WorldWideScience

Sample records for artificial intelligence-based atomistic

  1. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  2. Artificial Intelligence based technique for BTS placement

    International Nuclear Information System (INIS)

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out

  3. An Artificial Intelligence-Based Distance Education System: Artimat

    Science.gov (United States)

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  4. An Artificial Intelligence-Based Distance Education System: Artimat

    OpenAIRE

    NABIYEV, Vasif; Karal, Hasan; Arslan, Selahattin; ERUMIT, Ali Kürsat; Ayça CEBI

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called as ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed with 4 teachers and 59 students in 10th grade in an Anatolian High School in Trabzon. Many institutions and organizations in the world approach...

  5. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  6. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  7. Predicting chick body mass by artificial intelligence-based models

    Directory of Open Access Journals (Sweden)

    Patricia Ferreira Ponciano Ferraz

    2014-07-01

    Full Text Available The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks - with the variables dry-bulb air temperature, duration of thermal stress (days, chick age (days, and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs and neuro-fuzzy networks (NFNs. The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

  8. AN ARTIFICIAL INTELLIGENCE-BASED DISTANCE EDUCATION SYSTEM: Artimat

    Directory of Open Access Journals (Sweden)

    Vasif NABIYEV

    2013-04-01

    Full Text Available The purpose of this study is to evaluate the artificial intelligence-based distance education system called as ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed with 4 teachers and 59 students in 10th grade in an Anatolian High School in Trabzon. Many institutions and organizations in the world approach seriously to distance education besides traditional education. It is inevitable to use the distance education in teaching the problem solving skills in this different dimension of the education. In the studies in Turkey and abroad in the field of mathematics teaching, problem solving skills are generally stated not to be at the desired level and often expressed to have difficulty in teaching. For this reason, difficulties of the students in problem solving have initially been evaluated and the system has been prepared utilizing artificial intelligence algorithms according to the obtained results. In the evaluation of the findings obtained from the application, it has been concluded that the system is responsive to the needs of the students and is successful in general, but that conceptual changes should be made in order that students adapt to the system quickly.

  9. Optimizing Water Treatment Systems Using Artificial Intelligence Based Tools

    OpenAIRE

    Pinto, Ana Mafalda; Fernandes, Ana; Vicente, Henrique; Neves, José

    2009-01-01

    Predictive modelling is a process used in predictive analytics to create a statistical model of future behaviour. Predictive analytics is the area of data mining concerned with forecasting probabilities and trends. On the other hand, Artificial Intelligence (AI) concerns itself with intelligent behaviour, i.e. the things that make us seem intelligent. Following this process of thinking, in this work the main goal is the assessment of the impact of using AI based tools for th...

  10. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    Science.gov (United States)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  11. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    Science.gov (United States)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  12. Artificial intelligence-based control system for the analysis of metal casting properties

    Directory of Open Access Journals (Sweden)

    E. Mares

    2010-06-01

    Full Text Available Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (Case-Based Reasoning into Thermal Analysis Data Acquisition Software (NI LabView was developed to analyze casting component properties. The thermal data was tested in terms of accuracy, reliability and timeliness in order to secure metal casting process effectiveness.Findings: Quantitative values were defined as “Low”, “Medium” and “High” to assess the level of improvement in the metal casting analysis by means of the Artificial Intelligence-Based Control System (AIBCS. The traditional process was used as a reference to measure such improvement. As a result, the accuracy, reliability and timeliness were significantly increased to the “High” level.Research limitations/implications: Presently, the AIBCS predicts a limited number of casting properties. Due to its flexible design more properties could be added.Practical implications: The AIBCS has been successfully used at the Ford/Nemak Windsor Aluminum Plant (WAP to analyze Al casting properties of the engine blocks.Originality/value: The metal casting research community has immensely benefited from these developed information technologies that support the metal casting process.

  13. GDO Artificial Intelligence-Based Switching PID Baseline Feedback Linearization Method: Controlled PUMA Workspace

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2012-10-01

    Full Text Available Congetive method is used in this research to create portfilo of movement robot manipulator. Gradient descent (GD artificial intelligence based switching feedback linearization controller was used and robot’s postures and trajectory were expected in MATLAB/SIMULINK environment. Feedback linearization controller (CTC is an influential nonlinear controller to certain systems which it is based on feedback linearization and computes the required torques using the nonlinear feedback control law in certain systems. Practically a large amount of systems have uncertainties accordingly this method has a challenge. Switching feedback linearization controller is a significant combination nonlinear stable-robust controller under condition of partly uncertain dynamic parameters of system. This technique is used to control of highly nonlinear systems especially in nonlinear time varient nonlinear dynamic system. To increase the stability and robustness with regards to improve the robustness switching methodology is applied to feedback linearization controller. Lyapunov stability is proved in proposed controller based on switching function. To compensate for the dependence on switching parameters baseline methodology is used.The nonlinear model dynamic formulation problem in uncertain system can be solved by using artificial intelligence theorem. Fuzzy logic theory is used to estimate the system dynamic. Forward kinematics implemented the manipulator's movements. Results validated the robot's range of possible postures and trajectories.

  14. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  15. On the Future Possibilities of Artificial Intelligence Based M-Learning Content Development

    OpenAIRE

    KÖSE, Utku; TÜFEKÇİ, Aslıhan

    2015-01-01

    Abstract—Artificial Intelligence is widely used in almost every field of the modern life; in order to provide effective solutions for real-world problems. It can be definitely said that this research field has a remarkable power on shaping the future of the humankind. When we take today's technologies into consideration, it is also seen that usage of Artificial Intelligence and mobile applications together is a key element for many future applications. At this point, main objective of this st...

  16. Artificial intelligence based approach to forecast PM2.5 during haze episodes: A case study of Delhi, India

    Science.gov (United States)

    Mishra, Dhirendra; Goyal, P.; Upadhyay, Abhishek

    2015-02-01

    Delhi has been listed as the worst performer across the world with respect to the presence of alarmingly high level of haze episodes, exposing the residents here to a host of diseases including respiratory disease, chronic obstructive pulmonary disorder and lung cancer. This study aimed to analyze the haze episodes in a year and to develop the forecasting methodologies for it. The air pollutants, e.g., CO, O3, NO2, SO2, PM2.5 as well as meteorological parameters (pressure, temperature, wind speed, wind direction index, relative humidity, visibility, dew point temperature, etc.) have been used in the present study to analyze the haze episodes in Delhi urban area. The nature of these episodes, their possible causes, and their major features are discussed in terms of fine particulate matter (PM2.5) and relative humidity. The correlation matrix shows that temperature, pressure, wind speed, O3, and dew point temperature are the dominating variables for PM2.5 concentrations in Delhi. The hour-by-hour analysis of past data pattern at different monitoring stations suggest that the haze hours were occurred approximately 48% of the total observed hours in the year, 2012 over Delhi urban area. The haze hour forecasting models in terms of PM2.5 concentrations (more than 50 μg/m3) and relative humidity (less than 90%) have been developed through artificial intelligence based Neuro-Fuzzy (NF) techniques and compared with the other modeling techniques e.g., multiple linear regression (MLR), and artificial neural network (ANN). The haze hour's data for nine months, i.e. from January to September have been chosen for training and remaining three months, i.e., October to December in the year 2012 are chosen for validation of the developed models. The forecasted results are compared with the observed values with different statistical measures, e.g., correlation coefficients (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA). The performed

  17. Artificial intelligence-based control system for the analysis of metal casting properties

    OpenAIRE

    E. Mares; J.H. Sokolowski

    2010-01-01

    Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (...

  18. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    International Nuclear Information System (INIS)

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase

  19. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    Science.gov (United States)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  20. A development framework for artificial intelligence based distributed operations support systems

    Science.gov (United States)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  1. Autonomously Generating Operations Sequences for a Mars Rover Using Artificial Intelligence-Based Planning

    Science.gov (United States)

    Sherwood, R.; Mutz, D.; Estlin, T.; Chien, S.; Backes, P.; Norris, J.; Tran, D.; Cooper, B.; Rabideau, G.; Mishkin, A.; Maxwell, S.

    2001-07-01

    This article discusses a proof-of-concept prototype for ground-based automatic generation of validated rover command sequences from high-level science and engineering activities. This prototype is based on ASPEN, the Automated Scheduling and Planning Environment. This artificial intelligence (AI)-based planning and scheduling system will automatically generate a command sequence that will execute within resource constraints and satisfy flight rules. An automated planning and scheduling system encodes rover design knowledge and uses search and reasoning techniques to automatically generate low-level command sequences while respecting rover operability constraints, science and engineering preferences, environmental predictions, and also adhering to hard temporal constraints. This prototype planning system has been field-tested using the Rocky 7 rover at JPL and will be field-tested on more complex rovers to prove its effectiveness before transferring the technology to flight operations for an upcoming NASA mission. Enabling goal-driven commanding of planetary rovers greatly reduces the requirements for highly skilled rover engineering personnel. This in turn greatly reduces mission operations costs. In addition, goal-driven commanding permits a faster response to changes in rover state (e.g., faults) or science discoveries by removing the time-consuming manual sequence validation process, allowing rapid "what-if" analyses, and thus reducing overall cycle times.

  2. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    Science.gov (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  3. Structure design: an artificial intelligence-based method for the design of molecules under geometrical constraints.

    Science.gov (United States)

    Cohen, A A; Shatzmiller, S E

    1993-09-01

    This study presents an algorithm that implements artificial-intelligence techniques for automated, and site-directed drug design. The aim of the method is to link two or more predetermined functional groups into a sensible molecular structure. The proposed designing process mimics the classical manual design method, in which the drug designer sits in front of the computer screen and with the aid of computer graphics attempts to design the new drug. Therefore, the key principle of the algorithm is the parameterization of some criteria that affect the decision-making process carried out by the drug designer. This parameterization is based on the generation of weighting factors that reflect the knowledge and knowledge-based intuition of the drug designer, and thus add further rationalization to the drug design process. The proposed algorithm has been shown to yield a large variety of different structures, of which the drug designer may choose the most sensible. Performance tests indicate that with the proper set of parameters, the method generates a new structure within a short time. PMID:8110662

  4. Towards sustainability: artificial intelligent based approach for soil stabilization using various pozzolans

    KAUST Repository

    Ouf, M. S.

    2012-07-03

    Due to the gradual depletion in the conventional resources, searching for a more rational road construction approach aimed at reducing the dependence on imported materials while improving the quality and durability of the roads is necessary. A previous study carried out on a sample of Egyptian soil aimed at reducing the road construction cost, protect the environment and achieving sustainability. RoadCem, ground granulated blast furnace slag (GGBS), lime and ordinary Portland cement (OPC) were employed to stabilise the Egyptian clayey soil. The results revealed that the unconfined compressive strength (UCS) of the test soil increased while the free swelling percent (FSP) decreased with an increase in the total stabiliser and the curing period. This paper discusses attempts to reach optimum stabilization through: (1) Recognizing the relationship between the UCS/FSP of stabilized soil and the stabilization parameters using artificial neural network (ANN); and (2) Performing a backward optimization on the developed (ANN) model using general algorithm (GA) to meet practical design preferences. © 2012 WIT Press.

  5. Cooperative research and development for artificial intelligence based reactor diagnostic system

    International Nuclear Information System (INIS)

    Artificial Intelligence (AI) techniques in the form of knowledge-based Expert Systems (ESs) have been proposed to provide on-line decision-making support for plant operators during both normal and emergency conditions. However, in spite of the great interest in these advanced techniques, their application in the diagnosis of large-scale processes has not yet reached its full potential because of limitations of the knowledge base. These limitations include problems with knowledge acquisition and the use of an event-oriented approach for process diagnosis. The knowledge base of process diagnosis ESs is generally acquired in a heuristic fashion through empirical associations between plant symptoms and component malfunctions with no reliance on fundamental physical principles. This nonsystematic construction of the knowledge base causes, among other problems, the encoded information to be biased and limited towards the developer's own experience and judgmental knowledge. The use of an event-oriented approach for process diagnosis requires the developer of the knowledge base to anticipate and formulate rules to cover every conceivable plant situation. In addition to yielding a large knowledge base, an undesirable characteristic for an on-line real-time advisory system, an event-oriented approach for diagnosis of large and complex thermal-hydraulic (T-H) based processes cannot guarantee functional completeness and is likely to fail under unanticipated circumstances. Hence, these limitations preclude an effective verification and validation of the knowledge base which is required in industrial applications. In contrast to the heuristic construction of a rigid knowledge base that uses an event-oriented approach for process diagnosis, the authors propose a different approach that involves the systematic construction of a hierarchical knowledge base with two levels

  6. Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine

    Directory of Open Access Journals (Sweden)

    Mojdeh Piran

    2014-01-01

    Full Text Available In this research, manage the Internal Combustion (IC engine modeling and a multi-input-multi-output artificial intelligence baseline chattering free sliding mode methodology scheme is developed with guaranteed stability to simultaneously control fuel ratios to desired levels under various air flow disturbances by regulating the mass flow rates of engine PFI and DI injection systems. Modeling of an entire IC engine is a very important and complicated process because engines are nonlinear, multi inputs-multi outputs and time variant. One purpose of accurate modeling is to save development costs of real engines and minimizing the risks of damaging an engine when validating controller designs. Nevertheless, developing a small model, for specific controller design purposes, can be done and then validated on a larger, more complicated model. Analytical dynamic nonlinear modeling of internal combustion engine is carried out using elegant Euler-Lagrange method compromising accuracy and complexity. A baseline estimator with varying parameter gain is designed with guaranteed stability to allow implementation of the proposed state feedback sliding mode methodology into a MATLAB simulation environment, where the sliding mode strategy is implemented into a model engine control module (“software”. To estimate the dynamic model of IC engine fuzzy inference engine is applied to baseline sliding mode methodology. The fuzzy inference baseline sliding methodology performance was compared with a well-tuned baseline multi-loop PID controller through MATLAB simulations and showed improvements, where MATLAB simulations were conducted to validate the feasibility of utilizing the developed controller and state estimator for automotive engines. The proposed tracking method is designed to optimally track the desired FR by minimizing the error between the trapped in-cylinder mass and the product of the desired FR and fuel mass over a given time interval.

  7. Cooperative research and development for artificial intelligence based reactor diagnostic system

    International Nuclear Information System (INIS)

    Artificial Intelligence (AI) techniques in the form of knowledge-based Expert Systems (ESs) have been proposed to provide on-line decision-making support for plant operators during both normal and emergency conditions. However, in spite of the great interest in these advanced techniques, their application in the diagnosis of large-scale processes has not yet reached its full potential because of limitations of the knowledge base. These limitations include problems with knowledge acquisition and the use of an event-oriented approach for process diagnosis. To investigate the capabilities of this two-level hierarchical knowledge structure, Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL)are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA) project to perform feasibility studies on the proposed diagnostic system. Investigations are being performed in the construction of a physics-based plant level process diagnostic ES and the characterization of component-level fault project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use T-H signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance. To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. This is an ongoing multi-year project and the remainder of this paper presents a mid-term status report

  8. Artificial intelligence applied to atomistic kinetic Monte Carlo simulations in Fe-Cu alloys

    International Nuclear Information System (INIS)

    Vacancy migration energies as functions of the local atomic configuration (LAC) in Fe-Cu alloys have been systematically tabulated using an appropriate interatomic potential for the alloy of interest. Subsets of these tabulations have been used to train an artificial neural network (ANN) to predict all vacancy migration energies depending on the LAC. The error in the prediction of the ANN has been evaluated by a fuzzy logic system (FLS), allowing a feedback to be introduced for further training, to improve the ANN prediction. This artificial intelligence (AI) system is used to develop a novel approach to atomistic kinetic Monte Carlo (AKMC) simulations, aimed at providing a better description of the kinetic path followed by the system through diffusion of solute atoms in the alloy via vacancy mechanism. Fe-Cu has been chosen because of the importance of Cu precipitation in Fe in connection with the embrittlement of reactor pressure vessels of existing nuclear power plants. In this paper the method is described in some detail and the first results of its application are presented and briefly discussed

  9. Artificial Intelligence based Solver for Governing Model of Radioactivity Cooling, Self-gravitating Clouds and Clusters of Galaxies

    Directory of Open Access Journals (Sweden)

    Junaid Ali Khan

    2013-06-01

    Full Text Available In this study, a reliable alternate platform is developed based on artificial neural network optimized with soft computing technique for a non-linear singular system that can model complex physical phenomenas of the nature like radioactivity cooling, self-gravitating clouds and clusters of galaxies. The trial solution is mathematically represented by feed-forward neural network. A cost function is defined in an unsupervised manner that is optimized by a probabilistic meta-heuristic global search technique based on annealing in metallurgy. The results of the designed scheme are evaluated by comparing with the desired response of the system. The applicability, stability and reliability of the proposed method is validated by Monte Carlo simulations.

  10. Multi-modal low cost mobile indoor surveillance system on the Robust Artificial Intelligence-based Defense Electro Robot (RAIDER)

    Science.gov (United States)

    Nair, Binu M.; Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    We present an autonomous system capable of performing security check routines. The surveillance machine, the Clearpath Husky robotic platform, is equipped with three IP cameras with different orientations for the surveillance tasks of face recognition, human activity recognition, autonomous navigation and 3D reconstruction of its environment. Combining the computer vision algorithms onto a robotic machine has given birth to the Robust Artificial Intelligencebased Defense Electro-Robot (RAIDER). The end purpose of the RAIDER is to conduct a patrolling routine on a single floor of a building several times a day. As the RAIDER travels down the corridors off-line algorithms use two of the RAIDER's side mounted cameras to perform a 3D reconstruction from monocular vision technique that updates a 3D model to the most current state of the indoor environment. Using frames from the front mounted camera, positioned at the human eye level, the system performs face recognition with real time training of unknown subjects. Human activity recognition algorithm will also be implemented in which each detected person is assigned to a set of action classes picked to classify ordinary and harmful student activities in a hallway setting.The system is designed to detect changes and irregularities within an environment as well as familiarize with regular faces and actions to distinguish potentially dangerous behavior. In this paper, we present the various algorithms and their modifications which when implemented on the RAIDER serves the purpose of indoor surveillance.

  11. Intelligence-based systems engineering

    CERN Document Server

    Tolk, Andreas

    2011-01-01

    The International Council on Systems Engineering (INCOSE) defines Systems Engineering as an interdisciplinary approach and means to enable the realization of successful systems. Researchers are using intelligence-based techniques to support the practices of systems engineering in an innovative way. This research volume includes a selection of contributions by subject experts to design better systems.

  12. Artificial intelligence based decision support for trumpeter swan management

    Science.gov (United States)

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988-2000. Applying the Matched Pairs Multivariate Permutation Test as a statistical tool was a new approach for comparing flyway distributions of waterfowl over time that seemed to work well. Based on this approach, the empirical evidence that I gathered led me to conclude that the base queuing model does accurately simulate swan distributions in the flyway. The system was insensitive to almost all model parameters tested. That remains perplexing, but might result from the base queuing model, itself, being particularly effective at representing the actual ecological diversity in the world of Rocky Mountain trumpeter swans, both spatial and temporally.

  13. Water Quality Modeling using Artificial Intelligence-Based Tools

    OpenAIRE

    Couto, Catarina; Vicente, Henrique; Machado, José; Abelha, António; Neves, José

    2012-01-01

    Water, like any other biosphere natural resource, is scarce, and its judicious use includes its quality safeguarding. Indeed, there is a wide concern to the fact that an ineffi cient water management system may become one of the major drawbacks for a human-centered sustainable development process. The assessment of reservoir water quality is constrained due to geographic considerations, the number of parameters to be considered and the huge financial resources needed to get such data. Under t...

  14. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    Science.gov (United States)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  15. Atomistic simulations of nanoindentation

    Directory of Open Access Journals (Sweden)

    Izabela Szlufarska

    2006-05-01

    Full Text Available Our understanding of mechanics is pushed to its limit when the functionality of devices is controlled at the nanometer scale. A fundamental understanding of nanomechanics is needed to design materials with optimum properties. Atomistic simulations can bring an important insight into nanostructure-property relations and, when combined with experiments, they become a powerful tool to move nanomechanics from basic science to the application area. Nanoindentation is a well-established technique for studying mechanical response. We review recent advances in modeling (atomistic and beyond of nanoindentation and discuss how they have contributed to our current state of knowledge.

  16. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  17. Parallel Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  18. A Swarm Intelligence Based Model for Mobile Cloud Computing

    OpenAIRE

    Salama, Ahmed S.

    2015-01-01

    Mobile Computing (MC) provides multi services and a lot of advantages for millions of users across the world over the internet. Millions of business customers have leveraged cloud computing services through mobile devices to get what is called Mobile Cloud Computing (MCC). MCC aims at using cloud computing techniques for storage and processing of data on mobile devices, thereby reducing their limitations. This paper proposes architecture for a Swarm Intelligence Based Mobile Cloud Computing M...

  19. Towards an intelligence based conceptual framework for e-maintenance

    CERN Document Server

    Mouzoune, Abdessamad

    2012-01-01

    Since the time when concept of e-maintenance was introduced, most of the works insisted on the relevance of the underlying Information and Communication Technologies infrastructure. Through a review of current e-maintenance conceptual approaches and realizations, this paper aims to reconsider the predominance of ICT within e-maintenance projects and literature. The review brings to light the importance of intelligence as a fundamental dimension of e-maintenance that is to be led in a holistic predefined manner rather than isolated efforts within ICT driven approaches. As a contribution towards an intelligence based e-maintenance conceptual framework, a proposal is outlined in this paper to model e-maintenance system as an intelligent system. The proposed frame is based on CogAff architecture for intelligent agents. Within the proposed frame, more importance was reserved to the environment that the system is to be continuously aware of: Plant Environment, Internal and External Enterprise Environment and Human ...

  20. A Swarm Intelligence Based Model for Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Ahmed S. Salama

    2015-01-01

    Full Text Available Mobile Computing (MC provides multi services and a lot of advantages for millions of users across the world over the internet. Millions of business customers have leveraged cloud computing services through mobile devices to get what is called Mobile Cloud Computing (MCC. MCC aims at using cloud computing techniques for storage and processing of data on mobile devices, thereby reducing their limitations. This paper proposes architecture for a Swarm Intelligence Based Mobile Cloud Computing Model (SIBMCCM. A model that uses a proposed Parallel Particle Swarm Optimization (PPSO algorithm to enhance the access time for the mobile cloud computing services which support different E Commerce models and to better secure the communication through the mobile cloud and the mobile commerce transactions.

  1. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  2. Nano sculpt: A methodology for generating complex realistic configurations for atomistic simulations.

    Science.gov (United States)

    Prakash, A; Hummel, M; Schmauder, S; Bitzek, E

    2016-01-01

    Atomistic simulations have now become commonplace in the study of the deformation and failure of materials. Increase in computing power in recent years has made large-scale simulations with billions, or even trillions, of atoms a possibility. Most simulations to-date, however, are still performed with quasi-2D geometries or rather simplistic 3D setups. Although controlled studies on such well-defined structures are often required to obtain quantitative information from atomistic simulations, for qualitative studies focusing on e.g. the identification of mechanisms, researchers would greatly benefit from a methodology that helps realize more realistic configurations. The ideal scenario would be a one-on-one reconstruction of experimentally observed structures. To this end, we propose a new method and software tool called nano sculpt with the following features:•The method allows for easy sample generation for atomistic simulations from any arbitrarily shaped 3D enclosed volume.•The tool can be used to build atomistic samples from artificial geometries, including CAD geometries and structures obtained from simulation methods other than atomistic simulations.•The tool enables the generation of experimentally informed atomistic samples, by e.g. digitization of micrographs or usage of tomography data. PMID:27054098

  3. Nanosculpt: A methodology for generating complex realistic configurations for atomistic simulations

    Science.gov (United States)

    Prakash, A.; Hummel, M.; Schmauder, S.; Bitzek, E.

    2016-01-01

    Atomistic simulations have now become commonplace in the study of the deformation and failure of materials. Increase in computing power in recent years has made large-scale simulations with billions, or even trillions, of atoms a possibility. Most simulations to-date, however, are still performed with quasi-2D geometries or rather simplistic 3D setups. Although controlled studies on such well-defined structures are often required to obtain quantitative information from atomistic simulations, for qualitative studies focusing on e.g. the identification of mechanisms, researchers would greatly benefit from a methodology that helps realize more realistic configurations. The ideal scenario would be a one-on-one reconstruction of experimentally observed structures. To this end, we propose a new method and software tool called nanosculpt with the following features:•The method allows for easy sample generation for atomistic simulations from any arbitrarily shaped 3D enclosed volume.•The tool can be used to build atomistic samples from artificial geometries, including CAD geometries and structures obtained from simulation methods other than atomistic simulations.•The tool enables the generation of experimentally informed atomistic samples, by e.g. digitization of micrographs or usage of tomography data. PMID:27054098

  4. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  5. First principles view on chemical compound space: Towards atomistic control of molecular properties

    CERN Document Server

    von Lilienfeld, O A

    2012-01-01

    A well-defined notion of chemical space is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we revisit the atomistic first principles perspective on chemical compound space. First, we review chemical space in terms of conceptual density functional and molecular grand-canonical ensemble theory. Subsequently, compound-pairs, "alchemical" interpolation and reference compounds, and the relevance of property non-linearity are discussed. Thereafter, we will focus on recent contributions for accelerating atomistic simulations based on modern statistical data analysis methods (artificial intelligence). The crucial role of good descriptors for chemical compounds will be addressed.

  6. Numerical tools for atomistic simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Fang, H. (Mississippi State University); Gullett, Philip Michael; Slepoy, Alexander (Sandia National Laboratories, Albuquerque, NM); Horstemeyer, Mark F. (Mississippi State University); Baskes, Michael I. (Los Alamos National Laboratory, Los Alamos, NM); Wagner, Gregory John; Li, Mo (Materials Science and Engineering, Atlanta, GA)

    2004-01-01

    The final report for a Laboratory Directed Research and Development project entitled 'Parallel Atomistic Computing for Failure Analysis of Micromachines' is presented. In this project, atomistic algorithms for parallel computers were developed to assist in quantification of microstructure-property relations related to weapon micro-components. With these and other serial computing tools, we are performing atomistic simulations of various sizes, geometries, materials, and boundary conditions. These tools provide the capability to handle the different size-scale effects required to predict failure. Nonlocal continuum models have been proposed to address this problem; however, they are phenomenological in nature and are difficult to validate for micro-scale components. Our goal is to separately quantify damage nucleation, growth, and coalescence mechanisms to provide a basis for macro-scale continuum models that will be used for micromachine design. Because micro-component experiments are difficult, a systematic computational study that employs Monte Carlo methods, molecular statics, and molecular dynamics (EAM and MEAM) simulations to compute continuum quantities will provide mechanism-property relations associated with the following parameters: specimen size, number of grains, crystal orientation, strain rates, temperature, defect nearest neighbor distance, void/crack size, chemical state, and stress state. This study will quantify sizescale effects from nanometers to microns in terms of damage progression and thus potentially allow for optimized micro-machine designs that are more reliable and have higher fidelity in terms of strength. In order to accomplish this task, several atomistic methods needed to be developed and evaluated to cover the range of defects, strain rates, temperatures, and sizes that a material may see in micro-machines. Therefore we are providing a complete set of tools for large scale atomistic simulations that include pre

  7. Power plant experience with artificial intelligence based, on-line diagnostic systems

    International Nuclear Information System (INIS)

    The utility industry is entering a period when generation equipment availability becomes increasingly critical due to the lack of new power plants being planned and built. The increasing percentage of all electric homes adding to peak demands requires more plant equipment to be used in a cyclic duty mode. Availability is on the increase with forced and planned maintenance hours decreasing. Factors that are contributing to this improvement are new units coming on-line with the latest in technology coupled with the installation of retrofit components containing that same technology such as the Rigi-Flex generators and ruggedized turbine rotors. In conjunction with hardware advances, technology advancements in monitoring and diagnostics are permitting the identification of potential malfunctions so that corrective actions can be taken, thus preventing lengthy outages. It is this last area that this paper will address

  8. An artificial intelligence-based structural health monitoring system for aging aircraft

    Science.gov (United States)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  9. Model Checking Artificial Intelligence Based Planners: Even the Best Laid Plans Must Be Verified

    Science.gov (United States)

    Smith, Margaret H.; Holzmann, Gerard J.; Cucullu, Gordon C., III; Smith, Benjamin D.

    2005-01-01

    Automated planning systems (APS) are gaining acceptance for use on NASA missions as evidenced by APS flown On missions such as Orbiter and Deep Space 1 both of which were commanded by onboard planning systems. The planning system takes high level goals and expands them onboard into a detailed of action fiat the spacecraft executes. The system must be verified to ensure that the automatically generated plans achieve the goals as expected and do not generate actions that would harm the spacecraft or mission. These systems are typically tested using empirical methods. Formal methods, such as model checking, offer exhaustive or measurable test coverage which leads to much greater confidence in correctness. This paper describes a formal method based on the SPIN model checker. This method guarantees that possible plans meet certain desirable properties. We express the input model in Promela, the language of SPIN and express the properties of desirable plans formally.

  10. ARTIFICIAL INTELLIGENCE-BASED ESTIMATION OF MERCURY SPECIATION IN COMBUSTION FLUE GASES. (R827649)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  12. Design Novel Model Reference Artificial Intelligence Based Methodology to Optimized Fuel Ratio in IC Engine

    Directory of Open Access Journals (Sweden)

    FarzinPiltan

    2013-08-01

    Full Text Available In this research, model reference fuzzy based control is presented as robust controls for IC engine. The objective of the study is to design controls for IC engines without the knowledge of the boundary of uncertainties and dynamic information by using fuzzy model reference PD plus mass of air while improve the robustness of the PD plus mass of air control. A PD plus mass of air provides for eliminate the mass of air and ultimate accuracy in the presence of the bounded disturbance/uncertainties, although this methods also causes some oscillation. The fuzzy PD plus mass of air is proposed as a solution to the problems crated by unstability. This method has a good performance in presence of uncertainty.

  13. Nature inspired artificial intelligence based adaptive traffic flow distribution in computer network

    CERN Document Server

    Singh, Manoj Kumar

    2010-01-01

    Because of the stochastic nature of traffic requirement matrix, it is very difficult to get the optimal traffic distribution to minimize the delay even with adaptive routing protocol in a fixed connection network where capacity already defined for each link. Hence there is a requirement to define such a method, which could generate the optimal solution very quickly and efficiently. This paper presenting a new concept to provide the adaptive optimal traffic distribution for dynamic condition of traffic matrix using nature based intelligence methods. With the defined load and fixed capacity of links, average delay for packet has minimized with various variations of evolutionary programming and particle swarm optimization. Comparative study has given over their performance in terms of converging speed. Universal approximation capability, the key feature of feed forward neural network has applied to predict the flow distribution on each link to minimize the average delay for a total load available at present on t...

  14. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  15. Atomistic Simulations of Nanotube Fracture

    CERN Document Server

    Belytschko, T; Schatz, G; Ruoff, R S

    2002-01-01

    The fracture of carbon nanotubes is studied by atomistic simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The rangle of fracture strians compares well with experimental results, but predicted range of fracture stresses is marketly higher than observed. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle. The results show moderate dependence of fracture strength on chirality.

  16. Atomistic stimulation of defective oxides

    CERN Document Server

    Minervini, L

    2000-01-01

    defect processes. The predominant intrinsic disorder reaction and the mechanism by which excess oxygen is accommodated are established. Furthermore, the most favourable migration mechanism and pathway for oxygen ions is predicted. Chapters 7 and 8 investigate pyrochlore oxides. These materials are candidates for solid oxide fuel cell components and as actinide host phases. Such applications require a detailed understanding of the defect processes. The defect energies, displayed as contour maps, are able to account for structure stability and, given an appropriate partial charge potential model, to accurately determine the oxygen positional parameter. In particular, the dependence of the positional parameter on intrinsic disorder is predicted. It is demonstrated, by radiation damage experiments, that these results are able to predict the radiation performance of pyrochlore oxides. Atomistic simulation calculations based on energy minimization techniques and classical pair potentials are used to study several i...

  17. Atomistic k ⋅ p theory

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Craig E., E-mail: craig-pryor@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Pistol, M.-E., E-mail: mats-erik.pistol@ftf.lth.se [NanoLund and Solid State Physics, Lund University, P.O. Box 118, 221 00 Lund (Sweden)

    2015-12-14

    Pseudopotentials, tight-binding models, and k ⋅ p theory have stood for many years as the standard techniques for computing electronic states in crystalline solids. Here, we present the first new method in decades, which we call atomistic k ⋅ p theory. In its usual formulation, k ⋅ p theory has the advantage of depending on parameters that are directly related to experimentally measured quantities, however, it is insensitive to the locations of individual atoms. We construct an atomistic k ⋅ p theory by defining envelope functions on a grid matching the crystal lattice. The model parameters are matrix elements which are obtained from experimental results or ab initio wave functions in a simple way. This is in contrast to the other atomistic approaches in which parameters are fit to reproduce a desired dispersion and are not expressible in terms of fundamental quantities. This fitting is often very difficult. We illustrate our method by constructing a four-band atomistic model for a diamond/zincblende crystal and show that it is equivalent to the sp{sup 3} tight-binding model. We can thus directly derive the parameters in the sp{sup 3} tight-binding model from experimental data. We then take the atomistic limit of the widely used eight-band Kane model and compute the band structures for all III–V semiconductors not containing nitrogen or boron using parameters fit to experimental data. Our new approach extends k ⋅ p theory to problems in which atomistic precision is required, such as impurities, alloys, polytypes, and interfaces. It also provides a new approach to multiscale modeling by allowing continuum and atomistic k ⋅ p models to be combined in the same system.

  18. Atomistic k ⋅ p theory

    International Nuclear Information System (INIS)

    Pseudopotentials, tight-binding models, and k ⋅ p theory have stood for many years as the standard techniques for computing electronic states in crystalline solids. Here, we present the first new method in decades, which we call atomistic k ⋅ p theory. In its usual formulation, k ⋅ p theory has the advantage of depending on parameters that are directly related to experimentally measured quantities, however, it is insensitive to the locations of individual atoms. We construct an atomistic k ⋅ p theory by defining envelope functions on a grid matching the crystal lattice. The model parameters are matrix elements which are obtained from experimental results or ab initio wave functions in a simple way. This is in contrast to the other atomistic approaches in which parameters are fit to reproduce a desired dispersion and are not expressible in terms of fundamental quantities. This fitting is often very difficult. We illustrate our method by constructing a four-band atomistic model for a diamond/zincblende crystal and show that it is equivalent to the sp3 tight-binding model. We can thus directly derive the parameters in the sp3 tight-binding model from experimental data. We then take the atomistic limit of the widely used eight-band Kane model and compute the band structures for all III–V semiconductors not containing nitrogen or boron using parameters fit to experimental data. Our new approach extends k ⋅ p theory to problems in which atomistic precision is required, such as impurities, alloys, polytypes, and interfaces. It also provides a new approach to multiscale modeling by allowing continuum and atomistic k ⋅ p models to be combined in the same system

  19. Effectiveness of Multiple Intelligence Based Teaching (MIBT) in Teaching Mathematics for Primary School Students

    Science.gov (United States)

    Xavier, P.; Annaraja, P.

    2007-01-01

    Multiple Intelligence Based Teaching (MIBT) applies the multiple intelligence theory in the process of teaching and learning. MIBT explores and develops the intelligence of the students. Also, it teaches the content in a multiple way to the students. The objective of the present study is to find out the effectiveness of multiple intelligence based…

  20. Atomistic modeling of dropwise condensation

    Science.gov (United States)

    Sikarwar, B. S.; Singh, P. L.; Muralidhar, K.; Khandekar, S.

    2016-05-01

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  1. Atomistic computer simulations a practical guide

    CERN Document Server

    Brazdova, Veronika

    2013-01-01

    Many books explain the theory of atomistic computer simulations; this book teaches you how to run them This introductory ""how to"" title enables readers to understand, plan, run, and analyze their own independent atomistic simulations, and decide which method to use and which questions to ask in their research project. It is written in a clear and precise language, focusing on a thorough understanding of the concepts behind the equations and how these are used in the simulations. As a result, readers will learn how to design the computational model and which parameters o

  2. Atomistic Processes of Catalyst Degradation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-27

    The purpose of this cooperative research and development agreement (CRADA) between Sasol North America, Inc., and the oak Ridge National Laboratory (ORNL) was to improve the stability of alumina-based industrial catalysts through the combination of aberration-corrected scanning transmission electron microscopy (STEM) at ORNL and innovative sample preparation techniques at Sasol. Outstanding progress has been made in task 1, 'Atomistic processes of La stabilization'. STEM investigations provided structural information with single-atom precision, showing the lattice location of La dopant atoms, thus enabling first-principles calculations of binding energies, which were performed in collaboration with Vanderbilt University. The stabilization mechanism turns out to be entirely due to a particularly strong binding energy of the La tom to the {gamma}-alumina surface. The large size of the La atom precludes incorporation of La into the bulk alumina and also strains the surface, thus preventing any clustering of La atoms. Thus highly disperse distribution is achieved and confirmed by STEM images. la also affects relative stability of the exposed surfaces of {gamma}-alumina, making the 100 surface more stable for the doped case, unlike the 110 surface for pure {gamma}-alumina. From the first-principles calculations, they can estimate the increase in transition temperature for the 3% loading of La used commercially, and it is in excellent agreement with experiment. This task was further pursued aiming to generate useable recommendations for the optimization of the preparation techniques for La-doped aluminas. The effort was primarily concentrated on the connection between the boehmitre-{gamma}-Al{sub 2}O{sub 3} phase transition (i.e. catalyst preparation) and the resulting dispersion of La on the {gamma}-Al{sub 2}O{sub 3} surface. It was determined that the La distribution on boehmite was non-uniform and different from that on the {gamma}-Al{sub 2}O{sub 3} and thus

  3. Effects of Spatial Intelligence-based Instruction on Learning Pictorial Idiomatic Expressions in an EFL Context

    Directory of Open Access Journals (Sweden)

    Mehdi Solhi Andarab

    2015-05-01

    Full Text Available In this study, at the outset, the effect of spatial intelligence-based instruction on learning pictorial idioms in an EFL context was investigated. Then, an attempt was made to find the possible difference between male and female learners' spatial intelligence with regard to the learning of pictorial idioms. To this end, 50 female and 50 male EFL students were randomly selected.  After distributing a questionnaire, the participants with high spatial intelligence were assigned to the experimental group while the participants with lower intelligence profile were assigned into the control group. The same procedure was followed with regard to the male participants. The number of the participants was slightly high. Therefore, they were divided into several subgroups. The both groups showed to be homogenous concerning their knowledge of the English idioms. Then, the idioms taught to the both control (the learners with low spatial intelligence profile and the experimental groups (the learners with high spatial intelligence profile were pictorial spatial intelligence-based. The treatment continued for approximately 3 months. An independent samples t-test applied on the scores achieved from a posttest showed a significant difference between the control and the experimental groups of the both male and female participants in apprehending the meaning of the English idioms. However, the results obtained from the two-way ANOVA conducted on the scores earned from the posttest showed a significant difference between the male and female participants’ intelligence profile in learning the pictorial idioms. As a result, the spatial intelligence-based instruction of English idioms proved to be highly beneficial when teaching idioms.Keywords: Spatial Intelligence-based Instruction, Pictorial Idioms

  4. Computational Intelligence based techniques for islanding detection of distributed generation in distribution network: A review

    International Nuclear Information System (INIS)

    Highlights: • Unintentional and intentional islanding, their causes, and solutions are presented. • Remote, passive, active and hybrid islanding detection techniques are discussed. • The limitation of these techniques in accurately detect islanding are discussed. • Computational intelligence techniques ability in detecting islanding is discussed. • Review of ANN, fuzzy logic control, ANFIS, Decision tree techniques is provided. - Abstract: Accurate and fast islanding detection of distributed generation is highly important for its successful operation in distribution networks. Up to now, various islanding detection technique based on communication, passive, active and hybrid methods have been proposed. However, each technique suffers from certain demerits that cause inaccuracies in islanding detection. Computational intelligence based techniques, due to their robustness and flexibility in dealing with complex nonlinear systems, is an option that might solve this problem. This paper aims to provide a comprehensive review of computational intelligence based techniques applied for islanding detection of distributed generation. Moreover, the paper compares the accuracies of computational intelligence based techniques over existing techniques to provide a handful of information for industries and utility researchers to determine the best method for their respective system

  5. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss......Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and...

  6. Atomistic spin dynamics and surface magnons

    International Nuclear Information System (INIS)

    Atomistic spin dynamics simulations have evolved to become a powerful and versatile tool for simulating dynamic properties of magnetic materials. It has a wide range of applications, for instance switching of magnetic states in bulk and nano-magnets, dynamics of topological magnets, such as skyrmions and vortices and domain wall motion. In this review, after a brief summary of the existing investigation tools for the study of magnons, we focus on calculations of spin-wave excitations in low-dimensional magnets and the effect of relativistic and temperature effects in such structures. In general, we find a good agreement between our results and the experimental values. For material specific studies, the atomistic spin dynamics is combined with electronic structure calculations within the density functional theory from which the required parameters are calculated, such as magnetic exchange interactions, magnetocrystalline anisotropy, and Dzyaloshinskii–Moriya vectors. (topical review)

  7. Quantum corrections to the `atomistic' MOSFET simulation

    OpenAIRE

    Asenov, A.

    2000-01-01

    In this paper we study the influence of the quantum effects in the inversion layer on the parameter fluctuation in decanano MOSFETs. The quantum mechanical effects are incorporated in our previously published 3D 'atomistic' simulation approach using a full 3D implementation of the density gradient formalism. This results in a consistent, fully 3D, quantum mechanical picture which incorporates the vertical inversion layer quantization, lateral confinement effects associated with the current fi...

  8. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  9. Optimizing radiologic workup: An artificial intelligence approach

    International Nuclear Information System (INIS)

    The increasing complexity of diagnostic imaging is presenting an ever-expanding variety of radiologic test options to referring clinicians, making it more difficult for them to plan efficient workup. Diagnosis-oriented reimbursement systems are providing new incentives for hospitals and radiologists to use imaging modalities judiciously. This paper describes DxCON, a developmental artificial intelligence-based computer system, which gives advice to physicians about the optimum sequencing of radiologic tests. DxCON analyzes a physician's proposed workup plan and discusses its strengths and weaknesses. The domain chosen for this research is the imaging workup of obstructive jaundice

  10. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    OpenAIRE

    Wang Chun-Feng; Liu Kui; Shen Pei-Ping

    2014-01-01

    Artificial bee colony (ABC) algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, t...

  11. Design & Development of a Software System for Swarm Intelligence based Research Studies

    Directory of Open Access Journals (Sweden)

    Utku Köse

    2012-11-01

    Full Text Available This paper introduce a software system including widely-used Swarm Intelligence algorithms or approaches to be used for the related scientific research studies associated with the subject area. The programmatic infrastructure of the system allows working on a fast, easy-to-use,
    interactive platform to perform Swarm Intelligence based studies in a more effective, efficient and accurate way. In this sense, the system employs all of the necessary controls for the algorithms and it ensures an interactive platform on which computer users can perform studies on a wide spectrum
    of solution approaches associated with simple and also more advanced problems.

  12. Artificial Limbs

    Science.gov (United States)

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as ...

  13. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example, the...... stability of screw dislocation dipoles is discussed. We show that the presence of jogs will strongly influence cross slip barriers and dipole stability. We furthermore present some new results on jogged edge dislocations and edge dislocation dipoles. The jogs are found to be extended, and simulations of...

  14. A swarm intelligence based memetic algorithm for task allocation in distributed systems

    Science.gov (United States)

    Sarvizadeh, Raheleh; Haghi Kashani, Mostafa

    2012-01-01

    This paper proposes a Swarm Intelligence based Memetic algorithm for Task Allocation and scheduling in distributed systems. The tasks scheduling in distributed systems is known as an NP-complete problem. Hence, many genetic algorithms have been proposed for searching optimal solutions from entire solution space. However, these existing approaches are going to scan the entire solution space without considering the techniques that can reduce the complexity of the optimization. Spending too much time for doing scheduling is considered the main shortcoming of these approaches. Therefore, in this paper memetic algorithm has been used to cope with this shortcoming. With regard to load balancing efficiently, Bee Colony Optimization (BCO) has been applied as local search in the proposed memetic algorithm. Extended experimental results demonstrated that the proposed method outperformed the existing GA-based method in terms of CPU utilization.

  15. Scalable Atomistic Simulation Algorithms for Materials Research

    Directory of Open Access Journals (Sweden)

    Aiichiro Nakano

    2002-01-01

    Full Text Available A suite of scalable atomistic simulation programs has been developed for materials research based on space-time multiresolution algorithms. Design and analysis of parallel algorithms are presented for molecular dynamics (MD simulations and quantum-mechanical (QM calculations based on the density functional theory. Performance tests have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers. The linear-scaling algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with parallel efficiency well over 90%. production-quality programs also feature wavelet-based computational-space decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive simulation data.

  16. The Impact of Multiple Intelligences-Based Instruction on Developing Speaking Skills of the Pre-Service Teachers of English

    Science.gov (United States)

    Salem, Ashraf Atta M. S.

    2013-01-01

    The current study investigates the impact of multiple intelligences-based Instruction on developing speaking skills of the pre-service teachers of English. Therefore, the problem of the current study can be stated in the lack of speaking skills of the pre-service teachers of English in Hurgada faculty of Education, South Valley University. To…

  17. Artificial blood

    Directory of Open Access Journals (Sweden)

    Sarkar Suman

    2008-01-01

    Full Text Available Artificial blood is a product made to act as a substitute for red blood cells. While true blood serves many different functions, artificial blood is designed for the sole purpose of transporting oxygen and carbon dioxide throughout the body. Depending on the type of artificial blood, it can be produced in different ways using synthetic production, chemical isolation, or recombinant biochemical technology. Development of the first blood substitutes dates back to the early 1600s, and the search for the ideal blood substitute continues. Various manufacturers have products in clinical trials; however, no truly safe and effective artificial blood product is currently marketed. It is anticipated that when an artificial blood product is available, it will have annual sales of over $7.6 billion in the United States alone.

  18. Further development of large-scale atomistic modelling techniques for Fe-Cr alloys

    International Nuclear Information System (INIS)

    In this paper we review the current status of our efforts to model the Fe-Cr system, which is a model alloy for high-Cr ferritic-martensitic steels, using large-scale atomistic methods. The core of such methods are semi-empirical interatomic potentials. Here we discuss their performance with respect to the features that are important for an accurate description of radiation effects in Fe-Cr alloys. We describe their most recent improvements regarding macroscopic thermodynamic properties as well as microscopic point-defect properties. Furthermore we describe a new type of large-scale atomistic kinetic Monte Carlo (AKMC) approach driven by an artificial neural network (ANN) regression method to generate the local migration barrier for a defect accounting for the local chemistry around it. The results of the thermal annealing of the Fe-20Cr alloy modelled using this AKMC approach, parameterized by our newly developed potential, were found to be in very good agreement with experimental data. Furthermore the interaction of a 1/2 screw dislocation with Cr precipitates as obtained from the AKMC simulations was studied using the same potential. In summary, we critically discuss our current achievements, findings and outline issues to be addressed in the near future development.

  19. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  20. Artificial urushi.

    Science.gov (United States)

    Kobayashi, S; Uyama, H; Ikeda, R

    2001-11-19

    A new concept for the design and laccase-catalyzed preparation of "artificial urushi" from new urushiol analogues is described. The curing proceeded under mild reaction conditions to produce the very hard cross-linked film (artificial urushi) with a high gloss surface. A new cross-linkable polyphenol was synthesized by oxidative polymerization of cardanol, a phenol derivative from cashew-nut-shell liquid, by enzyme-related catalysts. The polyphenol was readily cured to produce the film (also artificial urushi) showing excellent dynamic viscoelasticity. PMID:11763444

  1. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  2. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  3. Free energy of steps using atomistic simulations

    Science.gov (United States)

    Freitas, Rodrigo; Frolov, Timofey; Asta, Mark

    The properties of solid-liquid interfaces are known to play critical roles in solidification processes. Particularly special importance is given to thermodynamic quantities that describe the equilibrium state of these surfaces. For example, on the solid-liquid-vapor heteroepitaxial growth of semiconductor nanowires the crystal nucleation process on the faceted solid-liquid interface is influenced by the solid-liquid and vapor-solid interfacial free energies, and also by the free energies of associated steps at these faceted interfaces. Crystal-growth theories and mesoscale simulation methods depend on quantitative information about these properties, which are often poorly characterized from experimental measurements. In this work we propose an extension of the capillary fluctuation method for calculation of the free energy of steps on faceted crystal surfaces. From equilibrium atomistic simulations of steps on (111) surfaces of Copper we computed accurately the step free energy for different step orientations. We show that the step free energy remains finite at all temperature up to the melting point and that the results obtained agree with the more well established method of thermodynamic integration if finite size effects are taken into account. The research of RF and MA at UC Berkeley were supported by the US National Science Foundation (Grant No. DMR-1105409). TF acknowledges support through a postdoctoral fellowship from the Miller Institute for Basic Research in Science.

  4. Robust atomistic calculation of dislocation line tension

    Science.gov (United States)

    Szajewski, B. A.; Pavia, F.; Curtin, W. A.

    2015-12-01

    The line tension Γ of a dislocation is an important and fundamental property ubiquitous to continuum scale models of metal plasticity. However, the precise value of Γ in a given material has proven difficult to assess, with literature values encompassing a wide range. Here results from a multiscale simulation and robust analysis of the dislocation line tension, for dislocation bow-out between pinning points, are presented for two widely-used interatomic potentials for Al. A central part of the analysis involves an effective Peierls stress applicable to curved dislocation structures that markedly differs from that of perfectly straight dislocations but is required to describe the bow-out both in loading and unloading. The line tensions for the two interatomic potentials are similar and provide robust numerical values for Al. Most importantly, the atomic results show notable differences with singular anisotropic elastic dislocation theory in that (i) the coefficient of the \\text{ln}(L) scaling with dislocation length L differs and (ii) the ratio of screw to edge line tension is smaller than predicted by anisotropic elasticity. These differences are attributed to local dislocation core interactions that remain beyond the scope of elasticity theory. The many differing literature values for Γ are attributed to various approximations and inaccuracies in previous approaches. The results here indicate that continuum line dislocation models, based on elasticity theory and various core-cut-off assumptions, may be fundamentally unable to reproduce full atomistic results, thus hampering the detailed predictive ability of such continuum models.

  5. Atomistic simulations of caloric effects in ferroelectrics

    Science.gov (United States)

    Lisenkov, Sergey; Ponomareva, Inna

    2013-03-01

    The materials that exhibit large caloric effects have emerged as promising candidates for solid-state refrigeration which is an energy-efficient and environmentally friendly alternative to the conventional refrigeration technology. However, despite recent ground breaking discoveries of giant caloric effects in some materials they appear to remain one of nature's rarities. Here we use atomistic simulations to study electrocaloric and elastocaloric effects in Ba0.5Sr0.5TiO3 and PbTiO3 ferroelectrics. Our study reveals the intrinsic features of such caloric effects in ferroelectrics and their potential to exhibit giant caloric effects. Some of the findings include the coexistence of negative and positive electrocaloric effects in one material and an unusual field-driven transition between them as well as the coexistence of multiple giant caloric effects in Ba0.5Sr0.5TiO3 alloys. These findings could potentially lead to new paradigms for cooling devices. This work is partially supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0005245.

  6. Atomistic mechanisms of fatigue in nanotwinned metals

    International Nuclear Information System (INIS)

    We investigate the fatigue behavior of nanotwinned Cu using a combination of molecular statics and molecular dynamics simulations. The presence of nanoscale twins is found to enhance fatigue crack growth resistance. For the twin-free nanocrystalline samples, the fatigue crack propagates by linking the nanovoids that are formed ahead of the crack tip. In the case of the nanotwinned samples, however, it advances as the crack tip alternately blunts and re-sharpens due to dislocation emission and slip. Both detwinning and crack closure are observed in the path of the fatigue crack in nanotwinned samples with a high density of twin boundaries. As the twin number per grain (quantified by the ratio of the mean grain size to the twin boundary spacing d/λ) increases, detwinning increases the dissipated energy of fatigue cracking, leading to enhanced fatigue resistance. The atomistic simulations show that fatigue crack growth in nanotwinned Cu conforms to Paris’ law. In conjunction with the experimental results, we obtain a quantitative estimation of the Paris’ law exponent (∼4.0), which is in agreement with the theoretical predictions from the damage accumulation model

  7. Electrical Load Forecasting in Power Distribution Network by Using Artificial Neural Network

    OpenAIRE

    Ali Nahari; Habib Rostami; Rahman Dashti

    2013-01-01

    Today, one of most important concerns in electrical power markets and distribution network is supplying the customer demands. In order to manage the market it is necessary to forecast the usage of electrical power in distribution network. The pattern of electrical power usage depends on many different parameters such as the week days, seasons, weather condition and etc. Today, researchers by using an artificial intelligence based on the natural intelligence are trying to forecast the costumer...

  8. A comparison of finite element and atomistic modelling of fracture

    International Nuclear Information System (INIS)

    Are the cohesive laws of interfaces sufficient for modelling fracture in polycrystals using the cohesive zone model? We examine this question by comparing a fully atomistic simulation of a silicon polycrystal with a finite element simulation with a similar overall geometry. The cohesive laws used in the finite element simulation are measured atomistically. We describe in detail how to convert the output of atomistic grain boundary fracture simulations into the piecewise linear form needed by a cohesive zone model. We discuss the effects of grain boundary microparameters (the choice of section of the interface, the translations of the grains relative to one another and the cutting plane of each lattice orientation) on the cohesive laws and polycrystal fracture. We find that the atomistic simulations fracture at lower levels of external stress, indicating that the initiation of fracture in the atomistic simulations is likely dominated by irregular atomic structures at external faces, internal edges, corners and junctions of grains. Thus, the cohesive properties of interfaces alone are not likely to be sufficient for modelling the fracture of polycrystals using continuum methods

  9. A robust, coupled approach for atomistic-continuum simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Aubry, Sylvie; Webb, Edmund Blackburn, III (Sandia National Laboratories, Albuquerque, NM); Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A.; Bammann, Douglas J.; Hoyt, Jeffrey John (Sandia National Laboratories, Albuquerque, NM); Kimmer, Christopher J.

    2004-09-01

    This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.

  10. Artificial noses.

    Science.gov (United States)

    Stitzel, Shannon E; Aernecke, Matthew J; Walt, David R

    2011-08-15

    The mammalian olfactory system is able to detect many more odorants than the number of receptors it has by utilizing cross-reactive odorant receptors that generate unique response patterns for each odorant. Mimicking the mammalian system, artificial noses combine cross-reactive sensor arrays with pattern recognition algorithms to create robust odor-discrimination systems. The first artificial nose reported in 1982 utilized a tin-oxide sensor array. Since then, however, a wide range of sensor technologies have been developed and commercialized. This review highlights the most commonly employed sensor types in artificial noses: electrical, gravimetric, and optical sensors. The applications of nose systems are also reviewed, covering areas such as food and beverage quality control, chemical warfare agent detection, and medical diagnostics. A brief discussion of future trends for the technology is also provided. PMID:21417721

  11. Artificial intelligence

    International Nuclear Information System (INIS)

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  12. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  13. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  14. Artificial sweeteners

    DEFF Research Database (Denmark)

    Raben, Anne Birgitte; Richelsen, Bjørn

    2012-01-01

    Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie-containin...

  15. Artificial photosynthesis

    OpenAIRE

    Andrew C. Benniston; Anthony Harriman

    2008-01-01

    We raise here a series of critical issues regarding artificial photosynthesis with the intention of increasing awareness about what needs to be done to bring about a working prototype. Factors under consideration include energy and electron transfers, coupled redox reactions, repair mechanisms, and integrated photosystems.

  16. Atomistic Modeling of the U-Zr System

    International Nuclear Information System (INIS)

    Atomistic modeling using the BFS method for alloys and ab initio based parameters is proposed for the study of fundamental properties of U-Zr metallic nuclear fuels. Due to its basic atomistic nature and the universal character of the parametrization, the approach can be used for diverse problems such as the interaction between fuel and cladding and temperature gradient fuel constituent redistribution. In the first case, preliminary results for the formation of an interaction layer using large scale simulations are presented. For the second case, a mean field formalism is introduced in order to determine concentration profiles for arbitrary changes in temperature in the radial direction. (author)

  17. An object oriented Python interface for atomistic simulations

    Science.gov (United States)

    Hynninen, T.; Himanen, L.; Parkkinen, V.; Musso, T.; Corander, J.; Foster, A. S.

    2016-01-01

    Programmable simulation environments allow one to monitor and control calculations efficiently and automatically before, during, and after runtime. Environments directly accessible in a programming environment can be interfaced with powerful external analysis tools and extensions to enhance the functionality of the core program, and by incorporating a flexible object based structure, the environments make building and analysing computational setups intuitive. In this work, we present a classical atomistic force field with an interface written in Python language. The program is an extension for an existing object based atomistic simulation environment.

  18. Atomistic calculation of the thermoelectric properties of Si nanowires

    OpenAIRE

    Bejenari, Igor; Kratzer, Peter

    2014-01-01

    The thermoelectric properties of 1.6 nm-thick Si square nanowires with [100] crystalline orientation are calculated over a wide temperature range from 0 K to 1000 K, taking into account atomistic electron-phonon interaction. In our model, the [010] and [001] facets are passivated by hydrogen and there are Si-Si dimers on the nanowire surface. The electronic structure was calculated by using the sp^3 spin-orbit-coupled atomistic second-nearest-neighbor tight-binding model. The phonon dispersio...

  19. Hierarchical approach to 'atomistic' 3-D MOSFET simulation

    OpenAIRE

    Asenov, A.; Brown, A. R.; J. H. Davies; S Saini

    1999-01-01

    We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1-μm MOSFETs. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have de...

  20. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  1. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  2. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics.

    Science.gov (United States)

    Amani, Ehsan; Movahed, Saeid

    2016-06-01

    In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. PMID:27155300

  3. Adaptive resolution simulation of an atomistic protein in MARTINI water

    NARCIS (Netherlands)

    Zavadlav, Julija; Melo, Manuel Nuno; Marrink, Siewert J.; Praprotnik, Matej

    2014-01-01

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coa

  4. Bridging the Macroscopic and Atomistic Descriptions of the Electrocaloric Effect

    Science.gov (United States)

    Ponomareva, I.; Lisenkov, S.

    2012-04-01

    First-principles-based simulations are used to simulate the electrocaloric effect (ECE) in Ba0.5Sr0.5TiO3 alloys. In analogy with experimental studies we simulate the effect directly and indirectly (via the use of Maxwell thermodynamics). Both direct and indirect simulations utilize the same atomistic framework that allows us to compare them in a systematic way and with an atomistic precision for the very first time. Such precise comparison allows us to provide a bridge between the atomistic and macroscopic descriptions of the ECE and identify the factors that may critically compromise or even destroy their equivalence. Our computational data reveal the intrinsic features of ECE in ferroelectrics with multiple ferroelectric transitions and confirm the potential of these materials to exhibit giant electrocaloric response. The coexistence of negative and positive ECE in one material as well as an unusual field-driven transition between them is predicted, explained at an atomistic level, and proposed as a potential way to enhance the electrocaloric efficiency.

  5. Definition and detection of contact in atomistic simulations

    NARCIS (Netherlands)

    Solhjoo, Soheil; Vakis, Antonis I.

    2015-01-01

    In atomistic simulations, contact depends on the accurate detection of contacting atoms as well as their contact area. While it is common to define contact between atoms based on the so-called ‘contact distance’ where the interatomic potential energy reaches its minimum, this discounts, for example,

  6. Adhesive contact:from atomistic model to continuum model

    Institute of Scientific and Technical Information of China (English)

    Fan Kang-Qi; Jia Jian-Yuan; Zhu Ying-Min; Zhang Xiu-Yan

    2011-01-01

    Two types of Lennard-Jones potential are widely used in modeling adhesive contacts. However, the relationships between the parameters of the two types of Lennard-Jones potential are not well defined. This paper employs a selfconsistent method to derive the Lennard-Jones surface force law from the interatomic Lennard-Jones potential with emphasis on the relationships between the parameters. The effect of using correct parameters in the adhesion models is demonstrated in single sphere-flat contact via continuum models and an atomistic model. Furthermore, the adhesion hysteresis behaviour is investigated, and the S-shaped force-distance relation is revealed by the atomistic model. It shows that the adhesion hysteresis loop is generated by the jump-to-contact and jump-off-contact, which are illustrated by the S-shaped force-distance curve.

  7. Atomistic modeling of carbon Cottrell atmospheres in bcc iron

    International Nuclear Information System (INIS)

    Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.

  8. Atomistic modelling of radiation effects: Towards dynamics of exciton relaxation

    OpenAIRE

    Shluger, A. L.; Gavartin, J. L.; Szymanski, M. A.; Stoneham, A. M.

    2000-01-01

    This brief review is focused on recent results of atomistic modelling and simulation of exciton related processes in ionic materials. We present an analysis of thermal fluctuations of the electrostatic potential in cubic ionic crystals and their relation to formation of a tail in the electron density of states and localisation of electronic states. Then the possible 'fast' mechanism of formation of F-H pairs in KBr as a result of decomposition of relaxing excitons is discussed. We briefly des...

  9. Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers

    OpenAIRE

    Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter

    2014-01-01

    Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DM...

  10. Redox reactions with empirical potentials: Atomistic battery discharge simulations

    OpenAIRE

    Dapp, Wolf B.; Müser, Martin H.

    2013-01-01

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each ...

  11. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.

    Science.gov (United States)

    Rapaport, D C

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency. PMID:19518394

  12. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine

    CERN Document Server

    Rapaport, D C

    2009-01-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  13. Structure identification methods for atomistic simulations of crystalline materials

    OpenAIRE

    Stukowski, Alexander

    2012-01-01

    We discuss existing and new computational analysis techniques to classify local atomic arrangements in large-scale atomistic computer simulations of crystalline solids. This article includes a performance comparison of typical analysis algorithms such as Common Neighbor Analysis, Centrosymmetry Analysis, Bond Angle Analysis, Bond Order Analysis, and Voronoi Analysis. In addition we propose a simple extension to the Common Neighbor Analysis method that makes it suitable for multi-phase systems...

  14. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine

    Science.gov (United States)

    Rapaport, D. C.

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  15. Atomistic Determination of Cross-Slip Pathway and Energetics

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben;

    1997-01-01

    The mechanism for cross slip of a screw dislocation in Cu is determined by atomistic simulations that only presume the initial and final states of the process. The dissociated dislocation constricts in the primary plane and redissociates into the cross-slip plane while still partly in the primary...... dislocation is determined. The breakdown of linear elasticity theory for small splitting widths is studied. [S0031-9007(97)04444-X]....

  16. Impacts of Atomistic Coating on Thermal Conductivity of Germanium Nanowires

    OpenAIRE

    Chen, Jie; Zhang, Gang; Li, Baowen

    2012-01-01

    By using non-equilibrium molecular dynamics simulations, we demonstrated that thermal conductivity of Germanium nanowires can be reduced more than 25% at room temperature by atomistic coating. There is a critical coating thickness beyond which thermal conductivity of the coated nanowire is larger than that of the host nanowire. The diameter dependent critical coating thickness and minimum thermal conductivity are explored. Moreover, we found that interface roughness can induce further reducti...

  17. A hybrid molecular dynamics/atomic-scale finite element method for quasi-static atomistic simulations at finite temperature

    CERN Document Server

    Xu, Ran

    2013-01-01

    In this paper, a hybrid quasi-static atomistic simulation method at finite temperature is developed, which combines the advantages of MD for thermal equilibrium and atomic-scale finite element method (AFEM) for efficient equilibration. Some temperature effects are embedded in static AFEM simulation by applying the virtual and equivalent thermal disturbance forces extracted from MD. Alternatively performing MD and AFEM can quickly obtain a series of thermodynamic equilibrium configurations such that a quasi-static process is modeled. Moreover, a stirring-accelerated MD/AFEM fast relaxation approach is proposed, in which the atomic forces and velocities are randomly exchanged to artificially accelerate the "slow processes" such as mechanical wave propagation and thermal diffusion. The efficiency of the proposed methods is demonstrated by numerical examples on single wall carbon nanotubes.

  18. Numerical Simulation of The Mechanical Properties of Carbon Nanotube Using the Atomistic-Continuum Mechanics

    OpenAIRE

    Wu, C. -J.; Chou, C. -Y.; Han, C. -N.; Chiang, K.-N.

    2006-01-01

    This paper the utilizes atomistic-continuum mechanics (ACM) to investigate the mechanical properties of single-walled carbon nanotubes (SWCNTs). By establishing a linkage between structural mechanics and molecular mechanics, not only the Young's moduli could be obtained but also the modal analysis could be achieved. In addition, according to atomistic-continuum mechanics and finite element method, an effective atomistic-continuum model is constructed to investigate the above two mechanical pr...

  19. Artificial Economy

    Directory of Open Access Journals (Sweden)

    Alexandru JIVAN

    2011-08-01

    Full Text Available This paper proposes to eliminate, a routine in the economic thinking, claimed to be responsible for the negative essence of economic developments, from the point of view, of the ecological implications (employment in the planetary ecosystem. The methodological foundations start from the natural origins of the functionality of the human economic society according to the originary physiocrat liberalism, and from specific natural characteristics of the humankind. This paper begins with a comment-analysis of the difference between natural and artificial within the economy, and then explains some of the most serious diversions from the natural essence of economic liberalism. It shall be explained the original (heterodox interpretation of the Classical political economy (economics, by making calls to the Romanian economic thinking from aggravating past century. Highlighting the destructive impact of the economy - which, under the invoked doctrines, we call unnatural - allows an intuitive presentation of a logical extension of Marshall's market price, based on previous research. Besides the doctrinal arguments presented, the economic realities inventoried along the way (major deficiencies and effects, determined demonstrate the validity of the hypothesis of the unnatural character and therefore necessarily to be corrected, of the concept and of the mechanisms of the current economy.The results of this paper consist of original heterodox methodspresented, intuitive or developed that can be found conclusively within the key proposals for education and regulation.

  20. Development of AI (Artificial Intelligence)-based simulation system for man-machine system behavior in accidental situations of nuclear power plant

    International Nuclear Information System (INIS)

    A prototype version of a computer simulation system named JACOS (JAeri COgnitive Simulation system) has been developed at JAERI (Japan Atomic Energy Research Institute) to simulate the man-machine system behavior in which both the cognitive behavior of a human operator and the plant behavior affect each other. The objectives of this system development is to provide man-machine system analysts with detailed information on the cognitive process of an operator and the plant behavior affected by operator's actions in accidental situations of an NPP (nuclear power plant). The simulation system consists of an operator model and a plant model which are coupled dynamically. The operator model simulates an operator's cognitive behavior in accidental situations based on the decision ladder model of Rasmussen, and is implemented using the AI-techniques of the distributed cooperative inference method with the so-called blackboard architecture. Rule-based behavior is simulated using knowledge representation with If-Then type of rules. Knowledge-based behavior is simulated using knowledge representation with MFM (Multilevel Flow Modeling) and qualitative reasoning method. Cognitive characteristics of attentional narrowing, limitation of short-term memory, and knowledge recalling from long-term memory are also modeled. The plant model of a 3-loop PWR is also developed using a best estimate thermal-hydraulic analysis code RELAP5/MOD2. Some simulations of incidents were performed to verify the human model. It was found that AI-techniques used in the human model are suitable to simulate the operator's cognitive behavior in an NPP accident. The models of cognitive characteristics were investigated in the effects on simulated results of cognitive behaviors. (author)

  1. Artificial Intelligence-based control for torque ripple minimization in switched reluctance motor drives - doi: 10.4025/actascitechnol.v36i1.18097

    Directory of Open Access Journals (Sweden)

    Kalaivani Lakshmanan

    2014-01-01

    Full Text Available In this paper, various intelligent controllers such as Fuzzy Logic Controller (FLC and Adaptive Neuro Fuzzy Inference System (ANFIS-based current compensating techniques are employed for minimizing the torque ripples in switched reluctance motor. FLC and ANFIS controllers are tuned using MATLAB Toolbox. For the purpose of comparison, the performance of conventional Proportional-Integral (PI controller is also considered. The statistical parameters like minimum, maximum, mean, standard deviation of total torque, torque ripple coefficient and the settling time of speed response for various controllers are reported. From the simulation results, it is found that both FLC and ANFIS controllers gives better performance than PI controller. Among the intelligent controllers, ANFIS gives outer performance than FLC due to its good learning and generalization capabilities thereby improves the dynamic performance of SRM drives.

  2. Atomistic simulations of jog migration on extended screw dislocations

    DEFF Research Database (Denmark)

    Vegge, T.; Leffers, T.; Pedersen, O.B.; Jacobsen, K.W.

    Effective Medium Theory, The minimum energy path through configuration space and the corresponding transition state energy are obtained using the Nudged Elastic Band path technique. We find very similar migration properties for elementary jogs on the (110){110} octahedral slip systems and the (110){110} non......We have performed large-scale atomistic simulations of the migration of elementary jogs on dissociated screw dislocations in Cu. The local crystalline configurations, transition paths. effective masses. and migration barriers for the jogs are determined using an interatomic potential based on the...

  3. Atomistic simulations of Mg-Cu metallic glasses: Mechanical properties

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2004-01-01

    The atomistic mechanisms of plastic deformation in amorphous metals are far from being understood. We have derived potential parameters for molecular dynamics simulations of Mg-Cu amorphous alloys using the Effective Medium Theory. We have simulated the formation of alloys by cooling from the melt......, and have used these glassy configurations to carry out simulations of plastic deformation. These involved different compositions, temperatures (including zero), and types of deformation (uniaxial strain/pure shear), and yielded stress-strain curves and values of flow stress. Separate simulations were...

  4. Atomistic simulations of plasma-wall interactions in fusion reactors

    International Nuclear Information System (INIS)

    Atomistic computer simulations, especially molecular dynamics, but also kinetic Monte Carlo simulations and electronic structure calculations, have proven to be a valuable tool for studying radiation effects in fusion reactor materials. In this paper, I will first review a few cases where these methods have given additional insights into the interaction between a fusion plasma and the first wall of a reactor. Then I will, in the spirit of the workshop theme of 'new directions in plasma-wall interactions' discuss some possible future avenues of research

  5. Atomistically-informed Dislocation Dynamics in fcc Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, E; Marian, J; Arsenlis, T; Victoria, M; Perlado, J M

    2006-09-06

    We develop a nodal dislocation dynamics (DD) model to simulate plastic processes in fcc crystals. The model explicitly accounts for all slip systems and Burgers vectors observed in fcc systems, including stacking faults and partial dislocations. We derive simple conservation rules that describe all partial dislocation interactions rigorously and allow us to model and quantify cross-slip processes, the structure and strength of dislocation junctions and the formation of fcc-specific structures such as stacking fault tetrahedra. The DD framework is built upon isotropic non-singular linear elasticity, and supports itself on information transmitted from the atomistic scale. In this fashion, connection between the meso and micro scales is attained self-consistently with core parameters fitted to atomistic data. We perform a series of targeted simulations to demonstrate the capabilities of the model, including dislocation reactions and dissociations and dislocation junction strength. Additionally we map the four-dimensional stress space relevant for cross-slip and relate our findings to the plastic behavior of monocrystalline fcc metals.

  6. Adaptive resolution simulation of an atomistic protein in MARTINI water

    International Nuclear Information System (INIS)

    We present an adaptive resolution simulation of protein G in multiscale water. We couple atomistic water around the protein with mesoscopic water, where four water molecules are represented with one coarse-grained bead, farther away. We circumvent the difficulties that arise from coupling to the coarse-grained model via a 4-to-1 molecule coarse-grain mapping by using bundled water models, i.e., we restrict the relative movement of water molecules that are mapped to the same coarse-grained bead employing harmonic springs. The water molecules change their resolution from four molecules to one coarse-grained particle and vice versa adaptively on-the-fly. Having performed 15 ns long molecular dynamics simulations, we observe within our error bars no differences between structural (e.g., root-mean-squared deviation and fluctuations of backbone atoms, radius of gyration, the stability of native contacts and secondary structure, and the solvent accessible surface area) and dynamical properties of the protein in the adaptive resolution approach compared to the fully atomistically solvated model. Our multiscale model is compatible with the widely used MARTINI force field and will therefore significantly enhance the scope of biomolecular simulations

  7. Testing continuum concepts for hydrogen embrittlement in metals using atomistics

    International Nuclear Information System (INIS)

    Hydrogen embrittlement is a pervasive mode of degradation in many metallic systems that can occur via several mechanisms. Here, the competition between dislocation emission and cleavage at a crack tip is evaluated in the presence of H. At this level, embrittlement is predicted when the critical stress intensity required for emission rises above that needed for cleavage, eliminating crack tip plasticity and blunting as toughening mechanisms. Continuum predictions for emission and cleavage are made using computed generalized stacking fault energies and surface energies in a model Ni–H system, and embrittlement is predicted at a critical H concentration. An atomistic model is then used to investigate actual crack tip behavior in the presence of controlled arrays of H atoms around the crack tip. The continuum models are accurate at low H concentrations, below the embrittlement point, but at higher H concentrations the models deviate from the atomistic behavior due to alternative dislocation emission modes. Additional H configurations are investigated to understand controlling features of the emission process. In no cases does crack propagation occur in preference to dislocation emission in geometries where emission is possible, indicating that embrittlement can be more complicated than envisioned by the basic brittle–ductile transition

  8. Modeling the atomistic growth behavior of gold nanoparticles in solution

    Science.gov (United States)

    Turner, C. Heath; Lei, Yu; Bao, Yuping

    2016-04-01

    The properties of gold nanoparticles strongly depend on their three-dimensional atomic structure, leading to an increased emphasis on controlling and predicting nanoparticle structural evolution during the synthesis process. In order to provide this atomistic-level insight and establish a link to the experimentally-observed growth behavior, a kinetic Monte Carlo simulation (KMC) approach is developed for capturing Au nanoparticle growth characteristics. The advantage of this approach is that, compared to traditional molecular dynamics simulations, the atomistic nanoparticle structural evolution can be tracked on time scales that approach the actual experiments. This has enabled several different comparisons against experimental benchmarks, and it has helped transition the KMC simulations from a hypothetical toy model into a more experimentally-relevant test-bed. The model is initially parameterized by performing a series of automated comparisons of Au nanoparticle growth curves versus the experimental observations, and then the refined model allows for detailed structural analysis of the nanoparticle growth behavior. Although the Au nanoparticles are roughly spherical, the maximum/minimum dimensions deviate from the average by approximately 12.5%, which is consistent with the corresponding experiments. Also, a surface texture analysis highlights the changes in the surface structure as a function of time. While the nanoparticles show similar surface structures throughout the growth process, there can be some significant differences during the initial growth at different synthesis conditions.

  9. Atomistic Simulation of High-Density Uranium Fuels

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Garcés

    2011-01-01

    Full Text Available We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1 the trend indicating formation of interfacial compounds, (2 much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3 Si depletion in the Al matrix, (4 an unexpected interaction between Mo and Si which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5 the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.

  10. Atomistic calculation of the thermoelectric properties of Si nanowires

    Science.gov (United States)

    Bejenari, I.; Kratzer, P.

    2014-07-01

    The thermoelectric properties of 1.6-nm-thick Si square nanowires with [100] crystalline orientation are calculated over a wide temperature range from 0 K to 1000 K, taking into account atomistic electron-phonon interaction. In our model, the [010] and [001] facets are passivated by hydrogen and there are Si-Si dimers on the nanowire surface. The electronic structure was calculated by using the sp3 spin-orbit-coupled atomistic second-nearest-neighbor tight-binding model. The phonon dispersion was calculated from a valence force field model of the Brenner type. A scheme for calculating electron-phonon matrix elements from a second-nearest-neighbor tight-binding model is presented. Based on Fermi's golden rule, the electron-phonon transition rate was obtained by combining the electron and phonon eigenstates. Both elastic and inelastic scattering processes are taken into consideration. The temperature dependence of transport characteristics was calculated by using a solution of the linearized Boltzmann transport equation obtained by means of the iterative orthomin method. At room temperature, the electron mobility is 195 cm2 V-1 s-1 and increases with temperature, while a figure of merit ZT =0.38 is reached for n-type doping with a concentration of n =1019 cm-3.

  11. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  12. Optimizing Artificial Neural Networks using Cat Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    John Paul T. Yusiong

    2012-12-01

    Full Text Available An Artificial Neural Network (ANN is an abstract representation of the biological nervous system which has the ability to solve many complex problems. The interesting attributes it exhibits makes an ANN capable of “learning”. ANN learning is achieved by training the neural network using a training algorithm. Aside from choosing a training algorithm to train ANNs, the ANN structure can also be optimized by applying certain pruning techniques to reduce network complexity. The Cat Swarm Optimization (CSO algorithm, a swarm intelligence-based optimization algorithm mimics the behavior of cats, is used as the training algorithm and the Optimal Brain Damage (OBD method as the pruning algorithm. This study suggests an approach to ANN training through the simultaneous optimization of the connection weights and ANN structure. Experiments performed on benchmark datasets taken from the UCI machine learning repository show that the proposed CSONN-OBD is an effective tool for training neural networks.

  13. Modified artificial bee colony optimization with block perturbation strategy

    Science.gov (United States)

    Jia, Dongli; Duan, Xintao; Khurram Khan, Muhammad

    2015-05-01

    As a newly emerged swarm intelligence-based optimizer, the artificial bee colony (ABC) algorithm has attracted the interest of researchers in recent years owing to its ease of use and efficiency. In this article, a modified ABC algorithm with block perturbation strategy (BABC) is proposed. Unlike basic ABC, in the BABC algorithm, not one element but a block of elements from the parent solutions is changed while producing a new solution. The performance of the BABC algorithm is investigated and compared with that of the basic ABC, modified ABC, Brest's differential evolution, self-adaptive differential evolution and restart covariance matrix adaptation evolution strategy (IPOP-CMA-ES) over a set of widely used benchmark functions. The obtained results show that the performance of BABC is better than, or at least comparable to, that of the basic ABC, improved differential evolution variants and IPOP-CMA-ES in terms of convergence speed and final solution accuracy.

  14. Artificial Inteligence and Law

    OpenAIRE

    Fuková, Kateřina

    2012-01-01

    Submitted diploma work Artificial Intelligence and Law deals with the rule of law and its position in the process of new advanced technologies in computer cybernetics and further scientific disciplines related with artificial intelligence and its creation. The first part of the work introduces the history of the first imagines about artificial intelligence and concerns with its birth. This chapter presents main theoretical knowledge and hypotheses defined artificial intelligence and progre...

  15. Artificial Skin in Robotics

    OpenAIRE

    Strohmayr, Michael

    2012-01-01

    Artificial Skin - A comprehensive interface for system-environment interaction - This thesis investigates a multifunctional artificial skin as touch sensitive whole-body cover for robotic systems. To further the evolution from tactile sensors to an implementable artificial skin a general concept for the design process is derived. A standard test procedure is proposed to evaluate the performance. The artificial skin contributes to a safe and intuitive physical human robot interaction.

  16. Atomistic simulation of mineral surfaces: Their structure, hydration and growth

    International Nuclear Information System (INIS)

    In this thesis, we have used atomistic simulation techniques to investigate the surface structure and stability of the biomineral barium sulfate and a number of important iron oxides, namely hematite, magnetite and goethite. We have studied the effect of the molecular adsorption of water on the surface structures and stabilities of all four minerals, and dissociative adsorption of water on the iron oxides. In addition, we have investigated the segregation of foreign ions to the surfaces of barium sulfate. Chapter 1 gives an overview of some previous studies of surfaces, employing both atomistic simulations and electronic structure calculations. Also discussed are some popular experimental analysis techniques used in surface characterisation. Chapter 2 describes the theoretical methods used in atomistic simulations and the mathematical methods used in the calculations, including the evaluation of surface energies. Chapter 3 introduces the potential model and discusses their reliability and transferability between structures. The potential parameters used in chapters 4-7 are given and where possible, compared with experiment. Chapter 4 describes the structures and stabilities of the pure surfaces of barium sulfate, and after the overgrowth of segregation of a layer of impurity ions at the surface. The modified crystal morphologies are discussed. Chapter 5 follows the work in the previous chapter by discussing the effect of the molecular adsorption of water at different coverages on the structure and stabilities of barium sulfate surfaces. The hydrated energies and surface energies are calculated. The second section of chapter 5 investigates structural influences on the growth of barium sulfate. In Chapter 6, the pure surfaces of hematite, magnetite and goethite are described. The surface relaxation are studied and equilibrium crystal morphologies compared with experimental findings. The surface structure of Fe2O3(00.1) under reducing conditions is also investigated

  17. Material fields in atomistics as pull-backs of spatial distributions

    Science.gov (United States)

    Chandra Admal, Nikhil; Tadmor, Ellad B.

    2016-04-01

    The various fields defined in continuum mechanics have both a material and a spatial description that are related through the deformation mapping. In contrast, continuum fields defined for atomistic systems using the Irving-Kirkwood or Murdoch-Hardy procedures correspond to a spatial description. It is uncommon to define atomistic fields in the reference configuration due to the lack of a unique definition for the deformation mapping in atomistic systems. In this paper, we construct referential atomistic distributions as pull-backs of the spatial distributions obtained in the Murdoch-Hardy procedure with respect to a postulated deformation mapping that tracks particles. We then show that some of these referential distributions are independent of the choice of the deformation mapping and only depend on the reference and current configuration of particles. Therefore, the fields obtained from these distributions can be calculated without explicitly constructing a deformation map, and by construction they satisfy the balance equations. In particular, we obtain definitions for the first and second atomistic Piola-Kirchhoff stress tensors. We demonstrate the validity of these definitions through a numerical example involving finite deformation of a slab containing a notch under tension. An interesting feature of the atomistic first Piola-Kirchhoff stress tensor is the absence of a kinetic part, which in the atomistic Cauchy stress tensor accounts for thermal fluctuations. We show that this effect is implicitly included in the atomistic first Piola-Kirchhoff stress tensor through the motion of the particles. An open source program to compute the atomistic Cauchy and first Piola-Kirchhoff stress fields called MDStressLab is available online at

  18. Atomistic Kinetic Monte Carlo Simulations of Polycrystalline Copper Electrodeposition

    CERN Document Server

    Treeratanaphitak, Tanyakarn; Abukhdeir, Nasser Mohieddin

    2014-01-01

    A high-fidelity kinetic Monte Carlo (KMC) simulation method (T. Treeratanaphitak, M. Pritzker, N. M. Abukhdeir, Electrochim. Acta 121 (2014) 407--414) using the semi-empirical multi-body embedded-atom method (EAM) potential has been extended to model polycrystalline metal electrodeposition. The presented KMC-EAM method enables true three-dimensional atomistic simulations of electrodeposition over experimentally relevant timescales. Simulations using KMC-EAM are performed over a range of overpotentials to predict the effect on deposit texture evolution. Results show strong agreement with past experimental results both with respect to deposition rates on various copper surfaces and roughness-time power law behaviour. It is found that roughness scales with time $\\propto t^\\beta$ where $\\beta=0.62 \\pm 0.12$, which is in good agreement with past experimental results. Furthermore, the simulations provide insights into sub-surface deposit morphologies which are not directly accessible from experimental measurements.

  19. Atomistic simulations of material damping in amorphous silicon nanoresonators

    Science.gov (United States)

    Mukherjee, Sankha; Song, Jun; Vengallatore, Srikar

    2016-06-01

    Atomistic simulations using molecular dynamics (MD) are emerging as a valuable tool for exploring dissipation and material damping in nanomechanical resonators. In this study, we used isothermal MD to simulate the dynamics of the longitudinal-mode oscillations of an amorphous silicon nanoresonator as a function of frequency (2 GHz–50 GHz) and temperature (15 K–300 K). Damping was characterized by computing the loss tangent with an estimated uncertainty of 7%. The dissipation spectrum displays a sharp peak at 50 K and a broad peak at around 160 K. Damping is a weak function of frequency at room temperature, and the loss tangent has a remarkably high value of ~0.01. In contrast, at low temperatures (15 K), the loss tangent increases monotonically from 4× {{10}-4} to 4× {{10}-3} as the frequency increases from 2 GHz to 50 GHz. The mechanisms of dissipation are discussed.

  20. An experimentally consistent atomistic structural model of silica glass

    International Nuclear Information System (INIS)

    Empirical potential structure refinement is used to build an atomistic model of silica glass based on neutron scattering data. This model is tested against X-ray diffraction and extended X-ray absorption fine structure (EXAFS) spectroscopy data to establish its local and intermediate range structural veracity. The chemical specificity of the silicon and oxygen K-edge spectroscopic information allows us to confirm that the neutron scattering derived model represents a reasonable representation of the three partial structure factors that are required to characterise this binary glass and subsequently give confidence in the Faber-Ziman and Bhatia-Thornton partial structure factors and pair distribution functions that are extracted from the model

  1. Atomistic simulation of static magnetic properties of bit patterned media

    Science.gov (United States)

    Arbeláez-Echeverri, O. D.; Agudelo-Giraldo, J. D.; Restrepo-Parra, E.

    2016-09-01

    In this work we present a new design of Co based bit pattern media with out-of-plane uni-axial anisotropy induced by interface effects. Our model features the inclusion of magnetic impurities in the non-magnetic matrix. After the material model was refined during three iterations using Monte Carlo simulations, further simulations were performed using an atomistic integrator of Landau-Lifshitz-Gilbert equation with Langevin dynamics to study the behavior of the system paying special attention to the super-paramagnetic limit. Our model system exhibits three magnetic phase transitions, one due to the magnetically doped matrix material and the weak magnetic interaction between the nano-structures in the system. The different magnetic phases of the system as well as the features of its phase diagram are explained.

  2. Protein displacements under external forces: An atomistic Langevin dynamics approach

    Science.gov (United States)

    Gnandt, David; Utz, Nadine; Blumen, Alexander; Koslowski, Thorsten

    2009-02-01

    We present a fully atomistic Langevin dynamics approach as a method to simulate biopolymers under external forces. In the harmonic regime, this approach permits the computation of the long-term dynamics using only the eigenvalues and eigenvectors of the Hessian matrix of second derivatives. We apply this scheme to identify polymorphs of model proteins by their mechanical response fingerprint, and we relate the averaged dynamics of proteins to their biological functionality, with the ion channel gramicidin A, a phosphorylase, and neuropeptide Y as examples. In an environment akin to dilute solutions, even small proteins show relaxation times up to 50 ns. Atomically resolved Langevin dynamics computations have been performed for the stretched gramicidin A ion channel.

  3. Effective Transparency: A Test of Atomistic Laser-Cluster Models

    CERN Document Server

    Pandit, Rishi; Teague, Thomas; Hartwick, Zachary; Bigaouette, Nicolas; Ramunno, Lora; Ackad, Edward

    2016-01-01

    The effective transparency of rare-gas clusters, post-interaction with an extreme ultraviolet (XUV) pump pulse, is studied by using an atomistic hybrid quantum-classical molecular dynamics model. We find there is an intensity range in which an XUV probe pulse has no lasting effect on the average charge state of a cluster after being saturated by an XUV pump pulse: the cluster is effectively transparent to the probe pulse. The range of this phenomena increases with the size of the cluster and thus provides an excellent candidate for an experimental test of the effective transparency effect. We present predictions for the clusters at the peak of the laser pulse as well as the experimental time-of-flight signal expected along with trends which can be compared with. Significant deviations from these predictions would provide evidence for enhanced photoionization mechanism(s).

  4. Atomistic modelling of the hydration of CaSO 4

    Science.gov (United States)

    Adam, Craig D.

    2003-08-01

    Atomistic modelling techniques, using empirical potentials, have been used to simulate a range of structures formed by the hydration of γ-CaSO 4 and described as CaSO 4· nH 2O (0commercial importance and has been subjected to much experimental study. These simulation studies demonstrate significant water-matrix interactions that influence the crystallography of the hydrated phase. The existence of two types of hydration site has been predicted, including one within the Ca 2+coordination sphere. Close correlation between water molecule bonding energy, Ca 2+-O w bond length and unit-cell volume have been established. This shows that as the number of water molecules within the unit cell increases, the bonding energy increases and the unit cell contracts. However around n=0.5, this process reaches a turning point with the incorporation of further waters resulting in reduced binding energy and an expanding unit cell.

  5. Atomistic processes during nanoindentation of amorphous silicon carbide

    International Nuclear Information System (INIS)

    Atomistic mechanisms of nanoindentation of a-SiC have been studied by molecular dynamics simulations. The load displacement curve exhibits a series of load drops, reflecting the short-range topological order similar to crystalline 3C-SiC. In contrast to 3C-SiC, the load drops are irregularly spaced and less pronounced. The damage is spatially more extended than in 3C-SiC, and it exhibits long-range oscillations consistent with the indenter size. Hardness is ∼60% lower than in 3C-SiC and is in agreement with experiment. The onset of plastic deformation occurs at depth ∼75% lower than in 3C-SiC

  6. Atomistic simulations for multiscale modeling in bcc metal

    Energy Technology Data Exchange (ETDEWEB)

    Belak, J.; Moriarty, J.A.; Soderlind, P.; Xu, W.; Yang, L.H.; Zhu

    1998-09-25

    Quantum-based atomistic simulations are being used to study fundamental deformation and defect properties relevant to the multiscale modeling of plasticity in bcc metals at both ambient and extreme conditions. Ab initio electronic-structure calculations on the elastic and ideal-strength properties of Ta and Mo help constrain and validate many-body interatomic potentials used to study grain boundaries and dislocations. The predicted C(capital Sigma)5 (310)[100] grain boundary structure for Mo has recently been confirmed in HREM measurements. The core structure, (small gamma) surfaces, Peierls stress, and kink-pair formation energies associated with the motion of a/2(111) screw dislocations in Ta and Mo have also been calculated. Dislocation mobility and dislocation junction formation and breaking are currently under investigation.

  7. An Atomistic Statistically Effective Energy Function for Computational Protein Design.

    Science.gov (United States)

    Topham, Christopher M; Barbe, Sophie; André, Isabelle

    2016-08-01

    Shortcomings in the definition of effective free-energy surfaces of proteins are recognized to be a major contributory factor responsible for the low success rates of existing automated methods for computational protein design (CPD). The formulation of an atomistic statistically effective energy function (SEEF) suitable for a wide range of CPD applications and its derivation from structural data extracted from protein domains and protein-ligand complexes are described here. The proposed energy function comprises nonlocal atom-based and local residue-based SEEFs, which are coupled using a novel atom connectivity number factor to scale short-range, pairwise, nonbonded atomic interaction energies and a surface-area-dependent cavity energy term. This energy function was used to derive additional SEEFs describing the unfolded-state ensemble of any given residue sequence based on computed average energies for partially or fully solvent-exposed fragments in regions of irregular structure in native proteins. Relative thermal stabilities of 97 T4 bacteriophage lysozyme mutants were predicted from calculated energy differences for folded and unfolded states with an average unsigned error (AUE) of 0.84 kcal mol(-1) when compared to experiment. To demonstrate the utility of the energy function for CPD, further validation was carried out in tests of its capacity to recover cognate protein sequences and to discriminate native and near-native protein folds, loop conformers, and small-molecule ligand binding poses from non-native benchmark decoys. Experimental ligand binding free energies for a diverse set of 80 protein complexes could be predicted with an AUE of 2.4 kcal mol(-1) using an additional energy term to account for the loss in ligand configurational entropy upon binding. The atomistic SEEF is expected to improve the accuracy of residue-based coarse-grained SEEFs currently used in CPD and to extend the range of applications of extant atom-based protein statistical

  8. Experimentally driven atomistic model of 1,2 polybutadiene

    International Nuclear Information System (INIS)

    We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles, and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120–400 K. Analysis of the experimental data yields bond lengths for Cî—¸C and C î—» C of 1.54 Å and 1.35 Å, respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently, the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results

  9. Tracking Microstructure of Crystalline Materials: A Post-Processing Algorithm for Atomistic Simulations

    Science.gov (United States)

    Panzarino, Jason F.; Rupert, Timothy J.

    2014-03-01

    Atomistic simulations have become a powerful tool in materials research due to the extremely fine spatial and temporal resolution provided by such techniques. To understand the fundamental principles that govern material behavior at the atomic scale and directly connect to experimental works, it is necessary to quantify the microstructure of materials simulated with atomistics. Specifically, quantitative tools for identifying crystallites, their crystallographic orientation, and overall sample texture do not currently exist. Here, we develop a post-processing algorithm capable of characterizing such features, while also documenting their evolution during a simulation. In addition, the data is presented in a way that parallels the visualization methods used in traditional experimental techniques. The utility of this algorithm is illustrated by analyzing several types of simulation cells that are commonly found in the atomistic modeling literature but could also be applied to a variety of other atomistic studies that require precise identification and tracking of microstructure.

  10. Self-consistent simulations of nanowire transistors using atomistic basis sets

    OpenAIRE

    NEOPHYTOU, Neophytos; Paul, Abhijeet; Lundstrom, Mark S.; Klimeck, Gerhard

    2007-01-01

    As device sizes shrink towards the nanoscale, CMOS development investigates alternative structures and devices. Existing CMOS devices will evolve from planar to 3D non-planar devices at nanometer sizes. These devices will operate under strong confinement and strain, regimes where atomistic effects are important. This work investigates atomistic effects in the transport properties of nanowire devices by using a nearest-neighbor tight binding model (sp3s*d5-SO) for electronic structure calculat...

  11. A State Representation Approach for Atomistic Time-Dependent Transport Calculations in Molecular Junctions

    OpenAIRE

    Zelovich, Tamar; Kronik, Leeor; Hod, Oded

    2014-01-01

    We propose a new method for simulating electron dynamics in open quantum systems out of equilibrium, using a finite atomistic model. The proposed method is motivated by the intuitive and practical nature of the driven Liouville von-Neumann equation approach of S\\'anchez et al. [J. Chem. Phys., 124, 214708 (2006)]. A key ingredient of our approach is a transformation of the Hamiltonian matrix from an atomistic to a state representation of the molecular junction. This allows us to uniquely defi...

  12. Three-dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wijesinghe, S; Hornung, R; Garcia, A; Hadjiconstantinou, N

    2004-04-15

    We present an adaptive mesh and algorithmic refinement (AMAR) scheme for modeling multi-scale hydrodynamics. The AMAR approach extends standard conservative adaptive mesh refinement (AMR) algorithms by providing a robust flux-based method for coupling an atomistic fluid representation to a continuum model. The atomistic model is applied locally in regions where the continuum description is invalid or inaccurate, such as near strong flow gradients and at fluid interfaces, or when the continuum grid is refined to the molecular scale. The need for such ''hybrid'' methods arises from the fact that hydrodynamics modeled by continuum representations are often under-resolved or inaccurate while solutions generated using molecular resolution globally are not feasible. In the implementation described herein, Direct Simulation Monte Carlo (DSMC) provides an atomistic description of the flow and the compressible two-fluid Euler equations serve as our continuum-scale model. The AMR methodology provides local grid refinement while the algorithm refinement feature allows the transition to DSMC where needed. The continuum and atomistic representations are coupled by matching fluxes at the continuum-atomistic interfaces and by proper averaging and interpolation of data between scales. Our AMAR application code is implemented in C++ and is built upon the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) framework developed at Lawrence Livermore National Laboratory. SAMRAI provides the parallel adaptive gridding algorithm and enables the coupling between the continuum and atomistic methods.

  13. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Alfons Schuster; Daniel Berrar; Naoyuki Sato

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  14. Anticipatory Artificial Autopoiesis

    OpenAIRE

    DuBois, Daniel; Holmberg, Stig C.

    2010-01-01

    In examining relationships between autopoiesis and anticipation in artificial life (Alife) systems it is demonstrated that anticipation may increase efficiency and viability in artificial autopoietic living systems. This paper, firstly, gives a review of the Varela et al [1974] automata algorithm of an autopoietic living cell. Some problems in this algorithm must be corrected. Secondly, a new and original anticipatory artificial autopoiesis algorithm for automata is presented. ...

  15. Artificial cognition architectures

    CERN Document Server

    Crowder, James A; Friess, Shelli A

    2013-01-01

    The goal of this book is to establish the foundation, principles, theory, and concepts that are the backbone of real, autonomous Artificial Intelligence. Presented here are some basic human intelligence concepts framed for Artificial Intelligence systems. These include concepts like Metacognition and Metamemory, along with architectural constructs for Artificial Intelligence versions of human brain functions like the prefrontal cortex. Also presented are possible hardware and software architectures that lend themselves to learning, reasoning, and self-evolution

  16. Doped Colloidal Artificial Ice

    OpenAIRE

    Libal, A.; Reichhardt, C. J. Olson; Reichhardt, C.

    2015-01-01

    We examine square and kagome artificial spin ice for colloids confined in arrays of double-well traps. Unlike magnetic artificial spin ices, colloidal and vortex artificial spin ice realizations allow creation of doping sites through double occupation of individual traps. We find that doping square and kagome ice geometries produces opposite effects. For square ice, doping creates local excitations in the ground state configuration that produce a local melting effect as the temperature is rai...

  17. Inteligencia artificial en vehiculo

    OpenAIRE

    Amador Díaz, Pedro

    2012-01-01

    Desarrollo de un robot seguidor de líneas, en el que se implementan diversas soluciones de las áreas de sistemas embebidos e inteligencia artificial. Desenvolupament d'un robot seguidor de línies, en el qual s'implementen diverses solucions de les àrees de sistemes encastats i intel·ligència artificial. Follower robot development of lines, in which various solutions are implemented in the areas of artificial intelligence embedded systems.

  18. Artificial life and life artificialization in Tron

    Directory of Open Access Journals (Sweden)

    Carolina Dantas Figueiredo

    2012-12-01

    Full Text Available Cinema constantly shows the struggle between the men and artificial intelligences. Fiction, and more specifically fiction films, lends itself to explore possibilities asking “what if?”. “What if”, in this case, is related to the eventual rebellion of artificial intelligences, theme explored in the movies Tron (1982 and Tron Legacy (2010 trat portray the conflict between programs and users. The present paper examines these films, observing particularly the possibility programs empowering. Finally, is briefly mentioned the concept of cyborg as a possibility of response to human concerns.

  19. Atomistic Simulations of Poly(N-isopropylacrylamide) Surfactants in Water

    Science.gov (United States)

    Abbott, Lauren J.; Stevens, Mark J.

    2015-03-01

    The amphiphilic polymer poly(N-isopropylacrylamide) (PNIPAM) displays a sharp phase transition at its LCST around 32 °C, which results from competing interactions of the hydrophobic and hydrophilic groups with water. This thermoresponsive behavior can be exploited in more complex architectures, such as block copolymers or surfactants, to provide responsive PNIPAM head groups. In these systems, however, changes to the hydrophobic/hydrophilic balance can alter the transition behavior. In this work, we perform atomistic simulations of PNIPAM-alkyl surfactants to study the temperature dependence of their structures. A single chain of the surfactant does not show temperature-responsive behavior. Instead, below and above the LCST of PNIPAM, the surfactant folds to bring the hydrophobic alkyl tail in contact with the PNIPAM backbone, shielding it from water. In addition to single chains, we explore the self-assembly of multiple surfactants into micelles and how the temperature-dependent behavior is changed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Atomistic Hydrodynamics and the Dynamical Hydrophobic Effect in Porous Graphene.

    Science.gov (United States)

    Strong, Steven E; Eaves, Joel D

    2016-05-19

    Mirroring their role in electrical and optical physics, two-dimensional crystals are emerging as novel platforms for fluid separations and water desalination, which are hydrodynamic processes that occur in nanoscale environments. For numerical simulation to play a predictive and descriptive role, one must have theoretically sound methods that span orders of magnitude in physical scales, from the atomistic motions of particles inside the channels to the large-scale hydrodynamic gradients that drive transport. Here, we use constraint dynamics to derive a nonequilibrium molecular dynamics method for simulating steady-state mass flow of a fluid moving through the nanoscopic spaces of a porous solid. After validating our method on a model system, we use it to study the hydrophobic effect of water moving through pores of electrically doped single-layer graphene. The trend in permeability that we calculate does not follow the hydrophobicity of the membrane but is instead governed by a crossover between two competing molecular transport mechanisms. PMID:27139634

  1. Atomistic modeling of phonon transport in turbostratic graphitic structures

    Science.gov (United States)

    Mao, Rui; Chen, Yifeng; Kim, Ki Wook

    2016-05-01

    Thermal transport in turbostratic graphitic systems is investigated by using an atomistic analytical model based on the 4th-nearest-neighbor force constant approximation and a registry-dependent interlayer potential. The developed model is shown to produce an excellent agreement with the experimental data and ab initio results in the calculation of bulk properties. Subsequent analysis of phonon transport in combination with the Green's function method illustrates the significant dependence of key characteristics on the misorientation angle, clearly indicating the importance of this degree of freedom in multi-stacked structures. Selecting three angles with the smallest commensurate unit cells, the thermal resistance is evaluated at the twisted interface between two AB stacked graphite. The resulting values in the range of 35 × 10-10 K m2/W to 116 × 10-10 K m2/W are as large as those between two dissimilar material systems such as a metal and graphene. The strong rotational effect on the cross-plane thermal transport may offer an effective means of phonon engineering for applications such as thermoelectric materials.

  2. Atomistic modeling of diffusional phasetransformations with elastic strain

    Energy Technology Data Exchange (ETDEWEB)

    Mason, D R; Rudd, R E; Sutton, A P

    2003-10-31

    Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Atomic interactions are modelled by Finnis-Sinclair potentials constructed for these simulations. Vacancy diffusion is modelled by comparing the energies of trial states, where the system is partially relaxed for each trial state. No special requirements are made about the description of atomic interactions, making our approach suitable for more fundamentally based models such as tight binding if sufficient computational resources are available. Only a limited precision is required for the energy of each trial state, determined by the value of kBT. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r{sup 3} , it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centred on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice.

  3. Optimization Algorithms in Optimal Predictions of Atomistic Properties by Kriging.

    Science.gov (United States)

    Di Pasquale, Nicodemo; Davie, Stuart J; Popelier, Paul L A

    2016-04-12

    The machine learning method kriging is an attractive tool to construct next-generation force fields. Kriging can accurately predict atomistic properties, which involves optimization of the so-called concentrated log-likelihood function (i.e., fitness function). The difficulty of this optimization problem quickly escalates in response to an increase in either the number of dimensions of the system considered or the size of the training set. In this article, we demonstrate and compare the use of two search algorithms, namely, particle swarm optimization (PSO) and differential evolution (DE), to rapidly obtain the maximum of this fitness function. The ability of these two algorithms to find a stationary point is assessed by using the first derivative of the fitness function. Finally, the converged position obtained by PSO and DE is refined through the limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm, which belongs to the class of quasi-Newton algorithms. We show that both PSO and DE are able to come close to the stationary point, even in high-dimensional problems. They do so in a reasonable amount of time, compared to that with the Newton and quasi-Newton algorithms, regardless of the starting position in the search space of kriging hyperparameters. The refinement through L-BFGS-B is able to give the position of the maximum with whichever precision is desired. PMID:26930135

  4. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiroshi, E-mail: h.ogawa@aist.go.jp

    2015-10-05

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation.

  5. Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides

    International Nuclear Information System (INIS)

    Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation

  6. Atomistic Molecular Dynamics Simulations of Shock Compressed Quartz

    CERN Document Server

    Farrow, Matthew R

    2011-01-01

    Atomistic non-equilibrium molecular dynamics (NEMD) simulations of shock wave compression of quartz have been performed using the so-called BKS semi-empirical potential of van Beest, Kramer and van Santen to construct the Hugoniot of quartz. Our scheme mimics the real world experimental set up by using a flyer-plate impactor to initiate the shock wave and is the first shock wave simulation that uses a geom- etry optimised system of a polar slab in a 3-dimensional system employing periodic boundary conditions. Our scheme also includes the relaxation of the surface dipole in the polar quartz slab which is an essential pre-requisite to a stable simulation. The original BKS potential is unsuited to shock wave calculations and so we propose a simple modification. With this modification, we find that our calculated Hugoniot is in good agreement with experimental shock wave data up to 25 GPa, but significantly diverges beyond this point. We conclude that our modified BKS potential is suitable for quartz under repres...

  7. Artificial insemination in poultry

    Science.gov (United States)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  8. Peridynamics as a rigorous coarse-graining of atomistics for multiscale materials design.

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Richard B.; Aidun, John Bahram; Silling, Stewart Andrew; Sears, Mark P.; Kamm, James R.; Parks, Michael L.

    2010-09-01

    This report summarizes activities undertaken during FY08-FY10 for the LDRD Peridynamics as a Rigorous Coarse-Graining of Atomistics for Multiscale Materials Design. The goal of our project was to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. The goal of our project is to develop a coarse-graining of finite temperature molecular dynamics (MD) that successfully transitions from statistical mechanics to continuum mechanics. Our coarse-graining overcomes the intrinsic limitation of coupling atomistics with classical continuum mechanics via the FEM (finite element method), SPH (smoothed particle hydrodynamics), or MPM (material point method); namely, that classical continuum mechanics assumes a local force interaction that is incompatible with the nonlocal force model of atomistic methods. Therefore FEM, SPH, and MPM inherit this limitation. This seemingly innocuous dichotomy has far reaching consequences; for example, classical continuum mechanics cannot resolve the short wavelength behavior associated with atomistics. Other consequences include spurious forces, invalid phonon dispersion relationships, and irreconcilable descriptions/treatments of temperature. We propose a statistically based coarse-graining of atomistics via peridynamics and so develop a first of a kind mesoscopic capability to enable consistent, thermodynamically sound, atomistic-to-continuum (AtC) multiscale material simulation. Peridynamics (PD) is a microcontinuum theory that assumes nonlocal forces for describing long-range material interaction. The force interactions occurring at finite distances are naturally accounted for in PD. Moreover, PDs nonlocal force model is entirely consistent with those used by atomistics methods, in stark contrast to classical continuum mechanics. Hence, PD can be employed for mesoscopic phenomena that are beyond the realms of classical continuum mechanics and

  9. Atomistic theory of transport in organic and inorganic nanostructures

    International Nuclear Information System (INIS)

    As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling. Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems. The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k · p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties. Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current. We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from a general

  10. Atomistic theory of transport in organic and inorganic nanostructures

    Science.gov (United States)

    Pecchia, Alessandro; Di Carlo, Aldo

    2004-08-01

    As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling. Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems. The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k · p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties. Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current. We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from a general

  11. A fully atomistic model of the Cx32 connexon.

    Directory of Open Access Journals (Sweden)

    Sergio Pantano

    Full Text Available Connexins are plasma membrane proteins that associate in hexameric complexes to form channels named connexons. Two connexons in neighboring cells may dock to form a "gap junction" channel, i.e. an intercellular conduit that permits the direct exchange of solutes between the cytoplasm of adjacent cells and thus mediate cell-cell ion and metabolic signaling. The lack of high resolution data for connexon structures has hampered so far the study of the structure-function relationships that link molecular effects of disease-causing mutations with their observed phenotypes. Here we present a combination of modeling techniques and molecular dynamics (MD to infer side chain positions starting from low resolution structures containing only C alpha atoms. We validated this procedure on the structure of the KcsA potassium channel, which is solved at atomic resolution. We then produced a fully atomistic model of a homotypic Cx32 connexon starting from a published model of the C alpha carbons arrangement for the connexin transmembrane helices, to which we added extracellular and cytoplasmic loops. To achieve structural relaxation within a realistic environment, we used MD simulations inserted in an explicit solvent-membrane context and we subsequently checked predictions of putative side chain positions and interactions in the Cx32 connexon against a vast body of experimental reports. Our results provide new mechanistic insights into the effects of numerous spontaneous mutations and their implication in connexin-related pathologies. This model constitutes a step forward towards a structurally detailed description of the gap junction architecture and provides a structural platform to plan new biochemical and biophysical experiments aimed at elucidating the structure of connexin channels and hemichannels.

  12. Artificial ecosystem selection.

    Science.gov (United States)

    Swenson, W; Wilson, D S; Elias, R

    2000-08-01

    Artificial selection has been practiced for centuries to shape the properties of individual organisms, providing Darwin with a powerful argument for his theory of natural selection. We show that the properties of whole ecosystems can also be shaped by artificial selection procedures. Ecosystems initiated in the laboratory vary phenotypically and a proportion of the variation is heritable, despite the fact that the ecosystems initially are composed of thousands of species and millions of individuals. Artificial ecosystem selection can be used for practical purposes, illustrates an important role for complex interactions in evolution, and challenges a widespread belief that selection is most effective at lower levels of the biological hierarchy. PMID:10890915

  13. A Note on Automatic Kernel Carpentry for Atomistic Support of Continuum Stress

    CERN Document Server

    Ulz, Manfred H

    2015-01-01

    Research within the field of multiscale modelling seeks, amongst other questions, to reconcile atomistic scale interactions with thermodynamical quantities (such as stress) on the continuum scale. The estimation of stress at a continuum point on the atomistic scale requires a pre-defined kernel function. This kernel function derives the stress at a continuum point by averaging the contribution from atoms within a region surrounding the continuum point. Commonly the kernel weight assignment is isotropic: an identical weight is assigned to atoms at the same spatial distance, which is tantamount to a local constant regression model. In this paper we employ a local linear regression model and leverage the mechanism of automatic kernel carpentry to allow for spatial averaging adaptive to the local distribution of atoms. As a result, different weights may be assigned to atoms at the same spatial distance. This is of interest for determining atomistic stress at stacking faults, interfaces or surfaces. It is shown in...

  14. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    CERN Document Server

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  15. Limitations of reactive atomistic potentials in describing defect structures in oxides

    Science.gov (United States)

    Hynninen, Teemu; Musso, Tiziana; Foster, Adam S.

    2016-03-01

    It is difficult to achieve low expense and high accuracy in computational methods, yet it remains a key objective in atomistic approaches. In solid state physics, advanced atomistic potentials using reactive force fields have shown promise in delivering both. However, these methods have not been applied widely beyond their development environment and thus their strengths and weaknesses are not fully understood. In this work we present benchmark calculations on silica (SiO2) and hafnia (HfO2) structures, comparing a leading charge optimized many-body potential to a more advanced density functional calculation. We find that although the atomistic potential gives excellent results for bulk structures, it has severe shortcomings when applied to small systems with low coordinated atoms. We also establish clearly the components of the many-body potential and how these relate to predicted physical properties.

  16. Local stress and heat flux in atomistic systems involving three-body forces.

    Science.gov (United States)

    Chen, Youping

    2006-02-01

    Local densities of fundamental physical quantities, including stress and heat flux fields, are formulated for atomistic systems involving three-body forces. The obtained formulas are calculable within an atomistic simulation, in consistent with the conservation equations of thermodynamics of continuum, and can be applied to systems with general two- and three-body interaction forces. It is hoped that this work may correct some misuse of inappropriate formulas of stress and heat flux in the literature, may clarify the definition of site energy of many-body potentials, and may serve as an analytical link between an atomistic model and a continuum theory. Physical meanings of the obtained formulas, their relation with virial theorem and heat theorem, and the applicability are discussed. PMID:16468857

  17. Developing Creativity: Artificial Barriers in Artificial Intelligence

    OpenAIRE

    Jennings, Kyle E.

    2010-01-01

    The greatest rhetorical challenge to developers of creative artificial intelligence systems is convincingly arguing that their software is more than just an extension of their own creativity. This paper suggests that “creative autonomy,” which exists when a system not only evaluates creations on its own, but also changes its standards without explicit direction, is a necessary condition for making this argument. Rather than requiring that the system be hermetically sealed to avoid perceptions...

  18. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  19. Intelligence: Real or artificial?

    OpenAIRE

    Schlinger, Henry D

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  20. Artificial Personality and Disfluency

    OpenAIRE

    Wester, Mirjam; Aylett, Matthew; Tomalin, Marcus; Dall, Rasmus

    2015-01-01

    The focus of this paper is artificial voices with different personalities. Previous studies have shown links between an individual's use of disfluencies in their speech and their perceived personality. Here, filled pauses (uh and um) and discourse markers (like, you know, I mean) have been included in synthetic speech as a way of creating an artificial voice with different personalities. We discuss the automatic insertion of filled pauses and discourse markers (i.e., fillers) into otherwise f...

  1. The Artificial Anal Sphincter

    OpenAIRE

    Christiansen, John

    2000-01-01

    The artificial anal sphincter as treatment for end stage anal incontinence was first described in 1987. Published series concern a total of 42 patients, with a success rate of approximately 80%. Infection has been the most serious complication, but a number of technical complications related to the device have also occurred and required revisional procedures in 40% to 60% of the patients. The artificial anal sphincter may be used for the same indications as dynamic graciloplasty except in pat...

  2. Artificial skin. Jinko hifu

    Energy Technology Data Exchange (ETDEWEB)

    Kifune, K. (Unitika Ltd., Osaka (Japan))

    1993-06-15

    In order to restore the human skin wounds, the transplantation is only one measure. The transplantation can take only when own skin is used, and there is no successful example by using other person's skin. When the own skin is not sufficient due to the too vast damage, the artificial skin, which can be regenerated as it is, is required. The artificial skin is said to be the most difficult organ among the artificial organs, even though its function is quite simple. Although there are the pig skin, the collagen membrane and the synthetic materials such as the polyurethane and so forth, as the materials similar to the artificial skin, they cover the wounds just until the cuticle is formed. Recently there is a cultivated skin. Firstly the normal skin with a size of the stamp is cut off, and then the cuticle cells are taken to pieces and cultivated, and consequently it is possible to increase the area by several 10 times. In addition, there is also a trial to make the artificial skin synthetically. Its upper layer is composed of the silicon, and the lower layer is the collagen membrane with a sponge structure. The silicon, membrane can be said to be an ideal artificial skin, because it detaches naturally. The chitin, which has recently appeared as the wound protection material, is also the promising material. 3 figs.

  3. Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review

    Science.gov (United States)

    Kumar, Rajesh; Parashar, Avinash

    2015-12-01

    Due to their exceptional mechanical properties, thermal conductivity and a wide band gap (5-6 eV), boron nitride nanotubes and nanosheets have promising applications in the field of engineering and biomedical science. Accurate modeling of failure or fracture in a nanomaterial inherently involves coupling of atomic domains of cracks and voids as well as a deformation mechanism originating from grain boundaries. This review highlights the recent progress made in the atomistic modeling of boron nitride nanofillers. Continuous improvements in computational power have made it possible to study the structural properties of these nanofillers at the atomistic scale.

  4. Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon.

    Science.gov (United States)

    Turneaure, Stefan J; Sinclair, N; Gupta, Y M

    2016-07-22

    The experimental determination of atomistic mechanisms linking crystal structures during a compression-driven solid-solid phase transformation is a long-standing and challenging scientific objective. Using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal, and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. The approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes. PMID:27494481

  5. Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon

    Science.gov (United States)

    Turneaure, Stefan J.; Sinclair, N.; Gupta, Y. M.

    2016-07-01

    The experimental determination of atomistic mechanisms linking crystal structures during a compression-driven solid-solid phase transformation is a long-standing and challenging scientific objective. Using new capabilities at the Dynamic Compression Sector at the Advanced Photon Source, the structure of shocked Si at 19 GPa was identified as simple hexagonal, and the lattice orientations between ambient cubic diamond and simple hexagonal structures were related. The approach is general and provides a powerful new method for examining atomistic mechanisms during stress-induced structural changes.

  6. Atomistic theory of transport in organic and inorganic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Pecchia, Alessandro; Di Carlo, Aldo [INFM-Department of Electronic Engineering, University of Rome, Tor Vergata, Rome (Italy)

    2004-08-01

    As the size of modern electronic and optoelectronic devices is scaling down at a steady pace, atomistic simulations become necessary for an accurate modelling of their structural, electronic, optical and transport properties. Such microscopic approaches are important in order to account correctly for quantum-mechanical phenomena affecting both electronic and transport properties of nanodevices. Effective bulk parameters cannot be used for the description of the electronic states since interfacial properties play a crucial role and semiclassical methods for transport calculations are not suitable at the typical scales where the device behaviour is characterized by coherent tunnelling. Quantum-mechanical computations with atomic resolution can be achieved using localized basis sets for the description of the system Hamiltonian. Such methods have been extensively used to predict optical and electronic properties of molecules and mesoscopic systems. The most important approaches formulated in terms of localized basis sets, from empirical tight-binding (TB) to first principles methods, are here reviewed. Being a full band approach, even the simplest TB overcomes the limitations of envelope function approximations, such as the well-known k {center_dot} p, and allows to retain atomic details and realistic band structures. First principles calculations, on the other hand, can give a very accurate description of the electronic and structural properties. Transport in nanoscale devices cannot neglect quantum effects such as coherent tunnelling. In this context, localized basis sets are well-suited for the formal treatment of quantum transport since they provide a simple mathematical framework to treat open-boundary conditions, typically encountered when the system eigenstates carry a steady-state current. We review the principal methods used to formulate quantum transport based on local orbital sets via transfer matrix and Green's function (GF) techniques. We start from

  7. Scalable and portable visualization of large atomistic datasets

    Science.gov (United States)

    Sharma, Ashish; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2004-10-01

    A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure to efficiently remove atoms outside of the user's field-of-view. Probabilistic and depth-based occlusion-culling algorithms then select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of atoms on a standard desktop computer and, in its parallel version, up to a billion atoms. Program summaryTitle of program: Atomsviewer Catalogue identifier: ADUM Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUM Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor, professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5 Programming languages used: C++, C and OpenGL Memory required to execute with typical data: 1 gigabyte of RAM High speed storage required: 60 gigabytes No. of lines in the distributed program including test data, etc.: 550 241 No. of bytes in the distributed program including test data, etc.: 6 258 245 Number of bits in a word: Arbitrary Number of processors used: 1 Has the code been vectorized or parallelized: No Distribution format: tar gzip file Nature of physical problem: Scientific visualization of atomic systems Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data

  8. A Novel Application of Artificial Neural Network for the Solution of Inverse Kinematics Controls of Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2012-08-01

    Full Text Available In robotic applications and research, inverse kinematics is one of the most important problems in terms of robot kinematics and control. Consequently, finding the solution of Inverse Kinematics in now days is considered as one of the most important problems in robot kinematics and control. As the intricacy of robot manipulator increases, obtaining the mathematical, statistical solutions of inverse kinematics are difficult and computationally expensive. For that reason, now soft-computing based highly intelligent based model applications should be adopted to getting appropriate solution for inverse kinematics. In this paper, a novel application of artificial neural network is used for controlling a robotic manipulator. The proposed methods are based on the establishments of the non-linear mapping between Cartesian and joint coordinates using multi layer perceptron and functional link artificial neural network.

  9. Atomistic Method Applied to Computational Modeling of Surface Alloys

    Science.gov (United States)

    Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    The formation of surface alloys is a growing research field that, in terms of the surface structure of multicomponent systems, defines the frontier both for experimental and theoretical techniques. Because of the impact that the formation of surface alloys has on surface properties, researchers need reliable methods to predict new surface alloys and to help interpret unknown structures. The structure of surface alloys and when, and even if, they form are largely unpredictable from the known properties of the participating elements. No unified theory or model to date can infer surface alloy structures from the constituents properties or their bulk alloy characteristics. In spite of these severe limitations, a growing catalogue of such systems has been developed during the last decade, and only recently are global theories being advanced to fully understand the phenomenon. None of the methods used in other areas of surface science can properly model even the already known cases. Aware of these limitations, the Computational Materials Group at the NASA Glenn Research Center at Lewis Field has developed a useful, computationally economical, and physically sound methodology to enable the systematic study of surface alloy formation in metals. This tool has been tested successfully on several known systems for which hard experimental evidence exists and has been used to predict ternary surface alloy formation (results to be published: Garces, J.E.; Bozzolo, G.; and Mosca, H.: Atomistic Modeling of Pd/Cu(100) Surface Alloy Formation. Surf. Sci., 2000 (in press); Mosca, H.; Garces J.E.; and Bozzolo, G.: Surface Ternary Alloys of (Cu,Au)/Ni(110). (Accepted for publication in Surf. Sci., 2000.); and Garces, J.E.; Bozzolo, G.; Mosca, H.; and Abel, P.: A New Approach for Atomistic Modeling of Pd/Cu(110) Surface Alloy Formation. (Submitted to Appl. Surf. Sci.)). Ternary alloy formation is a field yet to be fully explored experimentally. The computational tool, which is based on

  10. Membrane poration by antimicrobial peptides combining atomistic and coarse-grained descriptions

    NARCIS (Netherlands)

    Rzepiela, Andrzej J.; Sengupta, Durba; Goga, Nicolae; Marrink, Siewert J.

    2010-01-01

    Antimicrobial peptides (AMPs) comprise a large family of peptides that include small cationic peptides, such as magainins, which permeabilize lipid membranes. Previous atomistic level simulations of magainin-H2 peptides show that they act by forming toroidal transmembrane pores. However, due to the

  11. A Mathematical Analysis of Atomistic-to-Continuum (AtC) Multiscale Coupling Methods

    Energy Technology Data Exchange (ETDEWEB)

    Gunzburger, Max

    2013-11-13

    We have worked on several projects aimed at improving the efficiency and understanding of multiscale methods, especially those applicable to problems involving atomistic-to-continuum coupling. Activities include blending methods for AtC coupling and efficient quasi-continuum methods for problems with long-range interactions.

  12. Hybrid Atomistic and Coarse-Grained Molecular Dynamics Simulations of Polyethylene Glycol (PEG) in Explicit Water.

    Science.gov (United States)

    Stanzione, Francesca; Jayaraman, Arthi

    2016-05-01

    In-silico design of polymeric biomaterials requires molecular dynamics (MD) simulations that retain essential atomistic/molecular details (e.g., explicit water around the biofunctional macromolecule) while simultaneously achieving large length and time scales pertinent to macroscale function. Such large-scale atomistically detailed macromolecular MD simulations with explicit solvent representation are computationally expensive. One way to overcome this limitation is to use an adaptive resolution scheme (AdResS) in which the explicit solvent molecules dynamically adopt either atomistic or coarse-grained resolution depending on their location (e.g., near or far from the macromolecule) in the system. In this study we present the feasibility and the limitations of AdResS methodology for studying polyethylene glycol (PEG) in adaptive resolution water, for varying PEG length and architecture. We first validate the AdResS methodology for such systems, by comparing PEG and solvent structure with that from all-atom simulations. We elucidate the role of the atomistic zone size and the need for calculating thermodynamic force correction within this AdResS approach to correctly reproduce the structure of PEG and water. Lastly, by varying the PEG length and architecture, we study the hydration of PEG, and the effect of PEG architectures on the structural properties of water. Changing the architecture of PEG from linear to multiarm star, we observe reduction in the solvent accessible surface area of the PEG, and an increase in the order of water molecules in the hydration shells. PMID:27108869

  13. An atomistically validated continuum model for strain relaxation and misfit dislocation formation

    Science.gov (United States)

    Zhou, X. W.; Ward, D. K.; Zimmerman, J. A.; Cruz-Campa, J. L.; Zubia, D.; Martin, J. E.; van Swol, F.

    2016-06-01

    In this paper, molecular dynamics (MD) calculations have been used to examine the physics behind continuum models of misfit dislocation formation and to assess the limitations and consequences of approximations made within these models. Without compromising the physics of misfit dislocations below a surface, our MD calculations consider arrays of dislocation dipoles constituting a mirror imaged "surface". This allows use of periodic boundary conditions to create a direct correspondence between atomistic and continuum representations of dislocations, which would be difficult to achieve with free surfaces. Additionally, by using long-time averages of system properties, we have essentially reduced the errors of atomistic simulations of large systems to "zero". This enables us to deterministically compare atomistic and continuum calculations. Our work results in a robust approach that uses atomistic simulation to accurately calculate dislocation core radius and energy without the continuum boundary conditions typically assumed in the past, and the novel insight that continuum misfit dislocation models can be inaccurate when incorrect definitions of dislocation spacing and Burgers vector in lattice-mismatched systems are used. We show that when these insights are properly incorporated into the continuum model, the resulting energy density expression of the lattice-mismatched systems is essentially indistinguishable from the MD results.

  14. Artificial ionospheric turbulence (review)

    International Nuclear Information System (INIS)

    This study is an analysis of artificial ionospheric turbulence (AIT) arising near the level at which a powerful wave is reflected with ordinary polarization. AIT is an inhomogeneous structure in the ionosphere with a size on the order of centimeters or tens of kilometers and with characteristic frequencies from a fraction of a hertz (aperiodic inhomogeneity) to several megahertz (plasma waves). The authors are primarily concerned with small-scale artificial ionospheric turbulence (SAIT), i.e., with inhomogeneities that are greatly extended along the geomagnetic field with transverse dimensions that are less than the wavelengths of the perturbing waves - the pumping waves (PW) - in a vacuum

  15. Artificial Intelligence Techniques for the Berth Allocation and Container Stacking Problems in Container Terminals

    Science.gov (United States)

    Salido, Miguel A.; Rodriguez-Molins, Mario; Barber, Federico

    The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal's management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel's arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.

  16. A new improved artificial bee colony algorithm for ship hull form optimization

    Science.gov (United States)

    Huang, Fuxin; Wang, Lijue; Yang, Chi

    2016-04-01

    The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.

  17. Efficient implementation and application of the artificial bee colony algorithm to low-dimensional optimization problems

    Science.gov (United States)

    von Rudorff, Guido Falk; Wehmeyer, Christoph; Sebastiani, Daniel

    2014-06-01

    We adapt a swarm-intelligence-based optimization method (the artificial bee colony algorithm, ABC) to enhance its parallel scaling properties and to improve the escaping behavior from deep local minima. Specifically, we apply the approach to the geometry optimization of Lennard-Jones clusters. We illustrate the performance and the scaling properties of the parallelization scheme for several system sizes (5-20 particles). Our main findings are specific recommendations for ranges of the parameters of the ABC algorithm which yield maximal performance for Lennard-Jones clusters and Morse clusters. The suggested parameter ranges for these different interaction potentials turn out to be very similar; thus, we believe that our reported values are fairly general for the ABC algorithm applied to chemical optimization problems.

  18. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    Science.gov (United States)

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis. PMID:23366362

  19. Production of artificial radioelements

    International Nuclear Information System (INIS)

    The techniques used in the production of artificial radioelements are described, with special emphasis on the following points: - nuclear reactions and use of reactors; - chemical separation methods and methods for enriching the activity of preparations; - protection of personnel and handling methods. (author)

  20. Artificial Left Ventricle

    CERN Document Server

    Ranjbar, Saeed; Meybodi, Mahmood Emami

    2014-01-01

    This Artificial left ventricle is based on a simple conic assumption shape for left ventricle where its motion is made by attached compressed elastic tubes to its walls which are regarded to electrical points at each nodal .This compressed tubes are playing the role of myofibers in the myocardium of the left ventricle. These elastic tubes have helical shapes and are transacting on these helical bands dynamically. At this invention we give an algorithm of this artificial left ventricle construction that of course the effect of the blood flow in LV is observed with making beneficiary used of sensors to obtain this effecting, something like to lifegates problem. The main problem is to evaluate powers that are interacted between elastic body (left ventricle) and fluid (blood). The main goal of this invention is to show that artificial heart is not just a pump, but mechanical modeling of LV wall and its interaction with blood in it (blood movement modeling) can introduce an artificial heart closed to natural heart...

  1. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  2. Artificial intelligence within AFSC

    Science.gov (United States)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  3. Terahertz Artificial Dielectric Lens

    Science.gov (United States)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  4. Artificial Gravity Research Plan

    Science.gov (United States)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  5. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  6. Natural or Artificial Intelligence?

    Czech Academy of Sciences Publication Activity Database

    Havlík, Vladimír

    Plzeň: University of West Bohemia, 2013 - (Romportl, J.; Ircing, P.; Zackova, E.; Polak, M.; Schuster, R.), s. 15-27 ISBN 978-80-261-0275-5. [International Conference Beyond AI 2013. Plzeň (CZ), 12.11.2013-14.11.2013] Institutional support: RVO:67985955 Keywords : artificial intelligence * natural intelligence * artifact * natural process * intrinsic intentionality Subject RIV: AA - Philosophy ; Religion

  7. Artificial Intelligence and CALL.

    Science.gov (United States)

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  8. Micromachined Artificial Haircell

    Science.gov (United States)

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  9. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  10. Inflatable artificial sphincter - series (image)

    Science.gov (United States)

    An artificial urinary sphincter is used to treat stress incontinence in men that is caused by urethral dysfunction such ... An artificial sphincter consists of three parts: a cuff that fits around the bladder neck a pressure regulating balloon ...

  11. Artificial Intelligence and Information Retrieval.

    Science.gov (United States)

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  12. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that...... successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well as...

  13. Artificial organisms that sleep.

    OpenAIRE

    Mirolli, Marco; Parisi, Domenico

    2003-01-01

    Abstract Populations of artificial organisms live in an environment in which light is cyclically present (day) or absent (night). Since being active during night is non-adaptive (activity consumes energy which is not compensated by the food found at night) the organisms evolve a sleep/wake behavioral pattern of being active during daytime and sleeping during nighttime. When the population moves to a different environment that contains "caves", they have to get out of a cave although the dark ...

  14. Impacts of Artificial Intelligence

    OpenAIRE

    Trappl, R.

    1986-01-01

    This book, which is intended to serve as the first stage in an iterative process of detecting, predicting, and assessing the impacts of Artificial Intelligence opens with a short "one-hour course" in AI, which is intended to provide a nontechnical informative introduction to the material which follows. Next comes an overview chapter which is based on an extensive literature search, the position papers, and discussions. The next section of the book contains position papers whose richness...

  15. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.

  16. Artificial Intelligence in Transition

    OpenAIRE

    Hart, Peter E.

    1984-01-01

    In the past fifteen years artificial intelligence has changed from being the preoccupation of a handful of scientists to a thriving enterprise that has captured the imagination of world leaders and ordinary citizens alike. While corporate and government officials organize new projects whose potential impact is widespread, to date few people have been more affected by the transition than those already in the field. I review here some aspects of this transition, and pose some issues that it rai...

  17. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  18. Intelligence, Artificial and Otherwise

    OpenAIRE

    Chace, William M.

    1984-01-01

    I rise now to speak with the assumption that all of you know very well what I am going to say. I am the humanist here, the professor of English. We humanists, when asked to speak on questions of science and technology, are notorious for offering an embarrassed and ignorant respect toward those matters, a respect, however, which can all too quickly degenerate into insolent condescension. Face to face with the reality of computer technology, say, or with "artificial intelligence," we humanists ...

  19. Artificial sweetener; Jinko kanmiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The patents related to the artificial sweetener that it is introduced to the public in 3 years from 1996 until 1998 are 115 cases. The sugar quality which makes an oligosaccharide and sugar alcohol the subject is greatly over 28 cases of the non-sugar quality in the one by the kind as a general tendency of these patents at 73 cases in such cases as the Aspartame. The method of manufacture patent, which included new material around other peptides, the oligosaccharide and sugar alcohol isn`t inferior to 56 cases of the formation thing patent at 43 cases, and pays attention to the thing, which is many by the method of manufacture, formation. There is most improvement of the quality of sweetness with 31 cases in badness of the aftertaste which is characteristic of the artificial sweetener and so on, and much stability including the improvement in the flavor of food by the artificial sweetener, a long time and dissolution, fluid nature and productivity and improvement of the economy such as a cost are seen with effect on a purpose. (NEDO)

  20. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    Science.gov (United States)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  1. Hybrid continuum–atomistic modelling of swift heavy ion radiation damage in germanium

    International Nuclear Information System (INIS)

    The response of germanium to swift heavy ion irradiation is simulated using a hybrid continuum–atomistic approach. The continuum part of the model, which characterises the electronic excitations is an extension of the inelastic thermal spike based on an approximation to the Boltzmann transport equation; while the atomistic part is represented with molecular dynamics. This integrated method can realistically account for the non-equilibrium carrier dynamics in band-gap materials under irradiation, unlike earlier developments based on the two-temperature approach. The model is used to obtain temporal and spatial evolution of carrier density, electronic temperature and lattice temperature for germanium irradiated with carbon cluster ions. Good agreement with experimental data of amorphised latent track radii for different stopping powers is obtained by fitting a constant value for the electron–phonon coupling strength – the only parameter treated as free in the model

  2. Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca.

    Science.gov (United States)

    He, Yang; Gu, Meng; Xiao, Haiyan; Luo, Langli; Shao, Yuyan; Gao, Fei; Du, Yingge; Mao, Scott X; Wang, Chongmin

    2016-05-17

    Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion-oxygen bond formation destabilizes the transition-metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and Mx O (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices. PMID:27071488

  3. Efficient parallelization of analytic bond-order potentials for large-scale atomistic simulations

    Science.gov (United States)

    Teijeiro, C.; Hammerschmidt, T.; Drautz, R.; Sutmann, G.

    2016-07-01

    Analytic bond-order potentials (BOPs) provide a way to compute atomistic properties with controllable accuracy. For large-scale computations of heterogeneous compounds at the atomistic level, both the computational efficiency and memory demand of BOP implementations have to be optimized. Since the evaluation of BOPs is a local operation within a finite environment, the parallelization concepts known from short-range interacting particle simulations can be applied to improve the performance of these simulations. In this work, several efficient parallelization methods for BOPs that use three-dimensional domain decomposition schemes are described. The schemes are implemented into the bond-order potential code BOPfox, and their performance is measured in a series of benchmarks. Systems of up to several millions of atoms are simulated on a high performance computing system, and parallel scaling is demonstrated for up to thousands of processors.

  4. Nanoscale finite element models for vibrations of single-walled carbon nanotubes:atomistic versus continuum

    Institute of Scientific and Technical Information of China (English)

    R ANSARI; S ROUHI; M ARYAYI

    2013-01-01

    By the atomistic and continuum finite element models, the free vibration behavior of single-walled carbon nanotubes (SWCNTs) is studied. In the atomistic finite element model, the bonds and atoms are modeled by the beam and point mass elements, respectively. The molecular mechanics is linked to structural mechanics to determine the elastic properties of the mentioned beam elements. In the continuum finite element approach, by neglecting the discrete nature of the atomic structure of the nanotubes, they are modeled with shell elements. By both models, the natural frequencies of SWCNTs are computed, and the effects of the geometrical parameters, the atomic structure, and the boundary conditions are investigated. The accuracy of the utilized methods is verified in comparison with molecular dynamic simulations. The molecular structural model leads to more reliable results, especially for lower aspect ratios. The present analysis provides valuable information about application of continuum models in the investigation of the mechanical behaviors of nanotubes.

  5. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.A., E-mail: ewa.soppa@mpa.uni-stuttgart.de; Kohler, C., E-mail: christopher.kohler@mpa.uni-stuttgart.de; Roos, E., E-mail: eberhard.roos@mpa.uni-stuttgart.de

    2014-03-01

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation.

  6. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    International Nuclear Information System (INIS)

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation

  7. Electronic states in an atomistic carbon quantum dot patterned in graphene

    Science.gov (United States)

    Craco, L.; Carara, S. S.; da Silva Pereira, T. A.; Milošević, M. V.

    2016-04-01

    We reveal the emergence of metallic Kondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.

  8. Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime.

    Science.gov (United States)

    Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse

    2015-01-01

    The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications. PMID:26555179

  9. Atomistic Failure Mechanism of Single Wall Carbon Nanotubes with Small Diameters

    Institute of Scientific and Technical Information of China (English)

    JI Dong; GAO Xiang; KONG Xiang-Yang; LI Jia-Ming

    2007-01-01

    @@ Single wall carbon nanotubes with small diameters (< 5.0 (A)) subjected to bending deformation are simulated by orthogonal tight-binding molecular dynamics approach. Based on the calculations of C-C bond stretching and breaking in the bending nanotubes, we elucidate the atomistic failure mechanisms of nanotube with small diameters. In the folding zone of bending nanotube, a large elongation of C-C bonds occurs, accounting for the superelastic behaviour.

  10. Permittivity of oxidized ultra-thin silicon films from atomistic simulations

    OpenAIRE

    Penazzi, G.; KWOK, YH; Aradi, B.; Pecchia, A.; Frauenheim, T.; Chen, G.; Markov, SN

    2015-01-01

    We establish the dependence of the permittivity of oxidized ultra-thin silicon films on the film thickness by means of atomistic simulations within the density-functional-based tight-binding theory (DFTB). This is of utmost importance for modeling ultra- and extremely-thin silicon-on-insulator MOSFETs, and for evaluating their scaling potential. We demonstrate that electronic contribution to the dielectric response naturally emerges from the DFTB Hamiltonian when coupled to Poisson equation s...

  11. A numerical method for the time coarsening of transport processes at the atomistic scale

    Science.gov (United States)

    Gonzalez-Ferreiro, B.; Romero, I.; Ortiz, M.

    2016-05-01

    We propose a novel numerical scheme for the simulation of slow transport processes at the atomistic scale. The scheme is based on a model for non-equilibrium statistical thermodynamics recently proposed by the authors, and extends it by formulating a variational integrator, i.e. a discrete functional whose optimality conditions provide all the governing equations of the problem. The method is employed to study surface segregation of AuAg alloys and its convergence is confirmed numerically.

  12. Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension

    OpenAIRE

    Muddana, Hari S.; Gullapalli, Ramachandra R.; Manias, Evangelos; Butler, Peter J.

    2010-01-01

    Membrane tension modulates cellular processes by initiating changes in the dynamics of its molecular constituents. To quantify the precise relationship between tension, structural properties of the membrane, and the dynamics of lipids and a lipophilic reporter dye, we performed atomistic molecular dynamics (MD) simulations of DiI-labeled dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under physiological lateral tensions ranging from −2.6 mN m−1 to 15.9 mN m−1. Simulations showed that th...

  13. Atomistic resolution structure and dynamics of lipid bilayers in simulations and experiments.

    Science.gov (United States)

    Ollila, O H Samuli; Pabst, Georg

    2016-10-01

    Accurate details on the sampled atomistic resolution structures of lipid bilayers can be experimentally obtained by measuring C-H bond order parameters, spin relaxation rates and scattering form factors. These parameters can be also directly calculated from the classical atomistic resolution molecular dynamics simulations (MD) and compared to the experimentally achieved results. This comparison measures the simulation model quality with respect to 'reality'. If agreement is sufficient, the simulation model gives an atomistic structural interpretation of the acquired experimental data. Significant advance of MD models is made by jointly interpreting different experiments using the same structural model. Here we focus on phosphatidylcholine lipid bilayers, which out of all model membranes have been studied mostly by experiments and simulations, leading to the largest available dataset. From the applied comparisons we conclude that the acyl chain region structure and rotational dynamics are generally well described in simulation models. Also changes with temperature, dehydration and cholesterol concentration are qualitatively correctly reproduced. However, the quality of the underlying atomistic resolution structural changes is uncertain. Even worse, when focusing on the lipid bilayer properties at the interfacial region, e.g. glycerol backbone and choline structures, and cation binding, many simulation models produce an inaccurate description of experimental data. Thus extreme care must be applied when simulations are applied to understand phenomena where the interfacial region plays a significant role. This work is done by the NMRlipids Open Collaboration project running at https://nmrlipids.blogspot.fi and https://github.com/NMRLipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26809025

  14. Analysis of Twisting of Cellulose Nanofibrils in Atomistic Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Paavilainen, S.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atomistic molecular dynamics simulations to study the crystal structure of cellulose nanofibrils, whose sizes are comparable with the crystalline parts in commercial nanocellulose. The simulations show twisting, whose rate of relaxation is strongly temperature dependent. Meanwhile, no...... significant bending or stretching of nanocellulose is discovered. Considerations of atomic-scale interaction patterns bring about that the twisting arises from hydrogen bonding within and between the chains in a fibril....

  15. A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials

    OpenAIRE

    Mohn, Chris E.; Kob, Walter

    2008-01-01

    We present a genetic algorithm for the atomistic design and global optimisation of substitutionally disordered bulk materials and surfaces. Premature convergence which hamper conventional genetic algorithms due to problems with synchronisation is avoided using a symmetry adapted crossover. The algorithm outperforms previously reported Monte Carlo and genetic algorithm simulations for finding low energy minima of two simple alloy models without the need for any redesign.

  16. Large scale atomistic simulation of size effects during nanoindentation: Dislocation length and hardness

    International Nuclear Information System (INIS)

    The present paper studies the size effects during nanoindentation in Ni thin films using large scale atomistic simulation. The main focus of this paper is to evaluate the available theoretical models of size effects during nanoindentation using atomistic simulation. First, the dislocation nucleation and evolution in the simulated samples are studied. In the next step, the plastic zone size is obtained for each sample at several indentation depths incorporating the dislocation visualization. The results show that the plastic zone size divided by the contact radius is not a constant factor and varies as the indentation depth changes. The total length of dislocations located in the plastic zone is measured in the simulated samples and compared to that of the corresponding theoretical models. The results obtained from the atomistic simulation verify the theoretical predictions of the dislocation length. Next, the variation of hardness obtained directly from the molecular dynamics outputs, which is the indentation force over the contact area, is studied. In the case of conical indenter, the theoretical predictions of hardness have been verified using both experiments and simulations, and the current simulation shows the same trend, i.e. the hardness decreases as the indentation depth increases. However, in the cases of flat indenters, the theoretical models have not been validated using any experiments or simulations. Here, in the cases of flat indenters, the simulation results verify the theoretical predictions of hardness. They show that the hardness increases as the indentation depth increases. The variation of dislocation density as a function of indentation depth is then studied. In the case of nanoindentation experiment, the validity of Taylor hardening model, i.e. the relation between the hardening and dislocation density, which has not been previously studied with full atomistic details, is investigated. Accordingly, the hardness obtained directly from the

  17. Atomistic calculation of the thermal conductance of large scale bulk-nanowire junctions

    OpenAIRE

    Duchemin, Ivan; Donadio, Davide

    2011-01-01

    We have developed an efficient scalable kernel method for thermal transport in open systems, with which we have computed the thermal conductance of a junction between bulk silicon and silicon nanowires with diameter up to 10 nm. We have devised scaling laws for transmission and reflection spectra, which allow us to predict the thermal resistance of bulk-nanowire interfaces with larger cross sections than those achievable with atomistic simulations. Our results indicate the characteristic size...

  18. Soft sphere model for electron correlation and scattering in the atomistic modelling of semiconductor devices

    OpenAIRE

    J. R. Watling; Barker, J R; Asenov, A

    2000-01-01

    The atomistic modelling of silicon MOSFET devices becomes essential at deep sub-micron scales when it is no longer possible to represent the charged impurities by a continuous charge distribution with a determined doping density. Instead the spatial distribution and the actual number of dopants must be treated as discrete random variables. The present paper addresses the issue of modelling the dynamics of discrete carrier flow in a semiconductor device utilising a simple model of the carrier-...

  19. An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces

    OpenAIRE

    LI Qiang; He, Guo-Wei

    2009-01-01

    Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption i...

  20. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    Science.gov (United States)

    Huang, Liangliang; Seredych, Mykola; Bandosz, Teresa J.; van Duin, Adri C. T.; Lu, Xiaohua; Gubbins, Keith E.

    2013-11-01

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials.

  1. Hybrid Simulation Strategy for Simulating Self-Assembled Morphologies at the Atomistic Length Scales

    Science.gov (United States)

    Sethuraman, Vaidyanathan; Ganesan, Venkat

    In the context of Lithium-ion batteries, an enhancement in both ionic conductivity and mechanical properties, were observed for block copolymer electrolytes with increasing MW. On the contrary, when homopolymers were used as electrolytes, the ionic conductivity decreased with increasing MW. However, the origins of such increase in conductivity are unclear and are speculated to be tied to both the morphology and the atomistic details of the copolymer themselves. Motivated by such issues, we present a strategy to create ordered morphologies of block copolymers at the atomistic level using a combination of coarse-graining and inverse coarse-graining techniques. A mapping which is developed using the long-ranged structural mapping in the disordered phases will be utilized to generate self-assembled morphologies. In particular we focus on generating self-assembled morphologies of PS-PEO at the atomistic length scales. Statics and dynamics of such self-assembled morphologies will be presented and the effect of self assembly on the transport properties of ions will also be explored. Funded by NSF.

  2. Theoretical modeling of the PEMFC catalyst layer: A review of atomistic methods

    International Nuclear Information System (INIS)

    This article reviews recent progress in the catalyst layer modeling of polymer electrolyte membrane fuel cells. Theoretical modeling is important to understand the basic chemical, and physical phenomena at the atomistic level in materials and relating these fundamentals to the properties and performance of the catalyst layer. Two fundamentally important theoretical methods have been chosen to represent atomistic models, namely density functional theory (DFT) and classical molecular dynamics. In addition, some reactive force field models are highlighted, and the mathematical framework is sufficiently described. The literature review includes important contributions that help to understand the oxygen reduction reaction including gas-phase reaction trends, and the solvation effects are also presented. Moreover, the electric field effect is discussed along with the recently established double reference method in the DFT framework. Using two atomistic simulations based on different axiomatic theories, the production of current density in the molecular junctions is considered with respect to voltage, elucidating applications to simple systems. The models of water transportation via polymer electrolyte membrane, as well as the catalyst and support oxidation are described. Epoxidized carbon support, oxidizable metal-oxide support and electron localization function analysis have provided insights for improving catalyst support material and enable characterization of the bonding between the catalyst and support. Conclusions and future outlook are outlined at the end. Thus the present work enlightens the future of the catalyst modeling towards more realistic models

  3. Phase field crystal modelling of the order-to-disordered atomistic structure transition of metallic glasses

    Science.gov (United States)

    Zhang, W.; Mi, J.

    2016-03-01

    Bulk metallic glass composites are a new class of metallic alloy systems that have very high tensile strength, ductility and fracture toughness. This unique combination of mechanical properties is largely determined by the presence of crystalline phases uniformly distributed within the glassy matrix. However, there have been very limited reports on how the crystalline phases are nucleated in the super-cooled liquid and their growth dynamics, especially lack of information on the order-to-disordered atomistic structure transition across the crystalline-amorphous interface. In this paper, we use phase field crystal (PFC) method to study the nucleation and growth of the crystalline phases and the glass formation of the super cooled liquid of a binary alloy. The study is focused on understanding the order-to-disordered transition of atomistic configuration across the interface between the crystalline phases and amorphous matrix of different chemical compositions at different thermal conditions. The capability of using PFC to simulate the order-to-disorder atomistic transition in the bulk material or across the interface is discussed in details.

  4. Atomistic modeling of the dislocation dynamics and evaluation of static yield stress

    Science.gov (United States)

    Karavaev, A. V.; Dremov, V. V.; Ionov, G. V.

    2015-09-01

    Static strength characteristics of structural materials are of great importance for the analysis of the materials behaviour under mechanical loadings. Mechanical characteristics of structural materials such as elastic limit, strength limit, ultimate tensile strength, plasticity are, unlike elastic moduli, very sensitive to the presence of impurities and defects of crystal structure. Direct atomistic modeling of the static mechanical strength characteristics of real materials is an extremely difficult task since the typical time scales available for the direct modeling in the frames of classical molecular dynamics do not exceed a hundred of nanoseconds. This means that the direct atomistic modeling of the material deformation can be done for the regimes with rather high strain rates at which the yield stress and other mechanical strength characteristics are controlled by microscopic mechanisms different from those at low (quasi-static) strain rates. In essence, the plastic properties of structural materials are determined by the dynamics of the extended defects of crystal structure (edge and screw dislocations) and by interactions between them and with the other defects in the crystal. In the present work we propose a method that is capable to model the dynamics of edge dislocations in the fcc and hcp materials at dynamic deformations and to estimate the material static yield stress in the states of interest in the frames of the atomistic approach. The method is based on the numerical characterization of the stress relaxation processes in specially generated samples containing solitary edge dislocations.

  5. Atomistic modeling of the dislocation dynamics and evaluation of static yield stress

    Directory of Open Access Journals (Sweden)

    Karavaev A.V.

    2015-01-01

    Full Text Available Static strength characteristics of structural materials are of great importance for the analysis of the materials behaviour under mechanical loadings. Mechanical characteristics of structural materials such as elastic limit, strength limit, ultimate tensile strength, plasticity are, unlike elastic moduli, very sensitive to the presence of impurities and defects of crystal structure. Direct atomistic modeling of the static mechanical strength characteristics of real materials is an extremely difficult task since the typical time scales available for the direct modeling in the frames of classical molecular dynamics do not exceed a hundred of nanoseconds. This means that the direct atomistic modeling of the material deformation can be done for the regimes with rather high strain rates at which the yield stress and other mechanical strength characteristics are controlled by microscopic mechanisms different from those at low (quasi-static strain rates. In essence, the plastic properties of structural materials are determined by the dynamics of the extended defects of crystal structure (edge and screw dislocations and by interactions between them and with the other defects in the crystal. In the present work we propose a method that is capable to model the dynamics of edge dislocations in the fcc and hcp materials at dynamic deformations and to estimate the material static yield stress in the states of interest in the frames of the atomistic approach. The method is based on the numerical characterization of the stress relaxation processes in specially generated samples containing solitary edge dislocations.

  6. Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal

    International Nuclear Information System (INIS)

    The determination of an atomistic graphene oxide (GO) model has been challenging due to the structural dependence on different synthesis methods. In this work we combine temperature-programmed molecular dynamics simulation techniques and the ReaxFF reactive force field to generate realistic atomistic GO structures. By grafting a mixture of epoxy and hydroxyl groups to the basal graphene surface and fine-tuning their initial concentrations, we produce in a controllable manner the GO structures with different functional groups and defects. The models agree with structural experimental data and with other ab initio quantum calculations. Using the generated atomistic models, we perform reactive adsorption calculations for H2S and H2O/H2S mixtures on GO materials and compare the results with experiment. We find that H2S molecules dissociate on the carbonyl functional groups, and H2O, CO2, and CO molecules are released as reaction products from the GO surface. The calculation reveals that for the H2O/H2S mixtures, H2O molecules are preferentially adsorbed to the carbonyl sites and block the potential active sites for H2S decomposition. The calculation agrees well with the experiments. The methodology and the procedure applied in this work open a new door to the theoretical studies of GO and can be extended to the research on other amorphous materials

  7. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems. PMID:16203606

  8. Polymer artificial muscles

    Directory of Open Access Journals (Sweden)

    Tissaphern Mirfakhrai

    2007-04-01

    Full Text Available The various types of natural muscle are incredible material systems that enable the production of large deformations by repetitive molecular motions. Polymer artificial muscle technologies are being developed that produce similar strains and higher stresses using electrostatic forces, electrostriction, ion insertion, and molecular conformational changes. Materials used include elastomers, conducting polymers, ionically conducting polymers, and carbon nanotubes. The mechanisms, performance, and remaining challenges associated with these technologies are described. Initial applications are being developed, but further work by the materials community should help make these technologies applicable in a wide range of devices where muscle-like motion is desirable.

  9. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  10. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  11. Mechanism of artificial heart

    CERN Document Server

    Yamane, Takashi

    2016-01-01

    This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.

  12. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general

  13. Ion beam processing of surfaces and interfaces. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Liedke, Bartosz

    2011-03-24

    Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In

  14. 一种基于博弈策略的群智能属性约简算法%Swarm intelligence based attribute reduction algorithm using game strategies

    Institute of Scientific and Technical Information of China (English)

    马胜蓝; 叶东毅

    2012-01-01

    建立了粒子群算法与博弈论之间的联系,在此基础上,引入一种基于博弈策略的群智能搜索机制,并应用于粗糙集最小属性约简问题的求解.由此构建的属性约简算法,可以设置不同的参与团体及其博弈策略,构建相应的支付效用矩阵,并能通过博弈过程构建策略的最优组合.多个UCI数据集的实验计算表明提出的基于博弈策略的新算法求解质量优于粒子群优化算法、禁忌搜索、遗传变异和变异粒子群优化算法,并具有较小的计算开销.%This paper establishes relationship between particle swarm optimization algorithms and game theory, on the basis of which a swarm intelligence based search mechanism is proposed and applied to solving the attribute reduction problem in the context of rough sets. The proposed attribute reduction algorithm can set up different participatory groups and game strategies, construct corresponding pay utility matrix, and produce optimal combinations through gaming procedure. Numerical experiments on a number of UCI datasets show the proposed game strategies based reduction algorithm is superior to particle swarm optimization, tabu search, gene algorithm and PSO with mutation operator in terms of solution quality, and has lower computational cost.

  15. Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view.

    Science.gov (United States)

    Masone, Diego; Chanforan, Céline

    2015-06-01

    Due to the high amount of artificial food colorants present in infants' diets, their adverse effects have been of major concern among the literature. Artificial food colorants have been suggested to affect children's behavior, being hyperactivity the most common disorder. In this study we compare binding affinities of a group of artificial colorants (sunset yellow, quinoline yellow, carmoisine, allura red and tartrazine) and their natural industrial equivalents (carminic acid, curcumin, peonidin-3-glucoside, cyanidin-3-glucoside) to human serum albumin (HSA) by a docking approach and further refinement through atomistic molecular dynamics simulations. Due to the protein-ligand conformational interface complexity, we used collective variable driven molecular dynamics to refine docking predictions and to score them according to a hydrogen-bond criterion. With this protocol, we were able to rank ligand affinities to HSA and to compare between the studied natural and artificial food additives. Our results show that the five artificial colorants studied bind better to HSA than their equivalent natural options, in terms of their H-bonding network, supporting the hypothesis of their potential risk to human health. PMID:25935119

  16. Artificial organs: recent progress in artificial hearing and vision.

    Science.gov (United States)

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas. PMID:19330498

  17. A Gaussian mixture modelling approach to the data-driven estimation of atomistic support for continuum stress

    International Nuclear Information System (INIS)

    Recent developments in multiscale modelling include the treatment of atomistic scale interactions via molecular dynamics simulations. The atomistic stress definition at a given continuum point contains a space-averaging volume over nearby atoms to provide an averaged macroscopic stress measure. Previous work on atomistic stress measures introduce the size of this volume as an a priori given parameter. In this contribution we let the atomistic data speak for itself by hypothesizing that the influence between atoms can be effectively estimated from their relative spatial position and stress. Atoms with highly similar spatial position and stress should therefore be contained within the same space-averaging volume. We motivate the application of Gaussian mixture modelling as a principled probabilistic means of estimating this similarity directly from the atomistic data. This model enables the discovery of homogeneous sub-populations of atoms in an entirely data-driven manner. The size of the space-averaging volume then follows naturally from the average maximum extent of the sub-populations. Furthermore, we demonstrate how the model can be used to compute the stress at arbitrary continuum points. Thorough evaluation is conducted on a numerical example of an edge dislocation in a single crystal. We find that our results are in excellent agreement with the corresponding analytical solution. (paper)

  18. Artificial sweeteners - a review.

    Science.gov (United States)

    Chattopadhyay, Sanchari; Raychaudhuri, Utpal; Chakraborty, Runu

    2014-04-01

    Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities. PMID:24741154

  19. Artificial Immune Systems (2010)

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the m...

  20. A Primer on Artificial Intelligence.

    Science.gov (United States)

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  1. Generalized Adaptive Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  2. Sucrose compared with artificial sweeteners

    DEFF Research Database (Denmark)

    Sørensen, Lone Brinkmann; Vasilaras, Tatjana H; Astrup, Arne;

    2014-01-01

    There is a lack of appetite studies in free-living subjects supplying the habitual diet with either sucrose or artificially sweetened beverages and foods. Furthermore, the focus of artificial sweeteners has only been on the energy intake (EI) side of the energy-balance equation. The data are from a...

  3. Automated bony region identification using artificial neural networks: reliability and validation measurements

    International Nuclear Information System (INIS)

    The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)

  4. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Directory of Open Access Journals (Sweden)

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  5. Electrical Load Forecasting in Power Distribution Network by Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Ali Nahari

    2013-11-01

    Full Text Available Today, one of most important concerns in electrical power markets and distribution network is supplying the customer demands. In order to manage the market it is necessary to forecast the usage of electrical power in distribution network. The pattern of electrical power usage depends on many different parameters such as the week days, seasons, weather condition and etc. Today, researchers by using an artificial intelligence based on the natural intelligence are trying to forecast the costumers’ usage of electrical power. In this Paper it is tried to forecast the electrical power usage according to weather data by using artificial neural network in Bushehr distribution electrical power network and also is tried to find out the pattern of electrical power usage with the dataset which is prepared by real data. The method which has been used here is useful in all kind of power forecasting such as short term, middle term and long term. It can be helpful to manage the distributed generators production schedule and also correction of electrical power usage.

  6. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level.

    Science.gov (United States)

    Molugu, Trivikram R; Brown, Michael F

    2016-09-01

    Applications of solid-state NMR spectroscopy for investigating the influences of lipid-cholesterol interactions on membrane fluctuations are reviewed in this paper. Emphasis is placed on understanding the energy landscapes and fluctuations at an emergent atomistic level. Solid-state (2)H NMR spectroscopy directly measures residual quadrupolar couplings (RQCs) due to individual C-(2)H labeled segments of the lipid molecules. Moreover, residual dipolar couplings (RDCs) of (13)C-(1)H bonds are obtained in separated local-field NMR spectroscopy. The distributions of RQC or RDC values give nearly complete profiles of the order parameters as a function of acyl segment position. Measured equilibrium properties of glycerophospholipids and sphingolipids including their binary and tertiary mixtures with cholesterol show unequal mixing associated with liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids and may drive the formation of lipid rafts. In addition relaxation time measurements enable one to study the molecular dynamics over a wide time-scale range. For (2)H NMR the experimental spin-lattice (R1Z) relaxation rates follow a theoretical square-law dependence on segmental order parameters (SCD) due to collective slow dynamics over mesoscopic length scales. The functional dependence for the liquid-crystalline lipid membranes is indicative of viscoelastic properties as they emerge from atomistic-level interactions. A striking decrease in square-law slope upon addition of cholesterol denotes stiffening relative to the pure lipid bilayers that is diminished in the case of lanosterol. Measured equilibrium properties and relaxation rates infer opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale that potentially affects lipid raft formation in cellular membranes. PMID:27154600

  7. Applications of Atomistic Simulation to Radioactive and Hazardous Waste Glass Formulation Development

    Energy Technology Data Exchange (ETDEWEB)

    Kielpinski, A.L.

    1995-03-01

    Glass formulation development depends on an understanding of the effects of glass composition on its processibility and product quality. Such compositional effects on properties in turn depend on the microscopic structure of the glass. Historically, compositional effects on macroscopic properties have been explored empirically, e.g., by measuring viscosity at various glass compositions. The relationship of composition to structure has been studied by microstructural experimental methods. More recently, computer simulation has proved a fruitful complement to these more traditional methods of study. By simulating atomic interaction over a period of time using the molecular dynamics method, a direct picture of the glass structure and dynamics is obtained which can verify existing concepts as well as permit ``measurement`` of quantities inaccessible to experiment. Atomistic simulation can be of particular benefit in the development of waste glasses. As vitrification is being considered for an increasing variety of waste streams, process and product models are needed to formulate compositions for an extremely wide variety of elemental species and composition ranges. The demand for process and product models which can predict over such a diverse composition space requires mechanistic understanding of glass behavior; atomistic simulation is ideally suited for providing this understanding. Moreover, while simulation cannot completely eliminate the need for treatability studies, it can play a role in minimizing the experimentation on (and therefore contact handling of) such materials. This paper briefly reviews the molecular dynamics method, which is the primary atomistic simulation tool for studying glass structure. We then summarize the current state of glass simulation, emphasizing areas of importance for waste glass process/product modeling. At SRS, glass process and product models have been formulated in terms of glass structural concepts.

  8. Beyond AI: Artificial Dreams Conference

    CERN Document Server

    Zackova, Eva; Kelemen, Jozef; Beyond Artificial Intelligence : The Disappearing Human-Machine Divide

    2015-01-01

    This book is an edited collection of chapters based on the papers presented at the conference “Beyond AI: Artificial Dreams” held in Pilsen in November 2012. The aim of the conference was to question deep-rooted ideas of artificial intelligence and cast critical reflection on methods standing at its foundations.  Artificial Dreams epitomize our controversial quest for non-biological intelligence, and therefore the contributors of this book tried to fully exploit such a controversy in their respective chapters, which resulted in an interdisciplinary dialogue between experts from engineering, natural sciences and humanities.   While pursuing the Artificial Dreams, it has become clear that it is still more and more difficult to draw a clear divide between human and machine. And therefore this book tries to portrait such an image of what lies beyond artificial intelligence: we can see the disappearing human-machine divide, a very important phenomenon of nowadays technological society, the phenomenon which i...

  9. AGU Chapman Conference Hydrogeologic Processes: Building and Testing Atomistic- to Basin-Scale Models

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, B. [American Geophysical Union, Washington, DC (United States)

    1994-12-31

    This report presents details of the Chapman Conference given on June 6--9, 1994 in Lincoln, New Hampshire. This conference covered the scale of processes involved in coupled hydrogeologic mass transport and a concept of modeling and testing from the atomistic- to the basin- scale. Other topics include; the testing of fundamental atomic level parameterizations in the laboratory and field studies of fluid flow and mass transport and the next generation of hydrogeologic models. Individual papers from this conference are processed separately for the database.

  10. Rotational viscosity of a liquid crystal mixture:a fully atomistic molecular dynamics study

    Institute of Scientific and Technical Information of China (English)

    Zhang Ran; Peng Zeng-Hui; Liu Yong-Gang; Zheng Zhi-Gang; Xuan Li

    2009-01-01

    Fully atomistic molecular dynamics(MD)simulations at 293, 303 and 313 K have been performed for the four. component liquid crystal mixture, E7, using the software package Material Studio. Order parameters and orientational time correlation functions(TCFs)were calculated from MD trajectories. The rotational viscosity coefficients(RVCs)of the mixture were ca]culated using the Nemtsov-Zakharov and Fialkowski methods based on statistical-mechanical approaches. Temperature dependences of RVC and density were discussed in detall. Reasonable agreement between the simulated and experimental values was found.

  11. Atomistic Simulation of Intrinsic Defects and Trivalent and Tetravalent Ion Doping in Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Ricardo D. S. Santos

    2014-01-01

    Full Text Available Atomistic simulation techniques have been employed in order to investigate key issues related to intrinsic defects and a variety of dopants from trivalent and tetravalent ions. The most favorable intrinsic defect is determined to be a scheme involving calcium and hydroxyl vacancies. It is found that trivalent ions have an energetic preference for the Ca site, while tetravalent ions can enter P sites. Charge compensation is predicted to occur basically via three schemes. In general, the charge compensation via the formation of calcium vacancies is more favorable. Trivalent dopant ions are more stable than tetravalent dopants.

  12. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    DEFF Research Database (Denmark)

    Kotsalis, E.M.; Walther, Jens Honore; Koumoutsakos, P.

    2007-01-01

    continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is...... usually employed to remedy this situation.We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of...

  13. Experimental and atomistic study of the elastic properties of α′ Fe–C martensite

    International Nuclear Information System (INIS)

    We calculate the elastic constants of Fe–C α′ single crystals and compare them to our own and previously published measurement data on polycrystals. Based on a recently developed interatomic interaction potential, discrepancies between our present experimental results and earlier measurements are discussed, and can be settled with the help of our simulation data. Atomistic data obtained with a different interatomic potential show less satisfactory agreement. Our results demonstrate a strong increase of the elastic anisotropy with carbon content, but only a mild dependence of the Debye temperature.

  14. Predicting growth of graphene nanostructures using high-fidelity atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Keven F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ward, Donald K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schultz, Peter A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foster, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    In this project we developed t he atomistic models needed to predict how graphene grows when carbon is deposited on metal and semiconductor surfaces. We first calculated energies of many carbon configurations using first principles electronic structure calculations and then used these energies to construct an empirical bond order potentials that enable s comprehensive molecular dynamics simulation of growth. We validated our approach by comparing our predictions to experiments of graphene growth on Ir, Cu and Ge. The robustness of ou r understanding of graphene growth will enable high quality graphene to be grown on novel substrates which will expand the number of potential types of graphene electronic devices.

  15. Investigations on the mechanical behavior of nanowires with twin boundaries by atomistic simulations

    International Nuclear Information System (INIS)

    Atomistic simulations are used to study the deformation behavior of twinned Cu nanowires with a <111> growth orientation under tension. Due to the existence of the twin boundaries, the strength of the twinned nanowires is higher than that of the twin-free nanowire and the yielding stress of twinned nanowires is inversely proportional to the spacings of the twin boundaries. Moreover, The ductility of the twin-free nanowire is the highest of all and it grows with the increasing spacings of the twin boundaries for twinned nanowires. Besides, we find that the twin boundaries can be served as dislocation sources as well as the free surfaces and grain boundaries

  16. Heterogeneous plastic deformation and Bauschinger effect in ultrafine-grained metals: atomistic simulations

    Science.gov (United States)

    Tsuru, Tomohito; Aoyagi, Yoshiteru; Kaji, Yoshiyuki; Shimokawa, Tomotsugu

    2016-03-01

    The effect of the dislocation density on yield strength and subsequent plastic deformation of ultrafine-grained metals was investigated in large-scale atomistic simulations. Polycrystalline models were constructed and uniaxial tension and compression were applied to elucidate the heterogeneous plastic deformation and the Bauschinger effect. The initial yield becomes heterogeneous as the dislocation density decreases owing to a wide range of Schmid factors of activated slip systems in each grain. A different mechanism of the Bauschinger effect was proposed, where the Bauschinger effect of ultrafine-grained metals is caused by the change in dislocation density in the process of forward and backward loadings.

  17. Atomistic investigation of the structure and transport properties of tilt grain boundaries of UO2

    International Nuclear Information System (INIS)

    We apply atomistic simulation techniques to address whether oxygen shows higher diffusivity at the grain boundary region compared to that in bulk UO2, and whether the relative diffusivity is affected by the choice of the grain boundary. We consider coincident site lattice grain boundaries, Σ3, Σ5, Σ9, Σ11 and Σ19, expressing the {n n 1}, {n 1 1}, and {n 1 0} surfaces, and evaluate the extent that the grain boundary structures affect the diffusion of oxygen. We found that oxygen diffusion is enhanced at all boundaries and in the adjacent regions, with strong dependence on the temperature and local structure

  18. Atomistic understanding of hydrogen loading phenomenon into palladium cathode: A simple nanocluster approach and electrochemical evidence

    Indian Academy of Sciences (India)

    Mohsen Lashgari; Davood Matloubi

    2015-03-01

    The inherent potency of palladium to sorb hydrogen atoms was examined empirically and theoretically through various electrochemical methods and high-level quantum chemical calculations (HSE06) based on cluster model (CM) and density functional theory (DFT). The CM-DFT approach using QZVP/cc-PV6Z basis sets revealed a strong attraction between Pd nanoclusters and H atoms that generates some charged entities. This atomistically justifies why the electrochemical impedance of the system becomes less by the loading phenomenon. It is concluded that hydrogen atoms enter the palladium subsurface through hollow and bridge sites by diffusing as proton-like species and get loaded predominantly in the octahedral voids.

  19. Using a scalar parameter to trace dislocation evolution in atomistic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinbo [ORNL; Zhang, Z F [Shenyang National Laboratory for Materials Science; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL

    2015-01-01

    A scalar gamma-parameter is proposed from the Nye tensor. Its maximum value occurs along a dislocation line, either straight or curved, when the coordinate system is purposely chosen. This parameter can be easily obtained from the Nye tensor calculated at each atom in atomistic modeling. Using the gamma-parameter, a fully automated approach is developed to determine core atoms and the Burgers vectors of dislocations simultaneously. The approach is validated by revealing the smallest dislocation loop and by tracing the whole formation process of complicated dislocation networks on the fly.

  20. Heat flux expressions that satisfy the conservation laws in atomistic system involving multibody potentials

    Science.gov (United States)

    Fu, Yao; Song, Jeong-Hoon

    2015-08-01

    Heat flux expressions are derived for multibody potential systems by extending the original Hardy's methodology and modifying Admal & Tadmor's formulas. The continuum thermomechanical quantities obtained from these two approaches are easy to compute from molecular dynamics (MD) results, and have been tested for a constant heat flux model in two distinctive systems: crystalline iron and polyethylene (PE) polymer. The convergence criteria and affecting parameters, i.e. spatial and temporal window size, and specific forms of localization function are found to be different between the two systems. The conservation of mass, momentum, and energy are discussed and validated within this atomistic-continuum bridging.

  1. Solid solution hardening in face centered binary alloys: Gliding statistics of a dislocation in random solid solution by atomistic simulation

    International Nuclear Information System (INIS)

    The glide of edge and screw dislocation in solid solution is modeled through atomistic simulations in two model alloys of Ni(Al) and Al(Mg) described within the embedded atom method. Our approach is based on the study of the elementary interaction between dislocations and solutes to derive solid solution hardening of face centered cubic binary alloys. We identify the physical origins of the intensity and range of the interaction between a dislocation and a solute atom. The thermally activated crossing of a solute atom by a dislocation is studied at the atomistic scale. We show that hardening of edge and screw segments are similar. We develop a line tension model that reproduces quantitatively the atomistic calculations of the flow stress. We identify the universality class to which the dislocation depinning transition in solid solution belongs. (author)

  2. The artificial leaf.

    Science.gov (United States)

    Nocera, Daniel G

    2012-05-15

    To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a

  3. Atomistic simulation based prediction of the solvent effect on the molecular mobility and glass transition of poly (methyl methacrylate)

    Science.gov (United States)

    Mishra, Shawn; Keten, Sinan

    2013-01-01

    We present an investigation of the retained solvent effect on the glass transition temperature (Tg) of poly(methyl methacrylate) (PMMA) through all-atom molecular dynamics simulations. Addition of a weakly interactive solvent, tetrahydrofuran (THF), causes a depression of the PMMA Tg that can be identified through an analysis of the mean squared displacement of the polymer chains from atomistic trajectories. Our results are in very good agreement with an atomistically informed theoretical model based on free volume theory and demonstrate the applicability of molecular simulation to discern solvent effects on polymer thermomechanical behavior in silico.

  4. natural or artificial diets

    Directory of Open Access Journals (Sweden)

    A. O. Meyer-Willerer

    2005-01-01

    Full Text Available Se probaron alimentos artificiales y naturales con larva de camarón (Litopenaeus vannamei cultivados en diferentes recipientes. Estos fueron ocho frascos cónicos con 15L, ocho acuarios con 50L y como grupo control, seis tanques de fibra de vidrio con 1500L; todos con agua marina fresca y filtrada. La densidad inicial en todos los recipientes fue de 70 nauplios/L. Aquellos en frascos y acuarios recibieron ya sea dieta natural o artificial. El grupo control fue cultivado con dieta natural en los tanques grandes que utilizan los laboratorios para la producción masiva de postlarvas. El principal producto de excreción de larva de camarón es el ión amonio, que es tóxico cuando está presente en concentraciones elevadas. Se determinó diariamente con el método colorimétrico del indofenol. Los resultados muestran diferencias en la concentración del ión amonio y en la sobrevivencia de larvas entre las diferentes dietas y también entre los diferentes recipientes. En aquellos con volúmenes pequeños comparados con los grandes, se presentó mayor concentración de amonio (500 a 750µg/L, en aquellos con dietas naturales, debido a que este ión sirve de fertilizante a las algas adicionadas, necesitando efectuar recambios diarios de agua posteriores al noveno día de cultivo para mantener este ión a una concentración subletal. Se obtuvo una baja cosecha de postlarvas (menor a 15% con el alimento artificial larvario, debido a la presencia de protozoarios, alimentándose con el producto comercial precipitado en el fondo de los frascos o acuarios. Los acuarios con larvas alimentadas con dieta natural también mostraron concentraciones subletales de amonio al noveno día; sin embargo, la sobrevivencia fue cuatro veces mayor que con dietas artificiales. Los tanques control con dietas naturales presentaron tasas de sobrevivencia (70 ± 5% similares a la reportada por otros laboratorios.

  5. Quantum Thermodynamics: Non-equilibrium 3D Description of an Unbounded System at an Atomistic Level

    Directory of Open Access Journals (Sweden)

    Vittorio Verda

    2010-03-01

    Full Text Available Quantum thermodynamics (QT provides a general framework for the description of non-equilibrium phenomena at any level, particularly the atomistic one. This theory and its dynamical postulate are used here to extend the work reported in previous papers of modeling the storage of hydrogen in an isolated system, by extending the modeling to 3D. The system is prepared in a state with the hydrogen molecules initially far from stable equilibrium after which the system is allowed to relax (evolve to a state of stable equilibrium. The so-called energy eigenvalue problem, which entails a many-body problem that for dilute and moderately dense gases can be solved using virial expansion theory, is used to determine the energy eigenvalues and eigenstates of the system. This information is then used in the nonlinear Beretta equation of motion of QT to determine the evolution of the thermodynamic state of the system as well as the spatial distributions of the hydrogen molecules in time. The results of our simulations provide a quantification of the entropy generated due to irreversibilities at an atomistic level and show in detail the trajectory of the state of the system as the hydrogen molecules, which are initially arranged to be far from the carbon nanotube, spread out in the system and eventually become more concentrated near the carbon atoms which make up the nanotube.

  6. Multi-scale modelling of ions in solution: from atomistic descriptions to chemical engineering

    International Nuclear Information System (INIS)

    Ions in solution play a fundamental role in many physical, chemical, and biological processes. The PUREX process used in the nuclear industry to the treatment of spent nuclear fuels is considered as an example. For industrial applications these systems are usually described using simple analytical models which are fitted to reproduce the available experimental data. In this work, we propose a multi-scale coarse graining procedure to derive such models from atomistic descriptions. First, parameters for classical force-fields of ions in solution are extracted from ab-initio calculations. Effective (McMillan-Mayer) ion-ion potentials are then derived from radial distribution functions measured in classical molecular dynamics simulations, allowing us to define an implicit solvent model of electrolytes. Finally, perturbation calculations are performed to define the best possible representation for these systems, in terms of charged hard-sphere models. Our final model is analytical and contains no free 'fitting' parameters. It shows good agreement with the exact results obtained from Monte-Carlo simulations for the thermodynamic and structural properties. Development of a similar model for the electrolyte viscosity, from information derived from atomistic descriptions, is also introduced. (author)

  7. NanoPSE: Nanoscience Problem Solving Environment for atomistic electronic structure of semiconductor nanostructures

    International Nuclear Information System (INIS)

    Researchers at the National Renewable Energy Laboratory and their collaborators have developed over the past ∼10 years a set of algorithms for an atomistic description of the electronic structure of nanostructures, based on plane-wave pseudopotentials and configurationinteraction. The present contribution describes the first step in assembling these various codes into a single, portable, integrated set of software packages. This package is part of an ongoing research project in the development stage. Components of NanoPSE include codes for atomistic nanostructure generation and passivation, valence force field model for atomic relaxation, code for potential field generation, empirical pseudopotential method solver, strained linear combination of bulk bands method solver, configuration interaction solver for excited states, selection of linear algebra methods, and several inverse band structure solvers. Although not available for general distribution at this time as it is being developed and tested, the design goal of the NanoPSE software is to provide a software context for collaboration. The software package is enabled by fcdev, an integrated collection of best practice GNU software for open source development and distribution augmented to better support FORTRAN

  8. Surface patterning by ion bombardment: predictions of large-scale atomistic simulations

    International Nuclear Information System (INIS)

    Despite of intense studies in recent years, atomistic understanding of surface evolution during ion irradiation is still under discussion. Continuum models, like the Bradley and Harper theory, cannot explain microscopic processes during ion irradiation. So far, atomistic simulations could not describe pattern dynamics on spatiotemporal scales of experiments. We present a novel program package that unifies the simulation of collision cascades with kinetic Monte-Carlo simulations. The 3D atom relocations were calculated in the Binary Collision Approximation (BCA), whereas the thermally activated relaxation of energetically unstable atomic configurations as well as diffusive processes were simulated by a very efficient bit-coded kinetic 3D Monte Carlo code. Our studies show that: (i) bulk defects continuously created within the collision cascade are responsible for local surface topography fluctuations and induce surface mass currents. These currents smooth the surface from normal incidence up to θ=40 , whereas at θ>40 ripple patterns appear; (ii) sputtering is not the dominant driving force for the ripple formation at non-grazing incidence angles. Surface patterning is caused by processes like bulk and surface defect migration, recombination, bulk and surface diffusion and ion induced diffusion.

  9. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    Science.gov (United States)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  10. An atomistic interpretation of Planck's 1900 derivation of his radiation law

    International Nuclear Information System (INIS)

    In deriving his radiation law in 1900, Max Planck employed a simple harmonic oscillator to model the exchange of energy between radiation and matter. Traditionally the harmonic oscillator has been viewed as modelling an entity which is itself oscillating, although a suitable oscillating entity has not been forthcoming. (Opinion is divided between a material oscillator, an imaginary oscillator and a need to revise Planck's derivation to apply to cavity modes of oscillation). We offer a novel, atomistic interpretation of Planck's derivation wherein the harmonic oscillator models a transition between the internal quantum states of an atom|not a normal electronic atom characterised by possible energies 0 and hν, but an atom populated by subatomic bosons (such as pions) and characterised by multiple occupancy of quantum states and possible energies nhν (n = 0;1;2; ...). We show how Planck's derivation can be varied to accommodate electronic atoms. A corollary to the atomistic interpretation is that Planck's derivation can no longer be construed as support for the postulate that material oscillating entities can have only those energies that are multiples of hν. Copyright (2000) CSIRO Australia

  11. Atomistic insight into orthoborate-based ionic liquids: force field development and evaluation.

    Science.gov (United States)

    Wang, Yong-Lei; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N; Laaksonen, Aatto

    2014-07-24

    We have developed an all-atomistic force field for a new class of halogen-free chelated orthoborate-phosphonium ionic liquids. The force field is based on an AMBER framework with determination of force field parameters for phosphorus and boron atoms, as well as refinement of several available parameters. The bond and angle force constants were adjusted to fit vibration frequency data derived from both experimental measurements and ab initio calculations. The force field parameters for several dihedral angles were obtained by fitting torsion energy profiles deduced from ab initio calculations. To validate the proposed force field parameters, atomistic simulations were performed for 12 ionic liquids consisting of tetraalkylphosphonium cations and chelated orthoborate anions. The predicted densities for neat ionic liquids and the [P6,6,6,14][BOB] sample, with a water content of approximately 2.3-2.5 wt %, are in excellent agreement with available experimental data. The potential energy components of 12 ionic liquids were discussed in detail. The radial distribution functions and spatial distribution functions were analyzed and visualized to probe the microscopic ionic structures of these ionic liquids. There are mainly four high-probability regions of chelated orthoborate anions distributed around tetraalkylphosphonium cations in the first solvation shell, and such probability distribution functions are strongly influenced by the size of anions. PMID:25020237

  12. New Developments in the Embedded Statistical Coupling Method: Atomistic/Continuum Crack Propagation

    Science.gov (United States)

    Saether, E.; Yamakov, V.; Glaessgen, E.

    2008-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain has been enhanced. The concurrent MD-FEM coupling methodology uses statistical averaging of the deformation of the atomistic MD domain to provide interface displacement boundary conditions to the surrounding continuum FEM region, which, in turn, generates interface reaction forces that are applied as piecewise constant traction boundary conditions to the MD domain. The enhancement is based on the addition of molecular dynamics-based cohesive zone model (CZM) elements near the MD-FEM interface. The CZM elements are a continuum interpretation of the traction-displacement relationships taken from MD simulations using Cohesive Zone Volume Elements (CZVE). The addition of CZM elements to the concurrent MD-FEM analysis provides a consistent set of atomistically-based cohesive properties within the finite element region near the growing crack. Another set of CZVEs are then used to extract revised CZM relationships from the enhanced embedded statistical coupling method (ESCM) simulation of an edge crack under uniaxial loading.

  13. Comparative study of embedded atom potentials for atomistic simulations of fracture in α-iron

    International Nuclear Information System (INIS)

    Atomistic simulations play a crucial role in advancing our understanding of the crack-tip processes that take place during fracture of semi-brittle materials like α-iron. As with all atomistic simulations, the results of such simulations however depend critically on the underlying atomic interaction model. Here, we present a systematic study of eight α-iron embedded atom method potentials used to model cracks subjected to plane strain mode-I loading conditions in six different crystal orientations. Molecular statics simulations are used to determine the fracture behavior (cleavage, dislocation emission, twinning) and the critical stress intensity factor KIc. The structural transformations in front of the crack tips, and in particular the occurrence of {1 1 0} planar faults, are analyzed in detail and related to the strain-dependent generalized stacking fault energy curve. The simulation results are discussed in terms of theoretical fracture criteria and compared to recent experimental data. The different potentials are ranked according to their capability to model the experimentally observed fracture behavior. (paper)

  14. Atomistically informed crystal plasticity model for body-centered cubic iron

    International Nuclear Information System (INIS)

    The glide of screw dislocations with non-planar dislocation cores dominates the plastic deformation behavior in body-centered cubic iron. This yields a strong strain rate and temperature dependence of the flow stress, the breakdown of Schmid’s law and a dependence of dislocation mobility on stress components that do not contribute to the mechanical driving force of dislocation glide. We developed a constitutive plasticity model that takes all these effects into account. The model is based on the crystal plasticity approach and parameterized by performing molecular statics calculations using a semi-empirical potential. The atomistic studies yield quantitative relations between local stress tensor components and the mobility of dislocations. Together with experimental stress–strain curves obtained for two different orientations of iron single crystals taken from the literature, the constitutive law is completely parameterized. The model is validated by comparing numerical single crystal tension tests for a third orientation to the equivalent experimental data from the literature. We also provide results for the temperature and strain rate dependence of the new atomistically informed constitutive model.

  15. An atomistic model for cross-linked HNBR elastomers used in seals

    Science.gov (United States)

    Molinari, Nicola; Sutton, Adrian; Stevens, John; Mostofi, Arash

    2015-03-01

    Hydrogenated nitrile butadiene rubber (HNBR) is one of the most common elastomeric materials used for seals in the oil and gas industry. These seals sometimes suffer ``explosive decompression,'' a costly problem in which gases permeate a seal at the elevated temperatures and pressures pertaining in oil and gas wells, leading to rupture when the seal is brought back to the surface. The experimental evidence that HNBR and its unsaturated parent NBR have markedly different swelling properties suggests that cross-linking may occur during hydrogenation of NBR to produce HNBR. We have developed a code compatible with the LAMMPS molecular dynamics package to generate fully atomistic HNBR configurations by hydrogenating initial NBR structures. This can be done with any desired degree of cross-linking. The code uses a model of atomic interactions based on the OPLS-AA force-field. We present calculations of the dependence of a number of bulk properties on the degree of cross-linking. Using our atomistic representations of HNBR and NBR, we hope to develop a better molecular understanding of the mechanisms that result in explosive decompression.

  16. Atomistic nature in band-to-band tunneling in two-dimensional silicon pn tunnel diodes

    Science.gov (United States)

    Tabe, Michiharu; Tan, Hoang Nhat; Mizuno, Takeshi; Muruganathan, Manoharan; Anh, Le The; Mizuta, Hiroshi; Nuryadi, Ratno; Moraru, Daniel

    2016-02-01

    We study low-temperature transport properties of two-dimensional (2D) Si tunnel diodes, or Si Esaki diodes, with a lateral layout. In ordinary Si Esaki diodes, interband tunneling current is severely limited because of the law of momentum conservation, while nanoscale Esaki diodes may behave differently due to the dopants in the narrow depletion region, by atomistic effects which release such current limitation. In thin-Si lateral highly doped pn diodes, we find clear signatures of interband tunneling between 2D-subbands involving phonon assistance. More importantly, the tunneling current is sharply enhanced in a narrow voltage range by resonance via a pair of a donor- and an acceptor-atom in the pn junction region. Such atomistic behavior is recognized as a general feature showing up only in nanoscale tunnel diodes. In particular, a donor-acceptor pair with deeper ground-state energies is likely to be responsible for such a sharply enhanced current peak, tunable by external biases.

  17. Atomistic cluster alignment method for local order mining in liquids and glasses

    International Nuclear Information System (INIS)

    An atomistic cluster alignment method is developed to identify and characterize the local atomic structural order in liquids and glasses. With the 'order mining' idea for structurally disordered systems, the method can detect the presence of any type of local order in the system and can quantify the structural similarity between a given set of templates and the aligned clusters in a systematic and unbiased manner. Moreover, population analysis can also be carried out for various types of clusters in the system. The advantages of the method in comparison with other previously developed analysis methods are illustrated by performing the structural analysis for four prototype systems (i.e., pure Al, pure Zr, Zr35Cu65, and Zr36Ni64). The results show that the cluster alignment method can identify various types of short-range orders (SROs) in these systems correctly while some of these SROs are difficult to capture by most of the currently available analysis methods (e.g., Voronoi tessellation method). Such a full three-dimensional atomistic analysis method is generic and can be applied to describe the magnitude and nature of noncrystalline ordering in many disordered systems.

  18. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks; Xian-Ming Bai; S Bulent Biner

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.

  19. Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in α-iron

    International Nuclear Information System (INIS)

    Energy barriers for carbon migration in the neighborhood of line defects in body-centered cubic iron have been obtained by atomistic simulations. For this purpose, molecular statics with an Fe-C interatomic potential, based on the embedded atom method, has been employed. Results of these simulations have been compared to the predictions of anisotropic elasticity theory. The agreement is better for a carbon atom sitting on an octahedral site (energy minimum) than one on a tetrahedral site (saddle point). Absolute differences in the energy barriers obtained by the two methods are usually below 5 meV at distances larger than 1.5 nm from a screw dislocation and 2 nm (up to 4 nm in the glide plane) from the edge dislocation. Atomistic kinetic Monte Carlo simulations performed at T = 300 K and additional analysis based on the activation energies obtained by both methods show that they are in good qualitative agreement, despite some important quantitative discrepancies due to the large absolute errors found near the dislocation cores.

  20. Artificial frustrated spin systems

    Science.gov (United States)

    Perrin, Y.; Chioar, I. A.; Nguyen, V. D.; Lacour, D.; Hehn, M.; Montaigne, F.; Canals, B.; Rougemaille, N.

    2015-09-01

    Complex architectures of nanostructures are routinely elaborated using bottom-up or nanofabrication processes. This technological capability allows scientists to engineer materials with properties that do not exist in nature, but also to manufacture model systems to explore fundamental issues in condensed matter physics. Two-dimensional frustrated arrays of magnetic nanostructures are one class of systems for which theoretical predictions can be tested experimentally. These systems have been the subject of intense research in the last few years and allowed the investigation of a rich physics and fascinating phenomena, such as the exploration of the extensively degenerate ground-state manifolds of spin ice systems, the evidence of new magnetic phases in purely two-dimensional lattices, and the observation of pseudoexcitations involving classical analogues of magnetic monopoles. We show here, experimentally and theoretically, that simple magnetic geometries can lead to unconventional, non-collinear spin textures. For example, kagome arrays of inplane magnetized nano-islands do not show magnetic order. Instead, these systems are characterized by spin textures with intriguing properties, such as chirality, coexistence of magnetic order and disorder, and charge crystallization. Magnetic frustration effects in lithographically patterned kagome arrays of nanomagnets with out-of-plane magnetization also lead to an unusal, and still unknown, magnetic ground state manifold. Besides the influence of the lattice geometry, the micromagnetic nature of the elements constituting the arrays introduce the concept of chiral magnetic monopoles, bringing additional complexity into the physics of artificial frustrated spin systems.

  1. Artificial Immune Systems Tutorial

    CERN Document Server

    Aickelin, Uwe

    2008-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  2. Artificial Immune Systems

    CERN Document Server

    Aickelin, Uwe

    2009-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  3. Artificial Life Meets Computational Creativity?

    OpenAIRE

    McMullin, Barry

    2009-01-01

    I (briefly) review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity.

  4. Darwin, artificial selection, and poverty.

    Science.gov (United States)

    Sanchez, Luis

    2010-03-01

    This paper argues that the processes of evolutionary selection are becoming increasingly artificial, a trend that goes against the belief in a purely natural selection process claimed by Darwin's natural selection theory. Artificial selection is mentioned by Darwin, but it was ignored by Social Darwinists, and it is all but absent in neo-Darwinian thinking. This omission results in an underestimation of probable impacts of artificial selection upon assumed evolutionary processes, and has implications for the ideological uses of Darwin's language, particularly in relation to poverty and other social inequalities. The influence of artificial selection on genotypic and phenotypic adaptations arguably represents a substantial shift in the presumed path of evolution, a shift laden with both biological and political implications. PMID:20812798

  5. Artificial Reefs and Ocean Dumping.

    Science.gov (United States)

    Glueck, Richard D.

    1983-01-01

    Activities and instructional strategies for two multigrade lessons are provided. Activity objectives include describing an artificial reef (such as a sunken ocean liner) as an ecosystem, knowing animal types in the ecosystem, and describing a food web. (JN)

  6. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  7. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  8. Rewritable Artificial Magnetic Charge Ice

    OpenAIRE

    Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong

    2016-01-01

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge state...

  9. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  10. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  11. Finite element analysis of an atomistically derived cohesive model for brittle fracture

    International Nuclear Information System (INIS)

    In order to apply information from molecular dynamics (MD) simulations in problems governed by engineering length and time scales, a coarse graining methodology must be used. In previous work by Zhou et al (2009 Acta Mater. 57 4671–86), a traction-separation cohesive model was developed using results from MD simulations with atomistic-to-continuum measures of stress and displacement. Here, we implement this cohesive model within a combined finite element/cohesive surface element framework (referred to as a finite element approach or FEA), and examine the ability for the atomistically informed FEA to directly reproduce results from MD. We find that FEA shows close agreement of both stress and crack opening displacement profiles at the cohesive interface, although some differences do exist that can be attributed to the stochastic nature of finite temperature MD. The FEA methodology is then used to study slower loading rates that are computationally expensive for MD. We find that the crack growth process initially exhibits a rate-independent relationship between crack length and boundary displacement, followed by a rate-dependent regime where, at a given amount of boundary displacement, a lower applied strain rate produces a longer crack length. Our method is also extended to larger length scales by simulating a compact tension fracture-mechanics specimen with sub-micrometer dimensions. Such a simulation shows a computational speedup of approximately four orders of magnitude over conventional atomistic simulation, while exhibiting the expected fracture-mechanics response. Finally, differences between FEA and MD are explored with respect to ensemble and temperature effects in MD, and their impact on the cohesive model and crack growth behavior. These results enable us to make several recommendations to improve the methodology used to derive cohesive laws from MD simulations. In light of this work, which has critical implications for efforts to derive continuum laws

  12. Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy.

    Science.gov (United States)

    Mattioli, Giuseppe; Zaharieva, Ivelina; Dau, Holger; Guidoni, Leonardo

    2015-08-19

    Amorphous transition-metal (hydr)oxides are considered as the most promising catalysts that promote the oxidation of water to molecular oxygen, protons, and "energized" electrons, and, in turn, as fundamental parts of "artificial leaves" that can be exploited for large scale generation of chemical fuels (e.g., hydrogen) directly from sunlight. We present here a joint theoretical-experimental investigation of electrodeposited amorphous manganese oxides with different catalytic activities toward water oxidation (MnCats). Combining the information content of X-ray absorption fine structure (XAFS) measurements with the predictive power of ab initio calculations based on density functional theory, we have been able to identify the essential structural and electronic properties of MnCats. We have elucidated (i) the localization and structural connection of Mn(II), Mn(III), and Mn(IV) ions in such amorphous oxides and (ii) the distribution of protons at the MnCat/water interface. Our calculations result in realistic 3D models of the MnCat atomistic texture, formed by the interconnection of small planar Mn-oxo sheets cross-linked through different kinds of defective Mn atoms, isolated or arranged in closed cubane-like units. Essential for the catalytic activity is the presence of undercoordinated Mn(III)O5 units located at the boundary of the amorphous network, where they are ready to act as hole traps that trigger the oxidation of neighboring water molecules when the catalyst is exposed to an external positive potential. The present validation of a sound 3D model of MnCat improves the accuracy of XAFS fits and opens the way for the development of mechanistic schemes of its functioning beyond a speculative level. PMID:26226190

  13. Atomistic computer simulations of FePt nanoparticles. Thermodynamic and kinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, M.

    2007-12-20

    In the present dissertation, a hierarchical multiscale approach for modeling FePt nanoparticles by atomistic computer simulations is developed. By describing the interatomic interactions on different levels of sophistication, various time and length scales can be accessed. Methods range from static quantum-mechanic total-energy calculations of small periodic systems to simulations of whole particles over an extended time by using simple lattice Hamiltonians. By employing these methods, the energetic and thermodynamic stability of non-crystalline multiply twinned FePt nanoparticles is investigated. Subsequently, the thermodynamics of the order-disorder transition in FePt nanoparticles is analyzed, including the influence of particle size, composition and modified surface energies by different chemical surroundings. In order to identify processes that reduce or enhance the rate of transformation from the disordered to the ordered state, the kinetics of the ordering transition in FePt nanoparticles is finally investigated by assessing the contributions of surface and volume diffusion. (orig.)

  14. Difference in aggregation between functional and toxic amyloids studied by atomistic simulations

    Science.gov (United States)

    Carballo Pacheco, Martin; Ismail, Ahmed E.; Strodel, Birgit

    Amyloids are highly structured protein aggregates, normally associated with neurodegenerative diseases such as Alzheimer's disease. In recent years, a number of nontoxic amyloids with physiologically normal functions, called functional amyloids, have been found. It is known that soluble small oligomers are more toxic than large fibrils. Thus, we study with atomistic explicit-solvent molecular dynamics simulations the oligomer formation of the amyloid- β peptide Aβ25 - 35, associated with Alzheimer's disease, and two functional amyloid-forming tachykinin peptides: kassinin and neuromedin K. Our simulations show that monomeric peptides in extended conformations aggregate faster than those in collapsed hairpin-like conformations. In addition, we observe faster aggregation by functional amyloids than toxic amyloids, which could explain their lack of toxicity.

  15. Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers.

    Science.gov (United States)

    Upadhyay, Sanjay K; Wang, Yukun; Zhao, Tangzhen; Ulmschneider, Jakob P

    2015-06-01

    The membrane disruption and pore-forming mechanism of melittin has been widely explored by experiments and computational studies. However, the precise mechanism is still enigmatic, and further study is required to turn antimicrobial peptides into future promising drugs against microbes. In this study, unbiased microsecond (µs) time scale (total 17 µs) atomistic molecular dynamics simulation were performed on multiple melittin systems in 1,2-dimyristoyl-sn-glycero-3-phosphocholine membrane to capture the various events during the membrane disorder produced by melittin. We observed bent U-shaped conformations of melittin, penetrated deeply into the membrane in all simulations, and a special double U-shaped structure. However, no peptide transmembrane insertion, nor pore formation was seen, indicating that these processes occur on much longer timescales, and suggesting that many prior computational studies of melittin were not sufficiently unbiased. PMID:25963936

  16. Study of the embedded atom method of atomistic calculations for metals and alloys

    International Nuclear Information System (INIS)

    Two projects were completed in the past year. The stability of a series of binary alloys was calculated using the embedded-atom method (EAM) with an analytic form for two-body potentials derived previously. Both disordered alloys and intermetallic compounds with the L10 and L12 structures were studied. The calculated heats of solution of alloys of Cu, Ag, Au, Ni, and Pt were satisfactory, while results for alloys containing Pd were too high. Atomistic calculations using the EAM were also carried out for point defects in hcp metals. By comparison with results in the literature, it was found that many body effects from the EAM significantly alter predicted physical properties of hcp metals. For example, the EAM calculations yield anisotropic vacancy diffusion with greater vacancy mobility in the basal plane, and imply that diffusion will start at a lower fraction of the melting temperature

  17. Frozen-density embedding theory with average solvent charge densities from explicit atomistic simulations.

    Science.gov (United States)

    Laktionov, Andrey; Chemineau-Chalaye, Emilie; Wesolowski, Tomasz A

    2016-08-21

    Besides molecular electron densities obtained within the Born-Oppenheimer approximation (ρB(r)) to represent the environment, the ensemble averaged density (〈ρB〉(r)) is also admissible in frozen-density embedding theory (FDET) [Wesolowski, Phys. Rev. A, 2008, 77, 11444]. This makes it possible to introduce an approximation in the evaluation of the solvent effect on quantum mechanical observables consisting of replacing the ensemble averaged observable by the observable evaluated at ensemble averaged ρB(r). This approximation is shown to affect negligibly the solvatochromic shift in the absorption of hydrated acetone. The proposed model provides a continuum type of representation of the solvent, which reflects nevertheless its local structure, and it is to be applied as a post-simulation analysis tool in atomistic level simulations. PMID:26984532

  18. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations

    Directory of Open Access Journals (Sweden)

    Giuseppina Raffaini

    2015-12-01

    Full Text Available Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a “bottom up” approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD, which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties.

  19. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations.

    Science.gov (United States)

    Raffaini, Giuseppina; Mazzaglia, Antonino; Ganazzoli, Fabio

    2015-01-01

    Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a "bottom up" approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties. PMID:26734094

  20. Phonon dispersion and thermal conductivity of nanocrystal superlattices using three-dimensional atomistic models

    Energy Technology Data Exchange (ETDEWEB)

    Zanjani, Mehdi B.; Lukes, Jennifer R., E-mail: jrlukes@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2014-04-14

    A computational study of thermal conductivity and phonon dispersion of gold nanocrystal superlattices is presented. Phonon dispersion curves, reported here for the first time from combined molecular dynamics and lattice dynamics calculations, show multiple phononic band gaps and consist of many more dispersion branches than simple atomic crystals. Fully atomistic three dimensional molecular dynamics calculations of thermal conductivity using the Green Kubo method are also performed for the first time on these materials. Thermal conductivity is observed to increase for increasing nanocrystal core size and decrease for increasing surface ligand density. Our calculations predict values in the range 0.1–1 W/m K that are consistent with reported experimental results.

  1. Calculation and visualization of atomistic mechanical stresses in nanomaterials and biomolecules.

    Directory of Open Access Journals (Sweden)

    Andrew T Fenley

    Full Text Available Many biomolecules have machine-like functions, and accordingly are discussed in terms of mechanical properties like force and motion. However, the concept of stress, a mechanical property that is of fundamental importance in the study of macroscopic mechanics, is not commonly applied in the biomolecular context. We anticipate that microscopical stress analyses of biomolecules and nanomaterials will provide useful mechanistic insights and help guide molecular design. To enable such applications, we have developed Calculator of Atomistic Mechanical Stress (CAMS, an open-source software package for computing atomic resolution stresses from molecular dynamics (MD simulations. The software also enables decomposition of stress into contributions from bonded, nonbonded and Generalized Born potential terms. CAMS reads GROMACS topology and trajectory files, which are easily generated from AMBER files as well; and time-varying stresses may be animated and visualized in the VMD viewer. Here, we review relevant theory and present illustrative applications.

  2. Atomistic study of deposition process of Al thin film on Cu substrate

    International Nuclear Information System (INIS)

    In this paper we report molecular dynamics based atomistic simulations of deposition process of Al atoms onto Cu substrate and following nanoindentation process on that nanostructured material. Effects of incident energy on the morphology of deposited thin film and mechanical property of this nanostructured material are emphasized. The results reveal that the morphology of growing film is layer-by-layer-like at incident energy of 0.1-10 eV. The epitaxy mode of film growth is observed at incident energy below 1 eV, but film-mixing mode commences when incident energy increase to 10 eV accompanying with increased disorder of film structure, which improves quality of deposited thin film. Following indentation studies indicate deposited thin films pose lower stiffness than single crystal Al due to considerable amount of defects existed in them, but Cu substrate is strengthened by the interface generated from lattice mismatch between deposited Al thin film and Cu substrate.

  3. Crystal Structures of Precise Functional Copolymers: Atomistic Molecular Dynamics Simulations and Comparisons with Experiments

    Science.gov (United States)

    Trigg, Edward B.; Stevens, Mark J.; Winey, Karen I.

    Layered crystal structures have been observed in linear poly(ethylene-co-acrylic acid) in which the carboxylic acid groups are placed precisely every 21 carbon atoms along the backbone. The alkane segments form structures resembling orthorhombic polyethylene crystals, while the acid groups form continuous domains that may act as pathways for ion conduction. Further details of the crystal structure have been difficult to elucidate experimentally, but could be important for understanding structure-property relationships. Here, two classes of crystal structures are evaluated via atomistic molecular dynamics: extended chain structures, wherein the polymer backbones are highly extended in near-trans conformations, and adjacent reentry structures, wherein the polymer backbones conform in adjacent reentry loops near the site of each covalently-bonded acid group. Energies of relaxed structures and hydrogen bonding states are compared, and X-ray scattering and other experimental data is compared with the simulation results.

  4. Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

    International Nuclear Information System (INIS)

    In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature

  5. B and N ion implantation into carbon nanotubes: Insight from atomistic simulations

    International Nuclear Information System (INIS)

    By employing atomistic computer simulations with empirical potential and density functional force models, we study B/N ion implantation onto carbon nanotubes. We simulate irradiation of single-walled nanotubes with B and N ions and show that up to 40% of the impinging ions can occupy directly the sp2 positions in the nanotube atomic network. We further estimate the optimum ion energies for direct substitution. Ab initio simulations are used to get more insight into the structure of the typical atomic configurations which appear under the impacts of the ions. As annealing should further increase the number of sp2 impurities due to dopant atom migration and annihilation with vacancies, we also study migration of impurity atoms over the tube surface. Our results indicate that irradiation-mediated doping of nanotubes is a promising way to control the nanotube electronic and even mechanical properties due to impurity-stimulated crosslinking of nanotubes

  6. An atomistic vision of the Mass Action Law: Prediction of carbon/oxygen defects in silicon

    International Nuclear Information System (INIS)

    We introduce an atomistic description of the kinetic Mass Action Law to predict concentrations of defects and complexes. We demonstrate in this paper that this approach accurately predicts carbon/oxygen related defect concentrations in silicon upon annealing. The model requires binding and migration energies of the impurities and complexes, here obtained from density functional theory (DFT) calculations. Vacancy-oxygen complex kinetics are studied as a model system during both isochronal and isothermal annealing. Results are in good agreement with experimental data, confirming the success of the methodology. More importantly, it gives access to the sequence of chain reactions by which oxygen and carbon related complexes are created in silicon. Beside the case of silicon, the understanding of such intricate reactions is a key to develop point defect engineering strategies to control defects and thus semiconductors properties

  7. An atomistic vision of the Mass Action Law: Prediction of carbon/oxygen defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Brenet, G.; Timerkaeva, D.; Caliste, D.; Pochet, P. [CEA, INAC-SP2M, Atomistic Simulation Laboratory, F-38000 Grenoble (France); Univ. Grenoble Alpes, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Sgourou, E. N.; Londos, C. A. [University of Athens, Solid State Physics Section, Panepistimiopolis Zografos, Athens 157 84 (Greece)

    2015-09-28

    We introduce an atomistic description of the kinetic Mass Action Law to predict concentrations of defects and complexes. We demonstrate in this paper that this approach accurately predicts carbon/oxygen related defect concentrations in silicon upon annealing. The model requires binding and migration energies of the impurities and complexes, here obtained from density functional theory (DFT) calculations. Vacancy-oxygen complex kinetics are studied as a model system during both isochronal and isothermal annealing. Results are in good agreement with experimental data, confirming the success of the methodology. More importantly, it gives access to the sequence of chain reactions by which oxygen and carbon related complexes are created in silicon. Beside the case of silicon, the understanding of such intricate reactions is a key to develop point defect engineering strategies to control defects and thus semiconductors properties.

  8. Orientation dependence of the solid–liquid interface stress: atomistic calculations for copper

    International Nuclear Information System (INIS)

    We present an atomistic study of the solid–liquid interface stress in copper for four different interface orientations: (1 0 0), (1 1 0), (1 1 1) and (3 1 0). For the (1 1 0) and (3 1 0) orientations, the interface stress is found to be anisotropic, while for the (1 0 0) and (1 1 1) orientations it is isotropic by crystal symmetry. The magnitude and sign of the interface stress depend on the interface orientation. Examination of stress profiles across the interfaces reveals competition between the compression of a narrow solid layer and tension of the adjacent liquid layer within the interface region. The sign of the interface stress is dictated by balance between these tensile and compressive contributions

  9. A Spectral Multiscale Method for Wave Propagation Analysis: Atomistic-Continuum Coupled Simulation

    CERN Document Server

    Patra, Amit K; Ganguli, Ranjan

    2014-01-01

    In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a ...

  10. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  11. Computer code for the atomistic simulation of lattice defects and dynamics

    International Nuclear Information System (INIS)

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability

  12. Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates

    CERN Document Server

    Mao, Yijin; Chen, C L

    2016-01-01

    A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

  13. Diffusive-to-ballistic transition in grain boundary motion studied by atomistic simulations

    International Nuclear Information System (INIS)

    An adapted simulation method is used to systematically study grain boundary motion at velocities and driving forces across more than five orders of magnitude. This analysis reveals that grain boundary migration can occur in two modes, depending upon the temperature (T) and applied driving force (P). At low P and T, grain boundary motion is diffusional, exhibiting the kinetics of a thermally activated system controlled by grain boundary self-diffusion. At high P and T, grain boundary migration exhibits the characteristic kinetic scaling behavior of a ballistic process. A rather broad transition range in both P and T lies between the regimes of diffusive and ballistic grain boundary motion, and is charted here in detail. The recognition and delineation of these two distinct modes of grain boundary migration also leads to the suggestion that many prior atomistic simulations might have probed a different kinetic regime of grain boundary motion (ballistic) as compared to that revealed in most experimental studies (diffusional).

  14. Aggregation behaviour of amphiphilic cyclodextrins: the nucleation stage by atomistic molecular dynamics simulations

    Science.gov (United States)

    Mazzaglia, Antonino; Ganazzoli, Fabio

    2015-01-01

    Summary Amphiphilically modified cyclodextrins may form various supramolecular aggregates. Here we report a theoretical study of the aggregation of a few amphiphilic cyclodextrins carrying hydrophobic thioalkyl groups and hydrophilic ethylene glycol moieties at opposite rims, focusing on the initial nucleation stage in an apolar solvent and in water. The study is based on atomistic molecular dynamics methods with a “bottom up” approach that can provide important information about the initial aggregates of few molecules. The focus is on the interaction pattern of amphiphilic cyclodextrin (aCD), which may interact by mutual inclusion of the substituent groups in the hydrophobic cavity of neighbouring molecules or by dispersion interactions at their lateral surface. We suggest that these aggregates can also form the nucleation stage of larger systems as well as the building blocks of micelles, vesicle, membranes, or generally nanoparticles thus opening new perspectives in the design of aggregates correlating their structures with the pharmaceutical properties. PMID:26734094

  15. Atomistic studies of nucleation of He clusters and bubbles in bcc iron

    Science.gov (United States)

    Yang, L.; Deng, H. Q.; Gao, F.; Heinisch, H. L.; Kurtz, R. J.; Hu, S. Y.; Li, Y. L.; Zu, X. T.

    2013-05-01

    Atomistic simulations of the nucleation of He clusters and bubbles in bcc iron at 800 K have been carried out using the newly developed Fe-Fe interatomic potential, along with Ackland potential for the Fe-Fe interactions. Microstructure changes were analyzed in detail. We found that a He cluster with four He atoms is able to push out an iron interstitial from the cluster, creating a Frenkel pair. Small He clusters and self-interstitial atom (SIA) can migrate in the matrix, but He-vacancy (He-V) clusters are immobile. Most SIAs form clusters, and only the dislocation loops with a Burgers vector of b = 1/2 appear in the simulations. SIA clusters (or loops) are attached to He-V clusters for He implantation up to 1372 appm, while the He-V cluster-loop complexes with more than one He-V cluster are formed at the He concentration of 2057 appm and larger.

  16. Thermochemistry of organic reactions in microporous oxides by atomistic simulations: benchmarking against periodic B3LYP.

    Science.gov (United States)

    Bleken, Francesca; Svelle, Stian; Lillerud, Karl Petter; Olsbye, Unni; Arstad, Bjørnar; Swang, Ole

    2010-07-15

    The methylation of ethene by methyl chloride and methanol in the microporous materials SAPO-34 and SSZ-13 has been studied using different periodic atomistic modeling approaches based on density functional theory. The RPBE functional, which earlier has been used successfully in studies of surface reactions on metals, fails to yield a qualitatively correct description of the transition states under study. Employing B3LYP as functional gives results in line with experimental data: (1) Methanol is adsorbed more strongly than methyl chloride to the acid site. (2) The activation energies for the methylation of ethene are slightly lower for SSZ-13. Furthermore, the B3LYP activation energies are lower for methyl chloride than for methanol. PMID:20557090

  17. Atomistic simulation of twin boundaries effect on nanoindentation of Ag(1 1 1) films

    International Nuclear Information System (INIS)

    Atomistic simulations were employed to study the effect of a single twin boundary parallel with the indented surface on nanoindentation of Ag(1 1 1) films. The results show that the twin boundary has little influence on the elastic modulus of films. The load for the initial yield is observably reduced when the twin boundary is very near the indented surface due to the nucleation of the glissile dislocations on the slip plane parallel to the surface, rather than the formation of the tetrahedral sessile lock when nanoindentation on the perfect film. Twin boundaries are effective obstacles to the motion of dislocations, and change the dislocation patterns dominating the deformation, resulting in the hardening of films. In addition, twin boundaries can act as dislocation sources before losing their coherency.

  18. Coupling Lattice Boltzmann with Atomistic Dynamics for the multiscale simulation of nano-biological flows

    CERN Document Server

    Fyta, Maria; Kaxiras, Efthimios; Succi, Sauro

    2007-01-01

    We describe a recent multiscale approach based on the concurrent coupling of constrained molecular dynamics for long biomolecules with a mesoscopic lattice Boltzmann treatment of solvent hydrodynamics. The multiscale approach is based on a simple scheme of exchange of space-time information between the atomistic and mesoscopic scales and is capable of describing self-consistent hydrodynamic effects on molecular motion at a computational cost which scales linearly with both solute size and solvent volume. For an application of our multiscale method, we consider the much studied problem of biopolymer translocation through nanopores: we find that the method reproduces with remarkable accuracy the statistical scaling behavior of the translocation process and provides valuable insight into the cooperative aspects of biopolymer and hydrodynamic motion.

  19. Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model

    Science.gov (United States)

    Albaret, T.; Tanguy, A.; Boioli, F.; Rodney, D.

    2016-05-01

    In this paper we perform quasistatic shear simulations of model amorphous silicon bulk samples with Stillinger-Weber-type potentials. Local plastic rearrangements identified based on local energy variations are fitted through their displacement fields on collections of Eshelby spherical inclusions, allowing determination of their transformation strain tensors. The latter are then used to quantitatively reproduce atomistic stress-strain curves, in terms of both shear and pressure components. We demonstrate that our methodology is able to capture the plastic behavior predicted by different Stillinger-Weber potentials, in particular, their different shear tension coupling. These calculations justify the decomposition of plasticity into shear transformations used so far in mesoscale models and provide atomic-scale parameters that can be used to limit the empiricism needed in such models up to now.

  20. Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Santoshrupa; Broderick, Scott R.; Rajan, Krishna, E-mail: krajan@iastate.edu [Department of Materials Science and Engineering and Institute for Combinatorial Discovery, Iowa State University, 2220 Hoover Hall, Ames, Iowa 50011 (United States); Khalilov, Umedjon; Neyts, Erik C. [Department of Chemistry, PLASMANT Research Group, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk-Antwerp (Belgium); Duin, Adri C. T. van [Department of Mechanical and Nuclear Engineering, Penn State University, University Park, Pennsylvania 16801 (United States); Provine, J; Howe, Roger T. [Department of Electrical Engineering, Stanford University, 420 Via Palou Mall, Stanford, California 94305 (United States)

    2015-01-05

    In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO{sub 2} and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.

  1. Atomistic Simulations of Functional Au-144(SR)(60) Gold Nanoparticles in Aqueous Environment

    DEFF Research Database (Denmark)

    Heikkila, E.; Gurtovenko, A. A.; Martinez-Seara, H.;

    2012-01-01

    Charged monolayer-protected gold nanoparticles (AuNPs) have been studied in aqueous solution by performing atomistic molecular dynamics simulations at physiological temperature (310 K). Particular attention has been paid to electrostatic properties that modulate the formation of a complex comprised...... of the nanoparticle together with surrounding ions and water. We focus on Au-144 nanoparticles that comprise a nearly spherical Au core (diameter similar to 2 nm), a passivating Au-S interface, and functionalized alkanethiol chains. Cationic and anionic AuNPs have been modeled with amine and carboxyl...... electrostatic potential displays a minimum for AuNP- at 1.9 nm from the center of the nanoparticle, marking a preferable location for Na+, while the AuNP+ potential (affecting the distribution of Cl-) rises almost monotonically with a local maximum. Comparison to Debye-Huckel theory shows very good agreement...

  2. Atomistic features in the electrochemical potential drop across a graphene grain boundary

    International Nuclear Information System (INIS)

    A recent publication presents a new computational approach to the local electrochemical potential in the vicinity of a graphene grain boundary subject to an in-plane electric current [1]. The local electrochemical potential can be measured using scanning tunneling potentiometry, a method related to scanning tunneling microscopy. The paper predicts that atomistic features should be measurable. These features reflect the local electrochemical potential drop caused by the opaque grain boundary which is non-transparent to ballistic electrons. The paper has implications not only for scanning tunneling potentiometry, but also for Kelvin probe-force microscopy which can also measure the local electrochemical potential. In addition it could help to understand electronic transport across metallic nanocontacts. (viewpoint)

  3. Atomistic mechanisms of amorphization during nanoindentation of SiC: A molecular dynamics study

    Science.gov (United States)

    Szlufarska, Izabela; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2005-05-01

    Atomistic mechanisms underlying the nanoindentation-induced amorphization in SiC crystal has been studied by molecular dynamics simulations on parallel computers. The calculated load-displacement curve consists of a series of load drops, corresponding to plastic deformation, in addition to a shoulder at a smaller displacement, which is fully reversible upon unloading. The peaks in the load-displacement curve are shown to reflect the crystalline structure and dislocation activities under the surface. The evolution of indentation damage and defect accumulation are also discussed in terms of bond angles, local pressure, local shear stress, and spatial rearrangements of atoms. These structural analyses reveal that the defect-stimulated growth and coalescence of dislocation loops are responsible for the crystalline-to-amorphous transition. The shortest-path-ring analysis is effectively employed to characterize nanoindentation-induced structural transformations and dislocation activities.

  4. A fully atomistic computer simulation study of cold denaturation of a β-hairpin

    Science.gov (United States)

    Yang, Changwon; Jang, Soonmin; Pak, Youngshang

    2014-12-01

    Cold denaturation is a fundamental phenomenon in aqueous solutions where the native structure of proteins disrupts on cooling. Understanding this process in molecular details can provide a new insight into the detailed natures of hydrophobic forces governing the stability of proteins in water. We show that the cold-denaturation-like phenomenon can be directly observed at low temperatures using a fully atomistic molecular dynamics simulation method. Using a highly optimized protein force field in conjunction with three different explicit water models, a replica exchange molecular dynamics simulation scheme at constant pressures allows for the computation of the melting profile of an experimentally well-characterized β-hairpin peptide. For all three water models tested, the simulated melting profiles are indicative of possible cold denaturation. From the analysis of simulation ensembles, we find that the most probable cold-denatured structure is structurally compact, with its hydrogen bonds and native hydrophobic packing substantially disrupted.

  5. Atomistic modeling of the self-diffusion in γ-U and γ-U-Mo

    Science.gov (United States)

    Smirnova, D. E.; Kuksin, A. Yu.; Starikov, S. V.; Stegailov, V. V.

    2015-05-01

    Results of investigations of the self-diffusion in gamma-uranium and metallic U-Mo alloys are presented. Calculations are performed using the method of atomistic modeling with the help of interatomic potentials based on the embedded-atom model and its modifications. Proposed potentials are verified by calculating thermodynamic and mechanical properties of uranium and U-Mo alloys. The formation energies of point defects and atomic diffusivities due to the diffusion of defects are calculated for gamma-uranium and alloy containing 9 wt % molybdenum. Self-diffusion coefficients of uranium and molybdenum are evaluated. Based on the data obtained, it has been concluded that the experimentally observed features of the self-diffusion in gamma-uranium can be explained by the prevalence of the interstitial mechanism.

  6. Structures, nanomechanics, and disintegration of single-walled GaN nanotubes: atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Hwang, Ho Jung; Song, Ki Oh; Choi, Won Young; Byun, Ki Ryang [Chung-Ang University, Seoul (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Lee, Jun Ha [Sangmyung University, Chonan (Korea, Republic of); Kim, Won Woo [Juseong College, Cheongwon (Korea, Republic of)

    2003-09-15

    We have investigated the structural, mechanical, and thermal properties of single-walled GaN nanotubes by using atomistic simulations and a Tersoff-type potential. The Tersoff potential for GaN effectively describes the properties of GaN nanotubes. The nanomechanics of GaN nanotubes under tensile and compressive loadings have also been investigated, and Young's modulus has been calculated. The caloric curves of single-walled GaN nanotubes can be divided into three regions corresponding to nanotubes, the disintegrating range, and vapor. Since the stability or the stiffness of a tube decreases with increasing curving sheet-to-tube strain energy, the disintegration temperatures of GaN nanotubes are closely related to the curving sheet-to-tube strain energy.

  7. Structures, nanomechanics, and disintegration of single-walled GaN nanotubes: atomistic simulations

    International Nuclear Information System (INIS)

    We have investigated the structural, mechanical, and thermal properties of single-walled GaN nanotubes by using atomistic simulations and a Tersoff-type potential. The Tersoff potential for GaN effectively describes the properties of GaN nanotubes. The nanomechanics of GaN nanotubes under tensile and compressive loadings have also been investigated, and Young's modulus has been calculated. The caloric curves of single-walled GaN nanotubes can be divided into three regions corresponding to nanotubes, the disintegrating range, and vapor. Since the stability or the stiffness of a tube decreases with increasing curving sheet-to-tube strain energy, the disintegration temperatures of GaN nanotubes are closely related to the curving sheet-to-tube strain energy.

  8. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks.

    Science.gov (United States)

    Kolb, Brian; Zhao, Bin; Li, Jun; Jiang, Bin; Guo, Hua

    2016-06-14

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H2 → H2 + H, H + H2O → H2 + OH, and H + CH4 → H2 + CH3. A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved. PMID:27305992

  9. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria

    CERN Document Server

    Huh, Joonsuk; Brookes, Jennifer C; Valleau, Stéphanie; Fujita, Takatoshi; Aspuru-Guzik, Alán

    2013-01-01

    Phototrophic organisms such as plants, photosynthetic bacteria and algae use microscopic complexes of pigment molecules to absorb sunlight. Within the light-harvesting complexes, which frequently have multiple functional and structural subunits, the energy is transferred in the form of molecular excitations with very high efficiency. Green sulfur bacteria are considered to be amongst the most efficient light-harvesting organisms. Despite multiple experimental and theoretical studies of these bacteria the physical origin of the efficient and robust energy transfer in their light-harvesting complexes is not well understood. To study excitation dynamics at the systems level we introduce an atomistic model that mimic a complete light-harvesting apparatus of green sulfur bacteria. The model contains about 4000 pigment molecules and comprises a double wall roll for the chlorosome, a baseplate and six Fenna-Matthews-Olson trimer complexes. We show that the fast relaxation within functional subunits combined with the...

  10. NATO Advanced Study Institute on Surface Diffusion : Atomistic and Collective Processes

    CERN Document Server

    1997-01-01

    The interest in the problem of surface diffusion has been steadily growing over the last fifteen years. This is clearly evident from the increase in the number of papers dealing with the problem, the development of new experimental techniques, and the specialized sessions focusing on diffusion in national and international meetings. Part of the driving force behind this increasing activity is our recently acquired ability to observe and possibly control atomic scale phenomena. It is now possible to look selectively at individual atomistic processes and to determine their relative importance during growth and reactions at surfaces. The number of researchers interested in this problem also has been growing steadily which generates the need for a good reference source to farniliarize newcomers to the problem. While the recent emphasis is on the role of diffusion during growth, there is also continuing progress on the more traditional aspects of the problem describing mass transport in an ensemble of particles. S...

  11. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.

    Directory of Open Access Journals (Sweden)

    Ramon Reigada

    Full Text Available The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic and carbon tetrachloride (non-anesthetic. Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.

  12. Atomistic study of diffusion-mediated plasticity and creep using phase field crystal methods

    Science.gov (United States)

    Berry, Joel; Rottler, Jörg; Sinclair, Chad W.; Provatas, Nikolas

    2015-10-01

    The nonequilibrium dynamics of diffusion-mediated plasticity and creep in materials subjected to constant load at high homologous temperatures is studied atomistically using phase field crystal (PFC) methods. Creep stress and grain size exponents obtained for nanopolycrystalline systems, m ≃1.02 and p ≃1.98 , respectively, closely match those expected for idealized diffusional Nabarro-Herring creep. These exponents are observed in the presence of significant stress-assisted diffusive grain boundary migration, indicating that Nabarro-Herring creep and stress-assisted boundary migration contribute in the same manner to the macroscopic constitutive relation. When plastic response is dislocation-mediated, power-law stress exponents inferred from dislocation climb rates are found to increase monotonically from m ≃3 , as expected for generic climb-mediated natural creep, to m ≃5.8 as the dislocation density ρd is increased beyond typical experimental values. Stress exponents m ≳3 directly measured from simulations that include dislocation nucleation, climb, glide, and annihilation are attributed primarily to these large ρd effects. Extrapolation to lower ρd suggests that m ≃4 -4.5 should be obtained from our PFC description at typical experimental ρd values, which is consistent with expectations for power-law creep via mixed climb and glide. The anomalously large stress exponents observed in our atomistic simulations at large ρd may nonetheless be relevant to systems in which comparable densities are obtained locally within heterogeneous defect domains such as dislocation cell walls or tangles.

  13. Long-time atomistic simulations with the Parallel Replica Dynamics method

    Science.gov (United States)

    Perez, Danny

    Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

  14. Biological Effects Of Artificial Illumination

    Science.gov (United States)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  15. First-principles calculations of thermoelectric properties of TiN/MgO superlattices: The route for an enhancement of thermoelectric effects in artificial nanostructures

    International Nuclear Information System (INIS)

    We present the thermoelectric properties of TiN/MgO superlattices employing first-principles calculation techniques. The Seebeck coefficients, the electrical conductances, the thermal conductances, and the figure of merit are investigated employing electrical and thermal transport calculations based on density functional theory combined with the nonequilibrium Green's function and nonequilibrium molecular dynamics simulation methods. The TiN/MgO superlattices with a small lattice mismatch at the interfaces are ideal systems to study the way for an enhancement of thermoelectric properties in artificial nanostructures. We find that the interfacial scattering between the two materials in the metal/insulator superlattices causes the electrical conductance to change rapidly, which enhances the Seebeck coefficient significantly. We show that the figure of merit for the artificial superlattice nanostructures has a much larger value compared with that of the bulk material and changes drastically with the superlattice configurations at the atomistic level

  16. First-principles calculations of thermoelectric properties of TiN/MgO superlattices: The route for an enhancement of thermoelectric effects in artificial nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Takaki, Hirokazu; Kobayashi, Kazuaki; Shimono, Masato [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Kobayashi, Nobuhiko [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Hirose, Kenji [Smart Energy Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan)

    2016-01-07

    We present the thermoelectric properties of TiN/MgO superlattices employing first-principles calculation techniques. The Seebeck coefficients, the electrical conductances, the thermal conductances, and the figure of merit are investigated employing electrical and thermal transport calculations based on density functional theory combined with the nonequilibrium Green's function and nonequilibrium molecular dynamics simulation methods. The TiN/MgO superlattices with a small lattice mismatch at the interfaces are ideal systems to study the way for an enhancement of thermoelectric properties in artificial nanostructures. We find that the interfacial scattering between the two materials in the metal/insulator superlattices causes the electrical conductance to change rapidly, which enhances the Seebeck coefficient significantly. We show that the figure of merit for the artificial superlattice nanostructures has a much larger value compared with that of the bulk material and changes drastically with the superlattice configurations at the atomistic level.

  17. Artificial sweeteners: safe or unsafe?

    Science.gov (United States)

    Qurrat-ul-Ain; Khan, Sohaib Ahmed

    2015-02-01

    Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives. PMID:25842566

  18. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  19. Artificial heart for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  20. Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction

    Institute of Scientific and Technical Information of China (English)

    何茂伟; 孙丽玲; 胡琨元; 朱云龙; 陈瀚宁

    2015-01-01

    The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand (DoD) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling (LEM) and the artificial bee colony (ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model (DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.

  1. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  2. Principles of artificial neural networks

    CERN Document Server

    Graupe, Daniel

    2013-01-01

    Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition - all with their respective source codes. These case studies

  3. Rewritable artificial magnetic charge ice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong-Lei; Xiao, Zhili; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong

    2016-05-20

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  4. Rewritable artificial magnetic charge ice

    Science.gov (United States)

    Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, George W.; Kwok, Wai-Kwong

    2016-05-01

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  5. Artificial Life in Quantum Technologies

    Science.gov (United States)

    Alvarez-Rodriguez, Unai; Sanz, Mikel; Lamata, Lucas; Solano, Enrique

    2016-02-01

    We develop a quantum information protocol that models the biological behaviours of individuals living in a natural selection scenario. The artificially engineered evolution of the quantum living units shows the fundamental features of life in a common environment, such as self-replication, mutation, interaction of individuals, and death. We propose how to mimic these bio-inspired features in a quantum-mechanical formalism, which allows for an experimental implementation achievable with current quantum platforms. This study paves the way for the realization of artificial life and embodied evolution with quantum technologies.

  6. Artificial life, the new paradigm

    International Nuclear Information System (INIS)

    A chronological synthesis of the most important facts is presented in the theoretical development and computational simulation that they have taken to the formation of a new paradigm that is known as artificial life; their characteristics and their main investigation lines are analyzed. Finally, a description of its work is made in the National University of Colombia

  7. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine;

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an...

  8. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  9. Artificial neural networks in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  10. WASTEWATER TREATMENT BY ARTIFICIAL WETLANDS

    Science.gov (United States)

    Studies of artificial wetlands at Santee, California demonstrated the capacity of wetlands systems for integrated secondary and advanced treatment of municipal wastewaters. When receiving a blend of primary and secondary wastewaters at a blend ratio of 1:2 (6 cm per day: 12 cm pe...

  11. Making Artificial Seawater More Natural

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Marine fish will die if placed in fresh water and they cannot live in simple salt water. Instead, they need water that contains a mixture of different ingredients, as found in natural seawater. Conventional methods of making artificial seawater have shortcomings, because the water so achieved is only composed of mineral elements and lacks organic components similar to those in natural seawater.

  12. Artificial Video for Video Analysis

    Science.gov (United States)

    Gallis, Michael R.

    2010-01-01

    This paper discusses the use of video analysis software and computer-generated animations for student activities. The use of artificial video affords the opportunity for students to study phenomena for which a real video may not be easy or even possible to procure, using analysis software with which the students are already familiar. We will…

  13. Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

    CERN Document Server

    Beauchamp, Kyle A; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-01-01

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the forcefield employed. While experimental measurements of fundamental physical properties offer a straightforward approach for evaluating forcefield quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark datasets of physical properties from non-machine-readable sources require substantial human effort and is prone to accumulation of human errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating format. As a proof of concept, we present a detailed benchmark of the generalized Amber small molecule forcefield (GAFF) using t...

  14. Ab initio investigation of the adsorption of zoledronic acid molecule on hydroxyapatite (001) surface: an atomistic insight of bone protection

    Science.gov (United States)

    Ri, Mun-Hyok; Yu, Chol-Jun; Jang, Yong-Man; Kim, Song-Un

    2016-03-01

    We report a computational study of the adsorption of zoledronic acid molecule on hydroxyapatite (001) surface within ab initio density functional theory. The systematic study has been performed, from hydroxyapatite bulk and surface, and zoledronic acid molecule to the adsorption of the molecule on the surface. The optimized bond lengths and bond angles were obtained and analyzed, giving an evidence of structural similarity between subjects under study. The formation energies of hydroxyapatite (001) surfaces with two kinds of terminations were computed as about 1.2 and 1.5 J/m^2 with detailed atomistic structural information. We determined the adsorption energies of zoledronic acid molecule on the surfaces, which are -260 kJ/mol at 0.25 ML and -400 kJ/mol at 0.5 ML. An atomistic insight of strong binding affinity of zoledronic acid to the hydroxyapatite surface was given and discussed.

  15. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level.

    Science.gov (United States)

    Marsili, Simone; Signorini, Giorgio Federico; Chelli, Riccardo; Marchi, Massimo; Procacci, Piero

    2010-04-15

    We present the new release of the ORAC engine (Procacci et al., Comput Chem 1997, 18, 1834), a FORTRAN suite to simulate complex biosystems at the atomistic level. The previous release of the ORAC code included multiple time steps integration, smooth particle mesh Ewald method, constant pressure and constant temperature simulations. The present release has been supplemented with the most advanced techniques for enhanced sampling in atomistic systems including replica exchange with solute tempering, metadynamics and steered molecular dynamics. All these computational technologies have been implemented for parallel architectures using the standard MPI communication protocol. ORAC is an open-source program distributed free of charge under the GNU general public license (GPL) at http://www.chim.unifi.it/orac. PMID:19824035

  16. Artificial Intelligence Databases: A Survey and Comparison.

    Science.gov (United States)

    Stern, David

    1990-01-01

    Identifies and describes online databases containing references to materials on artificial intelligence, robotics, and expert systems, and compares them in terms of scope and usage. Recommendations for conducting online searches on artificial intelligence and related fields are offered. (CLB)

  17. Coming Soon: A Wearable Artificial Kidney?

    Science.gov (United States)

    ... medlineplus/news/fullstory_159246.html Coming Soon: A Wearable Artificial Kidney? Small trial suggests device might be ... themselves of clunky machines, moving about with a "wearable artificial kidney" instead. That's the promise of a ...

  18. Artificial Cervical Disc Replacement Improves Mobility

    Science.gov (United States)

    Artificial Cervical Disc Replacement Improves Mobility February 18, 2009 From PinnacleHealth, Harrisburg, PA Welcome to this “OR ... this new technology with the use of an artificial disc has some significant benefits over the previous ...

  19. The continuum elastic and atomistic viewpoints on the formation volume and strain energy of a point defect

    OpenAIRE

    Garikipati, K.; Falk, M. L.; Bouville, M.; Puchala, B.; Narayanan, H.

    2005-01-01

    We discuss the roles of continuum linear elasticity and atomistic calculations in determining the formation volume and the strain energy of formation of a point defect in a crystal. Our considerations bear special relevance to defect formation under stress. The elasticity treatment is based on the Green's function solution for a center of contraction or expansion in an anisotropic solid. It makes possible the precise definition of a formation volume tensor and leads to an extension of Eshelby...

  20. Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method

    International Nuclear Information System (INIS)

    Submicron-sized samples with 42,000 finite elements containing up to ∼86 million atoms have been simulated using a concurrent atomistic-continuum method. The simulations reproduce not only nucleation and growth of semicircular dislocation loops in Cu and Al, but also hexagonal shuffle dislocation loops in Si, with the loop radius approaching ∼75 nm. Details of leading and trailing partial dislocations connected by intrinsic stacking faults, dislocation loop coalescence through annihilation, and formation of junctions are reproduced.

  1. A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems

    International Nuclear Information System (INIS)

    A general adaptive modeling algorithm for selection and validation of coarse-grained models of atomistic systems is presented. A Bayesian framework is developed to address uncertainties in parameters, data, and model selection. Algorithms for computing output sensitivities to parameter variances, model evidence and posterior model plausibilities for given data, and for computing what are referred to as Occam Categories in reference to a rough measure of model simplicity, make up components of the overall approach. Computational results are provided for representative applications

  2. Introduction to Concepts in Artificial Neural Networks

    Science.gov (United States)

    Niebur, Dagmar

    1995-01-01

    This introduction to artificial neural networks summarizes some basic concepts of computational neuroscience and the resulting models of artificial neurons. The terminology of biological and artificial neurons, biological and machine learning and neural processing is introduced. The concepts of supervised and unsupervised learning are explained with examples from the power system area. Finally, a taxonomy of different types of neurons and different classes of artificial neural networks is presented.

  3. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H2 ↔ FH + H

  4. Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys

    International Nuclear Information System (INIS)

    Magnesium–yttrium alloys show significantly improved room temperature ductility when compared with pure Mg. We study this interesting phenomenon theoretically at the atomic scale employing quantum-mechanical (so-called ab initio) and atomistic modeling methods. Specifically, we have calculated generalized stacking fault energies for five slip systems in both elemental magnesium (Mg) and Mg–Y alloys using (i) density functional theory and (ii) a set of embedded-atom-method (EAM) potentials. These calculations predict that the addition of yttrium results in a reduction in the unstable stacking fault energy of basal slip systems. Specifically in the case of an I2 stacking fault, the predicted reduction of the stacking fault energy due to Y atoms was verified by experimental measurements. We find a similar reduction for the stable stacking fault energy of the {11 2-bar 2} non-basal slip system. On the other hand, other energies along this particular γ-surface profile increase with the addition of Y. In parallel to our quantum-mechanical calculations, we have also developed a new EAM Mg–Y potential and thoroughly tested its performance. The comparison of quantum-mechanical and atomistic results indicates that the new potential is suitable for future large-scale atomistic simulations. (paper)

  5. Atomistic simulations to micro-mechanisms of adhesion in automotive applications

    Science.gov (United States)

    Sen, Fatih Gurcag

    This study aimed at depicting atomistic and microstructural aspects of adhesion and friction that appear in different automotive applications and manufacturing processes using atomistic simulations coupled with tribological tests and surface characterization experiments. Thin films that form at the contact interfaces due to chemical reactions and coatings that are developed to mitigate or enhance adhesion were studied in detail. The adhesion and friction experiments conducted on diamond-like carbon (DLC) coatings against Al indicated that F incorporation into DLC decreased the coefficient of friction (COF) by 30% -with respect to H-DLC that is known to have low COF and anti-adhesion properties against Al- to 0.14 owing to formation of repulsive F-F interactions at the sliding interface as shown by density functional theory (DFT) calculations. F atoms transferred to the Al surface with an increase in the contact pressure, and this F transfer led to the formation of a stable AlF3 compound at the Al surface as confirmed by XPS and cross-sectional FIB-TEM. The incorporation of Si and O in a F-containing DLC resulted in humidity independent low COF of 0.08 due to the hydration effect of the Si-O-Si chains in the carbonaceous tribolayers that resulted in repulsive OH-OH interactions at the contact interface. At high temperatures, adhesion of Al was found to be enhanced as a result of superplastic oxide fibers on the Al surface. Molecular dynamics (MD) simulations of tensile deformation of Al nanowires in oxygen carried out with ReaxFF showed that native oxide of Al has an oxygen deficient, low density structure and in O2, the oxygen diffusion in amorphous oxide healed the broken Al-O bonds during applied strain and resulted in the superplasticity. The oxide shell also provided nucleation sites for dislocations in Al crystal. In fuel cell applications, where low Pt/carbon adhesion is causing durability problems, spin-polarized DFT showed that metals with unfilled d

  6. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS.

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. (University of Colorado, Boulder, CO); Talmage, Mellisa J. (University of Colorado, Boulder, CO); McDowell, David L., 1956- (,-Georgia Institute of Technology, Atlanta, GA); West, Neil (University of Colorado, Boulder, CO); Gullett, Philip Michael (Mississippi State University , MS); Miller, David C. (University of Colorado, Boulder, CO); Spark, Kevin (University of Colorado, Boulder, CO); Diao, Jiankuai (University of Colorado, Boulder, CO); Horstemeyer, Mark F. (Mississippi State University , MS); Zimmerman, Jonathan A.; Gall, K (Georgia Institute of Technology, Atlanta, GA)

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project

  7. Atomistic modeling of nanowires, small-scale fatigue damage in cast magnesium, and materials for MEMS

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Martin L. [Univ. of Colorado, Boulder, CO (United States); Talmage, Mellisa J. [Univ. of Colorado, Boulder, CO (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); West, Neil [Univ. of Colorado, Boulder, CO (United States); Gullett, Philip Michael [Mississippi State Univ., Mississippi State, MS (United States); Miller, David C. [Univ. of Colorado, Boulder, CO (United States); Spark, Kevin [Univ. of Colorado, Boulder, CO (United States); Diao, Jiankuai [Univ. of Colorado, Boulder, CO (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States); Zimmerman, Jonathan A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gall, K. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-10-01

    Lightweight and miniaturized weapon systems are driving the use of new materials in design such as microscale materials and ultra low-density metallic materials. Reliable design of future weapon components and systems demands a thorough understanding of the deformation modes in these materials that comprise the components and a robust methodology to predict their performance during service or storage. Traditional continuum models of material deformation and failure are not easily extended to these new materials unless microstructural characteristics are included in the formulation. For example, in LIGA Ni and Al-Si thin films, the physical size is on the order of microns, a scale approaching key microstructural features. For a new potential structural material, cast Mg offers a high stiffness-to-weight ratio, but the microstructural heterogeneity at various scales requires a structure-property continuum model. Processes occurring at the nanoscale and microscale develop certain structures that drive material behavior. The objective of the work presented in this report was to understand material characteristics in relation to mechanical properties at the nanoscale and microscale in these promising new material systems. Research was conducted primarily at the University of Colorado at Boulder to employ tightly coupled experimentation and simulation to study damage at various material size scales under monotonic and cyclic loading conditions. Experimental characterization of nano/micro damage will be accomplished by novel techniques such as in-situ environmental scanning electron microscopy (ESEM), 1 MeV transmission electron microscopy (TEM), and atomic force microscopy (AFM). New simulations to support experimental efforts will include modified embedded atom method (MEAM) atomistic simulations at the nanoscale and single crystal micromechanical finite element simulations. This report summarizes the major research and development accomplishments for the LDRD project

  8. 基于微博客的企业竞争情报搜集与分析%Collection and Analysis of Enterprise Competitive Intelligence Based on Micro-blogs

    Institute of Scientific and Technical Information of China (English)

    帕尔哈提·尼加提; 黄晓斌; 聂冰

    2012-01-01

    This paper describes the types of collecting enterprise competitive intelligence based on micro-blog,constructs the relevant collection framework,and discusses the main method of enterprise competitive intelligence analysis based on micro-blog.Finally,taking NOKIA intelligent mobile phone for example,the paper explains some applications of micro-blog in enterprise competitive intelligence work.%文章介绍了基于微博客的企业竞争情报收集方式,构建了相关的收集框架,探讨了通过微博客进行企业竞争情报分析的主要方法,并以诺基亚智能手机为例,说明微博客在企业竞争情报工作中的一些应用。

  9. Impact of Artificial Intelligence on Economic Theory

    OpenAIRE

    Tshilidzi Marwala

    2015-01-01

    Artificial intelligence has impacted many aspects of human life. This paper studies the impact of artificial intelligence on economic theory. In particular we study the impact of artificial intelligence on the theory of bounded rationality, efficient market hypothesis and prospect theory.

  10. Artificial Intelligence in Canada: A Review

    OpenAIRE

    Mccalla, Gordon; Cercone, Nick

    1984-01-01

    Canadians have made many contributions to artificial intelligence over the years. This article presents a summary of current research in artificial intelligence in Canada and acquaints readers with the Canadian organization for artificial intelligence -- the Canadian Society for the Computational Studies of Intelligence / Societe Canadienne pour l' Etude de l'Intelligence par Ordinateur (CSCSI/ SCEIO).

  11. Artificial Ant Species on Solving Optimization Problems

    OpenAIRE

    Pintea, Camelia-M.

    2013-01-01

    During the last years several ant-based techniques were involved to solve hard and complex optimization problems. The current paper is a short study about the influence of artificial ant species in solving optimization problems. There are studied the artificial Pharaoh Ants, Lasius Niger and also artificial ants with no special specificity used commonly in Ant Colony Optimization.

  12. 49 CFR 176.148 - Artificial lighting.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Artificial lighting. 176.148 Section 176.148... Requirements for Class 1 (Explosive) Materials Precautions During Loading and Unloading § 176.148 Artificial lighting. Electric lights, except arc lights, are the only form of artificial lighting permitted...

  13. 21 CFR 886.3200 - Artificial eye.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Artificial eye. 886.3200 Section 886.3200 Food and... OPHTHALMIC DEVICES Prosthetic Devices § 886.3200 Artificial eye. (a) Identification. An artificial eye is a device resembling the anterior portion of the eye, usually made of glass or plastic, intended to...

  14. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    Science.gov (United States)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain

  15. Computer automation and artificial intelligence

    International Nuclear Information System (INIS)

    Rapid advances in computing, resulting from micro chip revolution has increased its application manifold particularly for computer automation. Yet the level of automation available, has limited its application to more complex and dynamic systems which require an intelligent computer control. In this paper a review of Artificial intelligence techniques used to augment automation is presented. The current sequential processing approach usually adopted in artificial intelligence has succeeded in emulating the symbolic processing part of intelligence, but the processing power required to get more elusive aspects of intelligence leads towards parallel processing. An overview of parallel processing with emphasis on transputer is also provided. A Fuzzy knowledge based controller for amination drug delivery in muscle relaxant anesthesia on transputer is described. 4 figs. (author)

  16. Economic reasoning and artificial intelligence.

    Science.gov (United States)

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. PMID:26185245

  17. Calculation of phonon dispersion in carbon nanotubes using a continuum-atomistic finite element approach

    Directory of Open Access Journals (Sweden)

    Michael J. Leamy

    2011-12-01

    Full Text Available Dispersion calculations are presented for cylindrical carbon nanotubes using a manifold-based continuum-atomistic finite element formulation combined with Bloch analysis. The formulated finite elements allow any (n,m chiral nanotube, or mixed tubes formed by periodically-repeating heterojunctions, to be examined quickly and accurately using only three input parameters (radius, chiral angle, and unit cell length and a trivial structured mesh, thus avoiding the tedious geometry generation and energy minimization tasks associated with ab initio and lattice dynamics-based techniques. A critical assessment of the technique is pursued to determine the validity range of the resulting dispersion calculations, and to identify any dispersion anomalies. Two small anomalies in the dispersion curves are documented, which can be easily identified and therefore rectified. They include difficulty in achieving a zero energy point for the acoustic twisting phonon, and a branch veering in nanotubes with nonzero chiral angle. The twisting mode quickly restores its correct group velocity as wavenumber increases, while the branch veering is associated with a rapid exchange of eigenvectors at the veering point, which also lessens its impact. By taking into account the two noted anomalies, accurate predictions of acoustic and low-frequency optical branches can be achieved out to the midpoint of the first Brillouin zone.

  18. Atomistic Insights Into the Oriented Attachment of Tunnel-Based Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yifei; Wood, Stephen M; He, Kun; Yao, Wentao; Tompsett, David; Lu, Jun; Nie, Anmin; Islam, M. Saiful; Shahbazian-Yassar, Reza

    2016-01-01

    Controlled synthesis of nanomaterials is one of the grand challenges facing materials scientists. In particular, how tunnel-based nanomaterials aggregate during synthesis while maintaining their well-aligned tunneled structure is not fully understood. Here, we describe the atomistic mechanism of oriented attachment (OA) during solution synthesis of tunneled α-MnO2 nanowires based on a combination of in situ liquid cell transmission electron microscopy (TEM), aberration-corrected scanning TEM with subangstrom spatial resolution, and first-principles calculations. It is found that primary tunnels (1 × 1 and 2 × 2) attach along their common {110} lateral surfaces to form interfaces corresponding to 2 × 3 tunnels that facilitate their short-range ordering. The OA growth of α-MnO2 nanowires is driven by the stability gained from elimination of {110} surfaces and saturation of Mn atoms at {110}-edges. During this process, extra [MnOx] radicals in solution link the two adjacent {110} surfaces and bond with the unsaturated Mn atoms from both surface edges to produce stable nanowire interfaces. Our results provide insights into the controlled synthesis and design of nanomaterials in which tunneled structures can be tailored for use in catalysis, ion exchange, and energy storage applications.

  19. Diffraction Anomalous Fine Structure study and atomistic simulation of Ge/Si nanoislands

    Energy Technology Data Exchange (ETDEWEB)

    Katcho, N.A. [Instituto de Quimica Fisica Rocasolano, IQFR-CSIC, c. Serrano 119, 28006 Madrid (Spain); ICMA, Dep. Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza (Spain); Richard, M.-I. [Aix-Marseille Universite, IM2NP-CNRS, Faculte des Sciences et Techniques, F-13397 Marseille Cedex (France); Proietti, M.G., E-mail: proietti@unizar.es [ICMA, Dep. Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza (Spain); Renevier, H., E-mail: hubert.renevier@grenoble-inp.fr [LMGP, Grenoble INP - Minatec, Grenoble (France); Leclere, C. [LMGP, Grenoble INP - Minatec, Grenoble (France); Favre-Nicolin, V. [CEA-UJF, INAC, SP2M, Grenoble (France); Zhang, J.J.; Bauer, G. [Institut fuer Halbleiter - und Festkoerperphysik, Johannes Kepler Universitaet Linz (Austria)

    2012-08-01

    We applied Grazing Incidence Diffraction Anomalous Fine Structure to the study of the structure of Ge dome-shaped nanoislands, grown by Molecular Beam Epitaxy on Si (0 0 1) substrates at a temperature of 650 Degree-Sign C. We determined the vertical composition of the islands showing the presence of a strong Ge/Si intermixing that is nearly constant from bottom to top. In particular, an abrupt change is found at the substrate interface where the composition switches from pure Si to Ge{sub 0.6}Si{sub 0.4}. The analysis of the Diffraction Anomalous Fine Structure oscillations of the spectra is crucial to obtain the true composition profile. We performed atomistic simulations to investigate the role of the strained substrate underneath the dome on the diffraction results and to quantify the resolution of our method. Anomalous Diffraction spectra and Diffraction Anomalous Fine Structure oscillations have been simulated for a real size and real shape cluster including faceting, giving a more detailed data interpretation and understanding of the Ge-Si intermixing mechanism.

  20. Spontaneous Formation of A Nanotube From A Square Ag Nanowire: An Atomistic View

    Science.gov (United States)

    Konuk Onat, Mine; Durukanoglu, Sondan

    2012-02-01

    We have performed molecular static calculations to investigate the recently observed phenomenon of the spontaneous formation of a nanotube from a regular, square Ag nanowire[1]. In the simulations, atoms are allowed to interact via the model potential obtained from the modified embedded atom method. Our simulations predict that this particular type of structural phase transformation is controlled by the nature of applied strain, length of the wire and initial cross-sectional shape. For such a perfect structural transformation, the axially oriented fcc nanowire needs (1) to be formed by stacking A and B layers of an fcc crystal, both possessing the geometry of two interpenetrating one-lattice-parameter-wide squares, containing four atoms each, (2) to have an optimum length of eight layers, and (3) to be exposed to a combination of low and high stress along the length direction. The results further offer insights into atomistic nature of this specific structural transformation into a nanotube with the smallest possible cross-section. [1] M.J. Lagos et al., Nature Nanotech. 4, 149 (2009).

  1. Molecular Simulations of Cyclic Loading Behavior of Carbon Nanotubes Using the Atomistic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2009-01-01

    Full Text Available The potential applications of carbon nanotubes (CNT in many engineered bionanomaterials and electromechanical devices have imposed an urgent need on the understanding of the fatigue behavior and mechanism of CNT under cyclic loading conditions. To date, however, very little work has been done in this field. This paper presents the results of a theoretical study on the behavior of CNT subject to cyclic tensile and compressive loads using quasi-static molecular simulations. The Atomistic Finite Element Method (AFEM has been applied in the study. It is shown that CNT exhibited extreme cyclic loading resistance with yielding strain and strength becoming constant within limited number of loading cycles. Viscoelastic behavior including nonlinear elasticity, hysteresis, preconditioning (stress softening, and large strain have been observed. Chiral symmetry was found to have appreciable effects on the cyclic loading behavior of CNT. Mechanisms of the observed behavior have been revealed by close examination of the intrinsic geometric and mechanical features of tube structure. It was shown that the accumulated residual defect-free morphological deformation was the primary mechanism responsible for the cyclic failure of CNT, while the bond rotating and stretching experienced during loading/unloading played a dominant role on the strength, strain and modulus behavior of CNT.

  2. Atomistic simulations of highly conductive molecular transport junctions under realistic conditions

    KAUST Repository

    French, William R.

    2013-01-01

    We report state-of-the-art atomistic simulations combined with high-fidelity conductance calculations to probe structure-conductance relationships in Au-benzenedithiolate (BDT)-Au junctions under elongation. Our results demonstrate that large increases in conductance are associated with the formation of monatomic chains (MACs) of Au atoms directly connected to BDT. An analysis of the electronic structure of the simulated junctions reveals that enhancement in the s-like states in Au MACs causes the increases in conductance. Other structures also result in increased conductance but are too short-lived to be detected in experiment, while MACs remain stable for long simulation times. Examinations of thermally evolved junctions with and without MACs show negligible overlap between conductance histograms, indicating that the increase in conductance is related to this unique structural change and not thermal fluctuation. These results, which provide an excellent explanation for a recently observed anomalous experimental result [Bruot et al., Nat. Nanotechnol., 2012, 7, 35-40], should aid in the development of mechanically responsive molecular electronic devices. © 2013 The Royal Society of Chemistry.

  3. Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations

    Science.gov (United States)

    Fernández, M. A.; Sabater, C.; Dednam, W.; Palacios, J. J.; Calvo, M. R.; Untiedt, C.; Caturla, M. J.

    2016-02-01

    The conductance across an atomically narrow metallic contact can be measured by using scanning tunneling microscopy. In certain situations, a jump in the conductance is observed right at the point of contact between the tip and the surface, which is known as "jump to contact" (JC). Such behavior provides a way to explore, at a fundamental level, how bonding between metallic atoms occurs dynamically. This phenomenon depends not only on the type of metal but also on the geometry of the two electrodes. For example, while some authors always find JC when approaching two atomically sharp tips of Cu, others find that a smooth transition occurs when approaching a Cu tip to an adatom on a flat surface of Cu. In an attempt to show that all these results are consistent, we make use of atomistic simulations; in particular, classical molecular dynamics together with density functional theory transport calculations to explore a number of possible scenarios. Simulations are performed for two different materials: Cu and Au in a [100] crystal orientation and at a temperature of 4.2 K. These simulations allow us to study the contribution of short- and long-range interactions to the process of bonding between metallic atoms, as well as to compare directly with experimental measurements of conductance, giving a plausible explanation for the different experimental observations. Moreover, we show a correlation between the cohesive energy of the metal, its Young's modulus, and the frequency of occurrence of a jump to contact.

  4. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, K; Seymour, R; Wang, W; Kalia, R; Nakano, A; Vashishta, P; Shimojo, F; Yang, L H

    2009-02-17

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops {center_dot} day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).

  5. Including Long-range Interactions in Atomistic Modelling of Diffusional Phase Changes

    Energy Technology Data Exchange (ETDEWEB)

    Mason, D R; Rudd, R E; Sutton, A P

    2005-08-25

    Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorporating the effects of strain around misfitting atoms and vacancies. Vacancy diffusion is modeled by comparing the energies of trial states, where the system is partially relaxed for each trial state. Only a limited precision is required for the energy of each trial state, determined by the value of k{sub B}T. Since the change in the relaxation displacement field caused by a vacancy hop decays as 1/r{sup 3}, it is sufficient to determine the next move by relaxing only those atoms in a sphere of finite radius centered on the moving vacancy. However, once the next move has been selected, the entire system is relaxed. Simulations of the early stages of phase separation in Al-Cu with elastic relaxation show an enhanced rate of clustering compared to those performed on the same system with a rigid lattice. However on a flexible lattice vacancy trapping by Mg atoms in the ternary Al-Cu-Mg system makes clustering slower than the corresponding rigid lattice calculation.

  6. Ash'arite's atomistic conception of the physical world: A restatement

    International Nuclear Information System (INIS)

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them

  7. Voltage-Gated Sodium Channels: Mechanistic Insights From Atomistic Molecular Dynamics Simulations.

    Science.gov (United States)

    Oakes, V; Furini, S; Domene, C

    2016-01-01

    The permeation of ions and other molecules across biological membranes is an inherent requirement of all cellular organisms. Ion channels, in particular, are responsible for the conduction of charged species, hence modulating the propagation of electrical signals. Despite the universal physiological implications of this property, the molecular functioning of ion channels remains ambiguous. The combination of atomistic structural data with computational methodologies, such as molecular dynamics (MD) simulations, is now considered routine to investigate structure-function relationships in biological systems. A fuller understanding of conduction, selectivity, and gating, therefore, is steadily emerging due to the applicability of these techniques to ion channels. However, because their structure is known at atomic resolution, studies have consistently been biased toward K(+) channels, thus the molecular determinants of ionic selectivity, activation, and drug blockage in Na(+) channels are often overlooked. The recent increase of available crystallographic data has eminently encouraged the investigation of voltage-gated sodium (NaV) channels via computational methods. Here, we present an overview of simulation studies that have contributed to our understanding of key principles that underlie ionic conduction and selectivity in Na(+) channels, in comparison to the K(+) channel analogs. PMID:27586285

  8. Atomistic simulation of polymer/solid and polymer/polymer interfaces

    International Nuclear Information System (INIS)

    Atomistic simulation techniques have been used to provide a molecular level perspective on the phenomena which control adhesion at metal oxide/polymer and polymer/polymer interfaces relevant to steel coating systems. Two simulation methodologies illustrated by relevant examples will be discussed. The physisorption of an epoxy resin (widely used as the basis of primer paint systems for metallic structural materials) onto alumina and chromia surfaces was compared. Initial model conformations of an epoxy resin oligomer were generated using the Theodorou-Suter technique and the metal oxide surfaces were represented by the low index Miller planes of AlIII and CrIII oxides. The simulated complexes of a single oligomer and various metal oxide surfaces were compared both geometrically and energetically and revealed the basis for better adhesion to the chromia surface. In order to simulate adhesion at polymer/polymer interfaces fully periodic amorphous models of interfaces were constructed and submitted to molecular dynamics. The results of these studies are in general agreement with experimental observations and provide the basis for developing a better understanding of the factors controlling adhesion at metal oxide/polymer and polymer/polymer interfaces

  9. Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel

    Energy Technology Data Exchange (ETDEWEB)

    Ishimaru, Manabu; Hirotsu, Yoshihiko [Institute of Scientific and Industrial Research, Osaka University, Mihogaoka, Ibaraki, Osaka (Japan); Afanasyev-Charkin, Ivan V.; Sickafus, Kurt E. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2002-02-18

    Ion-beam-induced microstructures in magnesium aluminate (MgAl{sub 2}O{sub 4}) spinel have been examined using transmission electron microscopy (TEM). Irradiations were performed at cryogenic temperature ({approx}120 K) on MgAl{sub 2}O{sub 4} spinel single-crystal surfaces with (111) orientation, using 180 keV neon (Ne{sup +}) ions to ion fluences ranging from 10{sup 16} to 10{sup 17} Ne{sup +} cm{sup -2}. Cross-sectional TEM observations indicated that the MgAl{sub 2}O{sub 4} spinel transforms first into a metastable crystalline phase and then into an amorphous phase under these irradiation conditions. On the basis of selected-area electron diffraction and high-resolution TEM, we concluded that Ne-ion-beam irradiation induces an ordered spinel-to-disordered rock-salt-like structural phase transformation. Atomistic structures of amorphous MgAl{sub 2}O{sub 4} were also examined on the basis of atomic pair distribution functions. We compared the experimentally obtained results with previous theoretically calculated results for the metastable and amorphous phases of MgAl{sub 2}O{sub 4}, and discussed the validity of the proposed ion-beam-induced structural changes in MgAl{sub 2}O{sub 4} spinel. (author)

  10. Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel

    International Nuclear Information System (INIS)

    Ion-beam-induced microstructures in magnesium aluminate (MgAl2O4) spinel have been examined using transmission electron microscopy (TEM). Irradiations were performed at cryogenic temperature (∼120 K) on MgAl2O4 spinel single-crystal surfaces with (111) orientation, using 180 keV neon (Ne+) ions to ion fluences ranging from 1016 to 1017 Ne+ cm-2. Cross-sectional TEM observations indicated that the MgAl2O4 spinel transforms first into a metastable crystalline phase and then into an amorphous phase under these irradiation conditions. On the basis of selected-area electron diffraction and high-resolution TEM, we concluded that Ne-ion-beam irradiation induces an ordered spinel-to-disordered rock-salt-like structural phase transformation. Atomistic structures of amorphous MgAl2O4 were also examined on the basis of atomic pair distribution functions. We compared the experimentally obtained results with previous theoretically calculated results for the metastable and amorphous phases of MgAl2O4, and discussed the validity of the proposed ion-beam-induced structural changes in MgAl2O4 spinel. (author)

  11. Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel

    Science.gov (United States)

    Ishimaru, Manabu; Hirotsu, Yoshihiko; Afanasyev-Charkin, Ivan V.; Sickafus, Kurt E.

    2002-02-01

    Ion-beam-induced microstructures in magnesium aluminate (MgAl2O4) spinel have been examined using transmission electron microscopy (TEM). Irradiations were performed at cryogenic temperature (~120 K) on MgAl2O4 spinel single-crystal surfaces with (111) orientation, using 180 keV neon (Ne+) ions to ion fluences ranging from 1016 to 1017 Ne+ cm-2. Cross-sectional TEM observations indicated that the MgAl2O4 spinel transforms first into a metastable crystalline phase and then into an amorphous phase under these irradiation conditions. On the basis of selected-area electron diffraction and high-resolution TEM, we concluded that Ne-ion-beam irradiation induces an ordered spinel-to-disordered rock-salt-like structural phase transformation. Atomistic structures of amorphous MgAl2O4 were also examined on the basis of atomic pair distribution functions. We compared the experimentally obtained results with previous theoretically calculated results for the metastable and amorphous phases of MgAl2O4, and discussed the validity of the proposed ion-beam-induced structural changes in MgAl2O4 spinel.

  12. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    Directory of Open Access Journals (Sweden)

    Collado-Vides Julio

    2008-10-01

    Full Text Available Abstract Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition.

  13. Development and assessment of atomistic models for predicting static friction coefficients

    Science.gov (United States)

    Jahangiri, Soran; Heverly-Coulson, Gavin S.; Mosey, Nicholas J.

    2016-08-01

    The friction coefficient relates friction forces to normal loads and plays a key role in fundamental and applied areas of science and technology. Despite its importance, the relationship between the friction coefficient and the properties of the materials forming a sliding contact is poorly understood. We illustrate how simple relationships regarding the changes in energy that occur during slip can be used to develop a quantitative model relating the friction coefficient to atomic-level features of the contact. The slip event is considered as an activated process and the load dependence of the slip energy barrier is approximated with a Taylor series expansion of the corresponding energies with respect to load. The resulting expression for the load-dependent slip energy barrier is incorporated in the Prandtl-Tomlinson (PT) model and a shear-based model to obtain expressions for friction coefficient. The results indicate that the shear-based model reproduces the static friction coefficients μs obtained from first-principles molecular dynamics simulations more accurately than the PT model. The ability of the model to provide atomistic explanations for differences in μs amongst different contacts is also illustrated. As a whole, the model is able to account for fundamental atomic-level features of μs, explain the differences in μs for different materials based on their properties, and might be also used in guiding the development of contacts with desired values of μs.

  14. Atomistic simulation of MgO nanowires subject to electromagnetic wave

    International Nuclear Information System (INIS)

    This work is concerned with the application of atomistic field theory (AFT) in modeling and simulation of polarizable materials under an electromagnetic (EM) field. AFT enables us to express an atomic scale local property of a multi-element crystalline (which has more than one kind of atom in the unit cell) system in terms of the distortions of lattice cells and the rearrangement of atoms within the lattice cell, thereby making AFT suitable to fully reproduce both acoustic and optical branches in phonon dispersion relations. Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give rise to the rearrangement of microstructure and polarization. The AFT and its corresponding finite element implementation are briefly introduced. Single-crystal MgO nanowires under an EM field is modeled and simulated. The numerical results have demonstrated that AFT can serve as a tool to analyze the electromagnetic phenomena of multi-element crystal materials at micro/nano-level within a field framework

  15. Ranking of Molecular Biomarker Interaction with Targeted DNA Nucleobases via Full Atomistic Molecular Dynamics

    Science.gov (United States)

    Zhang, Wenjun; Wang, Ming L.; Cranford, Steven W.

    2016-01-01

    DNA-based sensors can detect disease biomarkers, including acetone and ethanol for diabetes and H2S for cardiovascular diseases. Before experimenting on thousands of potential DNA segments, we conduct full atomistic steered molecular dynamics (SMD) simulations to screen the interactions between different DNA sequences with targeted molecules to rank the nucleobase sensing performance. We study and rank the strength of interaction between four single DNA nucleotides (Adenine (A), Guanine (G), Cytosine (C), and Thymine (T)) on single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) with acetone, ethanol, H2S and HCl. By sampling forward and reverse interaction paths, we compute the free-energy profiles of eight systems for the four targeted molecules. We find that dsDNA react differently than ssDNA to the targeted molecules, requiring more energy to move the molecule close to DNA as indicated by the potential of mean force (PMF). Comparing the PMF values of different systems, we obtain a relative ranking of DNA base for the detection of each molecule. Via the same procedure, we could generate a library of DNA sequences for the detection of a wide range of chemicals. A DNA sensor array built with selected sequences differentiating many disease biomarkers can be used in disease diagnosis and monitoring.

  16. A Metascalable Computing Framework for Large Spatiotemporal-Scale Atomistic Simulations

    International Nuclear Information System (INIS)

    A metascalable (or 'design once, scale on new architectures') parallel computing framework has been developed for large spatiotemporal-scale atomistic simulations of materials based on spatiotemporal data locality principles, which is expected to scale on emerging multipetaflops architectures. The framework consists of: (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, while introducing multiple parallelization axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these O(N) algorithms onto a multicore cluster based on hybrid implementation combining message passing and critical section-free multithreading. The EDC-STEP-HCD framework exposes maximal concurrency and data locality, thereby achieving: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-dynamics and 1.68 trillion electronic-degrees-of-freedom quantum-mechanical simulations on 212,992 IBM BlueGene/L processors (superscalability); (2) high intra-node, multithreading parallel efficiency (nanoscalability); and (3) nearly perfect time/ensemble parallel efficiency (eon-scalability). The spatiotemporal scale covered by MD simulation on a sustained petaflops computer per day (i.e. petaflops · day of computing) is estimated as NT = 2.14 (e.g. N = 2.14 million atoms for T = 1 microseconds).

  17. Continuum and atomistic description of excess electrons in TiO2

    International Nuclear Information System (INIS)

    The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent–semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor–electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model). (paper)

  18. Ash'arite's atomistic conception of the physical world: A restatement

    Science.gov (United States)

    Pozi, Firdaus; Mohamed, Faizal; Othman, Mohd Yusof

    2013-11-01

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21st century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  19. Ash'arite's atomistic conception of the physical world: A restatement

    Energy Technology Data Exchange (ETDEWEB)

    Pozi, Firdaus; Othman, Mohd Yusof [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia and Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia); Mohamed, Faizal [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Atomism plays an important role in the history of human thought. It can be traced back from Democritus atomos in the 500 BC to particle physics and quantum theory in the 21{sup st} century. However, as it being rejected and developed in the course of history of science, it still brings the fundamental question that perplexes physicists. It gives the views that the world is eternal; that the laws of nature is immutable and eternal therefore all phenomena can be determined through the laws and that there is no reality behind the quantum world. In this paper, we shall briefly describe all these three views on the nature of the physical world or universe and this include on the nature of matter. Then, we shall explain our stand on those conceptions based on the Ash'arites atomistic conception of the physical world. We hope this paper can shed a light on several fundamental issues in the conception of the universe and gives the proper response to them.

  20. Atomistic Molecular Dynamics Simulations of DNA Minicircle Topoisomers: A Practical Guide to Setup, Performance, and Analysis.

    Science.gov (United States)

    Sutthibutpong, Thana; Noy, Agnes; Harris, Sarah

    2016-01-01

    While DNA supercoiling is ubiquitous in vivo, the structure of supercoiled DNA is more challenging to study experimentally than simple linear sequences because the DNA must have a closed topology in order to sustain superhelical stress. DNA minicircles, which are closed circular double-stranded DNA sequences typically containing between 60 and 500 base pairs, have proven to be useful biochemical tools for the study of supercoiled DNA mechanics. We present detailed protocols for constructing models of DNA minicircles in silico, for performing atomistic molecular dynamics (MD) simulations of supercoiled minicircle DNA, and for analyzing the results of the calculations. These simulations are computationally challenging due to the large system sizes. However, improvements in parallel computing software and hardware promise access to improve conformational sampling and simulation timescales. Given the concurrent improvements in the resolution of experimental techniques such as atomic force microscopy (AFM) and cryo-electron microscopy, the study of DNA minicircles will provide a more complete understanding of both the structure and the mechanics of supercoiled DNA. PMID:27283311

  1. Atomistic surface erosion and thin film growth modelled over realistic time scales

    International Nuclear Information System (INIS)

    We present results of atomistic modelling of surface growth and sputtering using a multi-time scale molecular dynamics-on-the-fly kinetic Monte Carlo scheme which allows simulations to be carried out over realistic experimental times. The method uses molecular dynamics to model the fast processes and then calculates the diffusion barriers for the slow processes on-the-fly, without any preconceptions about what transitions might occur. The method is applied to the growth of metal and oxide materials at impact energies typical for both vapour deposition and magnetron sputtering. The method can be used to explain growth processes, such as the filling of vacancies and the formation of stacking faults. By tuning the variable experimental parameters on the computer, a parameter set for optimum crystalline growth can be determined. The method can also be used to model sputtering where the particle interactions with the surface occur at a higher energy. It is shown how a steady state can arise in which interstitial clusters are continuously being formed below the surface during an atom impact event which also recombine or diffuse to the surface between impact events. For fcc metals the near surface region remains basically crystalline during the erosion process with a pitted topography which soon attains a steady state roughness.

  2. Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloys.

    Science.gov (United States)

    Hale, Lucas M; Zimmerman, Jonathan A; Wong, Bryan M

    2016-05-21

    Palladium is an attractive material for hydrogen and hydrogen-isotope storage applications due to its properties of large storage density and high diffusion of lattice hydrogen. When considering tritium storage, the material's structural and mechanical integrity is threatened by both the embrittlement effect of hydrogen and the creation and evolution of additional crystal defects (e.g., dislocations, stacking faults) caused by the formation and growth of helium-3 bubbles. Using recently developed inter-atomic potentials for the palladium-silver-hydrogen system, we perform large-scale atomistic simulations to examine the defect-mediated mechanisms that govern helium bubble growth. Our simulations show the evolution of a distribution of material defects, and we compare the material behavior displayed with expectations from experiment and theory. We also present density functional theory calculations to characterize ideal tensile and shear strengths for these materials, which enable the understanding of how and why our developed potentials either meet or confound these expectations. PMID:27208963

  3. Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene

    Science.gov (United States)

    Guin, Laurent; Raphanel, Jean L.; Kysar, Jeffrey W.

    2016-06-01

    Pristine single crystal graphene is the strongest known two-dimensional material, and its nonlinear anisotropic mechanical properties are well understood from the atomic length scale up to a continuum description. However, experiments indicate that grain boundaries in the polycrystalline form reduce the mechanical behavior of polycrystalline graphene. Herein, we perform atomistic-scale molecular dynamics simulations of the deformation and fracture of graphene grain boundaries and express the results as continuum cohesive zone models (CZMs) that embed notions of the grain boundary ultimate strength and fracture toughness. To facilitate energy balance, we employ a new methodology that simulates a quasi-static controlled crack propagation which renders the kinetic energy contribution to the total energy negligible. We verify good agreement between Griffith's critical energy release rate and the work of separation of the CZM, and we note that the energy of crack edges and fracture toughness differs by about 35%, which is attributed to the phenomenon of bond trapping. This justifies the implementation of the CZM within the context of the finite element method (FEM). To enhance computational efficiency in the FEM implementation, we discuss the use of scaled traction-separation laws (TSLs) for larger element sizes. As a final result, we have established that the failure characteristics of pristine graphene and high tilt angle bicrystals differ by less than 10%. This result suggests that one could use a unique or a few typical TSLs as a good approximation for the CZMs associated with the mechanical simulations of the polycrystalline graphene.

  4. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  5. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data

    International Nuclear Information System (INIS)

    We describe a novel method for extracting dislocation lines from atomistic simulation data in a fully automated way. The dislocation extraction algorithm (DXA) generates a geometric description of dislocation lines contained in an arbitrary crystalline model structure. Burgers vectors are determined reliably, and the extracted dislocation network fulfills the Burgers vector conservation rule at each node. All remaining crystal defects (grain boundaries, surfaces, etc), which cannot be represented by one-dimensional dislocation lines, are output as triangulated surfaces. This geometric representation is ideal for visualization of complex defect structures, even if they are not related to dislocation activity. In contrast to the recently proposed on-the-fly dislocation detection algorithm (ODDA) Stukowski (2010 Modelling Simul. Mater. Sci. Eng. 18 015012) the new method is extremely robust. While the ODDA was designed for a computationally efficient on-the-fly analysis, the DXA method enables a detailed analysis of dislocation lines even in highly distorted crystal regions, as they occur, for instance, close to grain boundaries or in dense dislocation networks

  6. Free energy landscape of the Michaelis complex of lactate dehydrogenase: A network analysis of atomistic simulations

    Science.gov (United States)

    Pan, Xiaoliang; Schwartz, Steven

    2015-03-01

    It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.

  7. A Definition of Artificial Intelligence

    OpenAIRE

    Dobrev, Dimiter

    2012-01-01

    In this paper we offer a formal definition of Artificial Intelligence and this directly gives us an algorithm for construction of this object. Really, this algorithm is useless due to the combinatory explosion. The main innovation in our definition is that it does not include the knowledge as a part of the intelligence. So according to our definition a newly born baby also is an Intellect. Here we differs with Turing's definition which suggests that an Intellect is a person with knowledge gai...

  8. Psychological Studies and Artificial Intelligence

    OpenAIRE

    Ringle, Martin

    1983-01-01

    This paper argues for the position that experimental human studies are relevant to most facets of AI research and that closer ties between AI and experimental psychology will enhance the development of booth the principles of artificial intelligence and their implementation in computers. Raising psychological assumptions from the level of ad hoc intuitions to the level of systematic empirical observation, in the long run, will improve the quality of AI research and help to integrate it with r...

  9. Formation of artificial ionospheric ducts

    OpenAIRE

    Milikh, G. M.; Papadopoulos, K.; Shroff, H; Chang, C. L.; Wallace, T; E. V. Mishin; Parrot, Michel; Berthelier, Jean-Jacques

    2008-01-01

    International audience It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents the first experimental evidence of plasma modifications associated with ion outflows due to HF heating. The experiments were conducted using the HAARP heater during t...

  10. Worldwide variations in artificial skyglow

    OpenAIRE

    Kyba, Christopher C. M.; Kai Pong Tong; Jonathan Bennie; Ignacio Birriel; Jennifer J. Birriel; Andrew Cool; Arne Danielsen; Davies, Thomas W; den Outer, Peter N.; William Edwards; Rainer Ehlert; Fabio Falchi; Jürgen Fischer; Andrea Giacomelli; Francesco Giubbilini

    2015-01-01

    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artifi...

  11. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  12. Artificial color perception using microwaves

    CERN Document Server

    Choudhury, Debesh

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving colors using microwaves.

  13. Artificial Sweeteners versus Natural Sweeteners

    OpenAIRE

    Neacsu, N.A.; Madar, A.

    2014-01-01

    Carbohydrates are an important dietary nutrient which is mostly used to supply energy to the body, as well as a carbon source for synthesis of other needed chemicals. In addition, mono- and disaccharides are craved because of their sweetness. We present different types of sweeteners, which are the basic contents of foods which we consume every day and are demonstrated the positive and negative effects of natural and artificial sweeteners.

  14. Artificial knowledge an evolutionary approach

    OpenAIRE

    McMullin, Finbar Vincent

    1992-01-01

    I present a new analysis of the problem, situation in Artificial Intelligence (AI), grounded in a Popperian epistemology. I first review arguments purporting to establish that no purely “computational” system can realise genuine mentality. I conclude that the question is still open; but that the more pressing question is whether such a system can even exhibit intelligent behaviour. Attention is thus directed at the computational embodiment of knowledge, and its growth. I suggest that much...

  15. Artificial color perception using microwaves

    OpenAIRE

    Choudhury, Debesh; Caulfield, H. John

    2013-01-01

    We report the feasibility of artificial color perception under microwave illumination using a standard microwave source and an antenna. We have sensed transmitted microwave power through color objects and have distinguished the colors by analyzing the sensed transmitted power. Experiments are carried out using a Gunn diode as the microwave source, some colored liquids as the objects and a microwave diode as the detector. Results are presented which open up an unusual but new way of perceiving...

  16. Educational Advances in Artificial Intelligence

    OpenAIRE

    Brown, Laura E.; Michigan Technological University; Kauchak, David; University of California, San Diego

    2013-01-01

    The emergence of massive open online courses has initiated a broad national-wide discussion on higher education practices, models, and pedagogy.  Artificial intelligence and machine learning courses were at the forefront of this trend and are also being used to serve personalized, managed content in the back-end systems. Massive open online courses are just one example of the sorts of pedagogical innovations being developed to better teach AI. This column will discuss and share innovative ed...

  17. Beller Lecture: Artificial Ferroic Systems

    Science.gov (United States)

    Heyderman, Laura

    In artificial ferroic systems, novel functionality is engineered through the combination of structured ferroic materials and the control of the interactions between the different components. I will present two classes of these systems, beginning with hybrid mesoscopic structures incorporating two different ferromagnetic layers whose static and dynamic behaviour result from the mutual imprint of the magnetic domain configurations. Here we have demonstrated a new vortex core reversal mechanism, which occurs when it is displaced across domain boundaries with a magnetic field. I will then describe our progress on artificial spin ice, consisting of arrays of dipolar-coupled nanomagnets arranged in frustrated geometries. We have employed photoemission electron microscopy to observe the behaviour of emergent magnetic monopoles in an array of nanomagnets placed on the kagome lattice. We have also created artificial spin ice with fluctuating magnetic moments and observed the evolution of magnetic configurations with time. This has provided a means to study relaxation processes with a controlled route to the lowest-energy state. Recently, we have demonstrated with muon spin relaxation that these magnetic metamaterials can support thermodynamic phase transitions, and future directions include the incorporation of novel magnetic materials such as ultrathin magnetic films, the investigation of 3D structures, as well as the implementation of x-ray resonant magnetic scattering to study magnetic correlations in smaller nanomagnets and at faster timescales

  18. Artificial life: The coming evolution

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.D. (Los Alamos National Lab., NM (USA) Santa Fe Inst., NM (USA)); Belin, A.d' A. (Shute, Mihaly, and Weinberger, Santa Fe, NM (USA))

    1990-01-01

    Within fifty to a hundred years a new class of organisms is likely to emerge. These organisms will be artificial in the sense that they will originally be designed by humans. However, they will reproduce, and will evolve into something other than their initial form; they will be alive'' under any reasonable definition of the word. These organisms will evolve in a fundamentally different manner than contemporary biological organisms, since their reproduction will be under at least partial conscious control, giving it a Lamarckian component. The pace of evolutionary change consequently will be extremely rapid. The advent of artificial life will be the most significant historical event since the emergence of human beings. The impact on humanity and the biosphere could be enormous, larger than the industrial revolution, nuclear weapons, or environmental pollution. We must take steps now to shape the emergence of artificial organisms; they have potential to be either the ugliest terrestrial disaster, or the most beautiful creation of humanity. 22 refs., 3 figs.

  19. Artificial insemination history: hurdles and milestones.

    Science.gov (United States)

    Ombelet, W; Van Robays, J

    2015-01-01

    Artificial insemination with homologous (AIH) or donor semen (AID) is nowadays a very popular treatment procedure used for many subfertile women worldwide. The rationale behind artificial insemination is to increase gamete density at the site of fertilisation. The sequence of events leading to today's common use of artificial insemination traces back to scientific studies and experimentation many centuries ago. Modern techniques used in human artificial insemination programmes are mostly adapted from the work on cattle by dairy farmers wishing to improve milk production by using artificial insemination with sperm of selected bulls with well chosen genetic traits. The main reason for the renewed interest in artificial insemination in human was associated with the refinement of techniques for the preparation of washed motile spermatozoa in the early years of IVF. The history of artificial insemination is reviewed with particular interest to the most important hurdles and milestones. PMID:26175891

  20. Fecundación Artificial

    Directory of Open Access Journals (Sweden)

    Ochoa. Fidel

    1939-10-01

    Full Text Available Por Fecundación artificial se entiende, la fecundación de una hembra sin el servicio directo del macho, es decir la introducción al aparato genital femenino, del esperma que se ha recogido por medios artificiales. Esta fecundación, practicada en debidas condiciones, tiene el mismo efecto de la fecundación natural, con las ventajas que veremos más adelante. La fecundación artificial permite explotar un reproductor a su máximum de capacidad, ya que se considera, para no hacer cálculos alegres, que un servicio de un caballo puede servir, diluido, por lo menos para cuatro yeguas, según los autores americanos, y para 10 a 15, según otros autores. El toro y el carnero pueden dar esperma suficiente en un servicio para fecundar de 10 a 12 hembras, según,los americanos, y según otros autores, hasta para 40. Los investigadores rusos han podido fecundar hasta 60 vacas con un solo servicio y han logrado con reproductores valiosos, fecundar 10.263 vacas por toro, a pesar de que éstos sólo han servido, durante un periodo de monta de sólo dos meses. Estos mismos han logrado fecundar artificialmente 2.733 ovejas con un solo carnero, y 1.403 con otro Los investigadores americanos han contado 22 servicios a un carnero vigoroso en un periodo de ocho horas, y durante este tiempo produjo esperma suficiente para haber fecundado 200 ovejas artificialmente. La fecundación artificial sirve para evitar la trasmisión de enfermedades que se contagian por el coito, tales como la durina, enfermedad ésta producida por un tripanosoma que por fortuna no existe entre nosotros. A las estaciones de monta llevan con frecuencia hembras afectadas de enfermedades como la vaginitis granulosa de la vaca, que se contagia al toro y de éste a otras hembras. Como el control sanitario de toda hembra llevada al servicio de un reproductor de estas estaciones de monta no siempre puede efectuarse por dificultades de distinta índole, mediante la fecundación artificial

  1. Development of artificial articular cartilage.

    Science.gov (United States)

    Oka, M; Ushio, K; Kumar, P; Ikeuchi, K; Hyon, S H; Nakamura, T; Fujita, H

    2000-01-01

    Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of

  2. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC50). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  3. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    International Nuclear Information System (INIS)

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  4. Atomistic modelling study of lanthanide incorporation in the crystal lattice of an apatite

    International Nuclear Information System (INIS)

    Studies of natural and synthetic apatites allow to propose such crystals as matrix for nuclear waste storage. The neodymium substituted britholite, Ca9Nd(PO4)5(SiO4)F2. is a model for the trivalent actinide storage Neodymium can be substituted in two types of sites. The aim of this thesis is to compare the chemical nature of this two sites in fluoro-apatite Ca9(PO4)6F2 and then in britholite, using ab initio atomistic modeling. Two approaches are used: one considers the infinite crystals and the second considers clusters. The calculations of the electronic structure for both were performed using Kohn and Sham density functional theory in the local approximation. For solids, pseudopotentials were used, and wave functions are expanded in plane waves. For clusters, a frozen core approximation was used, and the wave functions are expanded in a linear combination of Slater type atomic orbitals. The pseudopotential is semi-relativistic for neodymium, and the Hamiltonian is scalar relativistic for the clusters. The validation of the solid approach is performed using two test cases: YPO4 and ScPO4. Two numerical tools were developed to compute electronic deformation density map, and calculate partial density of stases. A full optimisation of the lattice parameters with a relaxation of the atomic coordinates leads to correct structural and thermodynamic properties for the fluoro-apatite, compared to experience. The electronic deformation density maps do not show any significant differences. between the two calcium sites. but Mulliken analysis on the solid and on the clusters point out the more ionic behavior of the calcium in site 2. A neodymium substituted britholite is then studied. Neodymium location only induces local modifications in; the crystalline structure and few changes in the formation enthalpy. The electronic study points out an increase of the covalent character the bonding involving neodymium compared with the one related to calcium, particularly in the Nd

  5. A method for computing association rate constants of atomistically represented proteins under macromolecular crowding

    International Nuclear Information System (INIS)

    In cellular environments, two protein molecules on their way to form a specific complex encounter many bystander macromolecules. The latter molecules, or crowders, affect both the energetics of the interaction between the test molecules and the dynamics of their relative motion. In earlier work (Zhou and Szabo 1991 J. Chem. Phys. 95 5948–52), it has been shown that, in modeling the association kinetics of the test molecules, the presence of crowders can be accounted for by their energetic and dynamic effects. The recent development of the transient-complex theory for protein association in dilute solutions makes it possible to easily incorporate the energetic and dynamic effects of crowders. The transient complex refers to a late on-pathway intermediate, in which the two protein molecules have near-native relative separation and orientation, but have yet to form the many short-range specific interactions of the native complex. The transient-complex theory predicts the association rate constant as ka = ka0exp( − ΔG*el/kBT), where ka0 is the ‘basal’ rate constant for reaching the transient complex by unbiased diffusion, and the Boltzmann factors captures the influence of long-range electrostatic interactions between the protein molecules. Crowders slow down the diffusion, therefore reducing the basal rate constant (to kac0), and induce an effective interaction energy ΔGc. We show that the latter interaction energy for atomistic proteins in the presence of spherical crowders is ‘long’-ranged, allowing the association rate constant under crowding to be computed as kac = kac0exp[ − (ΔG*el + ΔG*c)/kBT]. Applications demonstrate that this computational method allows for realistic modeling of protein association kinetics under crowding. (paper)

  6. An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries

    Energy Technology Data Exchange (ETDEWEB)

    Welland, Michael J.; Lau, Kah Chun; Redfern, Paul C.; Wolf, Dieter; Curtiss, Larry A., E-mail: curtiss@anl.gov [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liang, Linyun [Mathematics and Computer Science, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Zhai, Denyun [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-12-14

    An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O{sub 2} battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO{sub 2} formation through reaction of O{sub 2}{sup −} and Li{sup +} in the electrolyte, which deposits on the cathode surface when the LiO{sub 2} concentration reaches supersaturation in the electrolyte. A reaction-diffusion (rate-equation) model is used to describe the processes occurring in the electrolyte and a phase-field model is used to capture microstructural evolution. This model predicts that coarsening, in which large particles grow and small ones disappear, has a substantial effect on the size distribution of the LiO{sub 2} particles during the discharge process. The size evolution during discharge is the result of the interplay between this coarsening process and particle growth. The growth through continued deposition of LiO{sub 2} has the effect of causing large particles to grow ever faster while delaying the dissolution of small particles. The predicted size evolution is consistent with experimental results for a previously reported cathode material based on activated carbon during discharge and when it is at rest, although kinetic factors need to be included. The approach described in this paper synergistically combines models on different length scales with experimental observations and should have applications in studying other related discharge processes, such as Li{sub 2}O{sub 2} deposition, in Li-O{sub 2} batteries and nucleation and growth in Li-S batteries.

  7. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    2015-08-01

    Full Text Available Large-scale molecular dynamics (MD simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG structure of bcc Fe (gradient grains with d from 25 nm to 105 nm, and comparisons were made with the uniform nano-grained (NG structure of bcc Fe (grains with d = 25 nm. The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size. In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals.

  8. Degenerate Ising model for atomistic simulation of crystal-melt interfaces.

    Science.gov (United States)

    Schebarchov, D; Schulze, T P; Hendy, S C

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level. PMID:24559357

  9. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure

    International Nuclear Information System (INIS)

    Large-scale molecular dynamics (MD) simulations have been performed to investigate the tensile properties and the related atomistic deformation mechanisms of the gradient nano-grained (GNG) structure of bcc Fe (gradient grains with d from 25 nm to 105 nm), and comparisons were made with the uniform nano-grained (NG) structure of bcc Fe (grains with d = 25 nm). The grain size gradient in the nano-scale converts the applied uniaxial stress to multi-axial stresses and promotes the dislocation behaviors in the GNG structure, which results in extra hardening and flow strength. Thus, the GNG structure shows slightly higher flow stress at the early plastic deformation stage when compared to the uniform NG structure (even with smaller grain size). In the GNG structure, the dominant deformation mechanisms are closely related to the grain sizes. For grains with d = 25 nm, the deformation mechanisms are dominated by GB migration, grain rotation and grain coalescence although a few dislocations are observed. For grains with d = 54 nm, dislocation nucleation, propagation and formation of dislocation wall near GBs are observed. Moreover, formation of dislocation wall and dislocation pile-up near GBs are observed for grains with d = 105 nm, which is the first observation by MD simulations to our best knowledge. The strain compatibility among different layers with various grain sizes in the GNG structure should promote the dislocation behaviors and the flow stress of the whole structure, and the present results should provide insights to design the microstructures for developing strong-and-ductile metals

  10. An atomistically informed mesoscale model for growth and coarsening during discharge in lithium-oxygen batteries

    International Nuclear Information System (INIS)

    An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O2 battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO2 formation through reaction of O2− and Li+ in the electrolyte, which deposits on the cathode surface when the LiO2 concentration reaches supersaturation in the electrolyte. A reaction-diffusion (rate-equation) model is used to describe the processes occurring in the electrolyte and a phase-field model is used to capture microstructural evolution. This model predicts that coarsening, in which large particles grow and small ones disappear, has a substantial effect on the size distribution of the LiO2 particles during the discharge process. The size evolution during discharge is the result of the interplay between this coarsening process and particle growth. The growth through continued deposition of LiO2 has the effect of causing large particles to grow ever faster while delaying the dissolution of small particles. The predicted size evolution is consistent with experimental results for a previously reported cathode material based on activated carbon during discharge and when it is at rest, although kinetic factors need to be included. The approach described in this paper synergistically combines models on different length scales with experimental observations and should have applications in studying other related discharge processes, such as Li2O2 deposition, in Li-O2 batteries and nucleation and growth in Li-S batteries

  11. Shape evolution of nanostructures by thermal and ion beam processing. Modeling and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Roentzsch, L.

    2007-07-01

    Single-crystalline nanostructures often exhibit gradients of surface (and/or interface) curvature that emerge from fabrication and growth processes or from thermal fluctuations. Thus, the system-inherent capillary force can initiate morphological transformations during further processing steps or during operation at elevated temperature. Therefore and because of the ongoing miniaturization of functional structures which causes a general rise in surface-to-volume ratios, solid-state capillary phenomena will become increasingly important: On the one hand diffusion-mediated capillary processes can be of practical use in view of non-conventional nanostructure fabrication methods based on self-organization mechanisms, on the other hand they can destroy the integrity of nanostructures which can go along with the failure of functionality. Additionally, capillarity-induced shape transformations are effected and can thereby be controlled by applied fields and forces (guided or driven evolution). With these prospects and challenges at hand, formation and shape transformation of single-crystalline nanostructures due to the system-inherent capillary force in combination with external fields or forces are investigated in the frame of this dissertation by means of atomistic computer simulations. For the exploration (search, description, and prediction) of reaction pathways of nanostructure shape transformations, kinetic Monte Carlo (KMC) simulations are the method of choice. Since the employed KMC code is founded on a cellular automaton principle, the spatio-temporal development of lattice-based N-particle systems (N up to several million) can be followed for time spans of several orders of magnitude, while considering local phenomena due to atomic-scale effects like diffusion, nucleation, dissociation, or ballistic displacements. In this work, the main emphasis is put on nanostructures which have a cylindrical geometry, for example, nanowires (NWs), nanorods, nanotubes etc

  12. Thermodynamics of low-temperature phyllosilicates: from a macroscopic perspective towards achieving atomistic simulation

    International Nuclear Information System (INIS)

    suggest several improvements to these methods. We used atomistic simulation to calculate the mixing enthalpy along two solid solutions binaries of interest in low-temperature petrology. Results are in agreement with observations in natural systems and confirm the importance of hydration in clay minerals stability. (author)

  13. Atomistic simulation of lipid and DiI dynamics in membrane bilayers under tension.

    Science.gov (United States)

    Muddana, Hari S; Gullapalli, Ramachandra R; Manias, Evangelos; Butler, Peter J

    2011-01-28

    Membrane tension modulates cellular processes by initiating changes in the dynamics of its molecular constituents. To quantify the precise relationship between tension, structural properties of the membrane, and the dynamics of lipids and a lipophilic reporter dye, we performed atomistic molecular dynamics (MD) simulations of DiI-labeled dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under physiological lateral tensions ranging from -2.6 mN m(-1) to 15.9 mN m(-1). Simulations showed that the bilayer thickness decreased linearly with tension consistent with volume-incompressibility, and this thinning was facilitated by a significant increase in acyl chain interdigitation at the bilayer midplane and spreading of the acyl chains. Tension caused a significant drop in the bilayer's peak electrostatic potential, which correlated with the strong reordering of water and lipid dipoles. For the low tension regime, the DPPC lateral diffusion coefficient increased with increasing tension in accordance with free-area theory. For larger tensions, free area theory broke down due to tension-induced changes in molecular shape and friction. Simulated DiI rotational and lateral diffusion coefficients were lower than those of DPPC but increased with tension in a manner similar to DPPC. Direct correlation of membrane order and viscosity near the DiI chromophore, which was just under the DPPC headgroup, indicated that measured DiI fluorescence lifetime, which is reported to decrease with decreasing lipid order, is likely to be a good reporter of tension-induced decreases in lipid headgroup viscosity. Together, these results offer new molecular-level insights into membrane tension-related mechanotransduction and into the utility of DiI in characterizing tension-induced changes in lipid packing. PMID:21152516

  14. Rotational relaxation in ortho-terphenyl: using atomistic simulations to bridge theory and experiment.

    Science.gov (United States)

    Eastwood, Michael P; Chitra, Tarun; Jumper, John M; Palmo, Kim; Pan, Albert C; Shaw, David E

    2013-10-24

    Understanding the nature of the glass transition--the dramatic slowing of dynamics and eventual emergence of a disordered solid from a cooling liquid--is a fundamental challenge in physical science. A central characteristic of glass-forming liquids is a non-exponential main relaxation process. The extent of deviation from exponential relaxation typically becomes more pronounced on cooling. Theories that predict a growth of spatially heterogeneous dynamics as temperature is lowered can explain these observations. In apparent contradiction to these theories, however, some experiments suggest that certain substances--notably including the intensely studied molecular glass-former ortho-terphenyl (OTP)--have a main relaxation process whose shape is essentially temperature independent, even though other observables predicted to be correlated with the degree of dynamical heterogeneity are temperature dependent. Here we report the first simulations based on an atomistic model of OTP that reach equilibrium at temperatures well into the supercooled regime. We first show that the results of these simulations are in reasonable quantitative agreement with experimental data for several basic properties over a wide range of temperatures. We then focus on rotational relaxation, finding nearly exponential behavior at high temperatures with clearly increasing deviations as temperature is lowered. The much weaker temperature dependence observed in light-scattering experiments also emerges from the same simulation data when we calculate correlation functions similar to those probed experimentally; this highlights the diversity of temperature dependencies that can be obtained with different probes. Further analysis suggests that the temperature insensitivity observed in the light-scattering experiments stems from the dependence of these measurements on internal as well as rotational molecular motion. Within the temperature range of our OTP simulations, our results strongly suggest that

  15. Are current atomistic force fields accurate enough to study proteins in crowded environments?

    Directory of Open Access Journals (Sweden)

    Drazen Petrov

    2014-05-01

    Full Text Available The high concentration of macromolecules in the crowded cellular interior influences different thermodynamic and kinetic properties of proteins, including their structural stabilities, intermolecular binding affinities and enzymatic rates. Moreover, various structural biology methods, such as NMR or different spectroscopies, typically involve samples with relatively high protein concentration. Due to large sampling requirements, however, the accuracy of classical molecular dynamics (MD simulations in capturing protein behavior at high concentration still remains largely untested. Here, we use explicit-solvent MD simulations and a total of 6.4 µs of simulated time to study wild-type (folded and oxidatively damaged (unfolded forms of villin headpiece at 6 mM and 9.2 mM protein concentration. We first perform an exhaustive set of simulations with multiple protein molecules in the simulation box using GROMOS 45a3 and 54a7 force fields together with different types of electrostatics treatment and solution ionic strengths. Surprisingly, the two villin headpiece variants exhibit similar aggregation behavior, despite the fact that their estimated aggregation propensities markedly differ. Importantly, regardless of the simulation protocol applied, wild-type villin headpiece consistently aggregates even under conditions at which it is experimentally known to be soluble. We demonstrate that aggregation is accompanied by a large decrease in the total potential energy, with not only hydrophobic, but also polar residues and backbone contributing substantially. The same effect is directly observed for two other major atomistic force fields (AMBER99SB-ILDN and CHARMM22-CMAP as well as indirectly shown for additional two (AMBER94, OPLS-AAL, and is possibly due to a general overestimation of the potential energy of protein-protein interactions at the expense of water-water and water-protein interactions. Overall, our results suggest that current MD force fields

  16. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  17. Atomistic view in the initial stages of growth of epitaxial graphene on metal substrates

    Science.gov (United States)

    Zhang, Zhenyu

    2011-03-01

    For both fundamental studies and potential development of graphene electronics, it is pressing to search for reliable methods for mass production of quality graphene. Epitaxial growth of graphene on catalytic metal substrates combined with post-growth transfer has become a promising route towards this goal [1,2]. However, to better control the quality and yield of graphene, a comprehensive understanding of the growth kinetics is essential. In particular, how the carbon atoms adsorbed on the metal surface (or dissolved into the metal) meet to nucleate into stable carbon islands will greatly influence both the growth rate and quality of larger carbon entities such as graphene sheets. In this talk, we first show that the delicate competition between carbon-carbon bonding and carbon-metal bonding dictates the initial nucleation sites of graphene on metal surfaces. These results are discussed in connection with the experimental findings that on Ir(111) and Ru(0001) substrates graphene nucleates from the step edges [4,5]. We also predict that on Cu(111) nucleation should take place everywhere on a terrace. Next we study larger carbon clusters on Cu(111) and explicitly compare the stability of linear and compact structures. We find that the linear carbon ``nanoarches'' are more stable than compact islands consisting of up to 13 carbon atoms, and these nanoarched structures may serve as the missing bridge between carbon dimers and larger graphene nanodomes. Based on these improved understanding of the atomistic rate processes involved, we propose a few kinetic pathways that may lead to better growth control of bilayer graphene and graphene nanoribbons as elemental building blocks for developing graphene electronics. Work done in collaboration with Hua Chen, Wenguang Zhu, Robert Van Wesep, Wei Chen, Ping Cui, and Haiping Lan, and supported by USDOE, USNSF, and NNSF of China.

  18. Epistasis analysis using artificial intelligence.

    Science.gov (United States)

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data. PMID:25403541

  19. Artificial intelligence methods for diagnostic

    International Nuclear Information System (INIS)

    To assist in diagnosis of its nuclear power plants, the Research and Development Division of Electricite de France has been developing skills in Artificial Intelligence for about a decade. Different diagnostic expert systems have been designed. Among them, SILEX for control rods cabinet troubleshooting, DIVA for turbine generator diagnosis, DIAPO for reactor coolant pump diagnosis. This know how in expert knowledge modeling and acquisition is direct result of experience gained during developments and of a more general reflection on knowledge based system development. We have been able to reuse this results for other developments such as a guide for auxiliary rotating machines diagnosis. (authors)

  20. Cybersecurity in Artificial Pancreas Experiments.

    Science.gov (United States)

    O'Keeffe, Derek T; Maraka, Spyridoula; Basu, Ananda; Keith-Hynes, Patrick; Kudva, Yogish C

    2015-09-01

    Medical devices have transformed modern health care, and ongoing experimental medical technology trials (such as the artificial pancreas) have the potential to significantly improve the treatment of several chronic conditions, including diabetes mellitus. However, we suggest that, to date, the essential concept of cybersecurity has not been adequately addressed in this field. This article discusses several key issues of cybersecurity in medical devices and proposes some solutions. In addition, it outlines the current requirements and efforts of regulatory agencies to increase awareness of this topic and to improve cybersecurity. PMID:25923544

  1. Logical Foundations Of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available The procedures of searching solutions to problems, in Artificial Intelligence, can be brought about, in many occasions, without knowledge of the Domain, and in other situations, with knowledge of it. This last procedure is usually called Heuristic Search. In such methods the matrix techniques reveal themselves as essential. Their introduction can give us an easy and precise way in the search of solution. Our paper explains how the matrix theory appears and fruitfully participates in A I, with feasible applications to Game Theory.

  2. Artificial intelligence a beginner's guide

    CERN Document Server

    Whitby, Blay

    2012-01-01

    Tomorrow begins right here as we embark on an enthralling and jargon-free journey into the world of computers and the inner recesses of the human mind. Readers encounter everything from the nanotechnology used to make insect-like robots, to computers that perform surgery, in addition to discovering the biggest controversies to dog the field of AI. Blay Whitby is a Lecturer on Cognitive Science and Artificial Intelligence at the University of Sussex UK. He is the author of two books and numerous papers.

  3. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  4. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  5. Artificial Neural Networks An Introduction

    CERN Document Server

    Priddy, Kevin L

    2005-01-01

    This tutorial text provides the reader with an understanding of artificial neural networks (ANNs) and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach t

  6. Atomistically determined phase-field modeling of dislocation dissociation, stacking fault formation, dislocation slip, and reactions in fcc systems

    Science.gov (United States)

    Rezaei Mianroodi, Jaber; Svendsen, Bob

    2015-04-01

    The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical

  7. ARTIFICIAL LIVING SYSTEM AND ITS COMPLEXITY

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongguang

    2001-01-01

    In this paper the author shows some artificial living systems, whose basic life characteristics are explored, especially the differentiation in evolution from single cellular to multi-cellular organism. In addition, the author discusses diversity and evolvability also.The author gives a modified entropy function to measure the diversity. Finally, the author drops an open problem about the structure of "gene" of artificial living systems, so that we can measure the evolutionary order between the artificial living systems.

  8. Of Artificial Intelligence and Legal Reasoning

    OpenAIRE

    Sunstein, Cass Robert

    2014-01-01

    Can computers, or artificial intelligence, reason by analogy? This essay urges that they cannot, because they are unable to engage in the crucial task of identifying the normative principle that links or separates cases. Current claims, about the ability of artificial intelligence to reason analogically, rest on an inadequate picture of what legal reasoning actually is. For the most part, artificial intelligence now operates as a kind of advanced version of LEXIS, offering research assistance...

  9. Readings in artificial intelligence and software engineering

    CERN Document Server

    Rich, Charles

    1986-01-01

    Readings in Artificial Intelligence and Software Engineering covers the main techniques and application of artificial intelligence and software engineering. The ultimate goal of artificial intelligence applied to software engineering is automatic programming. Automatic programming would allow a user to simply say what is wanted and have a program produced completely automatically. This book is organized into 11 parts encompassing 34 chapters that specifically tackle the topics of deductive synthesis, program transformations, program verification, and programming tutors. The opening parts p

  10. Artificial Compressibility with Entropic Damping

    Science.gov (United States)

    Clausen, Jonathan; Roberts, Scott

    2012-11-01

    Artificial Compressibility (AC) methods relax the strict incompressibility constraint associated with the incompressible Navier-Stokes equations. Instead, they rely on an artificial equation of state relating pressure and density fluctuations through a numerical Mach number. Such methods are not new: the first AC methods date back to Chorin (1967). More recent applications can be found in the lattice-Boltzmann method, which is a kinetic/mesoscopic method that converges to an AC form of the Navier-Stokes equations. With computing hardware trending towards massively parallel architectures in order to achieve high computational throughput, AC style methods have become attractive due to their local information propagation and concomitant parallelizable algorithms. In this work, we examine a damped form of AC in the context of finite-difference and finite-element methods, with a focus on achieving time-accurate simulations. Also, we comment on the scalability of the various algorithms. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Artificial Shortages and Strategic Pricing

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2012-01-01

    Full Text Available Problem statement: We consider a monopolist who manipulates the market by artificially creating shortages that result in an increase in current price that, in turn, boosts demand for the product in subsequent periods. The approach is to develop an intertemporal model of pricing strategy for a monopolist. Approach: The postulated pricing strategy creates an incentive for producers to reduce current supply and raise current prices and sacrifice current profits in order to increase future profits. The main problem is to explain the precise mathematical conditions under which the pricing strategy will be chosen by a monopolist. Results: We derive the optimal pricing strategy to argue that the monopolist has an incentive to adopt simple market manipulation that calls forth a close examination of issues concerning deregulation. Conclusion: The paper examines two possible strategies for a typical monopolist-strategic pricing vis-a-vis a myopic pricing. The intuition is that the monopolist can manipulate the market by artificially creating shortages that result in an increase in current price that, in turn, boosts demand for the product in subsequent periods.

  12. Atomistic studies of grain boundaries and heterophase interfaces in alloys and compounds. Final report, July 1987-August 1998

    Energy Technology Data Exchange (ETDEWEB)

    Vitek, Vaclav

    1998-08-01

    The overarching goal of the research supported by this grant was investigation of the structure and properties of interfaces in multicomponent systems by atomistic modeling. Initially, the research was devoted to studies of segregation to grain boundaries in binary disordered alloys. The next step was then studies of the structure and properties of grain boundaries in ordered compounds, specifically Ni3Al and NiAl, and grain boundary segregation in these compounds in the case of off-stoichiometry. Finally, the structure of Nb/sapphire interfaces, in particular the core configurations of the misfit dislocations, was studied.

  13. Analysis of patch-test consistent atomistic-to-continuum coupling with higher-order finite elements

    OpenAIRE

    Dedner, A. S.; Ortner, C.; H. Wu

    2016-01-01

    We formulate a patch test consistent atomistic-to-continuum coupling (a/c) scheme that employs a second-order (potentially higher-order) finite element method in the material bulk. We prove a sharp error estimate in the energy-norm, which demonstrates that this scheme is (quasi-)optimal amongst energy-based sharp-interface a/c schemes that employ the Cauchy--Born continuum model. Our analysis also shows that employing a higher-order continuum discretization does not yield qualitative improvem...

  14. Atomistic Calculations of the Effect of Minor Actinides on Thermodynamic and Kinetic Properties of UO{sub 2{+-}x}

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Chaitanya; Adnersson, Davis; Battaile, Corbett; uberuaga, Blas

    2012-10-30

    The team will examine how the incorporation of actinide species important for mixed oxide (MOX) and other advanced fuel designs impacts thermodynamic quantities of the host UO{sub 2} nuclear fuel and how Pu, Np, Cm and Am influence oxygen mobility. In many cases, the experimental data is either insufficient or missing. For example, in the case of pure NpO2, there is essentially no experimental data on the hyperstoichiometric form it is not even known if hyperstoichiometry NpO{sub 2{+-}x} is stable. The team will employ atomistic modeling tools to calculate these quantities

  15. Artificial senses for characterization of food quality

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-bo; LAN Yu-bin; R.E. Lacey

    2004-01-01

    Food quality is of primary concern in the food industry and to the consumer. Systems that mimic human senses have been developed and applied to the characterization of food quality. The five primary senses are: vision, hearing, smell, taste and touch.In the characterization of food quality, people assess the samples sensorially and differentiate "good" from "bad" on a continuum.However, the human sensory system is subjective, with mental and physical inconsistencies, and needs time to work. Artificial senses such as machine vision, the electronic ear, electronic nose, electronic tongue, artificial mouth and even artificial the head have been developed that mimic the human senses. These artificial senses are coordinated individually or collectively by a pattern recognition technique, typically artificial neural networks, which have been developed based on studies of the mechanism of the human brain. Such a structure has been used to formulate methods for rapid characterization of food quality. This research presents and discusses individual artificial sensing systems. With the concept of multi-sensor data fusion these sensor systems can work collectively in some way. Two such fused systems, artificial mouth and artificial head, are described and discussed. It indicates that each of the individual systems has their own artificially sensing ability to differentiate food samples. It further indicates that with a more complete mimic of human intelligence the fused systems are more powerful than the individual systems in differentiation of food samples.

  16. Progress and Challenge of Artificial Intelligence

    Institute of Scientific and Technical Information of China (English)

    Zhong-Zhi Shi; Nan-Ning Zheng

    2006-01-01

    Artificial Intelligence (AI) is generally considered to be a subfield of computer science, that is concerned to attempt simulation, extension and expansion of human intelligence. Artificial intelligence has enjoyed tremendous success over the last fifty years. In this paper we only focus on visual perception, granular computing, agent computing, semantic grid. Human-level intelligence is the long-term goal of artificial intelligence. We should do joint research on basic theory and technology of intelligence by brain science, cognitive science, artificial intelligence and others. A new cross discipline intelligence science is undergoing a rapid development. Future challenges are given in final section.

  17. A Pathway to Artificial Metalloenzymes

    KAUST Repository

    Fischer, Johannes

    2015-12-01

    The advancement of catalytic systems and the application thereof has proven to be the key to overcome traditional limitations of industrial-scale synthetic processes. Converging organometallic and biocatalytic principles lead to the development of Artificial Metalloenzymes (ArMs) that comprise a synthetic metal catalyst embedded in a protein scaffold, thereby combining the reactivity of the former with the versatility of the latter. This synergistic approach introduces rationally designed building blocks for the catalytic site and the host protein to assemble enzyme-like structures that follow regio-, chemo-, enantio- and substrate-selective principles. Yet, the identification of suitable protein scaffolds has thus far been challenging. Herein we report a rationally optimized fluorescent protein host, mTFP*, that was engineered to have no intrinsic metal binding capability and, owing to its robust nature, can act as scaffold for the design of novel ArMs. We demonstrate the potential of site-specific modifications within the protein host, use protein X-Ray analysis to validate the respective scaffolds and show how artificial mutant binding sites can be introduced. Transition metal Förster Resonance Energy transfer (tmFRET) methodologies help to evaluate micromolar dissociation constants and reveal structural rearrangements upon coordination of the metal centers. In conjunction with molecular insights from X-Ray crystallographic structure determination, dynamics of the binding pocket can be inferred. The versatile subset of different binding motifs paired with transition metal catalysts create artificial metalloenzymes that provide reactivities which otherwise do not exist in nature. As a proof of concept, Diels-Alder cycloadditions highlight the potential of the present mTFP* based catalysts by stereoselectively converting azachalcone and cyclopentadiene substrates. Screens indicate an enantiomeric excess of up to 60% and provide insights into the electronic and

  18. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    Science.gov (United States)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  19. 信息库还是情报库?--实践视域中的竞争情报系统构建%Information Base or Intelligence Base:Lessons from Project-based CIS Construction

    Institute of Scientific and Technical Information of China (English)

    宋继伟

    2013-01-01

    Combined with the problems and challenges encountered in the process of Competitive Intelligence System development, the terms of Information Base and Intelligence Base are usually misused by academic and business community. Thus, this paper deals with three layers CIS architecture with competitive intelligence collection model, processing and analyzing model, and intelligence and knowl-edge service model. And last, it develops an experimental system used by commercial aircraft customer service industry.%  结合为企业开发竞争情报系统过程中遇到的问题和挑战,分析当前学界和商界在竞争情报系统构建过程中对信息库与情报库混用的现状,提出以信息库为基础,知识库、情报库为目标的信息收集、信息处理分析及情报服务三级竞争情报系统架构,并结合民用飞机客户服务行业,对系统构建作以实验性研究。

  20. An atomistic approach to conduction between nanoelectrodes through a single molecule.

    Science.gov (United States)

    Reimers, Jeffrey R; Shapley, Warwick A; Lambropoulos, Nicholas; Hush, Noel S

    2002-04-01

    Capacitance and other properties of nanoelectrodes, finite-size metal clusters envisaged for use in complex molecular-electronic devices, are discussed. The applicability of classical electrostatics (Coulomb's and Gauss' law, Poisson's equation, etc.) to atomistic systems is investigated and the self-energy necessary to store a finite charge on an atom is found to be of central importance. In particular, the neglect of electron exchange is found to introduce severe limitations, with quantum calculations predicting fundamentally different electronic structures. Also, the well-known poor representation of the atomic self-energy inherent to modern DFT is discussed, along with its implications for molecular electronics calculations. An INDO/S method is introduced with new parameters for gold. This is the simplest approximate computational scheme that correctly includes quantum electrostatic, resonance, and spin effects, and is capable of describing arbitrary excited electronic states. Encouraging results are obtained for some trial problems. In particular, voltage differential between the electrodes in electrode-molecule-electrode conduction is obtained, not through an a priori prescription but rather by moving whole electrons between the electrodes and analyzing the response. The voltage drops across the molecule-electrode junctions and the central molecular region are then deduced. This alternative to the current Landauer-based 1-particle transmission equations for electrode-molecule-electrode conduction is discussed in terms of the use of the electronic states of the system. It provides a proper description not only of conduction via electrode-to-molecule charge or hole transfer but also of conduction via simultaneous charge and hole transfer via low-lying excited molecular electronic states, including the ability to account for electroluminescence and other chemical effects. In addition, various aspects of our research on the quantitative prediction of the I

  1. De Novo Ultrascale Atomistic Simulations On High-End Parallel Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, A; Kalia, R K; Nomura, K; Sharma, A; Vashishta, P; Shimojo, F; van Duin, A; Goddard, III, W A; Biswas, R; Srivastava, D; Yang, L H

    2006-09-04

    We present a de novo hierarchical simulation framework for first-principles based predictive simulations of materials and their validation on high-end parallel supercomputers and geographically distributed clusters. In this framework, high-end chemically reactive and non-reactive molecular dynamics (MD) simulations explore a wide solution space to discover microscopic mechanisms that govern macroscopic material properties, into which highly accurate quantum mechanical (QM) simulations are embedded to validate the discovered mechanisms and quantify the uncertainty of the solution. The framework includes an embedded divide-and-conquer (EDC) algorithmic framework for the design of linear-scaling simulation algorithms with minimal bandwidth complexity and tight error control. The EDC framework also enables adaptive hierarchical simulation with automated model transitioning assisted by graph-based event tracking. A tunable hierarchical cellular decomposition parallelization framework then maps the O(N) EDC algorithms onto Petaflops computers, while achieving performance tunability through a hierarchy of parameterized cell data/computation structures, as well as its implementation using hybrid Grid remote procedure call + message passing + threads programming. High-end computing platforms such as IBM BlueGene/L, SGI Altix 3000 and the NSF TeraGrid provide an excellent test grounds for the framework. On these platforms, we have achieved unprecedented scales of quantum-mechanically accurate and well validated, chemically reactive atomistic simulations--1.06 billion-atom fast reactive force-field MD and 11.8 million-atom (1.04 trillion grid points) quantum-mechanical MD in the framework of the EDC density functional theory on adaptive multigrids--in addition to 134 billion-atom non-reactive space-time multiresolution MD, with the parallel efficiency as high as 0.998 on 65,536 dual-processor BlueGene/L nodes. We have also achieved an automated execution of hierarchical QM

  2. Automated Algorithms for Quantum-Level Accuracy in Atomistic Simulations: LDRD Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aidan P.; Schultz, Peter A.; Crozier, Paul; Moore, Stan Gerald; Swiler, Laura Painton; Stephens, John Adam; Trott, Christian Robert; Foiles, Stephen M.; Tucker, Garritt J. (Drexel University)

    2014-09-01

    This report summarizes the result of LDRD project 12-0395, titled %22Automated Algorithms for Quantum-level Accuracy in Atomistic Simulations.%22 During the course of this LDRD, we have developed an interatomic potential for solids and liquids called Spectral Neighbor Analysis Poten- tial (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The SNAP coef- ficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. Global optimization methods in the DAKOTA software package are used to seek out good choices of hyperparameters that define the overall structure of the SNAP potential. FitSnap.py, a Python-based software pack- age interfacing to both LAMMPS and DAKOTA is used to formulate the linear regression problem, solve it, and analyze the accuracy of the resultant SNAP potential. We describe a SNAP potential for tantalum that accurately reproduces a variety of solid and liquid properties. Most significantly, in contrast to existing tantalum potentials, SNAP correctly predicts the Peierls barrier for screw dislocation motion. We also present results from SNAP potentials generated for indium phosphide (InP) and silica (SiO 2 ). We describe efficient algorithms for calculating SNAP forces and energies in molecular dynamics simulations using massively parallel

  3. Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory; Du, Shiyu [Los Alamos National Laboratory; Liu, Xiang-Yang [Los Alamos National Laboratory; Nerikar, Pankaj [IBM; Stanek, Christopher R. [Los Alamos National Laboratory; Tonks, Michael [Idaho National Laboratory; Millet, Paul [Idaho National Laboratory; Biner, Bulent [Idaho National Laboratory

    2012-06-04

    boundaries derived from separate atomistic calculations, we simulate Xe redistribution for a few simple microstructures using finite element methods (FEM), as implemented in the MOOSE framework from Idaho National Laboratory. Thermal transport together with the power distribution determines the temperature distribution in the fuel rod and it is thus one of the most influential properties on nuclear fuel performance. The fuel thermal conductivity changes as function of time due to microstructure evolution (e.g. fission gas redistribution) and compositional changes. Using molecular dynamics simulations we have studied the impact of different types of grain boundaries and fission gas bubbles on UO{sub 2} thermal conductivity.

  4. Large scale atomistic approaches to thermal transport and phonon scattering in nanostructured materials

    Science.gov (United States)

    Savic, Ivana

    2012-02-01

    Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt

  5. JANNUS: A multi-irradiation platform for experimental validation at the scale of the atomistic modelling

    International Nuclear Information System (INIS)

    Full text of publication follows: Ion irradiation is totally relevant to simulate neutron irradiation because primary knocked-on atoms (PKA) produced by neutron collisions are in fact self ions of the target. The main difference that remains lies on the energy spectrum of these PKA, which is broader in the case of neutrons. Thus, it is possible to study target damaging, ion implantation effects, helium and hydrogen production and nuclear reaction occurrence by performing co-irradiation experiments in dual or triple beam irradiation modes. The JANNUS project (Joint Accelerators for Nano-sciences and Nuclear Simulation) was started in 2002 in the frame of a collaboration between CEA and CNRS-IN2P3. Due to the scientific skills developed fora long time, two experimental sites have been considered: 1) at Saclay, three electrostatic accelerators are being coupled, a new 3 MV Pelletron machine (ePIMeTHeE) equipped with a multi-charged ECR ion source, a 2.5 MV single ended Van de Graaff (YVETTE) and a 2.25 MV General Ionex tandem (TANDETRON); 2) at Orsay, a 2 MV tandem (ARAMIS) and a 190 kV ion implanter (IRMA) are being coupled together with a 200 kV transmission electron microscope TECHNAI to allow simultaneous co-irradiation and observation. The first part of this paper discusses the progress in the installation of the multi-irradiation platform at both sites. A technical description of the new experimental facilities, including the Saclay 3 MV Pelletron equipped with its ECR ion source and the Orsay on-line new TECNAI 200 kV TEM will be then given. The processing followed to optimize the different beam lines of the Saclay triple beam will be discussed. The main experiments we intend to carry out using mono, dual or triple irradiation configurations in different nuclear application fields and especially in the fusion domain will be further presented. The links between experiments and atomistic modelling will be suggested. All the characterization techniques we have

  6. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  7. Apartes desde la inteligencia artificial

    Directory of Open Access Journals (Sweden)

    Luis Carlos Torres Soler

    2011-01-01

    Full Text Available El estudio y desarrollo de la inteligencia artificial no debe centrarse sólo en la creación de software o hardware que permita realizar procesos algorítmicos o heurísticos en el computador, de tal forma que produzcan soluciones óptimas y eficientes al resolver un problema complejo, ya sea de manejo de información o de toma de decisiones, o crear máquinas que tengan buena apariencia del ser humano; se debe, sobre todo, analizar la parte neurológica y sicológica que presenta el individuo al solucionar problemas. Además, es importante conocer la capacidad intelectual de la persona, de ahí la variedad de carreras profesionales que existen; no puede quedar por fuera de los sistemas inteligentes la concepción del amor o admiración.

  8. An artificial neuro-anatomist

    International Nuclear Information System (INIS)

    The fact that the human brain visual system is based on stereo-vision is a real handicap when analysing dense 3D representations of the human brain. The success of the methods of analysis based on the 3D proportional system has shown the advantage of using computer based system to interpret such complex images. The underlying strategy, however, is restricted to low level vision, which can not address any issue. Our approach advocates for the development of complete computer vision systems dedicated to the brain, which may be of great help for the future of neuroimaging. In our opinion, indeed, brain imaging is sufficiently focused to be a promising niche for the development of artificial intelligence. (N.C.)

  9. Text Classification using Artificial Intelligence

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Text classification is the process of classifying documents into predefined categories based on their content. It is the automated assignment of natural language texts to predefined categories. Text classification is the primary requirement of text retrieval systems, which retrieve texts in response to a user query, and text understanding systems, which transform text in some way such as producing summaries, answering questions or extracting data. Existing supervised learning algorithms for classifying text need sufficient documents to learn accurately. This paper presents a new algorithm for text classification using artificial intelligence technique that requires fewer documents for training. Instead of using words, word relation i.e. association rules from these words is used to derive feature set from pre-classified text documents. The concept of na\\"ive Bayes classifier is then used on derived features and finally only a single concept of genetic algorithm has been added for final classification. A syste...

  10. Artificial intelligence and process management

    International Nuclear Information System (INIS)

    Techniques derived from work in artificial intelligence over the past few decades are beginning to change the approach in applying computers to process management. To explore this new approach and gain real practical experience of its potential a programme of experimental applications was initiated by Sira in collaboration with the process industry. This programme encompassed a family of experimental applications ranging from process monitoring, through supervisory control and troubleshooting to planning and scheduling. The experience gained has led to a number of conclusions regarding the present level of maturity of the technology, the potential for further developments and the measures required to secure the levels of system integrity necessary in on-line applications to critical processes. (author)

  11. Introduction to artificial neural networks.

    Science.gov (United States)

    Grossi, Enzo; Buscema, Massimo

    2007-12-01

    The coupling of computer science and theoretical bases such as nonlinear dynamics and chaos theory allows the creation of 'intelligent' agents, such as artificial neural networks (ANNs), able to adapt themselves dynamically to problems of high complexity. ANNs are able to reproduce the dynamic interaction of multiple factors simultaneously, allowing the study of complexity; they can also draw conclusions on individual basis and not as average trends. These tools can offer specific advantages with respect to classical statistical techniques. This article is designed to acquaint gastroenterologists with concepts and paradigms related to ANNs. The family of ANNs, when appropriately selected and used, permits the maximization of what can be derived from available data and from complex, dynamic, and multidimensional phenomena, which are often poorly predictable in the traditional 'cause and effect' philosophy. PMID:17998827

  12. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  13. Mesoscale computational study of the nanocrystallization of amorphous Ge via a self-consistent atomistic phase-field model

    International Nuclear Information System (INIS)

    Germanium is the base element in many phase-change materials, i.e. systems that can undergo reversible transformations between their crystalline and amorphous phases. These materials are widely used in current digital electronics and hold great promise for the next generation of non-volatile memory devices. However, the ultra-fast phase transformations required for these applications can be exceedingly complex even for single-component systems, and a full physical understanding of these phenomena is still lacking. In this paper we study the growth of crystalline Ge from amorphous thin films at high temperature using phase-field models informed by atomistic calculations of fundamental material properties. The atomistic calculations capture the full anisotropy of the Ge crystal lattice, which results in orientation dependences for interfacial energies and mobilities. These orientation relations are then exactly recovered by the phase-field model at finite thickness via a novel parametrization strategy based on invariance solutions of the Allen–Cahn equations. By means of this multiscale approach, we study the interplay between nucleation and growth and find that the relation between the mean radius of the crystallized Ge grains and the nucleation rate follows simple Avrami-type scaling laws. We argue that these can be used to cover a wide region of the nucleation rate space, hence facilitating comparison with experiments

  14. Quasi-atomistic modeling of the microstructure evolution in binary alloys and its application to the FeCr case

    International Nuclear Information System (INIS)

    In this work, we present a comprehensive quasi-atomistic Object Kinetic Monte Carlo (OKMC) model for diffusion-mediated decomposition in binary alloys, which is applied to the particular case of phase nucleation and spinodal decomposition in the iron–chromium system. The model describes atomistically the defects driving diffusion, while following the evolution of alloy concentrations by tracking the number of alloy atoms in the elements of an uniform mesh. Input parameters are defect diffusivities, tracer diffusivity ratios, and mixing energies, and they have been calibrated according to reported experiments and ab-initio calculations. Simulations based on this model are able to reproduce both phase nucleation in the metastable composition region and spontaneous phase decomposition and coarsening within the spinodal composition region. The convergence into the correct thermodynamics has been shown by comparing the simulation results to theoretical predictions, while the time evolution has been validated with experimental data for different alloy compositions. The simulation approach has proven to be suitable for extended annealing times and for domain sizes up to hundreds of nanometers

  15. Atomistic Modeling of the Negative Thermal Expansion in δ- Plutonium  Based on the Two-State Description

    Directory of Open Access Journals (Sweden)

    Steven M. Valone

    2012-06-01

    Full Text Available The δ phase  of plutonium with the fcc structure exhibits an unusual negative thermal expansion (NTE over its narrow  temperature range of stability, 593–736 K. An accurate description  of the anomalous high-temperature volume effect of plutonium  goes beyond the current capability  of electronic-structure  calculations.  We propose an atomistic scheme to model the thermodynamic properties of δ-Pu based on the two-state model of Weiss for the Invar alloys, inspired by the simple free-energy analysis previously conducted by Lawson et al. The two-state mechanism is incorporated into the atomistic description of a many-body  interacting  system.  Two modified  embedded atom method potentials are employed to represent the binding energies of two competing  electronic  states in δ-Pu. We demonstrate how the NTE takes place in δ-Pu by means of Monte Carlo simulations implemented with the two-state mechanism.

  16. General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green's function

    Science.gov (United States)

    Stradi, Daniele; Martinez, Umberto; Blom, Anders; Brandbyge, Mads; Stokbro, Kurt

    2016-04-01

    Metal-semiconductor contacts are a pillar of modern semiconductor technology. Historically, their microscopic understanding has been hampered by the inability of traditional analytical and numerical methods to fully capture the complex physics governing their operating principles. Here we introduce an atomistic approach based on density functional theory and nonequilibrium Green's function, which includes all the relevant ingredients required to model realistic metal-semiconductor interfaces and allows for a direct comparison between theory and experiments via I -Vbias curve simulations. We apply this method to characterize an Ag/Si interface relevant for photovoltaic applications and study the rectifying-to-Ohmic transition as a function of the semiconductor doping. We also demonstrate that the standard "activation energy" method for the analysis of I -Vbias data might be inaccurate for nonideal interfaces as it neglects electron tunneling, and that finite-size atomistic models have problems in describing these interfaces in the presence of doping due to a poor representation of space-charge effects. Conversely, the present method deals effectively with both issues, thus representing a valid alternative to conventional procedures for the accurate characterization of metal-semiconductor interfaces.

  17. An Atomistic-Based Continuum Modeling for Evaluation of Effective Elastic Properties of Single-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    M. S. M. Al-Kharusi

    2016-01-01

    Full Text Available The mechanical behavior of SWCNTs is characterized using an atomistic-based continuum method. At nanoscale, interatomic energy among carbon atoms and the corresponding force constants are defined. Subsequently, we used an atomistic finite element analysis to calculate the energy stored in the SWCNT model, which forms a basis for calculating effective elastic moduli. In the finite element model, the force interaction among carbon atoms in a SWCNT is modeled using load-carrying structural beams. At macroscale, the SWCNT is taken as cylindrical continuum solid with transversely isotropic mechanical properties. Equivalence of energies of both models establishes a framework to calculate effective elastic moduli of armchair and zigzag nanotubes. This is achieved by solving five boundary value problems under distinct essential-controlled boundary conditions, which generates a prescribed uniform strain field in both models. Elastic constants are extracted from the calculated elastic moduli. While results of Young’s modulus obtained in this study generally concur with the published theoretical and numerical predictions, values of Poisson’s ratio are on the high side.

  18. Artificial fibrous proteins: a review.

    Science.gov (United States)

    Heslot, H

    1998-01-01

    Several kinds of natural fibrous proteins have been chosen as models: silk fibroin from Bombyx mori, silks from various species of spiders and collagens. The dragline silk of the spider Nephila clavipes is able to stretch by 30% before breaking and has a high tensile strength. It is stronger per unit weight than high tensile steel. Although the partial sequence of the two components of dragline silk is known, its molecular structure is still far from being clearly established. It is however demonstrated that it contains beta-sheet crystals composed of polyalanine residues. Artificial fibrous proteins have been prepared in vivo using either Escherichia coli or the yeast Pichia pastoris. As these proteins contain repetitive sequences, there is a risk of deletion at the DNA level. This difficulty has been solved by making use of the genetic code degeneracy. One group has successfully synthesized silk-like polymers; prolastin polymers containing both silk-like and elastin-like blocks; proNectin polymers containing the RGD triplet coming from fibronectin and able to fix numerous mammalian cell types; and synthetic collagen analogs. Some of these polymers have been spun into fibers that, up-to-now, do not display any measurable molecular orientation. Another group has studied artificial fibrous proteins able to form beta-sheet crystals of defined thickness and bearing functional groups at their surface, for instance Glu residues, selenomethionine or p-fluorophenylalanine. Apart from university laboratories, a venture capital society, an industrial research center and a US army research center are quite active in this field. A number of patents has been deposited. PMID:9587659

  19. Contribution of artificial intelligence to operation

    International Nuclear Information System (INIS)

    Artificial Intelligence techniques are already used in nuclear plants for assistance to operation: synthesis from numerous information sources may be then derived, based on expert knowledge. Artificial intelligence may be used also for quality and reliability assessment of software-based control-command systems. Various expert systems developed by CEA, EDF and Framatome are presented

  20. Artificial Neural Networks and Instructional Technology.

    Science.gov (United States)

    Carlson, Patricia A.

    1991-01-01

    Artificial neural networks (ANN), part of artificial intelligence, are discussed. Such networks are fed sample cases (training sets), learn how to recognize patterns in the sample data, and use this experience in handling new cases. Two cognitive roles for ANNs (intelligent filters and spreading, associative memories) are examined. Prototypes…