors in the placenta. An estimated 200,000 infants die a year as a result of PM. In 2004 the specific protein responsible for the...... and development in the field of placental malaria vaccine development....

  13. Malaria Research

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area Malaria Research NIAID Role in Malaria Research Basic Biology Prevention ... Labs​ Malaria Research Program Services for Researchers Featured Research Ancient Immune Mechanism Identified That Controls Malaria in ...

  14. Modelling releases of sterile mosquitoes with different strategies.

    Science.gov (United States)

    Li, Jia; Yuan, Zhiling

    2015-01-01

    To prevent the transmissions of malaria, dengue fever, or other mosquito-borne diseases, one effective weapon is the sterile insect technique in which sterile mosquitoes are released to reduce or eradicate the wild mosquito population. To study the impact of the sterile insect technique on disease transmission, we formulate discrete-time mathematical models, based on difference equations, for the interactive dynamics of the wild and sterile mosquitoes, incorporating different strategies in releasing sterile mosquitoes. We investigate the model dynamics and compare the impact of the different release strategies. Numerical examples are given to demonstrate rich dynamical features of the models. PMID:25377433

  15. Molecular functional characterization of appetence maturation and its nutrient-dependent control in the African malaria mosquito “Anopheles gambiae”

    OpenAIRE

    Arsic, Dany; Guerin, Patrick

    2008-01-01

    Le moustique Anopheles gambiae (anophèle) est le principal vecteur du paludisme (malaria) en Afrique sub-saharienne. Les repas sanguins fréquents pris par les femelles adultes sur des êtres humains multiplient les occasions de transmission des parasites sanguins du genre Plasmodium responsables du paludisme. Une meilleure compréhension de la régulation des comportements de recherche d’hôte entrepris par les moustiques femelles, ainsi que de leurs comportements alimentaires et de leur reproduc...

  16. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae

    OpenAIRE

    Smith, Ryan C.; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-01-01

    The innate immune response is a major determinant of malaria parasite success in its mosquito host. Previous experiments have implicated LPS-induced TNFα transcription factor (LITAF)-like 3 (LL3) as an integral component of the mosquito immune response to the malaria parasite. This study reports that LL3 influences oocyst survival and demonstrates its role in mosquito blood cell (hemocyte) differentiation in response to parasite infection. Integrating previous data, we provide evidence that h...

  17. A New Role of the Mosquito Complement-like Cascade in Male Fertility in Anopheles gambiae

    OpenAIRE

    Pompon, Julien; Levashina, Elena A.

    2015-01-01

    Thioester-containing protein 1 (TEP1) is a key immune factor that determines mosquito resistance to a wide range of pathogens, including malaria parasites. Here we report a new allele-specific function of TEP1 in male fertility. We demonstrate that during spermatogenesis TEP1 binds to and removes damaged cells through the same complement-like cascade that kills malaria parasites in the mosquito midgut. Further, higher fertility rates are mediated by an allele that renders the mosquito suscept...

  18. Insect Repellents: Modulators of mosquito odorant receptor activity

    Science.gov (United States)

    Mosquitoes vector numerous pathogens that cause diseases including malaria, yellow fever, dengue fever and chikungunya. DEET, IR3535, Picaridin and 2-undecanone are insect repellents that are used to prevent interactions between humans and a broad array of disease vectors including mosquitoes. While...

  19. STUDY OF CHRONIC TREATMENT OF MOSQUITO REPELENT LIQUID INHILATION ON BIOCHEMICAL CONSTITUENTS OF RAT

    Directory of Open Access Journals (Sweden)

    Kamble V. S.

    2012-12-01

    Full Text Available Allethrin is a synthetic anologue of the natural pyrethrum insecticides obtained from the flowers heads of the plant Chrysanthenium cinerariafollium. In most repellents synthetic pyrethroids are used to combat mosquito nuisance and malaria. Present investigation showed that inhalation of mosquito repellent by rat caused selective damage to lung and liver. Kidney was not severely affected by inhalation of mosquito repellent.

  20. STUDY OF CHRONIC TREATMENT OF MOSQUITO REPELENT LIQUID INHILATION ON BIOCHEMICAL CONSTITUENTS OF RAT

    OpenAIRE

    Kamble V. S.

    2012-01-01

    Allethrin is a synthetic anologue of the natural pyrethrum insecticides obtained from the flowers heads of the plant Chrysanthenium cinerariafollium. In most repellents synthetic pyrethroids are used to combat mosquito nuisance and malaria. Present investigation showed that inhalation of mosquito repellent by rat caused selective damage to lung and liver. Kidney was not severely affected by inhalation of mosquito repellent.

  1. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection

    NARCIS (Netherlands)

    Churcher, T.S.; Bousema, Jan Teun; Walker, M.; Drakeley, C.; Schneider, P.; Ouedraogo, A.L.; Basanez, M.G.

    2013-01-01

    Transmission reduction is a key component of global efforts to control and eliminate malaria; yet, it is unclear how the density of transmission stages (gametocytes) influences infection (proportion of mosquitoes infected). Human to mosquito transmission was assessed using 171 direct mosquito feedin

  2. NO BUG: biobased mosquitoes repellent personal protective equipment (PPE)

    OpenAIRE

    Ciera, Lucy Wanjiru; Nierstrasz, Vincent; Van Langenhove, Lieva

    2012-01-01

    In tropical regions (South America, Asia and Africa) diseases like malaria and dengue cause many deaths. These diseases are transmitted through mosquitoes bites (Anopheles sp. and Aedes aegypti respectively). The current practice to protect against transmission of these diseases is by use of mosquito repellents. Common mosquito repellents used today are synthetic in nature and are suspected or have been proved to be harmful to the user and environment (e.g. DEET, DDT, dimethylphylphthalate, p...

  3. Advances in methods for colour marking of mosquitoes

    OpenAIRE

    2013-01-01

    Background Different techniques are available for colour marking insects and each technique may be suitable for different insect species. Mosquitoes can be marked to determine population size, distribution and flight distance or distinguish closely related species. In this study, two methods of colour marking mosquitoes were described in detail and the impact of both methods on the survival and host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto was investigated. Me...

  4. Preliminary evaluation of mosquito larvicidal efficacy of plant extracts

    OpenAIRE

    N.G. Das, D. Goswami & B. Rabha

    2007-01-01

    Mosquitoes are the most important single group ofinsects in terms of public health importance, whichtransmit a number of diseases, such as malaria, filariasis,dengue, Japanese encephalitis, etc. causing millionsof deaths every year. Repeated use of syntheticinsecticides for mosquito control has disrupted naturalbiological control systems and led to resurgencesin mosquito populations. It has also resulted in thedevelopment of resistance1, undesirable effects onnon-target organisms and fostered...

  5. Evaluating the toxicity of oil of lemon eucalyptus, Corymbia citriodora (Hook.), against larvae of the Asian tiger mosquito and non-target fish and larval amphibians

    OpenAIRE

    Escartin, Santi; Mariani, Simone

    2014-01-01

    Hemos probado la toxicidad del aceite del eucalipto limón (OLE) contra las larvas de mosquito tigre Aedes (Stegomya) albopictus (Skuse, 1895) (Diptera: Culicidae) y contra vertebrados acuáticos no objetivo, el pez Gambusia affinis (Baird and Girard, 1853) y el renacuajo de la rana Pelophylax perezi (López-Seodane, 1885). La mezcla acuosa de OLE fue efectiva como larvicida y letal para gambúsias y renacuajos. La mezcla acuosa expuesta durante una semana al aire libre no tu...

  6. Use of circumsporozoite protein enzyme-linked immunosorbent assay compared with microscopic examination of salivary glands for calculation of malaria infectivity rates in mosquitoes (Diptera: Culicidae) from Cameroon.

    Science.gov (United States)

    Fontenille, D; Meunier, J Y; Nkondjio, C A; Tchuinkam, T

    2001-05-01

    A survey in Cameroon compared the usefulness of the circumsporozoite protein enzyme-linked immunosorbent assay (CSP ELISA) to dissection and microscopic examination of anopheline salivary glands for measuring infectivity rates in anopheline mosquitoes. The salivary glands of 375 females, belonging to four species were examined for sporozoites. After microscopic examination, the glands as well as all the remaining heads and thoraces were tested by ELISA. The sensitivity of ELISA was 100% (18/18), confidence interval (CI) (78.1-100) and the specificity was 99.7% (357/358), CI (98.2 100). The Kappa value, agreement between examination of the glands and salivary gland ELISA, was 0.97. The head thorax CSP ELISA overestimated the true salivary gland infection rate by 12.0%. The results obtained in Central Africa in a village with perennial transmission highly justified the use of the ELISA for measuring the entomological inoculation rate. PMID:11372973

  7. Impact of intermittent screening and treatment for malaria among school children in Kenya: a cluster randomised trial.

    OpenAIRE

    Halliday, Katherine E.; George Okello; Turner, Elizabeth L.; Kiambo Njagi; Carlos Mcharo; Juddy Kengo; Elizabeth Allen; Dubeck, Margaret M; Matthew C H Jukes; Brooker, Simon J.

    2014-01-01

    Editors' Summary Background Every year, more than 200 million cases of malaria occur worldwide and more than 600,000 people, mostly children living in sub-Saharan Africa, die from this mosquito-borne parasitic infection. Malaria can be prevented by controlling the night-biting mosquitoes that transmit Plasmodium parasites and by sleeping under insecticide-treated nets to avoid mosquito bites. Infection with malaria parasites causes recurring flu-like symptoms and needs to be treated promptly ...

  8. Mosquito species geographical distribution in Iraq 2009

    Directory of Open Access Journals (Sweden)

    Haidar A. Hantosh, Hameeda M. Hassan, Bushra Ahma & Ali Al-fatlawy

    2012-03-01

    Full Text Available Background & objectives: Mosquitoes transmit diseases to >700 million people annually. Malaria kills threemillion persons every year, including one child every 30 sec. Worldwide there are >3000 mosquito species.In Iraq, 37 species have been identified in different surveys over several decades. We conducted an entomologicalsurvey to determine the mosquito species and their distribution in Iraq in 2009.Methods: Between January 20 and December 31, 2009, mosquitoes in houses in 12 Iraqi provinces werecollected and speciated. Five to 10 villages were selected randomly in each province and in each village 10houses were selected randomly to collect mosquitoes and the density of mosquitoes per room was calculated.Kits for entomological investigation were used and the collected mosquitoes were sent to the vector bornedisease section laboratory for classification using the Naval Medical Research Unit 3 standard classificationkey.Results: A total of 29,156 mosquitoes were collected, representing two genera: Anopheles (n=13,268, or 46%of the total collected and Culex (n=15,888, or 54% of the total collected. Four Anopheles (An. pulcherrimus,An. stephensi, An. superpictus, and An. sacharovi and one Culex (Cx. pipiens species were identified. Anophelespulcherrimus was found in 11 provinces, An. stephensi in 7, An. superpictus in 2 and An. sacharovi in oneprovince, while Cx. pipiens was found in all the 12 provinces. Two peaks of mosquito density were found: thefirst from April–June and the other from September–October.Interpretation & conclusion: There are clear differences in Anopheles mosquito species geographical distributionand density among Iraqi provinces, while Cx. pipiens mosquitoes are distributed all over Iraq. All mosquitogenera show clear seasonal density variation. The study highlights that the manual mosquito classification isnot enough to identify all the species of mosquitoes in Iraq

  9. Health Effects of Long-Term Exposure to Insecticide-Treated Mosquito Nets in the Control of Malaria in Endemic Regions, Revised

    Directory of Open Access Journals (Sweden)

    Ebere C. Anyanwu

    2006-01-01

    Full Text Available The endemicity of malaria in tropical areas of the world persists, especially in countries south of Saharan Africa. The efforts and concerns invested by the World Health Organization and other health agencies to eradicate malaria are commendable. However, in spite of all these efforts, the loss in economic and human resources continues. In a previous report, the long-term health effects of insecticide-impregnated bednet (IIBN use were highlighted with the expectation of attracting serious thoughts and further research on the issue. This present paper is an update on that expectation. Results from a comprehensive literature search show that not much work has been done on the effects of long-term exposure to IIBNs in combating malarial infection. The efficacy of IIBNs is not in question. What is in question is whether long-term exposure to IIBNs have any health effects. The aims and outcomes of the research found in the literature on the subject to date seem to support only the efficacy of the temporal use of plain bednets, but not the use of IIBNs, and do not tell much about the long-term effects of IIBN exposure. All pesticides are toxic by nature and present risks of adverse effects. While there is agreement that IIBNs can be effective in reducing malarial morbidity and mortality under field trials, a number of factors relating to their long-term-exposure health effects have yet to be determined. Further reliable research projects are recommended urgently. However, some of the anticipated behavioral effects caused by insecticidal use will be avoided by the use of untreated nets instead.

  10. Mosquito surveillance revealed lagged effects of mosquito abundance on mosquito-borne disease transmission: a retrospective study in Zhejiang, China.

    Science.gov (United States)

    Guo, Song; Ling, Feng; Hou, Juan; Wang, Jinna; Fu, Guiming; Gong, Zhenyu

    2014-01-01

    Mosquito-borne diseases (MBDs) are still threats to public health in Zhejiang. In this study, the associations between the time-lagged mosquito capture data and MBDs incidence over five years were used to examine the potential effects of mosquito abundance on patterns of MBDs epidemiology in Zhejiang during 2008-2012. Light traps were used to collect adult mosquitoes at 11 cities. Correlation tests with and without time lag were performed to investigate the correlations between MBDs incidence rates and mosquito abundance by month. Selected MBDs consisted of Japanese encephalitis (JE), dengue fever (DF) and malaria. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach, and the most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). We identified five mosquito species and the constituent ratio of Culex pipiens pallens, Culex tritaeniorhynchus, Aedes albopictus, Anopheles sinensis and Armigeres subalbatus was 66.73%, 21.47%, 6.72%, 2.83% and 2.25%, respectively. The correlation analysis without and with time lag showed that Culex mosquito abundance at a lag of 0 or 1 month was positively correlated with JE incidence during 2008-2012, Ae. albopictus abundance at a lag of 1 month was positively correlated with DF incidence in 2009, and An. sinensis abundance at a lag of 0-2 months was positively correlated with malaria incidence during 2008-2010. The Poisson regression analysis showed each 0.1 rise of monthly mosquito abundance corresponded to a positive increase of MBD cases for the period of 2008-2012. The rise of mosquito abundance with a lag of 0-2 months increased the risk of human MBDs infection in Zhejiang. Our study provides evidence that mosquito monitoring could be a useful early warning tool for the occurrence and transmission of MBDs. PMID:25393834

  11. Mosquito surveillance revealed lagged effects of mosquito abundance on mosquito-borne disease transmission: a retrospective study in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Song Guo

    Full Text Available Mosquito-borne diseases (MBDs are still threats to public health in Zhejiang. In this study, the associations between the time-lagged mosquito capture data and MBDs incidence over five years were used to examine the potential effects of mosquito abundance on patterns of MBDs epidemiology in Zhejiang during 2008-2012. Light traps were used to collect adult mosquitoes at 11 cities. Correlation tests with and without time lag were performed to investigate the correlations between MBDs incidence rates and mosquito abundance by month. Selected MBDs consisted of Japanese encephalitis (JE, dengue fever (DF and malaria. A Poisson regression analysis was performed by using a generalized estimating equations (GEE approach, and the most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu. We identified five mosquito species and the constituent ratio of Culex pipiens pallens, Culex tritaeniorhynchus, Aedes albopictus, Anopheles sinensis and Armigeres subalbatus was 66.73%, 21.47%, 6.72%, 2.83% and 2.25%, respectively. The correlation analysis without and with time lag showed that Culex mosquito abundance at a lag of 0 or 1 month was positively correlated with JE incidence during 2008-2012, Ae. albopictus abundance at a lag of 1 month was positively correlated with DF incidence in 2009, and An. sinensis abundance at a lag of 0-2 months was positively correlated with malaria incidence during 2008-2010. The Poisson regression analysis showed each 0.1 rise of monthly mosquito abundance corresponded to a positive increase of MBD cases for the period of 2008-2012. The rise of mosquito abundance with a lag of 0-2 months increased the risk of human MBDs infection in Zhejiang. Our study provides evidence that mosquito monitoring could be a useful early warning tool for the occurrence and transmission of MBDs.

  12. Application of Genomics to Field Investigations of Malaria by the International Centers for Excellence in Malaria Research

    OpenAIRE

    Volkman, Sarah K.; Ndiaye, Daouda; Diakite, Mahamadou; Koita, Ousmane; Nwakanma, Davis; Daniels, Rachel; Park, Danny; Neafsey, Dan; Muskavitch, Marc; Krogstad, Don; Sabeti, Pardis; Hartl, Dan; Wirth, Dyann

    2011-01-01

    Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and P. vivax, have helped advance our understanding of malaria...

  13. Entomopathogenic fungi for mosquito control: A review

    Directory of Open Access Journals (Sweden)

    Ernst-Jan Scholte

    2004-06-01

    Full Text Available Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis.

  14. Entomopathogenic fungi for mosquito control: a review.

    Science.gov (United States)

    Scholte, Ernst-Jan; Knols, Bart G J; Samson, Robert A; Takken, Willem

    2004-01-01

    Fungal diseases in insects are common and widespread and can decimate their populations in spectacular epizootics. Virtually all insect orders are susceptible to fungal diseases, including Dipterans. Fungal pathogens such as Lagenidium, Coelomomyces and Culicinomyces are known to affect mosquito populations, and have been studied extensively. There are, however, many other fungi that infect and kill mosquitoes at the larval and/or adult stage. The discovery, in 1977, of the selective mosquito-pathogenic bacterium Bacillus thuringiensis Berliner israelensis (Bti) curtailed widespread interest in the search for other suitable biological control agents. In recent years interest in mosquito-killing fungi is reviving, mainly due to continuous and increasing levels of insecticide resistance and increasing global risk of mosquito-borne diseases. This review presents an update of published data on mosquito-pathogenic fungi and mosquito-pathogen interactions, covering 13 different fungal genera. Notwithstanding the potential of many fungi as mosquito control agents, only a handful have been commercialized and are marketed for use in abatement programs. We argue that entomopathogenic fungi, both new and existing ones with renewed/improved efficacies may contribute to an expansion of the limited arsenal of effective mosquito control tools, and that they may contribute in a significant and sustainable manner to the control of vector-borne diseases such as malaria, dengue and filariasis. PMID:15861235

  15. Averting a malaria disaster: will insecticide resistance derail malaria control?

    Science.gov (United States)

    Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas

    2016-04-23

    World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe. PMID:26880124

  16. The function and three-dimensional structure of a thromboxane A2/cysteinyl leukotriene-binding protein from the saliva of a mosquito vector of the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Patricia H Alvarenga

    Full Text Available The highly expressed D7 protein family of mosquito saliva has previously been shown to act as an anti-inflammatory mediator by binding host biogenic amines and cysteinyl leukotrienes (CysLTs. In this study we demonstrate that AnSt-D7L1, a two-domain member of this group from Anopheles stephensi, retains the CysLT binding function seen in the homolog AeD7 from Aedes aegypti but has lost the ability to bind biogenic amines. Unlike any previously characterized members of the D7 family, AnSt-D7L1 has acquired the important function of binding thromboxane A(2 (TXA(2 and its analogs with high affinity. When administered to tissue preparations, AnSt-D7L1 abrogated Leukotriene C(4 (LTC(4-induced contraction of guinea pig ileum and contraction of rat aorta by the TXA(2 analog U46619. The protein also inhibited platelet aggregation induced by both collagen and U46619 when administered to stirred platelets. The crystal structure of AnSt-D7L1 contains two OBP-like domains and has a structure similar to AeD7. In AnSt-D7L1, the binding pocket of the C-terminal domain has been rearranged relative to AeD7, making the protein unable to bind biogenic amines. Structures of the ligand complexes show that CysLTs and TXA(2 analogs both bind in the same hydrophobic pocket of the N-terminal domain. The TXA(2 analog U46619 is stabilized by hydrogen bonding interactions of the ω-5 hydroxyl group with the phenolic hydroxyl group of Tyr 52. LTC(4 and occupies a very similar position to LTE(4 in the previously determined structure of its complex with AeD7. As yet, it is not known what, if any, new function has been acquired by the rearranged C-terminal domain. This article presents, to our knowledge, the first structural characterization of a protein from mosquito saliva that inhibits collagen mediated platelet activation.

  17. Modelling the requirements and benefits of mosquito control interventions in the presence of mosquito dispersal

    OpenAIRE

    Lutambi Angelina M; Chitnis Nakul; Smith Tom; Penny Melissa

    2012-01-01

    Vector control methods are widely used as a means to control malaria, however, the role of spatial arrangement when deploying these interventions is not well known. Understanding the effects of spatial distribution and clustering of interventions on mosquito populations can provide a guide to strategically deploying interventions to effectively maximize benefits. A recently developed discrete-space continuous-time mathematical model of mosquito population dynamics and dispersal was extended t...

  18. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission.

    Directory of Open Access Journals (Sweden)

    Ary Faraji

    2014-08-01

    Full Text Available Aedes albopictus is an invasive species which continues expanding its geographic range and involvement in mosquito-borne diseases such as chikungunya and dengue. Host selection patterns by invasive mosquitoes are critically important because they increase endemic disease transmission and drive outbreaks of exotic pathogens. Traditionally, Ae. albopictus has been characterized as an opportunistic feeder, primarily feeding on mammalian hosts but occasionally acquiring blood from avian sources as well. However, limited information is available on their feeding patterns in temperate regions of their expanded range. Because of the increasing expansion and abundance of Ae. albopictus and the escalating diagnoses of exotic pathogens in travelers returning from endemic areas, we investigated the host feeding patterns of this species in newly invaded areas to further shed light on its role in disease ecology and assess the public health threat of an exotic arbovirus outbreak.We identified the vertebrate source of 165 blood meals in Ae. albopictus collected between 2008 and 2011 from urban and suburban areas in northeastern USA. We used a network of Biogents Sentinel traps, which enhance Ae. albopictus capture counts, to conduct our collections of blooded mosquitoes. We also analyzed blooded Culex mosquitoes collected alongside Ae. albopictus in order to examine the composition of the community of blood sources. We found no evidence of bias since as expected Culex blood meals were predominantly from birds (n = 149, 93.7% with only a small proportion feeding on mammals (n = 10, 6.3%. In contrast, Aedes albopictus fed exclusively on mammalian hosts with over 90% of their blood meals derived from humans (n = 96, 58.2% and domesticated pets (n = 38, 23.0% cats; and n = 24, 14.6% dogs. Aedes albopictus fed from humans significantly more often in suburban than in urban areas (χ(2, p = 0.004 and cat-derived blood meals were greater in urban habitats (χ(2, p

  19. Cerebral malaria.

    Science.gov (United States)

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  20. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    Directory of Open Access Journals (Sweden)

    Malcolm Colin A

    2009-06-01

    Full Text Available Abstract Background Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM that may include the sterile insect technique (SIT. To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations. Methods Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS, Geographical Information Systems (GIS and the Global Positioning System (GPS was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height. Results Of a total of 3,349 aquatic habitats sampled, 321 (9.6% contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals – often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not

  1. The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Benelli, Giovanni

    2015-03-01

    Aedes albopictus is the most invasive mosquito worldwide and works as a vector for many important pathogens. Control tools rely to chemical treatments against larvae, indoor residual spraying and insecticide-treated bed nets. Recently, huge efforts have been carried out to propose new eco-friendly alternatives, such as evaluation of plant-borne compounds and sterile insect technique (SIT) programs. Success of SIT is dependent to the ability of sterile males to compete for mates with wild ones. Little is still known about mating behaviour of Aedes males. Most of the studies focus on comparisons of insemination ability in sterilised and wild males, while behavioural analyses of mating behaviour are lacking. Here, I quantified the courtship and mating behaviour of A. albopictus and evaluated how daylight hours affect male mating behaviour and success. A. albopictus males chased females facing them frontally, from behind, or from a lateral side. If the female allowed genital contact, copulation followed. Otherwise, females performed rejection kicks and/or flew away. Thirty-seven percent of males obtained a successful copulation (i.e. sperm transfer occurs), lasting 63 ± 4 s. Unsuccessful copulation (20 % of males) had shorter duration (18 ± 1 s). Successful copulations followed longer male courtships (39 ± 3 s), over courtships preceding unsuccessful copulation (20 ± 2 s) or male's rejection (22 ± 2 s). After copulation, the male rested 7 ± 0.4 s close to the female, then move off. In a semi-natural environment, male mating success was lower in early afternoon, over morning and late afternoon. However, little differences in courtship duration over daylight periods were found. This study adds knowledge to the reproductive behaviour of A. albopictus, which can be used to perform comparisons among courtship and mating ethograms from different mosquito species and strains, allowing monitoring and optimisation of mass rearing quality over time in SIT programs. PMID

  2. Mosquito repellency of novel Trifluoromethylphenyl amides

    Science.gov (United States)

    Human diseases caused by mosquito-transmitted pathogens include malaria, dengue and yellow fever and are responsible for several million human deaths every year, according to the World Health Organization (WHO). Our current research projects focus on the development of new insecticides and repellent...

  3. An Odorant Receptor from the Southern House Mosquito Culex pipiens quinquefasciatus Sensitive to Oviposition Attractants

    OpenAIRE

    Pelletier, Julien; Hughes, David T.; Luetje, Charles W.; Leal, Walter S.

    2010-01-01

    Background Insect odorant receptors (ORs) are heteromers comprised of highly variable odorant-binding subunits associated with one conserved co-receptor. They are potential molecular targets for the development of novel mosquito attractants and repellents. ORs have been identified in the malaria mosquito, Anopheles gambiae, and in the yellow fever mosquito, Aedes aegypti. However, they are still unknown in the Southern house mosquito, Culex quinquefasciatus, which transmits pathogens that cau...

  4. Direct Microscopic Quantification of Dynamics of Plasmodium berghei Sporozoite Transmission from Mosquitoes to Mice▿

    OpenAIRE

    Jin, Yamei; Kebaier, Chahnaz; Vanderberg, Jerome

    2007-01-01

    The number of malaria sporozoites delivered to a host by mosquitoes is thought to have a significant influence on the subsequent course of the infection in the mammalian host. We did studies with Anopheles stephensi mosquitoes with salivary gland infections of Plasmodium berghei sporozoites expressing a red fluorescent protein. After individual mosquitoes fed on an ear pinna or the ventral abdomen of a mouse, fluorescence microscopy was used to count numbers of sporozoites. Mosquitoes allowed...

  5. The emerging of the fifth malaria parasite (Plasmodium knowlesi): a public health concern?

    Science.gov (United States)

    Sabbatani, Sergio; Fiorino, Sirio; Manfredi, Roberto

    2010-01-01

    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological

  6. The emerging of the fifth malaria parasite (Plasmodium knowlesi: a public health concern?

    Directory of Open Access Journals (Sweden)

    Sergio Sabbatani

    2010-06-01

    Full Text Available After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo, and in the Pahang region (peninsular Malaysia. The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi, is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and

  7. Molecular Perspectives on the Genetics of Mosquitoes

    International Nuclear Information System (INIS)

    Mosquitoes have been a focus of scientific study since the turn of the century, when they were first linked with human diseases. This review concentrates on the three most intensely studied genera, Anopheles, Culex, and Aedes. These genera include the principal vectors of three major groups of human pathogens: malaria parasites of the genus Plasmodium, filarial worms of the genera Wuchereria and Brugia, and numerous arboviruses. Anophelines are the only mosquitoes known to transmit human malaria parasites, a group of organisms that may be responsible for more morbidity and mortality worldwide than any other human pathogen. Anophelines also transmit filarial worms, as do Culex and Aedes species. Among the 14 or more different mosquito genera known to harbor arboviruses (Mattingly, 1973), the most important are Culex and Aedes, which include the principal vectors of yellow fever, dengue, and most encephalitis-causing arboviruses.

  8. Heterologous expression in transgenic mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Santhosh P K; Yu hua Deng; Weidong Gu; Xiaoguang Chen

    2010-01-01

    Arthropod-borne diseases such as malaria and dengue virus afflict billions of people worldwide imposing major economic and social burdens. Control of such pathogens is mainly performed by vector management and treatment of affected individuals with drugs. The failure of these conventional approaches due to emergence of insecticide-resistant insects and drug-resistant parasites demonstrate the need of novel and efficacious control strategies to combat these diseases. Genetic modification(GM) of mosquito vectors to impair their ability to be infected and transmit pathogens has emerged as a new strategy to reduce transmission of many vector-borne diseases and deliver public health gains. Several advances in developing transgenic mosquitoes unable to transmit pathogens have gained support, some of them attempt to manipulate the naturally occurring endogenous refractory mechanisms, while others initiate the identification of an exogenous foreign gene which disrupt the pathogen development in insect vectors. Heterologous expression of transgenes under a native or heterologous promoter is important for the screening and effecting of the transgenic mosquitoes. The effect of the transgene on mosquito fitness is a crucial parameter influencing the success of this transgenic approach. This review examines these two aspects and describes the basic research work that has been accomplished towards understanding the complex relation between the parasite and its vector and focuses on recent advances and perspectives towards construction of transgenic mosquitoes refractory to vector-borne disease transmission.

  9. Neuropsychiatric adverse events during prophylaxis against malaria by using mefloquine before traveling

    OpenAIRE

    Osama Al-Amer

    2015-01-01

    Malaria is one of the most common infectious diseases, resulting in the deaths of millions of children around the world. The disease causes approximately half a million to 2.5 million people to die annually. People can only get malaria by being bitten by an infective female Anopheles mosquito that transmits malaria from infected individuals. The increase in international travel and the spread of malaria around the world has resulted in an increased risk of malaria infection. Prophylactic drug...

  10. History of Aedes mosquitoes in Hawaii.

    Science.gov (United States)

    Winchester, Jonathan C; Kapan, Durrell D

    2013-06-01

    As a geographically isolated island chain with no native mosquitoes, Hawaii is a model for examining the mechanisms behind insect vector invasions and their subsequent interactions with each other and with human populations. The yellow fever mosquito, Aedes aegypti, and the Asian tiger mosquito, Ae. albopictus, have been responsible for epidemics of dengue in Hawaii. As one of the world's earliest locations to be invaded by both species, Hawaii's history is particularly relevant because both species are currently invading new areas worldwide and are implicated in outbreaks of emergent or reemergent pathogens such as dengue, chikungunya, and yellow fever. Here we analyze the historical records of mosquito introductions in order to understand the factors that have led to the current distribution of these 2 mosquitoes in the Hawaiian Islands. PMID:23923330

  11. Climate, environment and transmission of malaria.

    Science.gov (United States)

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political

  12. The genetics of green thorax, a new larval colour mutant, non-linked with ruby-eye locus in the malaria mosquito, Anopheles stephensi Liston

    Directory of Open Access Journals (Sweden)

    D. Sanil

    2009-06-01

    Full Text Available Background & objectives: Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishment of naturally occurring mutants, establishment of the genetic basis for the same and use of such mutants in the genetic transformation studies and other genetic control programme(s. This paper describes the isolation and genetic studies of a larval colour mutant, green thorax (gt, and linkage studies involving another autosomal recessive mutant ruby-eye (ru in An. stephensi. Methods: After the initial discovery, the mutant green thorax was crossed inter se and pure homozygous stock of the mutant was established. The stock of the mutant ruby-eye, which has been maintained as a pure stock in the laboratory. Crosses were made between the wild type and mutant, green thorax to determine the mode of inheritance of green thorax. For linkage studies, crosses were made between the mutant green thorax and another autosomal recessive mutant ruby-eye. The percentage cross-over was calculated for the genes linkage relationship for gt and gt ru. Results: Results of crosses between mutant and wild type showed that the inheritance of green thorax (gt in An. stephensi is monofactorial in nature. The gt allele is recessive to wild type and is autosomal. The linkage studies showed no linkage between ru and gt. Interpretation & conclusion: The mutant gt represents an excellent marker for An. stephensi as it is expressed in late III instar stage of larvae and is prominent in IV instar and pupal stages with complete penetrance and high viability. The said mutant could be easily

  13. The evolution of drug-resistant malaria

    OpenAIRE

    Plowe, Christopher V.

    2008-01-01

    Molecular epidemiological investigations have uncovered the patterns of emergence and global spread of Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine. Malaria parasites highly resistant to chloroquine and pyrimethamine spread from Asian origins to Africa, at great cost to human health and life. If artemisinin-resistant falciparum malaria follows the same pattern, renewed efforts to eliminate and eradicate malaria will be gravely threatened. This paper, adapted f...

  14. Malaria vector populations across ecological zones in Guinea Conakry and Mali, West Africa

    OpenAIRE

    Coulibaly, Boubacar; Kone, Raymond; Barry, Mamadou S.; Emerson, Becky; Coulibaly, Mamadou B.; Niare, Oumou; Beavogui, Abdoul H.; Traore, Sekou F; Vernick, Kenneth D.; Riehle, Michelle M.

    2016-01-01

    Background Malaria remains a pervasive public health problem in sub-Saharan West Africa. Here mosquito vector populations were explored across four sites in Mali and the Republic of Guinea (Guinea Conakry). The study samples the major ecological zones of malaria-endemic regions in West Africa within a relatively small distance. Methods Mosquito vectors were sampled from larval pools, adult indoor resting sites, and indoor and outdoor human-host seeking adults. Mosquitoes were collected at sit...

  15. Anopheles subpictus carry human malaria parasites in an urban area of Western India and may facilitate perennial malaria transmission

    OpenAIRE

    Kumar, Ashwani; Hosmani, Rajeshwari; Jadhav, Shivaji; de Sousa, Trelita; Mohanty, Ajeet; Naik, Milind; Shettigar, Adarsh; Kale, Satyajit; Valecha, Neena; Chery, Laura; Rathod, Pradipsinh K.

    2016-01-01

    Background India contributes 1.5–2 million annual confirmed cases of malaria. Since both parasites and vectors are evolving rapidly, updated information on parasite prevalence in mosquitoes is important for vector management and disease control. Possible new vector-parasite interactions in Goa, India were tested. Methods A total of 1036 CDC traps were placed at four malaria endemic foci in Goa, India from May 2013 to April 2015. These captured 23,782 mosquitoes, of which there were 1375 femal...

  16. ENVIRONMENTAL MANAGEMENT FOR MALARIA CONTROL

    Directory of Open Access Journals (Sweden)

    H. A. Rafatjah

    1976-09-01

    Full Text Available Environmental management for malaria control is defined as any planned physical activities that through transformation of land, water and vegetation will result in the prevention, reduction or elimination of malaria. In planning and implementing these activities, full consideration must be given to their long-term effects and benefits and to the preservation of the quality of environment and they need to be fully and closely coordinated with water, land and agricultural development projects. Environmental management activities for malaria control can be classified as source reduction, dealing mainly with physical alteration of the environment; environmental manipulation, introducing temporary environmental changes and the reduction, and prevention of man-vector contact by site selection, mosquito proofing of dwellings and personal protection. For anti-malaria programs to employ these activities they need to re-train the staff, re-orient the services and set up pilot operations for feasibility studies.

  17. Achieving high coverage of larval-stage mosquito surveillance: challenges for a community-based mosquito control programme in urban Dar es Salaam, Tanzania

    OpenAIRE

    Shoo Bryson; Govella Nicodem J; Chaki Prosper P; Hemed Abdullah; Tanner Marcel; Fillinger Ulrike; Killeen Gerry F

    2009-01-01

    Abstract Background Preventing malaria by controlling mosquitoes in their larval stages requires regular sensitive monitoring of vector populations and intervention coverage. The study assessed the effectiveness of operational, community-based larval habitat surveillance systems within the Urban Malaria Control Programme (UMCP) in urban Dar es Salaam, Tanzania. Methods Cross-sectional surveys were carried out to assess the ability of community-owned resource persons (CORPs) to detect mosquito...

  18. [Current malaria situation in Turkmenistan].

    Science.gov (United States)

    Amangel'diev, K A

    2001-01-01

    Malaria is one of the main health problems facing most developing countries having a hot climate. It is a problem in Turkmenistan. The country is situated in Central Asia, north of the Kopetdag mountains, between the Caspian Sea to the west and the Amu-Darya river to the east. Turkmenistan stretches for a distance of 1,100 km from west to east and 650 km from north to south. It borders Kazakhstan in the north, Uzbekistan in the east and north-east, Iran in the south, and Afghanistan in the south-east. Seven malaria vector species are found in Turkmenistan, the main ones being Anopheles superpictus, An. pulcherrimus, and An. martinius. The potentially endemic area consists of the floodplains of the Tejen and Murgab rivers, with a long chain of reservoirs built along them. In 1980 most cases of imported malaria were recorded in military personnel who had returned from service in Afghanistan. In the past years, only tertian (Plasmodium vivax) malaria has been recorded and there have been no death from malaria over that period. In the Serkhetabad (Gushgi) district there are currently 5 active foci of malaria infection, with a population of 22,000 people. In 1999, forty nine cases of P. vivax malaria were recorded in Turkmenistan. Of them, 36 cases, including 4 children under 14 years were diagnosed for the first time while 13 were relapses. There were 88 fewer cases than those in the previous year (by a factor of 2.8). There were 17 more cases of imported malaria than those in 1998 (by a factor of 1.7), most of which occurred in the foci of malaria infection (Serkhetabad, Tagtabazar, and Kerki districts), in the city of Ashkhabat and in Lebap, Dashkhovuz and Akhal Regions. The emergence of indigenous malaria in the border areas was due to the importation of the disease at intervals by infected mosquitoes flying in from neighbouring countries (e.g. Afghanistan), the lack of drugs to treat the first cases and the lack of alternative insecticides. Most patients suffer

  19. Mixture for Controlling Insecticide-Resistant Malaria Vectors

    OpenAIRE

    Pennetier, Cédric; Costantini, Carlo; Corbel, Vincent; Licciardi, Séverine; Dabiré, Roch K.; Lapied, Bruno; Chandre, Fabrice; Hougard, Jean-Marc

    2008-01-01

    The spread of resistance to pyrethroids in the major Afrotropical malaria vectors Anopheles gambiae s.s. necessitates the development of new strategies to control resistant mosquito populations. To test the efficacy of nets treated with repellent and insecticide against susceptible and insecticide-resistant An. gambiae mosquito populations, we impregnated mosquito bed nets with an insect repellent mixed with a low dose of organophosphorous insecticide and tested them in a rice-growing area ne...

  20. Protection against a malaria challenge by sporozoite inoculation.

    NARCIS (Netherlands)

    Roestenberg, M.; McCall, M.B.B.; Hopman, J.C.W.; Wiersma, J.; Luty, A.J.F.; Gemert, G.J.A. van; Vegte-Bolmer, M.G. van de; Schaijk, B.C.L. van; Teelen, K.A.E.M.; Arens, T.; Spaarman, L.; Mast, Q. de; Roeffen, W.F.G.; Snounou, G.; Renia, L.; Ven, A.J.A.M. van der; Hermsen, C.C.; Sauerwein, R.W.

    2009-01-01

    BACKGROUND: An effective vaccine for malaria is urgently needed. Naturally acquired immunity to malaria develops slowly, and induction of protection in humans can be achieved artificially by the inoculation of radiation-attenuated sporozoites by means of more than 1000 infective mosquito bites. METH

  1. EFFECTS OF MOSQUITO REPELLENTS ON PULMONARY FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Venkatesh

    2014-08-01

    Full Text Available Mosquito bite transmits diseases like Malaria, Filaria, Dengue etc. and usage of repellents is very common and has been in use for a long time. The smoke contains Polyaromatic Hydrocarbons, Aldehydes and Ketones. Review of literature has shown ill effects of this smoke. Hence we intended to study the effect of mosquito repellents on lung functions. This study would be important to create awareness regarding usage of mosquito repellent and to adapt to non-harmful methods of preventing mosquito bites. PFT parameters FVC, FEV1, FEV1/ FVC %, FEF 25-75 and PEFR were recorded in mosquito coil users, liquidator’s users and controls that used neither. It was found that FVC and FEV1 were significantly less in coil and liquidators users compared to controls (P < 0.05. Also it was found that in both coil users and liquidator users FVC, FEV1, FEF 25 -75 and PEFR and showed progressive decline with increased duration of usage (P < 0.05. Hence it was concluded that mosquito coils and liquidators can cause progressive decline in lung functions. Alternative methods to combat mosquito menace, like personal and environmental hygiene and non-chemical methods of protection are therefore recommended.

  2. Malaria in Suriname: a new era : impact of modified intervention strategies on Anopheles darlingi populations and malaria incidence

    NARCIS (Netherlands)

    Hiwat-van Laar, H.

    2011-01-01

    Malaria is an infectious disease caused by Plasmodiumblood parasites which live inside the human host and are spread by Anopheles mosquitoes.Every year an estimated 225 million new cases and near 800.000 malaria deaths are reported. Control of the disease is a formidable task involving all three liv

  3. Early warnings of the potential for malaria transmission in Rural Africa using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2010-12-01

    Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.

  4. Current scenario of malaria vaccine

    Directory of Open Access Journals (Sweden)

    Jarnail Singh Braich

    2012-04-01

    Full Text Available Malaria is one of the deadliest infectious diseases that affects millions of people worldwide including India. As an addition to chemoprophylaxis and other antimalarial interventions malaria vaccine is under extensive research since decades. The vaccine development is more difficult to predict than drug development and presents a unique challenge as already there has been no vaccine effective against a parasite. Effective malaria vaccine could help eliminate and eradicate malaria; there are currently 63 vaccine candidates, 41 in preclinical and clinical stages of development. Vaccines are being designed to target pre-erythrocytic stages, erythrocytic stage or the sexual stages of Plasmodium taken up by a feeding mosquito, or the multiple stages. Two vaccines in preclinical and clinical development target P. falciparum; and the most advanced candidate is the pre-erythrocytic vaccine RTS,S which is in phase-III clinical trials. It is likely that world's first malaria vaccine will be available by 2015 at the country level. More efficacious second generation malaria vaccines are on the way to development. Safety, efficacy, cost and provision of the vaccine to all communities are major concerns in malaria vaccine issue. [Int J Basic Clin Pharmacol 2012; 1(2.000: 60-66

  5. Why do we need alternative tools to control mosquito-borne diseases in Latin America?

    Directory of Open Access Journals (Sweden)

    Rafael Maciel-de-Freitas

    2012-09-01

    Full Text Available In this opinion paper, we discuss the potential and challenges of using the symbiont Wolbachia to block mosquito transmitted diseases such as dengue, malaria and chikungunya in Latin America.

  6. Malaria in India: Challenges and opportunities

    Indian Academy of Sciences (India)

    A P Dash; Neena Valecha; A R Anvikar; A Kumar

    2008-11-01

    India contributes about 70% of malaria in the South East Asian Region of WHO. Although annually India reports about two million cases and 1000 deaths attributable to malaria, there is an increasing trend in the proportion of Plasmodium falciparum as the agent. There exists heterogeneity and variability in the risk of malaria transmission between and within the states of the country as many ecotypes/paradigms of malaria have been recognized. The pattern of clinical presentation of severe malaria has also changed and while multi-organ failure is more frequently observed in falciparum malaria, there are reports of vivax malaria presenting with severe manifestations. The high burden populations are ethnic tribes living in the forested pockets of the states like Orissa, Jharkhand, Madhya Pradesh, Chhattisgarh and the North Eastern states which contribute bulk of morbidity and mortality due to malaria in the country. Drug resistance, insecticide resistance, lack of knowledge of actual disease burden along with new paradigms of malaria pose a challenge for malaria control in the country. Considering the existing gaps in reported and estimated morbidity and mortality, need for estimation of true burden of malaria has been stressed. Administrative, financial, technical and operational challenges faced by the national programme have been elucidated. Approaches and priorities that may be helpful in tackling serious issues confronting malaria programme have been outlined.

  7. NO BUG: biobased mosquitoes repellent textiles

    OpenAIRE

    Ciera, Lucy Wanjiru; Nierstrasz, Vincent; De Clerck, Karen; Van Langenhove, Lieva

    2011-01-01

    This research work is part of the FP7 No-Bug project (Novel release system and biobased utilities for insect repellent textiles). The main interest of the project is personal protective textiles against insects (mosquitoes) for application not only in tropical areas where vector borne diseases are a major threat to the public health but also in European countries where the presence of mosquitoes can be nuisance. Malaria and dengue fever are well known diseases that cause a lot of deaths in th...

  8. A Possible Mechanism for the Suppression of Plasmodium berghei Development in the Mosquito Anopheles gambiae by the Microsporidian Vavraia culicis

    OpenAIRE

    Bargielowski, Irka; Koella, Jacob C

    2009-01-01

    Background Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. Methodology We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gamb...

  9. Malaria infection does not affect the sensitivity of peripheral receptor neurons in Anopheles stephensi

    OpenAIRE

    Grant, Alan; Muskavitch, Marc; O’Connell, Robert J.

    2013-01-01

    Background: Mosquitoes transmit many important diseases including malaria, dengue and yellow fever. Disease transmission from one vertebrate host to another depends on repeated blood feedings by single mosquitoes. In order for the mosquito to acquire the blood that it needs to complete oogenesis, the insect must locate a suitable host. Olfactory cues (including carbon dioxide) released by the host and detected by the mosquito are the primary signals that vector insects use for host location. ...

  10. Perceptions and recommendations by scientists for a potential release of genetically modified mosquitoes in Nigeria

    OpenAIRE

    Okorie, Patricia N.; Marshall, John M; Akpa, Onoja M.; Ademowo, Olusegun G

    2014-01-01

    Background The use of genetically modified mosquitoes (GMMs) for the control of malaria and other mosquito-borne diseases has been proposed in malaria-endemic countries, such as Nigeria, which has the largest burden in Africa. Scientists are major stakeholders whose opinions and perceptions can adversely affect the success of the trials of GMMs if they are not involved early. Unfortunately, information on the awareness of Nigerians scientists and their overall perception of the GMMs is practi...

  11. Evaluating the usefulness of paratransgenesis for malaria control.

    Science.gov (United States)

    Kotnis, Bhushan; Kuri, Joy

    2016-07-01

    Malaria is a serious global health problem which is especially devastating to the developing world. Most malaria control programs use insecticides for controlling mosquito populations. Large scale usage of these insecticides exerts massive selection pressure on mosquitoes resulting in insecticide resistant mosquito breeds. Thus, developing alternative strategies are crucial for sustainable malaria control. Here, we explore the usefulness of an alternative strategy, paratransgenesis: the introduction of genetically engineered plasmodium killing bacteria inside the mosquito gut. The genetically modified bacterial culture is housed in cotton balls dipped in a sugar solution (sugar bait) and they enter a mosquito's midgut when it drinks from a sugar bait. We study scenarios where vectors and hosts mix homogeneously as well as heterogeneously and calculate the amount of baits required to prevent a malaria outbreak. Given the baits are attractive, we show that the basic reproductive number drops rapidly with the increase in bait density. Furthermore, we propose a targeted bait distribution strategy for minimizing the reproductive number for the heterogeneous case. Our results can prove to be useful for designing future experiments and field trials of alternative malaria control mechanisms and they also have implications on the development of malaria control programs. PMID:27140529

  12. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-09-10

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes that circulates in the insect's hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  13. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    OpenAIRE

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocyt...

  14. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2012-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  15. Is Vector Body Size the Key to Reduced Malaria Transmission in the Irrigated Region of Niono, Mali?

    OpenAIRE

    Nicholas C. Manoukis; TOURÉ, MAHAMOUDOU B.; Sissoko, Ibrahim; Doumbia, Seydou; Traoré, Sekou F.; Diuk-Wasser, Maria A.; Charles E. Taylor

    2006-01-01

    Malaria vectors can reach very high densities in villages near irrigated rice fields in Africa, leading to the expectation that malaria should be especially prevalent there. Surprisingly, this is not always the case. In Niono, Mali, villages from nonirrigated areas have higher malaria prevalence than those within the irrigated regions, which suffer from higher mosquito numbers. One hypothesis explaining this observation is that mosquitoes from irrigated fields with high densities are ineffici...

  16. Persistent transmission of malaria in Garo hills of Meghalaya bordering Bangladesh, north-east India

    OpenAIRE

    Sangma Barlind M; Dev Vas; Dash Aditya P

    2010-01-01

    Abstract Background Malaria is endemic in Garo hills of Meghalaya, and death cases are reported annually. Plasmodium falciparum is the major parasite, and is solely responsible for each malaria-attributable death case. Garo hills are categorized high-risk for drug-resistant malaria; however, there exists no data on malaria transmitting mosquitoes prevalent in the region. Included in this report are entomological observations with particular reference to vector biology characteristics for devi...

  17. Awareness, attitudes and prevention of malaria in the cities of Douala and Yaoundé (Cameroon)

    OpenAIRE

    Menze-Djantio Benjamin; Ndo Cyrille; Antonio-Nkondjio Christophe

    2011-01-01

    Abstract Background There is little information on the social perception of malaria and the use of prevention methods in Cameroon. This study was designed to assess knowledge, attitude and management of malaria in households living in the cities of Douala and Yaoundé. Results Over 82% of people interviewed associated malaria transmission to mosquito bites. Methods used for malaria prevention were: environmental sanitation 1645 (76.1%), use of bed nets 1491 (69%), insecticide spray/coils 265 (...

  18. Population dynamics and spatial structure of human-biting mosquitoes, inside and outside of houses, in the Chockwe irrigation scheme, southern Mozambique

    OpenAIRE

    Derek Charlwood, J.; Gracieta A. Macia; Maria Manhaca; Bruno de Sousa; Nelson Cuamba; Mauro Bragança

    2013-01-01

    Focal control of malaria vectors, a potentially cost-effective alternative to conventional control, requires a spatio-temporal understanding of the mosquitoes. Trapping of African malaria vectors has generally been limited to inside houses making distribution estimates dependent on the location of dwellings. The development of tent-traps to sample outdoor biting mosquitoes has enabled more independent estimates. Here we describe both temporal and spatial variation in mosquito movements in an ...

  19. [The recurring necessity of mosquito surveillance and research].

    Science.gov (United States)

    Kampen, Helge; Werner, Doreen

    2015-10-01

    Hematophagous arthropods and the diseases associated with them represent a growing threat to human and animal health in Europe. After the eradication of endemic malaria from Europe in the middle of the last century, there has been a resurgence of mosquitoes as significant vectors of disease agents under the influence of continuing globalisation, as exotic species and mosquito-borne pathogens are being introduced with increasing frequency. At present, southern Europe is particularly affected by disease outbreaks and cases, but invasive mosquito species, including efficient vectors, have also emerged in Germany. While there is considerable knowledge on the vector potential of many tropical and subtropical mosquito species, corresponding data on the indigenous mosquito species are scarce. Exceptions are the Anopheles species, which were already vectors of malaria parasites in historic Europe. It must be assumed, however, that many further indigenous species are able to transmit pathogens under certain conditions and will by all means gain vector competence under a scenario of climate warming. Thus, the permanent surveillance of mosquitoes and mosquito-borne disease agents is paramount for the purposes of conducting risk analyses and modelling, in addition to research work addressing the conditions of the spread of vectors and pathogens and of pathogen transmission. Only ample data can facilitate taking appropriate prophylactic action and designing control strategies. International health organizations have realised this and started to promote data collection on mosquitoes and mosquito-borne diseases in the EU. At a national levels, authorities are more reluctant, although, similar to other fields of health, it has been shown for mosquito-borne diseases that preventive measures are more cost-saving than disease case management and the coverage of follow-up costs. The present article is intended to illustrate the necessity of the re-intensification of mosquito

  20. Reconstructing the flight kinematics of swarming and mating behavior in wild mosquitoes

    Science.gov (United States)

    We describe a tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, ...

  1. Use of geographic information systems to depict and analyze mosquito population trends.

    Science.gov (United States)

    Mosquitoes transmit (vector) disease agents that cause malaria, yellow fever, dengue, West Nile fever, and encephalitis. Spread of these diseases is controlled by the management of mosquito population levels, changes in which are monitored in vector surveillance programs by the use of mechanical tr...

  2. Climate change and mosquito-borne disease.

    OpenAIRE

    Reiter, P.

    2001-01-01

    Global atmospheric temperatures are presently in a warming phase that began 250--300 years ago. Speculations on the potential impact of continued warming on human health often focus on mosquito-borne diseases. Elementary models suggest that higher global temperatures will enhance their transmission rates and extend their geographic ranges. However, the histories of three such diseases--malaria, yellow fever, and dengue--reveal that climate has rarely been the principal determinant of their pr...

  3. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    OpenAIRE

    Myriam Arévalo-Herrera; Yezid Solarte; Catherin Marin; Mariana Santos; Jenniffer Castellanos; John C Beier; Sócrates Herrera Valencia

    2011-01-01

    Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the...

  4. SIT for African malaria vectors: Epilogue

    Directory of Open Access Journals (Sweden)

    Townson Harold

    2009-11-01

    Full Text Available Abstract As a result of increased support and the diligent application of new and conventional anti-malaria tools, significant reductions in malaria transmission are being accomplished. Historical and current evolutionary responses of vectors and parasites to malaria interventions demonstrate that it is unwise to assume that a limited suite of tools will remain effective indefinitely, thus efforts to develop new interventions should continue. This collection of manuscripts surveys the prospects and technical challenges for applying a novel tool, the sterile insect technique (SIT, against mosquitoes that transmit malaria. The method has been very successful against many agricultural pest insects in area-wide programs, but demonstrations against malaria vectors have not been sufficient to determine its potential relative to current alternatives, much of which will hinge ultimately upon cost. These manuscripts provide an overview of current efforts to develop SIT and identify key research issues that remain.

  5. Treated Mosquito Nets Help Cut Malaria Rates

    Institute of Scientific and Technical Information of China (English)

    Alan; Mozes; 刘会包

    2001-01-01

    据统计,非洲每年有750,000人死于与疟疾有关的疾病。为了改变这种状况,有关人员携带经杀虫剂处理过的蚊帐到非洲去。由于交通不便,研究人员最大的困难是how to get the nets out to the most people.在非洲的研究人员还发现了一个难以理解的现象:…despite extreme poverty and the absence of adequate transportation and communication infrastructures in many African nations, commercial products such as soft drinks, beer and soap do manage to reach even the most remote parts of the continent.最终,研究人员的工作还是获得可喜的进展。

  6. Gametocytes infectiousness to mosquitoes: variable selection using random forests, and zero inflated models

    OpenAIRE

    Genuer, Robin; Morlais, Isabelle; Toussile, Wilson

    2011-01-01

    Malaria control strategies aiming at reducing disease transmission intensity may impact both oocyst intensity and infection prevalence in the mosquito vector. Thus far, mathematical models failed to identify a clear relationship between Plasmodium falciparum gametocytes and their infectiousness to mosquitoes. Natural isolates of gametocytes are genetically diverse and biologically complex. Infectiousness to mosquitoes relies on multiple parameters such as density, sex-ratio, maturity, parasit...

  7. Reproduction of mosquitoes (Diptera: Culicidae) in Santa Cruz, Santiago island, Cape Verde Islands

    OpenAIRE

    Duarte, Elves Heleno; Correia, Edson Eugénio; Varela, Caetano Eane; Varela, António

    2015-01-01

    Mosquitoes are dipterous insects with an important role in the transmission of diseases like malaria and dengue. During a dengue fever outbreak in the Cape Verde Islands in 2009, several studies were undertaken to support vector control. The present study was carried out in the district of Santa Cruz, Santiago island, to evaluate previous measures taken to control mosquito populations. Results show that mosquitoes use domestic water containers to breed. Barrels, drums and pots were all used. ...

  8. Mosquito Vector Biting and Community Protection in a Malarious Area, Siahoo District, Hormozgan, Iran

    Directory of Open Access Journals (Sweden)

    KH Shahandeh

    2010-12-01

    Conclusion: Study subjects were aware of an association between mosquito bite and malaria transmission. Health work­ers at different levels of the health care delivery system should disseminate relevant information about self-protection to help community members to be involved more in malaria control.

  9. The Hydrology of Malaria: Model Development and Application to a Sahelian Village

    Science.gov (United States)

    Bomblies, A.; Duchemin, J.; Eltahir, E. A.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semi-arid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations which lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely-sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic stage and adult stage components. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual time scales, and highlights individual pool persistence as a dominant control. Future developments to the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  10. Paratransgenesis: a promising new strategy for mosquito vector control.

    Science.gov (United States)

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-01-01

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  11. A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis.

    Directory of Open Access Journals (Sweden)

    Irka Bargielowski

    Full Text Available BACKGROUND: Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. METHODOLOGY: We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gambiae with one of 4 isolates of the microsporidian Vavraia culicis and reared one group as an uninfected control. Within each treatment, we fed half the adult females on a mix of P. berghei ookinetes and blood and inoculated the other half with a negatively charged CM-25 Sephadex bead to evaluate the mosquitoes' melanisation response. CONCLUSIONS: The microsporidian-infected mosquitoes were less likely to harbour oocysts (58.5% vs. 81.8%, harboured fewer oocysts (8.9 oocysts vs. 20.7 oocysts if the malaria parasite did develop and melanised the Sephadex bead to a greater degree (73% vs. 35% than the controls. While the isolates differed in the number of oocysts and in the melanisation response, the stimulation of the immune response was not correlated with either measure of malaria development. Nevertheless, the consistent difference between microsporidian-infected and -uninfected mosquitoes--more effective melanisation and less successful infection by malaria--suggests that microsporidians impede the development of malaria by priming the mosquito's immune system.

  12. Genetic Control of Mosquitoes: population suppression strategies

    Directory of Open Access Journals (Sweden)

    André Barretto Bruno Wilke

    2012-10-01

    Full Text Available Over the last two decades, morbidity and mortality from malaria and dengue fever among other pathogens are an increasing Public Health problem. The increase in the geographic distribution of vectors is accompanied by the emergence of viruses and diseases in new areas. There are insufficient specific therapeutic drugs available and there are no reliable vaccines for malaria or dengue, although some progress has been achieved, there is still a long way between its development and actual field use. Most mosquito control measures have failed to achieve their goals, mostly because of the mosquito's great reproductive capacity and genomic flexibility. Chemical control is increasingly restricted due to potential human toxicity, mortality in no target organisms, insecticide resistance, and other environmental impacts. Other strategies for mosquito control are desperately needed. The Sterile Insect Technique (SIT is a species-specific and environmentally benign method for insect population suppression, it is based on mass rearing, radiation mediated sterilization, and release of a large number of male insects. Releasing of Insects carrying a dominant lethal gene (RIDL offers a solution to many of the drawbacks of traditional SIT that have limited its application in mosquitoes while maintaining its environmentally friendly and species-specific utility. The self-limiting nature of sterile mosquitoes tends to make the issues related to field use of these somewhat less challenging than for self-spreading systems characteristic of population replacement strategies. They also are closer to field use, so might be appropriate to consider first. The prospect of genetic control methods against mosquito vectored human diseases is rapidly becoming a reality, many decisions will need to be made on a national, regional and international level regarding the biosafety, social, cultural and ethical aspects of the use and deployment of these vector control methods.

  13. Integrating the Public in Mosquito Management: Active Education by Community Peers Can Lead to Significant Reduction in Peridomestic Container Mosquito Habitats

    OpenAIRE

    Healy, Kristen; Hamilton, George; Crepeau, Taryn; Healy, Sean; Unlu, Isik; Farajollahi, Ary; Fonseca, Dina M

    2014-01-01

    Mosquito species that utilize peridomestic containers for immature development are commonly aggressive human biters, and because they often reach high abundance, create significant nuisance. One of these species, the Asian tiger mosquito Aedes albopictus, is an important vector of emerging infectious diseases, such as dengue, chikungunya, and Zika fevers. Integrated mosquito management (IMM) of Ae. albopictus is particularly difficult because it requires access to private yards in urban and s...

  14. Malaria (For Parents)

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy Malaria KidsHealth > For Parents > Malaria Print A A A ... Prevention Diagnosis and Treatment en español Malaria About Malaria Malaria is a common infection in hot, tropical ...

  15. PEMERIKSAAN MIKROSKOP DAN TES DIAGNOSTIK CEPAT DALAM MENEGAKKAN DIAGNOSIS MALARIA

    Directory of Open Access Journals (Sweden)

    Wijaya Kusuma

    2014-02-01

    Full Text Available Malaria is an infection disease caused by plasmodium parasite that transmitted to humanbody by female anopheles mosquito bites. World Health Organization (WHO predictedthat 3,3 billion people around the world were at risk to infected by malaria in 2006 andalmost 1 million died because of this disease. Diagnosis of malaria according to clinicalmanifestation only is not specific; therefore it is less reliable and should be s upported bylaboratory examination result. Microscopic examination of blood smear and rapiddiagnostic test are most often used to diagnose malaria. Both of this test gave big chance tomake accurate diagnostic but still have their own limitations.

  16. Quantifying the impact of human mobility on malaria.

    Science.gov (United States)

    Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J; Smith, David L; Noor, Abdisalan M; Snow, Robert W; Buckee, Caroline O

    2012-10-12

    Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here, we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082

  17. Mosquito vectors and the spread of cancer: an overlooked connection?

    Science.gov (United States)

    Benelli, Giovanni; Lo Iacono, Annalisa; Canale, Angelo; Mehlhorn, Heinz

    2016-06-01

    Mosquitoes (Diptera: Culicidae) represent a key threat for millions of humans and animals worldwide, vectoring important pathogens and parasites, including malaria, dengue, filariasis, and Zika virus. Besides mosquito-borne diseases, cancers figure among the leading causes of mortality worldwide. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Notably, there are few contrasting evidences of the relationship between cancer and mosquito-borne diseases, with special reference to malaria. However, analogies at the cellular level for the two diseases were reported. Recently, a significant association of malaria incidence with all cancer mortality in 50 USA states was highlighted and may be explained by the ability of Plasmodium to induce suppression of the immune system. However, it was hypothesized that Anopheles vectors may transmit obscure viruses linked with cancer development. The possible activation of cancer pathways by mosquito feeding events is not rare. For instance, the hamster reticulum cell sarcoma can be transmitted through the bites of Aedes aegypti by a transfer of tumor cells. Furthermore, mosquito bites may influence human metabolic pathways following different mechanisms, leading to other viral infections and/or oncogenesis. Hypersensitivity to mosquito bites is routed by a unique pathogenic mechanism linking Epstein-Barr virus infection, allergy, and oncogenesis. During dengue virus infection, high viral titers, macrophage infiltration, and tumor necrosis factor alpha production in the local tissues are the three key important events that lead to hemorrhage. Overall, basic epidemiological knowledge on the relationships occurring between mosquito vector activity and the spread of cancer is urgently needed, as well as detailed information about the ability of Culicidae to transfer viruses or tumor cells among hosts over time. Current evidences on nanodrugs with multipotency against

  18. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    Full Text Available BACKGROUND: Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria

  19. Development of Fungal Applications on Netting Substrates for Malaria Vector Control

    NARCIS (Netherlands)

    M. Farenhorst; A. Hilhorst; M.B. Thomas; B.G.J. Knols

    2011-01-01

    Mosquito resistance to chemical insecticides is considered a serious threat for the sustainable use of contemporary malaria vector control methods. Fungal entomopathogens show potential as alternative biological control agents against (insecticide-resistant) anophelines. This study was designed to t

  20. Malaria vaccines and their potential role in the elimination of malaria

    Directory of Open Access Journals (Sweden)

    Greenwood Brian M

    2008-12-01

    Full Text Available Abstract Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.

  1. Important advances in malaria vaccine research

    OpenAIRE

    Priyanka Jadhav; Ritesh Shah; Manoj Jadhav

    2012-01-01

    Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually hi...

  2. Malaria vectors in a traditional dry zone village in Sri Lanka

    DEFF Research Database (Denmark)

    Amerasinghe, P H; Amerasinghe, F P; Konradsen, F;

    1999-01-01

    catches, bovid-baited trap huts, indoor catches, and pit traps. Mosquito head-thoraces were tested for the presence of Plasmodium falciparum and P. vivax, and blood-engorged abdomens for the presence of human blood by ELISAs. House surveys were done at two-day intervals to record cases of blood film......Malaria transmission by anopheline mosquitoes was studied in a traditional tank-irrigation-based rice-producing village in the malaria-endemic low country dry zone of northcentral Sri Lanka during the period August 1994-February 1997. Adult mosquitoes were collected from human and bovid bait...... in An. culicifacies and An. peditaeniatus. Malaria parasite infections were seen in seven mosquito species, with 75% of the positive mosquitoes containing P. falciparum and 25% P. vivax. Polymorph PV247 was recorded from a vector (i.e., An. varuna) for the first time in Sri Lanka. Computations of mean...

  3. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America

    Directory of Open Access Journals (Sweden)

    Myriam Arévalo-Herrera

    2011-08-01

    Full Text Available Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB immunity (TBI and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV, would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.

  4. Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America.

    Science.gov (United States)

    Arévalo-Herrera, Myriam; Solarte, Yezid; Marin, Catherin; Santos, Mariana; Castellanos, Jenniffer; Beier, John C; Valencia, Sócrates Herrera

    2011-08-01

    Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America. PMID:21881775

  5. Mosquito Repellent Activity and Phytochemical Characterization of Essential Oils From Striga hermonthica, Hyptis spicigera and Ocimum basilicum Leaf Extracts

    OpenAIRE

    Gabi Baba; A.O. Lawal; Hauwa B. Sharif

    2012-01-01

    The main aim of this study is to screen the phytochemicals and compare the mosquito repellent activities of essential oils from Hyptis spicigera, Striga hermonthica and Ocimum basilicum (Basil) against Anopheles gambiae and Culex quinquefasciatus under laboratory conditions. The global threat of malaria to human race and the need to control its advances is on the focus. Mosquito is the target being the primary host in the spread of malaria. Alkaloids, saponnins, steroids, tannins and terpenoi...

  6. An elaborated feeding cycle model for reductions in vectorial capacity of night-biting mosquitoes by insecticide-treated nets

    OpenAIRE

    Harris Anthony; Perisse Andre; McKenzie F Ellis; Takala Shannon; Le Menach Arnaud; Flahault Antoine; Smith David L

    2007-01-01

    Abstract Background Insecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects. Methods Using an elaborated description of the classic feeding cycle model, simple formulas have been derived to describe how ITNs change mosquito behaviour and the intensity of malaria transmission, as summarized by vectorial capacity and EIR. The predicted change...

  7. Impact of a Spatial Repellent on Malaria Incidence in Two Villages in Sumba, Indonesia

    OpenAIRE

    Syafruddin, Din; Bangs, Michael J.; Sidik, Dian; Elyazar, Iqbal; Asih, Puji B.; Chan, Krisin; Nurleila, Siti; Nixon, Chistian P; Hendarto, Joko; Wahid, Isra; Ishak, Hasanuddin; Bogh, Claus; Grieco, John P; Achee; Achee, Nicole

    2014-01-01

    A randomized, double-blinded, placebo-controlled study was conducted to examine the effect of spatial repellent (SR) in households at risk of malaria in Indonesia. Following presumptive radical cure for malaria in 180 adult men representing sentinels of new infection in four clusters within two villages, all households were given either metofluthrin or placebo mosquito coils. Weekly blood smear screening and human-landing mosquito catches were done throughout the 6 months intervention. Malari...

  8. A Survey of Knowledge, Attitudes, and Practices in Relation to Mosquitoes and Mosquito-Borne Disease in Western Australia

    Science.gov (United States)

    Potter, Abbey; Jardine, Andrew; Neville, Peter J.

    2016-01-01

    On average, more than 1,000 individuals will acquire a mosquito-borne disease in Western Australia (WA) each year. Knowledge, attitudes, and practices (KAP) in relation to mosquitoes and mosquito-borne disease have not yet been investigated within Australia. A randomized telephone survey of 2,500 households across 12 regions in WA was undertaken between February and May 2014. The aim of the survey was to obtain baseline KAP data surrounding mosquitoes and mosquito-borne diseases in different regions of WA, across a range of age groups and between males and females. The results of this survey indicate that the majority of respondents are aware of the potential for mosquitoes in WA to transmit Ross River virus, while awareness of other endemic mosquito-borne diseases remains limited. Common misconceptions exist in relation to exotic mosquito-borne diseases, with respondents incorrectly identifying malaria and dengue as endemic diseases in WA. The survey also highlighted a range of important issues, such as limited awareness of the potential for backyard breeding in domestic containers, occupational exposure to mosquitoes in regions with a large employment base in the mining and resources sector, increased exposure to mosquitoes as a result of participation in outdoor recreational activities in the north of the State, and reduced awareness of mosquito-borne disease in individuals aged 18–34 years. The results of this study will be used to inform the development of a new communication strategy by the Department of Health, to further raise awareness of mosquito-borne disease in WA. The data will then provide a baseline against which to compare future survey results, facilitating the rigorous evaluation of new communication efforts. PMID:26973827

  9. A Survey of Knowledge, Attitudes, and Practices in Relation to Mosquitoes and Mosquito-Borne Disease in Western Australia.

    Science.gov (United States)

    Potter, Abbey; Jardine, Andrew; Neville, Peter J

    2016-01-01

    On average, more than 1,000 individuals will acquire a mosquito-borne disease in Western Australia (WA) each year. Knowledge, attitudes, and practices (KAP) in relation to mosquitoes and mosquito-borne disease have not yet been investigated within Australia. A randomized telephone survey of 2,500 households across 12 regions in WA was undertaken between February and May 2014. The aim of the survey was to obtain baseline KAP data surrounding mosquitoes and mosquito-borne diseases in different regions of WA, across a range of age groups and between males and females. The results of this survey indicate that the majority of respondents are aware of the potential for mosquitoes in WA to transmit Ross River virus, while awareness of other endemic mosquito-borne diseases remains limited. Common misconceptions exist in relation to exotic mosquito-borne diseases, with respondents incorrectly identifying malaria and dengue as endemic diseases in WA. The survey also highlighted a range of important issues, such as limited awareness of the potential for backyard breeding in domestic containers, occupational exposure to mosquitoes in regions with a large employment base in the mining and resources sector, increased exposure to mosquitoes as a result of participation in outdoor recreational activities in the north of the State, and reduced awareness of mosquito-borne disease in individuals aged 18-34 years. The results of this study will be used to inform the development of a new communication strategy by the Department of Health, to further raise awareness of mosquito-borne disease in WA. The data will then provide a baseline against which to compare future survey results, facilitating the rigorous evaluation of new communication efforts. PMID:26973827

  10. Biology and behaviour of male mosquitoes in relation to new approaches to control disease transmitting mosquitoes

    OpenAIRE

    Lees, R S; Knols, B.; Bellini, R; M. Q. Benedict; Bheecarry, A.; Bossin, H.C.; Chadee, D.D.; Charlwood, J.; Dabiré, R.K.; Djogbenou, L.; Eyir-Yawson, A.; Gato, R.; Gouagna, Louis-Clément; Hassan, M.M.; Khan, S. A.

    2014-01-01

    The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term co...

  11. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes

    OpenAIRE

    Molina-Cruz Alvaro; Povelones Michael; Ndikuyeze Georges; Rodrigues Janneth; Jaramillo-Gutierrez Giovanna; Barillas-Mury Carolina

    2009-01-01

    Abstract Background Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. Results Four new An. gambiae (G3) genes were identified that, when silenced, hav...

  12. The March Toward Malaria Vaccines.

    Science.gov (United States)

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-12-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  13. Hydrology of malaria: Model development and application to a Sahelian village

    Science.gov (United States)

    Bomblies, Arne; Duchemin, Jean-Bernard; Eltahir, Elfatih A. B.

    2008-12-01

    We present a coupled hydrology and entomology model for the mechanistic simulation of local-scale response of malaria transmission to hydrological and climatological determinants in semiarid, desert fringe environments. The model is applied to the Sahel village of Banizoumbou, Niger, to predict interannual variability in malaria vector mosquito populations that lead to variations in malaria transmission. Using a high-resolution, small-scale distributed hydrology model that incorporates remotely sensed data for land cover and topography, we simulate the formation and persistence of the pools constituting the primary breeding habitat of Anopheles gambiae s.l. mosquitoes, the principal regional malaria vector mosquitoes. An agent-based mosquito population model is coupled to the distributed hydrology model, with aquatic-stage and adult-stage components. Through a dependence of aquatic-stage mosquito development and adult emergence on pool persistence, we model small-scale hydrology as a dominant control of mosquito abundance. For each individual adult mosquito, the model tracks attributes relevant to population dynamics and malaria transmission, which are updated as mosquitoes interact with their environment, humans, and animals. Weekly field observations were made in 2005 and 2006. A 16% increase in rainfall between the two years was accompanied by a 132% increase in mosquito abundance between 2005 and 2006. The model reproduces mosquito population variability at seasonal and interannual timescales and highlights individual pool persistence as a dominant control. Future developments of the presented model can be used in the evaluation of impacts of climate change on malaria, as well as the a priori evaluation of environmental management-based interventions.

  14. Neuropsychiatric adverse events during prophylaxis against malaria by using mefloquine before traveling

    Directory of Open Access Journals (Sweden)

    Osama Al-Amer

    2015-01-01

    Full Text Available Malaria is one of the most common infectious diseases, resulting in the deaths of millions of children around the world. The disease causes approximately half a million to 2.5 million people to die annually. People can only get malaria by being bitten by an infective female Anopheles mosquito that transmits malaria from infected individuals. The increase in international travel and the spread of malaria around the world has resulted in an increased risk of malaria infection. Prophylactic drugs are used to prevent the spread of malaria and to protect individuals in endemic areas. The most efficacious drug for treatment and prophylaxis against malaria is mefloquine (MQ, an antimalarial drug used especially as a prophylaxis against Plasmodium falciparum and as a treatment for malaria. MQ is also used to prevent the treatment of chloroquine-resistant P. falciparum malaria. This review focuses on the advantages of MQ and its adverse events.

  15. Malaria Prevention Strategies: Adherence Among Boston Area Travelers Visiting Malaria-Endemic Countries.

    Science.gov (United States)

    Stoney, Rhett J; Chen, Lin H; Jentes, Emily S; Wilson, Mary E; Han, Pauline V; Benoit, Christine M; MacLeod, William B; Hamer, Davidson H; Barnett, Elizabeth D

    2016-01-01

    We conducted a prospective cohort study to assess adherence to malaria chemoprophylaxis, reasons for nonadherence, and use of other personal protective measures against malaria. We included adults traveling to malaria-endemic countries who were prescribed malaria chemoprophylaxis during a pre-travel consultation at three travel clinics in the Boston area and who completed three or more surveys: pre-travel, at least one weekly during travel, and post-travel (2-4 weeks after return). Of 370 participants, 335 (91%) took malaria chemoprophylaxis at least once and reported any missed doses; 265 (79%) reported completing all doses during travel. Adherence was not affected by weekly versus daily chemoprophylaxis, travel purpose, or duration of travel. Reasons for nonadherence included forgetfulness, side effects, and not seeing mosquitoes. Main reasons for declining to take prescribed chemoprophylaxis were peer advice, low perceived risk, and not seeing mosquitoes. Of 368 travelers, 79% used insect repellent, 46% used a bed net, and 61% slept in air conditioning at least once. Because travelers may be persuaded to stop taking medication by peer pressure, not seeing mosquitoes, and adverse reactions to medications, clinicians should be prepared to address these barriers and to empower travelers with strategies to manage common side effects of antimalarial medications. PMID:26483125

  16. Studies on mid gut microbiota of wild caught Culex (Culex quinquefasciatus mosquitoes from Barasat (North 24 Parganas of West Bengal.

    Directory of Open Access Journals (Sweden)

    Abhishek Pal

    2014-06-01

    Full Text Available Mosquitoes are haematophagous insects that serve as obligate intermediate host for numerous diseases like Filaria, Malaria, Dengue, etc. Mosquitoes can be considered as a holobiont units in which host (mosquitoes and its gut microbiota are involved in a complex reciprocal interaction. The naturally acquired microbiota can modulate mosquitos’ vectorial capacity by inhibiting the development of pathogens. But, enough care has not been taken in West Bengal to investigate on the midgut microbiota of Culex mosquitoes. Therefore, a preliminary attempt has been undertaken to study the morphology, growth pattern and antibiotic susceptibility of midgut microbiota of Culex (Culex quinquefasciatus mosquitoes collected from Barasat areas (North 24 Parganas of West Bengal..

  17. Mosquito Bite Prevention For Travelers

    Science.gov (United States)

    Mosquito Bite Prevention for Travelers Mosquitoes spread many types of viruses and parasites that can cause diseases ... be available. Protect yourself and your family from mosquito bites. Here’s how: Keep mosquitoes out of your ...

  18. Are topical insect repellents effective against malaria in endemic populations? A systematic review and meta-analysis

    OpenAIRE

    Wilson, A. L.; Chen-Hussey, V; Logan, J. G.; Lindsay, S.W.

    2014-01-01

    Background Recommended vector control tools against malaria, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), mainly target mosquitoes that rest and feed on human hosts indoors. However, in some malaria-endemic areas, such as Southeast Asia and South America, malaria vectors primarily bite outdoors meaning that LLINs and IRS may be less effective. In these situations the use of topical insect repellents may reduce outdoor biting and morbidity from malaria. A ...

  19. Study protocol for a three-armed randomized controlled trial to assess whether house screening can reduce exposure to malaria vectors and reduce malaria transmission in The Gambia

    OpenAIRE

    Milligan Paul J; Kirby Matthew J; Conway David J; Lindsay Steve W

    2008-01-01

    Abstract Background Mosquito-proofing homes was one of the principal methods of environmental management in the early 1900s. House screening provides protection against malaria by reducing exposure to malaria parasites and has the added benefit of protecting everyone sleeping in the house, avoiding issues of inequity within the household. The aim of this study is to determine whether house screening protects people against malaria in Africa. It is hoped that this study will mark the beginning...

  20. The Biological Control of the Malaria Vector

    Directory of Open Access Journals (Sweden)

    Layla Kamareddine

    2012-09-01

    Full Text Available The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes.

  1. Malaria Matters

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast gives an overview of malaria, including prevention and treatment, and what CDC is doing to help control and prevent malaria globally.  Created: 4/18/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 4/18/2008.

  2. Radiation-induced sterility for pupal and adult stages of the malaria moquito Anopheles arabiensis

    OpenAIRE

    Helinski, M.E.H.; Parker, A.G.; Knols, B.G.J.

    2006-01-01

    Background - In the context of the Sterile Insect Technique (SIT), radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae) was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods - Pupae were irradiated shortly before emergence (at 22-26 hrs of age), and adults

  3. Are there geographic and socio-economic differences in incidence, burden and prevention of malaria? A study in southeast Nigeria

    Directory of Open Access Journals (Sweden)

    Dike Nkem

    2009-12-01

    Full Text Available Abstract Rationale It is not clearly evident whether malaria affects the poor more although it has been argued that the poor bear a very high burden of the disease. This study explored the socioeconomic and geographic differences in incidence and burden of malaria as well as ownership of mosquito nets. Methods Structured questionnaires were used to collect information from 1657 respondents from rural and urban communities in southeast Nigeria on: incidence of malaria, number of days lost to malaria; actions to treat malaria and household ownership of insecticide treated and untreated mosquito nets. Data was compared across socio-economic status (SES quartiles and between urban and rural dwellers. Results There was statistically significant urban-rural difference in malaria occurrence with malaria occurring more amongst urban dwellers. There was more reported occurrence of malaria amongst children and other adult household members in better-off SES groups compared to worse-off SES groups, but not amongst respondents. The average number of days that people delayed before seeking treatment was two days, and both adults and children were ill with malaria for about six days. Better-off SES quartile and urban dwellers owned more mosquito nets (p Conclusion Malaria occurs more amongst better-off SES groups and urban dwellers in southeast Nigeria. Deployment of malaria control interventions should ensure universal access since targeting the poor and other supposedly vulnerable groups may exclude people that really require malaria control services.

  4. Important advances in malaria vaccine research

    Directory of Open Access Journals (Sweden)

    Priyanka Jadhav

    2012-01-01

    Full Text Available Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually high cost of treatment in the resource-limited settings. In the current compilation, the details from the literature were collected by using PubMed and Medline as search engines and searched for terms such as malaria, vaccine, and malaria treatment. This review collates and provides glimpses of the information on the recent malaria vaccine development. The reader will be taken through the historical perspective followed by the approaches to the malaria vaccine development from pre-erythrocytic stage vaccines, asexual stage vaccines, transmission blocking vaccines, etc. Looking at the current scenario of the malaria and treatment strategies, it is an absolute need of an hour that an effective malaria vaccine should be developed. This would bring a revolutionary breakthrough in the treatment modalities especially when there is increasing emergence of resistance to existing drug therapy. It would be of great purpose to serve those living in malaria endemic region and also for travelers which are nonimmune and coming to malaria endemic region. As infection by P. vivax is more prevalent in India and other Asian subcontinent and is often prominent in areas where elimination is being attempted, special consideration is required of the role of vaccines in blocking transmission, regardless of the stages being targeted. Development of vaccines is feasible but with the support of private sector and government organization in terms of regulatory and most importantly

  5. Arboviral diseases and malaria in Australia, 2011-12: annual report of the National Arbovirus and Malaria Advisory Committee.

    Science.gov (United States)

    Knope, Katrina E; Doggett, Stephen L; Kurucz, Nina; Johansen, Cheryl A; Nicholson, Jay; Feldman, Rebecca; Sly, Angus; Hobby, Michaela; El Saadi, Debra; Muller, Mike; Jansen, Cassie C; Muzari, Odwell M

    2014-06-01

    The National Notifiable Diseases Surveillance System received notifications for 7,875 cases of disease transmitted by mosquitoes during the 2011-12 season (1 July 2011 to 30 June 2012). The alphaviruses Barmah Forest virus and Ross River virus accounted for 6,036 (77%) of these. There were 18 notifications of dengue virus infection acquired in Australia and 1,390 cases that were acquired overseas, while for 38 cases, the place of acquisition was unknown. Imported cases of dengue in Australia were most frequently acquired in Indonesia. There were 20 imported cases of chikungunya virus. There were no notifications of locally-acquired malaria in Australia during the 2011-12 season. There were 314 notifications of overseas-acquired malaria and 41 notifications where the place of acquisition was unknown. Sentinel chicken, mosquito surveillance, viral detection in mosquitoes and climate modelling are used to provide early warning of arboviral disease activity in Australia. In 2011-12, sentinel chicken programs for the detection of flavivirus activity were conducted in most states with the risk of arboviral transmission. Other surveillance activities to detect the presence of arboviruses in mosquitoes or mosquito saliva or for surveying mosquito abundance included honey-baited trap surveillance, surveys of household containers that may provide suitable habitat for the dengue vector, Aedes aegypti, and carbon dioxide baited traps. Surveillance for exotic mosquitoes at the border continues to be a vital part of preventing the spread of mosquito-borne diseases to new areas of Australia. PMID:25222207

  6. Modelling homogeneous regions of social vulnerability to malaria in Rwanda

    Directory of Open Access Journals (Sweden)

    Jean Pierre Bizimana

    2016-03-01

    Full Text Available Despite the decline in malaria incidence due to intense interventions, potentials for malaria transmission persist in Rwanda. To eradicate malaria in Rwanda, strategies need to expand beyond approaches that focus solely on malaria epidemiology and also consider the socioeconomic, demographic and biological/disease-related factors that determine the vulnerability of potentially exposed populations. This paper analyses current levels of social vulnerability to malaria in Rwanda by integrating a set of weighted vulnerability indicators. The paper uses regionalisation techniques as a spatially explicit approach for delineating homogeneous regions of social vulnerability to malaria. This overcomes the limitations of administrative boundaries for modelling the trans-boundary social vulnerability to malaria. The utilised approach revealed high levels of social vulnerability to malaria in the highland areas of Rwanda, as well as in remote areas where populations are more susceptible. Susceptibility may be due to the populations’ lacking the capacity to anticipate mosquito bites, or lacking resilience to cope with or recover from malaria infection. By highlighting the most influential indicators of social vulnerability to malaria, the applied approach indicates which vulnerability domains need to be addressed, and where appropriate interventions are most required. Interventions to improve the socioeconomic development in highly vulnerable areas could prove highly effective, and provide sustainable outcomes against malaria in Rwanda. This would ultimately increase the resilience of the population and their capacity to better anticipate, cope with, and recover from possible infection.

  7. The prisoner as model organism: malaria research at Stateville Penitentiary

    OpenAIRE

    Comfort, Nathaniel

    2009-01-01

    In a military-sponsored research project begun during the Second World War, inmates of the Stateville Penitentiary in Illinois were infected with malaria and treated with experimental drugs that sometimes had vicious side effects. They were made into reservoirs for the disease and they provided a food supply for the mosquito cultures. They acted as secretaries and technicians, recording data on one another, administering malarious mosquito bites and experimental drugs to one another, and help...

  8. Climatic variables and malaria incidence in Dehradun, Uttaranchal, India

    OpenAIRE

    N. Pemola Devi ; R.K. Jauhari

    2006-01-01

    Background & objectives: Mosquito-borne diseases particularly malaria and Japanese encephalitis(JE) are becoming most dreaded health problems in Dehradun district. Keeping in view that theclimatic factors particularly temperature and rainfall may alter the distribution of vector species–increasing or decreasing the ranges, depending on weather conditions that are favourable orunfavourable for mosquito breeding, it is aimed to find out the effect of climatic factors on malariaincidence with pa...

  9. Flipping the paradigm on malaria transmission-blocking vaccines

    OpenAIRE

    Dinglasan, Rhoel R.; Jacobs-Lorena, Marcelo

    2008-01-01

    The idea of malaria transmission-blocking vaccines (TBVs) surfaced more than two decades ago. Since then, the research paradigm focused on developing TBVs that target surface antigens of parasite sexual stages. Only recently has an effort emerged that flipped this paradigm, targeting antigens of the parasite’s obligate invertebrate vector, the Anopheles mosquito. Here, we review the current state of knowledge of mosquito-based TBVs and discuss the utility of this approach for future vaccine d...

  10. Mosquito, adult (image)

    Science.gov (United States)

    This illustration shows an adult southern house mosquito. This mosquito feeds on blood and is the carrier of many diseases, such as encephalitis, West Nile, dengue fever, yellow fever, and others. ( ...

  11. Combining Synthetic Human Odours and Low-Cost Electrocuting Grids to Attract and Kill Outdoor-Biting Mosquitoes: Field and Semi-Field Evaluation of an Improved Mosquito Landing Box.

    Directory of Open Access Journals (Sweden)

    Nancy S Matowo

    Full Text Available On-going malaria transmission is increasingly mediated by outdoor-biting vectors, especially where indoor insecticidal interventions such as long-lasting insecticide treated nets (LLINs are widespread. Often, the vectors are also physiologically resistant to insecticides, presenting major obstacles for elimination. We tested a combination of electrocuting grids with synthetic odours as an alternative killing mechanism against outdoor-biting mosquitoes.An odour-baited device, the Mosquito Landing Box (MLB, was improved by fitting it with low-cost electrocuting grids to instantly kill mosquitoes attracted to the odour lure, and automated photo switch to activate attractant-dispensing and mosquito-killing systems between dusk and dawn. MLBs fitted with one, two or three electrocuting grids were compared outdoors in a malaria endemic village in Tanzania, where vectors had lost susceptibility to pyrethroids. MLBs with three grids were also tested in a large semi-field cage (9.6 × 9.6 × 4.5m, to assess effects on biting-densities of laboratory-reared Anopheles arabiensis on volunteers sitting near MLBs.Significantly more mosquitoes were killed when MLBs had two or three grids, than one grid in wet and dry seasons (P<0.05. The MLBs were highly efficient against Mansonia species and malaria vector, An. arabiensis. Of all mosquitoes, 99% were non-blood fed, suggesting host-seeking status. In the semi-field, the MLBs reduced mean number of malaria mosquitoes attempting to bite humans fourfold.The improved odour-baited MLBs effectively kill outdoor-biting malaria vector mosquitoes that are behaviourally and physiologically resistant to insecticidal interventions e.g. LLINs. The MLBs reduce human-biting vector densities even when used close to humans, and are insecticide-free, hence potentially antiresistance. The devices could either be used as surveillance tools or complementary mosquito control interventions to accelerate malaria elimination where

  12. Comparison of clinical and parasitological data from controlled human malaria infection trials

    NARCIS (Netherlands)

    Roestenberg, M.; O'Hara, G.A.; Duncan, C.J.; Epstein, J.E.; Edwards, N.J.; Scholzen, A.; Ven, A.J.A.M. van der; Hermsen, C.C.; Hill, A.V.; Sauerwein, R.W.

    2012-01-01

    BACKGROUND: Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers wor

  13. Controlling Mosquitoes Outside

    Centers for Disease Control (CDC) Podcasts

    2016-08-09

    Mosquitoes can carry viruses, like West Nile, Zika, dengue, and chikungunya. In this podcast, Mr. Hubbard will teach you and his neighbor, Laura, ways to help reduce the number of mosquitoes outside your home. Tips include eliminating areas of standing water where mosquitoes lay eggs and using larvicides to kill young mosquitoes.  Created: 8/9/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/9/2016.

  14. Epidemiology of malaria and predictions of retransmission in Babylon Governorate, Iraq.

    Science.gov (United States)

    Al-Ghoury, A A; El-Hashimi, W K; Abul-Hab, J

    2006-01-01

    After the 1997-98 malaria epidemic in Babylon governorate, Iraq, malaria transmission in this area was successfully interrupted. A parasitological survey in 2002 identified no malaria cases but an entomological survey found both Anopheles stephensi and A. pulcherrimus in high densities. The highest density was recorded in September and the lowest in December and January. Despite the high density of Anopheles, no parasite sporozoites or oocysts were found in dissected mosquitoes. Nevertheless, malaria transmission could recur if A. stephensi indoor resting density exceeds the critical threshold and imported malaria cases are not monitored. PMID:17037694

  15. Predicted impacts of climate change on malaria transmission in West Africa

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A. B.

    2014-12-01

    Increases in temperature and changes in precipitation due to climate change are expected to alter the spatial distribution of malaria transmission. This is especially true in West Africa, where malaria prevalence follows the current north-south gradients in temperature and precipitation. We assess the skill of GCMs at simulating past and present climate in West Africa in order to select the most credible climate predictions for the periods 2030-2060 and 2070-2100. We then use the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a mechanistic model of malaria transmission, to translate the predicted changes in climate into predicted changes availability of mosquito breeding sites, mosquito populations, and malaria prevalence. We investigate the role of acquired immunity in determining a population's response to changes in exposure to the malaria parasite.

  16. Acute cerebellar ataxia: A neurological manifestation in malaria

    Directory of Open Access Journals (Sweden)

    Peddametla Shravan Kumar

    2014-01-01

    Full Text Available Malaria is a vector-borne disease transmitted by the bite of an infected female anopheles mosquito presents with varied clinical manifestations. Neurological manifestations include headaches, confusion, convulsions, hemiplegia, ataxia, cerebral palsy, cortical blindness, and Guillain-Barre syndrome (GBS. We are presenting a case report of acute cerebellar ataxia in a 20-year-old male patient who presented with fever and positive for Plasmodium vivax and Plasmodium falciparum malaria antibodies.

  17. Uncertainty in Mapping Malaria Epidemiology: Implications for Control

    OpenAIRE

    Sullivan, David

    2010-01-01

    Malaria is a location-specific, dynamic infectious disease transmitted by mosquitoes to humans and is influenced by environmental, vector, parasite, and host factors. The principal purposes of malarial epidemiology are 1) to describe the malarial distribution in space and time along with the physical, biologic, and social etiologic factors and 2) to guide control objectives for either modeling impact or measuring progress of control tactics. Mapping malaria and many of its causative factors h...

  18. Laboratory assays for the detection of malaria transmission reducing activity

    OpenAIRE

    Kolk, Michael van der

    2007-01-01

    Human malaria is a parasitic disease, which causes over 200 million clinical cases and more than one million deaths per year. Most cases occur in children aged below five and the most affected continent is Africa. Malaria is spread by sexual forms of Plasmodium parasites (gametocytes), which are transmitted by anopheline mosquitoes from infected to susceptible humans. Human subjects in endemic areas may naturally acquire immunity against the parasite stages involved in transmission. This tran...

  19. A World Malaria Map: Plasmodium falciparum Endemicity in 2007

    OpenAIRE

    Hay, Simon I.; Guerra, Carlos A; Gething, Peter W.; Patil, Anand P.; Tatem, Andrew J.; Abdisalan M Noor; Kabaria, Caroline W; Bui H Manh; Elyazar, Iqbal R.F.; Simon Brooker; Smith, David L.; Rana A Moyeed; Snow, Robert W.

    2009-01-01

    Editors' Summary Background. Malaria is one of the most common infectious diseases in the world and one of the greatest global public health problems. The Plasmodium falciparum parasite causes approximately 500 million cases each year and over one million deaths in sub-Saharan Africa. More than 40% of the world's population is at risk of malaria. The parasite is transmitted to people through the bites of infected mosquitoes. These insects inject a life stage of the parasite called sporozoites...

  20. Malaria related knowledge, practices and behaviour of people in Nepal

    Directory of Open Access Journals (Sweden)

    A.B. Joshi

    2008-02-01

    Full Text Available Background & objectives: The information on malaria related knowledge, practices and behaviour of the people of Nepal living in malaria endemic areas are essential to develop behavioural change communication messages and for producing policy to prevent and control malaria in the country. The objective of this study was to assess knowledge, practices and behaviour of the people living in malaria endemic districts and relate with malaria control policy in Nepal. Methods: The paper utilizes data from a cross-sectional study of 1330 households conducted during December 2004 to April 2005 in rural areas of Jhapa, Kailali and Kanchanpur districts. The method used includes structured questionnaire and focus group discussions. Results: The results revealed that 40% respondents were illiterates. Eighty-six percent respondents have heard about malaria but only 50% responded fever with chills as the sign and symptom of malaria. Seventy-three percent responded that mosquito bite causes malaria transmission and 74% respondents considered that malaria is the fatal disease but very few have knowledge that the treatment of malaria in time can save life. More than 50% did not have information on availability of free treatment of malaria in Nepal. Still 16% were found consulting traditional healers for the treatment. The outside sleeping habit was found in almost one fourth of the population mainly in summer season indicating no knowledge about prevention of malaria. Although bednet use practice was higher, only 4% had knowledge on insecticide impregnated bednets and 23% of them practicing it. Issues regarding the proper and regular use of bednets, the quality of the bednet and use of free treatment provided by the government, since these districts are reporting high incidence of malaria.Interpretation & conclusion: Health education must be taken into account for communities in malaria endemic areas to produce desired outcomes in malaria control.

  1. Green Nanoparticles for Mosquito Control

    Directory of Open Access Journals (Sweden)

    Namita Soni

    2014-01-01

    Full Text Available Here, we have used the green method for synthesis of silver and gold nanoparticles. In the present study the silver (Ag and gold (Au nanoparticles (NPs were synthesized by using the aqueous bark extract of Indian spice dalchini (Cinnamomum zeylanicum (C. zyelanicum or C. verum J. Presl. Additionally, we have used these synthesized nanoparticles for mosquito control. The larvicidal activity has been tested against the malaria vector Anopheles stephensi and filariasis vector Culex quinquefasciatus. The results were obtained using UV-visible spectrophotometer and the images were recorded with a transmission electron microscope (TEM. The efficacy tests were then performed at different concentrations and varying numbers of hours by probit analysis. The synthesized AgNPs were in spherical shape and average sizes (11.77 nm AgNPs and 46.48 nm AuNPs. The larvae of An. stephensi were found highly susceptible to the synthesized AgNPs and AuNPs than the Cx. quinquefasciatus. These results suggest that the C. zeylanicum synthesized silver and gold nanoparticles have the potential to be used as an ideal ecofriendly approach for the control of mosquito.

  2. Hydrological and geomorphological controls of malaria transmission

    Science.gov (United States)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  3. Malaria and Travelers

    Science.gov (United States)

    ... a CDC Malaria Branch clinician. malaria@cdc.gov Malaria and Travelers Recommend on Facebook Tweet Share Compartir ... may be at risk for infection. Determine if malaria transmission occurs at the destinations Obtain a detailed ...

  4. Malaria Treatment (United States)

    Science.gov (United States)

    ... Malaria Branch clinician. malaria@cdc.gov Malaria Treatment (United States) Recommend on Facebook Tweet Share Compartir Treatment of Malaria: Guidelines For Clinicians (United States) Download PDF version of Parts 1-3 ...

  5. Radiation biology of mosquitoes

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2009-11-01

    Full Text Available Abstract There is currently renewed interest in assessing the feasibility of the sterile insect technique (SIT to control African malaria vectors in designated areas. The SIT relies on the sterilization of males before mass release, with sterilization currently being achieved through the use of ionizing radiation. This paper reviews previous work on radiation sterilization of Anopheles mosquitoes. In general, the pupal stage was irradiated due to ease of handling compared to the adult stage. The dose-response curve between the induced sterility and log (dose was shown to be sigmoid, and there was a marked species difference in radiation sensitivity. Mating competitiveness studies have generally been performed under laboratory conditions. The competitiveness of males irradiated at high doses was relatively poor, but with increasing ratios of sterile males, egg hatch could be lowered effectively. Males irradiated as pupae had a lower competitiveness compared to males irradiated as adults, but the use of partially-sterilizing doses has not been studied extensively. Methods to reduce somatic damage during the irradiation process as well as the use of other agents or techniques to induce sterility are discussed. It is concluded that the optimal radiation dose chosen for insects that are to be released during an SIT programme should ensure a balance between induced sterility of males and their field competitiveness, with competitiveness being determined under (semi- field conditions. Self-contained 60Co research irradiators remain the most practical irradiators but these are likely to be replaced in the future by a new generation of high output X ray irradiators.

  6. Challenges for malaria elimination in Brazil.

    Science.gov (United States)

    Ferreira, Marcelo U; Castro, Marcia C

    2016-01-01

    Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas. PMID:27206924

  7. Control of Plasmodium knowlesi malaria

    Science.gov (United States)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-10-01

    The most significant and efficient measures against Plasmodium knowlesi outbreaks are efficient anti malaria drug, biological control in form of predatory mosquitoes and culling control strategies. In this paper optimal control theory is applied to a system of ordinary differential equation. It describes the disease transmission and Pontryagin's Maximum Principle is applied for analysis of the control. To this end, three control strategies representing biological control, culling and treatment were incorporated into the disease transmission model. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for disease transmission.

  8. Comparative Transcriptome Analyses of Deltamethrin-Resistant and -Susceptible Anopheles gambiae Mosquitoes from Kenya by RNA-Seq

    OpenAIRE

    Bonizzoni, Mariangela; Afrane, Yaw; Dunn, William Augustine; Francis K Atieli; Zhou, Goufa; Zhong, Daibin; Li, Jun; Githeko, Andrew; Yan, Guiyun

    2012-01-01

    Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resist...

  9. Modified mosquito landing boxes dispensing transfluthrin provide effective protection against Anopheles arabiensis mosquitoes under simulated outdoor conditions in a semi-field system.

    OpenAIRE

    Andrés, Marta; Lorenz, Lena M; Mbeleya, Edgar; Moore, Sarah J.

    2015-01-01

    Abstract Background Efforts to control malaria vectors have primarily focused on scaling-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying. Although highly efficient against indoor-biting and indoor-resting vectors, these interventions have lower impact on outdoor-biting mosquitoes. Innovative vector control tools are required to prevent outdoor human–mosquito contacts. In this work, the potential of spatial repellents, delivered in an active system that requires minim...

  10. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance

    Directory of Open Access Journals (Sweden)

    Glass Gregory

    2011-05-01

    Full Text Available Abstract Background Until recently the Chittagong Hill tracts have been hyperendemic for malaria. A past cross-sectional RDT based survey in 2007 recorded rates of approximately 15%. This study was designed to understand the present epidemiology of malaria in this region, to monitor and facilitate the uptake of malaria intervention activities of the national malaria programme and to serve as an area for developing new and innovative control strategies for malaria. Methods This research field area was established in two rural unions of Bandarban District of Bangladesh north of Bandarban city, which are known to be endemic for malaria due to Plasmodium falciparum. The project included the following elements: a a demographic surveillance system including an initial census with updates every four months, b periodic surveys of knowledge attitude and practice, c a geographic information system, d weekly active and continuous passive surveillance for malaria infections using smears, rapid tests and PCR, f monthly mosquito surveillance, and e daily weather measures. The programme included both traditional and molecular methods for detecting malaria as well as lab methods for speciating mosquitoes and detecting mosquitoes infected with sporozoites. Results The demographic surveillance enumerated and mapped 20,563 people, 75% of which were tribal non-Bengali. The monthly mosquito surveys identified 22 Anopheles species, eight of which were positive by circumsporozoite ELISA. The annual rate of malaria was close to 1% with 85% of cases in the rainy months of May-October. Definitive clustering identified in the low transmission season persisted during the high transmission season. Conclusion This demographically and geographically defined area, near to the Myanmar border, which is also hypoendemic for malaria, will be useful for future studies of the epidemiology of malaria and for evaluation of strategies for malaria control including new drugs and

  11. Climatic variables and malaria incidence in Dehradun, Uttaranchal, India

    Directory of Open Access Journals (Sweden)

    N. Pemola Devi ; R.K. Jauhari

    2006-03-01

    Full Text Available Background & objectives: Mosquito-borne diseases particularly malaria and Japanese encephalitis(JE are becoming most dreaded health problems in Dehradun district. Keeping in view that theclimatic factors particularly temperature and rainfall may alter the distribution of vector species–increasing or decreasing the ranges, depending on weather conditions that are favourable orunfavourable for mosquito breeding, it is aimed to find out the effect of climatic factors on malariaincidence with particular emphasis to capture the essential events as a result of climatic variability.Methods: Mosquito sampling and identification was done using WHO entomological methods andfollow-up of recognised keys and catalogues. Data on malaria incidence and meteorologicalinformation were gathered in a collaborative study with the District Malaria Office, and the ForestResearch Institute, Dehradun respectively. Pearson’s correlation analysis was applied for establishingrelationship between climate variables and malaria transmission.Results: Higher positive correlation of association was found between monthly parasite incidenceand climatic variables (temperature, rainfall and humidity. However, highest significant correlationwas found between rainfall and malaria incidence (r = 0.718, p < 0.0001 when the data were staggeredto allow a lag of one-month.Interpretation & conclusion: Climatic variables that predict the presence or absence of malaria arelikely to be the best suited for forecasting the distribution of this disease at the edges of its range

  12. Difficulties in organizing first indoor spray programme against malaria in Angola under the President's Malaria Initiative

    Directory of Open Access Journals (Sweden)

    Martinho Somandjinga

    2009-11-01

    Full Text Available PROBLEM: Successful attempts to control malaria require understanding of its complex transmission patterns. Unfortunately malaria transmission in Africa is often assessed using routine administrative reports from local health units, which are plagued by sporadic reporting failures. In addition, the lack of microscopic analyses of blood slides in these units introduces the effects of many confounding diseases. APPROACH: The danger of using administrative reports was illustrated in Angola, the first country in which malaria control was attempted under the President's Malaria Initiative, a development programme of the Government of the United States of America. LOCAL SETTING: Each local health unit submitted monthly reports indicating the number of suspected malaria cases to their municipality. The identification of the disease was based on clinical diagnoses, without microscopic examination of blood slides. The municipal and provincial reports were then passed on to the national headquarters, with sporadic reporting lapses at all levels. RELEVANT CHANGES: After the control effort was completed, the defective municipal reports were corrected by summarizing only the data from those health units which had submitted reports for every month during the evaluation period. LESSONS LEARNED: The corrected data, supplemented by additional observations on rainfall and mosquito habitats, indicated that there had probably been no malaria transmission before starting the control operations. Thus the expensive malaria control effort had been wasted. It is unfortunate that WHO is also trying to plan and evaluate its malaria control efforts based on these same kinds of inadequate administrative reports.

  13. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    Science.gov (United States)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results

  14. Towards the genetic manipulation of mosquito disease vectors

    International Nuclear Information System (INIS)

    Our research is aimed at developing the technologies necessary to undertake the genetic manipulation of insect vector genomes. In the longer term, we wish to explore the potential that this technology may have for developing novel strategies for the control of vector-borne diseases. The focus of our current research has been to: i) identify and characterise endogenous transposable elements in the genomes of mosquito vectors -research has focussed on identifying both Class I and Class 11 elements and determining their structure and distribution within mosquito genomes; ii) develop and use transfection systems for mosquito cells in culture as a test bed for transformation vectors and promoters - transfection techniques, vector constructs and different promoters driving reporter genes have been utilised to optimise the transformation of both Aedes aegypti and Anopheles gambiae cells in culture; iii) identify putative promoter sequences which are induced in the female mosquito midgut when it takes a blood meal - the Anopheles gambiae trypsin gene locus has been cloned and sequenced and the intergenic regions assessed for their ability to induce reporter gene expression in mosquito gut cells. The progress we have made in each of these areas will be described and discussed in the context of our longer term aim which is to introduce genes coding for antiparasitic agents into mosquito genomes in such a way that they are expressed in the mosquito midgut and disrupt transmission of the malaria parasite. (author)

  15. Modeling Malaria Transmission in Thailand and Indonesia

    Science.gov (United States)

    Kiang, Richard; Adimi, Farida; Nigro, Joseph

    2007-01-01

    Malaria Modeling and Surveillance is a project in the NASA Applied Sciences Public Health Applications Program. The main objectives of this project are: 1) identification of the potential breeding sites for major vector species: 2) implementation of a malaria transmission model to identify they key factors that sustain or intensify malaria transmission; and 3) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity. Remote sensing and GIs are the essential elements of this project. The NASA Earth science data sets used in this project include AVHRR Pathfinder, TRMM, MODIS, NSIPP and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of precipitation, temperatures, humidity and vegetation. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Examples for spatio-temporal modeling of malaria transmissions in Southeast Asia are given. Discrete event simulations were used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to Southeast Asia. The model and techniques are equally applicable to other regions of the world, when appropriate epidemiological and vector ecological parameters are used as input.

  16. Malaria vaccine.

    Science.gov (United States)

    1994-05-01

    Some have argued that the vaccine against malaria developed by Manuel Pattaroyo, a Colombian scientist, is being tested prematurely in humans and that it is unlikely to be successful. While the Pattaroyo vaccine has been shown to confer protection against the relatively mild malaria found in Colombia, doubts exist over whether it will be effective in Africa. Encouraging first results, however, are emerging from field tests in Tanzania. The vaccine triggered a strong new immune response, even in individuals previously exposed to malaria. Additional steps must be taken to establish its impact upon mortality and morbidity. Five major trials are underway around the world. The creator estimates that the first ever effective malaria vaccine could be available for widespread use within five years and he has no intention of securing a patent for the discovery. In another development, malaria specialists from 35 African countries convened at an international workshop in Zimbabwe to compare notes. Participants disparaged financial outlays for the fight against malaria equivalent to 2% of total AIDS funding as insufficient; noted intercountry differences in prevention, diagnosis, and treatment; and found information exchange between anglophone and francophone doctors to be generally poor. PMID:12287671

  17. N-player mosquito net game: individual and social rationality in the misuse of insecticide-treated nets.

    Science.gov (United States)

    Honjo, Keita; Satake, Akiko

    2014-02-01

    Many governmental and non-governmental organizations have distributed insecticide-treated nets (ITNs) to malaria endemic areas, which contributed to the reduction of malaria deaths. However, some people in malaria endemic areas used ITNs for alternative purposes such as fishery and agriculture. It is unclear why people threatened by malaria misuse ITNs. Here we develop a N-player mosquito net game, and theoretically show that the misuse of ITNs might be underpinned by individual and social rationality. In the mosquito net game, each player uses ITNs for malaria prevention or alternative purposes. The proper ITN use decreases the probability of malaria infection, while the improper ITN use increases the player's labor productivity. Each player's expected payoff is influenced by other players' strategies. We found that the misuse of ITNs can be a Pareto efficient Nash equilibrium. The maximum number of players using ITNs for malaria prevention is limited by insecticidal effectiveness of ITNs and extra income from ITN misuse. Furthermore, we found that players in a low-income community are attracted to the misuse of ITNs even if the probability of malaria infection is high. Introduction of a tax on ITN misuse was shown to be effective to motivate the players to use ITNs for malaria prevention. Our results demonstrate that understanding decision making of people in malaria endemic areas is essential to design more effective malaria control programs. PMID:24239958

  18. Assessment of Risk Factors Associated with Malaria Transmission in Tubu Village, Northern Botswana

    Directory of Open Access Journals (Sweden)

    Elijah Chirebvu

    2014-01-01

    Full Text Available This study investigated potential risk factors associated with malaria transmission in Tubu village, Okavango subdistrict, a malaria endemic area in northern Botswana. Data was derived from a census questionnaire survey, participatory rural appraisal workshop, field observations, and mosquito surveys. History of malaria episodes was associated with several factors: household income (P0.05 and number of nets possessed (P>0.05. Eave size was not associated with mosquito bites (P>0.05, frequency of mosquito bites (P>0.05, and time of mosquito bites (P>0.05. Possession of nets was very high (94.7%. Close proximity of a health facility and low vegetation cover were added advantages. Some of the identified risk factors are important for developing effective control and elimination strategies involving the community, with limited resources.

  19. From "forest malaria" to "bromeliad malaria": a case-study of scientific controversy and malaria control.

    Science.gov (United States)

    Gadelha, P

    1994-08-01

    The article analyses the evolution of knowledge and rationale of control of a special case of malaria transmission based on Bromelia-Kerteszia complex. Since bromeliaceae function as a 'host of the carrier' and were previously associated with natural forests, the elucidation of bromeliad malaria historically elicited controversies concerning the imputation of Kertesziae as transmitters as well as over control strategies directed to bromelia eradication (manual removal, herbicides and deforestation), use of insecticides and chemoprophylaxis. Established authority, disciplinary traditions, conceptual premises and contemporary criteria for validating knowledge in the field partly explain the long time gap since Adolpho Lutz announced at the beginning of the century the existence of a new mosquito and breeding site as responsible for a 'forest malaria' epidemic occurring at a high altitude. The article brings attention to how economic, political and institutional determinants played an important role in redefining studies that led both in Trinidad and Brazil to the recognition of the importance of kerteszia transmission, including urban areas, and establishing new approaches to its study, most relevant of all the concurrence of broad ecological research. The article then describes the Brazilian campaign strategies which showed significant short-term results but had to wait four decades to achieve the goal of eradication due to the peculiar characteristics of this pathogenic complex. Finally, it brings attention to the importance of encompassing social values and discourses, in this case, environmental preservation, to understanding historical trends of malaria control programs. PMID:7898955

  20. Vulnerability to changes in malaria transmission due to climate change in West Africa

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2012-12-01

    Malaria transmission in West Africa is strongly tied to climate; temperature affects the development rate of the malaria parasite, as well as the survival of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. As a result, the environmental suitability for malaria transmission in this region is expected to change as temperatures rise and rainfall patterns are altered. The vulnerability to changes in transmission varies throughout West Africa. Areas where malaria prevalence is already very high will be less sensitive to changes in transmission. Increases in environmental suitability for malaria transmission in the most arid regions may still be insufficient to allow sustained transmission. However, areas were malaria transmission currently occurs at low levels are expected to be the most sensitive to changes in environmental suitability for transmission. Here, we use data on current environment and malaria transmission rates to highlight areas in West Africa that we expect to be most vulnerable to an increase in malaria under certain climate conditions. We then analyze climate predictions from global climate models in vulnerable areas, and make predictions for the expected change in environmental suitability for malaria transmission using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a mechanistic model developed to simulate village-scale response of malaria transmission to environmental variables in West Africa.

  1. Changes in avian disease and mosquito vector prevalence; A 15-year perceptive and assessment of future risk: Hakalau National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mosquito-borne avian disease, avian malaria and avian pox, is a major limiting factor for Hawaiian forest birds. While native bird communities at Hakalau Forest NWR...

  2. The Biological Control of the Malaria Vector

    OpenAIRE

    Layla Kamareddine

    2012-01-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute co...

  3. Recognizing and Treating Malaria in U.S. Residents

    Centers for Disease Control (CDC) Podcasts

    2010-06-09

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: It's a Small World After All: Dengue and Malaria in U.S. Residents - Recognizing and Treating These Mosquito-borne Diseases. CDC's David Townes discusses clinical presentation, transmission, prevention strategies, new treatments, and malaria resources available to health care providers.  Created: 6/9/2010 by Division of Parasitic Diseases and Malaria, Center for Global Health and Emergency Communication System (ECS)/Joint Information Center (JIC); Office of Public Health Preparedness and Response (OPHPR).   Date Released: 6/15/2010.

  4. Hey! A Mosquito Bit Me!

    Science.gov (United States)

    ... Here's Help White House Lunch Recipes Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito ... español ¡Ay! ¡Me picó un mosquito! What's a Mosquito? A mosquito (say: mus-KEE-toe) is an ...

  5. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Directory of Open Access Journals (Sweden)

    Nazaire Aïzoun

    2014-04-01

    Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its physiological status. Therefore, it is useful to respect the World Health Organization criteria in the assessment of insecticide susceptibility tests in malaria vectors. Otherwise, susceptibility testing is conducted using unfed female mosquitoes aged 3-5 days old. Tests should also be carried out at (25±2 °C and (80±10% relative humidity.

  6. Prevalence of Malaria Plasmodium in Abeokuta, Nigeria

    Directory of Open Access Journals (Sweden)

    Okonko, I. O.

    2009-01-01

    Full Text Available This study reports the prevalence of malaria caused by plasmodium between genders in Abeokuta, the capital city of Ogun State located in the forest zone of southwestern Nigeria between January 2002 and December 2004. Blood film examination for malaria parasites in 708 patients; 366 males and 342 females. Microscopic examination of thick films techniques was employed for this study. Of the 708 (100% patients examined, 577 (81.5% were Plasmodium-positive. A high malaria parasite prevalence rate of 81.5% was noted in this study. Female subjects were more infected (42.4% than males (41.9% however, there was no significant difference in the sex of the subjects studied (p=0.05. A high malaria parasite prevalence rate of 86.9% was noted in samples collected in year 2003 than in other years studied. There was significant difference in the years under study (p=0.05. This study shows that a good percentage of people were infested by malaria Plasmodium. This could be attributed to lack of adequate accommodation and poor sanitary conditions in the area under study. Although several efforts have been made to effectively control the high incidence of malaria in Nigeria, these have been largely unsuccessful due to a number of reasons such as irrigated urban agriculture which can be the malaria vector’s breeding ground in the city, stagnant gutters and swamps in our environment where mosquitoes breed in millions, and lack of political will and commitment of the government in its disease management program, low awareness of the magnitude of malaria problem, poor health practices by individuals and communities and resistance to drugs. Therefore, future interventions in Nigeria should be directed toward controlling malaria in the context of a moderate transmission setting; thus, large-scale distribution of insecticide-treated nets or widespread use of indoor residual spraying may be less cost-effective than enhanced surveillance with effective case management or

  7. Malaria Epidemiology and Control within the International Centers of Excellence for Malaria Research

    Science.gov (United States)

    Moss, William J.; Dorsey, Grant; Mueller, Ivo; Laufer, Miriam K.; Krogstad, Donald J.; Vinetz, Joseph M.; Guzman, Mitchel; Rosas-Aguirre, Angel M.; Herrera, Socrates; Arevalo-Herrera, Myriam; Chery, Laura; Kumar, Ashwani; Mohapatra, Pradyumna K.; Ramanathapuram, Lalitha; Srivastava, H. C.; Cui, Liwang; Zhou, Guofa; Parker, Daniel M.; Nankabirwa, Joaniter; Kazura, James W.

    2015-01-01

    Understanding the epidemiological features and metrics of malaria in endemic populations is a key component to monitoring and quantifying the impact of current and past control efforts to inform future ones. The International Centers of Excellence for Malaria Research (ICEMR) has the opportunity to evaluate the impact of malaria control interventions across endemic regions that differ in the dominant Plasmodium species, mosquito vector species, resistance to antimalarial drugs and human genetic variants thought to confer protection from infection and clinical manifestations of plasmodia infection. ICEMR programs are conducting field studies at multiple sites with the aim of generating standardized surveillance data to improve the understanding of malaria transmission and to monitor and evaluate the impact of interventions to inform malaria control and elimination programs. In addition, these epidemiological studies provide a vast source of biological samples linked to clinical and environmental “meta-data” to support translational studies of interactions between the parasite, human host, and mosquito vector. Importantly, epidemiological studies at the ICEMR field sites are integrated with entomological studies, including the measurement of the entomological inoculation rate, human biting index, and insecticide resistance, as well as studies of parasite genetic diversity and antimalarial drug resistance. PMID:26259946

  8. Modelling Aedes aegypti mosquito control via transgenic and sterile insect techniques: endemics and emerging outbreaks

    OpenAIRE

    Seirin Lee, S.; Baker, R. E.; Gaffney, E.A.; White, S. M.

    2013-01-01

    The invasion of pest insects often changes or destroys a native ecosystem,and can result in food shortages and disease endemics.Issues such as the environmental effects of chemical control methods,the economic burden of maintaining control strategies and the risk of pestresistance still remain,and mosquito-borne diseases such as malaria and dengue fever prevail in many countries,infecting over100 million worldwide in 2010.One environmentally friendly method for mosquito control is the Sterile...

  9. Genes and Odors Underlying the Recent Evolution of Mosquito Preference for Humans.

    Science.gov (United States)

    McBride, Carolyn S

    2016-01-11

    Mosquito species that specialize in biting humans are few but dangerous. They include the African malaria vectors Anopheles gambiae and Anopheles coluzzii, as well as Aedes aegypti, the cosmopolitan vector of dengue, chikungunya, and yellow fever. These mosquitoes have evolved a remarkable innate preference for human odor that helps them find and bite us. Here I review what is known about this important evolutionary adaptation, from its historical documentation to its chemical and molecular basis. PMID:26766234

  10. Mosquito has a single multisubstrate deoxyribonucleoside kinase characterized by unique substrate specificity

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Petersen, G.E.; Sandrini, Michael;

    2003-01-01

    In mammals four deoxyribonucleoside kinases, with a relatively restricted specificity, catalyze the phosphorylation of the four natural deoxyribonucleosides. When cultured mosquito cells, originating from the malaria vector Anopheles gambiae, were examined for deoxyribonucleoside kinase activities......, only a single enzyme was isolated. Subsequently, the corresponding gene was cloned and over-expressed. While the mosquito kinase (Ag-dNK) phosphorylated all four natural deoxyribonucleosides, it displayed an unexpectedly higher relative efficiency for the phosphorylation of purine versus pyrimidine...

  11. Larvicidal activity of methanolic leaf extracts of plant, Chromolaena odorata L. (Asteraceae) against vector mosquitoes

    OpenAIRE

    Jagruti H. Sukhthankar; Hemanth Kumar; M. H. S. Godinho; Ashwani Kumar

    2014-01-01

    Mosquitoes transmit malaria, filariasis, dengue, chikungunya, etc. Repeated use of insecticides for mosquito control has caused development of resistance, adverse effects on non-target organisms and serious environmental concerns. Hence alternative control measures are being explored inter alia plant based insecticides. We carried out larvicidal bioassays with methanolic extract of leaves of Chromolaena odorata (family Asteraceae) against late instar larvae of disease vectors Anopheles stephe...

  12. SPLENOMEGALY IN MALARIA : A CLINICAL AND ULTRASONOGRAPHIC STUDY

    OpenAIRE

    Gopal; Shashi; Kamaljit

    2015-01-01

    Malaria is a protozoan disease, transmitted by the bite of the infected Anopheles mosquito. There are four species of plasmodia causing the disease, but the two causing the morbidity and mortality are the plasmodium falciparum and the vivax. The disease invariably causes splenomegaly, which can be evaluated and assessed for the better prog...

  13. Recent advances in recombinant protein-based malaria vaccines

    DEFF Research Database (Denmark)

    Draper, Simon J; Angov, Evelina; Horii, Toshihiro;

    2015-01-01

    Plasmodium parasites are the causative agent of human malaria, and the development of a highly effective vaccine against infection, disease and transmission remains a key priority. It is widely established that multiple stages of the parasite's complex lifecycle within the human host and mosquito...

  14. Malaria in Sri Lanka: one year post-tsunami

    DEFF Research Database (Denmark)

    Briët, Olivier J T; Galappaththy, Gawrie N L; Amerasinghe, Priyanie H;

    2006-01-01

    One year ago, the authors of this article reported in this journal on the malaria situation in Sri Lanka prior to the tsunami that hit on 26 December 2004, and estimated the likelihood of a post-tsunami malaria outbreak to be low. Malaria incidence has decreased in 2005 as compared to 2004 in most...... districts, including the ones that were hit hardest by the tsunami. The malaria incidence (aggregated for the whole country) in 2005 followed the downward trend that started in 2000. However, surveillance was somewhat affected by the tsunami in some coastal areas and the actual incidence in these areas may...... have been higher than recorded, although there were no indications of this and it is unlikely to have affected the overall trend significantly. The focus of national and international post tsunami malaria control efforts was supply of antimalarials, distribution of impregnated mosquito nets and...

  15. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Ndoen Ermi

    2010-08-01

    Full Text Available Abstract Background Malaria is a serious health issue in Indonesia. Mosquito control is one aspect of an integrated malaria management programme. To focus resources on priority areas, information is needed about the vectors and their habitats. This research aimed to identify the relationship between anopheline mosquitoes and topography in West Timor and Java. Methods Study areas were selected in three topographic types in West Timor and Java. These were: coastal plain, hilly (rice field and highland. Adult mosquitoes were captured landing on humans identified to species level and counted. Results Eleven species were recorded, four of which were significant for malaria transmission: Anopheles aconitus, Anopheles barbirostris, Anopheles subpictus and Anopheles sundaicus. Each species occupied different topographies, but only five were significantly associated: Anopheles annularis, Anopheles vagus and Anopheles subpictus (Java only with hilly rice fields; Anopheles barbirostris, Anopheles maculatus and Anopheles subpictus (West Timor only with coastal areas. Conclusion Information on significant malaria vectors associated with specific topography is useful for planning the mosquito control aspect of malaria management.

  16. Mosquito Immunity against Arboviruses

    OpenAIRE

    Shuzhen Sim; Natapong Jupatanakul; George Dimopoulos

    2014-01-01

    Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundam...

  17. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  18. Ecological limitations on aquatic mosquito predator colonization in the urban environment

    OpenAIRE

    Carlson, John; Keating, Joseph; Mbogo, Charles M; Kahindi, Samuel; Beier, John C

    2004-01-01

    Urban malaria cases are becoming common in Africa as more people move into cities and industrialization proceeds. While many species of Anopheles mosquitoes vector malaria in rural areas, only a few are found within cities. The success of anthropophilic species in cities, such as members of the An. gambiae complex, may be explained by limitations on colonization by predator species in urban environments. Habitats that are temporal or structurally simple have lower predator survivorship in a v...

  19. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa

    OpenAIRE

    Yamana, Teresa K.; Eltahir, Elfatih A B

    2013-01-01

    Background: Low levels of relative humidity are known to decrease the lifespan of mosquitoes. However, most current models of malaria transmission do not account for the effects of relative humidity on mosquito survival. In the Sahel, where relative humidity drops to levels

  20. 云南省蚊媒传播性疾病的控制问题%VECTOR OF MOSQUITO BORNE DISEASE CONTROL PROBLEMS IN YUNNAN PROVINCE OF CHINA

    Institute of Scientific and Technical Information of China (English)

    周红宁; 董学书; Chris Curtis

    2005-01-01

    @@ Mosquito-borne diseases in Yunnan, mainly consist of malaria (Plasmodium vivax and Plasmodium falcipurium) [1,2] and Japanese encephalitis (JE).No clinic dengue fever and filariasis patients were reported in Yunnan.But in neighboring region Guangxi, these two diseases occur [3,4].In Yunnan, some Aedes mosquitoes such as Aedes albopitus have been detected carrying dengue virus[5].

  1. MALARIA: A GENERAL MINIREVIEW WITH REFERENCE TO EGYPT.

    Science.gov (United States)

    Ahmad Saleh, Ahmad Megahed; Adam, Samia Mohammad; Ibrahim, Abeer Mohammad Abdallah; Morsy, Tosson A

    2016-04-01

    The majority of world's population-live in areas at risk of malaria transmission. Malaria is a serious Anopheles-borne disease that pauses symptoms like the flu, as a high fever, chills, and muscle pain also, anemia, bloody stools, coma, convulsion, fever, headache, jaundice, nausea, sweating and vomiting. Symptoms tend to come and go in cycles. Apart from Anopheles vector, malaria could be transmitted nosocomial, blood transfusion or needle-stick injury Some types of malaria may cause more serious damage problems to heart, lungs, kidneys, or brain. These types can be deadly. The primary factors contributing to the resurgence of malaria are the appearance of drug-resistant strains of the parasite, the spread of insecticide-resistant strains of the mosquito and the lack of licensed malaria vaccines of proven efficacy. In rare cases, people can get malaria if they come into contact with infected blood as in blood transfusion or needle-stick injury also nosocomial and congenital malaria was reported. This is a mini-review of malaria with information on the lethal to humans, Plasmodium falciparum, together with other recent developments in the field. PMID:27363039

  2. Early detection and monitoring of Malaria

    Science.gov (United States)

    Rahman, Md Z.; Roytman, Leonid; Kadik, Abdelhamid; Miller, Howard; Rosy, Dilara A.

    2015-05-01

    Global Earth Observation Systems of Systems (GEOSS) are bringing vital societal benefits to people around the globe. In this research article, we engage undergraduate students in the exciting area of space exploration to improve the health of millions of people globally. The goal of the proposed research is to place students in a learning environment where they will develop their problem solving skills in the context of a world crisis (e.g., malaria). Malaria remains one of the greatest threats to public health, particularly in developing countries. The World Health Organization has estimated that over one million die of Malaria each year, with more than 80% of these found in Sub-Saharan Africa. The mosquitoes transmit malaria. They breed in the areas of shallow surface water that are suitable to the mosquito and parasite development. These environmental factors can be detected with satellite imagery, which provide high spatial and temporal coverage of the earth's surface. We investigate on moisture, thermal and vegetation stress indicators developed from NOAA operational environmental satellite data. Using these indicators and collected epidemiological data, it is possible to produce a forecast system that can predict the risk of malaria for a particular geographical area with up to four months lead time. This valuable lead time information provides an opportunity for decision makers to deploy the necessary preventive measures (spraying, treated net distribution, storing medications and etc) in threatened areas with maximum effectiveness. The main objective of the proposed research is to study the effect of ecology on human health and application of NOAA satellite data for early detection of malaria.

  3. IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk

    DEFF Research Database (Denmark)

    Stone, Will; Bousema, Teun; Jones, Sophie;

    2012-01-01

    .04). Additionally, IgG responses to gSG6 in individual children showed a strong positive association with household level mosquito exposure. IgG levels for all antigens except AMA-1 were associated with the frequency of malaria episodes following sampling. gSG6 seropositivity was strongly positively associated with...... subsequent malaria incidence (test for trend p¿=¿0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune...

  4. A multi-stage malaria vaccine candidate targeting both transmission and asexual parasite life-cycle stages

    DEFF Research Database (Denmark)

    Theisen, Michael; Roeffen, Will; Singh, Susheel K;

    2014-01-01

    Effective control and eventual eradication of malaria drives the imperative need for clinical development of a malaria vaccine. Asexual parasite forms are responsible for clinical disease and death while apathogenic gametocytes are responsible for transmission from man to mosquito. Vaccines that...

  5. Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2010-04-01

    Full Text Available Abstract Background Anopheles culicifacies is the major vector of both falciparum and vivax malaria in Sri Lanka, while Anopheles subpictus and certain other species function as secondary vectors. In Sri Lanka, An. culicifacies is present as a species complex consisting of species B and E, while An. subpictus exists as a complex of species A-D. The freshwater breeding habit of An. culicifacies is well established. In order to further characterize the breeding sites of the major malaria vectors in Sri Lanka, a limited larval survey was carried out at a site in the Eastern province that was affected by the 2004 Asian tsunami. Methods Anopheline larvae were collected fortnightly for six months from a brackish water body near Batticaloa town using dippers. Collected larvae were reared in the laboratory and the emerged adults were identified using standard keys. Sibling species status was established based on Y-chromosome morphology for An. culicifacies larvae and morphometric characteristics for An. subpictus larvae and adults. Salinity, dissolved oxygen and pH were determined at the larval collection site. Results During a six month study covering dry and wet seasons, a total of 935 anopheline larvae were collected from this site that had salinity levels up to 4 parts per thousand at different times. Among the emerged adult mosquitoes, 661 were identified as An. culicifacies s.l. and 58 as An. subpictus s.l. Metaphase karyotyping of male larvae showed the presence of species E of the Culicifacies complex, and adult morphometric analysis the presence of species B of the Subpictus complex. Both species were able to breed in water with salinity levels up to 4 ppt. Conclusions The study demonstrates the ability of An. culicifacies species E, the major vector of falciparum and vivax malaria in Sri Lanka, to oviposit and breed in brackish water. The sibling species B in the An. subpictus complex, a well-known salt water breeder and a secondary malaria

  6. In depth annotation of the Anopheles gambiae mosquito midgut transcriptome

    OpenAIRE

    Padrón, Alejandro; Molina-Cruz, Alvaro; Quinones, Mariam; Ribeiro, José MC; Ramphul, Urvashi; Rodrigues, Janneth; Shen, Kui; Haile, Ashley; Ramirez, José Luis; Barillas-Mury, Carolina

    2014-01-01

    Background Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut—the first organ to interact with Plasmodium parasites—mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-th...

  7. Effects of Reservoir Characteristics on Malaria and its vector Abundance: A Case Study of the Bongo District of Ghana

    Science.gov (United States)

    Ofosu, E.; Awuah, E.; Annor, F. O.

    2009-04-01

    In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.

  8. Potential Test of Papaya Leaf and Seed Extract (Carica Papaya) as Larvicides against Anopheles Mosquito Larvae Mortality. SP IN Jayapura, Papua Indonesia

    OpenAIRE

    Arsunan

    2015-01-01

    Anopheles mosquitoes, sp is the main vector of malaria disease that is widespread in many parts of the world including in Papua Province. There are four speciesof Anopheles mosquitoes, sp, in Papua namely: An.farauti, An.koliensis, An. subpictus, and An.punctulatus. Larviciding synthetic cause resistance. This study aims to analyze the potential of papaya leaf and seeds extracts (Carica papaya) as larvicides against the mosquitoes Anopheles sp. The experiment was conducted at the Laboratory o...

  9. Isolation and Biochemical Characterizations of Mid Gut Microbiota of Culex (Culex quinquefasciatus) Mosquitoes in Some Urban Sub Urban & Rural Areas of West Bengal.

    OpenAIRE

    Rahul Kumar; Amit Chattopadhyay; Santanu Maitra; Satarupa Paul; Pranab Kr. Banerjee

    2013-01-01

    Mosquitoes, in general are medically important vectors of many diseases like Malaria, Dengue and Filariasis, which are a great challenge for public health in many countries. All animals and plants establish symbiotic relationship with microbes. Mosquitoes can be considered as an holobiont units in which the host (mosquito) and its microbiota are involved in complex reciprocal multipartite interaction such as host reproduction and survival, protection against natural enemies. This naturally ac...

  10. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    OpenAIRE

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2014-01-01

    The Anopheles gambiae mosquito is a very effective vector of human Plasmodium falciparum malaria. We recently found that the Pfs47 gene allows the parasite to survive, by evading the mosquito immune system. In this study, we explored the mechanism of Pfs47 immune evasion. We found that Pfs47 inhibits Jun-N-terminal kinase-mediated activation of apoptosis in invaded mosquito midgut cells by preventing activation of several caspases. Furthermore, the lack of caspase-S2 activation prevents the i...

  11. Kompliceret malaria

    DEFF Research Database (Denmark)

    Rønn, A M; Bygbjerg, Ib Christian; Jacobsen, E

    1989-01-01

    An increasing number of cases of malaria, imported to Denmark, are caused by Plasmodium falciparum and severe and complicated cases are more often seen. In the Department of Infectious Diseases, Rigshospitalet, 23 out of 32 cases, hospitalized from 1.1-30.6.1988, i.e. 72%, were caused by P...

  12. Controlling Mosquitoes Indoors

    Centers for Disease Control (CDC) Podcasts

    2016-08-23

    Mosquitoes can carry viruses, like West Nile and Zika. In this podcast, Mr. Hubbard teaches his neighbors, the Smith family, ways to help reduce the number of mosquitoes inside their home.  Created: 8/23/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/23/2016.

  13. How Mosquitoes Detect People

    Science.gov (United States)

    ... mosquito-borne diseases are endemic,” Ray says. — by Carol Torgan, Ph.D. Related Links Targeting the Mosquito's ... Assistant Editors: Vicki Contie, Tianna Hicklin, Ph.D., Carol Torgan, Ph.D. NIH Research Matters is a ...

  14. Knowledge, attitude and beliefs about malaria in a tribal area of Bastar district (Madhya Pradesh).

    Science.gov (United States)

    Sharma, S K; Jalees, S; Kumar, K; Rahman, S J

    1993-01-01

    A sample survey of K.A.P. about malaria was carried out among sample of 359 inhabitants selected by random sampling in a tribal area of Baster district, which is a hyper-endemic area of the disease, predominantly by P.falciparum infection and understanding about the problem of malaria was poor, only about 50% (ranging from 30% to 60%) of the respondents were aware about cause and signs and symptoms of malaria, breeding & resting habit of mosquito, usefulness of insecticidal spray and ill effect of mud plastering following residual spraying. Proper health education and community involvement are, therefore, necessary to achieve control of malaria in the locality. PMID:8077001

  15. Spatial Correlations of Malaria Incidence Hotspots with Environmental Factors in Assam, North East India

    Science.gov (United States)

    Handique, Bijoy K.; Khan, Siraj A.; Dutta, Prafulla; Nath, Manash J.; Qadir, Abdul; Raju, P. L. N.

    2016-06-01

    Malaria is endemic and a major public health problem in north east (NE) region of India and contributes about 8-12 % of India's malaria positives cases. Historical morbidity pattern of malaria in terms of API (Annual Parasite Incidence) in the state of Assam has been used for delineating the malaria incidence hotspots at health sub centre (HSC) level. Strong spatial autocorrelation (p mosquito species in the state Anopheles minimus and An. baimai that prefers the habitat of slow flowing streams in the foot hills and in forest ecosystems respectively.

  16. CHARACTERISTICS OF MALARIA CASES ATTENDING OPD OF A MEDICAL COLLEGE HOSPITAL CIMS, BILASPUR, CHHATTISGARH

    Directory of Open Access Journals (Sweden)

    Bhanu P

    2014-10-01

    Full Text Available Malaria is a protozoal disease caused by infection with parasite of the genus Plasmodium and transmitted to human by certain species of infected female Anopheles mosquito. A typical attack comprises three stages: cold stage, hot stage and sweating stage. The clinical features of malaria vary from mild to severe and complicated, according to the species of parasite. In present study total 4063 blood slides were examined for malaria parasites in year 2013. Slide positivity rate and slide falciparum rate were 25.3% and 71.5 % respectively. Pl. falciparum constituted 18.1% of the malaria cases.

  17. Clinical development of RTS,S as a vaccine for the prevention of malaria in Mozambican children

    OpenAIRE

    Sacarlal, Jahit

    2009-01-01

    [eng] Malaria is caused by protozoan parasites of the genus Plasmodium, Plasmodiidae family, transmitted to humans through the bite of infected female Anopheles.spp mosquitoes. It is one of the major global public health problems and an important cause of death in young children in Subsaharian Africa.Malaria is both a cause and a consequence of poverty. It best represents the paradigm of the vicious circle of disease and poverty. Recent estimates suggest that malaria alone costs about 12 bill...

  18. On a reproductive stage-structured model for the population dynamics of the malaria vector.

    Science.gov (United States)

    Ngwa, Gideon A; Wankah, Terence T; Fomboh-Nforba, Mary Y; Ngonghala, Calsitus N; Teboh-Ewungkem, Miranda I

    2014-10-01

    A reproductive stage-structured deterministic differential equation model for the population dynamics of the human malaria vector is derived and analysed. The model captures the gonotrophic and behavioural life characteristics of the female Anopheles sp. mosquito and takes into consideration the fact that for the purposes of reproduction, the female Anopheles sp. mosquito must visit and bite humans (or animals) to harvest necessary proteins from blood that it needs for the development of its eggs. Focusing on mosquitoes that feed exclusively on humans, our results indicate the existence of a threshold parameter, the vectorial reproduction number, whose size increases with increasing number of gonotrophic cycles, and is also affected by the female mosquito's birth rate, its attraction and visitation rate to human residences, and its contact rate with humans. A stability analysis of the model indicates that the mosquito can establish itself in the environment if and only if the value of the vectorial reproduction number exceeds unity and that mosquito eradication is possible if the vectorial reproduction number is less than unity, since, then, the trivial steady state which always exist is unique and is globally and asymptotically stable. When a persistent vector population steady state exists, it is locally and asymptotically stable for a range of reproduction numbers, but can also be driven to instability via a Hopf bifurcation as the reproduction number increases further away from unity. The model derivation identifies and characterizes control parameters relating to activities such as human-mosquito contact and the mosquito's survival chances between blood meals and egg laying. Our results show that the total mosquito population size increases with increasing number of gonotrophic cycles. Therefore understanding the fundamental aspects of the mosquito's behaviour provides a pathway for the study of human-mosquito contact and mosquito population control. Control

  19. The Role of Rainfall Patterns in Seasonal Malaria Transmission

    Science.gov (United States)

    Bomblies, A.

    2010-12-01

    Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.

  20. Development of briquettes from natural products for knockdown of mosquitoes

    Directory of Open Access Journals (Sweden)

    Thuku L. Nyakeru

    2012-05-01

    Full Text Available Malaria is a major death cause in many parts of the world. This necessitates the development of alternative ways of curbing the problem. This study focused on the development of briquettes that would knockdown (KD mosquitoes in the course of burning. The briquettes were developed using jatropha seed husks (source of energy, cow dung (binder and pyrethrin (insecticide, which were then tested for their ability to knockdown and kill mosquitoes at Kenya Pyrethrum Board laboratory. The results were analysed using the analysis-of-variance (ANOVA tool. The results showed that a hand pressed mixture of jatropha seed husks, pyrethrin and cow dung (binder in the ratio of 3 g: 0.5 ml: 2 g respectively can cause a 100 % mosquito knockdown within 10 min. and mortality of 97.50 % within 24 hr when burnt indoors. The percentage mosquito knockdown and percentage mortality rate were found to vary significantly with the amount of pyrethrin used. It is expected that the findings of this study will generate new knowledge on briquette development and also contribute to waste management. The research findings will also contribute towards reducing the death rate resulting from malaria.