Sample records for ashing dry

  1. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards. (United States)

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew


    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  2. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo; Park, Yong Joon; Song, Kyuseok [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)


    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is the optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)

  3. Dry coal fly ash cleaning using rotary triboelectrostatic separator

    Institute of Scientific and Technical Information of China (English)

    TAO Daniel; FAN Mao-ming; JIANG Xin-kai


    More than 80 million metric tons of fly ash is produced annually in the U.S. As coal combustion by-product. Coal fly ash can be converted to value-added products if unburned carbon is reduced to less than 2.5%. However, most of fly ash is currently landfilled as waste due to lack of efficient purification technologies to separate unburned carbon from fly ash. A rotary triboelectrostatic separator has been developed and patented recently at the University of Kentucky with unique features. Several fly ash samples have been used to understand the effects of major process parameters on the separation performance. The results show that compared to existing triboelectrostatic separators, the rotary triboelectrostatic separator has significant advantages in particle charging efficiency, solids throughput, separation efficiency, applicable particle size range.

  4. Characteristics of fly ash from the dry flue gas desulfurization system for iron ore sintering plants. (United States)

    Sheng, Guanghong; Huang, Peng; Mou, Yaqin; Zhou, Chenhui


    The characteristics of fly ash from the flue gas desulfurization (FGD) system are important for its reuse and are mainly depend on the desulfurization process. The physical and chemical properties of DSF ash, which refers to fly ash from the dry FGD system for the iron ore sintering process, were investigated. Its mineralogical contents were determined by X-ray diffraction and thermogravimetry analysis, and its micro-morphology was studied by scanning electric micrograph analysis. The results show that DSF ash has a higher CaO and SO3 content, and the main sulfur form is sulfite, with only a part of it oxidized to sulfate. The major minerals present in DSF ash are hannebachite, anhydrite, calcite and portlandite; a minor constituent is calcium chloride. The particles of DSF ash are irregular, fragmentary and small, and hannebachite grows on their surfaces. Particle size is affected by the FGD process, and the ash size from the maximized emission reduction of the sintering-FGD process is lower than that from the circulating fluidized bed-FGD process. The particle size distribution of DSF ash follows the Rosin--Rammler-Bennet equation.

  5. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment (United States)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi


    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  6. Amenability to dry processing of high ash thermal coal using a pneumatic table

    Institute of Scientific and Technical Information of China (English)

    Dey Shobhana; Gangadhar B.; Gopalkrishna S.J.


    High ash thermal coal from India was used to conduct the dry processing of fine coal using a pneumatic table to evolve a techno-economically novel technique. The fine as-received sample having 55.2%ash was subjected to washability studies at variant densities from 1.4 to 2.2 to assess the amenability to separa-tion. The experiments were conducted using a central composite design for assessing the interactive effects of the variable parameters of a pneumatic table on the product yield and ash content. The perfor-mance of the pneumatic table was analyzed in terms of clean coal yield, recovery of combustibles, separation efficiency (Esp) and useful heat value of clean coal. The combustibles of clean coal obtained through a single stage operation at 35% and 38.7% ash were 40% and 63% respectively. However, the two stage processing was more effective in reducing the ash content in the clean coal. The rougher con-centrate generated at higher ash level was subsequently processed in different conditions at 35% ash level, and 58%combustibles could be recovered. Hence, two stage processing increases the combustibles by 18 units and the useful heat value of clean coal increases from 1190 kcal/kg to 3750 kcal/kg.

  7. Dry Sliding Friction and Wear Studies of Fly Ash Reinforced AA-6351 Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    M. Uthayakumar


    Full Text Available Fly ash particles are potentially used in metal matrix composites due to their low cost, low density, and availability in large quantities as waste by-products in thermal power plants. This study describes multifactor-based experiments that were applied to research and investigation on dry sliding wear system of stir-cast aluminum alloy 6351 with 5, 10, and 15 wt.% fly ash reinforced metal matrix composites (MMCs. The effects of parameters such as load, sliding speed, and percentage of fly ash on the sliding wear, specific wear rate, and friction coefficient were analyzed using Grey relational analysis on a pin-on-disc machine. Analysis of variance (ANOVA was also employed to investigate which design parameters significantly affect the wear behavior of the composite. The results showed that the applied load exerted the greatest effect on the dry sliding wear followed by the sliding velocity.

  8. Wet-dry cycles effect on ash water repellency. A laboratory experiment. (United States)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio


    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences

  9. Thick-target PIGE analysis of plant materials preconcentrated by dry ashing. (United States)

    Saarela, K E; Harju, L; Lill, J O; Rajander, J; Lindroos, A; Heselius, S J


    Plant materials were dry ashed at 550 degrees C and analysed using particle-induced prompt gamma-ray emission (PIGE). The analyses were performed with an external beam of 3 MeV protons incident on the target. Seven biological certified reference materials were analysed and used for the evaluation of the method for Na, Mg, Al, P and Mn. The elemental concentration to detection limit ratios were greatly enhanced by dry ashing of the biological materials. The concentrations of the elements in ashes were clearly above the values at which reliable analyses can be made. The method was applied to samples of spruce and pine. Due to the low ash content of the wood samples, the sensitivity of the method was radically improved. The detection limits for the five elements studied in spruce wood were in the range 0.014-2.5 mug g(-1). The set-up and the beam current used enabled simultaneous particle-induced X-ray emission spectrometry (PIXE) analyses, with the sensitivity optimised for heavier trace elements.

  10. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores. (United States)

    Akinyemi, S A; Akinlua, A; Gitari, W M; Khuse, N; Eze, P; Akinyeye, R O; Petrik, L F


    Some existing alternative applications of coal fly ash such as cement manufacturing; road construction; landfill; and concrete and waste stabilisation use fresh ash directly collected from coal-fired power generating stations. Thus, if the rate of usage continues, the demand for fresh ash for various applications will exceed supply and use of weathered dry disposed ash will become necessary alternative. As a result it's imperative to understand the chemistry and pH behaviour of some metals inherent in dry disposed fly ash. The bulk chemical composition as determined by XRF analysis showed that SiO2, Al2O3 and Fe2O3 were the major oxides in fresh ash and unsaturated weathered ashes. The unsaturated weathered ashes are relatively depleted in CaO, Fe2O3, TiO2, SiO2, Na2O and P2O5 due to dissolution and hydrolysis caused by chemical interaction with ingressing CO2 from the atmosphere and infiltrating rain water. Observed accumulations of Fe2O3, TiO2, CaO, K2O, Na2O and SO3 and Zn, Zr, Sr, Pb, Ni, Cr and Co in the lower layers indicate progressive downward movement through the ash dump though at a slow rate. The bulk mineralogy of unsaturated weathered dry disposed ash, as determined by XRD analysis, revealed quartz and mullite as the major crystalline phases; while anorthite, hematite, enstatite, lime, calcite, and mica were present as minor mineral phases. Pore water chemistry revealed a low concentration of readily soluble metals in unsaturated weathered ashes in comparison with fresh ash, which shows high leachability. This suggests that over time the precipitation of transient minor secondary mineral phases; such as calcite and mica might retard residual metal release from unsaturated weathered ash. Chloride and sulphate species of the water soluble extracts of weathered ash are at equilibrium with Na+ and K+; these demonstrate progressive leaching over time and become supersaturated at the base of unsaturated weathered ash. This suggests that the ash dump does not

  11. Properties of ceramics prepared using dry discharged waste to energy bottom ash dust. (United States)

    Bourtsalas, Athanasios; Vandeperre, Luc; Grimes, Sue; Themelis, Nicolas; Koralewska, Ralf; Cheeseman, Chris


    The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (ceramic tiles that have potential for use in a range of industrial applications.

  12. Drying Shrinkage Behaviour of Fibre Reinforced Concrete Incorporating Polyvinyl Alcohol Fibres and Fly Ash

    Directory of Open Access Journals (Sweden)

    Amin Noushini


    Full Text Available The current study assesses the drying shrinkage behaviour of polyvinyl alcohol fibre reinforced concrete (PVA-FRC containing short-length (6 mm and long-length (12 mm uncoated monofilament PVA fibres at 0.125%, 0.25%, 0.375%, and 0.5% volumetric fractions. Fly ash is also used as a partial replacement of Portland cement in all mixes. PVA-FRC mixes have been compared to length change of control concrete (devoid of fibres at 3 storage intervals: early-age (0–7 days, short-term (0–28 days, and long-term (28–112 days intervals. The shrinkage results of FRC and control concrete up to 112 days indicated that all PVA-FRC mixes exhibited higher drying shrinkage than control. The shrinkage exhibited by PVA-FRC mixes ranged from 449 to 480 microstrain, where this value was only 427 microstrain in the case of control. In addition, the longer fibres exhibited higher mass loss, thus potentially contributing to higher shrinkage.

  13. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed. (United States)

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang


    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  14. Dry ashing of organic rich matrices with palladium for the determination of arsenic using inductively coupled plasma-mass spectrometry. (United States)

    Sahayam, A C; Chaurasia, S C; Venkateswarlu, G


    A dry ashing procedure is developed for the determination of As in organic rich matrices such as wheat flour, lichen and tobacco leaves. The volatility of As during dry ashing is avoided by the addition of palladium nitrate [Pd(NO(3))(2)]. The recovery of both As(III) and As(V) is found to be near quantitative. The residue after dry ashing is dissolved in nitric acid (HNO(3)) and analysed by inductively coupled plasma-mass spectrometry (ICP-MS). The process blank and limit of detection (LOD) are 11 and 6.6 ng g(-1), respectively. The procedure is applied for the determination of As in certified reference materials namely wheat flour NIST SRM 1567a (National Institute of Standards and Technology Standard Reference Material), lichen BCR CRM 482 (Institute for Reference Materials, European Commission) and Virginia tobacco leaves CTA-VTL-2 (Poland Academy of Sciences). The results obtained by the present procedure are in good agreement with the certified values and also determined after complete dissolution of samples using closed microwave digestion.

  15. Effect of Fly Ash and Carbon Reinforcement on Dry Sliding Wear Behaviour of Red Mud

    Directory of Open Access Journals (Sweden)

    Harekrushna Sutar


    Full Text Available This paper explains the sliding wear performance of red mud, fly ash, and carbon composite coating on mild steel. The complex mixture of red mud, fly ash, and carbon is plasma sprayed at 9 kW operating power level. The coatings are examined to study the coating morphology, XRD phase transformation, wear rate, and wear morphology. Wear rate (in terms of cumulative mass loss with sliding time has been demonstrated in the study. At first pure red mud is plasma coated to observe the coating characteristics and then compounded with 20% carbon, 30% carbon, and 20% carbon + 30% fly ash, separately by weight and sliding wear test conducted using pin on disc wear tester. The trial was performed at fixed track diameter of 100 mm and at sliding speed of 100 rpm (0.523 m/s at a load of 30 N. The results are compared. Declined cumulative mass loss by inclusion of fly ash and carbon is seen. This might be due to augmented interfacial tension and dense film build-up at boundary layer.

  16. 干法脱硫灰制备石膏砂浆及其性能研究%Study on Preparation and Performance of Dry Desulphurized Ash

    Institute of Scientific and Technical Information of China (English)

    黄斌; 张毅; 李东旭


    本文主要从化学组成、矿物组成、颗粒形貌、颗粒分布四方面论述了干法脱硫灰的理化性能,研究了干法脱硫灰对石膏胶凝材料强度和凝结时间的影响,并利用脱硫灰制备石膏砂浆.结果表明,同种工艺不同机组不同时间段排放的干法脱硫灰性质差别较大,随着干法脱硫灰使石膏胶凝材料强度降低,凝结时间延长;经过对脱硫工艺的控制,干法脱硫灰能替代40%的煅烧脱硫石膏应用于石膏砂浆且性能稳定.%In this paper, the physical and chemical properties of dry desulphurized ash was reviewed through chemical composition, mineral composition, granule morphology, particle size distribution. The effect of dry desulphurized ash on the setting time and strength of gypsum binding material, and prepared gypsum mortars. The experimental results showed that, the dry desulphurized ash discharged in different time had different properties. With the increasing of dry desulphurized ash, the strength decreases, the setting time was prolonged, after the controlling of desulfurization process, dry desulphurized ash can replace 40% of FDG gypsum apply in gypsum mortar which have good properties.

  17. Dry? or Wet? Magma-Water Interaction during Minoan-Thera Eruption of Santorini depicted from 3D morphological analysis of Ashes (United States)

    Aydar, E.; Ecochard, E.; Çiner, A.; Fouache, E.


    Powerful and, catastrophic Minoan-Thera eruption of Santorini occurred at mid-second millennium BC (~3300 BP) produced totally 30 km3 DRE of tephras (Sigurdsson et al., 1990; Pyle, 1990). Magnitude of Minoan-Thera of Santorini Late Bronze Age eruption was estimated as 6 (Colossal) to 7(super colossal) corresponding to Plinian/Ultraplinian style activity according to Volcanic Explosivity Index (McCoy&Heiken,2000). During this one of the largest eruptions in the human history, vent properties and eruption dynamics have changed from dry plinian phase (first phase) to wet phreatomagmatic surges and to pyroclastic flows, comprising of four distinct phases. Convective eruption cloud formed in the first phase was under influence of westerly winds, according to numerous published papers, extending toward east-northeast-southeast, toward Black Sea, Turkey, Mediterannean Sea. We drilled Letoon Plain, southwestern coast of Turkey and cut 3 cm thick tephra deposit overlying an organic material-rich layer dated as 1612 BC (C14, AMS method), corresponding well to the age of Minoan-Thera eruption. The iron content of Minoan-Thera tephras (≥ 2%) is higher than Turkish tephras (in general 2 as polyhedron - multifractal unvesiculated glassy ashes. Meanwhile, blocky-equant ashes have SA/PA nature of the first phase of Minoan-Thera is not purely magmatic as it was classically claimed in most of the previous works.

  18. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control. (United States)

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija


    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  19. Nature of organo-mineral particles across density fractions in a volcanic-ash soil: air-drying and sonication effect (United States)

    Wagai, R.; Kajiura, M.; Shirato, Y.; Uchida, M.


    Interactions of plant- and microbially-derived organic matter with mineral phases exert significant controls on the stabilization of organic matter (OM) as well as other biogeochemical processes in soil. Density fractionation techniques have been successful in distinguishing soil organo-mineral particles of different degrees of microbial alteration, turnover rate of C, mineral associations. A major methodological difference among the density fractionation studies is the choice of sample pre-treatment. Presence or absence of sonication to disrupt and disperse soil particles and aggregates is a particularly important choice which could significantly alter the nature and distribution of organo-mineral particle and thus the resultant elemental concentration in each density fraction. Soil moisture condition (air-dry vs. field-moist) may also have strong impact especially for soils rich in Fe oxides/hydroxides and/or poorly-crystalline minerals that are prone for (possibly irreversible) aggregation. We thus tested these two effects on the concentration and distribution of C, N, and extractable phases of Fe and Al (by pyrophosphate and acid oxalate) across six density fractions (from 2.5 g/cm^3) using a surface-horizon of volcanic-ash soil which contained large amounts of poorly-crystalline minerals and organo-metal complexes. Compared to field-moist sample, air-drying had little effects on the elemental concentration or distribution across the fractions. In contrast, sonication on air-dried sample at each density cutoff during fractionation process caused significant changes. In addition to well-known increase in low-density material due to the liberation of plant detritus upon aggregate disruption, we found clear increase in C, N, and metals in 2.0-2.3 g/cm^3 fraction, which was largely compensated by the reduction in 1.8-2.0 g/cm^3 and, to a less extent, 2.3-2.5 g/cm^3 particles. Overall, sonication led to the redistribution of C and N by 15-20% and that of poorly

  20. 粉煤灰对C50高性能混凝土干缩的影响%Effect of Fly ash on Dry Shrinkage of C50 High-Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    葛艳军; 王文林


      研究了粉煤灰掺量对C50高性能混凝土HPC工作性、抗压强度以及干缩的影响。试验结果表明:粉煤灰掺量在10%~20%范围内,提高了混凝土的工作性能、后期抗压强度,降低了混凝土的干缩值。%  This paper studied the impact of fly ash on the workability, compressive strength and dry shrinkage of C50 high-performance concrete. The results showed that the performance of the concrete and its late compressive strength were improved, the drying shrinkage value reduced when fly ash was mixed with 10%-20%.

  1. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.


    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  2. 干式排渣在大型电站锅炉上的运行特性分析%Operating Characteristic Analysis of Dry Bottom Ash Handling System on Power Station Boiler

    Institute of Scientific and Technical Information of China (English)

    董信光; 李洪涛; 冷成岗; 李德功


    Comparing to the discharging slag by water, the dry bottom ash handling system has many advantages such as simple structure, water conserving, more useful. When the bottom ash system has been changed from water mode to dry mode, the operating characteristics of boiler will be varied, which is analyzed and optimized in detailed. Positive and negative impacts are found, which can be referred when the bottom ash system revised and boiler operating.%和水力除渣方式相比,干式排渣有结构简单、节水、干渣经济价值高等优点。将原水力除渣改为干式排渣后,锅炉的运行特性会发生变化,通过对干式排渣运行特性的全面分析和优化,找出积极因素和负面影响,为除渣系统的改造和运行提供参考。

  3. 干、湿式除渣系统对锅炉效率影响的研究%Study on the Impact of Dry and Wet Bottom Ash Handling Systems on Boiler Efficiency

    Institute of Scientific and Technical Information of China (English)

    许华; 张华伦; 王仕能; 党楠


    So far the impacts of air-cooling dry-type bottom ash handling system on boiler efficiency are still controversial and very few authoritative conclusions have been drawn.After three years' research on the system,the mathematical models including boiler efficiency and cooling air volume are established.Combining with the tests conducted in two 1 000-MW boilers of one power plant,it is concluded that the dry-type bottom ash handling system does have impacts on boiler combustion and lower the boiler efficiency under most circumstances.In addition,the impacts of the dry-type bottom ash handling system are greater than those of the wet-type system.The easy-cooking coal is not a suitable choice for the boilers with dry-type system.If the coal quality of the power plant fluctuates drastically,it is critical to choose the dry-type system meticulously.%风冷干式除渣系统对锅炉效率的影响目前尚存争议,缺少权威定论.通过为期3年的对干式除渣系统的研究,建立了锅炉效率、炉渣冷却风量等参数的数学模型,坐合对某电厂1000MW锅炉干式除渣系统的运行测试,得出干式除渣系统在多数情况下影响锅炉燃烧、降低锅炉效率;干式除渣系统比湿式除渣系统对锅炉燃烧及效率的影响更大;易结焦煤不宜采用干式除渣系统;当电厂燃煤煤质变化较大时,应慎重采用干式除渣系统等结论.

  4. Research and the Application of Large-capacity Dry Ash Extractor and Its Key Equipment%大容量干式排渣机及其关键设备的研究与应用

    Institute of Scientific and Technical Information of China (English)

    王启杰; 李久锋


    结合山西大唐国际运城发电厂干式排渣机的应用,从如何提高锅炉底渣的冷却效果及设备的安全性两方面出发,阐述了大容量干式排渣机及其关键设备的研制情况,经现场测试该设备各项运行参数达到并超过了设计值,对火电厂燃煤煤质适应性较强。%Based on the operation situation of dry ash extractor in Shanxi Datang International Yuncheng Power Plant,this paper elaborates the development of large-capacity dry ash extractor and its key equipment proceeding from the aspects of how to improve the cooling effect of boiler bottom slag and improve the equipment security. Through test in actual operation,each operation parameter of the equipment is verified to be superior than the designed standard.

  5. 干式排渣系统网条生产设备的研制%Development of Steel Net Strip Producing Equipment in Dry Bottom Ash Handling System

    Institute of Scientific and Technical Information of China (English)



    Stainless steel net strip is the key components of dry bottom ash handling system,usually be cold manufactured by the stainless steel wire of the greater tensile strength,the process is complex,the forming is difficult and in the same time,there is not the professional production equipment interiorly for manufacturing such products.We developed the net strip winding machine for the engineering demand of dry bottom ash handling system.The net strip product,manufactured through this equipment,has been well validated in engineering practice,this equipment fill a domestic gap in the field,with the great value of development and application.%网条是干式排渣系统的关键零部件,通常采用抗拉强度较大的不锈钢丝冷加工而成,其加工工艺复杂,成形难度大,而目前国内尚无此类产品的专业生产设备.针对干式排渣系统的工程需求,研制了网条绕制机.该设备绕制的网条产品在工程实践中得到了很好的验证,填补了该领域的国内空白,具有广泛的应用与开发价值.

  6. Zooplankton biomass (displacement volume, dry mass, ash-free dry mass) data collected in Eastern Central Atlantic during CIPREA project from 1978-07-25 to 1978-09-12 by France (NODC Accession 0070783) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume, dry mass, and ashfree dry mass) data collected in Eastern Central Atlantic during CIPREA project in Jul - Sep 1978 by...

  7. Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment. (United States)

    Sharma, Atul Prakash; Tripathi, B D


    The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coal mines and six thermal power stations that generate about 7,500 MW (about 10% of India's installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.

  8. Radioactivity of wood ash; Puun tuhkan radioaktiivisuus

    Energy Technology Data Exchange (ETDEWEB)

    Rantavaara, A.; Moring, M


    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg{sup -1}, in decreasing order: {sup 137}Cs, {sup 40}K, {sup 90}Sr, {sup 210}Pb,{sup 226}Ra, {sup 232}Th, {sup 134}Cs, {sup 235}U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and {sup 210}Pb was hardly detectable. The NH{sub 4}Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  9. Volcanic ash impacts on critical infrastructure (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.


    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  10. Element budgets of forest biomass combustion and ash fertilisation - a Danish case-study

    DEFF Research Database (Denmark)

    Ingerslev, Morten; Skov, Simon; Sevel, Lisbeth;


    Harvest of forest biomass for energy production may lead to a significant export of nutrients from the forest. Ash spreading and recycling of nutrients from wood chip combustion to the forest has come into focus as a means for counteracting the nutrient export. This study was carried out to examine...... the retention of various elements in the different ash fractions and utilise the nutrient recovery to evaluate the fertiliser quality of the examined ash. The mass and element flux of wood chips, bottom ash, cyclone fly ash and condensation sludge at Ebeltoft central heating plant was studied over a four day...... period in spring 2005. On average, 19 ton wood chips (dry weight) were combusted each day. The combustion of the wood chips produced 0.70% ash and sludge (dry weight). The ash and sludge dry matter was distributed as 81% fly ash, 16% bottom and residual grate ash and 3% sludge solid phase. Substantial...

  11. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, S.; Laurens, L. M. L.


    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  12. Study on Mechanism of Influence of Fly Ash on the Dry Shrinkage and Wet Swelling of Hardened Cement%粉煤灰对硬化水泥石干缩湿胀行为影响的机理研究

    Institute of Scientific and Technical Information of China (English)

    张承志; 尹利影; 王爱勤


    The influence of fly ash addition on the dry shrinkage process and the wet swelling process of hardened cement under the different curing age are studied by tests. The result shows that it is inconsistent to the influences of the different content of fly ash on the dry shrinkage process of hardened cement, and to the influences of the content of fly ash on the wet swelling process of the dried hardened cement when it is reputed into water. From thermal analysis of water' s distribution under different conditions, according to the results of shrinkage deformation, the mechanism of the fly ash on the shrinkage deformation of hardened cement is explored.%通过试验研究在不同预养护龄期时,粉煤灰掺量对硬化水泥石干燥收缩过程和吸水膨胀过程的影响.结果表明,粉煤灰掺量不同时对硬化水泥石干燥收缩过程的影响是不一致的,将干燥后的硬化水泥石重新放入水中后,粉煤灰掺量对硬化水泥石的吸水膨胀过程的影响也是不一致的.通过热分析研究不同情况下水的分布,并将此与干缩变形试验的结果相结合,探讨了粉煤灰对硬化水泥石干缩变形的影响机理.

  13. Volcanic Ash fall Impact on Vegetation, Colima 2005 (United States)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.


    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  14. Wood ash used as partly sand and/or cement replacement in mortar

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Esben Østergaard; Jensen, Pernille Erland;


    Wood ash (WA) is the residue generated during incineration of wood and wood products. The WAs in focus of this work are from incineration of virgin wood. Physical and chemical properties of WA vary significantly depending on many factors related to the wood species and the incineration process...... from the differences in ash characteristics to the properties of the mortar samples. The characteristics of the ashes did vary considerably. For example, one ash had very high loss on ignition (LoI) of 14% compared to 3% for the other ashes. Ash solubility in water ranged from 18% to 28%. Two...... of the ashes were dry and sampled just after the incineration, whereas one ash had a water content of 15%, because the ash was sprayed with water to avoid dust during ash handling at the incineration plant. Regardless of replacing cement or sand with WAs, the compressive strength decreased compared...

  15. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions (United States)

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.


    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  16. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)


    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  17. Electrodialytic removal of cadmium from straw combustion fly ash

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Villumsen, Arne


    Fly ash from straw combustion contains valuable nutrients when returned to agricultural soils. In many instances, however, this fly ash may contain heavy metals, such as cadmium, at levels which often exceed the limits given by the Danish legislation. Thus before utilizing the nutrients, cadmium...... must be removed from these ashes. The use of an electrodialytic remediation method to remove cadmium from fly ash arising from straw combustion and containing 11.2 mg Cd kg$+-1$/ DM (dry matter) was accessed. After 36 days of remediation at a constant current density of 5.6 mA cm$+-2$/ more than 97...

  18. [Ash Meadows Purchase Proposal (United States)

    US Fish and Wildlife Service, Department of the Interior — A proposal sent to the Richard King Mellon Foundation for a loan to fund the purchase of Ash Meadows by the Nature Conservancy. Ash Meadows, set outside of Las Vegas...

  19. Effect of refractory agent on ash fusibility temperatures of briquette

    Institute of Scientific and Technical Information of China (English)

    Guo-xing CUI; Kui HUANG; Ming-sui LIN


    To solve the problem of the low ash fusion point of briquette,this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash,which will create favorable conditions for moving bed continuous gasification of briquette with oxygen-rich air.The effects of Al2O3,SiO2,kaolin,dry powder and bentonite on ash fusibility temperatures were studied,based upon the relationship between briquette ash components and ash fusibility.The results show that the increasing of ash fusibility temperatures by adding the same amount (11%,w)of refractory agents follows the sequence of SiO2,bentonite,dry powder,kaolin,Al2O3,with the softening temperatures beingelevated by 37.2,57.6,60.4,82.6 and 104.4 ℃.With the same ratio of SiO2/Al2O3 in briquette,adding the Al2O3 component is more effective than SiO2 for raising ash fusibility temperatures.In this paper,inexpensive kaolin and bentonite rich in Al2O3 are found to be better refractory agents,and the suitable adding quantities are 9% and 11%,respectively.

  20. Risk assessment of replacing conventional P fertilizers with biomass ash

    DEFF Research Database (Denmark)

    Cruz Paredes, Carla; Lopez Garcia, Alvaro; Rubæk, Gitte H.;


    Reutilizing biomass ashes in agriculture can substitute inputs of P from finite primary sources. However, recycling of ashes is disputed due to their content of toxic substances such as heavy metals. This study evaluates the potential risk of replacing easily soluble inorganic P fertilizer with P...... application, grain, straw and root dry matter yield, and P and Cd uptake were determined. Resin-extractable P was measured in soil and the symbiotic arbuscular mycorrhizal fungal activity, colonization, and community composition were assessed. Crop yield was not affected by ash application, while P......-uptake and mycorrhizal status were slightly enhanced with high ash applications. Changes to the mycorrhizal community composition were evident with high ash doses. Cadmium uptake in aboveground plant tissue was unaffected by ash treatments, but increased in roots with increasing doses. Consequently, we conclude...

  1. Flue gas desulfurization gypsum and fly ash

    Energy Technology Data Exchange (ETDEWEB)


    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  2. Fly ash carbon passivation (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G


    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  3. Dry Eye (United States)

    ... Eye > Facts About Dry Eye Facts About Dry Eye This information was developed by the National Eye ... the best person to answer specific questions. Dry Eye Defined What is dry eye? Dry eye occurs ...

  4. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt;


    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  5. Potential fly-ash utilization in agriculture: A global review

    Institute of Scientific and Technical Information of China (English)

    Manisha Basu; Manish Pande; P.B.S. Bhadoria; S.C. Mahapatra


    Though in last four decades various alternate energy sources have come into the limelight, the hyperbolic use of coal as a prime energy source cannot be counterbalanced. Disposal of high amount of fly-ash from thermal power plants absorbs huge amount of water, energy and land area by ash ponds. In order to meet the growing energy demand, various environmental, economic and social problems associated with the disposal of fly-ash would continue to increase. Therefore, fly-ash management would remain a great concern of the century. Fly-ash has great potentiality in agriculture due to its efficacy in modification of soil health and crop performance. The high concentration of elements (K, Na, Zn, Ca, Mg and Fe) in fly-ash increases the yield of many agricultural crops. But compared to other sectors, the use of fly-ash in agriculture is limited. An exhaustive review of numerous studies of last four decades took place in this paper, which systematically covers the importance, scope and apprehension regarding utilization of fly-ash in agriculture. The authors concluded that though studies have established some solutions to handle the problems of radioactivity and heavy metal content in flyash, long-term confirmatory research and demonstration are necessary. This paper also identified some areas, like proper handling of dry ash in plants as well as in fields, ash pond management (i.e., faster decantation, recycling of water, vertical expansion rather than horizontal), monitoring of soil health, crop quality, and fate of fly-ash in time domain, where research thrust is required. Agricultural lime application contributes to global warming as Intergovernmental Panel on Climate Change (IPCC) assumes that all the carbon in agricultural lime is finally released as CO2to the atmosphere. It is expected that use of fly-ash instead of lime in agriculture can reduce net CO2emission, thus reduce global warming also.

  6. Research on Existing Pattern of Carbon and Its Removal from Fly Ash

    Institute of Scientific and Technical Information of China (English)

    杨玉芬; 章新喜; 陈清如


    Flyash is a fine and dispersed powder discharged from power station a fter the coal being burned. With the deepening of people's recognition about the pollution problem of fly ash, the ways of utilizing fly ash are gradually incre asing. Utilizing value of fly ash is closely related to the unburned carbon cont ent.On the basis of analysis of modern testing method,a fundamental thinking I stheoretically posed for decreasing unburned carbon content from fly ash by a d ry removing carbon technology. The triboelectric separation method shown that the above-mentioned thinking of dry removing carbon from fly ash is practical.

  7. Self-healing ability of fly ash-cement systems

    Energy Technology Data Exchange (ETDEWEB)

    Pipat Termkhajornkit; Toyoharu Nawa; Yoichi Yamashiro; Toshiki Saito [Lafarge Research Centre, Quentin Fallavier (France). Reactive Components Department


    Concrete is susceptible to cracking due to both autogenous and drying shrinkage. Nevertheless, most of these types of cracks occur before 28 days. Because fly ash continues to hydrate after 28 days, it is likely that hydrated products from fly ash may modify microstructure, seal these cracks, and prolong the service life. This research investigates the self-healing ability of fly ash-cement paste. Compressive strength, porosity, chloride diffusion coefficients, hydration reactions and hydrated products were studied. The research focuses on behavior after 28 days. According to the experimental results, the fly ash-cement system has the self-healing ability for cracks that occur from shrinkage. The self-healing ability increased when the fraction of fly ash increased.

  8. Trace elements in coal ash (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.


    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  9. Stabilization of Expansive Soil by Lime and Fly Ash

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-ru; CAO Xing


    An experimental program was undertaken to study the individual and admixed effects of lime and fly ash on the geotechnical characteristics of expansive soil. Lime and fly ash were added to the expansive soil at 4% -6% and 40% - 50% by dry weight of soil, respectively. Testing specimens were determined and examined in chemical composition, grain size distribution, consistency limits, compaction, CBR ,free swell and swell capacity. The effect of lime and fly ash addition on reducing the swelling potential of an expansive soil is presented.It is revealed that a change of expansive soil texture takes place when lime and fly ash are mixed with expansive soil. Plastic limit increases by mixing lime and liquid limit decreases by mixing fly ash, which decreases plasticity index. As the amount of lime and fly ash is increased, there are an apparent reduction in maximum dry density,free swell and swelling capacity under 50 kPa pressure, and a corresponding increase in the percentage of coarse particles, optimum moisture content and CBR value. Based on the results, it can be concluded that the expansive soil can be successfully stabilized by lime and fly ash.

  10. Feasibility study on solidification of municipal solid waste incinerator fly ash with circulating fluidized bed combustion coal fly ash. (United States)

    Liu, Wenshi; Hou, Haobo; Zhang, Chuhao; Zhang, Dajie


    The objective of this study was to assess the feasibility of solidification of municipal solid waste incinerator (MSWI) fly ash with circulation fluidized bed combustion (CFBC) fly ash, which is unsuitable as a cement replacement due to its high amounts of carbon, lime and anhydrite. The solidification process was conducted on samples prepared from MSWI fly ash, binders (cement clinkers and CFBC fly ash were mixed at two replacement ratios) and water (water/solid weight ratio = 0.4), among which the MSWI fly ash replaced each binder at the ratio of 0, 20, 40, 60 and 80% by dry weight. The samples were subjected to compressive strength tests and Toxicity Characteristic Leaching Procedure and the results showed that all solidified MSWI fly ash can meet the landfill standard imposed by US EPA after 28 days of curing. Micro-analysis (X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectrophotometry) revealed that the main hydrate products were C-S-H gel and ettringite, which have a positive effect on heavy metals retention. Therefore, this method provides a possibility to achieve a cheap and effective solution for MSWI fly ash management and use for CFBC fly ash.

  11. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, C.T.


    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  12. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug


    obtained during coal/straw co-firing, substantive sintering strength was observed to build up in the ashes below the melting onset. The strength obtained was thus assumed to be due to viscous flow sintering, and the sintering onset was for the four ashes investigated simultaneous to a calculated ash......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...

  13. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)


    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  14. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit


    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  15. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang;


    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  16. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard


    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...... analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  17. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. (United States)

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi


    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production.

  18. To fractionate municipal solid waste incineration bottom ash: Key for utilisation? (United States)

    Sormunen, Laura Annika; Rantsi, Riina


    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland.

  19. UFA水泥基材料早期自收缩与干燥收缩研究%Early autogenous shrinkage and dry shrinkage of cement based materials containing ultra-fine fly ash

    Institute of Scientific and Technical Information of China (English)

    高英力; 周士琼; 马保国


    低水胶比条件下水泥基材料的自收缩率已超过干燥收缩率成为导致混凝土过早开裂的隐患.以超细粉煤灰(ultra-fine fly ash,UFA)等量取代水泥20%~40%,配制了UFA水泥基复合胶凝材料,分别对固定水胶比和变水胶比两种情况下的UFA水泥砂浆早期(7 d前)自收缩变形和干燥收缩变形进行试验研究.结果表明,在固定水胶比条件下,砂浆的自收缩率随UFA掺量增加递减,而干缩率却随之增大;在变水胶比条件下,砂浆的自收缩率随水胶比的增加递减,干缩率随之增大.且回归分析表明两种情况下砂浆的自收缩及干燥收缩变形均表现出较好的线性相关;UFA对水泥基材料改性作用明显,在保持相同流动度条件下,UFA的掺入可有效降低用水量,早期及后期强度能赶上甚至超过基准水泥胶砂,弥补了UFA早期不水化所引发的早期强度低缺陷;微观测试表明,UFA在水泥基材料中起到了较好的密实填充、减水分散及增强作用.

  20. MAT 126 ASH Course Tutorial / Tutorialoutlet




    For more course tutorials visit   MAT 126 Week 1 DQ 1 (Ash) MAT 126 Week 1 Quiz (Ash) MAT 126 Week 1 Written Assignment (Arithmetic and geometric sequence) (Ash) MAT 126 Week 2 DQ 1 (Ash) MAT 126 Week 2 DQ 2 (Ash) MAT 126 Week 2 Assignment Is It Fat Free (Ash) MAT 126 Week 2 Quiz (Ash) MAT 126 Week 3 DQ 1 (Ash) MAT 126 Week 3 DQ 2 (Ash) MAT 126 Week 3 Assignment Quadratic Equations (Ash) MAT 126 Week 3 Quiz (Ash) MAT 126...

  1. MGT 330 ASH Course Tutorial / Tutorialoutlet




    For more course tutorials visit   MGT 330 Week 1 Individual Assignment Functions of Management Paper (Ash) MGT 330 Week 1 DQ 1 (Ash) MGT 330 Week 1 DQ 2 (Ash) MGT 330 Week 1 DQ 3 (Ash) MGT 330 Week 1 Summary (Ash) MGT 330 Week 2 Team Assignment External Internal Factors Paper (Ash) MGT 330 Week 2 Individual Assignment Delegation (Ash) MGT 330 Week 2 Summary (Ash) MGT 330 Week 2 DQ 1 (Ash) MGT 330 Week 2 DQ 2 (Ash) MGT 330 W...

  2. Particle morphologies and formation mechanisms of fine volcanic ash aerosol collected from the 2006 eruption of Augustine Volcano, Alaska (United States)

    Rinkleff, P. G.; Cahill, C. F.


    Fine volcanic ash aerosol (35-0.09um) erupted in 2006 by Augustine Volcano, southwest of Anchorage, Alaska was collected by a DRUM cascade impactor and analyzed by scanning electron microscopy for individual particle chemistry and morphology. Results of these analyses show ash particles occur as either individual glass shard and mineral phase (plagioclase, magnetite, ilmenite, hornblende, etc.) particles or aggregates thereof. Individual glass shard ash particles are angular, uniformly-sized, consist of calc-alkaline whole-rock elements (Si, Al, Fe, Na, and Ca) and are not collocated on the sample media with non-silicate, Cl and S bearing sea salt particles. Aggregate particles occur as two types: pure ash aggregates and sea salt-cored aggregates. Pure ash aggregates are made up of only ash particles and contain no other constituents. Sea salt-cored aggregates are ash particles commingled with sea salts. Determining the formation processes of the different ash particle types need further investigation but some possibilities are proposed here. Individual ash particles may exist when the ambient air is generally dry, little electrical charge exists on ash particles, the eruptive cloud is generally dry, or the number of individual particles exceeds the scavenging capacity of the water droplets present. Another possibility is that ash aggregates may break apart as relative humidity drops over time and causes ash-laden water droplets to evaporate and subsequently break apart. Pure ash aggregates may form when the ambient air and plume is relatively dry but the ash has a significant charge to cause ash to aggregate. Or they could form during long-range transport when turbulent or Brownian motion can cause ash particles to collide and coagulate. Pure ash aggregates could also form as a result of water droplet scavenging and subsequent evaporation of water droplets, leaving behind only ash. In this case, droplets would not have interacted with a sea salt

  3. Evaluation of cocomposted coal fly ash on dynamics of microbial populations and heavy metal uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vallini, G.; Vaccari, F.; Pera, A.; Agnolucci, M.; Scatena, S.; Varallo, G. [University of Verona, Verona (Italy). Science and Technology Dept.


    Vicia faba, in a pot experiment with sandy and clayey soils under greenhouse conditions, was checked for growth response to different amendments with coal alkaline fly ash or cocomposted fly ash mixed with lignocellulosic residues. Soil microbial populations, pH and electrical conductivity as well as heavy metal uptake by plants were monitored. At rates of five and ten percent (on a dry matter basis) in both soils, neither fly ash alone nor cocomposted fly ash exerted any negative effect. Plant biomass production was not influenced in either clayey or sandy soil. Alkaline fly ash did not promote microbial growth when applied alone to the soils. However, cocomposted fly ash generally increased bacterial and actinomycetes counts in both soils. Fungi were not affected by ash. Due to the increase of soil pH by alkaline fly ash or cocomposted fly ash, plant uptake of heavy metals was depressed in the sandy soil. Heavy metal mobility did not cause change in the clayey soil where a high buffering capacity mitigated the effects of fly ash amendments.

  4. Ash dust co-centration in the vicinity of the ash disposal site depending on the size of the pond (“Water Mirror”

    Directory of Open Access Journals (Sweden)

    Zoran Gršić


    Full Text Available Thermal power plants Nikola Tesla “A” and “B” are large sources of ash from their ashes/slag deposit sites. Total sizes of ashes/slag depots are 600ha and 382ha, with active cassettes having dimensions ∼200 ha and ∼130 ha. The active cassettes of the disposal sites are covered by rather large waste ponds, the sizes of vary depending on the working condition of a sluice system and on meteorological conditions. Modeling of ash lifting was attempted using results from the dust lifting research. The relation between sizes of ponds and air dust concentration in the vicinity of ash disposal sites was analyzed. As expected, greater sizes of dried disposal site surfaces in combination with stronger winds gave greater dust emission and greater air dust concentration.

  5. Photosynthetic pigment concentrations, gas exchange and vegetative growth for selected monocots and dicots treated with two contrasting coal fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Yunusa, I.A.M.; Burchett, M.D.; Manoharan, V.; DeSilva, D.L.; Eamus, D.; Skilbeck, C.G. [University of Technology Sydney, Sydney, NSW (Australia). Dept. of Environmental Science


    There is uncertainty as to the rates of coal fly ash needed for optimum physiological processes and growth. In the current study we tested the hyothesis that photosynthetic pigments concentrations and CO{sub 2} assimilation (A) are more sensitive than dry weights in plants grown on media amended with coal fly ash. We applied the Terrestrial Plant Growth Test (Guideline 208) protocols of the Organization for Economic Cooperation and Development (OECD) to monocots (barley (Hordeum vulgare) and ryegrass (Secale cereale)) and dicots (canola (Brasica napus), radish (Raphanus sativus), field peas (Pisum sativum), and lucerne (Medicago sativa)) on media amended with fly ashes derived from semi-bituminous (gray ash) or lignite (red ash) coals at rates of 0, 2.5, 5.0, 10, or 20 Mg ha(-1). The red ash had higher elemental concentrations and salinity than the gray ash. Fly ash addition had no significant effect on germination by any of the six species. At moderate rates ({<=}10 Mg ha{sup -1}) both ashes increased (P < 0.05) growth rates and concentrations of chlorophylls a and b, but reduced carotenoid concentrations. Addition of either ash increased A in radish and transpiration in barley. Growth rates and final dry weights were reduced for all of the six test species when addition rates exceeded 10 Mg ha{sup -1} for gray ash and 5 Mg ha{sup -1} for red ash. We concluded that plant dry weights, rather than pigment concentrations and/or instantaneous rates of photosynthesis, are more consistent for assessing subsequent growth in plants supplied with fly ash.

  6. Volcanic ash melting under conditions relevant to ash turbine interactions. (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B


    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  7. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman


    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  8. Evaluation of Changes in Index Properties of Lateritic Soil Stabilized with Fly Ash

    Directory of Open Access Journals (Sweden)

    Agapitus AMADI


    Full Text Available For soils to be suitable in civil engineering projects, they must meet existing local requirements for index properties in addition to certain strength criteria. Typically, specifications limit these properties to some threshold values which in most cases are project specific. Some lateritic soils in their natural state need some treatment/modification to meet these specification requirements. The objective of this study was to evaluate changes in the index properties (i.e., particle size distribution, Atterberg limits and compaction characteristics of a residually derived lateritic soil following fly ash application. Lateritic soil – fly ash mixtures with up to 20% fly ash by dry weight of soil were tested and specimens for compaction characteristics were prepared at different compaction states (optimum, dry and wet of optimum moisture content and compacted using British Standard Light (BSL compactive effort. While soil – fly ash mixtures containing up to 15% fly ash classify as CL according to USCS classification system and plotted above A-line in the plasticity chart, it was observed that changes in the gradation characteristics of soil sample treated with 20% fly ash resulted in the alteration of its classification to ML as well as the crossing of the A- line to the silty region. The liquid limit (LL varied from 42.2 to 29.53% representing 70% reduction while the plasticity index (PI of specimen treated with 20% fly ash was 16% lower than that of natural soil. The optimum moisture content (OMC ranged from 17.36% for the natural soil to 18.34% for soil mixtures containing 20% fly ash which yielded dry unit weight of 17.2kN/m3 for the natural soil and 16.1kN/m3 for samples treated with 20% fly ash. From the study, useful data were obtained showing substantial and desirable changes in the properties of lateritic soil as a civil engineering material on application of fly ash.

  9. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes (United States)

    Liu, E. J.; Cashman, K. V.; Rust, A.


    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  10. MGT 401 ASH Course Tutorial / Tutorialoutlet




    For more course tutorials visit   MGT 401 Week 1 Individual Assignment Strategic Management Process Paper (Ash) MGT 401 Week 1 Class Activity Week 1 (Ash) MGT 401 Week 1 DQ 1 (Ash) MGT 401 Week 1 DQ 2 (Ash) MGT 401 Week 2 Learning Team Business Model Comparison Example (Ash) MGT 401 Week 2 DQ 1 (Ash) MGT 401 Week 2 DQ 2 (Ash) MGT 401 Week 2 Class Activity (Ash) MGT 401 Week 3 Individual Assignment Business Plan Evaluation (Ash) ...

  11. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.


    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  12. Ash in the Soil System (United States)

    Pereira, P.


    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  13. Electrodialytic treatment of fly ash

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Pedersen, Anne Juul; Kirkelund, Gunvor Marie;

    Heavy metals are removed from the fly ashes by an electrodialytic treatment with the aim of up-grading the ashes for reuse in stead of disposal in landfill.A great potential for upgrading of bio- and waste incineration ashes by electrodialytic treatment exists. In the future, the applicability...... of the treated products for reuse in construction or farming sectors should be explored further, as should the possibility of recycling of valuable, extracted elements in the metallurgical industry....

  14. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    S C Raghavendra; R L Raibagkar; A B Kulkarni


    This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).

  15. Ash Aggregates in Proximal Settings (United States)

    Porritt, L. A.; Russell, K.


    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (sustained plume attended by concomitant production of pyroclastic density currents. The size and internal structure of the armoured lapilli provide constraints on the nature of the initial explosive phase of eruption at Kima'Kho. Their proximity to the vent also indicates rapid aggregation within the eruption plume. Within both sequences rapid aggregation of ash particles occurred in proximity to the vent. However, the conditions were substantially different leading to the production of armoured

  16. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash. (United States)

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki


    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size ash-water reactions and formation of the quench product in the bottom ash was proposed.

  17. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    Directory of Open Access Journals (Sweden)

    A. Kylling


    Full Text Available The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  18. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles (United States)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.


    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  19. Influence of Bed Ash and Fly Ash Replacement in Mortars

    Directory of Open Access Journals (Sweden)

    S. L. Summoogum-Utchanah


    Full Text Available The study evaluates the influence of fly ash and bottom ash as partial cement substitutes in mortars by studying the particle size distribution, consistency, flow, fresh density, air content, compressive strength and flexural strength characteristics. The results revealed that fly ash and cement had relatively the same particle size distribution unlike bottom ash. In the fresh state, as the amount of pozzolans increased in the mixtures, the mortars showed an enhancement in workability, were susceptible to water loss by bleeding, and exhibited a decline in fresh density. The early strength gains of the fly ash samples were low but reached higher than the control after 28 days of curing. The flexural strength increased as the fly ash content rose to reach a maximum at 20 % replacement. However, the 2-day compressive strength of bottom ash samples was higher than the control but decreased after 28 days of curing while the flexural strength declined with addition of bottom ash except at 5 % substitution.

  20. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)


    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  1. Influence of Compactive Effort on Bagasse Ash with Cement Treated Lateritic Soil

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullahi MU'AZU


    Full Text Available The result of a laboratory study on the influence of British Standard Light (BSL, West African Standard (WAS and British Standard Heavy (BSH compactive effort on up to 8% bagasse ash content with up to 4% cement treated lateritic soil on compaction and shear strength characteristic of laterite. The result shows decreased in Maximum Dry Density with increased in bagasse ash content and in shear strength properties there was decreased in cohesion and an increased in angle internal friction. The decreased was greater with higher bagasse ash content. However, as compactive effort increased from BSL, WAS and BSH, the value of MDD increased and OMC decreased as a result of flocculation and agglomeration of clay particle occupying larger space with a corresponding drop in dry density and because of extra water required for the pozzalanic reaction of bagasse ash and hydration of cement respectively.

  2. Controlled release from bio ash spread on forest soils; Styrd utlakning ur bioaska som sprids i skogsmark

    Energy Technology Data Exchange (ETDEWEB)

    Fjaellberg, Leif; Lagerblad, Bjoern; Moosberg Bustnes, Helena [Swedish Cement and Concrete Research Inst., Stockholm (Sweden); Bjurstroem, Henrik [AaF-Process AB, Stockholm (Sweden)


    In order to minimize the costs for forestry, recycling ashes from biofuels should be done on freshly logged locations. A condition is that the ash that is spread on forest soils is well stabilized, with a negligible leakage of nutrients during a few years. However, these nutrients should be released when vegetation can take them up, about 15 years after replanting. In this report are presented the results of a prestudy on the possibilities to stabilize ash and to coat ash pellets with a protective layer that provides the desired delay in leaching. The chemistry of ashes is complex and similar to that of cement. In this prestudy, we tried to utilize the ash chemistry and investigated the balance between calcium oxide and silicon dioxide as well as its effect on cementing properties. The hypothesis is that by combining different ashes and/or by adding components a more stable product that is less prone to leaching may be obtained. Alkali such as potassium salts could be immobilized in silicates. Samples of ca 10 ashes were collected from plants in order to create a variety of compositions. The ashes have been characterized with regard to chemical and mineralogical composition, particle size distribution. Their binding properties have been investigated. Ashes from fluidized bed combusters bonded best and fastest. The results would have been clearer if most ashes had not been slaked when they reached the laboratory, although they were taken out dry from the plants. Some weakly bonding ashes were mixed with strongly bonding ashes, and with silica fume in one experiment. The weak ashes could be stabilized to a product with a satisfactory compressive strength. The mineralogy of the hydrated ashes was studied. Several leaching tests were performed: by mixing an ash yielding high concentration of salts in the leachate with an ash yielding low concentrations a halving of the concentration could be obtained. Silica fume yielded similar results. Attempts to coat ash pellets

  3. HIS 103 ASH course tutorial/tutorialoutlet


    NARESH 1


    For more course tutorials visit   HIS 103 Week 1 DQ 1 (Transition to Agriculture) (Ash) HIS 103 Week 1 DQ 2 (Early Complex Societies) (Ash) HIS 103 Week 1 Quiz (Ash) HIS 103 Week 1 Assignment (Ash) HIS 103 Week 2 Assignment Greco Roman Influence Paper (Ash) HIS 103 Week 2 DQ 1 Chinese Social and Political Order Systems (Ash) HIS 103 Week 2 DQ 2 Caste System (Ash) HIS 103 Week 2 Quiz (Ash) HIS 103 Week 3 Assignment Black Death Dra...

  4. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard


    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  5. Emerald Ash Borer (Coleoptera: Buprestidae) (United States)

    The emerald ash borer, Agrilus planipennis Fairmaire, is an invasive beetle from Asia that has caused large scale ash (Fraxinus spp.) mortality in North America. This book chapter reviews the taxonomy, biology, life history of this invasive pest and its associated natural enemies in both its native ...

  6. The Effects of Eggshell Ash on Strength Properties of Cement-stabilized Lateritic

    Directory of Open Access Journals (Sweden)

    Okonkwo U. N


    Full Text Available Eggshell ash obtained by incinerating Fowls’ eggshells to ash has been established to be a good accelerator for cement-bound materials and this would be useful for road construction work at the peak of rainy seasons for reducing setting time of stabilized road pavements. However this should be achieved not at the expense of other vital properties of the stabilized matrix. This is part of the effort in adding value to agricultural materials which probably cause disposal problems. Thus this study aimed at determining the effect of eggshell ash on the strength properties of cement-stabilized lateritic soil. The lateritic soil was classified to be A-6(2 in AASHTO rating system and reddish-brown clayey sand (SC in the Unified Classification System. Constant cement contents of 6% and 8% were added to the lateritic soil with variations in eggshell ash content of 0% to 10% at 2% intervals. All proportions of cement and eggshell ash contents were measured in percentages by weight of the dry soil. The Compaction test, California Bearing Ratio test, Unconfined Compressive Strength test and Durability test were carried out on the soil-cement eggshell ash mixtures. The increase in eggshell ash content increased the Optimum Moisture Content but reduced the Maximum Dry Density of the soil-cement eggshell ash mixtures. Also the increase in eggshell ash content considerably increased the strength properties of the soil-cement eggshell ash mixtures up to 35% in the average but fell short of the strength requirements except the durability requirement was satisfied.

  7. Wood ash treatment, a cost-effective way to deactivate tannins in Acacia cyanophylla Lindl. foliage and to improve digestion by Barbarine sheep

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salem, H. [Institut National de la Recherche Agronomique de Tunisie (INRAT), Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia)]. E-mail:; Abidi, S. [Institut National de la Recherche Agronomique de Tunisie (INRAT), Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia); Ecole Superieure d' Agriculture de Mateur, Mateur (Tunisia); Makkar, H.P.S. [Animal Production and Health Section, Joint FAO/IAEA Division, International Atomic Energy Agency, Vienna (Austria); Nefzaoui, A. [Institut National de la Recherche Agronomique de Tunisie (INRAT), Laboratoire des Productions Animales et Fourrageres, Ariana (Tunisia)


    Three in vitro experiments and one in vivo experiment were carried out to study the effect of wood ash sources (6 L wood ash solution/kg fresh plant leaves) and levels and treatment duration on the nutritive value of acacia leaves. In Experiment 1, samples of fresh (F), dried (D), or dried and ground (DG) acacia were soaked for 6 h in water or acacia wood ash solution (120 g of wood ash dry matter/L of water). Soaking acacia in water decreased total extractable phenols (TP), total extractable tannins (TT) and extractable condensed tannins (CT). Wood ash treatment led to a further decrease of these phenolic compounds and was highest with DG acacia. Experiment 2 investigated different levels of acacia wood ash (0, 120, 180 and 240 g wood ash dry matter/L of water) and treatment duration (1, 2 and 3 days). The higher the level of wood ash, the lower proportion of TP and CT in acacia was noted. In Experiment 3, two sources of wood ash (i.e., acacia and Aleppo pine) and the same solution of each source of wood ash were used eight times. The two sources of wood ash had similar deactivating effect on TP and CT. The rate of decrease of TP and CT was highest when the same wood ash solution was used four consecutive times and decreased progressively thereafter. In these three experiments, water and wood ash treatment reduced organic matter and crude protein content but substantially increased the neutral detergent fibre (NDFom) content of treated acacia. In the fourth experiment, we treated acacia with acacia wood ash (180 g/L of water for 2 days) and the same solution was used five times. Treated and untreated acacia were air-dried and fed ad libitum to two groups, each of four Barbarine rams together with 300 g of concentrate. Wood ash treatment did not affect intake and OM digestibility of the diet but increased crude protein and NDFom digestibility (P < 0.05). Feeding untreated acacia resulted in negative N balances but with wood ash treatment, N balance was positive

  8. century drying (United States)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan


    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  9. Morphological and Strength Properties of Tanjung Bin Coal Ash Mixtures for applied in Geotechnical Engineering Work

    Directory of Open Access Journals (Sweden)

    Abd. Rahim Awang


    Full Text Available In Malaysia, coal has been used as a raw material to generate electricity since 1988. In the past, most of the wastage of coal burning especially the bottom ash was not managed properly as it was dumped in the waste pond and accumulated drastically.This paper focuses on some properties of coal ash mixtures (fly  ash and bottom ash mixtures from Tanjung Bin power plant. The characteristics studied were morphological properties, compaction behaviour and strength properties. Strength properties of coal ash mixtures are carried out by conducting direct shear test and unconfined compression test. Besides, morphology and mineralogy of coal ash mixtures are studied using scanning electron microscope (SEM and x-ray diffraction (XRD. The coal ash mixtures were compacted at 95% of maximum dry density, sealed and cured for 0, 14, and 28 days before they were analysed for shear strength, morphological and mineralogical analyses. The shear strength of coal ash mixtures varied depending on the fly ash compositions. The maximum shear strength was obtained at mixture with 50%FA: 50%BA and the value increased with curing periods. The friction angle obtained ranged from 27° to 37°. Morphological analysis showed that the number of irregular shaped particles increased confirming change in material type with curing period. From mineralogical analysis, the crystalline compounds present in Tanjung Bin coal ash were Mullite, Quartz, Calcium Phosphide, Calcite, Cristobalite and Hematite. It can be concluded that the coal ash mixtures can advantageously be applied in the construction of embankments, roads, reclamation and fill behind retaining structures.

  10. Determination of K,Ca and Mg in Black Fungus Certiifed Reference Material by Dry Ashing-ion Chromatography%干灰化-离子色谱法测定木耳标准物质中的钾、钙、镁

    Institute of Scientific and Technical Information of China (English)

    巢静波; 史乃捷; 吴冰


    采用离子色谱法对木耳标准物质中的K,Ca,Mg进行测定,对样品消解以及离子色谱分离条件进行了优化。在优化实验条件下,该法对木耳中K,Ca,Mg 3种元素测定结果的相对标准偏差小于1.0%(n=7)。采用该方法对NIST西红柿叶标准物质(SRM1573a)进行测定,测定结果与标准值相符,同时与ICP–OES方法比较验证,两者测定结果一致。对该方法测定结果的不确定度进行了评定,K,Ca,Mg测定结果的相对扩展不确定度(k=2)分别为2.3%,3.3%,1.9%。该方法准确可靠,能够满足标准物质定值的要求。%The contents of potassium,calcium and magnesium in black fungus certified reference material were determined by ion chromatography after dry ashing digestion. Sample digestion and ion chromatography conditions were optimized. Under optimal conditions, the relative standard deviation of detection results of K,Ca and Mg in black fungus was less than 1.0%(n=7). The method was used to determine tomato leaves reference material (NIST SRM1573a), and the results were consistent with standard value. The results detected by the method were compared with those detected by ICP–OES, and they were coincided with each other. The relative expanded uncertainties (k=2) of the results were evaluated, which were 2.3%,3.3%and 1.9%for K,Ca and Mg,respectively. The method is accurate and reliable,and it can meet the requirements of certification of reference material.

  11. 49 CFR 230.69 - Ash pans. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  12. Washing of fly ash from combustion of municipal solid waste using water as leachant; Vattentvaett av flygaska fraan avfallsfoerbraenning

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Zhao, Dongmei


    Ashes from combustion of municipal solid waste contain a large amount of minerals, salts and other metal compounds that are more or less soluble in water. The metal salts are often enriched in the fly ash which leads to a classification of the ash as hazardous waste. This makes ash management complicated and costly. Many stabilisation methods for Municipal Solid Waste Incineration (MSWI) fly ash have been developed and most of them are based on a removal of chloride and sulfate in addition to a binding of metals in less soluble forms. The aim is to avoid the common situation that the ash does not comply to leaching limit values due to release of harmless salts. The aim of this project was to investigate if a simple washing with water can remove enough of the fly ash content of chloride and sulphate so that the ash can be landfilled in a simpler and less costly way than today. The project was focused on fly ashes from the MSWI units owned by Boraas Energi och Miljoe AB and Renova AB Goeteborg, i.e. a electro filter ash from grate fired boilers at Renova and a cyclone ash from a fluid bed boiler at Boraas. The results show that the main part of the chloride content of the ashes can be removed easily, but the washing with water is less effective in the removal of sulphate. A water-to-ash ratio of 1-2 l/kg removes about 100% of chloride but only 8-16% of the sulphate content. In many cases, the leachability of sulphate increases after the washing step. This is due to the rather complex sulphate chemistry with several possible reactions taking place in the ash-water system. For both the tested ashes the high level of chloride leaching is an important factor that prevents admittance on a landfill for hazardous waste without treatment.. The leaching of certain metals, such as Pb, is also high from both ashes but in the case of the Renova fly ash this is dealt with by treatment of the ash according to the Bamberg method. After a water washing with L/S 1-2 (L/kg dry ash

  13. Grain shape of basaltic ash populations: implications for fragmentation (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin


    Here, we introduce a new quantitative method to produce grain shape data of bulk samples of volcanic ash, and we correlate the bulk average grain shape with magma fragmentation mechanisms. The method is based on automatic shape analysis of 2D projection ash grains in the size range 125-63 μm. Loose bulk samples from the deposits of six different basaltic eruptions were analyzed, and 20,000 shape measurements for each were obtained within 45 min using the Particle Insight™ dynamic shape analyzer (PIdsa). We used principal component analysis on a reference grain dataset to show that circularity, rectangularity, form factor, and elongation best discriminate between the grain shapes when combined. The grain population data show that the studied eruptive environments produce nearly the same range of grain shapes, although to different extents. Our new shape index (the regularity index (RI)) places an eruption on a spectrum between phreatomagmatic and dry magmatic fragmentation. Almost vesicle-free Surtseyan ash has an RI of 0.207 ± 0.002 (2σ), whereas vesiculated Hawaiian ash has an RI of 0.134 ± 0.001 (2σ). These two samples define the end-member RI, while two subglacial, one lacustrine, and another submarine ash sample show intermediate RIs of 0.168 ± 0.002 (2σ), 0.175 ± 0.002 (2σ), 0.187 ± 0.002 (2σ), and 0.191 ± 0.002 (2σ), respectively. The systematic change in RI between wet and dry eruptions suggests that the RI can be used to assess the relative roles of magmatic vs. phreatomagmatic fragmentation. We infer that both magmatic and phreatomagmatic fragmentation processes played a role in the subglacial eruptions.

  14. Effect of Oven Drying On Proximate Composition of Ginger

    Directory of Open Access Journals (Sweden)

    C.S Agu


    Full Text Available Ginger root (ZingiberOfficinale was analyzed to identify its proximate composition. The effects of drying as a processing technique on ginger were investigated with respect to the proximate composition of the produce. Ginger rhizomes were collected, sorted, sliced and dried using the oven at 500C for five (5 hours. Fresh ginger slices were successfully dried from initial moisture content of 70% to 18 %. Ginger composition before drying were 1.81% ash, 7.85% fat, 3.06% protein, 9% fiber, and 8.18% carbohydrate. The analysis of the results of proximate composition showed that the moisture content of ginger reduced after oven drying while the ash, protein, crude fiber increased after drying. On the other hand, the ash content, crude fiber, protein, fat and carbohydrates were 2.35%, 11%, 13.13%, 8.20% and47.32% respectively. The oven-drying technique however was a better option for the drying process as it was more effective in removing sufficient moisture and more so enhanced some nutritional parameter of the produce.

  15. AshMeadowsNaucorid_CH (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Ash Meadows Naucorid (Ambrysus amargosus) occur. "Nevada, Nye County. Point of Rocks Springs and...

  16. Fly ash. Quality recycling material

    Energy Technology Data Exchange (ETDEWEB)

    Blomster, D.; Leisio, C.


    Imatran Voima`s coal-fired power plants not only generate power and heat but also produce fly ash which is suitable raw material for recycling. This material for recycling is produced in the flue gas cleaning process. It is economical and, thanks to close quality control, is suitable for use as a raw material in the building materials industry, in asphalt production, and in earthworks. Structures made from fly ash are also safe from an environmental point of view. (orig.)

  17. Dry Mouth (United States)

    ... Use a fluoride rinse or brush-on fluoride gel before bedtime. See your dentist at least twice yearly to have your teeth examined and plaque removed, to help prevent tooth decay. Several herbal remedies have been used historically to treat dry ...

  18. Utilization of ash fractions from alternative biofuels used in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Hinge, J.; Christensen, I. (Danish Technological Inst., Aarhus (Denmark)); Dahl, J. (Force Technology, Broendby (Denmark)); Arendt Jensen, P. (DTU-CHEC, Kgs. Lyngby (Denmark)); Soendergaard Birkmose, T. (Dansk Landbrugsraadgivning, Landscentret, Aarhus (Denmark)); Sander, B. (DONG Energy, Fredericia (Denmark)); Kristensen, O. (Kommunekemi A/S, Nyborg (Denmark))


    It is expected, that demand for the traditional biomass resources wood and straw will increase over the next years. In other projects a number of agro industrial waste products has been tested and characterized as fuels for power plants. The annual production in Denmark of these fuels is estimated at roughly 400.000 tons of Dry Matter per year, so the potential is substantial. The agro industrial biomass products include: Grain screening waste, pea shells, soy waste, cocoa waste, sugar beet waste, sunflower waste, shea waste, coffee waste, olive waste, rice shell waste, potato waste, pectin waste, carrageen waste, tobacco waste, rape seed waste and mash from breweries. In the PSO project 5075, 5 different types of fuel pellets was produced, which were rendered suitable for combustion in power plants. In this project, ash is produced from the above mentioned 5 mixtures together with another 2 mixtures produced especially for this project. From the 5 mixtures from PSO 5075, ash is produced at Danish Technological Institute's slag analyzer. These ash products are rendered comparable to ash from grate fired boilers at power plants. The ash/slag from the combustion in the slag analyzer was then grinded - thus resulting in a total of 5 ash products. At DTU CHEC's Entrained Flow Reactor, ash products from the 5+2 mixtures were produced. These ash products are rendered comparable to ash produced form suspension fired boilers at power plants. For each of the 7 mixtures, bottom-, cyclone and filter ash was taken out separately resulting in a total of 21 ash samples. The produced ashes have been evaluated for their properties as directly applied fertilizer. Furthermore, scenarios have been set up to assess the feasibility in producing artificial fertilizer from the ash products, based on known processes. In the main components the content of Na, S, Cl and K is significantly higher in filter ashes, whereas the content of Mg, Al, Si and Ca is significantly lower. The

  19. ITER helium ash accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. (Oak Ridge National Lab., TN (USA)); Dippel, K.H.; Finken, K.H. (Forschungszentrum Juelich GmbH (Germany, F.R.). Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. (Princeton Univ., NJ (USA). Plasma Physics Lab.)


    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  20. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles


    A. Kylling; Kahnert, M.; Lindqvist, H.; T. Nousiainen


    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furtherm...

  1. The immersion freezing behavior of ash particles from wood and brown coal burning (United States)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Hartmann, Susan; Hellner, Lisa; Pettersson, Jan B. C.; Prager, Andrea; Stratmann, Frank; Wex, Heike


    It is generally known that ash particles from coal combustion can trigger ice nucleation when they interact with water vapor and/or supercooled droplets. However, data on the ice nucleation of ash particles from different sources, including both anthropogenic and natural combustion processes, are still scarce. As fossil energy sources still fuel the largest proportion of electric power production worldwide, and biomass burning contributes significantly to the global aerosol loading, further data are needed to better assess the ice nucleating efficiency of ash particles. In the framework of this study, we found that ash particles from brown coal (i.e., lignite) burning are up to 2 orders of magnitude more ice active in the immersion mode below -32 °C than those from wood burning. Fly ash from a coal-fired power plant was shown to be the most efficient at nucleating ice. Furthermore, the influence of various particle generation methods on the freezing behavior was studied. For instance, particles were generated either by dispersion of dry sample material, or by atomization of ash-water suspensions, and then led into the Leipzig Aerosol Cloud Interaction Simulator (LACIS) where the immersion freezing behavior was examined. Whereas the immersion freezing behavior of ashes from wood burning was not affected by the particle generation method, it depended on the type of particle generation for ash from brown coal. It was also found that the common practice of treating prepared suspensions in an ultrasonic bath to avoid aggregation of particles led to an enhanced ice nucleation activity. The findings of this study suggest (a) that ash from brown coal burning may influence immersion freezing in clouds close to the source and (b) that the freezing behavior of ash particles may be altered by a change in sample preparation and/or particle generation.

  2. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques (United States)

    Ofori, H.; Dziedzoave, N. T.; Kortei, N. K.


    The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L⁎ = 47.4) than the air-oven-dried (L⁎ = 49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p < 0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently. PMID:27034924

  3. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques

    Directory of Open Access Journals (Sweden)

    P. T. Akonor


    Full Text Available The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L⁎=47.4 than the air-oven-dried (L⁎=49.0. Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p<0.05 higher in oven-dried meat (2.1%, compared to solar-dried meat (1.5%. Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently.

  4. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques. (United States)

    Akonor, P T; Ofori, H; Dziedzoave, N T; Kortei, N K


    The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L (⁎) = 47.4) than the air-oven-dried (L (⁎) = 49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently.

  5. Upgrading of coal ashes and desulphurisation residues to provide high value products

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, F.D.; Repetto, F.; Calabro, B.; Heijnen, W.M.M.; Larbi, J.A. [Mitsui Babcock Energy Limited, Renfrew (United Kingdom)


    Mitsui Babcock Energy Limited, Technology Centre have co-ordinated a collaborative project whose aim has been to investigate the possibility of preparing ettringite-based products and calcium sulphoaluminate cements from coal ashes and sulphoaluminate cements from coal ashes and desulphurisation residues. The results show that ettringite based plasters prepared using fly ash and gypsum exhibited poor mechanical strengths and unacceptable drying shrinkage. The ettringate produced was unstable. Laboratory synthesis of CSA binders using blends of gypsum or spray dry desulphurisation residue (calcium sulphite), calcium carbonate and fly ashes (including those with high unburned carbon contents)is possible at temperatures in the range 1200 - 1250{degree}C. Mortars prepared using the best CSA binder and tested according to ENV 197-1 (1996) yielded compressive strengths of 4, 6 and 12 MPa at 2, 7 and 28 days respectively. CSA-based binders have the potential for use as blended cements with OPC or as replacements for OPC in special ateas of application. If the feed mixture composition and process parameters are optimised, it is likely that significant improvements in properties can be made. Comparison of costs indicated that the CAS binder production process was the most cost effective method for disposal of waste coal ashes and desulphurisation residues. profits were more than 100 percent higher than for thermal upgrading of high carbon ashes, which could provide attractive income streams for electricity generators. A commercialisation strategy for CSA cements has been developed. 2 figs.; 10 tabs.

  6. Dry Skin (Xerosis) (United States)

    ... Kids’ zone Video library Find a dermatologist Dry skin Overview Dry, ashy skin: People who had atopic ... often have very dry skin as adults. Dry skin: Overview Also called xerosis Dry skin is common. ...

  7. Ash in composting of source-separated catering waste. (United States)

    Koivula, Niina; Räikkönen, Tarja; Urpilainen, Sari; Ranta, Jussi; Hänninen, Kari


    Our earlier experiments in small composters (220 l) indicated the favourable effect of ash from co-incineration of sorted dry waste on the composting of catering waste. The aim of this new study was to clarify further, at a scale of 10 m3, the feasibility of using similar ash as an additive in composting. Source-separated catering waste was mixed with bulking agent (peat and wood chips) and fuel ash from a small (4 MW) district heating power plant. Three compost mixes (CM) were obtained: CM I with 0%, CM II with 10% and CM III with 20 wt.% of fuel ash. These three different mixes were composted in a 10-m3 drum composter as three parallel experiments for 2 weeks each, from January to April 2000. After drum composting, masses were placed according to mixing proportions in separate curing piles. The catering waste fed to the drum was cold, sometimes icy. Even then the temperature rapidly increased to over 50 degrees C. In CM III, the temperature rose as high as 80 degrees C, and after the first week of composting the temperature was about 20 degrees C higher in the CMs II and III than in the CM I. It also improved the oxygen concentrations at the feeding end of the drum and obviously prevented the formation of H2S. No odour problems arose during the composting. Addition of ash increased the heavy metal contents of the composting masses, but the compost was suitable for cultivation or green area construction. Ash clearly decreased the loss of total nitrogen in a time span of 2 years. The lower amounts of nitrogen mean that the amounts applied per hectare can be greater than for normal composts. Measured by mineralization, the breaking down of the organic matter was more rapid in the CM III than in the CM I. Humic acid increased steadily during first 12 months composting, from the initial 39 mg/g organic matter to 115 and 137 mg/g in CMs II and III. Measured by temperature, mineralization and humification the addition of ash appeared to boost the composting. Ash had

  8. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)


    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  9. Investigation on the fly ash thermal treatment on the performance of Lithium Ferriphosphate (LiFePO{sub 4}) battery

    Energy Technology Data Exchange (ETDEWEB)

    Febiolita, Bella; Khoirunnissak, Dewi; Purwanto, Agus, E-mail: [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)


    Addition of the fly ash can be used to improve the capacity of LiFePO{sub 4} battery. Fly ash was added in Acethylene Black (AB) as 2% of the total weight of Acetylene Black (AB). The effects of temperature variation and fly ash characteristics were analyzed. Fly ash was prepared by heating at 50, 100, 150, and 250°C in muffle furnace for 5 hours and passed in 200 mesh screen prior to mixing it with other compounds. Lithium Ferriphospat (LiFePO{sub 4}), fly ash, Acethylene Black (AB), Polyvinylidene Fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to be slurry. The slurry were coated, dried and hot pressed to make a cathode film. The performance of battery lithium was examined by eight channel battery analyzer. The composition of the fly ash was examined by X-ray fluorescence spectrometry (XRF) and Fourier Tansform Infrared Spectroscopy (FTIR). The excellent performance was shown in the fly ash addition which were treated by heating at 150°C. The capacity of fly ash added LiFePO{sub 4} battery is 94.373 mAh/g, which is higher than that of without fly ash addition, i.e. 67.998 mAh/g.

  10. Controlling formaldehyde emissions with boiler ash. (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit


    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  11. Studies on Carbon-Fly Ash Composites with Chopped PANOX Fibers

    Directory of Open Access Journals (Sweden)

    Rakesh V. Patel


    Full Text Available Chemical analysis and morphological studies of fly ash reveals the complex chemical constituents present as spherical particles with diameter of less than 25 μm. The constituents of fly ash are silica, alumina, iron oxide, titanium dioxide, calcium and magnesium oxide, and other trace elements. The use of thermosetting as well thermoplastic polymer matrix has been made by several workers to develop polymer matrix fly ash particulate composites by using the hard and abrasive properties of fly ash and lightweight of polymers. Such composites have poor mechanical strength, fracture toughness, and thermal stability. To overcome these shortcomings, in carbonaceous matrix, the carbon fibers were added as additional reinforcement along with the fly ash. The composites were developed with two different methods known as Dry method and Wet method. The processing parameters such as temperature and pressure were optimized in establishing the carbon matrix. Physical, thermal, and mechanical characteristics were studied. The microstructures of composites show good compatibility between fly ash and fibers with the carbon matrix. These composites have higher strength, thermal stability, and toughness as compared to polymer matrix fly ash particulate composites.

  12. [Patterns of PCDD/Fs, PCBs and PCNs homologues in fly ash from cement kilns]. (United States)

    Zhang, Jing; Ni, Yu-Wen; Zhang, Hai-Jun; Zhang, Xue-Ping; Zhang, Qing; Chen, Ji-Ping


    The concentrations and toxic equivalent (TEQ) values of PCDD/Fs, PCBs and PCNs in fly ash collected from three types of cement kilns (vertical shaft kiln, wet-process rotary kiln and dry-process rotary kiln) and two types of waste incinerators were determined, and the patterns of homologues and congeners were compared. The results showed that the total TEQ of PCDD/Fs, PCBs and PCNs in cement kiln fly ash, which were in the range of 4.0-62, 0.069-3.9 and 0.47-2.8 ng x kg(-1) respectively, were much lower than that of fly ash from waste incinerators. In cement kiln fly ash, the predominating PCDD/Fs homologues were TCDFs, and the chief 2, 3, 7, 8-PCDD/Fs congeners were OCDD, 2, 3, 7, 8-TCDF and 1, 2, 3, 4, 6, 7, 8-HpCDF. The patterns of PCBs homologues in cement kiln fly ash were similar to those of waste incinerators in which TeCB were predominating homologues. PCB77, PCB105, PCB118 were at higher concentrations than other co-polar PCBs. Different types of cement kiln fly ash presented similar PCNs homologue patterns. The predominant homologues were TeCN, whereas OcCN were not detected. PCN 66/67 which has dioxin like toxity was the most abundant congener in all fly ash.

  13. Utilization of wood ash as seedling media of Cocoa (Theobroma cacao

    Directory of Open Access Journals (Sweden)

    Fitria Nugraheni Sukmawati


    Full Text Available An effort to increase productivity is provision of inorganic fertilizers. Inorganic fertilizer application in longtem as found to attenuate the availability of micronutrients and to decrease soil fertility. One possibility to replace inorganic fertilizer is the use of ash derived from plants, such as wood ash. The purpose of this study was to determine the effect of wood ash on soil K availability and to optimize the dose of wood ash which can give good influence on the growth of cocoa seedlings. The experiment was conducted at the experimental station Polytechnic LPP in Wedomartani, Sleman, Yogyakarta. The design used is non factorial randomized block design with 5 treatments, which is the ratio of ash and soil 0: 1 (A1 / Control; 0.25: 1 (A2; 0.5: 1 (A3; 0.75: 1 (A4; and 1: 1 (A5. Observations of treatment effects were made on the seedling height, number of leaves, stem diameter, wet weight and dry weight. Soil analysis was conducted to determine the content of macro elements, micro elements, and pH media. The results showed that ash increases the pH of the media to alkaline range and increase the availability of P and K soil to toxic range. Giving ash reduced the availability of N and caused chlorosis on cocoa seedlings.

  14. Ash in fire affected ecosystems (United States)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah


    Ash in fire affected ecosystems Ash lefts an important footprint in the ecosystems and has a key role in the immediate period after the fire (Bodi et al., 2014; Pereira et al., 2015). It is an important source of nutrients for plant recover (Pereira et al., 2014a), protects soil from erosion and controls soil hydrological process as runoff, infiltration and water repellency (Cerda and Doerr, 2008; Bodi et al., 2012, Pereira et al., 2014b). Despite the recognition of ash impact and contribution to ecosystems recuperation, it is assumed that we still have little knowledge about the implications of ash in fire affected areas. Regarding this situation we wanted to improve our knowledge in this field and understand the state of the research about fire ash around world. The special issue about "The role of ash in fire affected ecosystems" currently in publication in CATENA born from the necessity of joint efforts, identify research gaps, and discuss future cooperation in this interdisciplinary field. This is the first special issue about fire ash in the international literature. In total it will be published 10 papers focused in different aspects of the impacts of ash in fire affected ecosystems from several parts of the world: • Fire reconstruction using charcoal particles (Burjachs and Espositio, in press) • Ash slurries impact on rheological properties of Runoff (Burns and Gabet, in press) • Methods to analyse ash conductivity and sorbtivity in the laboratory and in the field (Balfour et al., in press) • Termogravimetric and hydrological properties of ash (Dlapa et al. in press) • Effects of ash cover in water infiltration (Leon et al., in press) • Impact of ash in volcanic soils (Dorta Almenar et al., in press; Escuday et al., in press) • Ash PAH and Chemical extracts (Silva et al., in press) • Microbiology (Barreiro et al., in press; Lombao et al., in press) We believe that this special issue will contribute importantly to the better understanding of

  15. Practical examples and perspectives of the utilisation of bio-compost, sewage sludge and wood ash; Praxisbeispiele und Perspektiven der Verwertung von Bioabfallkomposten und Klaerschlaemmen sowie Holzaschen

    Energy Technology Data Exchange (ETDEWEB)

    Schmeisky, H.; Kunick, M. [Kassel Univ., Witzenhausen (Germany). Fachgebiet Landschaftsoekologie und Naturschutz


    Test reactor experiments with ash from power plants with co-combustion of animal meal indicate that phosphate solubilisation by means of mycorrhiza appears feasible. Additions of wood ash or biomass ash to the compost does not have any positive effects. The additional elements contained in these ashes cannot be absorbed and should not be added during composting. In revegetation projects on lime-burdened residues of the soda industry, 200 t/ha of dry matter of composted sewage sludge was found to be optimal. Organic residues are more positive than mineral fertilizers when biogenic cycles are to be established in recultivation areas. (orig.)

  16. De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation. (United States)

    He, Yanqing; Fang, Zhenhong; Zhang, Jian; Li, Xinliang; Bao, Jie


    In this study, corn stover with different ash content was pretreated using dry dilute acid pretreatment method at high solids loading of 67% (w/w). The results indicate that the hydrolysis yield of corn stover is increased from 43.30% to 70.99%, and ethanol yield is increased from 51.74% to 73.52% when ash is removed from 9.60% to 4.98%. The pH measurement of corn stover slurry indicates that the decrease of pretreatment efficiency is due to the neutralization of sulfuric acid by alkaline compounds in the ash. The elemental analysis reveals that the ash has the similar composition with the farmland soil. This study demonstrates the importance of ash removal from lignocellulose feedstock under high solids content pretreatment.

  17. Temporal evolution of wildfire ash and its implications for water pollution (United States)

    Santin, Cristina; Doerr, Stefan H.; Otero, Xose L.; Chafer, Chris J.


    Ash, the burnt residue generated from combustion of vegetation, litter and surface soil, covers the ground after every wildfire. The effects of wildfire ash on the post-fire landscape are many and very diverse. It is a source of nutrients and can, therefore, help the recovery of vegetation after fire. Furthermore, in its initial state, the ash layer on the ground can protect the bare soil from rain splash erosion and can act as an adsorbent layer, preventing or delaying post-fire water erosion by runoff. However, when the adsorbent capability of the ash layer is exceeded, this highly erodible material can be transported into the hydrological network and be a major contributor to water contamination. Most previous studies on post-fire erosion and water contamination have focused on soil erosion and associated sediment transfer and overlooked the ash component or, when considered, ash has been included as an unidentified part of the eroded sediment. One of the reasons for overlooking this key post-fire component is the difficulty of ash sampling before it is lost by wind or water erosion or altered by aging on-site. Here we compare the water contamination potential of ash obtained from two fires in the dry eucalyptus forest environment of the Sydney tablelands, Australia: i) 'aged ash' produced during the severe Balmoral wildfire and sampled two months after the event (Jan. 2014) and ii) 'fresh ash' sampled immediately after a high-intensity experimental fire in the same region (Sept. 2014). At the time of sampling, neither of the ash types had been affected by water erosion, however, the aged ash had been subjected to rainfall events and, potentially, to wind erosion during the two months of exposure. Vegetation type, fuel loads and fire severity, determined using remote sensing and on-site observations, were comparable between both areas sampled. Ash physicochemical properties differed, with 'fresh ash' having higher pH and EC values and higher concentration of

  18. Strength of Ternary Blended Cement Sandcrete Containing Afikpo Rice Husk Ash and Saw Dust Ash

    Directory of Open Access Journals (Sweden)

    L. O. Ettu


    Full Text Available This work investigated the compressive strength of ternary blended cement sandcrete containing Afikpo rice husk ash (RHA and sawdust ash (SDA. 105 sandcrete cubes of 150mm x 150mm x 150mm were produced with OPC-RHA binary blended cement, 105 with OPC-SDA binary blended cement, and 105 with OPC-RHA-SDA ternary blended cement, each at percentage OPC replacement with pozzolan of 5%, 10%, 15%, 20%, and 25%. Three cubes for each percentage replacement of OPC with pozzolan and the control were tested for saturated surface dry bulk density and crushed to obtain their compressive strengths at 3, 7, 14, 21, 28, 50, and 90 days of curing. The 90-day strengths obtained from ternary blending of OPC with equal proportions of RHA and SDA were 11.80N/mm2for 5% replacement, 11.20N/mm2for 10% replacement, 10.60N/mm2for 15% replacement, 10.00N/mm2for 20% replacement, and 9.10N/mm2for 25% replacement, while that of the control was 10.90N/mm2. This suggests that very high sandcrete strength values could be obtained with OPCRHA-SDA ternary blended cement with richer mixes, high quality control, and longer days of hydration. Thus, OPC-RHA-SDA ternary blended cement sandcrete could be used for various civil engineering and building works, especially where early strength is not a major requirement.

  19. Transcriptomic signatures of ash (Fraxinus spp. phloem.

    Directory of Open Access Journals (Sweden)

    Xiaodong Bai

    Full Text Available BACKGROUND: Ash (Fraxinus spp. is a dominant tree species throughout urban and forested landscapes of North America (NA. The rapid invasion of NA by emerald ash borer (Agrilus planipennis, a wood-boring beetle endemic to Eastern Asia, has resulted in the death of millions of ash trees and threatens billions more. Larvae feed primarily on phloem tissue, which girdles and kills the tree. While NA ash species including black (F. nigra, green (F. pennsylvannica and white (F. americana are highly susceptible, the Asian species Manchurian ash (F. mandshurica is resistant to A. planipennis perhaps due to their co-evolutionary history. Little is known about the molecular genetics of ash. Hence, we undertook a functional genomics approach to identify the repertoire of genes expressed in ash phloem. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing we obtained 58,673 high quality ash sequences from pooled phloem samples of green, white, black, blue and Manchurian ash. Intriguingly, 45% of the deduced proteins were not significantly similar to any sequences in the GenBank non-redundant database. KEGG analysis of the ash sequences revealed a high occurrence of defense related genes. Expression analysis of early regulators potentially involved in plant defense (i.e. transcription factors, calcium dependent protein kinases and a lipoxygenase 3 revealed higher mRNA levels in resistant ash compared to susceptible ash species. Lastly, we predicted a total of 1,272 single nucleotide polymorphisms and 980 microsatellite loci, among which seven microsatellite loci showed polymorphism between different ash species. CONCLUSIONS AND SIGNIFICANCE: The current transcriptomic data provide an invaluable resource for understanding the genetic make-up of ash phloem, the target tissue of A. planipennis. These data along with future functional studies could lead to the identification/characterization of defense genes involved in resistance of ash to A. planipennis

  20. Settling characteristics of some Indian fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Sastry, B.S. [Indian Institute of Technology, Kharapur (India). Dept. of Mining Engineering


    The paper examines the aspects of the solid liquid separation (settling characteristics) of some of the fly ash obtained from coal-fired power plants in India. The application of a coagulating or flocculating agent (polymer) to improve the two properties as indicated is a typical industrial practice. The sources for this study comprise of fly ash, pond ash, and bottom ash and the settling characteristics are studied in conjunction with the flocculating agent polyacrylamide. 4 refs., 4 figs., 3 tabs.

  1. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang


    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in C. to C. range as well as in excess of C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  2. Ash characteristics and plant nutrients in some aquatic biomasses (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal


    Aquatic biomasses are explored as potential fuel source for direct combustion because of their faster growth and no land requirement. The energy density and the ash characteristics of the aquatic biomasses are to be evaluated for their suitability for energy extraction. In the study, four aquatic plant samples namely Eichornia crassipes, Hydrilla verticilleta, Lemna minor, Spirogyra spp were collected from a pond in Digwadih Campus of Central Institute of Mining and Fuel Research, Dhanbad. The biomasses were air dried, powdered and ashed at different temperatures. Volatile C was relatively lower in Spirogyra and Hydrilla (53 %) than Eichornia (62.6 %) or Lemna (59.7 %), whereas fixed C was higher for Eichornia and Lemna (about 10 %) and lower for Hydrilla (1 %). Ultimate analysis showed that the carbon content was in the order Eichornia > Lemna > Spirogyra > Hydrilla. The IR spectra of each raw biomass is compared to their respective ashes obtained at different temperatures (500-900°C). With increase in ashing temperature from 500-900°C there is gradual breakdown of the cellulosic structure hence, peaks around 2900-2800cm-1 caused by aliphatic C-H vibration tends to disappear slowly in ash. More number of peaks appears at lower wavenumbers in ashes of all the biomass samples indicating towards increased percentage of inorganic ion species. Considerable enrichment of SiO2 is validated with prominent peaks at 1100-900 cm-1 in all the ashes. Lemna and Spirogyra has a similar ash composition (Si > Al > Ca > K), whereas, Ca was higher in Hydrilla (Si > Ca > K > Al). Eichornia (Si > K > Ca > Al) has higher K and Ca than Al. SiO2 and Al2O3 were higher in Spirogyra, while SiO2 and CaO in Eichornia and Hydrilla. K first increased from 500-700/800⁰C, and then decreased from 800-900⁰C. Cl is lost slowly in ash from 500-700/800⁰C and then by a drastic reduction from 800-900⁰C. S is enhanced in ash at all temperatures although the change is quite small. Most of the Cl

  3. A method for treating bottom ash

    NARCIS (Netherlands)

    Rem, P.C.; Van Craaikamp, H.; Berkhout, S.P.M.; Sierhuis, W.; Van Kooy, L.A.


    A method for treating bottom ash from a waste incineration plant. The invention relates in particular to a method for treating bottom ash from a domestic waste incineration plant. In accordance with the invention bottom ash having a size ranging up to 2 mm is treated by removing a previously determi


    Institute of Scientific and Technical Information of China (English)


    The mechanical properties and durability ( mainly frost-resistance and carbonation resistance ) of fly ash-CaO-CaSO4 .2H2O hardened paste are studied. The relationship among durability of harden ed fly ash paste, the quantity and distribution of hydrates and the initial p aste texture of hardened fly ash paste is presented.

  5. ICSC Problems and Perspectives of high-calcium fly ash from heat power plants in the composition of “green” building materials

    Directory of Open Access Journals (Sweden)

    Domanskaya Irina


    Full Text Available The peculiarities of the composition formation and hydraulic activity of high calcium fly ash got by burning of Kansk-Achinsk brown coals have been described. Fly ashes selected in dry state can be used as peculiar (specific binding agents (minerals on condition of their preliminary handling reducing nonuniform volume change of the ash stone during hydration and also the expansion range of their application in green building. The cavitation technologies, the organization of the fly ash granulation at heat power plants instead of hydraulic ash removal systems and enrichment by various means to extract rare-earth metals are considered to be the most perspective methods of fly ash conditioning.

  6. 1999 international ash utilization symposium

    Energy Technology Data Exchange (ETDEWEB)



    112 papers were presented covering various aspects of the utilization of coal and other combustion products. Topics included fundamental chemistry and mineralogy, new products, health and environmental aspects, economic development issues, agricultural and mine reclamation applications, concrete and cement, and fly ash beneficiation technologies. Selected papers will be published in the journal 'Fuel'.

  7. Use of Incineration MSW Ash: A Review

    Directory of Open Access Journals (Sweden)

    Charles H. K. Lam


    Full Text Available This study reviews the characteristics of municipal solid waste incineration (MSWI ashes, with a main focus on the chemical properties of the ashes. Furthermore, the possible treatment methods for the utilization of ash, namely, separation processes, solidification/stabilization and thermal processes, are also discussed. Seven types of MSWI ash utilization are reviewed, namely, cement and concrete production, road pavement, glasses and ceramics, agriculture, stabilizing agent, adsorbents and zeolite production. The practical use of MSWI ash shows a great contribution to waste minimization as well as resources conservation.

  8. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions. (United States)

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M


    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  9. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cederblad, G.; Carlin, J.I.; Constantin-Teodosiu, D.; Harper, P.; Hultman, E. (Karolinska Institute, Huddinge Hospital (Sweden))


    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with (14C)oxaloacetate by citrate synthase to give (14C)-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976.

  10. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh


    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  11. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador (United States)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel


    A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the

  12. Restoration of Ecosystems Destroyed by the Fly Ash Dump Using Different Plant Species

    Directory of Open Access Journals (Sweden)

    Florica Morariu


    Full Text Available The leguminous plants was studied at experimental variants on fly ash dump: sown species of Onobrichys viciifolia and invasive colonies of Bird's-foot Trefoil (Lotus corniculatus, and yellow sweet (Melilotus officinalis. Six experimental variants were studied in three replicates each: untreated fly ash, fly ash amended with unmodified/modified volcanic rock and fly ash treated with unmodified/modified volcanic rock (indigenous volcanic tuff mixed with organic fertilizer, anaerobically stabilized municipal sludge type. The characteristics of topsoil was assessed in toxic metals Cr, Cu, Pb, Ni content and the characteristics of plants was assessed in terms: height, shoot and roots dry weight, root and shoot ratio, root length density, the aspect plant and competitive ability of this species to dominate in sown habitat. Invasive plants (Lotus corniculatus and Melilotus officinalis have colonized up to 38 - 43 % and max 5 % respectively, treated experimental variants fly ash with organic fertilizer mixed with unmodified/modified volcanic tuff. The proposed strategy with sown leguminous species led to improved conditions for installation of more and resistant invasive species. Furthermore ecological restoration is increasing with effective fly ash dump stabilization.

  13. Properties of High Volume Fraction Fly Ash/Al Alloy Composites Produced by Infiltration Process (United States)

    Kountouras, D. T.; Stergioudi, F.; Tsouknidas, A.; Vogiatzis, C. A.; Skolianos, S. M.


    In the present study, pressure infiltration is employed to synthesize aluminum alloy 7075-fly ash composites. The microstructure and chemical composition of the fly ash and the produced composite material was examined using optical and scanning electron microscopy, as well as x-ray diffraction. Several properties of the produced composite material were examined and evaluated including macro-hardness, wear, thermal expansion, and corrosion behavior. The wear characteristics of the composite, in the as-cast conditions, were studied by dry sliding wear tests. The corrosion behavior of composite material was evaluated by means of potentiodynamic corrosion experiments in a 3.5 wt.% NaCl solution. The composite specimens exhibit a homogeneous distribution of fly ash particles and present enhanced hardness values, compared to the matrix material. The high volume fraction of the fly ash reinforcement (>40%) in the composite material led to increased wear rates, attributed to the fragmentation of the fly ash particles. However, the presence of fly ash particles in the Al alloy matrix considerably decreased the coefficiency of thermal expansion, while resulting in an altered corrosion mechanism of the composite material with respect to the matrix alloy.

  14. Acidification - neutralization processes in a lignite mine spoil amended with fly ash or limestone

    Energy Technology Data Exchange (ETDEWEB)

    Seoane, S.; Leiros, M.C. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain). Dept. de Edafologia y Quimica Agricola


    A laboratory experiment was conducted to investigate the long-term effects of amending sulfide-rich lignite mine spoil with fly ash (originating from a coal-fired power station and largely comprised of aluminosilicates) and/or agricultural limestone. The experiment was carried out with soil moisture maintained at field capacity or alternate cycles of wetting and drying. Results obtained suggest that the principal acidification processes were oxidation of sulfide and formation of hydroxysulfate (FeOHSO{sub 4}), whereas the main neutralization processes were weathering of aluminosilicates in fly ash-treated samples. The highest dose of limestone rapidly raised the pH of the spoil, but this increase was not maintained throughout the one-year experiment. In contrast, fly ash-treated samples showed a more sustained increase in pH, attributable to the gradual weathering of aluminosilicates. The best results (i.e., good short- and long-term neutralization) were obtained in samples treated with both fly ash and limestone. The low liming capacity of the fly ash (47.85 cmol kg{sup -1}) means that it must be used in large quantities, an advantage in achieving the further aim of disposing of the fly ash. 33 refs., 5 figs., 4 tabs.

  15. Unburned Carbon Loss in Fly Ash of CFB Boilers Burning Hard Coal

    Institute of Scientific and Technical Information of China (English)

    L(U) Junfu(吕俊复); WANG Qimin(王启民); LI Yong(黎永); YUE Guangxi(岳光溪); Yam Y.Lee; Baldur Eliasson; SHEN Jiezhong(沈解忠); YU Long(于龙)


    The unburned carbon loss in fly ash of circulating fluidized bed (CFB) boilers, most of which are burning active fuels such as lignite or peat, is normally very low. However, most CFB boilers in China usually burn hard coals such as anthracite and bituminous coal and coal wastes, so the carbon content in the fly ash from these boilers is higher than expected. This paper investigates the source of unburned carbon in the fly ash of CFB boilers burning hard coal through a series of field tests and laboratory investigations. The char behavior during combustion, including fragmentation and deactivation, which is related to the parent coal, has an important impact on the carbon burnout in CFB boilers. The research shows that char deactivation occurs during char burnout in fluidized bed combustion, especially for large particles of low rank coal. The uneven mixing of solids and air in the core region of the furnace also causes poor burnout of carbon in CFB fly ash. An index describing the volatile content (as dry ash free basis) over the heating value is proposed to present the coal rank. The coal combustion efficiency is shown to be strongly connected with this coal index. Several changes in the CFB boiler design are suggested to reduce the unburned carbon loss in the fly ash.

  16. Interspecific variation in resistance to emerald ash borer (Coleoptera: Buprestidae) among North American and Asian ash (Fraxinus spp.). (United States)

    Rebek, Eric J; Herms, Daniel A; Smitley, David R


    We conducted a 3-yr study to compare the susceptibility of selected North American ash and an Asian ash species to emerald ash borer, Agrilus planipennis Fairmaire, an invasive wood-boring beetle introduced to North America from Asia. Because of a coevolutionary relationship between Asian ashes and emerald ash borer, we hypothesized an Asian ash species, Manchurian ash, is more resistant to the beetle than its North American congeners. Consistent with our hypothesis, Manchurian ash experienced far less mortality and yielded far fewer adult beetles than several cultivars of North American green and white ash. Surprisingly, a black ash (North American) x Manchurian ash hybrid was highly susceptible to emerald ash borer, indicating this cultivar did not inherit emerald ash borer resistance from its Asian parent. A corollary study investigated the efficacy of soil-applied imidacloprid, a systemic, neonicotinoid insecticide, for controlling emerald ash borer in each of the five cultivars. Imidacloprid had no effect on emerald ash borer colonization of Manchurian ash, which was low in untreated and treated trees. In contrast, imidacloprid did enhance survival of the North American and hybrid cultivars and significantly reduced the number of emerald ash borer adults emerging from green and white ash cultivars. We identify a possible mechanism of resistance of Manchurian ash to emerald ash borer, which may prove useful for screening, selecting, and breeding emerald ash borer-resistant ash trees.

  17. Effect of Rice Husk Ash on Cement Stabilized Laterite

    Directory of Open Access Journals (Sweden)



    Full Text Available Laterite soil collected from Maikunkele area of Minna, classified as an A-7-6 on AASHTO classification, was stabilized with 2-8% cement by weight of the dry soil. Using British Standard Light (BSL compaction energy, the effect of Rice Husk Ash (RHA on the soil was investigated with respect to compaction characteristics, California Bearing Ratio (CBR and Unconfined Compressive Strength (UCS tests. Results obtained, indicate a general decrease in Maximum Dry Density (MDD and increase in Optimum Moisture Content (OMC, all with increase in RHA Content (2-8% at specified cement contents. There was also a tremendous improvement in the CBR and UCS with increase in the RHA content at specified cement contents to their peak values at between 4-6% RHA. The UCS values also improved with curing age. This indicates the potentials of using 4-6% RHA admixed with less cement contents for laterite soil stabilization.

  18. Utilization Of Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    S. D. Nagrale


    Full Text Available India is a major rice producing country, and the husk generated during milling is mostly used as a fuel in the boilers for processing paddy, producing energy through direct combustion and / or by gasification. About 20 million tones of Rice Husk Ash (RHA is produced annually. This RHA is a great environment threat causing damage to the land and the surrounding area in which it is dumped. Lots of ways are being thought of for disposing them by making commercial use of this RHA. RHA can be used as a replacement for concrete (15 to 25%.This paper evaluates how different contents of Rice Husk Ash added to concrete may influence its physical and mechanical properties. Sample Cubes were tested with different percentage of RHA and different w/c ratio, replacing in mass the cement. Properties like Compressive strength, Water absorption and Slump retention were evaluated.

  19. The Ashes of Marci Shore

    Directory of Open Access Journals (Sweden)

    Zbigniew Kopeć


    Full Text Available The article discusses Marci Shore’s social and historical thought, as presented in her books: Caviar and Ashes: A Warsaw Generation’s Life and Death in Marxism, 1918-1968 (2006, The Taste of Ashes (2013, and her essays recently published in Polish translation. The author follows the American historian, presenting her concept of modernity, but focuses on the main theme of her research: the contribution of Jewish writers, poets, artists, and intellectuals to the creation of Marxism. The author acknowledges the great value of Marci Shore’s writings, but argues that her panorama of the 20th century would be fuller if her discussion included a reflection on the religious attitude of many Jewish thinkers to Marxism and the USSR. This topic was discussed by Nikolai Berdyaev and Polish thinkers who published in pre-war social journals.

  20. Rapid toxicity screening of gasification ashes. (United States)

    Zhen, Xu; Rong, Le; Ng, Wei Cheng; Ong, Cynthia; Baeg, Gyeong Hun; Zhang, Wenlin; Lee, Si Ni; Li, Sam Fong Yau; Dai, Yanjun; Tong, Yen Wah; Neoh, Koon Gee; Wang, Chi-Hwa


    The solid residues including bottom ashes and fly ashes produced by waste gasification technology could be reused as secondary raw materials. However, the applications and utilizations of these ashes are very often restricted by their toxicity. Therefore, toxicity screening of ash is the primary condition for reusing the ash. In this manuscript, we establish a standard for rapid screening of gasification ashes on the basis of in vitro and in vivo testing, and henceforth guide the proper disposal of the ashes. We used three different test models comprising human cell lines (liver and lung cells), Drosophila melanogaster and Daphnia magna to examine the toxicity of six different types of ashes. For each ash, different leachate concentrations were used to examine the toxicity, with C0 being the original extracted leachate concentration, while C/C0 being subsequent diluted concentrations. The IC50 for each leachate was also quantified for use as an index to classify toxicity levels. The results demonstrated that the toxicity evaluation of different types of ashes using different models is consistent with each other. As the different models show consistent qualitative results, we chose one or two of the models (liver cells or lung cells models) as the standard for rapid toxicity screening of gasification ashes. We may classify the gasification ashes into three categories according to the IC50, 24h value on liver cells or lung cells models, namely "toxic level I" (IC50, 24h>C/C0=0.5), "toxic level II" (C/C0=0.05IC50, 24hIC50, 24hashes generated in gasification plants every day. Subsequently, appropriate disposal methods can be recommended for each toxicity category.

  1. Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash. (United States)

    Muriithi, Grace N; Petrik, Leslie F; Fatoba, Olanrewaju; Gitari, Wilson M; Doucet, Frédéric J; Nel, Jaco; Nyale, Sammy M; Chuks, Paul E


    Natural weathering at coal power plants ash dams occurs via processes such as carbonation, dissolution, co-precipitation and fluid transport mechanisms which are responsible for the long-term chemical, physical and geochemical changes in the ash. Very little information is available on the natural carbon capture potential of wet or dry ash dams. This study investigated the extent of carbon capture in a wet-dumped ash dam and the mineralogical changes promoting CO2 capture, comparing this natural phenomenon with accelerated ex-situ mineral carbonation of fresh fly ash (FA). Significant levels of trace elements of Sr, Ba and Zr were present in both fresh and weathered ash. However Nb, Y, Sr, Th and Ba were found to be enriched in weathered ash compared to fresh ash. Mineralogically, fresh ash is made up of quartz, mullite, hematite, magnetite and lime while weathered and carbonated ashes contained additional phases such as calcite and aragonite. Up to 6.5 wt % CO2 was captured by the fresh FA with a 60% conversion of calcium to CaCO3 via accelerated carbonation (carried out at 2 h, 4Mpa, 90 °C, bulk ash and a S/L ratio of 1). On the other hand 6.8 wt % CO2 was found to have been captured by natural carbonation over a period of 20 years of wet disposed ash. Thus natural carbonation in the ash dumps is significant and may be effective in capturing CO2.

  2. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives. (United States)

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua


    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  3. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering


    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  4. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles


    A. Kylling; Kahnert, M.; Lindqvist, H.; T. Nousiainen


    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent sp...

  5. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles (United States)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.


    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.


    Energy Technology Data Exchange (ETDEWEB)



    The Coal Ash Resources Research Consortium (CARRC, pronounced �cars�) is the core coal combustion by-product (CCB) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCBs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCB utilization and ensuring its successful application. CARRC continued the partnership of industry partners, university researchers, and the U.S. Department of Energy (DOE) addressing needs in the CCB industry through technical research and development projects. Technology transfer also continued through distribution and presentation of the results of research activities to appropriate audiences, with emphasis on reaching government agency representatives and end users of CCBs. CARRC partners have evolved technically and have jointly developed an understanding of the layers of social, regulatory, legal, and competition issues that impact the success of CCB utilization as applies to the CCB industry in general and to individual companies. Many CARRC tasks are designed to provide information on CCB performance including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC activities from 1993�1998 included a variety of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCBs. The tasks summarized in this report are 1) The Demonstration of CCB Use in Small Construction Projects, 2) Application of CCSEM (computer-controlled scanning electron microscopy) for Coal Combustion By-Product Characterization, 3) Development of a Procedure to Determine Heat of Hydration for Coal Combustion By-Products, 4) Investigation of the Behavior of High

  7. As and Se interactions with fly ashes

    Directory of Open Access Journals (Sweden)

    M. Díaz-Somoano


    Full Text Available Arsenic and selenium are toxic elements present incoal in trace concentrations that may be emitted tothe environment during coal conversion processes.However, it is possible to retain volatile arsenic andselenium compounds in the fly ashes originated bythe process, the proportions retained depending onthe characteristics of the ashes and processconditions. This work is focused on the capture ofthese elements in fly ashes in simulated coalcombustion and gasification atmospheres inlaboratory scale reactors.

  8. Volcanic ash at Santiaguito dome complex, Guatemala (United States)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian


    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  9. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao


    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  10. Combustion of stoker ash in a CFBC

    Energy Technology Data Exchange (ETDEWEB)

    Jia, L.; Anthony, E.J. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre


    The ash generated from petroleum coke fired stokers at Georgia Pacific in Wisconsin has an elevated carbon content and a higher fuel value. This paper presents results of a study in which the stoker ash was test fired at the CANMET Energy Technology Centre in a bench scale circulating fluidized bed combustor (CFBC). The objective was to determine if firing the stoker ash in its 'as received' state (with a 40 per cent moisture content) is a viable fuel option for Georgia Pacific's FBC boiler to save fuel costs, or if it should be co-fired with petroleum coke. Mixtures of the stoker ash and petroleum coke were also test fired. Results indicate that the stoker ash alone cannot sustain combustion. However, good ignition and even bed temperature is possible with premixed coke and 10 per cent less moisture content. Emissions of sulphur dioxides, nitrogen oxides carbon monoxide were the same as for firing petroleum coke alone. In addition, the co-firing of stoker ash and petroleum coke did not negatively affect the tendency to foul, compared to firing coke alone. The amount of ash generated from the FBC boiler was high due to the high ash content. An economic evaluation showed that firing a 20/80 coke/stoker ash mixture can save approximately 22 per cent of the limestone usage compared to coke firing alone, if the Ca/S molar ratio remain the same. 8 refs., 2 tabs., 1 fig.

  11. Solidification on fly ash, Yugoslav experiences

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, D. [Mining Institute, Belgrade (Yugoslavia); Popov, S.; Salatic, D. [Faculty of Mining and Geology, Belgrade (Yugoslavia)


    A study was performed on ashes produced in the combustion process of coal from the Kosovo coal basin, in order to determine the potential and conditions of ash self-solidification. Investigations showed that the ash properties allows for the transformation into a solid mass through a controlled mixing with water. The optimal concentration of ash is 50 percent and the hydro-mixture is behaving as a Bingham plastic fluid. Solidification is obtained in a relatively short period (within 3 to 5 days) without additives. The resulting solidified mass is very consistent and stable

  12. Behaviour of fly ash in experimental embankments. Comportamiento de cenizas volantes en terraplenes experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Pardo de Santayana, F.; Otero, C.


    A study has been carried out of the geotechnical characteristics for several types of Spanish fly ash, and their behaviour when used as compacted fill materials. A wide range of laboratory research work was performed, and some of the results are shown in this paper. Several small embankments were constructed using fly ash from the Lada Power Plant, with a view to examining their ''in situ'' behavior. Emphasis has been placed on the influence of compaction energy and water content on the dry density and strength of the compacted material. The laboratory results showed that some degradation of the material takes place when it is compacted with high energies. Relatively light compaction energies gave good results for the ''in situ'' works. Other characteristics of Lada fly ash field behavior in the construction of experimental embankments, are described at the end of the paper.

  13. Ash agglomeration during fluidized bed gasification of high sulphur content lignites

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, V.; Marinov, S.P.; Lazarov, L.; Stefanova, M. (SRTI Energydesign, Sofia (Bulgaria))


    Intensive ash agglomeration has hampered the fluidized bed gasification of lignites from the Elhovo deposit (Bulgaria) containing 5.9 wt% sulphur in the dry state. Samples of slag and agglomerates from the pilot plant have been examined by means of chemical, X-ray analysis, IR spectroscopy and scanning electron microscopy. Pyrrhotite (FeS) and wustite (FeO) have been established in the agglomerates, where junctions between ash particles have been found to consist of magnetite, spinel and garnet grains. The chemical reactions leading to garnet formation have been studied. Centres of sintering and centres of melting during the ash agglomeration process have been distinguished. The pyrite product, an eutectic of FeS and FeO melting at 924[degree]C, is assumed to be responsible for the cessation of lignite gasification with steam and air under pressure at a bed temperature of 930[degree]. 11 refs., 3 figs., 6 tabs.

  14. Electroosmotic dewatering of chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge

    DEFF Research Database (Denmark)

    Hansen, H.K.; Christensen, Iben Vernegren; Ottosen, Lisbeth M.;


    Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material. Casagra......Electroosmotic dewatering has been tested in laboratory cells on four different porous materials: chalk sludge, iron hydroxide sludge, wet fly ash and biomass sludge from enzyme production. In all cases it was possible to remove water when passing electric DC current through the material....... Casagrande's coefficients were determined for the four materials at different water contents. The experiments in this work showed that chalk could be dewatered from 40% to 79% DM (dry matter), fly ash from 75 to 82% DM, iron hydroxide sludge from 2.7 to 19% DM and biomass from 3 to 33% DM by electroosmosis...

  15. Comparison of leachable trace element levels in coal gasifier ash with levels in power plant ash

    Energy Technology Data Exchange (ETDEWEB)

    Bombaugh, K.J.; Milosavljevic, M.; Janes, T.K.


    The levels of 14 trace elements in leachates from three types of ash of a common origin coal were compared. The study was conducted over a one year period at the Kosovo plant in Obilic, Yugoslavia comparing coal gasifier ash with fly ash and bottom ash from a coal-fired power plant using lignite from the Dobro Solo mine. Results obtained indicate that levels of Sb, As, Be, Cr, Cu, Pb, Mo, Ni and Zn in gasifier ash leachate were similar to those in fly ash leachate. Barium levels in gasifier ash leachate averaged 2.7 times that in fly ash and selenium levels averaged 0.33 times. The average ratio for the total set was 0.99. The set average, relative to bottom ash, was 2.1 with the nickel ratio differing significantly from the average. Metal oxides, CaO, MgO, Na/SUB/2O, K/SUB/2O and MgO; in the Kosovo gasifier ash were found at levels similar to those in Kosovo fly ash, and except for K/SUB/2O, were approximately twice those in bottom ash. Concentration levels of all components showed relatively small variations averaging 50% of their mean annual concentration over the test period. (14 refs.)

  16. A Study on the Evaluation of Field Application of High-Fluidity Concrete Containing High Volume Fly Ash

    Directory of Open Access Journals (Sweden)

    Yun-Wang Choi


    Full Text Available In the recent concrete industry, high-fluidity concrete is being widely used for the pouring of dense reinforced concrete. Normally, in the case of high-fluidity concrete, it includes high binder contents, so it is necessary to replace part of the cement through admixtures such as fly ash to procure economic feasibility and durability. This study shows the mechanical properties and field applicability of high-fluidity concrete using mass of fly ash as alternative materials of cement. The high-fluidity concrete mixed with 50% fly ash was measured to manufacture concrete that applies low water/binder ratio to measure the mechanical characteristics as compressive strength and elastic modulus. Also, in order to evaluate the field applicability, high-fluidity concrete containing high volume fly ash was evaluated for fluidity, compressive strength, heat of hydration, and drying shrinkage of concrete.

  17. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Pierre-Luc Lizotte


    Full Text Available Corn stover is an abundant agricultural residue that could be used on the farm for heating and crop drying. Ash content and calorific energy of corn grain and six stover components were measured from standing plants during the grain maturing period, between mid-September and mid-November. Ash of stover in standing corn averaged 4.8% in a cool crop heat unit zone (2300–2500 crop heat units (CHU and 7.3% in a warmer zone (2900–3100 CHU. The corn cob had the lowest ash content (average of 2.2% while leaves had the highest content (from 7.7% to 12.6%. In the fall, ash content of mowed and raked stover varied between 5.5% and 11.7%. In the following spring, ash content of stover mowed, raked and baled in May averaged 3.6%. The cob and stalk located below the first ear contained the highest calorific energy with 17.72 MJ·kg−1. Leaves and grain had the lowest energy with an average of 16.99 MJ·kg−1. The stover heat of combustion was estimated at 17.47 MJ·kg−1 in the cool zone and 17.26 MJ·kg−1 in the warm zone. Based on presented results, a partial “cob and husk” harvest system would collect less energy per unit area than total stover harvest (44 vs. 156 GJ·ha−1 and less biomass (2.51 vs. 9.13 t·dry matter (DM·ha−1 but the fuel quality would be considerably higher with a low ash-to-energy ratio (1.45 vs. 4.27 g·MJ−1.

  18. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production. (United States)

    Li, Qiansheng; Chen, Jianjun; Li, Yuncong


    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 microg per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  19. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Q.S.; Chen, J.J.; Li, Y.C. [University of Florida, Apopka, FL (United States)


    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  20. Treatment of fly ash for use in concrete (United States)

    Boxley, Chett [Park City, UT


    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  1. Ash wettability conditions splash erosion in the postfire (United States)

    Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio


    at each point of study were collected monthly and determined gravimetrically after oven drying between November 2012 and May 2013. 3. RESULTS AND DISCUSSION Depending on the intensity of the water repellency, the ash layer fluctuated between wettable and very strongly water repellent. The ash has a high permeability and water storage. However, its hydrophilic character has been emphasized rarely (Cerdà and Doerr, 2008). Different authors have described hydrophobic behaviors depending on the burned vegetation such as oak (Gabet and Sternberg, 2008) or pine forest (Stark, 1977) in the United States, eucalyptus forest in Australia (Khanna et al., 1996 ) or Mediterranean tree and shrub species in Spain (Bodí et al., 2011). In the latter case, Bodí et al. (2011) observed that ash has different properties depending on the combustion conditions, organic carbon content and color. This variability of behavior agrees with the results obtained in the present work. Significant differences between splash erosion from wettable and water-repellent ash zones were found (p charred litter reduces susceptibility to rain splash erosion post-wildfire Earth Surface Processes and Landforms, 34, 1522-1532. Zavala LM, De Celis R, Jordán A. 2014. How wildfires affect soil properties. A brief review Cuadernos de Investigación Geográfica 40, 311-331. AKNOWLEDGEMENTS This research is part of the POSTFIRE Project (ref. CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness. The authors are also grateful to the Environmental Management Centre (Mykolas Romeris University, Lithuania) and the Michoacan University (Morelia, Mexico) for their support.

  2. Statistical Analysis of the Effects of Drying Temperature and Pretreatment on the Proximate Composition of Dried Matured Green Plantain (Musa Paradisiaca

    Directory of Open Access Journals (Sweden)

    K.A. Yusuf


    Full Text Available Drying has been identified as the efficient means of ensuring continuous food supply to the growing population of any country and to enable the farmers produce more high quality marketable products. In this study, the effects of drying temperature and pretreatment on the quality of dried mature green plantain (Musa paradisiaca were studied using an electrically-powered cabinet dryer. The product was dried from an initial moisture content of 62% (w.b to a moisture content of 11.9% (w.b. A factorial experiment in a Randomized Complete Block Design (RCBD involving three levels of temperature (50, 60 and 70 0C; three levels of pretreatment (blanching, boiling and control and three replications were used. The quality analysis of the dried samples at different level of drying temperatures and pre-treatments was carried out for protein, fat, ash and fibre content and the data obtained were statistically analyzed using SPSS 16.0 software to determine the level of significance among the treatment factors on the dried samples. The protein, fat and fibre content decreased with increase in temperature but the ash content increased with increase in temperature. In pretreatments, control had the highest protein content of 4.27% at 60 0C, lowest fat content of 2.26% at 70 0 C and moderate fibre and ash contents of 0.68% and 1.82% respectively at 60 0C. Boiled sample also had the highest fat content of 4.27% at 50 0C, lowest fat content 2.26% at 70 0C and moderate fibre and ash contents of 0.88% and 1.73% respectively at 60 0C. lastly, blanched sample had the highest fat content of 4.11% at 50 0 C, lowest fat content 2.54% at 70 0C and moderate fibre and ash contents of 0.83% and 1.45% respectively at 60 0C.

  3. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands (United States)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  4. Characteristics of spanish fly ashes

    Directory of Open Access Journals (Sweden)

    de Luxán, M. P.


    Full Text Available The purpose of this study is the characterization of fly ashes produced by Spanish thermoelectric power plants, according to sampling taken in 1981 and 1982. The study takes in the following characteristics: physical characteristics (size distribution of particles, ...; chemical ones (chemical analysis...; and mineralogical ones (application of instrumental techniques of X-ray diffraction and infrared absorption spectroscopy. From a general point of view, it can be said that the samples of Spanish fly ashes are similar to those produced in other countries. The results obtained are a contribution to the knowledge of Spanish fly ashes and form part of the antecedents of investigations carried out in subsequent years.

    Este trabajo tiene por objeto la caracterización de las cenizas volantes producidas en las Centrales Termoeléctricas españolas, según un muestreo realizado entre 1981 y 1982. El estudio comprende las siguientes características: físicas (distribución del tamaño de partículas,...; químicas (análisis químico, …; y mineralógicas (aplicación de las técnicas instrumentales de difracción de rayos X y espectroscopía de absorción infrarroja. Desde un punto de vista general, se puede afirmar que las muestras de ceniza volante estudiadas son semejantes a las producidas en otros países. Los resultados obtenidos son una aportación al conocimiento de las cenizas volantes españolas y forman parte de los antecedentes de las investigaciones llevadas a cabo en años posteriores.

  5. Dioxin-like compound compositional profiles of furnace bottom ashes from household combustion in Poland and their possible associations with contamination status of agricultural soil and pine needles

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowska, B.; Hanari, N.; Orlikowska, A.; Yamashita, N.; Falandysz, J. [University of Gdansk, Gdansk (Poland)


    A compositional profile of PCDDs, PCDFs, non- and mono-ortho PCBs, and PCNs of several type furnace bottom ashes obtained after the heating muffle stove for domestic use combustion of hard coal, coke, wood, and solid domestic waste mixture have been examined as possible contributors to environmental diffusion with these compounds in Poland. The uppermost concentration of dioxin-like compounds with 2.0 ng TEQ kg{sup -1} dry weight found for wood ash was dominated by PCDDs and PCDFs, while for other types of ashes were in the range from 0.052 ng TEQ kg{sup -1} to 0.67 ng TEQ kg{sup -1} dry weight. The multivariate statistical analysis displayed some compositional similarity of PCDDs, PCDFs and PCNs between the ashes and environmental pine needle or agricultural soil matrices collected in Poland.


    Directory of Open Access Journals (Sweden)

    W. J. R. Castro


    Full Text Available The objective of this experiment was to evaluate the fermentative parameters and chemical composition of silage cane sugar added with residue dried brewery. The experimental design was completely randomized with four treatments and four replications: 100% cane sugar; 90% of cane sugar + 10% residue dried brewer; 80% of cane sugar + 20% residue dried brewer and 70% cane sugar + 30% dried brewer based on natural matter, composed silages. The sugar cane was chopped in a stationary machine with forage particle size of approximately 2 cm, and homogenized manually with the additives. For storage chopped fresh weight were used in experimental silos capacity of about 4 liters. The results showed that the contents of dry matter and crude protein showed positive linear (P0.05 with mean value of 3.81, while for ether extract and ash results were positive linear (P0.05 for N ammonia presented average value of 4.18. It is concluded that the addition of brewer dehydrated improves the fermentation process of silage cane sugar, in addition to improving their nutritional characteristics.

  7. Effects of Characteristics of Fly Ash on the Properties of Geopolymer

    Institute of Scientific and Technical Information of China (English)

    杜海燕; 杨立娜; 高婉琪; 刘家臣


    The properties of two types of fly ash geopolymers made from class F fly ashes produced in wet bottom and dry bottom boilers were investigated in the present study. The source material used in the geopolymer concrete was activated with sodium hydroxide and sodium silicate solution. The results revealed that the geopolymer pro-duced with wet bottom boiler fly ash(CZ-FA)hardened quickly, and had higher early-age strength and lower shrinkage than the geopolymer produced with dry bottom boiler fly ash(SX-FA). The compressive strength of the two geopolymers made from CZ-FA and SX-FA was 45 MPa and 15 MPa respectively when cured at 60℃ and delayed for 14 d. However, after 90 days’ delay, the compressive strength of both the samples is almost the same, up to 80 MPa. Nearly 20% volume shrinkage of the samples made from SX-FA was much higher than that made from CZ-FA, which was almost zero. XRD, SEM/EDS and FT-IR were used to analyze the main reason of the dif-ferences.

  8. Kinetics of fly ash beneficiation by carbon burnout. Quarterly report, July 1--September 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Dodoo, J.N.D.; Okoh, J.M.; Diaz, A.


    Oxidation studies of coal fly ash have been carried out at partial pressures in the range 1 atmosphere down to 400 torr. The studies have also been carried out at 1 atmosphere for different temperatures in the range 500 to 750 C. The equipment used was a state-of-the-art Cann Thermogravimetric analyzer having sensitive microbalance that permitted measurements to .1 {micro}g. The analyzer is part of a GC/MS/TG setup in this laboratory. The fly ash was supplied by Delmarva Power Indian River Plant, DE. The samples were dried and stored in a desiccator to ensure that they remained dry prior to combustion. The combustion process inside the TGA is continuous and the heat released can be related to the percent of carbon consumed. The setup provided easy identification of the elements in the fly ash. The elemental analysis was also augmented by use of an energy dispersive X-ray analyzer. In the X-ray analysis the carbon in the fly ash was compared with that in a dolomite (CaMg(CO{sub 3}){sub 2}) standard obtained from the US Bureau of Mines (USBOM). Preliminary data show encouraging results in the rate of reduction of the residual carbon. Both analyses show reduction of carbon after burning.

  9. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail:; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)


    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  10. Geotechnical behavior of fly ash mixed with randomly oriented fiber inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Kaniraj, S.R.; Gayathri, V. [Indian Institute of Technology, New Delhi (India). Dept. of Civil Engineering


    Efforts are underway to improve the use of fly ash in several ways, with the geotechnical utilization also forming an important aspect of these efforts. A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on the geotechnical behavior of coarse grained and fine grained soils. However, very few studies have been carried out on fiber-reinforced fly ash. An experimental study was carried out to investigate the influence of randomly oriented fiber inclusions on the geotechnical behavior of two Indian fly ashes. Polyester fibers of two different types and a constant fiber content of 1% (by dry weight) were used in the experiments. The raw material content of the fibers was 100% recycled plastic waste. This paper presents the results of compaction tests, triaxial shear tests, and other geotechnical characterization tests carried out on the raw and fiber-reinforced fly ashes. The fiber inclusions increased the strength of the raw fly ash specimens and changed their brittle behavior into ductile behavior.

  11. Electrodialytic removal of heavy metals from fly ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul


    The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration.......The aim of the Ph.D. work was to develop the electrodialytic remediation method for removal of heavy metals from fly ashes. The work was focused on two types of fly ashes: fly ashes from wood combustion and fly ashes from municipal solid waste incineration....

  12. Biomass fly ash in concrete: SEM, EDX and ESEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shuangzhen Wang; Larry Baxter; Fernando Fonseca [Brigham Young University, Provo, UT (USA). Department of Chemical Engineering


    This document summarizes microscopy study of concrete prepared from cement and fly ash (25% fly ash and 75% cement by weight), which covers coal fly ash and biomass fly ash. All the fly ash concrete has the statistical equal strength from one day to one year after mix. Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) and environmental scanning electron microscopy (ESEM) analysis show that both coal and biomass fly ash particles undergo significant changes of morphology and chemical compositions in concrete due to pozzolanic reaction, although biomass fly ash differs substantially from coal fly ash in its fuel resources. 8 refs., 17 figs., 1 tab.


    Directory of Open Access Journals (Sweden)

    Ravinder Pal Singh


    Full Text Available Rice Husk ash and fly ash are agricultural and coal wastes respectively. These are produced in abundance globally and poses risk to health as well as environment. Thus their effective, conducive and eco-friendly utilization has always been a challenge for scientific community. The fly ash has been used as reinforcement for improved mechanical properties of composites (1,3-5,9. Rice husk ash can also be used for similar applications as its composition is almost similar to that of fly ash. This paper mainly deals with identification ofcharacteristics of both the fly ash and rice husk ash using spectroscopic and microscopic analysis. SEM, XRD,XRF and FTIR spectroscopic methods were used for the characterization of treated and untreated ashes. The results were compared and it was observed that both ashes possesses nearly same chemical phases and otherfunctional groups thus proposing the use of rice husk ash as reinforcement like fly ash in Metal Matrix Composites (MMCs specifically for wear resistance applications.

  14. Column leaching from biomass combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard


    The utilization of biomass combustion ashes for forest soil liming and fertilizing has been addressed in literature. Though, a deep understanding of the ash chemical composition and leaching behavior is necessary to predict potential benefits and environmental risks related to this practice...

  15. Fly ash-reinforced thermoplastic starch composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.F.; Yu, J.G.; Wang, N. [Tianjin University, Tianjin (China). School of Science


    As a by-product from the combustion of pulverized coal, fly ash was, respectively, used as the reinforcement for formamide and urea-plasticized thermoplastic starch (FUPTPS) and glycerol-plasticized thermoplastic starch (GPTPS). The introduction of fly ash improved tensile stress from 4.56 MPa to 7.78 MPa and Youngs modulus increased trebly from 26.8 MPa to 84.6 MPa for fly ash-reinforced FUPTPS (A-FUPTPS), while tensile stress increased from 4.55 MPa to 12.86 MPa and Youngs modulus increased six times from 76.4 MPa to 545 MPa for fly ash-reinforced GPTPS (A-GPTPS). X-ray diffractograms illustrated that fly ash destroyed the formation of starch ordered crystal structure, so both A-GPTPS and FUPTPS could resist the starch re-crystallization (retrogradation). Also fly ash improved water resistance of TPS. As shown by rheology, during the thermoplastic processing, the extruder screw speed effectively adjusted the flow behavior of A-FUPTPS, while the increasing of the processing temperature effectively ameliorated the flow behavior of A-GPTPS. However, superfluous ash contents (e.g., 20 wt%) worsened processing fluidity and resulted in the congregation of fly ash in FUPTPS matrix (tested by SEM) rather than in GPTPS matrix. This congregation decreased the mechanical properties and water resistance of the materials.

  16. Wet physical separation of MSWI bottom ash

    NARCIS (Netherlands)

    Muchova, L.


    Bottom ash (BA) from municipal solid waste incineration (MSWI) has high potential for the recovery of valuable secondary materials. For example, the MSWI bottom ash produced by the incinerator at Amsterdam contains materials such as non-ferrous metals (2.3%), ferrous metals (8-13%), gold (0.4 ppm),

  17. Physicochemical characterization of Spanish fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez-Soler, A.; Plana, F.


    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Cou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential.

  18. Physiochemical characterization of Spanish fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez Soler, A.; Plana, F.


    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Dou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential. (author)

  19. Effects of colemanite waste, coal bottom ash, and fly ash on the properties of cement

    Energy Technology Data Exchange (ETDEWEB)

    Kula, I.; Olgun, A.; Erdogan, Y.; Sevinc, V. [Celal Bayar University, Manisa (Turkey)


    The physical and chemical properties of colemanite ore waste from concentrator, coal bottom ash, fly ash, cement+ash mixtures, cement+colemanite ore waste, and their effects on the mechanical properties of concrete were investigated. These materials with different proportion were substituted with Portland cement. Physical properties such as setting time, volume expansion, and compressive strength were determined and compared to reference mixture and Turkish standards (TS). The results showed that cement replacement materials had clear effects on the mechanical properties. The use of fly ash and bottom ash even at the concentration of 25% showed either comparable or better result compared to reference mixture. Although replacement of Portland cement by 9 wt.% of colemanite ore waste causes reduction in the compressive strength, the values obtained are within the limit of TS. As a result, colemanite ore waste, fly ash, and bottom ash may be used as cementitious materials.

  20. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al


    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  1. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al


    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  2. Construction procedures using self hardening fly ash (United States)

    Thornton, S. I.; Parker, D. G.


    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  3. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO Power Engineering, Vantaa (Finland); Kauppinen, E.; Latva-Somppi, J.; Kurkela, J. [VTT Chemical Technology, Espoo (Finland); Partanen, J. [IVO Technology Centre, Vantaa (Finland)


    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  4. Laboratory Studies of Ice Nucleation on Volcanic Ash (United States)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.


    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  5. Treatment of fly ash for use in concrete (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang


    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  6. Treatment of fly ash for use in concrete (United States)

    Boxley, Chett; Akash, Akash; Zhao, Qiang


    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  7. Long term effects of ash fertilization of reed canary grass; Laangtidseffekter av askgoedsling vid roerflensodling

    Energy Technology Data Exchange (ETDEWEB)

    Palmborg, Cecilia; Lindvall, Eva


    Reed canary grass (RCG) is a bio-energy crop with large potential. It is a 1.5 . 2.5 m tall grass that is harvested in spring when it is grown as a fuel. At spring harvest it yields 3 . 10 ton field dried material per ha and year. One disadvantage when reed canary grass is used as a fuel is the high ash content, 5-10 %. This means that large quantities of ash have to be deposited which is expensive, about 1000 SEK/ton. However, since reed canary grass ash contains reasonable amounts of plant nutrients like phosphorous (P), potassium (K) and magnesium (Mg) it could be recycled as fertilizer in agriculture. The ash can be used without any pretreatment since, in agriculture, plant availability is desirable. The aim of this project, was to evaluate a field experiment, where ash was used as a fertilizer in reed canary grass. The experiment was established at the SLU research station in Umea, Sweden in the spring 2002. Three different fertilizer treatments were applied: Treatment A was fertilized with an ash produced by combustion of RCG together with municipal wastes (paper, plastic, leather), treatment B, an ash from combustion of RCG, and for treatment C commercial fertilizers were used. In total, 100 kg ha-1 of nitrogen (N), 15 kg ha-1 of phosphorous (P) and 80 kg ha-1 of potassium (K), were applied each year in all treatments. The amount of ash in treatment A and B was calculated from the chemical analysis of the ashes to be equal to the required amount of P, while K and N were supplied also by commercial fertilizers. [Table 1. Composition of the ashes] Literature study: There is a lack of knowledge about fertilization with reed canary grass ash, since few experiments have been conducted. The composition of reed canary grass is dependent of harvest date and the soil substrate. The amount of ash and the amount of harmful substances such as potassium and chloride generally decreases over winter, giving an increased fuel quality from spring harvest compared to autumn

  8. Turmeric (Curcuma longa L.) drying: an optimization approach using microwave-vacuum drying. (United States)

    Hirun, Sathira; Utama-Ang, Niramon; Roach, Paul D


    This study investigated the effect of microwave power (2,400-4,000 W) and drying times (10-30 min) on the quality of dried turmeric in terms of colour (L, a*, b*), moisture content, water activity (aw), ash, antioxidant activity (2,2-dipheneyl-1-picrylhydrazyl; DPPH), total phenolic and curcuminoids content. In addition, Response Surface Methodology (RSM) was implemented to optimize the drying conditions for turmeric. A range of quality parameters, microwave power (W) and time (min) were fitted to quadratic models using a central composite design. The Analysis of Variance (ANOVA) statistic results suggested that the optimal qualities (i.e., aw, value, moisture content, phenolic content, curcuminoid content and EC50 and L value) of dried turmeric were achieved at high vacuum-microwave power (3,500-4,000 W) and long duration (27-30 min). The improvement in the quality of dried turmeric microwave-vacuum drying in these conditions was illustrated through the enzymatic browning reaction via inhibition of polyphenol oxidase which suppressed the formation of the brown pigments and increased the phenol substrates.

  9. Selective catalytic reduction of NO by ammonia over oil shale ash and fly ash catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Changtao Yue; Shuyuan Li [University of Petroleum, Beijing (China). State Key Lab of Heavy Oil Processing


    Acid rain and urban air pollution, produced mainly by pollutants such as SOX and NOX and other volatile organic compounds, has become the most serious environmental problem. The selective catalytic reduction (SCR) of NO with NH{sub 3} in the presence of oxygen is a wellproven method to limit the NOX emissions. The work in this field has been the subject of much research in recent years. In this paper, NO reduction with NH{sub 3} over oil shale ash or fly ash catalysts was studied. Fe, Cu, V or Ni as active elements was loaded by adding aqueous solutions of the metal nitrate over the oil shale ash or fly ash support. The activities of the catalysts for NO removal were measured in a fixed-bed reactor. According to the results, oil shale ash or fly ash, after pre-treatment, can be reasonably used as the SCR catalyst support to remove NO from flue gas. Cu gave the highest catalytic activity and NO conversion for fly ash while V for oil shale ash. As the support, fly ash is more feasible than oil shale ash. Because of their low cost and high efficiency, the catalysts should be used in the SCR process. Further research on this subject is necessary in the future to understand more details of the SCR system and issue of pollution control. 9 refs., 2 figs., 2 tabs.

  10. Gasification reactivity and ash sintering behaviour of biomass feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Nasrullah, M.


    Char gasification reactivity and ash sintering properties of forestry biomass feedstocks selected for large-scale gasification process was characterised. The study was divided into two parts: (1) Internal variation of the reactivity and the ash sintering of feedstocks. (2) Measurement of kinetic parameters of char gasification reactions to be used in the modelling of a gasifier. The tests were carried out in gases relevant to pressurized oxygen gasification, i.e. steam and carbon dioxide, as well as their mixtures with the product gases H{sub 2} and CO. The work was based on experimental measurements using pressurized thermobalance. In the tests, the temperatures were below 1000 deg C, and the pressure range was between 1 and 20 bar. In the first part, it was tested the effect of growing location, storage, plant parts and debarking method. The following biomass types were tested: spruce bark, pine bark, aspen bark, birch bark, forestry residue, bark feedstock mixture, stump chips and hemp. Thick pine bark had the lowest reactivity (instantaneous reaction rate 14%/min) and hemp the highest (250%/min); all other biomasses laid between these values. There was practically no difference in the reactivities among the spruce barks collected from the different locations. For pine bark, the differences were greater, but they were probably due to the thickness of the bark rather than to the growth location. For the spruce barks, the instantaneous reaction rate measured at 90% fuel conversion was 100%/min, for pine barks it varied between 14 and 75%/min. During storage, quite large local differences in reactivity seem to develop. Stump had significantly lower reactivity compared with the others. No clear difference in the reactivity was observed between barks obtained with the wet and dry debarking, but, the sintering of the ash was more enhanced for the bark from dry debarking. Char gasification rate could not be modelled in the gas mixture of H{sub 2}O + CO{sub 2} + H{sub 2

  11. Assessment of soda ash calcination treatment of Turkish trona ore

    Directory of Open Access Journals (Sweden)

    Gezer Sibel


    Full Text Available Trona is relatively rare, non-metallic mineral, Na2CO3 · NaHCO3 · 2H2O. The pure material contains 70.3% sodium carbonate and by calcination the excess CO2 and water can be driven off, yielding natural soda ash. The terms soda ash and sodium carbonate are used interchangeably. Trona calcining is a key process step in production of soda ash (sodium carbonate anhydrate from the relatively cheap trona ore. The calcination reaction may proceeds in a sequence of steps. Depending on the conditions, it may result in formation of either sodium carbonate monohydrate (Na2CO3 · H2O, sodium sesquicarbonate or weigschederite (Na2CO3 · 3NaHCO3. The Beypazarı Turkish trona deposit is the second largest deposit in the world with the content of 84% trona. The decomposition of trona appeared to be a single stage process across the temperature range studied (150-200 °C with the representative samples of different size fractions in the draught up metallurgical furnace. The optimum particle size and calcination time were −6.35 mm and 30 minutes, respectively, at calcination temperature of 175 °C in a metallurgical furnace. Microwave-induced dry calcination of trona was possible and 5 minutes of calcination time at a power level of 900 was sufficient for complete calcination of −6.35 mm feed. This includes short time calcinations with the goal of improving economics and simplifying the thermal process.

  12. Pozzolanic Reaction Kinetics of Coal Ashes

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hongwei; WANG Zhijuan; QIAN Jueshi; SONG Yuanming; WANG Zhi


    The pozzolanic reactivity was determined by the hydration kinetics of pozzolanic reaction based on the fact that the hydration products of active SiO_2 and Al_2O_3 with lime were soluble in dilute hydrochloric acid.The results show that the pozzolanic reaction of active SiO_2 and Al2O3 of coal ashes follows apparent first-order kinetics.The reaction rate constant of FBC ashes is greater than that of PC ashes,while the activation energy of the former is lower than that of the latter.It is confirmed that the pozzolanic activity of fluidized bed combustion(FBC)ashes is significantly higher than that of PC ashes,and the reaction barrier of the former is lower than that of the latter,because the microstructures of FBC ashes,such as mineralogical composition,morphology and polymerization degree of [SiO_4]and[AlO_6]are more favorable to the pozzolanic activity development than those of PC ashes.

  13. Gaseous fuels production from dried sewage sludge via air gasification. (United States)

    Werle, Sebastian; Dudziak, Mariusz


    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  14. Marine mesocosm bacterial colonisation of volcanic ash (United States)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert


    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  15. [The use of dried grape press cake in pig fattening]. (United States)

    Herzig, I; Tomová, M; Holub, A; Pleskac, Z


    In dried grape press cake the content of crude nutrients and ash, overall sugar, amino acids, alpha-tocopherol and gross energy was determined. In biological experiments with pigs (total of 109 animals) 10% of mixture A1 or SOL was replaced by the same amount of dried crushed grape press cake, without affecting negatively the weight gains and consumption of mixtures per unit of weight gain. Nutritional effects of grape press cake are a subject of discussion and comprise three factors: higher content of enrgy (fat and sugars) in mixtures containing press cake, anti-oxidation effect of press cake and the effect of tocopherols on the metabolism of basic nutrients.

  16. Utilization of Meat and Bone Meal Bottom Ash in Ceramics

    Directory of Open Access Journals (Sweden)

    Virginija VALANČIENĖ


    Full Text Available During utilization of animal waste meat and bone meal (MBM is received, realization and use of which has been stopped due to risk for the transmission of the bovine spongiform encephalopathy infection. The MBM must be safely stored or treated. Most often meat and bone meal undergoes thermal treatment. During combustion large quantities of residues (ashes are received, the recycled use of which has been given a lot of attention lately. In this work it was investigated the impact of the additive of the bottom ash (BA formed during combustion of the MBM on the properties of forming mass and ceramic body of hydromica clay, and also it was evaluated a possibility to use the MBM BA in manufacturing of building ceramics. After replacing the sand in porous ceramics by this additive the plasticity of the forming mass, drying and firing shrinkage as well as density of ceramic body changed insignificantly whereas the compressive strength increased by 8 % - 22 %. So the MBM BA can be utilized in production of porous ceramics.

  17. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao


    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  18. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination (United States)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.


    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  19. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination (United States)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.


    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  20. Nutritional composition of ginger powder prepared using various drying methods. (United States)

    Sangwan, A; Kawatra, A; Sehgal, S


    A study was undertaken to prepare ginger powder using various drying methods and their nutritional evaluation was carried out. Ginger (Zingiber officinale) was dried using shade, solar, oven and microwave drying methods. All the samples were ground in grinder to make fine powder. Sensory analysis indicated that acceptability of all types of ginger powders were in the range of 'liked very much' to 'liked moderately' by the panelists. The mean score obtained for colour was higher in shade dried ginger powder i.e., 8.20 as compared to oven dried (7.60), solar dried (7.70) and microwave dried ginger powder (7.80). Moisture content ranged from 3.55 % in solar dried ginger powder to 3.78 % in shade dried ginger powder. Slightly higher moisture content was found in shade dried ginger powder. Protein, crude fiber, fat and ash contents ranged from 5.02 to 5.82, 4.97 to 5.61, 0.76 to 0.90 and 3.38 to 3.66 %, respectively. β-carotene and ascorbic acid content was found maximum in shade dried ginger powder i.e., 0.81 mg/100 g and 3.83 mg/100 g, respectively. Polyphenol content was almost similar in all the samples whereas calcium was slightly higher in the shade dried ginger powder i.e., 69.21 mg/100 g. Results have shown that ginger powder prepared from various drying methods had good sensory and nutritional profile.

  1. Properties of Concrete Incorporating Bed Ash from Circulating Fluidized Bed Combustion and Ground Granulates Blast-furnace Slag

    Institute of Scientific and Technical Information of China (English)

    CHENG An; HSU Hui-Mi; CHAO Sao-Jeng


    The properties of concrete incorporating circulating fluidized bed combustion (CFBC) bed ash and ground granulates blast-furnace slag (GGBS) were studied. Compressive strength,drying shrinkage, mercury intrusion porosimetry (MIP), scanning electronic microscopy (SEM), and X-ray diffraction (XRD) of concrete samples containing CFBC bed ash and GGBS were used. This work used initial surface absorption test (ISAT) and rapid chloride penetration test (RCPT) on concrete to measure the absorption and the ability of concrete to resist chloride ion characteristics for different concrete samples containing CFBC bed ash and GGBS. Open circuit potential (OCP), direct current polarization resistance were obtained to evaluate rebar corrosion. The CFBC bed ash was X-ray amorphous and consist of SiO2, A12O3 and CaO compounds. As the replacement of CFBC for sand increases, the rate of initial surface absorption (ISA) increases but compressive strength decreases.When the content of CFBC bed ash replacement for sand maintains constant, the replacement of GGBS for cement increases, compressive strength increases but the rate of ISA decreases. Chloride and corrosion resistance of rebar significantly improve by utilizing a proper amount of CFBC bed ash and GGBS in concrete.

  2. Effect of Fly Ash on the Electrical Conductivity of Concretes

    Institute of Scientific and Technical Information of China (English)


    The fly ash occasionally has high content of iron oxide and carbon that are good electrical conducting components. This paper investigates the effect of the fly ash used as mineral admixtures on the electrical conductivity of concretes. The electrical properties of concretes using 3 kinds of fly ash with different iron oxide contents have been studied. Experimental results show that at the same fly ash dosage the resistivity of concrete using fly ash with high content of iron oxide is slightly lower than that with low content of iron oxide. However, the concrete resistivity after 14d increases as fly ash dosage increases regardless of iron oxide content in fly ash.

  3. Effect of Compaction Energy on Engineering Properties of Fly Ash –Granite Dust Stabilized Expansive Soil

    Directory of Open Access Journals (Sweden)

    Akshaya Kumar Sabat


    Full Text Available The effects of compaction energy on engineering properties of an expansive soil stabilized with optimum percentage of fly ash-granite dust have been discussed in this paper. Expansive soil stabilized with optimum percentage of fly ash-granite dust was compacted with five compaction energy levels. Maximum dry density and optimum moisture content corresponding to each energy level were determined. Based on these maximum dry density and optimum moisture content, samples were prepared for unconfined compressive strength, soaked California bearing ratio, hydraulic conductivity and swelling pressure tests. From the test results it is found that increase in compaction energy increased the maximum dry density, unconfined compressive strength, soaked California bearing ratio and swelling pressure, and decreased the optimum moisture content and hydraulic conductivity.

  4. Biomass fly ash in concrete: Mixture proportioning and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shuangzhen Wang; Amber Miller; Emilio Llamazos; Fernando Fonseca; Larry Baxter [Brigham Young University, Provo, UT (USA). Department of Chemical Engineering


    ASTM C 618 prohibits use of biomass fly ashes in concrete. This document compares the properties of biomass fly ashes from cofired (herbaceous with coal), pure wood combustion and blended (pure wood fly ash blended with coal fly ash) to those of coal fly ash in concrete. The results illustrate that with 25% replacement (wt%) of cement by fly ash, the compressive strength (one day to one year) and the flexure strength (at 56th day curing) of cofired and blended biomass fly ash concrete is statistically equal to that of two coal fly ash concrete in this investigation (at 95% confidence interval). This implies that biomass fly ash with co-firing concentration within the concentration interest to commercial coal-biomass co-firing operations at power plants and blended biomass fly ash within a certain blending ratio should be considered in concrete. 37 refs., 10 figs., 2 tabs.

  5. Rice Husk Ash Derived Zeolite Blended with Water Hyacinth Ash for Enhanced Adsorption of Cadmium Ions


    G. W. Mbugua; H. M. Mbuvi; J. W. Muthengia


    In order to helpcurtail or imposesustained control to the offensive water hyacinth plant,it is essential to explore ways of generatingwater remediation materials from it. In the current study, the capacity and efficacy of water hyacinth ash (WHA),its insoluble residue (WHAR) and rice husk ash (RHA)to remove cadmium ionsand methylene blue from contaminated water was investigated. Mixtures of the two ashes were used to formulatezeolitic materialsby hydrothermal reactions. Material A, ZMA was pr...

  6. Electrodialytic removal of heavy metals from different fly ashes. Influence of heavy metal speciation in the ashes

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Villumsen, Arne


    Electrodialytic Remediation has recently been suggested as a potential method for removal of heavy metals from fly ashes. In this work electrodialytic remediation of three different fly ashes, i.e. two municipal solid waste incinerator (MSWI) fly ashes and one wood combustion fly ash was studied...

  7. Biotic and abiotic factors affect green ash volatile production and emerald ash borer adult feeding preference. (United States)

    Chen, Yigen; Poland, Therese M


    The emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an exotic woodborer first detected in 2002 in Michigan and Ontario and is threatening the ash resource in North America. We examined the effects of light exposure and girdling on green ash (Fraxinus pennsylvanica Marsh) volatile production, and effects of light exposure, girdling, and leaf age on emerald ash borer adult feeding preferences and phototaxis. Green ash seedlings grown under higher light exposure had lower amounts of three individual volatile compounds, (Z)-3-hexenol, (E)-beta-ocimene, and (Z,E)-alpha-farnesene, as well as the total amount of six detected volatile compounds. Girdling did not affect the levels of these volatiles. Emerald ash borer females preferred mature leaves, leaves from girdled trees, and leaves grown in the sun over young leaves, leaves from nongirdled trees, and leaves grown in the shade, respectively. These emerald ash borer preferences were most likely because of physical, nutritional, or biochemical changes in leaves in response to the different treatments. Emerald ash borer females and males showed positive phototaxis in laboratory arenas, a response consistent with emerald ash borer preference for host trees growing in sunlight.

  8. Zeolite synthesis from paper sludge ash at low temperature (90 degrees C) with addition of diatomite. (United States)

    Wajima, Takaaki; Haga, Mioko; Kuzawa, Keiko; Ishimoto, Hiroji; Tamada, Osamu; Ito, Kazuhiko; Nishiyama, Takashi; Downs, Robert T; Rakovan, John F


    Paper sludge ash was partially converted into zeolites by reaction with 3M NaOH solution at 90 degrees C for 24 h. The paper sludge ash had a low abundance of Si and significant Ca content, due to the presence of calcite that was used as a paper filler. Diatomite was added to the NaOH solution to increase its Si content in order to synthesize zeolites with high cation exchange capacity. Diatomite residue was filtered from solution before addition of ash. The original ash without addition of diatomite yielded hydroxysodalite with a cation exchange capacity ca. 50 cmol/kg. Addition of Si to the solution yielded Na-P1 (zeolite-P) with a higher cation exchange capacity (ca. 130 cmol/kg). The observed concentrations of Si and Al in the solution during the reaction explain the crystallization of these two phases. The reaction products were tested for their capacity for PO(4)(3-) removal from solution as a function of Ca(2+) content, suggesting the formation of an insoluble Ca-phosphate salt. The product with Na-P1 exhibits the ability to remove NH(4)(+) as well as PO(4)(3-) from solution in concentrations sufficient for application in water purification. Both NH(4)(+) and PO(4)(3-) removal showed little variation with pH between 5 and 9. Alternative processing methods of zeolite synthesis, including the addition of ash to an unfiltered Si-NaOH solution and addition of a dry ash/diatomite mixture to NaOH solution, were tested. The third process yielded materials with lower cation exchange capacity due to formation of hydroxysodalite. The second process results in a product with relatively high cation exchange capacity, and reduces the number of processing steps necessary for zeolite synthesis.

  9. Energy Efficient Textile Drying


    Brunzell, Lena


    Traditionally, textiles were dried outdoors with the wind and the sun enhancing the drying process. Tumble dryers offer a fast and convenient way of drying textiles independent of weather conditions. Tumble dryers, however, consume large amounts of electrical energy. Over 4 million tumble dryers are sold each year in Europe and a considerable amount of energy is used for drying of clothes. Increasing energy costs and the awareness about environmental problems related to a large energy use has...

  10. ASH External Web Portal (External Portal) - (United States)

    Department of Transportation — The ASH External Web Portal is a web-based portal that provides single sign-on functionality, making the web portal a single location from which to be authenticated...

  11. AshMeadowsSpeckledDace_CH (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Ash Meadows Amargosa pupfish (Cyprinodon nevadensis mionectes) occur. "Nevada, Nye County: Each of...

  12. AshMeadowsAmargosaPupfish_CH (United States)

    US Fish and Wildlife Service, Department of the Interior — These data identify the areas where final critical habitat for the Ash Meadows Amargosa pupfish (Cyprinodon nevadensis mionectes) occur. "Nevada, Nye County: Each of...

  13. Cementing Properties of Oil Shale Ash

    Institute of Scientific and Technical Information of China (English)


    The oil crisis has prompted renewed interest in direct burning of oil shale as an alternative energy source.A major problem in this process is the large portion of ash produced.The cementing properties of this ash were investigated to determine its applicability as a building material.By means of XRD, IR, NMR and ICP, we have studied the effects of burning temperature on the reactivity of ash.Maximum reactivity was obtained with ash samples produced at 700 °C to 900 °C.In this range, the strength of oil-shale-based material, with properties similar to cement, which is composed of oil shale and several other kinds of solid wastes, can achieve the standard of 42.5# cement.Our study has provided an experimental foundation and theoretical base for a massive utilization of oil shale.

  14. Volcanic Ash Advisory Database, 1983-2003 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Volcanic ash is a significant hazard to aviation and can also affect global climate patterns. To ensure safe navigation and monitor possible climatic impact, the...

  15. Clay Improvement with Burned Olive Waste Ash

    Directory of Open Access Journals (Sweden)

    Utkan Mutman


    Full Text Available Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation.

  16. Stabilization/solidification of TSCA incinerator ash

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Trotter, D.R.; Francis, C.L.; Morgan, I.L.


    Stabilization/solidification is a well-known waste treatment technique that utilizes different additives and processes. The Phoenix Ash Technology of the Technical Innovation Development Engineering Company is such a technique that uses Cass C fly ash and mechanical pressure to make brick waste forms out of solid wastes, such as the bottom ash from the Toxic Substances Control Act incinerator at the Oak Ridge K-25 Site. One advantage of this technique is that no volume increase over the bulk volume of the bottom ash occurs. This technique should have the same high pH stabilization for Resource Conservation and Recovery Act metals as similar techniques. Also, consolidation of the bottom ash minimizes the potential problems of material dispersion and container corrosion. The bottom ash was spiked with {sup 99}{Tc} to test the effectiveness of the bricks as a physical barrier. The {sup 99}{Tc} leachability index measured for these bricks was 6.8, typical for the pertechnetate anion in cementitious waste forms, indicating that these bricks have accessible porosity as high as that of other cementitious waste forms, despite the mechanical compression, higher waste form density, and water resistant polymer coating.

  17. Wildland fire ash: future research directions (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge


    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  18. Change in dry matter and nutritive composition of Brachiaria humidicola grown in Ban Thon soil series



    This experiment was conducted to determine the change in dry matter and nutritive composition of Humidicola grass (Brachiaria humidicola) grown in Ban Thon soil series (infertility soil) as a function of growth age. One rai (0.16 ha) of two-year-old pasture of fertilised Humidicola grass was uniformly cut and the regrowth samples were collected every twenty days. The samples were subjected to analysis for dry matter content and nutritive composition, i.e. crude protein, ash, calcium, phosphor...

  19. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization (United States)

    Eissenberg, David M.; Liu, Yin-An


    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  20. Dry vacuum pumps (United States)

    Sibuet, R.


    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  1. Modelling wet deposition in simulations of volcanic ash dispersion from hypothetical eruptions of Merapi, Indonesia (United States)

    Dare, Richard A.; Potts, Rodney J.; Wain, Alan G.


    The statistical impact of including the process of wet deposition in dispersion model predictions of the movement of volcanic ash is assessed. Based on hypothetical eruptions of Merapi, Indonesia, sets of dispersion model simulations were generated, each containing four simulations per day over a period of three years, to provide results based on a wide range of atmospheric conditions. While on average dry sedimentation removes approximately 10% of the volcanic ash from the atmosphere during the first 24 h, wet deposition removes an additional 30% during seasons with highest rainfall (December and January) but only an additional 1% during August and September. The majority of the wet removal is due to in-cloud rather than below-cloud collection of volcanic ash particles. The largest uncertainties in the amount of volcanic ash removed by the process of wet deposition result from the choice of user-defined parameters used to compute the scavenging coefficient, and from the definition of the cloud top height. Errors in the precipitation field provided by the numerical weather prediction model utilised here have relatively less impact.

  2. Thermal treatment and utilization of Al-rich waste in high calcium fly ash geopolymeric materials (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk; Vongvoradit, Pimdao; Jenjirapanya, Supichart


    The Al-rich waste with aluminium and hydrocarbon as the major contaminant is generated at the wastewater treatment unit of a polymer processing plant. In this research, the heat treatment of this Al-rich waste and its use to adjust the silica/alumina ratio of the high calcium fly ash geopolymer were studied. To recycle the raw Al-rich waste, the waste was dried at 110°C and calcined at 400 to 1000°C. Mineralogical analyses were conducted using X-ray diffraction (XRD) to study the phase change. The increase in calcination temperature to 600, 800, and 1000°C resulted in the phase transformation. The more active alumina phase of active γ-Al2O3 was obtained with the increase in calcination temperature. The calcined Al-rich waste was then used as an additive to the fly ash geopolymer by mixing with high calcium fly ash, water glass, 10 M sodium hydroxide (NaOH), and sand. Test results indicated that the calcined Al-rich waste could be used as an aluminium source to adjust the silica/alumina ratio and the strength of geopolymeric materials. The fly ash geopolymer mortar with 2.5wt% of the Al-rich waste calcined at 1000°C possessed the 7-d compressive strength of 34.2 MPa.

  3. Environmental adaptability of Canavalia virosa and Flemingia congesta to sandy ash soil of Merapi Volcano, Java

    Directory of Open Access Journals (Sweden)

    S. S. Wardoyo


    Full Text Available Studies on volcanic ash of Mount Merapi erupted in 2010 are limited to only characterization of mineralogical, physical, chemical, and biological properties of the volcanic ash. In order to speed up rehabilitation of soils affected by the volcanic ash, it is necessary to study the application of suitable plant species, which is called bio-mechanic conservation. The purpose of this study was to test the environmental adaptability of Canavalia virosa and Flemingia congesta in sandy soil covered by volcanic ash of Mount Merapi. This study was carried out using 2x4 Split-plot randomized block design with three replicates. The main plot of the design was plant species (Canavalia virosa and Flemingia congesta, while the sub plot was the dose of organic matter application (0, 20, 40, and 60 t / ha. Soil parameters measured were N-total, P-total, available P, available K, and organic matter contents. Plant parameters measured were plant dry weight and plant height. The results showed no significant differences in soil N, P and K contents of all treatments tested in this study after 9 weeks, except C organic content. Canavalia virosa grew well until 9 weeks, whereas Flemingia congesta started to die a 9 weeks after planting.

  4. Sulphation characteristics of paper sludge ash

    Energy Technology Data Exchange (ETDEWEB)

    Roh, S.A. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of); Kim, S.D. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering


    Landfills are no longer a viable solution for the disposal of sludge produced from waste water treatment plants because of the decrease in available space, rising fees and growing environmental concerns. However, thermal utilization of this waste may be an economic and sustainable disposal solution. Co-combustion of low heating value sludge with fossil fuels has a positive effect for sulfur dioxide (SO{sub 2}) emissions due to the low sulphur content of biomass fuels and increased sulphur retention in the ash. The sulphur retention is attributed to the formation of sulphates, such as CaSO{sub 4}, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}. The amount of fuel-ash-related sulphur sorption increases during co-combustion. Therefore, sorbents for sulphur reduction may not be required if proper control of the biomass feed is maintained. This paper presented a study in which the sulphation characteristics of calcium-rich paper sludge ash were determined for the use of co-combustion of biomass and coal. The calcium in the paper sludge ash came from the limestone filler used in the manufacturing process to increase the density and whiteness of the paper at 2 paper mills in Korea. A thermobalance reactor along with XRD and SEM-EDX were used for the analysis of sulphated ash to determine the effects of sulphation temperature, particle size and SO{sub 2} concentration on sulphation conversion. The activation energy and pre-exponential factor of sulphation reaction of sludge ash were determined based on the uniform-reaction model. X-ray diffraction analysis revealed that most of the sulphation compounds were CaSO{sub 4}. The sulphation occurred uniformly throughout the ash and the CaSO{sub 4} did not block the outer pore of the sludge ash. The uniform distributions of CaO and other inert minerals in the ash resulted in uniform sulphation with good penetration of SO{sub 2} into pores of the sludge ash without pore blocking during sulphation of CaO. 13 refs., 1 tab., 9 figs.

  5. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn;


    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... importantly, by reaction with Al and Si in the fly ash. About 70-80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium...

  6. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    Energy Technology Data Exchange (ETDEWEB)

    Rui Afonso; R. Hurt; I. Kulaots


    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  7. Influence of Fly Ash, Bottom Ash, and Light Expanded Clay Aggregate on Concrete

    Directory of Open Access Journals (Sweden)

    S. Sivakumar


    Full Text Available Invention of new methods in strengthening concrete is under work for decades. Developing countries like India use the extensive reinforced construction works materials such as fly ash and bottom ash and other ingredients in RCC construction. In the construction industry, major attention has been devoted to the use of fly ash and bottom ash as cement and fine aggregate replacements. In addition, light expanded clay aggregate has been introduced instead of coarse aggregate to make concrete have light weight. This paper presents the results of a real-time work carried out to form light weight concrete made with fly ash, bottom ash, and light expanded clay aggregate as mineral admixtures. Experimental investigation on concrete mix M20 is done by replacement of cement with fly ash, fine aggregate with bottom ash, and coarse aggregate with light expanded clay aggregate at the rates of 5%, 10%, 15%, 20%, 25%, 30%, and 35% in each mix and their compressive strength and split tensile strength of concrete were discussed for 7, 28, and 56 days and flexural strength has been discussed for 7, 28, and 56 days depending on the optimum dosage of replacement in compressive strength and split tensile strength of concrete.

  8. Comparative study on the characteristics of fly ash and bottom ash geopolymers. (United States)

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk


    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  9. Effect of ash components on the ignition and burnout of high ash coals

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Yan, R.; Zheng, C.G. [Huazhong University of Science and Technology, Wuhan (China). National Laboratory of Coal Combustion


    The effect of the ash components on the ignition and burnout of four Chinese high ash coals were studied by thermogravimetric analysis. To investigate the influence of the ash components, comparative experiments were carried out with original, deashed and impregnated coals. Eleven types of ash components, such as SiO{sub 2}, CaCO{sub 3}, MgO, Na{sub 2}CO{sub 3}, K{sub 2}CO{sub 3}, Al{sub 2}O{sub 3}, TiO{sub 2}, Fe{sub 2}O{sub 3}, FeS{sub 2}, NH{sub 4}Fe(SO{sub 4}){sub 2}{center_dot}12H{sub 2}O and FeSO{sub 4},(NH{sub 4}){center_dot}6H{sub 2}O were used in the present study. It was found that most of the ash components have negative effects. The strong influence of some ash components suggests that the combustion characteristics of high ash coal may be determined by the ash composition. 5 refs., 2 figs., 2 tabs.

  10. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce


    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of


    Directory of Open Access Journals (Sweden)

    Nurhayat DEĞİRMENCİ


    Full Text Available In this study, the class-C fly ash, lime and phosphogypsum were used with water to produce fly ash-limephosphogypsum (FaL-G based binders. The dry unit weight, water absorption, compressive and flexural strength of the specimens was determined after 28 days of their preparation. On the basis of the test results, it was concluded that phosphogypsum decreased the compressive and flexural strength while fly ash increased. It was also concluded that the curing conditions have an important influence on the strengths of FaL-G specimens. These binders gain furthers strength after 28 days. For the strength requirements, phosphogypsum content should be constant as 20%. The water absorption and thermal conductivity of the specimens increases with the increase in phosphogypsum content. Also the increase in the amount of phosphogypsum addition caused a reduction in the dry unit weight of the specimens. The test results show that these binders may be utilized in production of construction elements such as blocks, masonry mortars and controlled low-strength materials.

  12. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation


    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  13. International Database of Volcanic Ash Impacts (United States)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.


    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  14. Chemical characterization of ash from gasification of alfalfa stems: Implications for ash management

    Energy Technology Data Exchange (ETDEWEB)

    Mozaffari, M.; Rosen, C.J.; Russelle, M.P.; Nater, E.A.


    Electricity generation from biomass is an attractive option from an environmental perspective. Pilot studies have indicated that alfalfa (Medicago sativa L.) stems are suitable feedstock for energy generation via gasification. Detailed information on chemical characteristics of the ash generated from gasification of alfalfa stem is required to develop environmentally and economically sound ash management strategies. Alfalfa fly and bottom ashes were characterized with respect to chemical properties that are important in developing ash management practices with emphasis on beneficial utilization as a soil amendment. Mean concentrations of total C, K, Ca, and Cl were 424, 120, 85, and 26 g kg{sup {minus}1}, respectively, in fly ash. In bottom ash, the mean concentrations of C, K, and Ca, were 63, 61, and 193 g kg{sup {minus}1}. Concentrations of total Pb, As, Cd, Co, and Se were below detection limits in both ash types. Naphthalene ranged from 6.2 to 74 mg kg{sup {minus}1}, but concentrations of many other polyaromatic hydrocarbons were low or below mg kg{sup {minus}1} detection limits. Available K and P in fly ash were 90 to 120 and 8 to 10 g kg{sup {minus}1}, respectively. Mean CaCO{sub 3} equivalent value of fly ash was 400 g kg{sup {minus}1}, its electrical conductivity (EC) and pH were 127 dS m{sup {minus}1} and 11.5, respectively. These results suggest that when managed properly, gasified alfalfa ash could potentially be utilized as a beneficial soil amendment with few potential environmental concerns.

  15. Ash melting behavior by Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; QIU Xiao-sheng; TANG Yong-xin


    A Fourier Transform Infrared Spectroscopic (FTIR) method involving a Fe2O3 flux was used to learn how China's coal ash melts. The relationship between ash fusion temperature and chemical composition, as well as the effects of Fe2O3 flux on the ash fusion temperature were studied. The relationship between ash fusion temperature and chemical composition, mineralogical phases and functional groups was analyzed with the FTIR method. The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks, which is of great significance for the study of ash behavior.

  16. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants. (United States)

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling


    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  17. Colour measurement as a proxy method for estimation of changes in phase and chemical composition of fly ash formed by combustion of coal

    Energy Technology Data Exchange (ETDEWEB)

    Helena Raclavsk; Konstantin Raclavsky; Dalibor Matysek [VSB - Technical University Ostrava, Ostrava-Poruba (Czech Republic)


    Influence of technology on colour changes of fly ashes was studied in relationships with their chemical and phase composition. Dry bottom boilers at the Detmarovice Power Plant (the Czech Republic) were selected for this study. Combustion tests were performed using mixture of coal and mineral oil residues at the minimum and maximum output of the power plant. Fly ashes for chemical analysis, phase analysis and colour measurements were sampled from the four sections of electrostatic fly ash precipitator. Colour parameters indicate relationships with concentrations of elements which are preferentially bound in silicate matrix. The maximum output of power plant increases the concentration of glass which has decisive influence on values of colour parameters. The changes of colour parameters can indicate the conditions of the technological process. Relationships between colour and constituents of the fly ash are expressed by CIE Lab colour parameters. 16 refs., 7 figs., 6 tabs.

  18. Grouting of fly ash in sanitary landfills; Injektering av flygaska i hushaallsavfallsdeponi

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Energi och Miljoe AB, Stockhom (Sweden); Andreas, Lale; Lagerkvist, Anders [Luleaa Univ. of Technology (Sweden); Jannes, Sara; Tham, Gustav [Telge Aatervinning AB, Soedertaelje (Sweden); Sjoeblom, Rolf [Tekedo AB, Nykoeping (Sweden)


    required. Grouting of about a thousand tons of ash in a landfill is probably needed to achieve noticeable affects. The economic evaluation in this study shows that it is profitable/beneficial to use relatively large grouting equipments for grouting in landfills. The cost will be approximately 800 SEK/tons of dry ash if the equipment has a capacity of 10 tons per hour (including drilling and operating crew). However, this cost could probable be reduced to the same level as today's landfill tax in Sweden (370 SEK/ton) if the drilling and grouting is performed in one step and the work is done in two shifts. Another advantage with large equipment is that the grouting could be performed continuously in a process where drilling of the grouting holes and grouting is done at the same time. Equipment with a capacity of 100-200 liters per minute and a mixing tank for at least 500 kg material is recommended for grouting in landfill areas. The pump should have a maximal pressure of 20-30 bar to open up fractures in the waste during the start of the grouting work.

  19. Drying and energy technologies

    CERN Document Server

    Lima, A


    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  20. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    Directory of Open Access Journals (Sweden)

    Justin G A Whitehill

    Full Text Available The emerald ash borer (Agrilus planipennis is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp. that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica, which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER, and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  1. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer. (United States)

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi


    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  2. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.


    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  3. Evaluation of solar dried thyme (Thymus vulgaris Linne) herbs

    Energy Technology Data Exchange (ETDEWEB)

    Balladin, Derrick A.; Headley, Oliver [University of the West Indies, Center for Resource Management and Environmental Studies, St Michael (Barbados)


    Thyme (Thymus vulgaris Linne) herbs can be dried at about 50degC reached an equilibrium moisture content after 12 h and 9.5 h using the wire basket solar dryer and oven drying method respectively. The initial moisture content (wet wt. basis), (final moisture content, dry wt. basis (dwb)) determined by the Dean-Stark toluene method, oven and microwave were 75.15% (10.0%), 75.12% (11.85%) and 72.31% (12.50%) respectively. Paired t-test ({alpha} = 0.05, 10 degrees of freedom) showed no significant difference between the Dean-Stark toluene and the oven methods, but a significant difference between these two methods and the microwaves method. The % essential oils extracted after drying by the oven and the wire basket solar methods were 0.5 and 0.6% (per 100 g dwb) respectively. The % oleoresin and ash content were 27% for both drying methods and 1.60, 2.03 and 2.25% for the fresh, oven dried and the wire basket solar dried herb respectively. (Author)

  4. National volcanic ash operations plan for aviation (United States)

    ,; ,


    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  5. Characteristics of MSWI fly ash during vitrification

    Institute of Scientific and Technical Information of China (English)

    TIAN Shu-lei; WANG Qi; WANG Qun-hui; MA Hong-zhi


    The vitrification characteristics of municipal solid waste incinerator (MSWI) fly ash were investigated. Effects of temperature on the binding efficiency of heavy metals, the change of chemical compositions and the weight loss of fly ash in the range of 800 - 1350 ℃ were studied. Toxicity Characteristic Leaching Procedure (TCLP) of the United States was used to analyze the leaching characteristics of heavy metals in fly ash and molten slag. Results indicate that chemical compositions, the weight loss of fly ash and the binding efficiency of heavy metals in fly ash have a tremendous change in the range of 1150 - 1260 ℃. The percentage of CaO, SiO2and AI203 increases with the increasing temperature, whereas it is contrary for SO3 , K2O, Na20 and CI; especially when the temperature is 1260 ℃, the percentage of these four elements decreases sharply from 43.72%to 0. 71%. The weight loss occurs obviously in the range of 1150 - 1260 ℃. Heavy metals of Pb and Cd are almost vaporized above 1000 ℃. Cr is not volatile and its binding efficiency can reach 100% below 1000 ℃. Resuits of TCLP indicate that the heavy metal content of molten slag is beyond stipulated limit values.

  6. Ocean Dynamics: Vietnam DRI (United States)


    Dynamics: Vietnam DRI Robert Pinkel Marine Physical Laboratory Scripps Institution of Oceanography La Jolla California 92093-0213 Phone: (858) 534...DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Ocean Dynamics: Vietnam DRI 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...cycle.. The Thorpe-scale estimates are local to Site III. South China Sea Process Cruise 2014 Under Vietnam DRI funding, Researcher Drew Lucas

  7. Ambient Dried Aerogels (United States)

    Jones, Steven M.; Paik, Jong-Ah


    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  8. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics


    In this project descriptions of different processes for thermal treatment of ashes have been compiled. A technical and economic evaluation of the processes has been done to identify possibilities and problems. The focus in the project lays on treatment of fly ash from municipal waste incineration but the processes can also be used to treat other ashes. When the ash is heated in the thermal treatment reactor, with or without additives, the material is sintered or vitrified and at the same time volatile substances (Zn, Pb, Cd, Hg etc.) are separated. In general the separation is more effective in processes with reducing conditions compared to oxidizing conditions. Oxidizing processes have both worse separation capacity and require more energy. The oxidizing processes are mainly used to stabilize the ash through vitrification and they are in some cases developed for management of municipal sewage sludge and bottom ash. However, these processes are often not as complex as for example an electric arc melting furnace with reducing conditions. The research today aim to develop more effective electrical melting systems with reducing conditions such as plasma melting furnaces, electric resistance melting furnaces and low frequency induction furnaces. A central question in the evaluation of different thermal treatment processes for ash is how the residues from the treatment can be used. It is not certain that the vitrified material is stable enough to get a high economic value, but it can probably be used as construction material. How the remaining metals in the ash are bound is very important in a long-time perspective. Further studies with leaching tests are necessary to clarify this issue. The heavy metal concentrate from the processes contains impurities, such as chlorine, which makes it unprofitable to obtain the metals. Instead the heavy metal concentrate has to be land filled. However, the amount of material for land filling will be much smaller if only the heavy

  9. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail:


    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  10. Dry etching for microelectronics

    CERN Document Server

    Powell, RA


    This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book

  11. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Peter Y. [National Energy Technology Lab. (NETL), Albany, OR (United States); Kwong, Kyei-Sing [National Energy Technology Lab. (NETL), Albany, OR (United States); Bennett, James [National Energy Technology Lab. (NETL), Albany, OR (United States)


    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  12. Laboratory study of volcanic ash electrification (United States)

    Alois, Stefano; Merrison, Jonathan


    Electrostatic forces play an important role in the dynamics of volcanic plumes, for example in ash dispersion and aggregation phenomena. Field measurements of ash electrification are often technically challenging due to poor access and there lacks an accepted physical theory to describe the electrical charge exchange which occurs during particle contact. The goal of the study is to investigate single particle electrification under controlled conditions using advanced laboratory facilities. A novel technique is presented, based on the use of a laser based velocimeter. Here an electric field is applied and the field-induced drift velocity of (micron-sized) ash grains is measured as well as the particles fall velocity. This allows the simultaneous determination of a suspended grains size and electrical charge. The experiments are performed in a unique environmental wind tunnel facility under controlled low-pressure conditions. Preliminary results of particle electrification will be presented.

  13. Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic volcanic ash eruptions from the Patagonian Andes (United States)

    Simonella, L. E.; Palomeque, M. E.; Croot, P. L.; Stein, A.; Kupczewski, M.; Rosales, A.; Montes, M. L.; Colombo, F.; García, M. G.; Villarosa, G.; Gaiero, D. M.


    Patagonia, due to its geographic position and the dominance of westerly winds, is a key area that contributes to the supply of nutrients to the Southern Ocean, both through mineral dust and through the periodic deposits of volcanic ash. Here we evaluate the characteristics of Fe dissolved (into soluble and colloidal species) from volcanic ash for three recent southern Andes volcanic eruptions having contrasting features and chemical compositions. Contact between cloud waters (wet deposition) and end-members of andesitic (Hudson volcano) and rhyolitic (Chaitén volcano) materials was simulated. Results indicate higher Fe release and faster liberation rates in the andesitic material. Fe release during particle-seawater interaction (dry deposition) has higher rates in rhyolitic-type ashes. Rhyolitic ashes under acidic conditions release Fe in higher amounts and at a slower rate, while in those samples containing mostly glass shards, Fe release was lower and faster. The 2011 Puyehue eruption was observed by a dust monitoring station. Puyehue-type eruptions can contribute soluble Fe to the ocean via dry or wet deposition, nearly reaching the limit required for phytoplankton growth. In contrast, the input of Fe after processing by an acidic eruption plume could raise the amount of dissolved Fe in surface ocean waters several times, above the threshold required to initiate phytoplankton blooms. A single eruption like the Puyehue one represents more than half of the yearly Fe flux contributed by dust.

  14. Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices. (United States)

    Lu, Chien-Hsing; Chuang, Kui-Hao


    The purpose of this paper is to investigate the characteristics of fly and bottom ashes sampled from both fluidized bed (FB) and mass-burning (MB) municipal solid waste incinerators (MSWIs), respectively. Fly ashes from different locations at FB and MB MSWIs equipped with a cyclone, a semi-dry scrubber, and a bag filter as air pollution control devices were examined to provide the baseline information between physicochemical properties and leaching ability. Experimental results of leachability indicated that the bag filter fly ash (FB-FA(B)) from the FB incinerator meets Taiwan regulatory standards set through the toxicity characteristic leaching procedure. X-ray diffraction results revealed the presence of Cr5O12 and Pb2O3 in the cyclone fly ash (MB-FA(C)) and bag filter fly ash (MB-FA(B)), respectively, from the MB incinerator. To observe lead incorporation mechanism, mixture of simulate lead-laden waste with bed material were fired between 600 °C and 900 °C in a laboratory scale FB reactor. The results clearly demonstrate a substantial decrease in lead leaching ratio for products with an appropriate temperature. The concentration of Pb in the MB-FA(B) was 250 times that in the FB-FA(B), suggesting that incineration of MSW in FB is a good strategy for stabilizing hazardous metals.


    Directory of Open Access Journals (Sweden)

    Korotkova T. G.


    Full Text Available After silage of ash captured by the electrostatic precipitator, we installed the cyclone of NIIOGAZ CN-15-500 for exhaust gas pre-treatment of the ash resulting from the process of burning solid fuels (coal of Donetsk in boilers of Novocherkassk hydro power plant. The plant cyclone examination was performed in a production environment of Novocherkassk hydro power station comprising 4 cylindrical cyclone element diameters of 500 mm, and is defined by its real effectiveness, which amounted to 91%. After the cyclone, the gas enters the two-bag filter FRKI-90KP3-2-2 designed to trap solid ash residues and installed over the silo dry ash. Filters are manufactured in climatic design for temperate and cold climate with the accommodation category 4. The article shows the characteristic of the test results and bag filters FRKI- 90K-P3-2-2 before and after the cyclone in the cleaning system. The work presents the analysis of the composition of the ash and compares it with published data. It is experimentally proved that the inclusion of Cyclone CN-15-500 in the process diverting gas purification scheme allowed more efficient operation of fabric filters, reducing the dust significantly for the input gases

  16. Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice. (United States)

    Bisoi, Sidhanta Sekhar; Mishra, Swati S; Barik, Jijnasa; Panda, Debabrata


    The aim of the present study was investigation of the effects of fly ash and mining soil on growth and antioxidant protection of two cultivars of Indian wild rice (Oryza nivara and Oryza rufipogon) for possible phytoremediation and restoration of metal-contaminated site. In this study, Indian wild rice showed significant changes in germination, growth, and biochemical parameters after exposure to different ratio of fly ash and mining soil with garden soil. There was significant reduction of germination, fresh weight, dry weight, leaf chlorophyll content, leaf area, Special Analysis Device Chlorophyll (SPAD) Index, proteins, and activities of antioxidant enzymes in both cultivars of the wild rice grown in 100% fly ash and mining soil compared to the plants grown in 100% garden soil. Results from this study showed that in both cultivars of wild rice, all growth and antioxidant parameters increased when grown in 50% fly ash and mining soil. Taken together, Indian wild rice has the capacity to tolerate 50% of fly ash and mining soil, and can be considered as a good candidate for possible phytoremediation of contaminated soils.

  17. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete. (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H


    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance.

  18. Removal of reactive dyes from aqueous solution using bagasse fly ash

    Directory of Open Access Journals (Sweden)

    Sumate Teachakulwiroj


    Full Text Available Bagasse fly ash, a waste from the sugar industry, was investigated as a replacement for the current expensive methods of removing reactive dyes (Remazol Black B; RBB, Remazol Brilliant Blue R; RBBR, and Remazol Brilliant Red F3B; RBRF3B from aqueous solutions. Bagasse fly ash was collected from a local sugar factory in Saraburi province, Thailand. It was oven dried at 110ºC overnight and sieved to the desired particle size of 150 µm or smaller. The 50 mL plastic conical tubes containing solution and bagasse fly ash were shaken at room temperature (27±2ºC. The pH values of solutions were adjusted by addition of HNO3 and NaOH. The batch study indicated that initial pH of aqueous solutions did not affect dye removal. While the removal efficiency decreased with increasing initial concentration, it increased with increasing adsorbent concentration. The best adsorptions were obtained under condition of 50 mg/L concentration, original pH solution of about 5, and 240, 300, and 240 minutes contact time for RBB, RBBR, and RBRF3B, respectively. Most adsorption experiments showed in the range of about 50% to 98% removal; that is, the efficiencies of RBB, RBBR, and RBRF3B adsorption were found to be between 58.48-98.03%, 46.15-93.47%, and 46.30- 94.60%, respectively. For the linear and nonlinear forms of the Langmuir and Freundlich models, the results indicated that the Langmuir adsorption isotherm fitted the data better than the Freundlich adsorption isotherm. Adsorption of these dyes onto bagasse fly ash was favorable sorption. Therefore, bagasse fly ash, the low-cost agricultural waste in Thailand, is suitable for use as adsorbent for RBB, RBBR, and RBRF3B under this investigation.

  19. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    DEFF Research Database (Denmark)

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.


    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through...... the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even...... consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted...

  20. Eco-friendly fly ash utilization: potential for land application

    Energy Technology Data Exchange (ETDEWEB)

    Malik, A.; Thapliyal, A. [Indian Institute of Technology Delhi, New Delhi (India)


    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  1. Fusion characteristics of volcanic ash relevant to aviation hazards (United States)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.


    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  2. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk


    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  3. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica). (United States)

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S


    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed.

  4. Changeing of fly ash leachability after grinding (United States)

    Lakatos, J.; Szabo, R.; Racz, A.; Banhidi, O.; Mucsi, G.


    Effect of grinding on the reactivity of fly ash used for geopolymer production was tested. Extraction technique using different alkaline and acidic solutions were used for detect the change of the solubility of elements due to the physical and mechano-chemical transformation of minerals in function of grinding time. Both the extraction with alkaline and acidic solution have detected improvement in solubility in function of grinding time. The enhancement in alkaline solution was approx. 100% in case of Si and Al. The acidic medium able to dissolve the fly ash higher manner than the alkaline, therefore the effect of grinding was found less pronounced.

  5. Physical cleaning of high carbon fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Killmeyer, Richard P. [National Energy Technology Laboratory, US Department of Energy, P.O. Box 10940, Cochran Mills Roads, 15236 Pittsburgh, PA (United States); Maroto-Valer, M. Mercedes; Andresen, John M. [The Energy Institute, The Pennsylvania State University, 405 Academic Activities Building, 16802-2308 University Park, PA (United States); Ciocco, Michael V.; Zandhuis, Paul H. [Parson Project Services Inc, National Energy Technology Laboratory, P.O. Box 618, 15129 Library, Pittsburgh, PA (United States)


    An industrial fly ash sample was cleaned by three different processes, which were triboelectrostatic separation, ultrasonic column agglomeration, and column flotation. The unburned carbon concentrates were collected at purities ranging up to 62% at recoveries of 62%. In addition, optical microscopy studies were conducted on the final carbon concentrates to determine the carbon forms (inertinite, isotropic coke and anisotropic coke) collected from these various physical-cleaning processes. The effects of the various cleaning processes on the production of different carbon forms from high carbon fly ashes will be discussed.

  6. Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    L. Reijnders [University of Amsterdam, Amsterdam (Netherlands)


    Application of phosphogypsum, coal combustion ashes and waste incineration ashes in building materials has been limited by the presence of minor components that are hazardous, such as radioactive substances, chlorinated dioxins and heavy metals, or have a negative impact on product quality or production economics, such as phosphate, fluoride, carbon and chloride. Source reduction, destruction of persistent organics and separation techniques may reduce the concentrations of such components. With a few exceptions, separation techniques currently lead to significantly higher (private) costs. Higher waste disposal costs, tighter regulations and higher prices for competing virgin minerals could make the use of the purified phosphogypsum and ashes in building materials more attractive.

  7. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Manz, O.E.


    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  8. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)


    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  9. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)


    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  10. Standardization of spray-dried powder of Piper betle hot water extract

    Directory of Open Access Journals (Sweden)

    Liyanage Dona Ashanthi Menuka Arawwawala


    Full Text Available The leaves of Piper betle Linn. (Family: Piperaceae possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b screening for phytochemicals; and (c development of High Pressure Liquid Chromatography (HPLC fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  11. Standardization of spray-dried powder of Piper betle hot water extract. (United States)

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami


    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  12. Adhesive carrier particles for rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization. (United States)

    Li, Yuan; You, Changfu; Song, Chenxing


    A rapidly hydrated sorbent for moderate-temperature dry flue gas desulfurization was prepared by rapidly hydrating adhesive carrier particles and lime. The circulation ash from a circulating fluidized bed boiler and chain boiler ash, both of which have rough surfaces with large specific surface areas and specific pore volumes, can improve the adhesion, abrasion resistance, and desulfurization characteristics of rapidly hydrated sorbent when used as the adhesive carrier particles. The adhesion ability of sorbent made from circulation ash is 67.4% higher than that of the existing rapidly hydrated sorbent made from fly ash, the abrasion ratio is 76.2% lower, and desulfurization ability is 14.1% higher. For sorbent made from chain boiler ash, the adhesion ability is increased by 74.7%, the desulfurization ability is increased by 30.3%, and abrasion ratio is decreased by 52.4%. The abrasion ratios of the sorbent made from circulation ash having various average diameters were all about 9%, and their desulfurization abilities were similar (approximately 150 mg/g).

  13. Associative properties of {sup 137}Cs in biofuel ashes

    Energy Technology Data Exchange (ETDEWEB)

    Ravila, A.; Holm, E. [Lund Univ. (Sweden). Dept. of Radiation Physics


    The present study aims to reveal how radiocesium is associated to the ash particles derived from biofuel combustion. A sequential extraction procedure was carried out for the characterisation of radiocesium speciation in ash generated by different fuels and burner types. The ash types considered were fly ash and bottom ash collected from Swedish district heating plants using bark wood or peat as fuel. A fraction of the radiocesium in biofuel ash can easily become solubilised and mobilised by water and also, a significant fraction of the radionuclides can be bound to the ash particles in cation-exchangeable forms. Therefore, at using the ash derived from biofuels to recycle mineral nutrients for forestry or short rotation coppicing, radiocesium solubilised and leached from the ash by rains has a potential to rather quickly enter the rooting zone of forest vegetation or energy crops. On the other hand, radiocesium strongly bound to the ash will migrate slowly into the soil column with the successive accumulation of litter and in the process act to maintain the external dose rate at an elevated level for a long time. The results of the sequential extraction procedure and activity determination of the different extracted fractions implies that the bioavailable fraction of radiocesium in ash from bark, wood or peat is in the range between 20-85% of the total ash contents. Peat ash collected from a powder burner strongly retained a large fraction (70-90%) of its radiocesium content while the peat ash from a continuos fluidized bed type burner retained nearly 100% of the radiocesium in the bottom ash and only about 15% in the fly ash.

  14. Dry imaging cameras

    Directory of Open Access Journals (Sweden)

    I K Indrajit


    Full Text Available Dry imaging cameras are important hard copy devices in radiology. Using dry imaging camera, multiformat images of digital modalities in radiology are created from a sealed unit of unexposed films. The functioning of a modern dry camera, involves a blend of concurrent processes, in areas of diverse sciences like computers, mechanics, thermal, optics, electricity and radiography. Broadly, hard copy devices are classified as laser and non laser based technology. When compared with the working knowledge and technical awareness of different modalities in radiology, the understanding of a dry imaging camera is often superficial and neglected. To fill this void, this article outlines the key features of a modern dry camera and its important issues that impact radiology workflow.

  15. Mathematical Modeling and Effect of Various Hot-Air Drying on Mushroom (Lentinus edodes)

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-hui; XIA Chun-yan; TAN Yu-rong; CHEN Long; MING Jian


    An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform raise drying, uniform intermittent drying, non-uniform intermittent drying and combined drying. The chemical composition (dry matter, ash, crude protein, crude fat, total sugars, dietary ifber, and energy), color parameters (L, a*, b*, c*, and h0) and rehydration capacities were determined. Among all the experiments, non-uniform intermittent drying reached a better comprehensive results due to the higher chemical composition, better color quality associated with high bright (26.381±5.842), high color tone (73.670±2.975), low chroma (13.349±3.456) as well as the highest rehydration (453.76%weigh of dried body). Nine kinds of classical mathematical model were used to obtained moisture data and the Midili-kucuk model can be described by the drying process with the coefifcient (R2 ranged from 0.99790 to 0.99967), chi-square (χ2 ranged from 0.00003 to 0.00019) and root mean square error (RMSE ranged from 0.000486 to 0.0012367).

  16. Characterization of fly ash from bio and municipal waste

    DEFF Research Database (Denmark)

    Lima, Ana T.; Ottosen, Lisbeth M.; Pedersen, Anne Juul


    the co-combustion of wood and oil. The focus is laid on differences in ash characteristics and on the mobility of Cd and Cr. These two heavy metals are chosen because Cd is the problematic heavy metal in bio ashes and Cr is problematic in many ash stabilization methods (in the Cr(VI) state). Based...

  17. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede


    the probe temperature did influence the composition of deposits for coals with medium ash deposition propensities. These results may indicate that coals with medium to high ash deposition propensities in existing boilers may cause increasing ash deposit formation in future boilers with higher steam...

  18. The Rheology of Vegetative Ash-laden Debris Flows (United States)

    Burns, K. A.; Gabet, E.


    There is mounting observational evidence that vegetative ash created in a forest fire may play a major role in reducing infiltration and leads to the generation of debris flows on these burned hillslopes. A viscometer was used to measure the viscosity of ash slurries of varying concentrations, as well as slurries containing both fine- grained clastic sediment (sand and silt sized) and vegetative ash at varying concentrations. Initial results from these experiments indicate that increasing the concentration of ash increases effective viscosity of the slurry. Increasing the ash concentration by 5% increases the effective viscosity of the slurry by 10-50% over a range of shear rates. Also, ash-only slurries appear to shear thin with increasing shear rate at all concentrations. For example, with a 60% ash concentration, increasing the shear rate from 5/s to 40/s reduces the effective viscosity by 90%. For the mixed ash and fine-grained sediment slurries, increasing the percentage of ash relative to the percentage of clastic sediment dramatically increases the viscosity of the slurry even though the ash and finest-grained sediment are approximately the same size. A 50% concentration slurry containing only silt-sized clastic particles has a 40-70% lower effective viscosity than a slurry of the same concentration containing only ash particles. Therefore, the ash particles behave differently than clastic sediment particles.

  19. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))


    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  20. Observation of Eyjafjallajökull volcano ash over Poland (United States)

    Zielinski, T.; Petelski, T.; Makuch, P.; Kowalczyk, J.; Rozwadowska, A.; Drozdowska, V.; Markowicz, K.; Malinowski, S.; Kardas, A.; Posyniak, M.; Jagodnicka, A. K.; Stacewicz, T.; Piskozub, J.


    The plume of Eyjafjallajökull volcano ash has been identified over Poland using three instruments (two lidars and a ceilometer) stationed in two locations: Sopot in northern Poland and Warsaw in central-eastern Poland. The observations made it possible to establish the base of the ash layer. However ash concentration could not be determined.

  1. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options. (United States)

    Vannatta, A R; Hauer, R H; Schuettpelz, N M


    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  2. 77 FR 55895 - Permanent Closure of Cincinnati Blue Ash Airport (United States)


    ... Federal Aviation Administration Permanent Closure of Cincinnati Blue Ash Airport AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of permanent closure of Cincinnati Blue Ash Airport (ISZ). SUMMARY: The... Cincinnati advising that on August 29, 2012, it was permanently closing Cincinnati Blue Ash Airport...

  3. Evaluation of Pollutant Leaching Potential of Coal Ashes for Recycling (United States)

    Park, D.; Woo, N. C.; Kim, H.; Yoon, H.; Chung, D.


    By 2009, coal ashes produced from coal-based power plants in Korea have been reused as cement supplement materials; however, the rest is mostly disposed in landfills inside the plant properties. Continuous production of coal ashes and limited landfill sites require more recycles of coal ashes as base materials, specifically in constructions of roads and of huge industrial complex. Previous researches showed that coal ashes could contain various metals such as arsenic(As), chromium(Cr), lead(Pb), nickel(Ni), selenium(Se), etc. In this study, we collected four types of bottom ashes and two of fly ashes from four coal-based power plants. These ash samples were tested with distilled water through the column leaching process in oxidized conditions. The column test results were compared with those of total digestion, sequential extraction processes and TCLP. Concentrations of metals in outflows from columns are generally greater in fly ashes than in bottom ashes, specifically for As, Se, B, Sr and SO4. Only one fly ash (J2-F) shows high concentrations of arsenic and selenium in leachate. Sequential extraction results indicate that these metals are in readily soluble forms, such as adsorbed, carbonated, and reducible forms. Results of TCLP analysis indicate no potential contaminants leached from the ashes. In conclusion, recycling of coal combustion ashes could be encouraged with proper tests such as sequential and leaching experiments.

  4. Optimizing and Characterizing Geopolymers from Ternary Blend of Philippine Coal Fly Ash, Coal Bottom Ash and Rice Hull Ash

    Directory of Open Access Journals (Sweden)

    Martin Ernesto Kalaw


    Full Text Available Geopolymers are inorganic polymers formed from the alkaline activation of amorphous alumino-silicate materials resulting in a three-dimensional polymeric network. As a class of materials, it is seen to have the potential of replacing ordinary Portland cement (OPC, which for more than a hundred years has been the binder of choice for structural and building applications. Geopolymers have emerged as a sustainable option vis-à-vis OPC for three reasons: (1 their technical properties are comparable if not better; (2 they can be produced from industrial wastes; and (3 within reasonable constraints, their production requires less energy and emits significantly less CO2. In the Philippines, the use of coal ash, as the alumina- and silica- rich geopolymer precursor, is being considered as one of the options for sustainable management of coal ash generation from coal-fired power plants. However, most geopolymer mixes (and the prevalent blended OPC use only coal fly ash. The coal bottom ash, having very few applications, remains relegated to dumpsites. Rice hull ash, from biomass-fired plants, is another silica-rich geopolymer precursor material from another significantly produced waste in the country with only minimal utilization. In this study, geopolymer samples were formed from the mixture of coal ash, using both coal fly ash (CFA and coal bottom ash (CBA, and rice hull ash (RHA. The raw materials used for the geopolymerization process were characterized using X-ray fluorescence spectroscopy (XRF for elemental and X-ray diffraction (XRD for mineralogical composition. The raw materials’ thermal stability and loss on ignition (LOI were determined using thermogravimetric analysis (TGA and reactivity via dissolution tests and inductively-coupled plasma mass spectrometry (ICP analysis. The mechanical, thermal and microstructural properties of the geopolymers formed were analyzed using compression tests, Fourier transform infra-red spectroscopy (FTIR

  5. Use of slag/sugar cane bagasse ash (SCBA) blends in the production of alkali-activated materials


    María V. Borrachero; Jordi Payá; José Monzó; Lourdes Soriano; Mauro M. Tashima; José L.P. Melges; Jorge L. Akasaki; Vinícius N. Castaldelli


    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter (ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part...

  6. Effect of various sugar solution concentrations on characteristics of dried candy tomato (Lycopersicum esculentum

    Directory of Open Access Journals (Sweden)



    Full Text Available Buntaran W, Astirin PA, Mahajoeno M. 2009. Effect of various sugar solution concentrations on characteristics of dried candy tomato (Lycopersicum esculentum. Nusantara Bioscience 2: 55-61. The aims of the research were to study the effects of sugar syrup concentration on dried candy tomato characteristics and to determine the proper sugar solution concentration that gives the best characteristics of dry candy tomatoes. The research used Randomized Block Design Method with four treatments and six times repetitions. The treatment that be used was immersing the tomato in sugar solution, with concentration of A (40%, B (50%, C (60%, and D (70% group in 18 hours. The variables measured were water content, ash, vitamin C and organoleptic tests include flavor, color, flavor and texture test. Data were analyzed using ANOVA test (Analysis of Variance followed by DMRT (Duncan Multiple Range Test. The result showed that sugar solution concentration had different effect on water content, ash content, vitamin C content, texture, and organoleptic test for colour, taste, and flavor of the dry candy tomato. The best characteristics of dry tomato candy was obtained on A (40% group, with water content of 24.20%, ash content of 0.62%, and vitamin C content of 31.15 mg/100 g. Standar quality of water content for dry fruit candy was maximal 25% (SII No.0718-2003 and maximal allowed ash content for food materials was 1.0% (SII 0272.90. Vitamin C content was not much decreased compared with ripe tomato i.e. 30-40 mg/100. Organoleptic tets result indicated that A (40% group get the highest score, i.e. 3,98 for taste, 3,89 for flavor, and 3,98 for colour.

  7. Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Caballero, F.; Martínez Ovalle, S. A., E-mail:; Moreno Gutiérrez, M. [Universidad Pedagógica y Tecnológica de Colombia, UPTC, Grupo de Física Nuclear Aplicada y Simulación (Colombia)


    The aim of this work was apply {sup 57}Fe Transmission Mössbauer Spectroscopy at room temperature in order to study the occurrence of iron-containing mineral phases in: 1) feed coal; 2) coal ash, obtained in different stages of the ASTM D3174 standard method; and 3) fly ash, produced when coal is burned in the TERMOPAIPA IV thermal power plant localized in Boyacá, Colombia. According to obtained results, we can conclude the occurrence of pyrite and jarosite in the feed coal; Fe{sup 2+} and Fe{sup 3+} crystalline paramagnetic phases, superparamagnetic hematite and hematite in coal ash; Fe{sup 2+} and Fe{sup 3+} noncrystalline and crystalline phases, magnetite and hematite in fly ash. Precisely, for a basic understanding, this work discusses some the possible transformations that take place during coal combustion.

  8. Root secretion stimulating ash growth in larch-ash mixed forest

    Institute of Scientific and Technical Information of China (English)

    吴俊民; 刘广平; 王晓水; 吴保国


    Allelopathic effect of larch (Larix gmelini ) on the ash growth (Fraximus mandshurica) was studied in artificial cultivation tests. The results revealed that the larch root secretion obviously stimulated the ash growth. In order to determine the main stimulation allelochemicals, the chemical composition was analyzed. By contrasting the contents of carbohydrate and aminoacid in root secretion of larch and ash, it was concluded that the carbohydrate and aminoacid were not important stimulation allelochemicals. The organic acid and other components in root secretion of larch and ash were analyzed by GC and GC-MS analysis. The sand culture tests were carried out with selected model compounds. The results showed that benzeneacetic acid, benzenepropionic acid and phenolic acids in root secretion of larch were the main stimulation allelochemicals.

  9. Lixiviation of fly ash. Uitloging van vliegas

    Energy Technology Data Exchange (ETDEWEB)

    Verhagen, L.


    The lixiviation of a number of elements (Na, K, Ca, Mg, V, As, Sb and Hg) from different fly ash products (fired and cement bounded products) is investigated. A theoretical description of diffusion from a fly ash product is given as well as a standard test to determine the lixiviation rate. Lixiviation can be interpreted as a diffusion process. Diffusion of an element X from a fly ash product can be described with the following parameters: the effective diffusion coefficient, the fraction that is available for lixiviation and the tortuosity of the product. The physical meaning of the determined tortuosity is not clear. The behavior of tracers in the product is compared with the behavior of the corresponding element. Often this behavior deviates, sometimes even considerably. From a comparison of fly ash products it appears that cement bounded products are better able to combine with arsenicum and antimony than fired products. None of the investigated products caused concentrations of micro-elements way above the stated norm. Improvement as for lixiviation behavior of the products seems to be possible, in particular for bricks. 8 refs., 17 tabs., 26 figs.

  10. Climate change and the ash dieback crisis (United States)

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory


    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  11. Heavy metals in MSW incineration fly ashes

    DEFF Research Database (Denmark)

    Ferreira, Celia; Ribeiro, Alexandra B.; Ottosen, Lisbeth M.


    Incineration is a common solution for dealing with the increasing amount of municipal solid waste (MSW). During the process, the heavy metals initially present in the waste go through several transformations, ending up in combustion products, such as fly ash. This article deals with some issues r...

  12. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, S.R.A.; Kootstra, A.M.J.


    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching con

  13. Drying grain using a hydrothermally treated liquid lignite fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bukurov, Z.; Cvijanovic, P.; Bukurov, M. [Univ. of Novi Sad (Yugoslavia); Ljubicic, B.R. [Univ. of North Dakota, Grand Forks, ND (United States)


    A shortage of domestic oil and natural gas resources in Yugoslavia, particularly for agricultural and industrial purposes, has motivated the authors to explore the possibility of using liquid lignite as an alternate fuel for drying grain. This paper presents a technical and economic assessment of the possibility of retrofitting grain-drying plants currently fueled by oil or natural gas to liquid lignite fuel. All estimates are based on lignite taken from the Kovin deposit. Proposed technology includes underwater mining techniques, aqueous ash removal, hydrothermal processing, solids concentration, pipeline transport up to 120 km, and liquid lignite direct combustion. For the characterization of Kovin lignite, standard ASTM procedures were used: proximate, ultimate, ash, heating value, and Theological analyses were performed. Results from an extensive economic analysis indicate a delivered cost of US$20/ton for the liquid lignite. For the 70 of the grain-drying plants in the province of Vojvodina, this would mean a total yearly saving of about US $2,500,000. The advantages of this concept are obvious: easy to transport and store, nonflammable, nonexplosive, nontoxic, 30%-40% cheaper than imported oil and gas, domestic fuel is at hand. The authors believe that liquid lignite, rather than an alternative, is becoming more and more an imperative.

  14. Application of polymeric flocculant for enhancing settling of the pond ash particles and water drainage from hydraulically stowed pond ash

    Institute of Scientific and Technical Information of China (English)

    Mishra Devi Prasad; Das Samir Kumar


    Delayed settling of the ash particles and poor drainage of water from the pond ash are the major problems faced during the hydraulic stowing of pond ash.In this study the effect of polymeric flocculant on settling of the ash particles and drainage of water during pond ash stowing are investigated.In addition,the parameters,viz.drainage and absorption of water during pond ash stowing are quantified by stowing a mine goaf model with pond ash slurries of five different concentrations added with and without flocculant.The study revealed that addition of only 5 × 10-6 of Sodium Carboxymethyl Cellulose (Na-CMC)flocculant with the pond ash slurries during stowing offers best result in terms of quicker settling of the ash particles and enhanced water drainage from the hydraulically stowed pond ash.Besides,it resulted in drainage of more than 85% of the total water used in the initial 45 min of stowing.The improvement in drainage is caused due to coagulation and flocculation of the pond ash particles because of charge neutralization and particle-particle bridging.This study may provide a basis for estimating the drainage and absorption of water during the real pond ash stowing operation in underground mines.

  15. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds (United States)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.


    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  16. Distinguishing defensive characteristics in the phloem of ash species resistant and susceptible to emerald ash borer. (United States)

    Cipollini, Don; Wang, Qin; Whitehill, Justin G A; Powell, Jeff R; Bonello, Pierluigi; Herms, Daniel A


    We examined the extent to which three Fraxinus cultivars and a wild population that vary in their resistance to Emerald Ash Borer (EAB) could be differentiated on the basis of a suite of constitutive chemical defense traits in phloem extracts. The EAB-resistant Manchurian ash (F. mandshurica, cv. Mancana) was characterized by having a rapid rate of wound browning, a high soluble protein concentration, low trypsin inhibitor activities, and intermediate levels of peroxidase activity and total soluble phenolic concentration. The EAB-susceptible white ash (F. americana, cv. Autumn Purple) was characterized by a slow wound browning rate and low levels of peroxidase activity and total soluble phenolic concentrations. An EAB-susceptible green ash cultivar (F. pennsylvanica, cv. Patmore) and a wild accession were similar to each other on the basis of several chemical defense traits, and were characterized by high activities of peroxidase and trypsin inhibitor, a high total soluble phenolic concentration, and an intermediate rate of wound browning. Lignin concentration and polyphenol oxidase activities did not differentiate resistant and susceptible species. Of 33 phenolic compounds separated by HPLC and meeting a minimum criterion for analysis, nine were unique to Manchurian ash, five were shared among all species, and four were found in North American ashes and not in the Manchurian ash. Principal components analysis revealed clear separations between Manchurian, white, and green ashes on the basis of all phenolics, as well as clear separations on the basis of quantities of phenolics that all species shared. Variation in some of these constitutive chemical defense traits may contribute to variation in resistance to EAB in these species.

  17. Nutrient supply to reed canary grass as a bioenergy crop. Intercropping and fertilization with ash or sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lindvall, Eva


    Production of renewable energy from herbaceous crops on agricultural land is of great interest since fossil fuels need to be replaced with sustainable energy sources. Reed canary grass (RCG), Phalaris arundinacea L. is an interesting species for this purpose. The aim of this thesis was to study different approaches to reduce the requirement of mineral fertilizers in RCG production for bioenergy purposes. Paper I describes a study where fertilization effects and risk of heavy metal enrichment were studied, using annual applications of ash for seven years. Ash from co-combustion of RCG and municipal wastes (mixed ash), pure RCG ash and commercial fertilizers were compared. The experiment was harvested each spring. Paper II describes an ongoing study in which the effects of intercropping RCG in mixture with nitrogen-fixing perennial legumes are examined in two experiments, in combination with various fertilization treatments. Three fertilization treatments were applied: high N, low N (half of the high N) and low N + RCG ash/sewage sludge. A delayed harvest method was used; cutting the biomass in late autumn and harvesting in spring. Besides dry matter yield, the N-fixation rate was estimated. The results from paper I showed no differences between treatments in the dry matter yields or in the heavy metal concentrations in the biomass. Soil samples, taken when the experiment was finished, showed differences between treatments for Cd, Pb and Zn only in the uppermost soil level, highest levels for the mixed ash treatment. The results in paper II showed that at one site the legume proportion in the mixtures was low and did not affect RCG growth negatively. The high N treatment gave a higher spring yield than the low N treatments. Mean rates of N2-fixation in the first production year were 12-28, 33-40 and 55 kg N ha-1 kg for goat's rue (Galega orientalis Lam.), red clover (Trifolium pratense L.), and alsike clover (Trifolium hybridum L.), plots, respectively. At the

  18. Stripping with dry ice (United States)

    Malavallon, Olivier


    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  19. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition (United States)

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.


    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  20. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)


    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  1. Future fly ash marketing; Flugaschevermarktung in der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Mauder, R.; Hugot, A. [Evonik Power Minerals GmbH, Dinslaken (Germany)


    It can be assumed that the fly ash production volumes will undergo a marked increase over the next few years. The conditions of fly ash production will improve as a result of modern and refurbished power plants, yielding a positive effect on the quality of fly ashes. Other vital parameters of future fly ash marketing are fly ash logistics and the infrastructure of power plants. Basically, economic utilisation of the increased production volumes is possible; however, new and long-term strategies are necessary. (orig.)

  2. Analysis list: Ash2l [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ash2l Blood + mm9 ...

  3. Analysis list: ash1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash1 Cell line + dm3 ...

  4. Analysis list: ash2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash2 Larvae + dm3 ... ...

  5. The Effect of Fly Ash Qualify on the Properties of Concrete%粉煤灰品质对混凝土性能影响研究

    Institute of Scientific and Technical Information of China (English)

    赵晖; 孙伟; 高波; 刘冠国


    The effect of high and low lime fly ash on the fluidity,compressive strength and long-term properties(carbonation,chloride ion diffusion coefficient,drying-wetting cycles)of concrete was studied. The test results showed that concrete with high and low lime fly ash have same slump of concrete, concrete with high lime fly ash has a higher compressive strength than that of low lime fly ash at the same curing period, the high and low lime fly ash have also effect on the carbonation depths, chloride ion diffusion coefficient and the damage under drying-wetting cycles of concrete, concrete with low lime fly ash has a higher carbonation depth than that of high lime fly ash, the high and low lime fly ash have not effect on chloride ion diffusion coefficient of concrete, the effect of high and low lime fly ash on deteriorate properties of concrete under drying-wetting cycles was studied, the parameter was the weight lost, the relative compressive strength and the relative dynamic of elasticity, the result indicates that concrete with low lime fly ash has a larger the relative compressive strength, relative dynamic of elasticity than concrete with high lime fly ash at the initial stage of drying-wetting cycle, the deteriorate degree of concrete with high lime fly ash is less than concrete with low lime fly ash after 30 days of dry-wet cycle.%研究掺低钙、高钙粉煤灰对结构混凝土坍落度、抗压强度、混凝土碳化、氯离子扩散系数、干湿循环破坏等性能的影响.研究表明低钙、高钙粉煤灰对混凝土坍落度没有影响,在相同的养护龄期里掺高钙粉煤灰的混凝土抗压强度大于低钙粉煤灰混凝土.掺加低钙、高钙粉煤灰对混凝土碳化、氯离子扩散系数、干湿循环破坏有影响,掺加低钙粉煤灰混凝土具有比掺高钙粉煤灰混凝土更大碳化深度,掺低钙、高钙粉煤灰对混凝土氯离子扩散系数影响不明显,在于湿循环初始阶段掺低钙粉煤灰混凝

  6. Life cycle adaption of biofuel ashes. Evaluation of new techniques for pelletizing of biofuel ashes, especially regarding operational properties and environmental effects in the forest after ash recycling. Stage 1; Kretsloppsanpassning av bioaskor. Utvaerdering av ny teknik foer pelletering av bioaska med avseende paa dels driftsegenskaper, dels miljoeeffekter i skogen av askaaterfoering

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Linnea [Stora Enso Environment, Falun (Sweden); Lundmark, Jan-Erik; Jansson, Charlotta [AssiDomaen AB, Stockholm (Sweden)


    whole, a greater acid neutralisation capacity. Wood ash differs from lime in that it contains a substantial amount of nutrient elements essential for the forest. The acid neutralisation capacity of the roll pelleted ash was still the same after 100 days of laboratory leaching. The acid neutralisation capacity of self-hardened and crushed ashes usually ceases already after 30 days. It is likely that a well-hardened roll pelleted ash product can, without any great risk of serious damage to ground vegetation, be recycled to the forest during the clearcut stage as a compensation fertiliser following biofuel harvesting. Neither increased nitrification nor leaching of nitrate from soil water is likely to occur. Potassium is considered to be an element that is easily leached from ash. In our laboratory leaching study, on the other hand, as much as 61 % of the original potassium content was still present in the roll pelleted ash after 100 days. The roll pelleting machine has been running a little more than six months at the two mills. In total 1500 tonnes of pellets have been produced. The main part is pellets solely from ash, however, mixtures of ash and lime sludge and ash and green liquor sludge, respectively, have also been pelleted. Our experiences of the roll pelleting machine are very good. The ash products seem well suited to recycling back to the forest. The machine has a production capacity of five tonnes per hour, indicating a production capacity of 10,000 tonnes per year. The running costs, including costs for personnel, spare parts and internal transports, amounted to 87 SEK per tonne of dry ash (i.e. 61 SEK per tonne of ash with 30 % water content) during the long term test. These are low costs compared to other agglomeration techniques. The roll pelleting technique has worked very well on a large scale without any further technical development. As this machine was the first of its kind some adjustments and minor changes were made in the machine and container

  7. [Little Dry Creek Drainage (United States)

    US Fish and Wildlife Service, Department of the Interior — Map of the drainage boundary, direction of flow, canals and ditches, and streets for the drainage study plan and profile for Little Dry Creek sub area in the North...

  8. Cold Vacuum Drying Facility (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  9. Electrodialytic removal of Cd from biomass combustion fly ash suspensions

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor M.; Ottosen, Lisbeth M.; Damoe, Anne J.


    Due to relatively high concentrations of Cd, biomass combustion fly ashes often fail to meet Danish legislative requirements for recycling as fertilizer. In this study, the potential of using electrodialytic remediation for removal of Cd from four different biomass combustion fly ashes was invest......Due to relatively high concentrations of Cd, biomass combustion fly ashes often fail to meet Danish legislative requirements for recycling as fertilizer. In this study, the potential of using electrodialytic remediation for removal of Cd from four different biomass combustion fly ashes...... the final Cd concentration was below 2.0. mg Cd/kg DM in at least one experiment done with each ash. This was obtained within 2 weeks of remediation and at liquid to solid (L/S) ratios of L/S 16 for the pre-washed straw ash and L/S 8 for the straw, co-firing and wood ash. © 2013 Elsevier B.V....

  10. Fly ash of mineral coal as ceramic tiles raw material. (United States)

    Zimmer, A; Bergmann, C P


    The aim of this work was to evaluate the use of mineral coal fly ash as a raw material in the production of ceramic tiles. The samples of fly ash came from Capivari de Baixo, a city situated in the Brazilian Federal State of Santa Catarina. The fly ash and the raw materials were characterized regarding their physical chemical properties, and, based on these results; batches containing fly ash and typical raw materials for ceramic tiles were prepared. The fly ash content in the batches varied between 20 and 80 wt%. Specimens were molded using a uniaxial hydraulic press and were fired. All batches containing ash up to 60 wt% present adequate properties to be classified as several kinds of products in the ISO 13006 standard () regarding its different absorption groups (pressed). The results obtained indicate that fly ash, when mixed with traditional raw materials, has the necessary requirements to be used as a raw material for production of ceramic tiles.

  11. Experimental study on fly ash capture mercury in flue gas

    Institute of Scientific and Technical Information of China (English)



    Systematic experiments were conducted on a fixed-bed reactor to investigate the interaction between fly ash and mercury,the results implied that fly ash can capture mercury effectively.Among different fly ashes,the unburned carbon in the FA2 and FA3 fly ashes has the highest mercury capture capacity,up to 10.3 and 9.36 μg/g,respectively,which is close to that of commercial activated carbon.There is no obvious relationship between mercury content and carbon content or BET surface area of fly ash.Petrography classification standard was applied to distinguish fly ash carbon particles.Carbon content is not the only variable that controls mercury capture on fly ash,there are likely significant differences in the mercury capture capacities of the various carbon forms.Mercury capture capacity mainly depends on the content of anisotropy carbon particles with porous network structure.

  12. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt


    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  13. Electro-dry-adhesion. (United States)

    Krahn, Jeffrey; Menon, Carlo


    This work presents novel conductive bioinspired dry adhesives with mushroom caps that enable the use of a synergistic combination of electrostatic and van der Waals forces (electro-dry-adhesion). An increase in shear adhesion bond strength of up to 2046% on a wide range of materials is measured when a maximum electrical field of 36.4 V μm(-1) is applied. A suction effect, due to the shape of the dry adhesive fibers, on overall adhesion was not noted for electro-dry-adhesives when testing was performed at both atmospheric and reduced pressure. Utilization of electrostatics to apply a preloading force to dry adhesive fiber arrays allows increased adhesion even after electrostatic force generation has been halted by ensuring the close contact necessary for van der Waals forces to be effective. A comparison is made between self-preloading of the electro-dry-adhesives and the direct application of a normal preloading pressure resulting in nearly the same shear bond strength with an applied voltage of 3.33 kV on the same sample.

  14. Degradation rate of sludge/fly ash mixture used as landfill liner; Nedbrytningshastigheten foer taetskikt uppbyggda av slam och aska

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus [AaF-Process AB, Stockholm (Sweden); Svensson, Malin; Ecke, Holger [Luleaa Univ. of Technology (Sweden)


    In order to be able to use mixtures of ash and sludge as landfill liner an important aspect is to demonstrate that the degradation of organic matter is slow enough. Therefore, the goal of this project has been to find out for how long a landfill liner material of sludge and ash will be stable and keep its function. The degradation of organic material in two different mixtures of sludge and ash has been studied in laboratory experiments. The rate of degradation was then estimated for barriers of sludge and ash, taking into account construction techniques (mixture, compaction, water content), climate conditions (freezing, drying) and biological processes (NaN{sub 3} additive). The effect of the degradation on the permeability has also been quantified. Organic material may disappear for the landfill liner material through 1) initial leaching of soluble organic material, 2) leaching of organic material after chemical reactions or 3) evaporation during biological degradation. Bacterial activity was not found in the sludge/ash mixtures during the experiments. Therefore, the organic material is probably reduced mainly though leaching according to 1) and 2). The leached amount of TOC (total organic carbon) was measured for all samples of sludge/ash in several experimental cycles. The leached amount of TOC was compared to the initial amount of TOC in the material. The results show a small initial reduction of organic material through leaching but the TOC content in the material is then stabilized. In relation to the total weight of the material the leaching of TOC was similar for the mixtures with 80 % ash and 20 % ash. However, this means that a larger amount of TOC was leached out from the mixtures with a high ash content since the initial amount of organic material was smaller. General conclusions about which ash-sludge ratio that is suitable for a landfill liner material could not be drawn from the experiments from a degradation point of view. If the initial

  15. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar. (United States)

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C


    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  16. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.


    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  17. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.


    Concrete prisms were made with four cement types including cements with fly ash and/or blast furnace slag and three waterto- cement (w/c) ratios. Chloride penetration and corrosion of rebars were stimulated by subjecting prisms to cyclic loading with salt solution and drying. Concrete resistivity, s

  18. Impact of Wood Species, Dimensions and Drying Temperature on Sorption Behaviour of Wood

    Directory of Open Access Journals (Sweden)

    Darius Albrektas


    Full Text Available This research paper examines the interdependence between wood sorption properties and its dimensions, species and drying temperature. The research was carried out on specimens of six species of wood (oak, ash, aspen, birch, spruce and pine which had different dimensions and were dried at temperatures ranging between 30 and 90 °C. Subsequently specimens underwent the moistening and air drying process, and the following parameters were recorded: moistening and drying rate, moisture content distribution, steady moisture content and sorption hysteresis. It was established that sorption hysteresis was most affected by the cross section dimensions of the specimen. It was determined that, when the thickness of wood specimens increases from 7 to 30 mm, sorption hysteresis grows up to 8 times. The steady moisture content depends on the density, measurements and drying temperature of the specimen.

  19. Strength and durability of concrete with ash aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, P.A.M.; Bai, Y. [Queens University Belfast, Belfast (United Kingdom)


    A previous investigation to replace natural sand in concrete with furnace bottom ash (FBA) from a coal-fired thermal power plant in Northern Ireland, UK indicated that the water demand of fresh concrete decreases with the increase of the FBA content. Therefore, in the current study the water content was decreased for concretes containing FBA for a given slump and a constant cement content of 382 kg/m{sup 3}. The natural sand was replaced with the FBA at 0, 30, 50, 70 and 100% by mass and three slump ranges, 0-10, 10-30 and 30-60 mm, were considered. The water content of the mixes was determined by carrying out trials. The effect of FBA on water demand, density, compressive strength, pull-off tensile strength, abrasion resistance, drying shrinkage, air permeability, sorptivity, carbonation, chloride diffusion and salt scaling resistance of concretes containing FBA was studied. The results indicated that the water demand of fresh concrete decreases with an increase of FBA content while it has no significant effect on density, compressive strength, pull-off tensile strength or abrasion resistance. The air permeability, sorptivity and drying shrinkage increases beyond 30% FBA content, but the resistance to chloride ingress and salt scaling improves. The depth of carbonation also increases with an increase in the FBA content beyond the 30% replacement level. Overall, FBA content up to 30% as fine aggregate can be incorporated in structural concrete with mostly beneficial effects to various properties of concrete, provided the cement content is kept constant and the water content corresponds to that for low-slump concrete mixes.

  20. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments (United States)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.


    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a

  1. Fabrication of Test Tubes for Coal Ash Corrosion Testing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.; Judkins, R.R.; Sikka, V.K.; Swindeman, R.W.; Wright, I.G.


    This paper deals with the fabrication of tube sections of four alloys for incorporating into test sections to be assembled by Babcock & Wilcox (B&W) for installation at Ohio Edison Power, Niles Plant. The primary purpose of the installation was to determine the corrosion behavior of ten different alloys for flue gas corrosion. Ohio Edison Power, Niles Plant is burning an Ohio coal containing approximately 3.4% S (dry basis) and approximately 0.4% alkali which causes chronic coal ash corrosion of the unit�s superheater tubing. The 2.5-in.-OD x 0.4in.-wall x 6-in-long sections of four alloys {type 304H coated with Fe3Al alloy FAS [developed at the Oak Ridge National Laboratory (ORNL)], 310 + Ta, modified 800H, and Thermie alloy} were fabricated at ORNL. Each alloy tubing was characterized in terms of chemical analysis and microstructure. The machined tubes of each of the alloys were inspected and shipped on time for incorporation into the test loop fabricated at B&W. Among the alloys fabricated, Thermie was the hardest to extrude and machine.

  2. Autochthonous "Bjelovars dried cheese"

    Directory of Open Access Journals (Sweden)

    Slavko Kirin


    Full Text Available «Dried cheese» is in autochthonous group of Bjelovar region cheeses which is still produced in rural domestic scale. The name of cheese originates from production procedure - drying for longer or shorter period in airy place after which the cheese is smoked, or is smoked only without drying. This type of cheese is produced in whole central region of Croatia which includes Međimurje, Podravina, Bilogora; Moslavina, Posavina and region around the capital. The aim of this paper is to describe and determine sensory, chemical and microbiological composition to determine its characteristics and production standards. As standards for sensory properties following characteristics can be used: a Outer shape: dimensions: diameter: 140-145 mm, height: 58-61 mm, mass: 700-750 g, equal, rounded shape, smooth skin, equal colour; b Consistency: easily cut, elastic, soft; c Cut: nicely combined white body, few improper holes of equal size; d Odour: pleasant milky acid odour, fairly smoky; e Taste: Fairly milky acidic taste, medium salty, fairly smoky taste. Depending on fat in dry matter content and water content in non fat dry matter, analyzed samples can be characterized as quarter fat, soft and semidry cheese. Higher acidity and saltiness was determined in some samples, microbiological analyses has shown that the most common contaminants are yeasts and moulds.

  3. Production of ceramics from coal fly ash

    Directory of Open Access Journals (Sweden)

    Angjusheva Biljana


    Full Text Available Dense ceramics are produced from fly ash from REK Bitola, Republic of Macedonia. Four types of fly ash from electro filters and one from the collected zone with particles < 0.063 mm were the subject of this research. Consolidation was achieved by pressing (P= 133 MPa and sintering (950, 1000, 1050 and 11000C and heating rates of 3 and 100/min. Densification was realized by liquid phase sintering and solid state reaction where diopside [Ca(Mg,Al(Si,Al2O6] was formed. Ceramics with optimal properties (porosity 2.96±0.5%, bending strength - 47.01±2 MPa, compressive strength - 170 ±5 MPa was produced at 1100ºC using the heating rate of 10ºC/min.

  4. A review on the utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    M. Ahmaruzzaman [National Institute of Technology Silchar, Silchar (India). Department of Chemistry


    Fly ash, generated during the combustion of coal for energy production, is an industrial by-product which is recognized as an environmental pollutant. Because of the environmental problems presented by the fly ash, considerable research has been undertaken on the subject worldwide. In this paper, the utilization of fly ash in construction, as a low-cost adsorbent for the removal of organic compounds, flue gas and metals, light weight aggregate, mine back fill, road sub-base, and zeolite synthesis is discussed. A considerable amount of research has been conducted using fly ash for adsorption of NOx, SOx, organic compounds, and mercury in air, dyes and other organic compounds in waters. It is found that fly ash is a promising adsorbent for the removal of various pollutants. The adsorption capacity of fly ash may be increased after chemical and physical activation. It was also found that fly ash has good potential for use in the construction industry. The conversion of fly ash into zeolites has many applications such as ion exchange, molecular sieves, and adsorbents. Converting fly ash into zeolites not only alleviates the disposal problem but also converts a waste material into a marketable commodity. Investigations also revealed that the unburned carbon component in fly ash plays an important role in its adsorption capacity. Future research in these areas is also discussed. 428 refs., 3 figs., 7 tabs.

  5. A review on the utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Ahmaruzzaman, M. [Department of Chemistry, National Institute of Technology Silchar, Silchar-788010, Assam (India)


    Fly ash, generated during the combustion of coal for energy production, is an industrial by-product which is recognized as an environmental pollutant. Because of the environmental problems presented by the fly ash, considerable research has been undertaken on the subject worldwide. In this paper, the utilization of fly ash in construction, as a low-cost adsorbent for the removal of organic compounds, flue gas and metals, light weight aggregate, mine back fill, road sub-base, and zeolite synthesis is discussed. A considerable amount of research has been conducted using fly ash for adsorption of NO{sub x}, SO{sub x}, organic compounds, and mercury in air, dyes and other organic compounds in waters. It is found that fly ash is a promising adsorbent for the removal of various pollutants. The adsorption capacity of fly ash may be increased after chemical and physical activation. It was also found that fly ash has good potential for use in the construction industry. The conversion of fly ash into zeolites has many applications such as ion exchange, molecular sieves, and adsorbents. Converting fly ash into zeolites not only alleviates the disposal problem but also converts a waste material into a marketable commodity. Investigations also revealed that the unburned carbon component in fly ash plays an important role in its adsorption capacity. Future research in these areas is also discussed. (author)

  6. Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, B.-M.; Lindqvist, O. [Chalmers University of Technology, Goeteborg (Sweden); Karlsson, L.G. [Kemakta Consulting AB, Stockholm (Sweden)


    The release of mineral nutrients and other species from untreated and stabilised wood ash has been investigated. Stabilisation is applied with the aim to modify the solubility of ash components and the ash particle size, i.e. to form dense ash particle agglomerates. This process induces the formation of several secondary minerals. The most important reaction is the transformation of Ca(OH){sub 2} into CaCO{sub 3} which lowers the calcium leaching rate significantly. A significant fraction of the alkali metals, K and Na, is present in salts which are rapidly released. The short-term release of these salts, as simulated in laboratory experiments, was not reduced by the stabilisation methods applied. Generally, low leaching rates were observed for the important plant nutrients P and Mg as well as for Fe and other metals from both untreated and agglomerated ashes. Thermodynamics equilibrium modelling of the hardening process showed that in addition to the transformation of Ca(OH){sub 2} to CaCO{sub 3}, formation of the mineral ettringite is possible at a high pH. Experimental results have confirmed this. As the pH in the pore solution decreases during long-term leaching ettringite will be transformed into calcium carbonate and gypsum. In accordance with the experimental results, no formation of secondary solubility controlling potassium or sodium minerals was indicated by the modelling results. (author)

  7. Sustainable use of biofuel by recycling ash to forests: treatment of biofuel ash. (United States)

    Mahmoudkhani, Maryam; Richards, Tobias; Theliander, Hans


    The influence of treatment techniques on leaching properties of alkaline species from biofuel ash is investigated in this paper. Ash samples from combustion of biofuels in a circulating fluidized bed and grate-firing combustion plants are studied. The samples are treated using three different treatment techniques; self-hardening, thermal treatment, and hardening bythe addition of binding materials. Nontreated and treated samples are evaluated for the leaching properties of the alkaline compounds and, furthermore, are characterized with respect to both physical and chemical characteristics. The results show the influence of treatment techniques on the physical structure and leaching characteristics of alkaline species. Results also indicate that ash samples show different behavior when treated with different methods, i.e., the influence of treatment technique on controlling the leaching properties is highly dependent on the initial chemical composition of ash. It was also found that there is an interaction between leaching of limited and easily soluble species, e.g., calcium and potassium leaching. Therefore, to control the leaching rate of alkaline species from ash, the characteristics that correlate the leaching properties of both easily and limited soluble species need to be adjusted.

  8. Drying of Malaysian Capsicum annuum L. (Red Chili) Dried by Open and Solar Drying


    Ahmad Fudholi; Mohd Yusof Othman; Mohd Hafidz Ruslan; Kamaruzzaman Sopian


    This study evaluated the performance of solar drying in the Malaysian red chili (Capsicum annuum L.). Red chilies were dried down from approximately 80% (wb) to 10% (wb) moisture content within 33 h. The drying process was conducted during the day, and it was compared with 65 h of open sun drying. Solar drying yielded a 49% saving in drying time compared with open sun drying. At the average solar radiation of 420 W/m2 and air flow rate of 0.07 kg/s, the collector, drying system, and pickup de...

  9. Chemical composition and properties of spray-dried sugar beet concentrate obtained after ultrafiltration of diffusion juice

    Directory of Open Access Journals (Sweden)

    Regiec Piotr


    Full Text Available Ultrafiltration of diffusion juice is a method that can reduce environmental pollution during the production of sugar. A by-product (concentrate of ultrafiltration contains a large amount of sucrose, but due to its properties, it is difficult to manage. The aim of this study was to determine the effects of the temperature used during drying of diffusion juice concentrates on the content of certain components and characteristics of resultant preparations. Diffusion juice obtained from one of the Polish sugar plants was subjected to ultrafiltration and the obtained concentrates were dried in a spray dryer. In the dried samples, the following parameters were analyzed: dry mass, sucrose, total ash, protein, crude fiber and color. It has been declared that the degree of concentration and drying temperature influenced the chemical composition and the properties of the dehydrated diffusion juice concentrates. An increase in drying temperature was accompanied by the increased content of dry mass, protein, ash and fiber content in the preparations. The greater the degree of juice concentration, the greater was the content of dry mass, ash, and fiber. Inversely, the greater the degree of juice concentration, the lower the content of sucrose. The brightest color of the dehydrated product was observed at the drying temperature of 200°C. Spray-drying may be used for waste management after the diffusion juice membrane filtration, and the resultant preparations might be used in the production of feedstuff or food industry in general e.g. as sucrose source, in fermentation processes or in microorganisms propagation.

  10. Simualting the Phase Separated rp-ash (United States)

    Caplan, Matthew; Horowitz, Chuck; Berry, Donald


    The composition and phase separation of rp-ash on accreting neutron stars determine the thermal properties of the crust which must be understood to interpret observations of crust cooling in X-ray bursts. In this work, we report on recent large scale molecular dynamics simulations of the outer crust. Using the crust compositions calculated by Mckinven et al. 2016, we study the structure of the crystal that forms, as well as diffusion and thermal properties of the crust.

  11. Market assessment of PFBC ash use

    Energy Technology Data Exchange (ETDEWEB)

    Bland, A. E.; Brown, T. H., Western Research Institute


    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  12. Drying Shrinkage of Cement-Based Materials Under Conditions of Constant Temperature and Varying Humidity

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; WEN Xiao-dong; WANG Ming-yuan; YAN Jia-jia; Gao Xiao-jian


    Currently,deformations along the central axis of specimens were usually measured under fixed environmental conditions. Seldom were the effects of environmental factors on the drying-shrinkage deformation of cement-based material considered. For this paper, the drying-shrinkage deformation at different w/b ratios and different additions to mortars was investigated under different environments at a temperature of 20 ℃ and humidity ranging from 100% to 50%. The specimens were cured in water for 28 days before measurement. The results illustrate that mortar shows much less shrinkage under various drying conditions when a lower w/b ratio is adopted. With a decrease in relative humidity the speed of drying-shrinkage becomes gradually lower. The addition of silica fume reduces the drying-shrinkage of mortar under higher relative humidity, because the pore structure of mortar with silica fume becomes more refined. The addition of fly ash increases the total porosity and the volume of coarse pores in the mortar. The drying-shrinkage of mortar under different conditions increases with the addition of more of fly ash.

  13. Interaction between sulfate and chloride solution attack of concretes with and without fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Jin Zuquan; Sun Wei; Zhang Yunsheng; Jiang Jinyang; Lai Jianzhong [Qingdao Technological University, Qingdao (China). Department of Civil Engineering


    Two sets of concretes under attack of erosion solution of sulfate and chloride salt were investigated. One set was plain concrete without fly ash addition the other set is the concrete with 20% and 30% of fly ash addition. The corrosion solution includes three types: 3.5% NaCl, 5% Na{sub 2}SO{sub 4}, and a composite solution of 3.5% NaCl and 5% Na{sub 2}SO{sub 4}. Two corrosion regimes were employed in this study: naturally immersion. The experimental results showed that a presence of sulfate in the composite solution increased the resistance to chloride ingress into concretes at early exposure period, but the opposite was observed at latter exposure period. A presence of chloride in the composite solution reduces the damage of concrete caused by sulfate. Addition of fly ash may significantly improve the resistance to chloride ingress into concretes and the resistance to sulfate erosion when a suitable amount of fly ash addition and low water-to-binder (W/B) was employed. Studies of the different corrosion regimes indicate that concretes stored in corrosion solution for about 850 days, the changes in relatively dynamic modulus of elastically (RDME) could be described by three stages: linearly increasing period, steady period, and declining period. For drying-immersion cycles, an accelerated trend could be found. The changes in RDME included an accelerated decreased stage, linearly increased stage, and then a slowly decreased stage, finally accelerating failure stage. The mechanism was also investigated by the modern microanalysis techniques.

  14. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn;


    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  15. Magnetically responsive dry fluids (United States)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.


    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  16. Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants. (United States)

    Chen, Hsiu-Ling; Chen, I-Ju; Chia, Tai-Pao


    Various environmental hazards and metals are liberated either into bottom ash or carried away with gases and subsequently trapped in fly ash. Many studies have reported an increase of DNA damage is related to hazardous exposure of municipal waste incinerators. By detecting DNA damage, we compared the DNA migration imposed in workers potentially exposed to hazardous substances, including PCDD/Fs, metals, and silica particles, at a bottom ash recovery plant and fly ash treatment plants in Taiwan. Higher tail moment (TMOM) was found in workers at fly ash treatment plants (7.55) than in the workers in bottom ash plants (2.64), as well as those in blue collar was higher than in white collar workers (5.72 vs. 3.95). Meanwhile, the significantly higher DNA damage was also shown in workers with high integrated exposure score than those with low. The air samplings for particle mass, Cr, and Al concentrations also showed the higher levels in fly ash treatment plants than in the workers in bottom ash plants. Meanwhile, the air samplings inside the two plants suggested that the particle size might be important to affect the workers inhaling the metal into the human body and finally caused to their DNA damage. The data concluded that an elevated DNA damage may be expected in workers at fly ash treatment plants than those at bottom ash plants; however, the occupational hazards in both types of plants, especially at different particle size interval, need more thorough assessment in future studies.

  17. Crowdsourcing genomic analyses of ash and ash dieback – power to the people

    Directory of Open Access Journals (Sweden)

    MacLean Dan


    Full Text Available Abstract Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at and a public GitHub repository.

  18. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z.; Morikawa, M.; Fujii, Y. [Okayama University, Okayama (Japan). Faculty of Engineering


    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  19. Tribological Behavior of MC Nylon6 Composites Filled with Glass Fiber and Fly ash

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shihua; CUI Chong; CHEN Guang


    To improve tribological property of MC Nylon6,the glass fiber and fly ash reinforced monomer casting nylon composites (GFFAPA) were prepared by anionic polymerization of ε-caprolactam.The friction and wear behaviors of composites under dry condition,water lubrication and oil lubrication were investigated through a ring-black wear tester.Worn surfaces were analyzed using a scanning electron microscope.The experimental results show that the tensile strength and hardness of nylon composites are obviously improved with reinforcement increasing.Compared to MC nylon,the lowest friction coefficient and wear rate of glass fiber reinforced nylon composites (GFPA) with GF30% respectively decrease by 33.1% and 65.3%,of fly ash reinforced nylon composites (FAPA) with FA20% decrease by 5.2% and 68.9% and of GFFAPA composites with GF30% and FA10% decrease by 57.8% and 89.9%.The main wear mechanisms of FAPA composites are adhesive and abrasive wear and of GFPA composites with high proportion are abrasive and fatigue wear.The worn surfaces of GFFAPA composites are much multiplex and the optional distributing glass fiber and fly ash have a synergetic effect on the wear resistance for GFFAPA composites.Compared with dry friction,the friction coefficient and wear rate under oil lubricated conditions decrease sharply while the latter reversely increase under water lubricated conditions.The wear mechanisms under water lubricated condition are principally chemical corrosion wear and abrasive wear and they become boundary friction under oil lubricated condition.

  20. Environmental impact of using fly ash in concrete

    Energy Technology Data Exchange (ETDEWEB)


    An attempt was made to estimate the chemical composition of fly ash using the known chemical composition of coals from numerous regions of the country and the known behavior of elements in a limited number of coal and fly-ash samples. This technique assumes that each element in every piece of coal in the United States partitions itself into fly ash to the same extent and leaches from fly ash at the same rate. Using these limited data, enrichment factors were then calculated by dividing the composition in the fly ash by the composition in the corresponding coal samples. These enrichment factors were then applied to all of the coal samples for which chemical compositions were available to estimate the chemical composition of the fly ash.

  1. Volcanic ash as an oceanic iron source and sink (United States)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.


    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  2. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla


    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  3. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation......, corrosion of steam coils, deactivation of SCR catalysts and utilization of residual products. Abroad range of research tools as probe measurements on power plants, entrain flow reactorstudies and deposit modelling have been used to gain an improved understanding of ash transformation and ash deposit...... to generate ash particles typically in the size range of 50 to 200 μm on biomass suspension fired power plant boilers. A fragmentation rate of fuel particles of 3 have been used to describe both the residual ash formation process in laboratory entrained flow reactors and in full scale boilers.A range...

  4. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry. (United States)

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M


    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed.

  5. Recovering germanium from coal ash by chlorination with ammonium chloride

    Institute of Scientific and Technical Information of China (English)


    A new process of enriching germanium from coal ash was developed. The process involves in mixing the coal ash and ammonium chloride and then roasting the mixture to produce germanium chloride that is then absorbed by dilute hydrochloric acid and hydrolyzed to germanium oxide. The germanium recovery reached to 80.2% at the optimum condition: mass ratio of NH4Cl/coal ash is 0.15, roasting temperature 400℃ and roasting time 90 min.

  6. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)


    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  7. Improved prediction and tracking of volcanic ash clouds (United States)

    Webley, P.; Mastin, L.


    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  8. Reuse of Woody Biomass Ash Waste in Cementitious Materials


    Ukrainczyk, N.; Vrbos, N.; Koenders, E.A.B.


    There is an increased interest in the reuse of ash waste from biomass combustion, being a sustainable source of energy. This paper investigates the partial replacement of cement and sand in building materials with fly ash waste generated from combustion of woody biomass waste. The results show that the ash widens the particle size distribution of cement and has minerals complementary to portland cement, thus justifying its application as cement replacement, but with a relatively high amoun...

  9. The Effect of Operating Conditions on Drying Characteristics and Quality of Ginger (Zingiber Officinale Roscoe) Using Combination of Solar Energy-Molecular Sieve Drying System (United States)

    Hasibuan, R.; Zamzami, M. A.


    , and the falling drying rate, while the constant drying rate is not visible. The result of ginger quality shows that there are no significant changes in the organoleptic analysis, the ash content is about 7.52-7.94% and the oil content is 0.79-0.83%.

  10. Land application uses for dry FGD by-products

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J.; Dick, W.; Forster, L.; Hitzhusen, F.; McCoy, E.; Stehouwer, R.; Traina, S.; Wolfe, W. (Ohio State Univ., Columbus, OH (United States)); Haefner, R. (Geological Survey, Columbus, OH (United States). Water Resources Div.)


    The 1990 amendments to the Clean Air Act have spurred the development of flue gas desulfurization (FGD) processes, several of which produce a dry, solid by-product material consisting of excess sorbent, reaction products containing sulfates and sulfites, and coal fly ash. Presently FGD by-product materials are treated as solid wastes and must be landfilled. However, landfill sites are becoming more scarce and tipping fees are constantly increasing. It is, therefore, highly desirable to find beneficial reuses for these materials provided the environmental impacts are minimal and socially acceptable. Phase 1 results of a 4 and 1/2 year study to demonstrate large volume beneficial uses of FGD by-products are reported. The purpose of the Phase 1 portion of the project was to characterize the chemical, physical, mineralogical and engineering properties of the FGD by-product materials obtained from various FGD technologies being developed in the state of Ohio. Phase 1 also involved the collection of baseline economic data related to the beneficial reuse of these FGD materials. A total of 58 samples were collected and analyzed. In summary Phase 1 results revealed that FGD by-product materials are essentially coal fly ash materials diluted with unreacted sorbent and reaction products. High volume beneficial reuses will depend on the economics of their substituting for existing materials for various types of applications (e.g. as an agricultural liming material, soil borrow for highway embankment construction, and reclamation of active and abandoned surface coal mines). Environmental constraints to the beneficial reuse of dry FGD byproduct materials, based on laboratory and leachate studies, seem to be less than for coal fly ash.

  11. Properties of Spray Dried Food and Spray Drying Characteristics (United States)

    Katoh, Fumio

    The following conclusions are obtained, studying properties of spray dried food and drying characteristics. (a) Dried particles are similar to spray droplets in size distribution (y=2.5), and particle count distribution is arranged as (dn/dx = ae-bx). (b) The ratio of the particle diameters before and after drying is calculated with moisture before and after drying, and porosity is given as (εp = ww4). (c) The standard drying method is presented to evaluate accurately drying problems at a certain standard. (d) Equilibrium moisture at 20 up to 100°C are summarized in terms of adsorption potential. (e) It makes clear that calulation based on the theory of residence time and drying time represents well complex spray drying characteristics.

  12. The Cement Solidification of Municipal Solid Waste Incineration Fly Ash

    Institute of Scientific and Technical Information of China (English)

    HOU Haobo; HE Xinghua; ZHU Shujing; ZHANG Dajie


    The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substitution, deposition or adsorption mechanisms.

  13. Experimental Study on Volume for Fly Ash of Building Block

    Directory of Open Access Journals (Sweden)

    Ling Wang


    Full Text Available Fly ash is a waste substance from thermal power plants, steel mills, etc. That is found in abundance in the world. It has polluted the environment, wasting the cultivated land. This study introduces an experimental research on fly ash being reused effectively, the study introduces raw materials of fly ash brick, production process and product inspection, fly ash content could be amounted to 40%~75%. High doping fly ash bricks are manufactured, which selects wet fly ash from the power plants, adding aggregate with reasonable ratio and additives with reasonable dosage and do the experimental research on manufacture products for properties, production technology and selection about technology parameter of production equipment. Index of strength grade and freezing-thawing resisting etc and the high doping fly ash brick building which we are working on can achieve the national standard on building materials industry. Based on the tests, this achievement of research has a very wide practical prospect in using fly ash, industrial waste residue, environmental protection and reducing the cost of enterprises. The efficient reuse of fly ash from coal boiler and power plants has very vital significance of protecting the environment, benefiting descendants and developing of circular economy.

  14. Heavy metal characterization of circulating fluidized bed derived biomass ash. (United States)

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang


    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  15. Environmental hazard of oil shale combustion fly ash. (United States)

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne


    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology.

  16. Creep Behaviour of Fly Ash-Based Geopolymer Concrete



    Fly ash-based geopolymer concrete is manufactured using fly ash as its source material and does not use Portland cement at all. Beside fly ash, alkaline solution is also utilized to make geopolymer paste which binds the aggregates to form geopolymer concrete. This paper presents the study of creep behaviour of fly ash-based geopolymer concrete. Four series of specimens with various compressive strengths were prepared to study its creep behaviour for the duration of test up to one year. The te...

  17. Electrodialytic removal of Cd from biomass combustion fly ash

    DEFF Research Database (Denmark)

    Pedersen, Anne Juul; Ottosen, Lisbeth M.; Simonsen, Peter


    Due to a high concentration of Cd, biomass combustion fly ash often fails to meet the Danish legislative requirements for recycling on agricultural fields. In this work the potential of using the method Electrodialytic Remediation to reduce the concentration of Cd in different biomass combustion...... four ashes. Final Cd concentrations below 2.0 mg Cd/kg were reached in all ashes within 14 days of remediation and legislative requirements were met. After further optimization of the remediation process on the pre-washed straw ash, limiting concentrations were reached after only 48 hours...

  18. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.


    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  19. Geological behavior of wet outflow deposition fly ash

    Institute of Scientific and Technical Information of China (English)

    周德泉; 赵明华; 刘宏利; 周毅; 严聪


    The geological behaviors of wet outflow deposition fly ash were investigated, including the feature of in-situ single and even bridge cone penetration test (CPT) curves, the change of the penetration parameters and vane strength with the increase of depth and the difference of the penetration resistance on and down the water level. Drilling, CPT and vane shear test were carried out in silty clay, fine sand, and fly ash of the ash-dam. The CPT curves of the fly ash do not show a critical depth. The cone resistance (qc) of the fly ash is smaller than that of silty clay or sand; the friction resistance is smaller than that of filling silty clay, similar to that of deposition silty clay or more than that of fine sand; the friction ratio is smaller than that of filling silty clay, or more than that of deposition silty clay or much more than that of fine sand. The specific penetration resistance (ps) is similar to that of filling silty clay, or more than that of deposition silty clay. There is a clear interface effect between the deposition fly ash and the clay. Interface effect of ps-h curve at the groundwater table is clear, and ps of the fly ash reduces significantly under the table. The vane strength of the fly ash increases as the depth increases. The deposition fly ash with wet outflow is similar to silt in the geological behavior.

  20. Surface Modification of Fly Ash for Active Catalysis

    Directory of Open Access Journals (Sweden)

    Deepti Jain


    Full Text Available Fly ash based effective solid base catalyst (KF/Al2O3/fly ash473, KF/Al2O3/fly ash673, and KF/Al2O3/fly ash873 was synthesized by loading KF over chemically and thermally activated fly ash. The chemical activation was done by treating fly ash with aluminum nitrate via precipitation method followed by thermal activation at 650°C to increase the alumina content in fly ash. The increased alumina content was confirmed by SEM-EDX analysis. The alumina enriched fly ash was then loaded with KF (10 wt% and calcined at three different temperatures 473 K, 673 K and 873 K. The amount of loaded KF was monitored by XRD, FTIR spectroscopy, SEM-EDX, TEM and Flame Atomic Absorption Spectrophotometer. The catalytic activities of the catalysts were tested in the Claisen-Schmidt condensation of benzaldehyde and 4-methoxybenzaldehyde with 2′-hydroxyacetophenone to produce 2′-hydroxychalcone and 4-methoxy-2′-hydroxychalcone respectively. Higher conversion (83% of benzaldehyde and (89% of 4-methoxybenzaldehyde reveals that among these heterogeneous catalysts KF/Al2O3/fly ash673 is very active.

  1. Quality of dry ginger (Zingiber officinale) by different drying methods. (United States)

    E, Jayashree; R, Visvanathan; T, John Zachariah


    Ginger rhizomes sliced to various lengths of 5, 10, 15, 20, 30, 40, 50 mm and whole rhizomes were dried from an initial moisture content of 81.3 % to final moisture content of less than 10 % by various drying methods like sun drying, solar tunnel drying and cabinet tray drying at temperatures of 50, 55, 60 and 65 °C. Slicing of ginger rhizomes significantly reduced the drying time of ginger in all the drying methods. It was observed that drying of whole ginger rhizomes under sun took the maximum time (9 days) followed by solar tunnel drying (8 days). Significant reduction in essential oil and oleoresin content of dry ginger was found as the slice length decreased. The important constituents of ginger essential oil like zingiberene, limonene, linalool, geraniol and nerolidol as determined using a gas chromatography was also found to decrease during slicing and as the drying temperature increased. The pungency constituents in the oleoresin of ginger like total gingerols and total shogoals as determined using a reverse phase high performance liquid chromatography also showed a decreasing trend on slicing and with the increase in drying temperature. It was observed from the drying studies that whole ginger rhizomes dried under sun drying or in a solar tunnel drier retained the maximum essential oil (13.9 mg/g) and oleoresin content (45.2 mg/g) of dry ginger. In mechanical drying, the drying temperature of 60 °C was considered optimum however there was about 12.2 % loss in essential oil at this temperature.

  2. Utilisation of coal ash to improve acid soil

    Directory of Open Access Journals (Sweden)

    Shigeru Kato


    Full Text Available The study on utilization of coal ash to improve acid soil was carried out in a greenhouse at the Land Development Regional Office 1, Pathum Thani Province, Central Thailand, from January-May 2003. Fly ash mixture (fly ash plus gypsum and lime at the proportion 5:4:1 and clinker ash mixture (clinker ash plus gypsum and lime at the proportion 5:4:1 were used as soil amendments at varying rates i.e., 0, 6.25,12.5, 18.75 and 25 t/ha to improve the soil. The aim of this study was to determine the effect of application of coal ash on acid soil and the growth of a vegetable (Chinese kale. Chinese kale cultivars were planted in a randomized complete block design with three replications. Pak Chong soil series (Ultisols was used as the growth medium. Twenty-day-old seedlings were transplanted in 270 pots (two plants per pot containing acid soil with different treatments of coal ash mixture which were as follows: 1 control, 2 fly ash mixture 6.25 t/ha, 3 fly ash mixture 12.5 t/ha, 4 fly ash mixture 18.75 t/ha, 5 fly ash mixture 25 t/ha, 6 clinker ash mixture 6.25 t/ha, 7 clinker ash mixture 12.5 t/ha, 8 clinker ash mixture 18.75 t/ha and 9 clinker ash mixture 25 t/ha. Chemical fertilizers were applied at the rate of 250 kg/ha using a grade of 15-15-15 of N, P and K, respectively. Plants were harvested 40 days after transplanting. Among the treatments, application of fly ashmixture at a rate of 25t/ha (4t/rai substantially increased soil pH up to 5.7. Fly ash was found more effective than clinker ash in increasing soil pH. The highest yield of Chinese kale was also obtained when fly ash mixture was applied at a rate of 25 t/ha followed by fly ash mixture at 18.75 t/ha and clinker ash mixture at 18.75 t/ha with an average yield per plant of 4.980, 3.743 and 3.447 grams, respectively. It can be concluded that the application of coal ash mixture, either fly- or clinker ash, at 18.75-25 t/ha (3-4 t/rai was the most effective in terms of plant yield. The use of

  3. Natural rain - induced element leaching from coal ASH; La pluie naturelle - lixiviation d'element de la cendre de charbon

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [Belgrade Univ., Dept. of Chemistry, IChTM, Chemistry Center, Belgrade (Yugoslavia)


    Six composite samples of coal ash from power plants 'Nikola Tesla' A and B, located in the vicinity of Obrenovac, near Belgrade (Yugoslavia), were subjected to extraction with 1 M acetate solution, pH 5.5, in order to imitate possible leaching of the ash by natural acidic rain. Seven trace and five major elements have been examined, and the obtained amounts were in the range from 0.003 {+-} 0.001 ppm (Cd), to 117 {+-} 27 ppm (Ca), dry ash basis. Though some of the concentrations were higher than allowed by domestic and international regulations it can be concluded that neither of the examined elements represents a serious threat for the environment (at least for the conditions applied in this experiment). Also, both magnesium and iron are carriers of copper, chromium and arsenic, while cadmium is associated with magnesium and manganese. Calcium and manganese are beside magnesium and iron, scavengers of arsenic. (authors)

  4. Nutritional attributes of ash (Fraxinus spp.) outer bark and phloem and their relationships to resistance against the emerald ash borer. (United States)

    Hill, Amy L; Whitehill, Justin G A; Opiyo, Stephen O; Phelan, P Larry; Bonello, Pierluigi


    The emerald ash borer (Agrilus planipennis Fairmaire, EAB) is an alien, invasive wood-boring insect that is responsible for killing millions of ash trees since its discovery in North America in 2002. All North American ash species (Fraxinus spp.) that EAB has encountered have shown various degrees of susceptibility, while Manchurian ash (Fraxinus mandshurica Ruprecht), which shares a co-evolutionary history with this insect, is resistant. Recent studies have looked into constitutive resistance mechanisms in Manchurian ash, concentrating on the secondary phloem, which is the feeding substrate for the insect. In addition to specialized metabolism and defense-related components, primary metabolites and nutritional summaries can also be important to understand the feeding behavior of insect herbivores. Here, we have compared the nutritional characteristics (water content, total protein, free amino acids, total soluble sugars and starch, percent carbon and nitrogen, and macro- and micronutrients) of outer bark and phloem from black, green, white and Manchurian ash to determine their relevance to resistance or susceptibility to EAB. Water content and concentrations of Al, Ba, Cu, Fe, K, Li, tryptophan and an unknown compound were found to separate black and Manchurian ash from green and white ash in a principal component analysis (PCA), confirming their phylogenetic placements into two distinct clades. The traits that distinguished Manchurian ash from black ash in the PCA were water content and concentrations of total soluble sugars, histidine, lysine, methionine, ornithine, proline, sarcosine, tyramine, tyrosol, Al, Fe, K, Na, V and an unknown compound. However, only proline, tyramine and tyrosol were significantly different, and higher, in Manchurian ash than in black ash.

  5. Model Stickiness in Spray Drying

    DEFF Research Database (Denmark)

    Petersen, Thomas

    a droplet would encounter in a spray dryer. The droplet is recorded using a CCD-camera during drying and the subsequent stickiness test. After a user-specifed drying time a piston strikes the partially dried particle at a user-specifed velocity. After the impact the piston surface is inspected...... and if the particle was sticky it is seen adhering to the surface, while a clean piston signifes a non-sticky particle. The setup was designed specically to test the stickiness of a particle produced by drying a droplet of the desired feed - something unlike methods of literature where dry particles have been...... design of spray dryers. The experimental work centers around a new technique for measuring when, during drying, a particle becomes non-sticky based on a single droplet drying technique used to study drying kinetics. An acoustic levitator is used to dry a levitated droplet in conditions similar to those...

  6. Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass

    Directory of Open Access Journals (Sweden)

    Edson Francisco do Espírito Santo


    Full Text Available The use of colorants in products of animal origin is justified by the improvement in the color of foods since this attribute is considered a quality criterion. These additives can be produced using industrial effluents as substrates and appropriate organisms, such as Rubrivivax gelatinosus. Oxycarotenoids represent a class of carotenes responsible for the pigmentation of animals and vegetables. R. gelatinosus grows in fish industry effluent with the resulting production of a bacterial biomass containing oxycarotenoids. The purpose of this study was to compare the use of two drying processes - spray and freeze drying - to obtain powder biomass in terms of the process parameters (yield, productivity, and product recovery and the product characteristics (color, proximate composition, and oxycarotenoids. No difference was detected in the yield between these techniques, while productivity was higher using spray drying. Higher product recovery and moisture were achieved with freeze drying, while ash was higher with spray drying. The freeze dried biomass was redder, darker and less saturated than the spray dried biomass. No difference in oxycarotenoids was detected between the biomasses. Although it results in lower recovery rate, spray drying was faster and more productive, and it provided the same yield as freeze drying, which makes it the method of choice for obtaining R. gelatinosus biomass.

  7. Durability of biomass fly ash concrete: Freezing and thawing and rapid chloride permeability tests

    Energy Technology Data Exchange (ETDEWEB)

    Shuangzhen Wang; Emilio Llamazos; Larry Baxter; Fernando Fonseca [Brigham Young University, Provo, UT (USA). Department of Chemical Engineering


    Strict interpretation of ASTM C 618 excludes non-coal fly ashes, such as biomass fly ashes from addition in concrete. Biomass fly ash in this investigation includes (1) cofired fly ash from burning biomass with coal; (2) wood fly ash and (3) blended fly ash (wood fly ash mixing with coal fly ash). A set of experiments conducted on concrete from pure cement and cement with fly ash provide basic data to assess the effects of several biomass fly ashes on the performances of freezing and thawing (F-T) and rapid chloride permeability test (RCPT). The F-T tests indicate that all fly ash concrete has statistically equal or less weight loss than the pure cement concrete (control). The RCPT illustrate that all kinds of fly ash concrete have lower chloride permeability than the pure cement control concrete. 37 refs., 5 figs.

  8. Gas generation in incinerator ash; Gasbildning i aska

    Energy Technology Data Exchange (ETDEWEB)

    Arm, Maria; Lindeberg, Johanna; Rodin, Aasa; Oehrstroem, Anna; Backman, Rainer; Oehman, Marcus; Bostroem, Dan


    In recent years, explosions have occurred in certain phases of ash handling in Sweden. Investigations have revealed that hydrogen may have been present in all cases. The hydrogen is believed to be generated by chemical reactions of aluminium and other metals within the ash in the presence of water. The purpose with this study is to increase the knowledge of gas generation of incinerator ash. Thereby, guides for appropriate ash management can be introduced and the risk for further explosions prevented. The study has comprised analyses of the ash properties, such as chemical and physical composition and the pH, of ash from 14 incineration plants (mostly waste incineration plants). Different fractions of ash materials representing different parts of the process in each plant have been analysed. Furthermore, the fuel and the technical differences between the plants have been analysed. A tool for measuring the gas generation in the laboratory has been developed and the gas generation of the different ash materials at natural and increased pH was measured. Gas analyses and thermodynamic calculations have also been performed. The results showed that: bottom ash from fluidised bed boilers generated small amounts of gas at increased pH, much smaller amounts than the idle pass, cyclone and filter ash did, bottom ash from grate fired boilers generated more gas at increased pH than their cyclone ash and filter ash, with exception of the Linkoeping plant, all bio waste incineration plants generated ash with low gas generation potential, all fly ash materials with a gas generation potential of more than 10 l/kg originated from municipal waste incineration plants, filter ash that had been stored in oxygen rich environment generated significant less gas than fresh filter ash of the same origin, hardly any other gases were generated apart from hydrogen (very small amounts of acetone, furane, benzene and most likely methane were detected in some of the ash materials), there were no

  9. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash. (United States)

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi


    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability.

  10. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault


    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  11. Interspecific comparison of constitutive ash phloem phenolic chemistry reveals compounds unique to manchurian ash, a species resistant to emerald ash borer. (United States)

    Whitehill, Justin G A; Opiyo, Stephen O; Koch, Jennifer L; Herms, Daniel A; Cipollini, Donald F; Bonello, Pierluigi


    The emerald ash borer (Agrilus planipennis, EAB) is an invasive wood-borer indigenous to Asia and is responsible for widespread ash (Fraxinus spp.) mortality in the U.S. and Canada. Resistance and susceptibility to EAB varies among Fraxinus spp., which is a result of their co-evolutionary history with the pest. We characterized constitutive phenolic profiles and lignin levels in the phloem of green, white, black, blue, European, and Manchurian ash. Phloem was sampled twice during the growing season, coinciding with phenology of early and late instar EAB. We identified 66 metabolites that displayed a pattern of variation, which corresponded strongly with phylogeny. Previously identified lignans and lignan derivatives were confirmed to be unique to Manchurian ash, and may contribute to its high level of resistance to EAB. Other compounds that had been considered unique to Manchurian ash, including hydroxycoumarins and the phenylethanoids calceolarioside A and B, were detected in closely related, but susceptible species, and thus are unlikely to contribute to EAB resistance of Manchurian ash. The distinct phenolic profile of blue ash may contribute to its relatively high resistance to EAB.

  12. Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash

    Energy Technology Data Exchange (ETDEWEB)

    Chareonpanich, Metta; Namto, Teerapong; Kongkachuichay, Paisan [Department of Chemical Engineering, Kasetsart University, 50 Paholyothin Rd., Chatuchak, Bangkok 10900 (Thailand); Limtrakul, Jumras [Department of Chemistry, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)


    The lignite fly ash from the Mae-Moh power plant, Thailand, and rice husk ash were used as raw materials for ZSM-5 zeolite synthesis. Factors affecting the yield of ZSM-5 zeolite synthesized from fly ash, i.e., the SiO{sub 2}/Al{sub 2}O{sub 3} mole ratio, the presence of tetrapropyl ammonium bromide (TPABr, the structure-directing material for ZSM-5 zeolite synthesis), the holding temperature and time, and the initial pressure were investigated. It was found that without TPABr only zeolite P could be synthesized at SiO{sub 2}/Al{sub 2}O{sub 3} mole ratios of 2.8-200. In order to synthesize ZSM-5 zeolite, sodium silicate solution was added to adjust the SiO{sub 2}/Al{sub 2}O{sub 3} mole ratio in raw ash. The yield of ZSM-5 zeolite was as high as 59 wt.% when following conditions were used: SiO{sub 2}/Al{sub 2}O{sub 3} mole ratio, 40; the holding temperature, 210 C; the holding time, 4 h and the initial pressure, 4 bar. The catalytic performance for CO{sub 2} hydrogenation reaction of the ZSM-5 zeolite was preliminary tested and compared with that of commercial one. It was observed that there was no significant difference in the catalytic performance between these two catalysts.

  13. Illinois basin coal fly ashes. 2. Equilibria relationships and qualitative modeling of ash-water reactions (United States)

    Roy, W.R.; Griffin, R.A.


    Alkaline and acidic Illinois Basin coal fly ash samples were each mixed with deionized water and equilibrated for about 140 days to simulate ash ponding environments. Common to both equilibrated solutions, anhydrite solubility dominated Ca2+ activities, and Al3+ activities were in equilibrium with both matrix mullite and insoluble aluminum hydroxide phases. Aqueous silica activities were controlled by both mullite and matrix silicates. The pH of the extract of the acidic fly ash was 4.1 after 24 h but increased to a pH value of 6.4 as the H2SO4, assumed to be adsorbed to the particle surfaces, was exhausted by the dissolution of matrix iron oxides and aluminosilicates. The activities of aqueous Al3+ and iron, initially at high levels during the early stages of equilibration, decreased to below analytical detection limits as the result of the formation of insoluble Fe and Al hydroxide phases. The pH of the extract of the alkaline fly ash remained above a pH value of 10 during the entire equilibration interval as a result of the hydrolysis of matrix oxides. As with the acidic system, Al3+ activities were controlled by amorphous aluminum hydroxide phases that began to form after about 7 days of equilibration. The proposed mechanisms and their interrelations are discussed in addition to the solubility diagrams used to deduce these relationships. ?? 1984 American Chemical Society.

  14. Synergic Effect of Wheat Straw Ash and Rice-Husk Ash on Strength Properties of Mortar (United States)

    Goyal, Ajay; Kunio, Hattori; Ogata, Hidehiko; Garg, Monika; Anwar, A. M.; Ashraf, M.; Mandula

    Pozzolan materials obtained from various sources; when used as partial replacement for Portland cement in cement based applications play an important role not only towards sustainable development but in reducing the construction costs as well. Present study was conducted to investigate the synergic effect of Rice-Husk Ash (RHA) and Wheat Straw Ash (WSA) on the strength properties of ash substituted mortar. Ash materials were obtained after burning the wastes at 600°C for 5 h at a control rate of 2°C min. Two binary blends of mortar substituting 15% cement with WSA and RHA and three combinations of ternary blend with (10+5)%, (5+10)% and (7.5+7.5)% mix ratios of WSA and RHA, together with a control specimen were subjected to destructive (compressive and flexural strength) as well as non-destructive (ultrasonic pulse velocity) tests till 180 days of curing. Ternary blend with (7.5 + 7.5)% combination of WSA and RHA showed better strength results than control and other blends and proved to be the optimum combination for achieving maximum synergic effect.

  15. High temperature co-treatment of bottom ash and stabilized fly ashes from waste incineration

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Mogensen, E.P.B.; Lundtorp, Kasper


    Bottom ashes from two Danish municipal solid waste incineration plants were heated at 900 degreesC with iron oxide stabilized air pollution control residues at actual mass flow ratios (9:1), simulating a treating method for the residues. The two residues were cotreated, producing one combined...

  16. Spectral analysis of white ash response to emerald ash borer infestations (United States)

    Calandra, Laura

    The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive insect that has killed over 50 million ash trees in the US. The goal of this research was to establish a method to identify ash trees infested with EAB using remote sensing techniques at the leaf-level and tree crown level. First, a field-based study at the leaf-level used the range of spectral bands from the WorldView-2 sensor to determine if there was a significant difference between EAB-infested white ash (Fraxinus americana) and healthy leaves. Binary logistic regression models were developed using individual and combinations of wavelengths; the most successful model included 545 and 950 nm bands. The second half of this research employed imagery to identify healthy and EAB-infested trees, comparing pixel- and object-based methods by applying an unsupervised classification approach and a tree crown delineation algorithm, respectively. The pixel-based models attained the highest overall accuracies.

  17. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations (United States)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.


    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  18. Extraction of vanadium from athabasca tar sands fly ash (United States)

    Gomez-Bueno, C. O.; Spink, D. R.; Rempel, G. L.


    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it is shown in the present work that such processes are not suitable for recovery of vanadium from the GCOS fly ash. The fact that the GCOS fly ash behaves so differently when compared to other petroleum fly ash is attributed to its high silicon and aluminum contents which tie up the metal values in a silica-alumina matrix. Results of experiments carried out in this investigation indicate that such matrices can be broken down by application of a sodium chloride/water roast of the carbon-free fly ash. Based on results from a series of preliminary studies, a detailed investigation was undertaken in order to define optimum conditions for a vanadium extraction process. The process developed involves a high temperature (875 to 950 °C) roasting of the fly ash in the presence of sodium chloride and water vapor carried out in a rotary screw kiln, followed by dilute sodium hydroxide atmosphereic leaching (98 °C) to solublize about 85 pet of the vanadium originally present in the fly ash. It was found that the salt roasting operation, besides enhancing vanadium recovery, also inhibits silicon dissolution during the subsequent leaching step. The salt roasting treatment is found to improve vanadium recovery significantly when the fly ash is fully oxidized. This is easily achieved by burning off the carbon present in the “as received” fly ash under excess air. The basic leaching used in the new process selectively dissolves vanadium from the roasted ash, leaving nickel and titanium untouched.

  19. Utilisation of fly ash for the management of heavy metal containing primary chemical sludge generated in a leather manufacturing industry

    Energy Technology Data Exchange (ETDEWEB)

    Sekaran, G.; Rao, B.P.; Ghanamani, A.; Rajamani, S. [Central Leather Research Institute, Chennai (India). Dept. of Environmental Technology


    The present study aims at disposal of primary chemical sludge generated in the tanning industry by solidification and stabilization process using flyash generated from thermal power plant along with binders and also on evaluating the leachability of heavy metal from the solidified product. The primary chemical sludge containing heavy metals iron and chromium were obtained from a garment leather manufacturing company at Chennai in India. The sludge was dried in open environment and it was powdered to fine size in a grinder. Binding increases stabilization of heavy metal in calcined sludge with refractory binders such as clay, fly ash, lime and ordinary Portland cement. Fly ash can be considered as the additional binder for producing stronger bricks, with high metal fixation efficiency, and minimum rate of removal of heavy metal and minimum diffusion co-efficient. 15 refs., 5 figs., 5 tabs.

  20. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    Directory of Open Access Journals (Sweden)

    Alaa M. Rashad


    Full Text Available Disposal of fly ash (FA resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a partial replacement of cement in traditional paste/mortar/concrete mixtures based on Portland cement (PC. Fresh properties, mechanical properties, abrasion resistance, thermal properties, drying shrinkage, porosity, water absorption, sorptivity, chemical resistance, carbonation resistance and electrical resistivity of paste/mortar/concrete mixtures containing HVFA (⩾45% as cement replacement have been reviewed. Furthermore, additives used to improve some properties of HVFA system have been reviewed.

  1. Retrieval of ash properties from IASI measurements (United States)

    Ventress, Lucy J.; McGarragh, Gregory; Carboni, Elisa; Smith, Andrew J.; Grainger, Roy G.


    A new optimal estimation algorithm for the retrieval of volcanic ash properties has been developed for use with the Infrared Atmospheric Sounding Interferometer (IASI). The retrieval method uses the wave number range 680-1200 cm-1, which contains window channels, the CO2 ν2 band (used for the height retrieval), and the O3 ν3 band.Assuming a single infinitely (geometrically) thin ash plume and combining this with the output from the radiative transfer model RTTOV, the retrieval algorithm produces the most probable values for the ash optical depth (AOD), particle effective radius, plume top height, and effective radiating temperature. A comprehensive uncertainty budget is obtained for each pixel. Improvements to the algorithm through the use of different measurement error covariance matrices are explored, comparing the results from a sensitivity study of the retrieval process using covariance matrices trained on either clear-sky or cloudy scenes. The result showed that, due to the smaller variance contained within it, the clear-sky covariance matrix is preferable. However, if the retrieval fails to pass the quality control tests, the cloudy covariance matrix is implemented.The retrieval algorithm is applied to scenes from the Eyjafjallajökull eruption in 2010, and the retrieved parameters are compared to ancillary data sources. The ash optical depth gives a root mean square error (RMSE) difference of 0.46 when compared to retrievals from the MODerate-resolution Imaging Spectroradiometer (MODIS) instrument for all pixels and an improved RMSE of 0.2 for low optical depths (AOD < 0.1). Measurements from the Facility for Airborne Atmospheric Measurements (FAAM) and Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) flight campaigns are used to verify the retrieved particle effective radius, with the retrieved distribution of sizes for the scene showing excellent consistency. Further, the plume top altitudes are compared to derived cloud-top altitudes from the Cloud

  2. Study on drying rate in contact drying with flexible screen

    Institute of Scientific and Technical Information of China (English)

    王伟宏; 陆仁书; 张显权


    The moisture contents (MC) of popular veneers were tested in Composition Board Laboratory of Northeast Forestry University by contact drying with flexible screen. The influence factors considered included temperature, initial moisture contents (IMC), and veneer thickness. Veneer-drying laws under different hot press conditions were analyzed. The results showed that the drying rate increased with temperature rising. 160℃ was considered to be more efficient than 140℃ and 180℃ because excessive high temperature has no significant contribution to drying rate. IMC had significant effect on drying rate. The veneer with high IMC had a higher drying rate at above fiber saturation point (FSP) and a lower drying rate at below FSP, compared to the veneer with low IMC. Average drying rate also varied with thickness in power law.

  3. An unusually dry story

    Directory of Open Access Journals (Sweden)

    Srinivas Rajagopala


    Full Text Available We present a middle-aged woman with a prior history of central nervous system (CNS demyelinating disorder who presented with an acute onset quadriparesis and respiratory failure. The evaluation revealed distal renal tubular acidosis with hypokalemia and medullary nephrocalcinosis. Weakness persisted despite potassium correction, and ongoing evaluation confirmed recurrent CNS and long-segment spinal cord demyelination with anti-aquaporin-4 antibodies. There was no history of dry eyes or dry mouth. Anti-Sjogren′s syndrome A antigen antibodies were elevated, and there was reduced salivary flow on scintigraphy. Coexistent antiphospholipid antibody syndrome with inferior vena cava thrombosis was also found on evaluation. The index patient highlights several rare manifestations of primary Sjogren′s syndrome (pSS as the presenting features and highlights the differential diagnosis of the clinical syndromes in which pSS should be considered in the Intensive Care Unit.

  4. Dry alcohol production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.


    Full Text Available The IGPC Engineering Department designed basic projects for dry alcohol production plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects a production plant with a capacity of 40 m3/y was manufactured, at "Zorka Pharma", Šabac in 1995-1996. The product meets all quality demands, as well as environmental regulations. The dry alcohol production process is fully automatized. There is no waste in the process, neither gaseous, nor liquid. The chosen process provides safe operation according to temperature regime and resistance in the pipes, air purification columns and filters. Working at increased pressure is suitable for evaporation and condensation at increased temperatures. The production process can be controlled manually, which is necessary during start-up, and repairs.

  5. Dry Eye Syndrome

    Directory of Open Access Journals (Sweden)

    Mohammad-Ali Javadi


    Full Text Available Our understanding of keratoconjunctivitis sicca (KCS, also known as dry eye syndrome, has been changed over recent years. Until lately, the condition was thought to be merely due to aqueous tear insufficiency. Today, it is understood that KCS is a multifactorial disorder due to inflammation of the ocular surface and lacrimal gland, neurotrophic deficiency and meibomian gland dysfunction. This change in paradigm has led to the development of new and more effective medications.

  6. Drying of complex suspensions


    Xu, Lei; Bergés, Alexis; Lu, Peter J.; Studart, André R.; Schofield, Andrew B.; Oki, Hidekazu; Davies, Simon; Weitz, David A.


    We investigate the 3D structure and drying dynamics of complex mixtures of emulsion droplets and colloidal particles, using confocal microscopy. Air invades and rapidly collapses large emulsion droplets, forcing their contents into the surrounding porous particle pack at a rate proportional to the square of the droplet radius. By contrast, small droplets do not collapse, but remain intact and are merely deformed. A simple model coupling the Laplace pressure to Darcy's law correctly estimates ...

  7. Estimation of ash injection in the atmosphere by basaltic volcanic plumes: The case of the Eyjafjallajökull 2010 eruption (United States)

    Kaminski, E.; Tait, S.; Ferrucci, F.; Martet, M.; Hirn, B.; Husson, P.


    During explosive eruptions, volcanic plumes inject ash into the atmosphere and may severely affect air traffic, as illustrated by the 2010 Eyjafjallajökull eruption. Quantitative estimates of ash injection can be deduced from the height reached by the volcanic plume on the basis of scaling laws inferred from models of powerful Plinian plumes. In less explosive basaltic eruptions, there is a partitioning of the magma influx between the atmospheric plume and an effusive lava flow on the ground. We link the height reached by the volcanic plume with the rate of ash injection in the atmosphere via a refined plume model that (1) includes a recently developed variable entrainment law and (2) accounts for mass partitioning between ground flow and plume. We compute the time evolution of the rate of injection of ash into the atmosphere for the Eyjafjallajökull eruption on the basis of satellite thermal images and plume heights and use the dispersion model of the Volcanic Ash Advisory Center of Toulouse to translate these numbers into hazard maps. The classical Plinian model would have overestimated ash injection by about 20% relative to the refined estimate, which does not jeopardize risk assessment. This small error was linked to effective fragmentation by intense interactions of magma with water derived from melting of ice and hence strong mass partitioning into the plume. For a less well fragmented basaltic dry eruption, the error may reach 1 order of magnitude and hence undermine the prediction of ash dispersion, which demonstrates the need to monitor both plume heights and ground flows during an explosive eruption.

  8. 利用油页岩灰制备蒸压砖的试验研究%Study on preparation of autoclaved brick with oil shale ash

    Institute of Scientific and Technical Information of China (English)

    高子栋; 潘红


    The autoclaved brick is prepared with the oil shale ash, the fly ash, the calcium carbide residue, the gyp⁃sum and the stone chips. The effect on properties of autoclaved brick is studied by changing the ratio of oil shale ash and fly ash. When the ratio of oil shale ash increases, the compressive strength and the flexural strength of au⁃toclaved brick increase first, and then decrease, and the drying shrinkage value keep increasing. When the ratio of oil shale ash is 30%, the strength grade of autoclaved brick could achieves MU15. When the ratio of oil shale ash is 50%, the strength grade of autoclaved brick could also achieve MU10.%采用油页岩灰、粉煤灰、电石渣、石膏、石屑等作为原材料,制备了一种蒸压砖,研究了油页岩灰替代粉煤灰的比例对产品性能的影响。试验结果表明,随油页岩灰比例不断增大,蒸压砖的抗压强度、抗折强度均呈先提高后降低的变化趋势,干燥收缩值不断提高。当油页岩灰替代粉煤灰的比例为30%时,蒸压砖强度等级可达到标准JC239—2001《粉煤灰砖》中的MU15;当油页岩灰替代粉煤灰的比例为50%时,蒸压砖强度等级仍可达到MU10。

  9. Cleaning of South African coal using a compound dry cleaning apparatus

    Institute of Scientific and Technical Information of China (English)

    Li Haibin; Luo Zhenfu; Zhao Yuemin; Wu Wanchang; Zhang Cuiyu; Dai Ningning


    The compound dry cleaning principle is briefly described. A beneficiation test on South African coal was conducted using a model compound dry cleaning apparatus. Excellent results were obtained and the optimum operating parameters were determined. They are: an amplitude of 3.0 ram, a motor frequency of 47.5 Hz, an air volume of 50%, a transverse angle of 7°, and a longitudinal angle of -2°. These conditions yield a clean coal containing 11% ash and a coal production of 75%. The organic efficiency, η, is 95.86%. These results show that the South African coal can be separated effectively by compound dry cleaning, which will popularize the compound dry cleaning method.

  10. Why and how to make a REACH registration of combustion ash; Moejligheter vid REACH-registrering av energiaskor

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Linnea; Wik, Ola


    substances from construction products were initiated in 2006 on the EU level. The proposed method s are similar to leaching methods used today in characterization of waste properties for landfill. The report describes pros and cons with REACH registration of ashes. It is believed that uses of ashes will more easily be available if the ashes are registered according to REACH. The reason is that a REACH registration generates extensive information about properties and emissions during uses and that safety instructions will be available to guarantee that emissions will not be higher than what man and nature can sustain. The fee for a joint submission of a REACH registration is 23,250 Euro per legal entity if the company put more than 1,000 tonnes of the dry substance on the market per year.

  11. Basic discussion on disturbed fly ash sampling on site%粉煤灰扰动样现场取样问题初步探讨

    Institute of Scientific and Technical Information of China (English)



    本文结合福州电厂粉煤灰室内试验结果分析,探讨粉煤灰扰动样现场取样及试验控制干密度等问题。该电厂粉煤灰的沉积规律与其它电厂有所不同,灰料颗粒粗细分布和距排灰口远近基本无关,取样也不能按以往经验进行。%In this paper, the problems related to the sampling in site and the determination of dry density in experiment about fly ash is discussed,combined with the analysis of the indoor experiment result about fly ash in Fuzhou power plant. The pattern of sedimentation of fly ash in this power plant is different from other plants. The distribution of particle size of fly ash has no relationship to the distance from the export of fly ash. Sampling in this plant can't be according to experience in the past.

  12. Relationship between selenium body burdens and tissue concentrations in fish exposed to coal ash at the Tennessee Valley Authority Kingston spill site

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, Teresa J [ORNL; Fortner, Allison M [ORNL; Jett, Robert T [ORNL; Peterson, Mark J [ORNL; Carriker, Neil [Tennessee Valley Authority (TVA); Morris, Jesse G [ORNL; Gable, Jennifer [Environmental Standards, Inc.


    In December 2008, 4.1 million m3 of coal ash were released into the Emory and Clinch Rivers by the Tennessee Valley Authority (TVA) Kingston Fossil Plant. Coal ash contains several contaminants, including the bioaccumulative metalloid selenium (Se). Because Se is predominantly accumulated in aquatic organisms through dietary, rather than aqueous exposure, tissue-based toxicity thresholds for Se are currently being considered. The proposed threshold concentrations range between 4-9 g/g Se (dry wt.) in whole body fish, with a proposed fillet threshold of 11.8 g/g. In the present study we examined the spatial and temporal trends in Se bioaccumulation and examined the relationship between the Se content in fillets and in whole bodies of fish collected around the Kingston spill site to determine whether Se bioaccumulation was a significant concern at the ash spill site. While Se concentrations in fish (whole bodies and fillets) were elevated at sampling locations affected by the Kingston ash spill relative to reference locations, concentrations do not appear to be above risk thresholds and have not been increasing over the five year period since the spill. Our results are not only relevant to guiding the human health and ecological risk assessments at the Kingston ash spill site, but because of current national discussions on appropriate guidelines for Se in fish as well for the disposal of coal combustion wastes, our results are also relevant to the general understanding of Se bioaccumulation in contaminated water bodies.

  13. Vegetation type and the presence of ash as factors in the evolution of soil water repellency after a forest fire

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Pinilla


    Full Text Available After wildfires, burning may induce the occurrence of soil water repellency. Soil water repellency may vary in space and time in function of vegetation, the presence of ash and soil moisture. This study analyzes the evolution of fire-induced soil water repellency in function of these factors, and proposes measures to promote the restoration of fire-affected soils. Burnt and unburnt (control soil plots under pine and shrub from a recently burned area (Gorga, Alicante, SE Spain were established. Three treatments were applied: in some of the plots, the original ash layer was kept on the ground; in a second group, the ash layer was removed for simulating the effects of erosion; finally, in a third group, percolating irrigation was conducted to simulate a possible good input of water into the soil profile after burning, that could occur if the first rains were with high quantity but low intensity. During the dry season, soil moisture content was significantly lower in burned plots due to fire-induced water repellency and reduced vegetation cover. During the wet season, soil moisture decreased in the control unburnt plots due to direct evaporation of water intercepted by vegetation and consumption by roots. Fire increased soil water repellency only in plots under pine. Water repellency decreased during the wet season, disappearing in January and reappearing after declining rainfalls. This baseline recovery of soil water repellency was lower where ash removal was simulated. In unburned plots, seasonal fluctuations were less important. In general, ash removal promotes a rapid reduction of water repellency, since it can induce washing of hydrophobic compounds. Irrigation performed immediately after the fire also contributed to decreased water repellency.

  14. Effect of fly ash application on soil microbial response and heavy metal accumulation in soil and rice plant. (United States)

    Nayak, A K; Raja, R; Rao, K S; Shukla, A K; Mohanty, Sangita; Shahid, Mohammad; Tripathi, R; Panda, B B; Bhattacharyya, P; Kumar, Anjani; Lal, B; Sethi, S K; Puri, C; Nayak, D; Swain, C K


    Fly ash (FA), a byproduct of coal combustion in thermal power plants, has been considered as a problematic solid waste and its safe disposal is a cause of concern. Several studies proposed that FA can be used as a soil additive; however its effect on microbial response, soil enzymatic activities and heavy metal accumulation in soil and grain of rice (cv. Naveen) to fly ash (FA) application was studied in a pot experiment during dry season 2011 in an Inceptisol. Fly ash was applied at a rate of zero per cent (FS), five per cent (FA5), ten per cent (FA10), twenty per cent (FA20), 40 per cent (FA40) and 100 per cent (FA100) on soil volume basis with nitrogen (N), phosphorus (P) and potassium (K) (40:20:20mg N:P:Kkg(-1) soil) with six replications. Heavy metals contents in soil and plant parts were analysed after harvest of crop. On the other hand, microbial population and soil enzymatic activities were analysed at panicle initiation stage (PI, 65 days after transplanting) of rice. There was no significant change in the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), cadmium (Cd) and chromium (Cr) with application of fly ash up to FA10. However, at FA100 there was significant increase of all metals concentration in soil than other treatments. Microorganisms differed in their response to the rate of FA application. Population of both fungi and actinomycetes decreased with the application of fly ash, while aerobic heterotrophic bacterial population did not change significantly up to FA40. On the other hand, total microbial activity measured in terms of Fluorescein diacetate (FDA) assay, and denitrifiers showed an increased trend up to FA40. However, activities of both alkaline and acid phosphatase were decreased with the application of FA. Application of FA at lower levels (ten to twenty per cent on soil volume basis) in soil enhanced micronutrients content, microbial activities and crop yield.

  15. Screening coal combustion fly ashes for application in geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Sarabér, A.J.; Fischer, H.R.; Nugteren, H.W.


    Driven by cost and sustainability, secondary resource materials such as fly ash, blast furnace slag, and bottom ash are increasingly used for alternative types of concrete binders, such as geopolymers. Because secondary resources may be highly variable from the perspective of geopolymers, it is ofte

  16. Estimating the frequency of volcanic ash clouds over northern Europe (United States)

    Watson, E. J.; Swindles, G. T.; Savov, I. P.; Lawson, I. T.; Connor, C. B.; Wilson, J. A.


    Fine ash produced during explosive volcanic eruptions can be dispersed over a vast area, where it poses a threat to aviation, human health and infrastructure. Here, we focus on northern Europe, which lies in the principal transport direction for volcanic ash from Iceland, one of the most active volcanic regions in the world. We interrogate existing and newly produced geological and written records of past ash fallout over northern Europe in the last 1000 years and estimate the mean return (repose) interval of a volcanic ash cloud over the region to be 44 ± 7 years. We compare tephra records from mainland northern Europe, Great Britain, Ireland and the Faroe Islands, with records of proximal Icelandic volcanism and suggest that an Icelandic eruption with a Volcanic Explosivity Index rating (VEI) ≥ 4 and a silicic magma composition presents the greatest risk of producing volcanic ash that can reach northern Europe. None of the ash clouds in the European record which have a known source eruption are linked to a source eruption with VEI < 4. Our results suggest that ash clouds are more common over northern Europe than previously proposed and indicate the continued threat of ash deposition across northern Europe from eruptions of both Icelandic and North American volcanoes.

  17. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J;


    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low...... to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic....

  18. Leaching of nutrient salts from fly ash from biomass combustion

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Vu, Duc Thuong; Stenby, Mette;


    . The first method was a counter current moving bed process in four stages. The ash was kept in filter bags and leached with water that was introduced into the bags at 40-50°C. In the second method, fly ash and water was brought into contact in a partially fluidized bed. The third method was a counter current...

  19. A fly ash and shale fired brick production line

    Institute of Scientific and Technical Information of China (English)



    The article describes the fly ash and shale fired brick production line with annual output of 1250 million bricks, designed by Xi'an Research and Design Institute of Wall and Roof Material, commissioned by QinDian Building Material Subcompany, and set an example for using fly ash and shale in China.

  20. Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption (United States)

    Graciela Ulke, Ana; Torres Brizuela, Marcela M.; Raga, Graciela B.; Baumgardner, Darrel


    The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex in Chile impacted air traffic around the Southern Hemisphere for several months after the initial ash emissions. The ash deposited in vast areas of the Patagonian Steppe was subjected to the strong wind conditions prevalent during the austral winter and spring experiencing resuspension over various regions of Argentina. In this study we analyze the meteorological conditions that led to the episode of volcanic ash resuspension which impacted the city of Buenos Aires and resulted in the closure of the two main airports in Buenos Aires area (Ezeiza and Aeroparque) on 16 October 2011. A relevant result is that resuspended material (volcanic ash plus dust) imprints a distinguishable feature within the atmospheric thermodynamic vertical profiles. The thermodynamic soundings show the signature of "pulses of drying" in layers associated with the presence of hygroscopic ash in the atmosphere that has already been reported in similar episodes after volcanic eruptions in other parts of the world. This particular footprint can be used to detect the probable existence of volcanic ash layers. This study also illustrates the utility of ceilometers to detect not only cloud base at airports but also volcanic ash plumes at the boundary layer and up to 7 km altitude. Aerosol properties measured in the city during the resuspension episode indicate the presence of enhanced concentrations of aerosol particles in the boundary layer along with spectral signatures in the measurements at the Buenos Aires AERONET site typical of ash plus dust advected towards the city. The mandatory aviation reports from the National Weather Service about airborne and deposited volcanic ash at the airport near the measurement site (Aeroparque) correlate in time with the enhanced concentrations. The presence of the resuspended material was detected by the CALIOP lidar overpassing the region. Since the dynamics of ash resuspension and

  1. The potential of two Salix genotypes for radionuclide/heavy metal accumulation. A case study of Rovinari ash pit (Gorj District, Romania) (United States)

    Hernea, Cornelia; Neţoiu, Constantin; Corneanu, Gabriel; Crăciun, Constantin; Corneanu, Mihaela; Cojocaru, Luminiţa; Rovena Lăcătuşu, Anca; Popescu, Ion


    Thermo Electric Power Plants (TEPP) produce a high amount of ash, that contains heavy metals and radionuclides. Ash is usually stored in ash-pits, in mixture with water and contains U235, Th 234 and their decay products, that are released from the coal matrix, during combustion, as well as heavy metals. Warm weather dried the ash and it can be spread by the wind in surrounded area. This paper presents the results of an experiment with two Salix genotypes, cultivated on an old closed ash-pit, nearby the Rovinari TEPP, in the middle Jiu valley (Gorj District, Romania), in order to evaluate its tolerance to heavy metals and radionuclides. Ash analysis revealed the presence of natural radionuclides, beloging from ash and coal dust, as well as of Cs 137, of Chernobil provenance. Radionuclides content over the normal limits for Romania were registered for Th 234, Pb210, U235 and Ra226. The heavy metals level in ash was over the normal limits, but under the alerts limits. In order to establish the woody plants tolerance to heavy metals and radionuclides, it is important to study the seedlings behavior. In this respect Salix alba and Salix viminalis whips and cuttings culture have been establish on Rovinari ash-pit. The observations made on survival and growth rate pointed out the superiority of Salix viminalis behaviour. After a period of three years Salix viminalis registered a 96% survival rate, while in Salix alba annual decreases, reaching to 14%. These results are supported by the radionuclides content in leaves and by the electron microscopy studies. In Salix alba the leaves parenchimatic cells present a low sinthesis activity. The exogenous particles are accumulated in parenchima cells vacuola, the chloroplasts are usually agranal, with few starch grains and mitocondria presents slightly dillated crista. The ultrastructural features of the mature leaf cells, evidenced the natural adaptation of Salix viminalins for development in an environment with a big amount of

  2. Distinguishing styles of explosive eruptions at Erebus, Redoubt and Taupo volcanoes using multivariate analysis of ash morphometrics (United States)

    Avery, Meredith R.; Panter, Kurt S.; Gorsevski, Pece V.


    The style and dynamics of volcanic eruptions control the level and type of hazards posed for local populations and can have a temporary long-range impact on climate if eruptions are extremely energetic. The purpose of this study is to provide a statistical approach to ash morphometrics in order to provide a means by which to evaluate diverse eruption styles and mechanisms of fragmentation. The methodology presented can be applied to tephra deposits worldwide and may aid volcanic hazard mitigation by better defining a volcano's history of explosive behavior. Ash-sized grains were collected from tephra deposits on Mount Erebus, Antarctica (imaged by scanning electron microscopy. Morphometric properties were determined using image processing software and then evaluated by several statistical methods. Discriminant analysis of all parameters was found to be the best at differentiating the tephra deposits and allowing for interpretation of eruptive styles in conjunction with field observations. A linear array of data forming a positive slope in factor space, which explains > 99% of the total data variance, is interpreted to represent a continuum between fragmentations involving water-magma interaction ("wet") to grains that were formed predominately by magmatic ("dry") fragmentation mechanisms. The Taupo Hatepe ash, which was deposited from a phreatoplinian eruption column, has the highest factor values in the array, which signifies, in part, more rectangular/blocky morphologies with smooth grain edges. Factor values for the 2009 Redoubt eruption (events 2-4) are nearly as high as Hatepe ash and based on this we suggest that it was produced, in part, by phreatomagmatic fragmentation. This is supported by field observations that document melting and eruption through glacial ice during the early phases of the 2009 activity. Redoubt ash grains from later stages of the same eruption (events 9-18) show a significant shift to lower values in factor space (more irregular

  3. NID dry desulfurization system -- An update

    Energy Technology Data Exchange (ETDEWEB)

    Ahman, S.; Bengtsson, S.


    The development of ABB's low cost flue gas desulfurization (FGD) system has been reported in various papers during 1997. The system combines low cost and simple operation with very good performance and is targeted especially for the emerging markets in Asia and East Europe. This method is capable of achieving 90+% SO{sub 2} removal, irrespective of sulphur content in the fuel. The system is further easy to retrofit at existing sites; it has a minimum space requirement. An important feature of the dry FGD technology, sometimes not highlighted enough, is the fact that particulate collection of fly ash is facilitated by the FGD system at no extra capital charge. The flue gas temperature after a DFGD system also often allows the flue gas to be passed on to an existing stack without reheat. ``NID'' is an acronym for ``Novel Integrated Desulfurization'', indicative of the innovative nature of this FGD technology enabled by the integration of several subfunctionalities into one unit. The first two commercial plants were installed by the Polish power company Elektrownia Laziska. These full scale units were commissioned during 1996. A third unit at a diesel power station in Finland is at the time of writing in the commissioning stage.

  4. Nitramine Drying & Fine Grinding Facility (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  5. Cadmium in insects after ash fertilization

    Institute of Scientific and Technical Information of China (English)

    Martin Lodenius; Jussi Josefsson; Kari Heli(o)vaara; Esa Tulisalo; Matti Nummelin


    Ash fertilization of forests returns nutrients to forest ecosystems and has a positive effect on soil pH.but it also may elevate Cd concentrations of forest biota.Cadmium concentrations of some forest insects(Formica ants.carabids and Coleopteran larvac from decaying wood)were investigated in southern Finland where two plots were fertilized with wood ash,while two other plots represented anfertilized control plots.In ants,mean Cd concentration was 3.6±1.4 mg/kg.with nest workers having significantly higher concen-trations than workers trapped in pitfall traps.Concentrations at fertilized and unfertilized plots were similar.In carabid beetles,the average Cd concentration of Carabus glabratus was 0.44±0.36 mg/kg.with no significant difference between control plots and fertilized plots.In another carabid beetle,Pterostichus niger,mean Cd concentration was higher at fertilized plots compared to control plots.We conclude that the variation of Cd concentra-tions in the insects studied is more efficiently controlled by species-specific differences than fertilization history of the forest floor.

  6. Mesoporous Silica from Rice Husk Ash

    Directory of Open Access Journals (Sweden)

    V.R. Shelke


    Full Text Available Mesoporous silica is used as a raw material in several areas: in preparation of catalysts, in inks, as a concrete hardening accelerator, as a component of detergents and soaps, as a refractory constituent etc. Sodium silicate is produced by reacting rice hull ash (RHA with aqueous NaOH and silica is precipitated from the sodium silicate by acidification. In the present work, conversion of about 90% of silica contained in RHA into sodium silicate was achieved in an open system at temperatures of about 100 °C. The results showed that silica obtained from RHA is mesoporous, has a large surface area and small particle size. Rice Husk is usually mixed with coal and this mixture is used for firing boilers. The RHA therefore, usually contains carbon particles. Activated carbon embedded on silica has been prepared using the carbon already present in RHA. This carbon shows good adsorption capacity. ©2010 BCREC UNDIP. All rights reserved(Received: 25th April 2010, Revised: 17th June 2010, Accepted: 24th June 2010[How to Cite: V.R. Shelke, S.S. Bhagade, S.A. Mandavgane. (2010. Mesoporous Silica from Rice Husk Ash. Bulletin of Chemical Reaction Engineering and Catalysis, 5 (2: 63-67. doi:10.9767/bcrec.5.2.793.63-67][DOI:

  7. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.


    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  8. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.


    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  9. Phosphorus Recovery from Ashes of Sewage Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Cornel, Peter; Schaum, Peter


    About 90% of the incoming phosphorus load of waste water is eliminated by waste water treatment and transferred into the sewage sludge. Considerable amounts of sewage sludge can not be used agriculturally but are incinerated. Thus the ash from mono sludge incineration plants contains significant amounts of phosphorus (up to 25% P{sub 2}O{sub 5}) and could be used as raw material in fertilizer industry. The ash is hygienically harmless and free of organic substances. The ratio of phosphorus to heavy metals is basically the same as in the sewage sludge. The first step in separating phosphorus from heavy metals is to dissolve phosphorus by extraction. The most promising way seems to be the release of phosphorus with acids or bases. With 1 m sulphuric acid it is possible to release phosphorus completely. By use of acid most of the heavy metals dissolve, too. With caustic soda as solvent, only 30-40% of the phosphorus can be dissolved but the eluate is almost free of heavy metals. The amount of phosphorus which can be released with caustic soda, depends on the applied precipitant (Al or Fe salts) for phosphorus elimination at the waste water treatment. (author)

  10. ASH position paper: hypertension in pregnancy. (United States)

    Lindheimer, Marshall D; Taler, Sandra J; Cunningham, F Gary


    The American Society of Hypertension is publishing a series of Position Papers in their official journals throughout the 2008-2009 years. The following Position Paper originally appeared: JASH. 2008;2(6):484-494. Hypertension complicates 5% to 7% of all pregnancies. A subset of preeclampsia, characterized by new-onset hypertension, proteinuria, and multisystem involvement, is responsible for substantial maternal and fetal morbidity and is a marker for future cardiac and metabolic disease. This American Society of Hypertension, Inc (ASH) position paper summarizes the clinical spectrum of hypertension in pregnancy, focusing on preeclampsia. Recent research breakthroughs relating to etiology are briefly reviewed. Topics include classification of the different forms of hypertension during pregnancy, status of the tests available to predict preeclampsia, and strategies to prevent preeclampsia and to manage this serious disease. The use of antihypertensive drugs in pregnancy, and the prevention and treatment of the convulsive phase of preeclampsia, eclampsia, with intravenous magnesium sulfate is also highlighted. Of special note, this guideline article, specifically requested, reviewed, and accepted by ASH, includes solicited review advice from the American College of Obstetricians and Gynecologists.

  11. Fire severity effects on ash extractable Total Phosphorous (United States)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah


    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher

  12. Electrical charging of ash in Icelandic volcanic plumes

    CERN Document Server

    Aplin, Karen L; Nicoll, Keri A


    The existence of volcanic lightning and alteration of the atmospheric potential gradient in the vicinity of near-vent volcanic plumes provides strong evidence for the charging of volcanic ash. More subtle electrical effects are also visible in balloon soundings of distal volcanic plumes. Near the vent, some proposed charging mechanisms are fractoemission, triboelectrification, and the so-called "dirty thunderstorm" mechanism, which is where ash and convective clouds interact electrically to enhance charging. Distant from the vent, a self-charging mechanism, probably triboelectrification, has been suggested to explain the sustained low levels of charge observed on a distal plume. Recent research by Houghton et al. (2013) linked the self-charging of volcanic ash to the properties of the particle size distribution, observing that a highly polydisperse ash distribution would charge more effectively than a monodisperse one. Natural radioactivity in some volcanic ash could also contribute to self-charging of volcan...


    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen


    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  14. Activated blended cement containing high volume coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Shi, C.J.; Qian, J.S. [CJS Technology Inc., Burlington, ON (Canada)


    This study investigated the strength and equilibrium water extraction of blended cement containing high volume coal fly ash and activator CaCl{sub 2}. The addition of CaCl{sub 2} increased the strength of cement very significantly. Equilibrium water extraction indicated that the addition of CaCl{sub 2} decreased the pH of the pore solution, but accelerated the pozzolanic reactions between coal fly ash and lime, which became more obvious when the volume of fly ash in the cement was increased from 50-70%. Results from both strength and water extraction testing could conclude that CaCl{sub 2} is a good activator for the activation of pozzolanic reactivity of fly ash and for the improvement of early properties of fly ash cement and concrete.

  15. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole


    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  16. Use of Recycled Aggregate and Fly Ash in Concrete Pavement

    Directory of Open Access Journals (Sweden)

    Myle N. James


    Full Text Available Problem statement: Recycled materials aggregate from the demolished concrete structures and fly ash from burning coal shows the possible application as structural and non structural components in concrete structures. This research aims to evaluate the feasibility of using concrete containing recycled concrete aggregate and fly ash in concrete pavement. Approach: Two water cement ratio (0.45 and 0.55 the compressive strength, modulus of electricity and flexural strength for concrete with recycled aggregate and fly ash with 0, 25% replacing cement in mass were considered. Results: The material properties of recycled aggregate concrete with fly ash indicate comparable results with that of concrete with natural aggregate and without fly ash. Conclusion/Recommendations: The recycled materials could be used in concrete pavement and it will promote the sustainability of concrete.

  17. Low temperature magnetic characterisation of fire ash residues (United States)

    Peters, C.; Thompson, R.; Harrison, A.; Church, M. J.

    Fire ash is ideally suited to mineral magnetic studies. Both modern (generated by controlled burning experiments) and archaeological ash deposits have been studied, with the aim of identifying and quantifying fuel types used in prehistory. Low temperature magnetic measurements were carried out on the ash samples using an MPMS 2 SQUID magnetometer. The low temperature thermo-remanence cooling curves of the modern ash display differences between fuel sources. Wood and well-humified peat ash display an increase in remanence with cooling probably related to a high superparamagnetic component, consistent with room temperature frequency dependent susceptibilities of over 7%. In comparison fibrous-upper peat and peat turf display an unusual decrease in remanence, possibly due to an isotropic point of grains larger than superparamagnetic in size. The differences have been successfully utilised in unmixing calculations to quantify fuel components within four archaeological deposits from the Northern and Western Isles of Scotland.

  18. Synthesis and characterization of zeolites prepared from industrial fly ash


    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata


    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm3 of 3 mol · dm−3 NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm3 of 3 mol · dm−3 NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm3 of 5 mol · dm−3 NaOH + 0.4...

  19. Analysis list: ash-2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ash-2 Adult,Embryo + ce10,, ...


    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen


    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  1. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard


    reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NOx formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due...... on a carbon black. The reactor was modeled with CFD and a relationship between oxygen concentration in the early stage of combustion and the AEA adsorption properties of the ash was observed. The NOx formation increased by up to three times with more oxidizing conditions and thus, there was a trade....... The AEA requirements of a fly ash can be suppressed by exposing it to oxidizing species, which oxidizes the carbon surface and thus prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post...

  2. Analysis of Content of Selected Critical Elements in Fly Ash

    Directory of Open Access Journals (Sweden)

    Makowska Dorota


    Full Text Available Pursuant to the new mineral policy of the European Union, searching for new sources of raw materials is required. Coal fly ash has long been considered as a potential source of a number of critical elements. Therefore, it is important to monitor the contents of the critical elements in fly ash from coal combustion. The paper presents the results of examinations of the contents of selected elements, i.e. beryllium, cobalt, chromium and germanium in fly ash from Polish power plants. The results of the conducted investigations indicate that the examined ash samples from bituminous coal combustion cannot be treated as a potential source of the analysed critical elements. The content of these elements in ash, though slightly higher than their average content in the sedimentary rocks, is, however, not high enough to make their recovery technologically and economically justified at this moment.

  3. The use of Numerical Weather Prediction and a Lagrangian transport (NAME-III) and dispersion (ASHFALL) models to explain patterns of observed ash deposition and dispersion following the August 2012 Te Maari, New Zealand eruption (United States)

    Turner, Richard; Moore, Stuart; Pardo, Natalia; Kereszturi, Gabor; Uddstrom, Michael; Hurst, Tony; Cronin, Shane


    The August 6, 2012 Te Maari, New Zealand eruption produced a very small ash-dominated plume (~ 230,000 m3, 8-10 km high) that was rapidly and widely dispersed, covering 1600 km2 within an hour. This paper documents for the August 6, 2012 Te Maari eruption the upper level (troposphere) plume movement based on ash-detection algorithms applied to IR satellite imagery. It also presents the distribution of airborne ash and wind-influenced ashfall as determined by NAME-III aerial dispersion modelling using observed particle characteristics and grain size distribution measurements (that are also presented) and compares the ashfall with observations. The upper level (troposphere) ash movement was also evaluated from ash-detection algorithms, applied to infra-red satellite imagery and the resulting distributions were compared to those forecast by the numerical dispersion models. Forecasts of upper level ash-dispersion patterns explained the satellite imagery observations well, predicting the correct altitudes when using plausible ash size distributions and release levels. Patterns in proximal ashfall could only be partly explained by aerial dispersal of large particles released at low altitudes in the eruption column. The extreme distal (100-150 km away) observed ashfall distributions also cannot be fully explained by NAME-III when using: reasonably prescribed initial particle size distributions, eruption column height, eruption timing, well forecast winds, and dry sedimentation processes. Aggregation and ice nucleation effects (observed in deposits) were not included in the ash dispersion model, but appear as a plausible mechanism to account for the observed fraction of wind dispersed ash particles < 30 μm deposited but not captured by the models.

  4. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, H.


    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also pr

  5. Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles (United States)

    Delmelle, Pierre; Lambert, Mathieu; Dufrêne, Yves; Gerin, Patrick; Óskarsson, Niels


    The reactions occurring between gases/aerosols and silicate ash particles in volcanic eruption plumes remain poorly understood, despite the fact that they are at the origin of a range of volcanic, environmental, atmospheric and health effects. In this study, we apply X-ray photoelectron spectroscopy (XPS), a surface-sensitive technique, to determine the chemical composition of the near-surface region (2-10 nm) of nine ash samples collected from eight volcanoes. In addition, atomic force microscopy (AFM) is used to image the nanometer-scale surface structure of individual ash particles isolated from three samples. We demonstrate that rapid acid dissolution of ash occurs within eruption plumes. This process is favoured by the presence of fluoride and is believed to supply the cations involved in the deposition of sulphate and halide salts onto ash. AFM imaging also has permitted the detection of extremely thin (< 10 nm) coatings on the surface of ash. This material is probably composed of soluble sulphate and halide salts mixed with sparingly soluble fluoride compounds. The surface approach developed here offers promising aspects for better appraising the role of gas/aerosol-ash interaction in dictating the ability of ash to act as sinks for various volcanic and atmospheric chemical species as well as sources for others.

  6. Effects of the emerald ash borer invasion on the community composition of arthropods associated with ash tree boles (United States)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire is an invasive non-native wood-boring beetle that has killed hundreds of millions of ash trees (Fraxinus spp.) in North America, and threatens to extirpate the ecological services provided by the genus. Identifying the arthropod community assoc...

  7. Ash and heavy metals in fluidized bed-combustion; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO International, Vantaa (Finland)


    Combustion ashes and submicron fly ash particles were characterized in two industrial boilers (bubbling vs. circulating fluidized bed) burning paper mill deinking sludge and bark or wood as support fuel. Bulk samples from fly ash, circulating ash and bottom ash were analyzed. Fine particles in fly ash were monitored and sampled for microscopic studies. The mass size distribution of fly ash was measured and the chemical composition according to particle size was analyzed. The results showed that ash consists of large and friable clusters formed by sintering of small mineral particles originating from paper fillers. Very few ash particles were fused and they were found only among the smallest particles. No agglomerates of fused particles were found. If the residence time in furnace is long enough sintering may proceed further and ash structure grows more dense. No indication of ash vaporization was detected. These results were similar for bubbling and circulating fluidized bed boilers. (author)

  8. High-volume use of self-cementing spray dry absorber material for structural applications (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  9. Electrohydrodynamic drying of carrot slices.

    Directory of Open Access Journals (Sweden)

    Changjiang Ding

    Full Text Available Carrots have one of the highest levels of carotene, and they are rich in vitamins, fiber and minerals. However, since fresh carrots wilt rapidly after harvest under inappropriate storage conditions, drying has been used to improve their shelf life and retain nutritional quality. Therefore, to further investigate the potential of this method, carrot slices were dried in an EHD system in order to study the effect of different voltages on drying rate. As measures of quality, carotene content and rehydration ratio were, respectively, compared against the conventional oven drying regime. Carotene, the main component of the dried carrot, and rehydration characteristics of the dried product can both indicate quality by physical and chemical changes during the drying process. Mathematical modeling and simulation of drying curves were also performed, using root mean square error, reduced mean square of the deviation and modeling efficiency as the primary criteria to select the equation that best accounts for the variation in the drying curves of the dried samples. Theoretically, the Page model was best suited for describing the drying rate curve of carrot slices at 10kV to 30kV. Experimentally, the drying rate of carrots was notably greater in the EHD system when compared to control, and quality, as determined by carotene content and rehydration ratio, was also improved when compared to oven drying. Therefore, this work presents a facile and effective strategy for experimentally and theoretically determining the drying properties of carrots, and, as a result, it provides deeper insight into the industrial potential of the EHD drying technique.

  10. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea


    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  11. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W. [Penn State University, University Park, PA (United States). Dept. of Energy & Geoenvironmental Engineering


    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  12. Effect of high temperature curing on the compressive strength of concrete incorporating large volumes of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Rivera-Villarreal, R. [Universidad Autonoma de Nuevo Leon, Monterrey (Mexico)


    The effect of using different types of heat treatment on the compressive strength of concrete with and without large volumes of fly ash was studied. Curing of concrete is important to obtain a good quality concrete, but it is important to keep concrete from drying until the originally water-filled space in fresh cement paste has been filled to the desired extent by the products of hydration. In hot weather, high temperature promotes faster drying of concrete so a given degree of hydration is reached more rapidly than at lower temperatures. The provision of moist curing is advantageous because of a gradual gain in strength and because of reduced plastic shrinkage and drying shrinkage-cracking. The portland cement content in all the mixtures used in this study was 200 kg per cubic metre and the amount of fly ash varied from 0 to 33, 43, 50 and 56 per cent by mass of the total binder. A superplasticizer was used to obtain 200-220 mm slump. The compressive strength was tested at 3, 7, 14, 28, 56 days and at 6 months. Results showed that, using ASTM standard curing, the compressive strength of portland cement concrete made at 35 degrees C was reduced by about 12 per cent at 28 days compared to that of the concrete made at 23 degrees C. The AASHTO curing strength was found to be a bit higher than with the ASTM curing. The concrete made at 35 degrees C showed no loss of strength when continuous moist-curing was applied. The fly ash concrete mixtures that were cast at 35 degrees C were cured by covering them with membrane curing compounds and placed under ambient conditions. It was crucial to allow enough curing water to promote the pozzolanic reaction. The membrane curing did not allow the ingress of water to the concrete mass. 6 refs., 4 tabs., 13 figs.

  13. Effect of particle volume fraction on the settling velocity of volcanic ash particles: implications for ash dispersion models (United States)

    Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.


    We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.

  14. Estimation of ash recirculation effect upon ash collector efficiency by the example of a TsBR-150U-1280 multicyclone collector (United States)

    Elsukov, V. K.; Latushkina, S. V.


    Problems of the mathematical estimation of the amount of recirculating ash and its effect upon the efficiency of gas treating within ash collectors with the scroll and semiscroll gas supply, which are equipped by a gas and ash recirculation system, are considered. Based on the analysis of various publications and operational experience, a conclusion is drawn regarding the complex and substantial effect of the recirculation system upon the ash collector efficiency. The following research tasks are posed: computational determination of ash weight at the ash collector inlet subject to its recirculation, development of measures for enhancement of the ash collector, and estimation of these measures. A computation procedure for consumption of recirculating ash in the ash collector and its sections with the use of formulas of the geometrical progression is represented. Based on the represented procedure as applied to a TsBR-150U-1280 multicyclone collector collecting ash of coal of an Irsha-Borodinsk coalfield, corresponding ash consumptions are determined, including that at which the effective operation of the ash collector is provided. Various variants of the modernization of the mentioned multicyclone collector are developed and estimated. Conclusions are drawn regarding the necessity for further investigations for improvement of the represented procedure, in particular, the effect of the gas speed (boiler load) upon the efficiency of various ash collector units, recirculating ash consumption, and clogging their cyclone units.

  15. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete. (United States)

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi


    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  16. Synthesis and characterization of geopolymer from bottom ash and rice husk ash (United States)

    Anggarini, Ufafa; Sukmana, Ndaru C.


    All Geopolymer (GP) has been synthesized from bottom ash and rice husk ash. This research aims to determine the effect of Si/Al ratio on geopolymer synthesis. Geopolymer was synthesized with various Si/Al ratio of 2, 3 and 4. The characterization result using XRD and SEM indicated that by using a different ratio of Si/A, it will produce geopolymer with varied structure and morphology. Diffractogram result shows that polymerization has been done for all samples (GP2, GP3, Gp4) with the presence of hump peak at 2θ = 27-35°. In GP4, no peak at 2θ = 18° indicating sodalite phase forming. Besides that, the morphology of geopolymer with a varied ratio of Si/Al shows that higher ratio will produce geopolymer with higher particle size. The highest compressive strength of geopolymer was obtained at a ratio of Si/Al = 4, with a maximum load of 12866 kgf.

  17. Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    M. A. Lopez-Gordo


    Full Text Available Electroencephalography (EEG emerged in the second decade of the 20th century as a technique for recording the neurophysiological response. Since then, there has been little variation in the physical principles that sustain the signal acquisition probes, otherwise called electrodes. Currently, new advances in technology have brought new unexpected fields of applications apart from the clinical, for which new aspects such as usability and gel-free operation are first order priorities. Thanks to new advances in materials and integrated electronic systems technologies, a new generation of dry electrodes has been developed to fulfill the need. In this manuscript, we review current approaches to develop dry EEG electrodes for clinical and other applications, including information about measurement methods and evaluation reports. We conclude that, although a broad and non-homogeneous diversity of approaches has been evaluated without a consensus in procedures and methodology, their performances are not far from those obtained with wet electrodes, which are considered the gold standard, thus enabling the former to be a useful tool in a variety of novel applications.

  18. Solar drying and agribusiness

    Directory of Open Access Journals (Sweden)

    Sebastiana del Monserrate Ruiz Cedeño


    Full Text Available Agribusinesses are the livelihoods of rural populations, but when production increase, many products are damaged and lose their commercial value due to lack of conservation treatments at a local level. Agricultural production represents the foundation of economic development of the province of Manabi. A significant level of agricultural products is lost due to lack of conservation technologies. Solar drying is a way of conserving by dehydration of some products such as: vegetables, fruits, aromatic and medicinal plants. This can be achieved by a process of proper conservation that is conducive to reduce losses using technologies easy to build, as are the different types of solar dryers which are already used in different parts of the South American region. This article proposes to introduce solar-drying technology in agricultural areas of the province of Manabi. And thereby achieve the regaining of different products that today are lost, incorporating new and attractive, marketable lines based on agricultural products naturally dehydrated with a high nutritionalvalue, capable of contributing to human health not only in the province but also in the country.

  19. Total uncertainty budget calculation for the determination of mercury in incineration ash (BCR 176R) by atomic fluorescence spectrometry. (United States)

    Tirez, Kristof; Beutels, Filip; Brusten, Wilfried; Noten, Bart; De Brucker, Nicole


    The mercury mass fraction has been determined by atomic fluorescence spectrometry (AFS) in the framework of the project "Certification of a reference material (trace elements in fly ash) in replacement of BCR CRM 176". Calculation of the uncertainty budget, as described in this manuscript, emphasizes a practical and realistic approach to estimation of uncertainty components on the basis of statistical assumptions. GUM Workbench software was used, and resulted in a mercury mass fraction of 1.58+/-0.11 mg kg(-1) (with coverage factor k=2.2, 95% probability) related to dry mass, submitted in the certification exercise. The calculated total uncertainty budget applies to analogous samples analyzed by this procedure.


    Directory of Open Access Journals (Sweden)

    Adebisi Ridwan


    Full Text Available This paper compares the stabilizing effects of three different materials, namely: rice husk ash, powdered glass, and cement on the properties of lateritic soil. The basic properties of the lateritic soil were first obtained through colour, moisture content determination, specific gravity, particle size distribution and Atterberg limits tests. Each of the stabilizing materials was then mixed with the lateritic soil in varying percentages of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight of the soil. Thereafter, compaction and California bearing ratio (CBR tests were carried out on the sample mixes to determine the effects of the materials on the lateritic soil. Chemical tests were also carried out on the samples to determine their percentage oxides composition. The compaction test showed that the highest maximum dry densities (MDD obtained for the mixed samples were 2.32 g/cm3 (at 2.5% cement addition, 2.28g/cm3 (at 5% powdered glass (PG addition and 2.18 g/cm3 (at 5% rice husk ash (RHA addition with corresponding optimum moisture contents (OMC of 10.06%, 14.3% and 12.31% respectively. The CBR tests showed that the CBR values increased in all cases as the materials were added with those of the cement and powdered glass giving the highest values and showing close semblance under unsoaked conditions. The chemical test showed that the significant oxides present in the cement, powdered glass and rice husk ash were CaO (53.60%, SiO2 (68.45% and SiO2 (89.84% respectively.

  1. Properties of Concrete using Tanjung Bin Power Plant Coal Bottom Ash and Fly Ash

    Directory of Open Access Journals (Sweden)

    Abdulhameed Umar Abubakar


    Full Text Available Coal combustion by-products (CCPs have been around since man understood that burning coal generates electricity, and its utilization in concrete production for nearly a century. The concept of sustainable development only reawaken our consciousness to the huge amount of CCPs around us and the need for proper reutilization than the current method of disposal which has  severe consequences both to man and the environment. This paper presents the result of utilization of waste from thermal power plants to improve some engineering properties of concrete. Coal bottom ash (CBA and fly ash were utilized in partial replacement for fine aggregates and cement respectively. The results of compressive strength at 7, 28, 56 & 90 days curing are presented because of the pozzolanic reaction. Other properties investigated include physical properties, fresh concrete properties and density. The results showed that for a grade 35 concrete with a combination of CBA and fly ash can produce 28 day strength above 30 MPa.

  2. Estimation of Volcanic Ash Plume Top Height using AATSR (United States)

    Virtanen, Timo; Kolmonen, Pekka; Sogacheva, Larisa; Sundström, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit


    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's 55° forward and nadir views, and thus the corresponding height. Besides the stereo view, AATSR provides another advantage compared to other satellite based instruments. With AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 µm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. In addition, it is possible to study the effect of using different wavelengths in the height estimate, ranging from visible (555 nm) to thermal infrared (12 µm). The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with existing volcanic ash dispersion models and retrieval methods. We present ACM plume top height estimate results for the Eyjafjallajökull eruption, and comparisons against available ground based and satellite observations.

  3. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology


    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  4. Size distribution of rare earth elements in coal ash (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.


    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  5. Thermal behaviour of ESP ash from municipal solid waste incinerators. (United States)

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L


    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  6. Creep Behaviour of Fly Ash-Based Geopolymer Concrete

    Directory of Open Access Journals (Sweden)

    Wallah S.E.


    Full Text Available Fly ash-based geopolymer concrete is manufactured using fly ash as its source material and does not use Portland cement at all. Beside fly ash, alkaline solution is also utilized to make geopolymer paste which binds the aggregates to form geopolymer concrete. This paper presents the study of creep behaviour of fly ash-based geopolymer concrete. Four series of specimens with various compressive strengths were prepared to study its creep behaviour for the duration of test up to one year. The test method followed the procedures applied for Ordinary Portland Cement (OPC concrete. Test results show that fly ash-based geopolymer concrete undergoes low creep which is generally less than that of OPC concrete. After one year of loading, the results for specific creep of fly ash-based geopolymer concrete in this study ranges from 15 to 29 microstrain for concrete compressive strength 67–40 MPa respectively. From the test results, it is also found out that the creep coefficient of fly ash-based geopolymer concrete is about half of that predicted using Gilbert’s Method for OPC concrete.

  7. Behaviour of peat ash in high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.


    The ash-forming constituents are in peat as minerals and bound in the organic framework. The kind of binding is dependent on peat type, plant species composition, acidity of the peatland, etc. Studies carried out with brown coal have indicated that the forms of ash occurrence in the fuel have an influence on the slagging ehaviour of ash in the process. The behaviour is also dependent on the reactor type and conditions in the reactor, for example, on the composition of gas atmosphere, on temperature, and gas flows. For example, the reducing conditions affect especially the occurrence of iron in different oxidation degrees in gasification, and this affects further the melting behaviour of ash. In brown coal gasification, as much as a third of the iron content was found to be reduced to metallic iron in the fluid-bed gasifier. To forecast the slagging behaviour of ash, the melting temperatures of ash are measured. Fouling or partial melting of ash cannot always be monitored with standard measuring methods, as these phenomena may start already at temperatures 200 deg C lower than the lowest melting temperature. THey can be studied for example with thermochemical methods.

  8. Mutagenicity and genotoxicity of coal fly ash water leachate

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, R.; Mukherjee, A. [University of Calcutta, Calcutta (India). Dept. of Botany


    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  9. Modeling transport and aggregation of volcanic ash particles (United States)

    Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam


    A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.

  10. Carbonatation Influence on Fly Ash and Portland Cement Mortars

    Directory of Open Access Journals (Sweden)

    P.L. Valdez–Tamez


    Full Text Available The influence of carbonation on mortars containing 25% of fly ash instead of the cementitious materials was studied. Mortar cylinder specimens were fabricated for 4 different W/C ratios: 0.35, 0.45, 0.55 and 0.65. Mortars with and without fly ash were subjected to an accelerated carbonation process. Volumetric weight, water absorption, compressive strength, water permeability, pH and mercury intrusion porosimetry of the mortar specimens were determined. Due to the fly ash pozzolanic potential, for all W/C ratios, results of the compressive strength tests at 28 days of the mortars with and without fly ash were similar. Mortars with fly ash presented similar water permeability as mortars without fly ash. PH results showed that alkalinity reduction is lower in mortars with fly ash compared to those containing cement only. In all the mortars, the porosimetric analysis indicated that porosity is reduced due to carbonation. Further more, it is showed the predominance of the macro and mesopores.

  11. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Keka Ojha; Narayan C Pradhan; Amar Nath Samanta


    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  12. Fly ash for durable concrete construction

    Energy Technology Data Exchange (ETDEWEB)

    Dhir, R.K. [University of Dundee, Dundee (United Kingdom). Dept. of Civil Engineering


    This is essentially a review paper, bringing together the various studies undertaken at the University of Dundee as well as many others selected from published work. A full range of durability properties have been considered dealing with the effects of fly ash (FA) in concrete. It is shown that the use of FA generally effects improvement in the resistance of concrete to various forms of attack. FA is shown to greatly improve concrete resistance to chloride ingress and to reduce expansion caused by ASR. In the case of sulphate attack the use of FA is recommended. With regard to carbonation, FA can slightly reduce the resistance. It is also shown that FA concrete will benefit more from curing than OPC concrete in developing its resistance to deterioration with age. 78 refs., 8 figs., 5 tabs.

  13. Scrap tire ashes in portland cement production

    Directory of Open Access Journals (Sweden)

    Mónica Adriana Trezza


    Full Text Available Scrap tires are not considered harmful waste, but their stocking and disposal are a potential health and environmental risk. Properly controlled calcinations at high temperatures make tire combustion an interesting alternative due to its high calorific power, comparable to that of fuel-oil. Consequently, using them as an alternative combustible material in cement kilns makes it possible to give it a valuable use. However, it remains to be assured whether the impurities added to the clinker through these fuels do not affect its structure or properties.This paper shows the studies carried out on different clinkers under laboratory conditions with different levels of addition of scrap tire ashes, added by partially replacing traditional fuel in cement kilns.

  14. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita


    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  15. Effective use of fly ash slurry as fill material. (United States)

    Horiuchi, S; Kawaguchi, M; Yasuhara, K


    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  16. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)


    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  17. Ash dispersal dynamics: state of the art and perspectives (United States)

    Sulpizio, R.


    Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.

  18. Particle analysis of volcanic ash with Electron Microscopy (United States)

    Lieke, K. I.; Kristensen, T. B.; Koch, C. B.; Korsholm, U. S.; Sørensen, J. H.; Bilde, M.


    Since the airspace closure over Europe due to the Eyjafjalla eruption in 2010, volcanic ash has come more in the focus of atmospheric science. The airspace closure accompanying the Grímsvötn eruption in 2011 clearly indicates that there is still a great need to increase the scientific understanding of the properties and impacts of volcanic ash particles. Determination of particle characteristics, preferably in near real time, serves as an important input to transport models in operational use for decision support and guidance of authorities. We collected particles before and after the Grímsvötn volcanic ash arrived at Copenhagen, Denmark, between 23 May and 31 May 2011, as well as at a number of other locations. The analysis of meteorological conditions shows that the particle collection performed before arrival of the volcanic ash may serve as a good reference sample. We have thus been able to identify significant differences in aerosol chemical composition during a volcanic ash event over Copenhagen. These results are compared to volcanic ash particles collected on Iceland. We provide unique data about single-particle structure, chemical composition, size and morphology of volcanic ash particles. Single-particle analysis by SEM, and mineralogical studies by XRD and TEM prove that the particles are composed of glass of a characteristic composition and small, nm sized minerals attached to the large (up to tens of µm) glass fragments. The derived information about volcanic ash particles can be used by transport models, resulting in improved information to the authorities in case of new volcanic ash events over Scandinavia or Europe.

  19. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  20. Electrodialytic treatment of sewage sludge ash for the recovery of phosphorous and separation of heavy metals

    DEFF Research Database (Denmark)

    Ebbers, Benjamin; Ottosen, Lisbeth M.; Jensen, Pernille Erland;


    in separation from the ash suspension to the anode compartment. Although 96% of the recovered P was mobilized, only 55% was separated from the ash suspension. Less mobilization (m), but better separation (s), from the ash and ash suspension was observed for heavy metals, 78% (m) 69% (s) for Cd; 24% (m) 7% (s...

  1. Selected Properties Of Geopolymers With Different Portions Of Ground Fly-Ash

    Directory of Open Access Journals (Sweden)

    Želinková Miroslava


    Full Text Available Geopolymers are polymeric materials resulting from the polycondensation reaction of alumino-silicate materials in a strongly alkaline environment. In consequence, stable polymeric networks of aluminosilicates are formed. The binding potential of FA (fly ash amorphous component can also be “activated” by mechanical activation, which unfolds new possibilities of FA utilization. Mechanical activation, such as the method, which can improve FA reactivity, is often applied for different applications for geopolymers based on ground fly ash. This paper presents possibilities of preparation of geopolymer mixtures based on modified (ground FA (TEKO – produced by the Heating plant Kosice, which was used in varying percentages to unground (original FA. The particle size of the original unground FA (PVT was 84.7μm and particle size of the ground FA (T60S1 was 52.8μm. Properties to be evaluated were selected from the expected application point of view – protective coating of concrete. Next properties of geopolymer mixtures after 28 days of hardening were tested and evaluated: dry density, absorptivity, capillarity, compressive and flexural strength.

  2. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jedidi, I.; Saidi, S.; Khemakhem, S.; Larbot, A.; Elloumi-Ammar, N.; Fourati, A.; Charfi, A.; Salah, A.B.; Amar, R.B. [Science Faculty of Sfax, Sfax (Tunisia)


    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700{sup o}C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24h then a sintering at 800{sup o}C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 {mu} m and the thickness was around 20 {mu} m. The membrane permeability was 475 l/h m{sup 2} bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 1001 h{sup -1} m{sup -2}). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  3. Elaboration of new ceramic microfiltration membranes from mineral coal fly ash applied to waste water treatment. (United States)

    Jedidi, Ilyes; Saïdi, Sami; Khemakhem, Sabeur; Larbot, André; Elloumi-Ammar, Najwa; Fourati, Amine; Charfi, Aboulhassan; Salah, Abdelhamid Ben; Amar, Raja Ben


    This work aims to develop a new mineral porous tubular membrane based on mineral coal fly ash. Finely ground mineral coal powder was calcinated at 700 degrees C for about 3 h. The elaboration of the mesoporous layer was performed by the slip-casting method using a suspension made of the mixture of fly-ash powder, water and polyvinyl alcohol (PVA). The obtained membrane was submitted to a thermal treatment which consists in drying at room temperature for 24 h then a sintering at 800 degrees C. SEM photographs indicated that the membrane surface was homogeneous and did not present any macrodefects (cracks, etc...). The average pore diameter of the active layer was 0.25 microm and the thickness was around 20 microm. The membrane permeability was 475 l/h m(2) bar. This membrane was applied to the treatment of the dying effluents generated by the washing baths in the textile industry. The performances in term of permeate flux and efficiency were determined and compared to those obtained using a commercial alumina microfiltration membrane. Almost the same stabilised permeate flux was obtained (about 100 l h(-1)m(-2)). The quality of permeate was almost the same with the two membranes: the COD and color removal was 75% and 90% respectively.

  4. Effect of acetic acid on rice seeds coated with rice husk ash

    Directory of Open Access Journals (Sweden)

    Lizandro Ciciliano Tavares


    Full Text Available Flooded rice cultivation promotes anaerobic conditions, favoring the formation of short chain organic acids such as acetic acid, which may be toxic to the crop. The objective of this study was to evaluate the effect of acetic acid on rice seeds coated with rice husk ash. The experiment was arranged in a 2 x 5 x 5 factorial randomized design, with two cultivars (IRGA 424 and BRS Querência, five doses of coating material (0, 2, 3,4 e 5 g kg-1 seed and five concentrations of acetic acid (0, 3, 6, 9 and 12 mM, with 4 replications, totaling 50 treatments. The variables first count of germination, germination, shoot and root length, dry weight of shoots and roots were recorded. The results showed that coating rice seeds with rice husk ash up to 5 g kg-1 seed does not influence the performance of rice seeds of cultivars IRGA 424 and BRS Querência when exposed to concentrations of 12 mM acetic acid. The presence of acetic acid in the substrates used for seed germination reduced the vigor and viability of seeds of cultivars IRGA 424 and BRS Querência, as well as seedling development, affecting mainly the roots of BRS Querência.

  5. Dry aging of beef; Review. (United States)

    Dashdorj, Dashmaa; Tripathi, Vinay Kumar; Cho, Soohyun; Kim, Younghoon; Hwang, Inho


    The present review has mainly focused on the specific parameters including aging (aging days, temperature, relative humidity, and air flow), eating quality (flavor, tenderness and juiciness), microbiological quality and economic (shrinkage, retail yields and cost) involved beef dry aging process. Dry aging is the process where beef carcasses or primal cuts are hanged and aged for 28 to 55 d under controlling environment conditions in a refrigerated room with 0° to 4 °C and with relative humidity of 75 to 80 %. However there are various opinions on dry aging procedures and purveyors of such products are passionate about their programs. Recently, there has been an increased interest in dry aging process by a wider array of purveyors and retailers in the many countries. Dry aging process is very costly because of high aging shrinkage (6 to15 %), trims loss (3 to 24 %), risk of contamination and the requirement of highest grades meat with. The packaging in highly moisture-permeable bag may positively impact on safety, quality and shelf stability of dry aged beef. The key effect of dry aging is the concentration of the flavor that can only be described as "dry-aged beef". But the contribution of flavor compounds of proteolysis and lipolysis to the cooked dry aged beef flavor is not fully known. Also there are limited scientific studies of aging parameters on the quality and palatability of dry aged beef.

  6. Usage of fly ash as a coal desulphurization reagent

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ. (Turkey). Chemical and Metallurgical Engineering Faculty


    This paper covers the direct usage of fly ash to remove sulphur from coal. Experiments were carried out on a high sulphur Turkish lignite. 5 g of fly ash was extracted in 200 ml of water under pressure and the dilute solution containing water extractable parts of fly ash was used as desulphurization reagent. Oxygen pressure was created over desulphurization medium during the extraction period by which dissolved oxygen was concentrated in the solution. Effects of temperature, partial pressure of oxygen, and time were investigated in the ranges of 403--498 K, 0.0--1.5 MPa and 15--90 min, respectively.

  7. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela


    Coal ashes are normally considered as a waste obtained by the coal combustion in thermal power plants. Their utilization inside the site where are produced represents an important example of sustainable process integration. The present study was performed to evaluate the application of a gas......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  8. Research on municipal solid waste composting with coal ash

    Institute of Scientific and Technical Information of China (English)

    曾光明; 袁兴中; 李彩亭; 黄国和; 李建兵; 尚谦; 陈耀宁


    Considering the fact that there is much coal ash in the municipal solid waste (MSW) in some cities of China, the feasibility of composting in this situation was studied and the effect of content of the coal ash on the composting process and some basic relative technological parameters were investigated. The values of the moisture, the total organic matter, the content of coal ash, the C/N ratio and the ventilation were suggested to be 50%-60%, 40%-60%, 40%-60%, (25∶1)-(35∶1) and 0.05-0.20m3/(min*m3), respectively.

  9. Magmatic and fragmentation controls on volcanic ash surface chemistry (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.


    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  10. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann


    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  11. Agricultural uses of alkaline fluidized bed combustion ash: case studies

    Energy Technology Data Exchange (ETDEWEB)

    Stout, W.L.; Daily, M.R.; Nickeson, T.L.; Svendson, R.L.; Thompson, G.P. [USDA-ARS, University Park, PA (United States)


    Successful programmes were developed by Ahlstrom Development Ash Corporation and Air Products and Chemical for using fluidized bed combustion ash as a substitute for agricultural lime on dairy farms in northern New York state and on fruit and nut crops in the San Joaquin Valley of California. The companies developed these programmes by utilizing the methodology developed through USDA-ARS research and working closely with agricultural consultants and regulatory agencies to ensure that the ash applications were both agronomically and environmentally sound. 1 ref.

  12. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann


    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time establishes a causal connection between oceanic iron-fertilisation and volcanic ash supply.

  13. Dry ice blasting (United States)

    Lonergan, Jeffrey M.


    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  14. Short-term post-wildfire dry-ravel processes in a chaparral fluvial system (United States)

    Florsheim, Joan L.; Chin, Anne; O'Hirok, Linda S.; Storesund, Rune


    Dry ravel, the transport of sediment by gravity, transfers material from steep hillslopes to valley bottoms during dry conditions. Following wildfire, dry ravel greatly increases in the absence of vegetation on hillslopes, thereby contributing to sediment supply at the landscape scale. Dry ravel has been documented as a dominant hillslope erosion mechanism following wildfire in chaparral environments in southern California. However, alteration after initial deposition is not well understood, making prediction of post-fire flood hazards challenging. The majority of Big Sycamore Canyon burned during the May 2013 Springs Fire leaving ash and a charred layer that covered hillslopes and ephemeral channels. Dry-ravel processes following the fire produced numerous deposits in the hillslope-channel transition zone. Field data focus on: 1) deposition from an initial post-wildfire dry-ravel pulse; and 2) subsequent alteration of dry ravel deposits over a seven-month period between September 2013 and April 2014. We quantify geomorphic responses in dry ravel deposits including responses during the one small winter storm that generated runoff following the fire. Field measurements document volumetric changes after initial post-wildfire deposition of sediment derived from dry ravel. Erosion and deposition mechanisms that occurred within dry-ravel deposits situated in the hillslope-channel transition zone included: 1) mobilization and transport of a portion or the entire deposit by fluvial erosion; 2) rilling on the surface of the unconsolidated deposits; 3) deposition on deposits via continued hillslope sediment supply; and 4) mass wasting that transfers sediment within deposits where surface profiles are near the angle of repose. Terrestrial LiDAR scanning point clouds were analyzed to generate profiles quantifying depth of sediment erosion or deposition over remaining dry ravel deposits after the first storm season. This study contributes to the understanding of potential

  15. Trace element geochemistry of feed coal, fly and bottom ashes of Turkish power plants: implications for ash utilisation

    Energy Technology Data Exchange (ETDEWEB)

    Gayer, R.A.; Karayigit, A.I.; Goldsmith, S.; Onacak, T.; Rose, M. [Cardiff University, Cardiff (United Kingdom). Dept of Earth Sciences


    Recent environmental concern has led to studies of the fate of environmentally sensitive elements (ESEs) during the combustion of coal in power plants. Of particular interest has been the partioning of potentially hazardous trace elements in coal-combustion waste products (fly ash and bottom ash) and in flue gases. This paper reports on a preliminary investigation into the trace element geochemistry of feed coals, bottom ash and fly ash in thirteen power units in Turkey. It concentrates on sixteen trace elements, five of which are of major environmental concern (Be, As, Mo, Pb, and Tl), two of moderate concern (Cu and Zn), three of minor concern (Mn, Co and Ba). Two of the ESEs are radiogenic (Th and U). Ti, Cs, La, and W, which show interesting distributions, are also considered. The approach has been to analyse the feed coals to highlight any significant element enrichment and to carry out mass balance calculations to determine the partioning of elements between bottom and fly ash. Results indicate that solid residues, particularly fly ash may show unusually high concentrations of moderately volatile ESEs such as As, Pb, Tl, Mo, Be and Zn. The use of such enriched fly ash should be treated with caution. 9 refs., 2 figs., 3 tabs.

  16. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland


    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  17. [Dry matter losses in mushroom (Lactarius rufus) by blanching]. (United States)

    Kurkela, R; Holmström, B


    According to recommended international standards edible fungi are blanched before salting and freezing. A study was conducted on the solution losses of Lactarius rufus due to blanching. Weight losses, changes of dry matter, raw fat, total nitrogen, amino nitrogen and ash contents as well as the pH value were determined when various methods of blanching were used. 3 min blanching at 95-100 degrees C was able to inactivate catalase and peroxydase while 6 min blanching was needed for inactivating polyphenoloxydase totally. After blanching there were 1/10 - 1/100 of spores left. During the 3 min blanching in water five times the quantity of mushrooms the losses of dry matter were about 10%; when doubling the quantity of blanching water the losses increased to 2-3 fold. The doubling of blanching time had no significant influence on the losses. The soluble dry matter content of blanched mushrooms was less than 50% of that of the fresh. Total nitrogen of fresh mushrooms was equal to that of the blanched but the amino nitrogen decreased to one tenth by blanching. The mineral element content of blanched mushrooms was about the half of that of the fresh. Blanching caused a slight decrease in the pH value. The necessity of the blanching of all edible fungi before freezing was discussed.

  18. Experiment and analysis on compressive property of fly ash concrete%粉煤灰混凝土抗压性能试验与分析

    Institute of Scientific and Technical Information of China (English)

    李晟文; 刘春辉; 高铜; 高凯


    为了得到不同掺量、不同侵蚀环境下粉煤灰混凝土的抗压性能,研究干湿循环和全浸泡侵蚀环境下,粉煤灰掺量分别为0、10%、20%、30%的粉煤灰混凝土的抗压强度。结果表明:全浸泡和干湿循环环境对比,粉煤灰混凝土抗压强度相差不大;随着粉煤灰掺量的增加,其抗压强度呈下降趋势;全浸泡和干湿循环环境下的粉煤灰掺量均不宜过大,且粉煤灰掺量在10%较为适宜。%In order to get compressive properties of fly ash concrete with different mixing amounts and in different erosion environments,this paper studies compressive properties of fly ash concrete with mix_ing amounts of 0,10%,20%,30% in the erosion environments of wetting_drying cycle and complete im_mersion.Results show that compressive properties of fly ash concrete do not make much differences in the environments of wetting_drying cycle and complete immersion,compressive property decreases with the increase of fly ash mixing amount,and mixing amounts of fly ash in both environments shall not be too much,which means 10% is appropriate.


    Directory of Open Access Journals (Sweden)

    Hawa A.


    Full Text Available This research reports on the microstructure, compressive strength, drying shrinkage and sulfate expansion of metakaolin (MK based geopolymers produced by partially replacing MK by oil palm ash (OPA in proportions of 0 %, 5 %, 10 % and 15 % by weight. The specimens were cured at a temperature of 80°C for 1, 2 and 4 hours, and compressive strength test were conducted at ambient temperature at 2, 6, 24 hours, 7 and 28 day. The testing results revealed that the geopolymer with 5 % OPA gave the highest compressive strength. Scanning electron microscopy (SEM indicated that the 5 % OPA sample had a dense-compact matrix and less unreacted raw materials which contributed to the higher compressive strength. In the X-ray diffraction (XRD patterns, the change of the crystalline phase for higher strength was easily detectable compared lower strength.

  20. Air Quality Scoping Study for Ash Meadows National Wildlife Refuge, Nevada (EMSI April 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, Johann; Kavouras, Ilias; Campbell, Dave; Campbell, Scott; Kohl, Steven; Shafer, David


    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S.Department of Energy’s Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at seven sites outside the NTS, including Ash Meadows National Wildlife Refuge, Sarcobatus Flat, Beatty, Rachel, Caliente, Pahranagat National Wildlife Refuge, and Crater Flat, and at four sites on the NTS. The trailer is stationed at any one site for approximately eight weeks at a time. Letter reports provide summaries of air quality and meteorological data, on completion of each site’s sampling program.

  1. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles. (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A


    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  2. Dried fruit and dental health. (United States)

    Sadler, Michèle Jeanne


    A comprehensive review of the literature has found that the common perceptions that dried fruits are "sticky", adhere to teeth, and are detrimental to dental health on account of their sugar content are based on weak evidence. There is a lack of good quality scientific data to support restrictive advice for dried fruit intake on the basis of dental health parameters and further research is required. A number of potentially positive attributes for dental health, such as the need to chew dried fruits which encourages salivary flow, and the presence of anti-microbial compounds and of sorbitol, also require investigation to establish the extent of their effects and whether they balance against any potentially negative attributes of dried fruit. Advice on dried fruit consumption should also take account of the nutritional benefits of dried fruit, being high in fibre, low in fat and containing useful levels of micronutrients.

  3. Preliminary assessment of growth and survival of green alder (Alnus viridis), a potential biological stabilizer on fly ash disposal sites

    Institute of Scientific and Technical Information of China (English)

    Marcin Pietrzykowski; Wojciech Krzaklewski; Bartłomiej Wos´


    This paper presents preliminary assessment of seedling survival and growth of green alder (Alnus viridis (Chaix) DC. in Lam. & DC.) planted on fly ash disposal sites. This kind of post-industrial site is extremely hard to biologically stabilize without top-soiling. The experiment started with surface preparation using NPK start-up mineral fertilizer at 60–36–36 kg ha-1 followed by initial stabil-ization through hydro-seeding with biosolids (sewage sludge 4 Mg ha-1 dry mass) and a mixture of grasses (Dactylis glomerata L. and Lolium multiflorum Lam.) (200 kg ha-1). Subsequently, three-years-old green alder seedlings were planted in plots on two substrate variants:the control (directly on combustion waste) and plots with 3 dm3 lignite culm from a nearby mine introduced into the planting pit. Five years of preliminary monitoring show good survival seedling rates and growth parameters (height (h), average increase in height (△h), number of shoots (Lo) and leaf nitrogen supply in the fly ash disposal habitat. Treatment of the site with a combination of lignite culm in planting pits and preliminary surface preparation by hydro-seeding and mineral fertilization had the most positive effect on green alder seedling parameters. The results indicate that it is possible and beneficial to use green alder for biological stabilization on fly ash disposal sites.

  4. The influence of particle size, fluidization velocity and fuel type on ash-induced agglomeration in biomass combustion

    Directory of Open Access Journals (Sweden)

    Bernhard eGatternig


    Full Text Available Agglomeration of the bed material is one of the main obstacles for biomass utilization in fluidized bed combustors. Especially high-potential fuels such as fast growing energy crops or biogeneous residues are affected, due to their high content of alkaline metals. Despite ongoing research efforts, the knowledge base on what fuels are affected is still limited. This paper describes the design and installation of two lab-scale reactors for the experimental determination of agglomeration temperatures. The reactor concept and measurement method were developed under consideration of experiences from existing test rigs published in literature. Preliminary tests confirmed a reproducibility of ±5°C for both new reactors.The results of an extended measurement campaign (156 test runs of 25 fuel species at a wide range of the operational parameters bed particle size, gas velocity, bed ash accumulation, based on design of experiment criteria, showed high agglomeration tendencies for residues (e.g., dried distillery grains, corn cobs while woody energy crops (e.g., willow, alder exhibited very stable combustion behavior. The operating parameters influenced the agglomeration behavior to a lesser degree than different ash compositions of fuel species tested. An interpolation within the design of experiment factor space allowed for a subsequent comparison of our results with experiments reported in literature. Good agreement was reached for fuels of comparable ash composition considering the interpolation errors of ±32°C on average.

  5. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds. (United States)

    Alkan, U; Topaç, F O; Birden, B; Baskaya, H S


    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g(-1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  6. Incorporation of treated straw and wood fly ash into clay building brick

    DEFF Research Database (Denmark)

    Chen, Wan; Ottosen, Lisbeth M.; Jensen, Pernille Erland;


    in the treated ash, suggests the possibility of the ash reuse in sintered clay bricks. In this study, the straw and wood fly ash treated by washing and EDR was incorporated into yellow clay bricks at different substitution rates. The properties of the clay-ash bricks were studied in terms of shrinkage, water...... absorption, porosity, density, compressive strength and leaching behavior, and compared with the 100% clay bricks. It’s promising to use the treated ash as a secondary building material....

  7. Alkali-activation potential of biomass-coal co-fired fly ash


    Shearer, C.R.; Provis, J.L.; Bernal, S.A.; Kurtis, K.E.


    Co-fired fly ash, derived from the co-combustion of coal and biomass, is examined as a potential precursor for geopolymers. Compared to a coal fly ash, two co-fired fly ashes have a lower vitreous content and higher carbon content, primarily due to differing combustion processing variables. As a result, binders produced with these co-fired fly ashes have reduced reaction potential. Nevertheless, compressive strengths are generally highest for all ashes activated with solutions with a molar ra...

  8. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault


    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  9. Convective drying of sludge cake (United States)

    Chen, Jianbo; Peng, Xiaofeng; Xue, Yuan; Lee, Duujong; Chu, Chingping


    This paper presented an experimental study on convective drying of waste water sludge collected from Beijing GaoBeiDian Sewage Treatment Plant, particularly on the correlation between the observed shrinkage dynamics of sludge cake and the drying curve. During the initial stage of drying the process resembles to that of a particulate bed, in which moisture diffuses and evaporates at the upper surface. Conventional drying theory assuming a diffusion-evaporating front interprets this period of drying. Consequently, owing to the very large shrinkage ratio of the dried cake, cracks emerges and propagates on and within the cake body, whence inducing evaporating channel that facilitates the water removal. This occurrence compensates the reduction of surface area for evaporation, whence extending the constant-rate period during the test. Afterwards, the cracks meet with each other and form isolated cake piles, while the subsequent drying occur mainly within these piles and the conventional theory fails. The transition between the drying on a plain cake layer and that on the isolated piles demonstrates the need to adopt distinct descriptions on these two regimes of drying for the sludge cake.

  10. Soil food web structure after wood ash application

    DEFF Research Database (Denmark)

    Mortensen, Louise Hindborg; Qin, Jiayi; Cruz-Paredes, Carla

    In 2006, the European Council established a mandatory target of 20 % renewable energy of consumption by 2020. Part of the replacement is burning biomass for heating and electricity. ~ Whole tree biomass harvesting for biofuel combustion intensifies removal of nutrients from the by applying ash from...... the consequences of returning wood ash to biofuel producing coniferous forest. We that the change in pH and increased availability of nutrients after ash application to forest floor can facilitate an increase in the bacteria to fungi ratio with possible effects for the soil food by applying ash of different...... concentrations to experimental plots in a coniferous forest the soil will be collected with varying intervals and subsequently analyzed. The food web included several trophic levels; bacteria/fungi, protozoa, nematodes, enchytraeids and microarthropods and arthropods. Results from 2014 indicated that bacteria...

  11. Ash Meadows Pupfish Preserve: A proposal from The Nature Conservancy (United States)

    US Fish and Wildlife Service, Department of the Interior — The Ash Meadows region of southwest Nevada has evolved since the last period of glaciation into a unique alkali desert ecosystem. The remnant springs, pools and...

  12. The Evolving Higher Education Professoriate: Implications for ASHE. (United States)

    Newell, L. Jackson; Morgan, Don A.


    An analysis of the changing characteristics and values of Association for the Study of Higher Education (ASHE) professors, based on a review of the historical record, a recent survey of the membership, and an earlier study is presented. (MLW)

  13. Volcanic Ash Detection Using Raman LIDAR: "VADER" Project (United States)

    National Aeronautics and Space Administration — Volcanic ash is a significant hazard to aircraft engine and electronics and has caused damage to unwary aircraft and disrupted air travel for thousands of travelers,...

  14. Solid State Multiwavelength LIDAR for Volcanic Ash Monitoring Project (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to develop a compact, multiwavelength LIDAR with polarization analysis capability that will be able to identify volcanic ash clouds...

  15. The Trail Inventory of Ash Meadows NWR [Cycle 2 (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to create a baseline inventory of all non-motorized trails on Ash Meadows National Wildlife Refuge. Trails in this inventory are...

  16. Genome sequence and genetic diversity of European ash trees

    DEFF Research Database (Denmark)

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J;


    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low......-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re......-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British...

  17. Fly-ash lobby design to convert the sceptics

    Energy Technology Data Exchange (ETDEWEB)

    Bile, P.


    New uses for pfa in structural concrete have been pioneered at Didcot power station. Twenty percent cost savings and significant gains in long-term strength are claimed for the new concrete, called high fly-ash content concrete (HFCC).

  18. Fly ash based zeolitic pigments for application in anticorrosive paints (United States)

    Shaw, Ruchi; Tiwari, Sangeeta


    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  19. Ash after forest fires. Effects on soil hydrology and erosion (United States)

    Bodí, Merche B.


    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some wee