Sample records for art high vacuum


    Directory of Open Access Journals (Sweden)

    E. D. Chertov


    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  2. The fine art of preparing a vacuum

    CERN Multimedia


    The vacuum chambers, or beam pipes, of the LHC experiments are located right at the interface between the detectors and the accelerator, and are therefore crucial to the LHC project as a whole. In this domain, the ALICE and CMS experiments have just passed an important milestone, with the completion of the first of CMS's two end-cap vacuum chambers, together with the completion and bakeout of an 18-metre section of the ALICE vacuum chamber. These complex projects, for which CERN's AT/VAC Group is responsible, involved dozens of people over a number of years.

  3. High Vacuum Furnace for HIRFL-CSR

    Institute of Scientific and Technical Information of China (English)


    In order to satisfy the requirement of ultra-high vacuum and low out-gassing rate of materials which are used to make HIIRFL-CSR vacuum chambers, a high vacuum furnace for degassing the beam chambers, flanges, and the other vacuum components has been designed and manufactured by IMP and Vacuum Equipment Factory in Lanzhou.

  4. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner


    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  5. Highly Expressive Hakka Art

    Institute of Scientific and Technical Information of China (English)



    SOUTHERN Jiangxi Province was the birthplace of the Hakka ethnic group and has since been the native home and main transfer hub for the spread of the nationality. The highly expressive art of the Hakkas, including folk songs in Xingguo, colored lantern performances in Shicheng, ancient

  6. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano


    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...


    the effects of surface cleanliness . Ultra-high vacuums (to 10 to the minus 10th power torr) and high temperatures (to 350 deg C) were combined with...chemical cleaning and careful handling techniques to produce the maximum surface cleanliness . The coefficient of static friction under varying...on 30-40 mesh glass balls. The coefficient of friction of smooth quartz was found to vary from 0.1 to 1.0 depending on the surface cleanliness . The

  8. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar


    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  9. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Awadesh K Mallik; S A Shivashankar; S K Biswas


    Polycrystalline diamond coatings have been grown on unpolished side of Si(100) wafers by hot filament chemical vapour deposition process. The morphology of the grown coatings has been varied from cauliflower morphology to faceted morphology by manipulation of the growth temperature from 700°C to 900°C and methane gas concentration from 3% to 1·5%. It is found that the coefficient of friction of the coatings under high vacuum of 133·32 × 10-7 Pa (10-7 torr) with nanocrystalline grains can be manipulated to 0·35 to enhance tribological behaviour of bare Si substrates.

  10. Procurement specification high vacuum test chamber and pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Cormick, J. E.


    The specification establishes requirements for a high-vacuum test chamber, associated vacuum pumps, valves, controls, and instrumentation that shall be designed and fabricated for use as a test chamber for testing a closed loop Brayton Isotope Power System (BIPS) Ground Demonstration System (GDS). The vacuum system shall include all instrumentation required for pressure measurement and control of the vacuum pumping system. A general outline of the BIPS-GDS in the vacuum chamber and the preliminary piping and instrumentation interface to the vacuum chamber are shown.

  11. State-of-the-art of recycling e-wastes by vacuum metallurgy separation. (United States)

    Zhan, Lu; Xu, Zhenming


    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  12. CSRm Ultra-High Vacuum System

    Institute of Scientific and Technical Information of China (English)


    The new accelerator project ( HIRFL-CSR ) constructed at the Heavy Ion Research Facility in Lanzhou (HIRFL) is approaching completion. It is a multipurpose cooler-storage-ring system [1], consisting of a maim ring (CSRm), an experimental ring (CSRe) and two transfer beam lines. The UHV system of CSRm is the most representative subsystem in the project. To minimize the beam loss due to charge exchange of the heavy ions with the residual gas molecules,the pressure of the CSRm vacuum system should reach 3.5 × 10-9 Pa (N2 equivalent) and the pressure of 8 × 10-10 Pa is expected for very heavy ion such as uranium to make its lifetime longer than 50 s in the ring. Now, the vacuum system of CSRm has been completed and a pressure less than 5 × 10-10 Pa has been obtained. In this paper the layout of the CSRm vacuum system, the vacuum equipment in CSRm, the treatment method for the CSRm vacuum chambers, and the installation and operation of the system will be reported.

  13. New Materials for Vacuum Chambers in High Energy Physics

    CERN Document Server

    Garion, Cédric


    Vacuum chambers must fulfil ultra-high vacuum requirements while withstanding thermo-mechanical loads. This is particularly true in high energy particle accelerator where interactions of particles with matter may induce thermal load, material activation, background… The choice of the material of the vacuum chamber is crucial for the final application. Metals such as stainless steel, copper and aluminium are usually used. Even with outstanding mechanical and physical properties, beryllium is used for very specific applications because of its cost and toxicity.Ceramics such as alumina are usually used for fast magnet vacuum chambers. With the next generation of high energy physics accelerator generation such as CLIC and TLEP, the problematic of high cyclic thermal load induced by synchrotron radiation is raised. This paper aims at defining some figures of merit of different materials with respect to several load scenarios and presents briefly their vacuum compatibility.

  14. MEMS ion-sorption high vacuum pump (United States)

    Grzebyk, T.; Knapkiewicz, P.; Szyszka, P.; Gorecka-Drzazga, A.; Dziuban, J. A.


    In the article a miniature MEMS-type ion-sorption vacuum pump has been presented. The influence of electric and magnetic field, as well as horizontal and vertical dimensions of the micropump and type of material used for electrodes on the pump properties has been investigated. It has been found that the micropump works efficiently as long as the magnetic field is higher than 0.3 T, and pumping cell is larger than 1x1x1 mm3. The pump allows generating vacuum at the level of 10-7-10-9 hPa in 100 mm3 volume.

  15. Vacuum amplification of the high-frequency electromagnetic radiation


    Vilkovisky, G. A.


    When an electrically charged source is capable of both emitting the electromagnetic waves and creating charged particles from the vacuum, its radiation gets so much amplified that only the backreaction of the vacuum makes it finite. The released energy and charge are calculated in the high-frequency approximation. The technique of expectation values is advanced and employed.

  16. Optical levitation of high purity nanodiamonds in vacuum without heating

    CERN Document Server

    Frangeskou, A C; Gines, L; Mandal, S; Williams, O A; Barker, P F; Morley, G W


    Levitated nanodiamonds containing nitrogen vacancy centres in high vacuum are a potential test bed for numerous phenomena in fundamental physics. However, experiments so far have been limited to low vacuum due to heating arising from optical absorption of the trapping laser. We show that milling pure diamond creates nanodiamonds that do not heat up as the optical intensity is raised above 700 GW/m$^2$ below 5 mbar of pressure. This advance now means that the level of attainable vacuum for nanodiamonds in optical dipole traps is no longer temperature limited.

  17. Ultra-high vacuum in superconducting accelerator rings (United States)

    Bazanov, A. M.; Butenko, A. V.; Galimov, A. R.; Lugovnin, A. K.; Smirnov, A. V.


    Achieving the ultra-high vacuum (UHV) in the collider and booster of the NICA project is one of the main challenges when creating this device. It determines the need for a serious approach to this issue and conducting research in this direction. First, it is necessary to understand the effect of the various components of the vacuum systems on the degree of vacuum. It is also necessary to carry out studies of pumping devices for producing the required vacuum (10-9 Pa) in the beam chamber and choose the most optimal pumping scheme. At the same time, it is necessary to figure out how various operations are carried out with the vacuum chamber: preparation of vacuum surfaces, letting in the atmosphere, and warming the chamber after closing the influence on the degree of vacuum and the composition of the residual gas. The temperature may vary from room temperature to liquid helium temperature due to the difficulty of keeping the beam-chamber walls at a constant temperature, including the inner components. This complicates the processes taking place within it. Additional complexity arises due the heating of the chamber walls by various processes during the operation of the accelerator (for example, cycling the magnetic field).

  18. ART-XC/SRG: results of qualification thermo-vacuum tests (United States)

    Semena, N.; Pavlinsky, M.; Buntov, M.; Serbinov, D.; Levin, V.; Tambov, V.; Rotin, A.; Krivchenko, A.


    ART-XC - a medium-x-ray-energy survey instrument of "Spectrum-Roentgen-Gamma" (SRG) project is being developed in Russia under the leadership of the Space Research Institute (IKI). Main requirements to the telescope temperature control system are provided by two key elements - module of seven semiconductor DSSD CdTe detectors which have to operate at the temperature -22.5+/-2.5 °C to prevent CdTe crystals fast polarization (large polarization time allows to keep detector energy spectral characteristics during continuous 2 - 3 days expositions) and the module of seven mirror systems which have to operate at a temperature 20+/-2 °C (which is the temperature used in the on Earth mirror systems calibration tests).Thermal control system ART-XC consists of 36 tunable film heaters placed in different places on the telescope structure and controlled according to indications of thermal sensors. The maximum power of each heater is 10 W. There are 21 heaters located on seven mirror systems. Each mirror system case is equipped with two heaters, additional one is located on the mirror system baffle. Seven heaters are placed on detectors. Remaining eight heaters are placed in different telescope parts - one on the protective cover, one on the explosive pin, one under the star tracker, three on the mirror system and star tracker mount plate, one on the detector block mount plate and one on the calibration sources control system block. Thermal control system constantly checks temperature from 36 thermal sensors and regulate the heater's power supply. There is one passive thermal control element in the telescope - radiator, which is connected to detectors via three heat pipes and cools them down. The QM (qualification model) of ART-XC was manufacture and tested. QM completely corresponds to flight model. Conditions of thermo-vacuum tests were corresponded to real external thermal conditions in flight. The vacuum, cold of space, temperature of mounting planes and shielding by e

  19. Measuring vacuum polarization with high-power lasers

    Institute of Scientific and Technical Information of China (English)

    B.King; T.Heinzl


    When exposed to intense electromagnetic fields, the quantum vacuum is expected to exhibit properties of a polarizable medium akin to a weakly nonlinear dielectric material. Various schemes have been proposed to measure such vacuum polarization effects using a combination of high- power lasers. Motivated by several planned experiments, we provide an overview of experimental signatures that have been suggested to confirm this prediction of quantum electrodynamics of real photon–photon scattering.

  20. Vacuum high harmonic generation in the shock regime

    CERN Document Server

    Böhl, P; Ruhl, H


    Electrodynamics becomes nonlinear and permits the self-interaction of fields when the quantised nature of vacuum states is taken into account. The effect on a plane probe pulse propagating through a stronger constant crossed background is calculated using numerical simulation and by analytically solving the corresponding wave equation. The electromagnetic shock resulting from vacuum high harmonic generation is investigated and a nonlinear shock parameter identified.

  1. Overview of High Power Vacuum Dry RF Load Designs

    Energy Technology Data Exchange (ETDEWEB)

    Krasnykh, Anatoly [SLAC National Accelerator Lab., Menlo Park, CA (United States)


    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is to use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.

  2. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    CERN Document Server

    Denis, Kevin L; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward


    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication

  3. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R


    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  4. Long distance manipulation of a levitated nanoparticle in high vacuum

    CERN Document Server

    Mestres, Pau; Spasenović, Marko; Gieseler, Jan; Novotny, Lukas; Quidant, Romain


    Accurate delivery of small targets in high vacuum is a pivotal task in many branches of science and technology. Beyond the different strategies developed for atoms, proteins, macroscopic clusters and pellets, the manipulation of neutral particles over macroscopic distances still poses a formidable challenge. Here we report a novel approach based on a mobile optical trap operated under feedback control that enables long range 3D manipulation of a silica nanoparticle in high vacuum. We apply this technique to load a single nanoparticle into a high-finesse optical cavity through a load-lock vacuum system. We foresee our scheme to benefit the field of optomechanics with levitating nano-objects as well as ultrasensitive detection and monitoring.

  5. Plasma backflow phenomenon in high-current vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lijun [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Jia Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang Ling [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Shi Zongqian [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Dingge [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); Gentils, Francois [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Jusselin, BenoIt [Schneider Electric SAS, 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)


    Based on the two-temperature magnetohydrodynamic model, a high-current vacuum arc (HCVA) in vacuum interrupters is simulated and analysed. The phenomenon of plasma backflow in arc column is found, which is ultimately ascribed to the strong magnetic pinch effect of HCVA. Due to plasma backflow, the maximal value of ion density at the cathode side is not located at the centre of the cathode side, but at the paraxial region of the cathode side, that is to say, ion density appears to sag at the centre of the cathode side (arc column seems to be divided into two parts). The sag of light intensity is also found by experiments.

  6. A highly reliable trigger for vacuum ARC plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Bernardet, H.; Godechot, X.; Jarjat, F. [SODERN, Limeil-Brevannes (France)


    The authors have developed a reliable electrical trigger and its associated circuitry to fire vacuum arc plasma or ion source. They tested different embodiments of the trigger device in order to get a highly reliable one, which is able to perform more than 1.2 x 10{sup 6} shots at 60 A and 6.5 ps pulse length. The evolution of the ion current emitted has been recorded as a function of the number of shots. They have also investigated in which direction the plasma jet is emitted : axially or radially. This device can be used to fire a vacuum arc plasma or ion source by plasma injection. It has obvious advantage to be placed outside the cathode and therefore would ease maintenance of vacuum arc devices.

  7. Vacuum stripping of ethanol during high solids fermentation of corn. (United States)

    Shihadeh, Jameel K; Huang, Haibo; Rausch, Kent D; Tumbleson, Mike E; Singh, Vijay


    In corn-ethanol industry, yeast stress inducing glucose concentrations produced during liquefaction and subsequent high ethanol concentrations produced during fermentation restrict slurry solids to 32 % w/w. These limits were circumvented by combining two novel technologies: (1) granular starch hydrolyzing enzyme (GSHE) to break down starch simultaneously with fermentation and (2) vacuum stripping to remove ethanol. A vacuum stripping system was constructed and applied to fermentations at 30, 40, and 45 % solids. As solids increased from 30 to 40 %, ethanol yield decreased from 0.35 to 0.29 L/kg. Ethanol yield from 45 % solids was only 0.18 L/kg. An improvement was conducted by increasing enzyme dose from 0.25 to 0.75 g/g corn and reducing yeast inoculum by half. After improvement, ethanol yield from 40 % solids vacuum treatment increased to 0.36 L/kg, comparable to ethanol yield from 30 % solids (control).

  8. Vacuum high-harmonic generation and electromagnetic shock (United States)

    Böhl, P.; King, B.; Ruhl, H.


    > When one takes into account the presence of virtual charged states in the quantum vacuum, a nonlinear self-interaction can arise in the propagation of electromagnetic fields. This self-interaction is often referred to as `real photon-photon scattering'. When the centre-of-mass energy of colliding photons is much lower than the rest energy of an electron-positron pair, this quantum effect can be included in the classical field equations of motion as a vacuum current and charge density using the Heisenberg-Euler Lagrangian. Using analytical and numerical methods for subcritical fields, the intrinsic solution to Maxwell's equations has been found for counterpropagating probe and pump plane waves in the presence of vacuum four- and six-wave mixing. In the corresponding all-order solution for the scattered probe, a route to vacuum high-harmonic generation is identified in which a long phase length can compensate for the weakness of interacting fields. The resulting shocks in the probe carrier wave and envelope are studied for different parameter regimes and polarisation set-ups. In this special issue, we study two additional set-ups: that of a slowly varying single-cycle background to highlight the effect of an oscillating background on the probe harmonic spectrum, and that of a few-cycle probe to highlight the smoothing of the harmonic peaks produced by a wider spectrum of probe photons. We also correct sign errors in an earlier publication.

  9. An Underappreciated Radiation Hazard from High Voltage Electrodes in Vacuum

    CERN Document Server

    West, Adam; DeMille, David; West, Elizabeth; Panda, Cristian; Doyle, John; Gabrielse, Gerald; Kryskow, Adam; Mitchell, Corinne


    The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung X-rays; indeed, this is the basic principle behind the operation of standard X-ray sources. However, in laboratory setups where X-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce X-rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. We present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. We describe the characterisation of the observed X-ray radiation, its relation to the observed leakage current in the device, the steps taken to contai...

  10. Understanding and Improving High Voltage Vacuum Insulators for Microsecond Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Javedani, J B; Goerz, D A; Houck, T L; Lauer, E J; Speer, R D; Tully, L K; Vogtlin, G E; White, A D


    High voltage insulation is one of the main areas of pulsed power research and development, and dielectric breakdown is usually the limiting factor in attaining the highest possible performance in pulsed power devices. For many applications the delivery of pulsed power into a vacuum region is the most critical aspect of operation. The surface of an insulator exposed to vacuum can fail electrically at an applied field more than an order or magnitude below the bulk dielectric strength of the insulator. This mode of breakdown, called surface flashover, imposes serious limitations on the power flow into a vacuum region. This is especially troublesome for applications where high voltage conditioning of the insulator and electrodes is not practical and for applications where relatively long pulses, on the order of several microseconds, are required. The goal of this project is to establish a sound fundamental understanding of the mechanisms that lead to surface flashover, and then evaluate the most promising techniques to improve vacuum insulators and enable high voltage operation at stress levels near the intrinsic bulk breakdown limits of the material. The approach we proposed and followed was to develop this understanding through a combination of theoretical and computation methods coupled with experiments to validate and quantify expected behaviors. In this report we summarize our modeling and simulation efforts, theoretical studies, and experimental investigations. The computational work began by exploring the limits of commercially available codes and demonstrating methods to examine field enhancements and defect mechanisms at microscopic levels. Plasma simulations with particle codes used in conjunction with circuit models of the experimental apparatus enabled comparisons with experimental measurements. The large scale plasma (LSP) particle-in-cell (PIC) code was run on multiprocessor platforms and used to simulate expanding plasma conditions in vacuum gap regions

  11. Vacuum Window Design for High-Power Lasers

    CERN Document Server

    Shaftan, T V


    One of the problems in the high-power lasers design is in outcoupling of a powerful laser beam out of a vacuum volume into atmosphere. Usually the laser device is located inside a vacuum tank. The laser radiation is transported to the outside world through the transparent vacuum window. While considered transparent, some of the light passing through the glass is absorbed and converted to heat. For most applications, these properties are academic curiosities; however, in multi-kilowatt lasers, the heat becomes significant and can lead to a failure. The absorbed power can result in thermal stress, reduction of light transmission and, consequently, window damage. Modern optical technology has developed different types of glass (Silica, BK7, diamond, etc.) that have high thermal conductivity and damage threshold. However, for kilo- and megawatt lasers the issue still remains open. In this paper we present a solution that may relieve the heat load on the output window. We discuss advantages and issues of this part...

  12. Low-Cost, Rugged High-Vacuum System (United States)

    Sorensen, Paul; Kline-Schoder, Robert


    A need exists for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other analytical instruments such as scanning electron microscopes. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was developed based on a very small, rugged, and inexpensive-to-manufacture molecular drag pump (MDP). The MDP is enabled by a miniature, very-high-speed (200,000 rpm), rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. The key advantages of the pump are reduced cost and improved ruggedness compared to other mechanical hig-hvacuum pumps. The machining of the rotor and stators is very simple compared to that necessary to fabricate rotor and stator blades for other pump designs. Also, the symmetry of the rotor is such that dynamic balancing of the rotor will likely not be necessary. Finally, the number of parts in the unit is cut by nearly a factor of three over competing designs. The new pump forms the heart of a complete vacuum system optimized to support analytical instruments in terrestrial applications and on spacecraft and planetary landers. The MDP achieves high vacuum coupled to a ruggedized diaphragm rough pump. Instead of the relatively complicated rotor and stator blades used in turbomolecular pumps, the rotor in the MDP consists of a simple, smooth cylinder of aluminum. This will turn at approximately 200,000 rpm inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the

  13. Experimental study on the storage performance of high-vacuum-multilayer-insulation tank after sudden, catastrophic loss of insulating vacuum (United States)

    Xie, G. F.; Li, X. D.; Wang, R. S.


    High-vacuum-multilayer-insulation (HVMLI) cryogenic tank is one kind of dangerous pressure vessels. One of the worst accidents that may occur in a high-vacuum-multilayer-insulation (HVMLI) cryogenic tank is a sudden, catastrophic loss of insulating vacuum (SCLIV). The influence of SCLIV on storage performance for a HVMLI cryogenic tank is experimentally studied in this paper. A test rig was built up and experiments were conducted using LN2 as the test medium. The cryogenic tank was tested in the conditions of various combinations with different initial liquid level and number of insulation layers. Some important conclusions for storage performance with a vacuum-lost HVMLI cryogenic tank have been obtained. The experimental results show that the numbers of insulation layers and the initial liquid level have obvious effect on the storage performance after SCLIV for cryogenic tanks.

  14. High-temperature vacuum distillation separation of plutonium waste salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Los Alamos National Lab., NM (United States)


    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  15. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T


    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  16. Cavity Control and Cooling of Nanoparticles in High Vacuum (United States)

    Millen, James


    Levitated systems are a fascinating addition to the world of optically-controlled mechanical resonators. It is predicted that nanoparticles can be cooled to their c.o.m. ground state via the interaction with an optical cavity. By freeing the oscillator from clamping forces dissipation and decoherence is greatly reduced, leading to the potential to produce long-lived, macroscopically spread, mechanical quantum states, allowing tests of collapse models and any mass limit of quantum physics. Reaching the low pressures required to cavity-cool to the ground state has proved challenging. Our approach is to cavity cool a beam of nanoparticles in high vacuum. We can cool the c.o.m. motion of nanospheres, and control the rotation of nanorods, with the potential to produce cold, aligned nanostructures. Looking forward, we will utilize novel microcavities to enhance optomechanical cooling, preparing particles in a coherent beam ideally suited to ultra-high mass interferometry at 107 a.m.u.

  17. Advances in high voltage insulation and arc interruption in SF6 and vacuum

    CERN Document Server

    Maller, V N


    Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum deals with high voltage breakdown and arc extinction in sulfur hexafluoride (SF6) and high vacuum, with special emphasis on the application of these insulating media in high voltage power apparatus and devices. The design and developmental aspects of various high voltage power apparatus using SF6 and high vacuum are highlighted. This book is comprised of eight chapters and opens with a discussion on electrical discharges in SF6 and high vacuum, along with the properties and handling of SF6 gas. The following chapters fo

  18. High-Reflectivity Coatings for a Vacuum Ultraviolet Spectropolarimeter (United States)

    Narukage, Noriyuki; Kubo, Masahito; Ishikawa, Ryohko; Ishikawa, Shin-nosuke; Katsukawa, Yukio; Kobiki, Toshihiko; Giono, Gabriel; Kano, Ryouhei; Bando, Takamasa; Tsuneta, Saku; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; McCandless, Jim; Chen, Jianrong; Choi, Joanne


    Precise polarization measurements in the vacuum ultraviolet (VUV) region are expected to be a new tool for inferring the magnetic fields in the upper atmosphere of the Sun. High-reflectivity coatings are key elements to achieving high-throughput optics for precise polarization measurements. We fabricated three types of high-reflectivity coatings for a solar spectropolarimeter in the hydrogen Lyman-α (Lyα; 121.567 nm) region and evaluated their performance. The first high-reflectivity mirror coating offers a reflectivity of more than 80 % in Lyα optics. The second is a reflective narrow-band filter coating that has a peak reflectivity of 57 % in Lyα, whereas its reflectivity in the visible light range is lower than 1/10 of the peak reflectivity (˜ 5 % on average). This coating can be used to easily realize a visible light rejection system, which is indispensable for a solar telescope, while maintaining high throughput in the Lyα line. The third is a high-efficiency reflective polarizing coating that almost exclusively reflects an s-polarized beam at its Brewster angle of 68° with a reflectivity of 55 %. This coating achieves both high polarizing power and high throughput. These coatings contributed to the high-throughput solar VUV spectropolarimeter called the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP), which was launched on 3 September, 2015.

  19. Fabrication and characterization of free-standing, high-line-density transmission gratings for the vacuum UV to soft X-ray range

    NARCIS (Netherlands)

    Goh, S.J.; Bastiaens, H.J.M.; Vratzov, B.; Huang, Q.; Bijkerk, F.; Boller, K-J.


    We present state-of-the-art high resolution transmission gratings, applicable for spectroscopy in the vacuum ultraviolet (VUV) and the soft X-ray (SRX) wavelength range, fabricated with a novel process using ultraviolet based nano imprint lithography (UV-NIL). Free-standing, high-line-density gratin

  20. Ferroelectric Domain Imaging Mechanism in High-Vacuum Scanning Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    ZENG Hua-Rong; YU Han-Feng; CHU Rui-Qing; LI Guo-Rong; YIN Qing-Rui


    @@ High-vacuum scanning force microscopy of the domain structures in PMN-PT single crystals is investigated. It has been shown that under high vacuum conditions, the polarization charges are not effectively compensated for by intrinsic screening charges from the ferroelectrics. This result suggests that the electrostatic tip-sample interaction plays a great contribution to the domain imaging mechanism in PMN-PT ferroelectric single crystals under high vacuum conditions.

  1. Ultra-high vacuum compatible preparation chain for intermetallic compounds (United States)

    Bauer, A.; Benka, G.; Regnat, A.; Franz, C.; Pfleiderer, C.


    We report the development of a versatile material preparation chain for intermetallic compounds, which focuses on the realization of a high-purity growth environment. The preparation chain comprises an argon glovebox, an inductively heated horizontal cold boat furnace, an arc melting furnace, an inductively heated rod casting furnace, an optically heated floating-zone furnace, a resistively heated annealing furnace, and an inductively heated annealing furnace. The cold boat furnace and the arc melting furnace may be loaded from the glovebox by means of a load-lock permitting to synthesize compounds starting with air-sensitive elements while handling the constituents exclusively in an inert gas atmosphere. All furnaces are all-metal sealed, bakeable, and may be pumped to ultra-high vacuum. We find that the latter represents an important prerequisite for handling compounds with high vapor pressure under high-purity argon atmosphere. We illustrate the operational aspects of the preparation chain in terms of the single-crystal growth of the heavy-fermion compound CeNi2Ge2.

  2. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  3. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications (United States)

    Burri, F.; Fertl, M.; Feusi, P.; Henneck, R.; Kirch, K.; Lauss, B.; Rüttimann, P.; Schmidt-Wellenburg, P.; Schnabel, A.; Voigt, J.; Zenner, J.; Zsigmond, G.


    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  4. Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

    CERN Document Server

    Burri, F; Feusi, P; Henneck, R; Kirch, K; Lauss, B; Ruettimann, P; Schmidt-Wellenburg, P; Schnabel, A; Voigt, J; Zenner, J; Zsigmond, G


    We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum applications.

  5. High Voltage Coaxial Vacuum Gap Breakdown for Pulsed Power Liners (United States)

    Cordaro, Samuel; Bott-Suzuki, Simon; Caballero Bendixsen, Luis Sebastian


    The dynamics of Magnetized Liner Inertial Fusion (MagLIF)1, are presently under detailed study at Sandia National Laboratories. Alongside this, a comprehensive analysis of the influence of the specific liner design geometry in the MagLIF system on liner initiation is underway in the academic community. Recent work at UC San Diego utilizes a high voltage pulsed system (25kV, 150ns) to analyze the vacuum breakdown stage of liner implosion. Such experimental analyses are geared towards determining how the azimuthal symmetry of coaxial gap breakdown affect plasma initiation within the liner. The final aim of the experimental analysis is to assess to what scale symmetry remains important at high (MV) voltages. An analysis of the above will utilize plasma self-emission via optical MCP, current measurements, voltage measurements near the gap, exact location of breakdown via 2D b-dot probe triangulation, as well as measuring the evolution of the B-field along the length of the liner via b-dot array. Results will be discussed along with analytical calculations of breakdown mechanisms

  6. Highly efficient vacuum processed BHJ solar cell based on merocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln (Germany); Buerckstuemmer, Hannah; Wuerthner, Frank [Institut fuer Organische Chemie, Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg (Germany)


    Bulk heterojunction (BHJ) organic solar cells have attracted considerable interest due to their potential for large-scale, cost-effective and environmentally friendly power generation. Small molecules have been successfully introduced in solution- (SOL) as well as vacuum- (VAC) processed devices, reporting efficiencies (PCE) up to 4.4% and 5.7% respectively. For simple layer stack devices (2-3 layers) based on CuPc as electron donor and C{sub 60} as electron acceptor PCEs up to 5.0% have been achieved. Recently, we presented a direct comparison of highly efficient SOL and VAC BHJ cells based on merocyanine dyes (MC) with a similarly simple layer stack as reported in the literature. Our most efficient devices exhibited PCEs up to 4.9%. Further optimizations on the VAC processed cells led to high PCEs exceeding 6% while keeping the same simple layer stack. In addition, these cells have demonstrated exceptional performance even at lower light intensities. Due to the simple chemical variability of MC dyes, they are ideally suited for tandem solar cells. We present first attempts in this direction.

  7. Cavity cooling of free silicon nanoparticles in high vacuum. (United States)

    Asenbaum, Peter; Kuhn, Stefan; Nimmrichter, Stefan; Sezer, Ugur; Arndt, Markus


    Laser cooling has given a boost to atomic physics throughout the last 30 years, as it allows one to prepare atoms in motional states, which can only be described by quantum mechanics. Most methods rely, however, on a near-resonant and cyclic coupling between laser light and well-defined internal states, which has remained a challenge for mesoscopic particles. An external cavity may compensate for the lack of internal cycling transitions in dielectric objects and it may provide assistance in the cooling of their centre-of-mass state. Here we demonstrate cavity cooling of the transverse kinetic energy of silicon nanoparticles freely propagating in high vacuum (<10(-8) mbar). We create and launch them with longitudinal velocities down to v≤1 m s(-1) using laser-induced ablation of a pristine silicon wafer. Their interaction with the light of a high-finesse infrared cavity reduces their transverse kinetic energy by up to a factor of 30.

  8. Research for Surface Insulating Treatment Technique in High Vacuum

    Institute of Scientific and Technical Information of China (English)


    <正>Many insulation components are installed in the main vacuum chamber (5×10-6 Pa) of the 100 MeV compact cyclotron under development. The material of these components should be of low outgas rate,

  9. Highly precise and compact ultrahigh vacuum rotary feedthrough (United States)

    Aiura, Y.; Kitano, K.


    The precision and rigidity of compact ultrahigh vacuum (UHV) rotary feedthroughs were substantially improved by preparing and installing an optimal crossed roller bearing with mounting holes. Since there are mounting holes on both the outer and inner races, the bearing can be mounted directly to rotary and stationary stages without any fixing plates and housing. As a result, it is possible to increase the thickness of the bearing or the size of the rolling elements in the bearing without increasing the distance between the rotating and fixing International Conflat flanges of the UHV rotary feedthrough. Larger rolling elements enhance the rigidity of the UHV rotary feedthrough. Moreover, owing to the structure having integrated inner and outer races and mounting holes, the performance is almost entirely unaffected by the installation of the bearing, allowing for a precise optical encoder to be installed in the compact UHV rotary feedthrough. Using position feedback via a worm gear system driven by a stepper motor and a precise rotary encoder, the actual angle of the compact UHV rotary feedthrough can be controlled with extremely high precision.

  10. Calculation Method to Determine the Group Composition of Vacuum Distillate with High Content of Saturated Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Nazarova Galina


    Full Text Available Calculation method to determine the group composition of the heavy fraction of vacuum distillate with high content of saturated hydrocarbons, obtained by vacuum distillation of the residue from the West Siberian oil with subsequent hydrotreating, are given in this research. The method is built on the basis of calculation the physico-chemical characteristics and the group composition of vacuum distillate according to the fractional composition and density considering with high content of saturated hydrocarbons in the fraction. Calculation method allows to determine the content of paraffinic, naphthenic, aromatic hydrocarbons and the resins in vacuum distillate with high accuracy and can be used in refineries for rapid determination of the group composition of vacuum distillate.

  11. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma. (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu


    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  12. Efficient thermoelectric trap for metal vapours suitable for high-vacuum system (United States)

    Piwinski, Mariusz; Klosowski, Lukasz; Dziczek, Darek; Chwirot, Stanislaw


    Atomic beams are widely used in various collisional experiments. Typically, cold traps are used to prevent the investigated atoms from spreading within the vacuum chamber and contaminating the system. Usually such a trap consists of a vacuum feedthrough with metal element cooled with liquid nitrogen or dry ice on the atmosphere side and a metal trap in the vacuum. Using liquid nitrogen or dry ice is relatively inconvenient due to high costs of operation and a need of periodically refilling the reservoir of the cold medium. We present a new thermoelectric cold trap composed of water-cooled vacuum feedthrough with Peltier modules placed at the high vacuum end. The present system ensures the cold trap temperature below -20°C, low enough to efficiently catch the atoms of interest. The new cold trap was characterised and compared with typical LN2 trap.

  13. High performance thermal insulation systems (HiPTI). Vacuum insulated products (VIP). Proceedings of the international conference and workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, M.; Bertschinger, H.


    These are the proceedings of the International Conference and Workshop held at EMPA Duebendorf, Switzerland, in January 2001. The papers presented at the conference's first day included contributions on the role of high-performance insulation in energy efficiency - providing an overview of available technologies and reviewing physical aspects of heat transfer and the development of thermal insulation as well as the state of the art of glazing technologies such as high-performance and vacuum glazing. Also, vacuum-insulated products (VIP) with fumed silica, applications of VIP systems in technical building systems, nanogels, VIP packaging materials and technologies, measurement of physical properties, VIP for advanced retrofit solutions for buildings and existing and future applications for advanced low energy building are discussed. Finally, research and development concerning VIP for buildings are reported on. The workshops held on the second day covered a preliminary study on high-performance thermal insulation materials with gastight porosity, flexible pipes with high performance thermal insulation, evaluation of modern insulation systems by simulation methods as well as the development of vacuum insulation panels with a stainless steel envelope.

  14. Mechanical Reproduction in an Age of High Art

    Directory of Open Access Journals (Sweden)

    Chris Barker


    Full Text Available This paper reopens the question of the place of high art in the period identified by Walter Benjamin as the age of mechanical reproduction. Walter Benjamin, Bruno Latour, and Adam Lowe are wrong to think that mechanical reproduction has transformed the concept of art, destroying the aura of art or transmitting that aura from original to copy. The concept of art cannot be redefined by the modern change in the capacity to reproduce art unless art was initially defined primarily by its uniqueness/nonreproducibility. Photographic reproduction has caused major changes in the visual arts and in the way we consume art, but reproductive techniques have a long, continuous history that includes the production and reproduction of exact, artistic copies.

  15. Flexible Furnace Concepts for Vacuum Heat Treatment Combined with High-pressure Gas Quenching

    Institute of Scientific and Technical Information of China (English)

    Karl Ritter; Stefan Wiebach


    IN the past five years the process combination of vacuum hardening, respectively vacuum carburizing with high-pressure gas quenching was successfully introduced to the market, especially in the manufacture of gears. In the meantime furnace concepts for various applications are available to the industry. In the following report three plant varieties are introduced, which differ in process flexibility and throughput. This report also explains criteria for the selection of a furnace in view of the existing application requirements. Besides this a short introduction is given into the vacuum carburizing process and the high-pressure gas quenching technology.

  16. Very Low-Cost, Rugged, High-Vacuum System for Mass Spectrometers Project (United States)

    National Aeronautics and Space Administration — NASA, the DoD, DHS, and commercial industry have a pressing need for miniaturized, rugged, low-cost, high vacuum systems. Recent advances in sensor technology at...

  17. Development of precision numerical controlled high vacuum electron beam welding machine

    CERN Document Server

    Li Shao Lin


    The structure, main technical parameters and characteristics of the precision numerical controlled high vacuum electron beam welding machine are introduced. The design principle, some features and solutions to some key technique problems of this new type machine are described

  18. Very Low-Cost, Rugged, High-Vacuum System for Mass Spectrometers Project (United States)

    National Aeronautics and Space Administration — NASA, DoD, DHS, and commercial industry have a pressing need for miniaturized, rugged, low-cost high-vacuum systems. Recent advances in sensor technology at NASA and...

  19. Numerical Simulation of High-current Vacuum Arc in Short Gap%Numerical Simulation of High-current Vacuum Arc in Short Gap

    Institute of Scientific and Technical Information of China (English)

    XIANG Chuan; LIAO Min-fu; DONG Hua-jun; HUANG Zhi-hui; ZOU Ji-yan


    The plasma status of vacuum arc before arc current zero, has a great influence on the interruption perform- ance of the vacuum circuit breakers. In this paper, a vacuum arc model in a short gap was established based on the magnet hydrodynamic (MHD) and a common computational fluid dynamics (CFD) software was utilized to specially investigate the properties of this arc. The spatial distributions of plasma pressure, plasma density, ion axial velocity, and axial current density in front of the anode surface of vacuum arc in this case were obtained. Simulation results in- dicate that: from the cathode to the anode, both of the plasma pressure and the plasma density increase gradually, and the plasma axial velocity decreases gradually; the axial current density in front of anode has a large radial gradient, and the maximum value is still smaller than the threshold current density for the anode-spot formation, thus, the anode is still passive. The comparison between the plasma density of simulation and the CMOS images taken by the high-speed camera indicates that they are in reasonable agreement with each other and demonstrates the feasibility of the vacuum arc model.

  20. Reflections on Teaching and Learning the Arts: A Middle-Grade Classroom and a High School for the Arts (United States)

    Barilla, Rosemary; Brown, Tina Boyer


    Rosemary Barilla, a middle-grade language arts teacher, inspired by her own dedication to the arts, describes the ways she integrates the fine arts into her classroom program that is designed to teach reading and writing. Tina Boyer Brown, a founding teacher at The Chicago High School for the Arts (ChiArts®), describes the school as a place where…

  1. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M. [Lawrence Berkeley National Lab., CA (United States)


    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several {mu}s) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution.

  2. LHCb: Design of a Highly Optimised Vacuum Chamber Support for the LHCb Experiment

    CERN Multimedia

    Leduc, L; Veness, R


    The beam vacuum chamber in the LHCb experimental area passes through the centre of a large aperture dipole magnet. The vacuum chamber and all its support systems lie in the acceptance of the detector, so must be highly optimised for transparency to particles. As part of the upgrade programme for the LHCb vacuum system, the support system has been re-designed using advanced lightweight materials. In this paper we discuss the physics motivation for the modifications, the criteria for the selection of materials and tests performed to qualify them for the particular environment of a particle physics experiment. We also present the design of the re-optimised support system.

  3. Preparation of high-purity bismuth by sulphur deleadization in vacuum distillation

    Institute of Scientific and Technical Information of China (English)

    熊利芝; 何则强; 刘文萍; 麻成金; 戴永年


    The feasibility of separation of impurities in refined bismuth and sulphur deleadization with vacuum distillation was studied theoretically. Experimental studies on sulphur deleadization were carried out under vacuum.The influences of amount of sulphur, distillation temperature, vacuum degree and distillation time on deleadization were investigated and an optimal technical condition was achieved. The content of lead in refined bismuth can be decreased from 30 μg/g to 0.21 μg/g, which has reached the level of "5N" high-purity bismuth. Other impurities in refined bismuth can be also removed effectively under certain conditions.

  4. Study on the heat transfer of high-vacuum-multilayer-insulation tank after sudden, catastrophic loss of insulating vacuum (United States)

    Xie, G. F.; Li, X. D.; Wang, R. S.


    One of the worst accidents that may occur in a high-vacuum-multilayer-insulation (HVMLI) cryogenic tank is a sudden, catastrophic loss of insulating vacuum (SCLIV). There is no doubt that the gases leaking into the insulation jacket have some influence on the heat transfer process of it. However, this issue has not been thoroughly studied so far. In this paper, a test rig was built up and experiments were conducted using a SCLIV cryogenic tank and with nitrogen, helium and air as the working medium, respectively. The venting rates of the tank and temperature in the insulation jacket were measured respectively after the three different gases leaking into the jacket. A heat transfer model describing the heat transfer process of a SCLIV tank was also presented. The calculated results using this model were compared against the experimental data. It is found that the heat transfer performance of the HVMLI cryogenic tank after SCLIV is strong relevant to the type of gas leaking into the insulation jacket.

  5. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu [School of Mechatronics, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)


    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  6. Gas and RRR Distribution in High Purity Niobium EB Welded in Ultra-High Vacuum.


    Anakhov, S.; Singer, X.; W. Singer; Wen, H.


    Electron beam (EB) welding in UHV (ultra-high vacuum, 10(-5) divided by 10(-8) mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H-2, O-2, N-2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1 divided by 3...

  7. Art imitating high-energy physics

    CERN Multimedia

    Abbott, A


    Artists have been brought to CERN to learn about particle physics. In response they will each create an original piece of art which will be exhibited in "Signatures of the Invisible", a roadshow that will visit galleries across Europe next year (1/2 page).

  8. Upgrade of RHIC Vacuum Systems for High Luminosity Operation

    CERN Document Server

    Hseuh Hsiao Chaun; Smart, Loralie; Todd, Robert J; Weiss, Daniel


    With increasing ion beam intensity during recent RHIC operations, pressure rises of several decades were observed at most room temperature sections and at a few cold sections. The pressure rises are associated with electron multi-pacting, electron stimulated desorption and beam ion induced desorption and have been one of the major intensity and luminosity limiting factors for RHIC. Improvement of the warm sections has been carried out in the last few years. Extensive in-situ bakes, additional UHV pumping, anti-grazing ridges and beam tube solenoids have been implemented. Several hundred meters of NEG coated beam pipes have been installed and activated. Vacuum monitoring and interlock were enhanced to reduce premature beam aborts. Preliminary measures, such as pumping before cool down to reduce monolayer condensates, were also taken to suppress the pressure rises in the cold sections. The effectiveness of these measures in reducing the pressure rises during machine studies and during physics runs are discussed...

  9. Simulation of Electron Beam Dynamics in a Nonmagnetized High-Current Vacuum Diode

    CERN Document Server

    Anishchenko, Sergey


    The electron beam dynamics in a nonmagnetized high-current vacuum diode is analyzed for different cathode-anode gap geometries. The conditions enabling to achieve the minimal {initial} momentum spread in the electron beam are found out. A drastic rise of current density in a vacuum diode with a ring-type cathode is described. The effect is shown to be caused by electrostatic repulsion.

  10. Vacuum-integrated electrospray deposition for highly reliable polymer thin film. (United States)

    Park, Soohyung; Lee, Younjoo; Yi, Yeonjin


    Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.


    Directory of Open Access Journals (Sweden)

    A. A. Shipko


    Full Text Available Results of research of influence of high-temperature vacuum chemical heat treatment on the amount of grain structural steels are presented. The efficiency of hereditary fine-grained steel for high temperature vacuum carburizing are shown.

  12. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram


    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  13. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram


    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  14. Gas and RRR distribution in high purity Niobium EB welded in Ultra-High Vacuum (United States)

    Anakhov, S.; Singer, X.; Singer, W.; Wen, H.


    Electron beam (EB) welding in UHV (ultra-high vacuum, 10-5÷10-8 mbar) is applied in the standard fabrication of high gradient niobium superconducting radio frequency (SRF) cavities of TESLA design. The quality of EB welding is critical for cavity performance. Experimental data of gas content (H2, O2, N2) and RRR (residual resistivity ratio) measurements in niobium (Nb) welding seams are presented. EB welding in UHV conditions allow to preserve low gas content (1÷3 wt. ppm hydrogen and 5÷7 ppm oxygen and nitrogen), essential for high values of RRR — 350÷400 units. Gas content redistribution in the electron beam welded and heat affected region take place in the welding process. Correlation between gas solubility parameters, RRR and thermal conductivity are presented. Mechanisms of gas solubility in EB welding process are discussed.

  15. Vacuum encapsulated, high temperature diamond amplified cathode capsule and method for making same (United States)

    Rao, Triveni; Walsh, Josh; Gangone, Elizabeth


    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first high-temperature solder weld disposed between the diamond window element and the annular insulating spacer and a second high-temperature solder weld disposed between the annular insulating spacer and the cathode element. The cathode capsule is formed by a high temperature weld process under vacuum such that the first solder weld forms a hermetical seal between the diamond window element and the annular insulating spacer and the second solder weld forms a hermetical seal between the annular spacer and the cathode element whereby a vacuum encapsulated chamber is formed within the capsule.

  16. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    CERN Document Server

    Hubrig, Jeffrey G


    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  17. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Hubrig; G.H. Biallas


    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  18. Artfulness

    DEFF Research Database (Denmark)

    Chemi, Tatiana


    a collage of previously published materials on Artfulness, in this journal targeted teachers for dysfunctional behaviour children.......a collage of previously published materials on Artfulness, in this journal targeted teachers for dysfunctional behaviour children....

  19. Attonewton force detection using microspheres in a dual-beam optical trap in high vacuum

    CERN Document Server

    Ranjit, Gambhir; Stutz, Jordan H; Cunningham, Mark; Geraci, Andrew A


    We describe the implementation of laser-cooled silica microspheres as force sensors in a dual-beam optical dipole trap in high vacuum. Using this system we have demonstrated trap lifetimes exceeding several days, attonewton force detection capability, and wide tunability in trapping and cooling parameters. Measurements have been performed with charged and neutral beads to calibrate the sensitivity of the detector. This work establishes the suitability of dual beam optical dipole traps for precision force measurement in high vacuum with long averaging times, and enables future applications including the study of gravitational inverse square law violations at short range, Casimir forces, acceleration sensing, and quantum opto-mechanics.

  20. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries (United States)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  1. Vacuum mechatronics (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo


    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  2. Use of Polycarbonate Vacuum Vessels in High-Temperature Fusion-Plasma Research

    Energy Technology Data Exchange (ETDEWEB)

    B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak and S.A. Cohen


    Magnetic fusion energy (MFE) research requires ultrahigh-vacuum (UHV) conditions, primarily to reduce plasma contamination by impurities. For radiofrequency (RF)-heated plasmas, a great benefit may accrue from a non-conducting vacuum vessel, allowing external RF antennas which avoids the complications and cost of internal antennas and high-voltage high-current feedthroughs. In this paper we describe these and other criteria, e.g., safety, availability, design flexibility, structural integrity, access, outgassing, transparency, and fabrication techniques that led to the selection and use of 25.4-cm OD, 1.6-cm wall polycarbonate pipe as the main vacuum vessel for an MFE research device whose plasmas are expected to reach keV energies for durations exceeding 0.1 s

  3. Direct vacuum inlet system enabling highly sensitive in-situ analysis of chemical reaction products

    DEFF Research Database (Denmark)

    Trimarco, Daniel Bøndergaard; Scott, Søren Bertelsen; Pedersen, Thomas

    , a capillary maintaining a controlled flow over a pressure drop to ultra-high vacuum, and inlet and outlet channels for an inert make up gas. The use of a direct inlet enables orders of magnitude higher sensitivity than differentially pumped systems without a loss in time response for volatile products, while...

  4. A vacuum spark ion source: High charge state metal ion beams (United States)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.


    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  5. A vacuum spark ion source: High charge state metal ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, G. Yu., E-mail:; Nikolaev, A. G.; Frolova, V. P. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Oks, E. M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Science, Tomsk 634055 (Russian Federation); Tomsk State University of Control System and Radioelectronics, Tomsk 634050 (Russian Federation)


    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  6. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Philipp


    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  7. Proposal to Negotiate, without Competitive Tendering, a Contract for the Supply of Beryllium Ultra-High-Vacuum Chambers for the ALICE, ATLAS and CMS Vacuum Systems

    CERN Document Server


    This document concerns a contract to be placed, without competitive tendering, for the supply of UHV (ultra-high-vacuum) chambers for the ALICE, ATLAS and CMS vacuum systems. Following a market survey carried out among 12 firms in five Member States and two non-Member States, a call for tenders (IT-2926/LHC/LHC) was sent on 14 August 2002 to one firm, in a non-Member State. By the closing date, CERN had received one tender. The Finance Committee is invited to agree to the negotiation of a contract with BRUSH WELLMAN (US) for the supply of UHV chambers for the ALICE, ATLAS and CMS vacuum systems for an amount of 1 074 220 US dollars, (1 613 428 Swiss francs), not subject to revision. The rate of exchange used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: US - 100%.

  8. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method. (United States)

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard


    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying.

  9. ARTS

    DEFF Research Database (Denmark)

    Mahadevan, Shankar; Virk, Kashif M.; Madsen, Jan


    . We present an abstract system-level modelling and simulation framework (ARTS) which allows for cross-layer modelling and analysis covering the application layer, middleware layer, and hardware layer. ARTS allows MPSoC designers to explore and analyze the network performance under different traffic...... and load conditions, consequences of different task mappings to processors (software or hardware) including memory and power usage, and effects of RTOS selection, including scheduling, synchronization and resource allocation policies. We present the application and platform models of ARTS as well...... as their implementation in SystemC. We present the usage of the ARTS framework as seen from platform developers’ point of view, where new components may be created and integrated into the framework, and from application designers’ point of view, where existing components are used to explore possible implementations...

  10. Numerical Simulation of the Thermal Conductivity of Thermal Insulation Pipe by Vacuum and High Pressure Argon Pre-filled

    Institute of Scientific and Technical Information of China (English)


    [Abstract]By analyzing the insulation effect of argon-filled tubing and vacuum-insulated tubing before and after hydrogen permeation respectively, a conclusion can be drawn that the insulated tubing filled with high pressure argon is better than the vacuum insulated tubing considering the lifetime and heat insulation effect.

  11. Characterization of Magnetic Ni Clusters on Graphene Scaffold after High Vacuum Annealing

    CERN Document Server

    Zhang, Zhenjun; Grisafe, Benjamin; Lee, Ji Ung; Lloyd, James R


    Magnetic Ni nanoclusters were synthesized by electron beam deposition utilizing CVD graphene as a scaffold. The subsequent clusters were subjected to high vacuum (5-8 x10-7 torr) annealing between 300 and 600 0C. The chemical stability, optical and morphological changes were characterized by X-ray photoemission microscopy, Raman spectroscopy, atomic force microscopy and magnetic measurement. Under ambient exposure, nickel nanoparticles was observed to be oxidized quickly, forming antiferromagnetic nickel oxide. Here, we report that the majority of the oxidized nickel is in non-stoichiometric form and can be reduced under high vacuum at temperature as low as 300 0C. Importantly, the resulting annealed clusters are relatively stable and no further oxidation was detectable after three weeks of air exposure at room temperature.

  12. The high resolution vacuum ultraviolet absorption spectra of the group VI dihydrides and deuterides Rydberg series

    CERN Document Server

    Mayhew, C A


    The high resolution absorption spectra of the important group VI dihydrides and deuterides in the vacuum ultraviolet below, and up to, their first ionisation potentials are presented. These spectra were recorded using synchrotron radiation as the background light source in conjunction with a 3m normal incidence vacuum spectrograph, equipped with holographic gratings. Due to the nature of the originating orbital for the majority of optical transitions in the VUV well developed Rydberg series are observed. One particular series can be followed up to fairly high n, so that accurate values of the first ionisation potential are determined. The identifications of the Rydberg series are made from arguments relating to their oscillator strengths, quantum defects, symmetries and from comparisons with the spectra of the corresponding united atoms i.e. the inert gases. Examples of the symmetry assignments for Rydberg series from rotational band contour analyses of the lower Rydberg members for the H sub 2 S, H sub 2 Se ...

  13. Project W-320 high vacuum 241-AY-102 annulus ventilation system operability test report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, J.W.


    This report documents the test results of OTP-320-001, Tank 241-AY-102 Annulus Ventilation System Testing. Included in the appendices are: (1) Supporting documentation prepared to demonstrate the structural integrity of the tank at high annulus vacuum (<20 INWG), and (2) a report that identifies potential cross connections between the primary and annulus ventilation systems. These cross connections were verified to be eliminated prior to the start of testing.

  14. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics


    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf


    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging fo...

  15. Vacuum Infusion Molding Process Part 1:VIMP Based on a High-Permeable Medium

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying-dan; WANG Ji-hui; YANG Zui; TAN Hua


    The visualization experiments were carried out to investigate the permeability of the high-permeable medium (HPM) and the roles of the peel ply and the HPM in the mold filling.The influence of process parameters on mold filling is discussed.Furthermore,the whole vacuum infusion molding process (VIMP) procedure is introduced in detail taking the manufacture of a model boat for example.

  16. Characterization of magnetic Ni clusters on graphene scaffold after high vacuum annealing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhenjun, E-mail:; Matsubayashi, Akitomo, E-mail:; Grisafe, Benjamin, E-mail:; Lee, Ji Ung, E-mail:; Lloyd, James R., E-mail:


    Magnetic Ni nanoclusters were synthesized by electron beam deposition utilizing CVD graphene as a scaffold. The subsequent clusters were subjected to high vacuum (5−8 x10{sup −7} torr) annealing between 300 and 600 °C. The chemical stability, optical and morphological changes were characterized by X-ray photoemission microscopy, Raman spectroscopy, atomic force microscopy and magnetic measurement. Under ambient exposure, nickel nanoparticles were observed to be oxidized quickly, forming antiferromagnetic nickel oxide. Here, we report that the majority of the oxidized nickel is in non-stoichiometric form and can be reduced under high vacuum at temperature as low as 300 °C. Importantly, the resulting annealed clusters were relatively stable and no further oxidation was detectable after three weeks of air exposure at room temperature. - Highlights: • Random oriented nickel clusters were assembled on monolayer graphene scaffold. • Nickel oxide shell was effectively reduced at moderate temperature. • Coercivity of nickel clusters are greatly improved after high vacuum annealing.

  17. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    CERN Document Server

    Karbstein, Felix


    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at a x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experim...

  18. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers (United States)

    Karbstein, Felix; Sundqvist, Chantal


    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  19. Monte Carlo simulations of ultra high vacuum and synchrotron radiation for particle accelerators

    CERN Document Server

    AUTHOR|(CDS)2082330; Leonid, Rivkin

    With preparation of Hi-Lumi LHC fully underway, and the FCC machines under study, accelerators will reach unprecedented energies and along with it very large amount of synchrotron radiation (SR). This will desorb photoelectrons and molecules from accelerator walls, which contribute to electron cloud buildup and increase the residual pressure - both effects reducing the beam lifetime. In current accelerators these two effects are among the principal limiting factors, therefore precise calculation of synchrotron radiation and pressure properties are very important, desirably in the early design phase. This PhD project shows the modernization and a major upgrade of two codes, Molflow and Synrad, originally written by R. Kersevan in the 1990s, which are based on the test-particle Monte Carlo method and allow ultra-high vacuum and synchrotron radiation calculations. The new versions contain new physics, and are built as an all-in-one package - available to the public. Existing vacuum calculation methods are overvi...

  20. Optimization of Multilayer Laminated Film and Absorbent of Vacuum Insulation Panel for Use at High Temperature (United States)

    Araki, Kuninari; Echigoya, Wataru; Tsuruga, Toshimitsu; Kamoto, Daigorou; Matsuoka, Shin-Ichi

    For the energy saving regulation and larger capacity, Vacuum Insulation Panel (VIP) has been used in refrigerators with urethane foam in recent years. VIP for low temperature is constructed by laminated plastic film, using heat welding of each neighboring part for keeping vacuum, so that the performance decrement is very large under high temperature. But recently high efficiency insulation material is desired for high temperature water holding devices (automatic vending machine, heat pump water heater, electric hot-water pot water, etc.), and we especially focused on cost and ability of the laminated plastic film and absorbent for high temperature VIP. We measured the heatproof temperature of plastic films and checked the amount of water vapor and out coming gas on temperature-programmed adsorption in absorbent. These results suggest the suitable laminated film and absorbent system for VIP use at high temperature, and the long-term reliability was evaluated by measuring thermal conductivity of high temperature. As a result it was found that high-retort pouch of CPP (cast polypropylene film) and adding of aluminum coating are the most suitable materials for use in the welded layers of high-temperature VIPs (105°C).

  1. Development of fast heating electron beam annealing setup for ultra high vacuum chamber (United States)

    Das, Sadhan Chandra; Majumdar, Abhijit; Katiyal, Sumant; Shripathi, T.; Hippler, R.


    We report the design and development of a simple, electrically low powered and fast heating versatile electron beam annealing setup (up to 1000 °C) working with ultra high vacuum (UHV) chamber for annealing thin films and multilayer structures. The important features of the system are constant temperature control in UHV conditions for the temperature range from room temperature to 1000 °C with sufficient power of 330 W, at constant vacuum during annealing treatment. It takes approximately 6 min to reach 1000 °C from room temperature (˜10-6 mbar) and 45 min to cool down without any extra cooling. The annealing setup consists of a UHV chamber, sample holder, heating arrangement mounted on suitable UHV electrical feed-through and electronic control and feedback systems to control the temperature within ±1 °C of set value. The outside of the vacuum chamber is cooled by cold air of 20 °C of air conditioning machine used for the laboratory, so that chamber temperature does not go beyond 50 °C when target temperature is maximum. The probability of surface oxidation or surface contamination during annealing is examined by means of x-ray photoelectron spectroscopy of virgin Cu sample annealed at 1000 °C.

  2. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    CERN Document Server

    Qi Nian Sheng; Prasad, R R; Krishnan, M S; Anders, A; Kwan, J; Brown, I


    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, approx 0.5 A current beams, approx 20 mu s pulse widths and approx 10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modifie...

  3. Investigation of vacuum properties of CuCrZr alloy for high-heat-load absorber (United States)

    Shueh, C.; Chan, C. K.; Chang, C. C.; Sheng, I. C.


    The Taiwan Photon Source (TPS) uses high-heat-load (HHL) absorbers to protect downstream ultrahigh-vacuum chambers from overheating. In this work, we propose to use the CuCrZr alloy (ASTM C18150) for the HHL absorber body and the ConFlat flanges. We use the throughput method to measure the thermal outgassing rate and a helium leak detector to verify the vacuum seal between the CuCrZr alloy and stainless-steel flanges. The measured outgassing rate of the CuCrZr alloy was 5.8×10-10 Pa m/s after 72 h of pumping and decreased to 2.0 × 10-10 Pa m/s after 100 h of pumping. The leak rate through the vacuum seal between a CuCrZr flange and a stainless-steel flange was less than 1 × 10-10 Pa m3/s even after mounting and unmounting the flanges ten times and baking them at 250 °C. These results indicate that CuCrZr alloy is suitable for integrating HHL components with ConFlat CuCrZr flanges for the absorption of the synchrotron radiation generated by the TPS.

  4. Development of High Power Electron Beam Measuring and Analyzing System for Microwave Vacuum Electron Devices (United States)

    Ruan, C. J.; Wu, X. L.; Li, Q. S.; Li, C. S.

    The measurement and analysis of high power electron beam during its formation and transmission are the basic scientific problems and key techniques for the development of high performance microwave vacuum electron devices, which are widely used in the fields of military weapon, microwave system and scientific instruments. In this paper, the dynamic parameters measurement and analysis system being built in Institute of Electronics, Chinese Academy of Sciences (IECAS) recently are introduced. The instrument are designed to determine the cross-section, the current density, and the energy resolution of the high power electron beam during its formation and transmission process, which are available both for the electron gun and the electron optics system respectively. Then the three dimension trajectory images of the electron beam can be rebuilt and display with computer controlled data acquisition and processing system easily. Thus, much more complicated structures are considered and solved completely to achieve its detection and analysis, such as big chamber with 10-6 Pa high vacuum system, the controlled detector movement system in axis direction with distance of 600 mm inside the vacuum chamber, the electron beam energy analysis system with high resolution of 0.5%, and the electron beam cross-section and density detector using the YAG: Ce crystal and CCD imaging system et al. At present, the key parts of the instrument have been finished, the cross-section experiment of the electron beam have been performed successfully. Hereafter, the instrument will be used to measure and analyze the electron beam with the electron gun and electron optics system for the single beam and multiple beam klystron, gyrotron, sheet beam device, and traveling wave tube etc. thoroughly.

  5. Ultra-high vacuum compatible induction-heated rod casting furnace

    CERN Document Server

    Bauer, Andreas; Münzer, Wolfgang; Regnat, Alexander; Benka, Georg; Meven, Martin; Pedersen, Björn; Pfleiderer, Christian


    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bar. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  6. Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers. (United States)

    Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G


    Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.

  7. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.


    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  8. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.;


    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...... is capable of loading 90 of a magneto-optical trap (MOT) in less than 7 s while maintaining a low vacuum pressure of 10 -11 Torr. The transverse velocity components of the atomic beam are measured to be within typical capture velocities of a rubidium MOT. Finally, we show that the atomic beam can be turned...

  9. O-Ring sealing arrangements for ultra-high vacuum systems (United States)

    Kim, Chang-Kyo; Flaherty, Robert


    An all metal reusable O-ring sealing arrangement for sealing two concentric tubes in an ultra-high vacuum system. An O-ring of a heat recoverable alloy such as Nitinol is concentrically positioned between protruding sealing rings of the concentric tubes. The O-ring is installed between the tubes while in a stressed martensitic state and is made to undergo a thermally induced transformation to an austenitic state. During the transformation the O-ring expands outwardly and contracts inwardly toward a previously sized austenitic configuration, thereby sealing against the protruding sealing rings of the concentric tubes.

  10. High Quality SiGe Layer Deposited by a New Ultrahigh Vacuum Chemical Vapor Deposition System

    Institute of Scientific and Technical Information of China (English)


    An ultrahigh vacuum chemical vapor deposition (UHV/CVD) system is developed and the details of its construction and operation are reported. Using high purity SiH4 and GeH4 reactant gases,the Si0.82Ge0.18 layer is deposited at 550℃. With the measurements by double crystal X-ray diffraction (DCXRD), transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS) techniques, it is shown that the crystalline quality of the SiGe layer is good,and the underlying SiGe/Si heterointerface is sharply defined.

  11. Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Takahiro; Yagyu, Daisuke; Saito, Shigeru, E-mail:; Ohno, Yasunori; Itoh, Masatoshi; Uhara, Yoshio; Miura, Tsutomu [Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Nakano, Hirofumi [Ikazuti Ltd., 3-28-10 Kikunodai, Chofu, Tokyo 182-0007 (Japan)


    A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge.

  12. Preparation methodology and possible treatments for improved ceramics for high voltage vacuum applications

    CERN Document Server

    Tan, J


    The flashover characteristics of an insulator bridged high voltage vacuum gap can play an important role in the overall performance of a high voltage device, for example in the extreme environments of high energy particle accelerators. The detailed preparation of the insulators is, at present, governed by the commercial production methods and by standard bulk cleaning processes, which for a particular application may be far from optimum. The influence of the mechanical preparation, thermal history and particular cleaning technique have been investigated for commercially available alumina samples, with measurement of surface characteristics by scanning electron microscopy and laser diffraction, measurement of the secondary electron emission curve and analysis of the high voltage performance with the possibility of applied fields up to 200kV/cm. The results of the different measurements are discussed in the overall context of the problems encountered in the full sized high voltage devices, and suggestions are m...

  13. Art Animates: Ideas Inspired by a University-Sponsored Summer Arts Academy for Middle and High School Students (United States)

    Danker, Stephanie; French, Kelley


    Art can provide a vehicle for animating learning. Teachers bring ideas to life through curriculum, while artists realize their ideas through images, often translating between forms, media and spaces. This paper describes the context, content and format of a residential Summer Arts Academy for gifted and talented middle and high school students,…

  14. Extension of the shelf life of prawns (Penaeus japonicus) by vacuum packaging and high-pressure treatment. (United States)

    López-Caballero, M E; Pérez-Mateos, M; Borderías, J A; Montero, P


    The present study has investigated the application of high pressures (200 and 400 MPa) in chilled prawn tails, both conventionally stored (air) and vacuum packaged. Vacuum packaging and high-pressure treatment did extend the shelf life of the prawn samples, although it did affect muscle color very slightly, giving it a whiter appearance. The viable shelf life of 1 week for the air-stored samples was extended to 21 days in the vacuum-packed samples, 28 days in the samples treated at 200 MPa, and 35 days in the samples pressurized at 400 MPa. Vacuum packaging checked the onset of blackening, whereas high-pressure treatment aggravated the problem. From a microbiological point of view, batches conventionally stored reached about 6 log CFU/g or even higher at 14 days. Similar figures were reached in total number of bacteria in vacuum-packed samples and in pressurized at 200-MPa samples at 21 days. When samples were pressurized at 400 MPa, total numbers of bacteria were below 5.5 log CFU/g at 35 days of storage. Consequently, a combination of vacuum packaging and high-pressure treatment would appear to be beneficial in prolonging freshness and preventing spotting.

  15. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions (United States)

    Wang, Haoran; Wang, Zhenxing; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan


    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E-3, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  16. Eucentric four-axis ultrahigh vacuum goniometer for reflection high-energy electron diffraction applications (United States)

    Schmehl, A.; Schulz, R. R.; Mannhart, J.


    The design and performance of a four-axis low-profile eucentric UHV goniometer for in situ reflection high-energy electron diffraction (RHEED) studies during film deposition is reported. The design provides one translational and three rotational degrees of freedom that are fully independent. Although developed to facilitate high-pressure RHEED during the growth of oxide thin films by pulsed laser deposition, this goniometer design is applicable to other UHV techniques including molecular beam epitaxy. The goniometer requires only a single DN 100 CF flange (6in. o.d., 100mm i.d.), making it suitable for small deposition systems, too. Samples, attached to a resistively heated holder, can be easily transferred on and off of the goniometer without breaking vacuum. The holder accommodates samples up to 10mm×10mm in size and allows them to be heated to 900°C in pure oxygen while being attached to the goniometer. Full eucentric motion of the hot sample is possible with a typical axis precision of mechanism is located in air, allowing the use of standard materials and lubricants, substantially reducing the in-vacuum mechanics, and increasing the precision, reliability, and robustness of the system.

  17. An Efficient, Movable Single-Particle Detector for Use in Cryogenic Ultra-High Vacuum Environments

    CERN Document Server

    Spruck, Kaija; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude


    A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut f\\"ur Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to $\\sim$ 10 K and consist fully of ultra-high vacuum (UHV) compatible, high-temperature bakeable and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring (CSR). We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.

  18. High Temperature Vacuum Annealing and Hydrogenation Modification of Exfoliated Graphite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Xiaobing Li


    Full Text Available Highly active defect sites on the edges of graphene automatically capture oxygen from air to form various oxygen groups. A two-step procedure to remove various oxygen functional groups from the defect sites of exfoliated graphene nanoplatelets (GNPs has been developed to reduce the atomic oxygen concentration from 9.5% to 4.8%. This two-step approach involves high temperature vacuum annealing followed by hydrogenation to protect the reduced edge carbon atoms from recombining with the atmospheric oxygen. The reduced GNPs exhibit decreased surface resistance and graphitic potential-dependent capacitance characteristics compared to the complex potential-dependent capacitance characteristics exhibited by the unreduced GNPs as a result of the removal of the oxygen functional groups present primarily at the edges. These reduced GNPs also exhibit high electrochemical cyclic stability for electrochemical energy storage applications.

  19. Effects of water vapor in high vacuum chamber on the properties of HfO2 films

    Institute of Scientific and Technical Information of China (English)

    Bo Ling; Hongbo He; Jianda Shao


    The influence of water vapor content in high vacuum chamber during the coating process on physical properties of HfO2 films was investigated. Coatings were deposited on BK7 substrates by electron beam evaporation and photoelectric maximum control method. An in situ residual gas analyzer (RGA) was used to monitor the residual gas composition in the vacuum chamber. The optical properties, microstructure,absorption and laser-induced damage threshold (LIDT) of the samples were characterized by Lambda 900 spectrophotometer, X-ray diffraction (XRD), surface thermal lensing (STL) technique and 1064-nm Qswitched pulsed laser at a pulse duration of 12 ns respectively. It was found that a cold trap is an effective equipment to suppress water vapor in the vacuum chamber during the pumping process, and the coatings deposited in the vacuum atmosphere with relatively low water vapor composition show higher refractive index and smaller grain size. Meanwhile, the higher LIDT value is corresponding to lower absorbance.

  20. Vacuum interrupter, high reliability component of distribution switches, circuit breakers and contactors

    Institute of Scientific and Technical Information of China (English)

    SLADE Paul G.; LI Wang-pei; MAYO Stephen; SMITH R.Kirkland; TAYLOR Erik D.


    The use of vacuum interrupters (VIs) as the current interruption component for switches, circuit breakers, reclosers and contactors operating at distribution voltages has escalated since their introduction in the mid-1950's. This electrical product has developed a dominating position for switching and protecting distribution circuits. VIs are even being introduced into switching products operating at transmission voltages. Among the reasons for the VI's popularity are its compactness, its range of application, its low cost, its superb electrical and mechanical life and its ease of application. Its major advantage is its well-established reliability. In this paper we show how this reliability has been achieved by design, by mechanical life testing and by electrical performance testing. We introduce the "sealed for life" concept for the VI's integrity. We discuss this in terms of what is meant by a practical leak rate for VIs with a life of over 30 years. We show that a simple high voltage withstand test is an easy and effective method for monitoring the long-term vacuum integrity. Finally we evaluate the need for routine inspection of this electrical product when it is used in adverse ambient environments.

  1. Isolated Bacterial Spores at High-velocity Survive Surface Impacts in Vacuum (United States)

    Austin, Daniel; Barney, Brandon

    We present experiments in which bacterial spores were found to survive being accelerated in vacuum to velocities in the range 30-120 m/s and impacted on a dense target. In these experiments, spores of Bacillus subtilis spores were charged using electrospray at atmospheric pressure, dried, and then introduced into high vacuum. Through choice of skimmers and beam tubes, different velocity ranges were achieved. An image-charge detector observed the charged spores, providing total charge and velocity. The spores then impacted a glass target within a collection vessel. After the experiment, the collection vessel contents were extracted and cultured. Several positive and negative controls were used, including the use of antibiotic-resistant spores and antibiotic-containing (rifampicin) agar for culturing. These impact velocities are of particular interest for possible transport of bacterial spores from Mars to Phobos, and may have implications for planetary protection in a Phobos sample return mission. In addition, bacteria may reach similar velocities during a spacecraft crash (e.g., within components, or from spacecraft to surface materials during impact, etc.), raising concerns about forward contamination. The velocities of interest to transport of life between planets (panspermia) are somewhat higher, but these results complement shock-based experiments and contribute to the general discussion of impact survivability of organisms.

  2. Vacuum stability and supersymmetry at high scales with two Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Buchmueller, W.; Voigt, A.; Weiglein, G. [DESY Hamburg (Germany); Bruemmer, F. [Montpellier Univ. (France). Lab. Univers et Particules de Montpellier


    We investigate the stability of the electroweak vacuum for two-Higgs doublet models with a supersymmetric UV completion. The supersymmetry breaking scale is taken to be of the order of the grand unification scale. We first study the case where all superpartners decouple at this scale. We show that contrary to the Standard Model with one Higgs doublet, matching to the supersymmetric UV completion is possible if the low-scale model contains two Higgs doublets. In this case vacuum stability and experimental constraints point towards low values of tanβhigh scales when requiring a 125 GeV Higgs. Light neutral and charged higgsinos therefore emerge as a promising signature of a supersymmetric UV completion of the Standard Model at the grand unification scale.

  3. Matrix-assisted ionization vacuum for high-resolution Fourier transform ion cyclotron resonance mass spectrometers. (United States)

    Wang, Beixi; Tisdale, Evgenia; Trimpin, Sarah; Wilkins, Charles L


    Matrix-assisted ionization vacuum (MAIV) produces charge states similar to electrospray ionization (ESI) from the solid state without requiring high voltage or added heat. MAIV differs from matrix-assisted laser desorption/ionization (MALDI) in that no laser is needed and abundant multiply charged ions are produced from molecules having multiple basic sites such as proteins. Here we introduce simple modifications to the commercial vacuum MALDI and ESI sources of a 9.4 T Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer to perform MAIV from both intermediate and atmospheric pressure. The multiply charged ions are shown for the proteins bovine insulin, ubiquitin, and lysozyme using 3-nitrobenzonitrile as matrix. These are the first examples of MAIV operating at pressures as low as 10(-6) mbar in an FT-ICR mass spectrometer source, and the expected mass resolving power of 100000 to 400000 is achieved. Identical protein charge states are observed with and without laser ablation indicating minimal, if any, role of photochemical ionization for the compounds studied.

  4. Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, Vera; Kronenberg, Nils M.; Lenze, Martin R.; Graf, Steven M.; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln, Luxemburger Strasse 116, 50939 Koeln (Germany); Buerckstuemmer, Hannah; Tulyakova, Elena V.; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany)


    In order to be competitive on the energy market, organic solar cells with higher efficiency are needed. To date, polymer solar cells have retained the lead with efficiencies of up to 8%. However, research on small molecule solar cells has been catching up throughout recent years and is showing similar efficiencies, however, only for more sophisticated multilayer device configurations. In this work, a simple, highly efficient, vacuum-processed small molecule solar cell based on merocyanine dyes - traditional colorants that can easily be mass-produced and purified - is presented. In the past, merocyanines have been successfully introduced in solution-processed as well as vacuum-processed devices, demonstrating efficiencies up to 4.9%. Here, further optimization of devices is achieved while keeping the same simple layer stack, ultimately leading to efficiencies beyond the 6% mark. In addition, physical properties such as the charge carrier transport and the cell performance under various light intensities are addressed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. [Design and study of a high resolution vacuum ultraviolet imaging spectrometer carried by satellite]. (United States)

    Yu, Lei; Lin, Guan-yu; Qu, Yi; Wang, Shu-rong; Wang, Long-qi


    A high resolution vacuum ultraviolet imaging spectrometer prototype carried by satellite applied to the atmosphere detection of particles distribution in 115-300 nm was developed for remote sensing. First, based on the analysis of advanced loads, the optical system including an off-axis parabolic mirror as the telescope and Czerny-Turner structure as the imaging spectrometer was chosen Secondly, the 2-D photon counting detector with MCP was adopted for the characteristic that the radiation is weak in vacuum ultraviolet waveband. Then the geometric method and 1st order differential calculation were introduced to improve the disadvantages that aberrations in the traditional structure can not be corrected homogeneously to achieve perfect broadband imaging based on the aberration theory. At last, an advanced example was designed. The simulation and calculation of results demonstrate that the modulation transfer function (MTF) of total field of view is more than 0.6 in the broadband, and the spectral resolution is 1.23 nm. The structure is convenient and predominant. It proves that the design is feasible.

  6. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. (United States)

    Subramanyam, Kondeti; Subramanyam, Koona; Sailaja, K V; Srinivasulu, M; Lakshmidevi, K


    A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana.

  7. Ultra-high vacuum seals operating under pressure and at 1.8 K

    CERN Document Server

    Brunet, J C


    The Large Hadron Collider (LHC) project will be the next major high energy physics facility at CERN. Superconducting magnets operating at a magnetic field of 8.4 Tesla in a superfluid helium bath at 1.8 K are required to guide the high energy beams of protons on their trajectory. As part of the magnet qualification tests, magnetic measurements are made using a special device where demountable seals are required. The seals must be leak tight to vacuum and must be able to resist for short periods to pressure bursts up to 20 bar during resistive transitions (quench). Two types of seals have been qualified. Maximum leak rates were in the range 6.10-10 to 1.10-9 mbar.l.s-1, in the worst conditions (20 bar, superfluid helium at 1.8 K).

  8. Search for $Z'$, vacuum (in)stability and hints of high-energy structures

    CERN Document Server

    Accomando, Elena; Rose, Luigi Delle; Fiaschi, Juri; Marzo, Carlo; Moretti, Stefano


    We study the high-energy behaviour of a class of anomaly-free abelian extensions of the Standard Model. We focus on the interplay among the phenomenological characterisation of the model and the use of precise renormalisation group methods. Using as boundary conditions regions of the parameter space at the verge of current LHC probe, interesting unification patterns emerge linked to thresholds belonging to a SO(10) grand unification theory (GUT). We stress how the evolution of the mixing between the two abelian factors may provide a valuable tool to address the candidate high-energy embedding. The emerging unification scenarios are then challenged to be perturbative and to allow for a stable vacuum.

  9. Silicon epitaxy using tetrasilane at low temperatures in ultra-high vacuum chemical vapor deposition (United States)

    Hazbun, Ramsey; Hart, John; Hickey, Ryan; Ghosh, Ayana; Fernando, Nalin; Zollner, Stefan; Adam, Thomas N.; Kolodzey, James


    The deposition of silicon using tetrasilane as a vapor precursor is described for an ultra-high vacuum chemical vapor deposition tool. The growth rates and morphology of the Si epitaxial layers over a range of temperatures and pressures are presented. The layers were characterized using transmission electron microscopy, x-ray diffraction, spectroscopic ellipsometry, Atomic Force Microscopy, and secondary ion mass spectrometry. Based on this characterization, high quality single crystal silicon epitaxy was observed. Tetrasilane was found to produce higher growth rates relative to lower order silanes, with the ability to deposit crystalline Si at low temperatures (T=400 °C), with significant amorphous growth and reactivity measured as low as 325 °C, indicating the suitability of tetrasilane for low temperature chemical vapor deposition such as for SiGeSn alloys.

  10. Search for Z′, vacuum (instability and hints of high-energy structures

    Directory of Open Access Journals (Sweden)

    Accomando Elena


    Full Text Available We study the high-energy behaviour of a class of anomaly-free abelian extensions of the Standard Model. We focus on the interplay among the phenomenological characterisation of the model and the use of precise renormalisation group methods. Using as boundary conditions regions of the parameter space at the verge of current LHC probe, interesting unification patterns emerge linked to thresholds belonging to a SO(10 grand unification theory (GUT. We stress how the evolution of the mixing between the two abelian factors may provide a valuable tool to address the candidate high-energy embedding. The emerging unification scenarios are then challenged to be perturbative and to allow for a stable vacuum.

  11. 大功率微波真空电子器件的应用%Application of high power microwave vacuum electron devices

    Institute of Scientific and Technical Information of China (English)

    丁耀根; 刘濮鲲; 张兆传; 王勇; 沈斌


    大功率微波真空电子器件具有工作频率高、峰值和平均功率大等特点,已广泛应用于微波电子系统,在科学研究和国民经济方面的应用越来越广泛.在科学研究方面,它主要应用在高能粒子加速器和可控热核聚变加热装置等大型科学装置上,主要包括高峰值功率速调管、连续波和长脉冲高功率速调管和高功率回旋管等器件.在国民经济方面,则主要应用于天气雷达、导航雷达、医用和工业辐照加速器、电视广播和通信等微波电子系统,主要包括大功率脉冲和连续波速调管、分布作用速调管、行波管、磁控管和感应输出管等.为此,介绍了这些微波真空电子器件的技术现状、共性技术问题和发展趋势.%High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication, countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron, and high power gy-rotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube(TWT), magnetron and induced output tube(IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper.

  12. Teaching Critical Thinking through Art History in High School. (United States)

    Garoian, Charles R.


    Explains how the study of art history encourages the development of critical thinking in adolescents by comparing Bloom's Taxonomy of Educational Objectives with Feldman's stages of art criticism. Offers curriculum-based recommendations for using art history and criticism to encourage critical thinking. (LS)

  13. Use of space ultra-vacuum for high quality semiconductor thin film growth (United States)

    Ignatiev, A.; Sterling, M.; Sega, R. M.


    The utilization of space for materials processing is being expanded through a unique concept of epitaxial thin film growth in the ultra-vacuum of low earth orbit (LEO). This condition can be created in the wake of an orbiting space vehicle; and assuming that the vehicle itself does not pertub the environment, vacuum levels of better than 10 exp -14 torr can be attained. This vacuum environment has the capacity of greatly enhancing epitaxial thin film growth and will be the focus of experiments conducted aboard the Wake Shield Facility (WSF) currently being developed by the Space Vacuum Epitaxy Center (SVEC), Industry, and NASA.

  14. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.


    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  15. New perspectives in vacuum high voltage insulation. I. The transition to field emission

    CERN Document Server

    Diamond, W T


    Vacuum high-voltage insulation has been investigated for many years. Typically, electrical breakdown occurs between two broad-area electrodes at electric fields 100-1000 times lower than the breakdown field (about 5000 MV/m) between a well-prepared point cathode and a broad-area anode. Explanations of the large differences remain unsatisfactory, usually evoking field emission from small projections on the cathode that are subject to higher peak fields. The field emission then produces secondary effects that lead to breakdown. This article provides a significant resolution to this long standing problem. Field emission is not present at all fields, but typically starts after some process occurs at the cathode surface. Three effects have been identified that produce the transition to field emission: work function changes; mechanical changes produced by the strong electrical forces on the electrode surfaces; and gas desorption from the anode with sufficient density to support an avalanche discharge. Material adso...

  16. The jointing stress analysis of one-shot seal-off high-voltage vacuum interrupters

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhizhong; Zou Jiyan; Cong Jiyuan; Wen Huabin; Sun Hui


    The free shrinkage of ceramic or metal is restricted due to solidification of the solder. Hence the shrinkage stress arises and the jointing strength is reduced during the brazing of high-voltage vacuum interrupters ( HVVIs ) . The solder bound contour was gained by solved energy bound equation. The finite element model of weld beads was established with Surface Evolver software. Then the stress in two different cooling techniques ( natural cooling and force cooling) was calculated with ANSYS. Comparing the stress, a better cooling technique was selected for HVVIs. Its cooling time is shortened by 3 hours while the jointing stress doesn' t increase and the tensile strength of ceramic to metal seal is not decreased. The stress-rupture tests have validated the calculated results. More important, a method is found, by which the brazing technique could be improved in advance instead of blind experiments.

  17. Highly reflective and adhesive surface of aluminized polyvinyl chloride film by vacuum evaporation (United States)

    Li, Denian; Tai, Qile; Feng, Qiang; Li, Qi; Xu, Xizhe; Li, Hairong; Huang, Jing; Dong, Lijie; Xie, Haian; Xiong, Chuanxi


    Aluminized poly(vinyl chloride) (PVC) film with high reflectivity and strong adhesion was facilely fabricated by vacuum evaporation. The technical study revealed that both alkali-pretreatment of the PVC matrix and thermal annealing after aluminization could greatly promote the peeling adhesion force of this metal/polymer composite by producing interfacial active chemical groups and removing the inner stress, respectively. Reflectivity test and AFM study indicated that the reflecting capacitance of the aluminum coating was closely related to the surface roughness, which can be easily controlled by modulating deposition of aluminum. Moreover, the formation of aluminum layer follows an island model process, and a continuous and smooth coating with highest reflectivity and lowest surface resistance was achieved at deposition time of 60 s. We anticipate that the cost-effective metallized PVC film by this strategy may find extensive applications in light harvesting, solar energy, and flexible mirrors, among others.

  18. Influence of rapid thermal vacuum annealing and high temperature treatment on the properties of PSG films

    Energy Technology Data Exchange (ETDEWEB)

    Beschkov, G [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Science, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria); Bakardjieva, V; Alexieva, Z [Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Science, 72 Tsarigradsko Chaussee, 1784 Sofia (Bulgaria)], E-mail:


    The effect is presented of rapid thermal annealing (RTA) in vacuum and thermal annealing in water vapor at 850 deg. C on the properties of phosphosilicate glass (PSG) films deposited in PECVD and {mu}PCVD reactors. The films were characterized by etch rates and XPS and AES analyses. The RTA was carried out at 800 - 1400 deg. C at annealing times varying from 15 to 180 sec. The RTA caused a significant decrease in the etch rate, which is indicative of structural changes. The XPS and AES analyses showed that the PECVD PSG films contain excess Si due to the lower oxidation activity of N{sub 2}O. The excess Si can be oxidized in water vapor at high temperatures. The excess Si leads to a decrease in the etching rate of the PECVD PSG layers as compared to that of the {mu}PCVD films.

  19. Influence of rapid thermal vacuum annealing and high temperature treatment on the properties of PSG films (United States)

    Beschkov, G.; Bakardjieva, V.; Alexieva, Z.


    The effect is presented of rapid thermal annealing (RTA) in vacuum and thermal annealing in water vapor at 850 °C on the properties of phosphosilicate glass (PSG) films deposited in PECVD and μPCVD reactors. The films were characterized by etch rates and XPS and AES analyses. The RTA was carried out at 800 - 1400 °C at annealing times varying from 15 to 180 sec. The RTA caused a significant decrease in the etch rate, which is indicative of structural changes. The XPS and AES analyses showed that the PECVD PSG films contain excess Si due to the lower oxidation activity of N2O. The excess Si can be oxidized in water vapor at high temperatures. The excess Si leads to a decrease in the etching rate of the PECVD PSG layers as compared to that of the μPCVD films.

  20. Fluorescence resonance energy transfer of gas-phase ions under ultra high vacuum and ambient conditions. (United States)

    Frankevich, Vladimir; Chagovets, Vitaliy; Widjaja, Fanny; Barylyuk, Konstantin; Yang, Zhiyi; Zenobi, Renato


    We report evidence for fluorescence resonance energy transfer (FRET) of gas-phase ions under ultra high vacuum conditions (10(-9) mbar) inside a mass spectrometer as well as under ambient conditions inside an electrospray plume. Two different FRET pairs based on carboxyrhodamine 6G (donor) and ATTO590 or Bodipy TR (acceptor) dyes were examined and their gas-phase optical properties were studied. Our measurements indicate a different behavior for the two FRET pairs, which can be attributed to their different conformations in the gas phase. Upon desolvation via electrospray ionization, one of the FRET pairs undergoes a conformational change that leads to disappearance of FRET. This study shows the promise of FRET to obtain a direct correlation between solution and gas-phase structures.

  1. High power spectrometer for the characterization of photovoltaic cells in a controlled atmosphere or vacuum

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, M.


    single monochromator grating. The photovoltaic sample under test is placed in a stainless-steel vacuum chamber allowing for operating pressures down to 10(-6) mbar equipped with a quartz window and electrical connections. The entire vacuum chamber was placed on a moving arm allowing for positioning...

  2. Flash flow pyrolysis: mimicking flash vacuum pyrolysis in a high-temperature/high-pressure liquid-phase microreactor environment. (United States)

    Cantillo, David; Sheibani, Hassan; Kappe, C Oliver


    Flash vacuum pyrolysis (FVP) is a gas-phase continuous-flow technique where a substrate is sublimed through a hot quartz tube under high vacuum at temperatures of 400-1100 °C. Thermal activation occurs mainly by molecule-wall collisions with contact times in the region of milliseconds. As a preparative method, FVP is used mainly to induce intramolecular high-temperature transformations leading to products that cannot easily be obtained by other methods. It is demonstrated herein that liquid-phase high-temperature/high-pressure (high-T/p) microreactor conditions (160-350 °C, 90-180 bar) employing near- or supercritical fluids as reaction media can mimic the results obtained using preparative gas-phase FVP protocols. The high-T/p liquid-phase "flash flow pyrolysis" (FFP) technique was applied to the thermolysis of Meldrum's acid derivatives, pyrrole-2,3-diones, and pyrrole-2-carboxylic esters, producing the expected target heterocycles in high yields with residence times between 10 s and 10 min. The exact control over flow rate (and thus residence time) using the liquid-phase FFP method allows a tuning of reaction selectivities not easily achievable using FVP. Since the solution-phase FFP method does not require the substrate to be volatile any more--a major limitation in classical FVP--the transformations become readily scalable, allowing higher productivities and space-time yields compared with gas-phase protocols. Differential scanning calorimetry measurements and extensive DFT calculations provided essential information on pyrolysis energy barriers and the involved reaction mechanisms. A correlation between computed activation energies and experimental gas-phase FVP (molecule-wall collisions) and liquid-phase FFP (molecule-molecule collisions) pyrolysis temperatures was derived.

  3. Growth control of oxygen stoichiometry in homoepitaxial SrTiO3 films by pulsed laser epitaxy in high vacuum. (United States)

    Lee, Ho Nyung; Ambrose Seo, Sung S; Choi, Woo Seok; Rouleau, Christopher M


    In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well.

  4. Probe characterization of high-current driven metal plasma in a vacuum-arc rail gun (United States)

    Vijayan, T.; Roychowdhury, P.; Venkatramani, N.


    The characteristics of metal plasma launched by high-current electric arc in a vacuum-arc rail gun are determined by employing electrical and magnetic probes. These measurements are validated by results from theoretical simulations. The arc coupled nonlinear circuit equations are solved simultaneously with the Newtonian arc motion and revealed the undercritically damped behavior of the arc current identical to the arc-current signal recorded by the Rogowski magnetic probe. Similarly the arc velocity and displacement derived from the signatures of B-dot probes are shown to concur closely with the results of J ×B propulsion from simulation. The heating of plasma is formulated in a three-electron population regime with direct arc energy coupling through magnetohydrodynamic, ion-acoustic, Coulomb, and neutral interactions. This results in high temperature (Te) of hundreds of eV in the arc as revealed by the simulation. Hence Te of the rapidly cooling and equilibrating plasma that emerged from the muzzle is high around 80-90eV, which is confirmed by Langmuir electric probe measurements. Density ne of this metal plasma is shown to be in the range 4×1021-6×1021m-3 and includes multiple ion charge states. The exit velocity of the plasma measured by a pair of Langmuir probes is close to 2.2×106cm/s and matched well with the arc velocity determined by the B-dot probes and the results from simulation.

  5. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer. (United States)

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan


    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  6. High-speed organic photo-detectors fabricated by vacuum and solution processes and application for optical transmission (United States)

    Ohmori, Yutaka; Hamasaki, Tatsunari; Morimune, Taichiro; Kajii, Hirotake


    Organic photo-detectors (OPDs) have been discussed as high-speed photo-detectors fabricated by vacuum and solution processes. By vacuum process, OPD was fabricated on an ITO-coated glass substrate by organic molecular beam deposition (OMBD). Copper phthalocyanine (CuPc) and N,N'-bis(2,5-di-tert-butylphenyl) 3,4,9,10-perylene dicarboximide (BPPC) were used as a p-type and an n-type material. The photo response of OPD was evaluated using a laser (λ=650 nm) and clear response signals at 100 MHz were observed. The imaging signals were successfully received using the OPDs. For solution processed OPDs, poly(9,9-dioctylfluorene) and a phosphorescent iridium derivative were used as a host and a dopant material, respectively. A pulsed signal of 100MHz and amore than 40 MHz were observed by the OPDs fabricated by the vacuum processed and the solution processed devices, respectively.

  7. Systematic study of the dolomite (104) surface by bimodal dynamic force microscopy in ultra-high vacuum. (United States)

    Kawai, Shigeki; Pina, Carlos M; Bubendorf, Alexander; Fessler, Gregor; Glatzel, Thilo; Gnecco, Enrico; Meyer, Ernst


    We have investigated the morphology and structure of dolomite MgCa(CO(3))(2)(104) surfaces by bimodal dynamic force microscopy with flexural and torsional resonance modes in ultra-high vacuum at room temperature. We found that the surface slowly decomposes by degassing CO(2) in a vacuum and becomes covered by amorphous clusters, presumably MgO and CaO. By choosing an optimal sample preparation procedure (i.e. cleaving in a vacuum and mild annealing for stabilizing clusters for a short time), atomically clean surfaces were obtained. The complex tip-sample interaction, arising from carbonate groups and Mg and Ca atoms of the surface, induces a large variety of atomic-scale imaging features.

  8. Research on the development of high-level martial-art teams of universities in Shanghai

    Directory of Open Access Journals (Sweden)

    MING Lei


    Full Text Available Five Universities with high level martial art sport teams in Shanghai have been chosen for research to initiate a comprehensive investigation and analysis for following aspects during establishment and development of the martial-art teams: status of athletes and coachers, status of learning and training of martial-art teams, martial-art team stimulating system and logistic support by using documentary, questionnaire survey, interview and mathematic survey, so as to find existing disadvantages and their relevant solutions.

  9. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    Energy Technology Data Exchange (ETDEWEB)

    Jacovella, U. [Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich (Switzerland); Holland, D. M. P. [STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD (United Kingdom); Boyé-Péronne, S.; Gans, B. [Institut des Sciences Moléculaires d’Orsay, UMR 8214, CNRS and Université Paris-Sud, F-91405 Orsay (France); Oliveira, N. de; Joyeux, D.; Archer, L. E. [Synchrotron Soleil, L’Orme des Merisiers, F-91192 Gif-sur-Yvette (France); Lucchese, R. R. [Department of Chemistry, Texas A& M University, College Station, Texas 77843 (United States); Xu, H.; Pratt, S. T. [Argonne National Laboratory, Argonne, Illinois 60439 (United States)


    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydberg states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.

  10. Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films (United States)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.


    Carbide signatures are ubiquitous in the surface analyses of industrially sputter-deposited transition metal nitride thin films grown with carbon-less source materials in typical high-vacuum systems. We use high-energy-resolution photoelectron spectroscopy to reveal details of carbon temporal chemical state evolution, from carbide formed during film growth to adventitious carbon adsorbed upon contact with air. Using in-situ grown Al capping layers that protect the as-deposited transition metal nitride surfaces from oxidation, it is shown that the carbide forms during film growth rather than as a result of post deposition atmosphere exposure. The XPS signature of carbides is masked by the presence of adventitious carbon contamination, appearing as soon as samples are exposed to atmosphere, and eventually disappears after one week-long storage in lab atmosphere. The concentration of carbon assigned to carbide species varies from 0.28 at% for ZrN sample, to 0.25 and 0.11 at% for TiN and HfN, respectively. These findings are relevant for numerous applications, as unintentionally formed impurity phases may dramatically alter catalytic activity, charge transport and mechanical properties by offsetting the onset of thermally-induced phase transitions. Therefore, the chemical state of C impurities in PVD-grown films should be carefully investigated.

  11. Non vacuum electron beam welding of zinc coated high-strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Bach, F.W.; Beniyash, A.; Lau, K.; Versemann, R. [Hannover Univ. (Germany). Inst. of Materials Science


    Due to the requirement of conservation of nature and natural resources, today more and more high-strength steels are applied for modern concepts of lightweight construction in auto body manufacturing. For a better corrosion protection mainly hot-dip galvanized sheets or electrolytically coated sheets are used. Non Vacuum Electron Beam Welding (NVEBW) offers several technological and economical advantages for joining zinc coated sheets, which are presented in this paper. The results are based on extensive welding investigations that were performed with the 175 kV-NVEBW machine at Institute of Materials Science, University of Hanover. Different zinc coated steels (microalloyed steel, dualphase steel, residualaustenite steel, complexphase steel, martensitic steel) with sheet thicknesses between 0.8-2.0 mm were welded. A main focus of the work is to investigate the influence of the zinc coating on the welding behaviour at different seam geometries (butt joint, edge-raised seam, lap joint, fillet weld, tailored blank). Up to welding speeds of 10 m/min welds with good properties were obtained. In some cases (lap joints, edge raised seams) it is necessary to weld with a weld gap for zinc evaporation. But it turned out that NVEBW has a wide tolerance concerning the gap width. Furthermore, the presentation shows the results of extensive mechanical tests to NVEBW-welded high-strength steels, especially to hardness tests, tensile tests and forming investigations. (orig.)

  12. Concept for support and heating of plate-like samples in the ultra-high vacuum (United States)

    Tröger, L.; Pieper, H. H.; Reichling, M.


    We present the concept for a sample holder designed for mounting and heating of plate-like samples that is based on a clamping mechanism for easy handling. The clamping mechanism consists of a U-shaped bracket encompassing the sample support plate from the rear. Two spring wires are fixed in the walls of the bracket spanning the sample to secure it with only two point contacts. This enables the sample to freely expand or contract during heating and cooling. To accommodate for a large variety in sample size, shape, and quality, we introduce two designs differing in the generation of the clamping force: One pressing the sample against the spring wires, the other one pulling the spring wires onto the sample. Both designs yield an automatically even alignment of the sample during the mounting process to achieve an even load distribution and reliable fixation specifically for brittle samples. For high temperature treatment, the sample holders are enhanced by a resistive heating plate. As only the sample and a small fraction of the sample holder are heated, temperatures of 1300 °C are reached with only 8 W heating power. The sample support and heating components are mounted on a 11 mm × 13 mm base plate with a handle that can be transferred between the sample entry stage, the preparation stage, and surface science experiments in the ultra-high vacuum system.

  13. High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keiko, E-mail: [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Endo, Yuya; Torigoe, Yui; Nakamura, Shogo [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Haruyama, Tomiyoshi; Kasami, Katsuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, Satoshi; Saito, Kiwamu; Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); The Graduate School of Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tawara, Hiroko [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)


    The emission spectrum of cryogenic liquid xenon in the vacuum ultraviolet region was measured by irradiating liquid xenon with gamma-rays from a radioactive source. To achieve a high signal-to-noise ratio, we employed coincident photon counting. Additionally, the charge of the photo-sensor signals was measured to estimate the number of detected photons accurately. In addition, proper corrections were incorporated for the wavelength; response functions of the apparatus obtained using a low-pressure mercury lamp, and photon detection efficiencies of the optical system were considered. The obtained emission spectrum is found to be in the shape of a Gaussian function, with the center at 57,199±34 (stat.)±33 (syst.) cm{sup −1} (174.8±0.1 (stat.)±0.1 (syst.) nm) and the full width at half maximum of 3328±72 (stat.)±65 (syst.) cm{sup −1} (10.2±0.2 (stat.)±0.2 (sys.) nm). These results are the most accurate values obtained in terms of the data acquisition method and the calibration for the experimental system and provide valuable information regarding the high-precision instruments that employ a liquid-xenon scintillator.

  14. High-performance parallel image reconstruction for the New Vacuum Solar Telescope (United States)

    Li, Xue-Bao; Liu, Zhong; Wang, Feng; Jin, Zhen-Yu; Xiang, Yong-Yuan; Zheng, Yan-Fang


    Many technologies have been developed to help improve spatial resolution of observational images for ground-based solar telescopes, such as adaptive optics (AO) systems and post-processing reconstruction. As any AO system correction is only partial, it is indispensable to use post-processing reconstruction techniques. In the New Vacuum Solar Telescope (NVST), a speckle-masking method is used to achieve the diffraction-limited resolution of the telescope. Although the method is very promising, the computation is quite intensive, and the amount of data is tremendous, requiring several months to reconstruct observational data of one day on a high-end computer. To accelerate image reconstruction, we parallelize the program package on a high-performance cluster. We describe parallel implementation details for several reconstruction procedures. The code is written in the C language using the Message Passing Interface (MPI) and is optimized for parallel processing in a multiprocessor environment. We show the excellent performance of parallel implementation, and the whole data processing speed is about 71 times faster than before. Finally, we analyze the scalability of the code to find possible bottlenecks, and propose several ways to further improve the parallel performance. We conclude that the presented program is capable of executing reconstruction applications in real-time at NVST.

  15. Calibrating System for Vacuum Gauges

    Institute of Scientific and Technical Information of China (English)

    MengJun; YangXiaotian; HaoBinggan; HouShengjun; HuZhenjun


    In order to measure the vacuum degree, a lot of vacuum gauges will be used in CSR vacuum system. We bought several types of vacuum gauges. We know that different typos of vacuum gauges or even one type of vacuum gauges have different measure results in same condition, so they must be calibrated. But it seems impossible for us to send so many gauges to the calibrating station outside because of the high price. So the best choice is to build a second class calibrating station for vacuum gauges by ourselves (Fig.l).

  16. High-Quality ZrO2 Thin Films Deposited on Silicon by High Vacuum Electron Beam Evaporation

    Institute of Scientific and Technical Information of China (English)

    章宁琳; 万青; 宋志棠; 沈勤我; 祝向荣; 林成鲁


    Zirconium oxide films were deposited on p-type Si(l00) substrates using high vacuum electron beam evaporation (HVEBE) at room temperature. X-ray photoelectric spectroscopy shows that the dominant chemical state of zirconia thin films is in the fully oxidized state of Zr4+, no matter whether annealed in oxygen. The structural information from x-ray diffraction shows that zirconia thin films deposited at room temperature by HVEBEwere completely amorphous before and after the annealing. The spreading resistance profile indicates that ZrO2 thin films have excellent insulation property (with a resistance of more than 10s Ω) and the thickness is 800A.After thermal treatment at 600°C in O2 ambient, the root-mean-square roughness changed from 8.09 A of the as-deposited film to 13.8A across an area of i × 1μm2.

  17. High Power Proton Accelerator Development at KAERI and its Vacuum System (United States)

    Choi, Byung-Ho; Park, Mi Young; Kim, Kui Young; Kim, Kye Ryung; Kim, Jun Yeon; Cho, Yong-Sub

    The Proton Engineering Frontier Project (PEFP), approved and launched by the Korean government in July 2002, includes a 100 MeV proton linear accelerator (linac) development and programs for its utilization and application. The main goals in the first phase of the project, spanning from 2002 to 2005, were the design of a 100 MeV proton linac and the development of a 20 MeV linac consisting of a 50 keV proton injector, a 3 MeV radio frequency quadrupole (RFQ), and a 20 MeV drift tube linac (DTL). The 50 keV injector and 3 MeV RFQ have been installed and tested, and the 20 MeV DTL is being assembled, tuned and under a beam test. At the same time, the utilization programs using the proton beam have been planned, and some are now under way. The vacuum system of the 20 MeV proton linac and its related issues, especially in operation with a high duty, are discussed in detail.

  18. Magnetic Flashover Inhibition Testing of High Power Vacuum-Insulator Interfaces (United States)

    Benwell, Andrew; Kovaleski, Scott; Gahl, John


    University of Missouri Terawatt Test Stand, Department of Electrical and Computer Engineering, University of Missouri Â- Columbia, Columbia, MO. Flashover occurring at vacuum-insulator interfaces is a common problem in the design of high power pulsed power machines. Avalanche breakdown might be prevented on the insulator surface by taking advantage of the E × B force to bend the path of electrons away from the insulator. Magnetic flashover inhibition (MFI) has been demonstrated [1]; however particular breakdown conditions such as the ratio of E/B are not well known. An inductive load to test the conditions under which MFI occurs is being designed for the MU Terrawatt Test Stand (MUTTS). The test stand can provide a 150 ns pulse at 2.7MV and 400kA peak and can accommodate an adjustable design load. Details of the load design will be presented as well as theoretical analysis of the experimental circuit and of the physics of magnetic flashover insulation. [1] J.P. VanDevender, D.H. McDaniel, E.L. Neau, R.E. Mattis, K.D. Bergeron, "Magnetic Inhibition of Insulator Flashover", Journal of Applied Physics 53(6), June 1982

  19. Recent study of nanomaterials prepared by inert gas condensation using ultra high vacuum chamber

    Indian Academy of Sciences (India)

    S Ramasamy; D J Smith; P Thangadurai; K Ravichandran; T Prakash; K Padmaprasad; V Sabarinathan


    The ultra high vacuum chamber was developed in the Department of Nuclear Physics, University of Madras with the funding from DST, India. This UHV chamber is used to prepare nanocrystalline materials by inert gas condensation technique (IGCT). Nanocrystalline materials such as PbF2, Mn2+-doped PbF2, Sn-doped In2O3 (ITO), ZnO, Al2O3, Ag2O, CdO, CuO, ZnSe:ZnO etc., were prepared by this technique and characterized. Results of some of these materials will be presented in this paper. In solid-state 207Pb NMR on PbF2 a separate signal due to the presence of grain boundary has been observed. The structural phase transition pressure during the phase transformation from the cubic phase to orthorhombic phase under high pressure shows an increase with the decrease in grain size. Presence of electronic centres in nanocrystalline PbF2 is observed from Raman studies and the same has been confirmed by photoluminescence studies. Al2O3 was prepared and 56Fe ions were implanted. After implantation segregation of 56Fe ions was examined by SEM. The oxidation properties of ITO were studied by HRTEM. As against the expectation of oxide coating on individual nanograins of In{Sn alloy, ITO nanograins grew into faceted nanograins on heat treatment in air and O2 atmosphere. The growth of ITO under O2 atmosphere showed pentagon symmetry. The PMN was initially prepared by solid-state reaction. Further, this PMN relaxor material will be used to convert into nanocrystalline PMN by IGCT with sputtering and will be studied.

  20. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure. (United States)

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia


    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed.

  1. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap. (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A


    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  2. An Examination of the Surface and Sub-Surface of Modern and Historical Platinum Photographic Prints Using Low Vacuum High-Resolution Scanning Electron Microscopy. (United States)

    Ravines, Patrick; Erdman, Natasha; McElroy, Rob


    Photographic prints of platinum metal on paper supports are some of the most exquisite and expressive in the world of fine art photography. Platinum prints were produced from about 1890 to 1920 in the USA and Europe. The chemical and material nature of these valuable prints is of great interest to many who are interested in their long-term preservation, in the intersection of science and art, and in the scientific and technical study of cultural heritage. This paper presents the results of a characterization study using newer electron microscopy techniques. In this study, a low vacuum high-resolution scanning electron microscope was used to study the surface and sub-surface of historic and modern platinum and/or palladium print samples. Using environmental SEM pressures allowed us to investigate the actual top surface and sub-surface with cross-sections without any preparation; no coatings of carbon or other material. Cross-sections were prepared using an argon plasma cross-polishing system. This study shows that the photographic image of platinum prints is composed of platinum nanoparticles embedded in the upper layers of the paper's cellulosic fibers.

  3. Conceptual Design of Vacuum Chamber for testing of high heat flux components using electron beam as a source (United States)

    Khan, M. S.; Swamy, Rajamannar; Khirwadkar, S. S.; Divertors Division, Prototype


    A conceptual design of vacuum chamber is proposed to study the thermal response of high heat flux components under energy depositions of the magnitude and durations expected in plasma fusion devices. It is equipped with high power electron beam with maximum beam power of 200 KW mounted in a stationary horizontal position from back side of the chamber. The electron beam is used as a heat source to evaluate the heat removal capacity, material performance under thermal loads & stresses, thermal fatigue etc on actively cooled mock - ups which are mounted on a flange system which is the front side door of the chamber. The tests mock - ups are connected to a high pressure high temperature water circulation system (HPHT-WCS) operated over a wide range of conditions. The vacuum chamber consists of different ports at different angles to view the mock -up surface available for mock -up diagnostics. The vacuum chamber is pumped with different pumps mounted on side ports of the chamber. The chamber is shielded from X - rays which are generated inside the chamber when high-energy electrons are incident on the mock-up. The design includes development of a conceptual design with theoretical calculations and CAD modelling of the system using CATIA V5. These CAD models give an outline on the complete geometry of HHF test chamber, fabrication challenges and safety issues. FEA analysis of the system has been performed to check the structural integrity when the system is subjected to structural & thermal loads.

  4. Development of High-Voltage Vacuum Circuit Breaker%高电压真空断路器的发展

    Institute of Scientific and Technical Information of China (English)

    吴红亚; 李建基


    六氟化硫断路器在高压断路器中居主导地位,而真空断路器在中压领域占绝对优势,并在高电压领域崭露头角。阐述了开发高电压真空断路器的必要性,介绍了现有产品的结构与特点,并提出了研发高电压真空断路器需解决的技术问题及相关的应对措施。%Sulfur hexafluoride circuit breakers take a leading position in high-voltage circuit breakers and vacuum circuit breakers hold all the trumps in medium voltage field,making a figure in high-voltage field.Description was made to the necessity of development of high-voltage vacuum circuit breakers.Introduction was made to structure and features of the existing products.This paper raised technical issues to be solved in RD of high-voltage vacuum circuit breakers and their related countermeasures.

  5. Surface Effects and Challenges for Application of Piezoelectric Langasite Substrates in Surface Acoustic Wave Devices Caused by High Temperature Annealing under High Vacuum

    Directory of Open Access Journals (Sweden)

    Marietta Seifert


    Full Text Available Substrate materials that are high-temperature stable are essential for sensor devices which are applied at high temperatures. Although langasite is suggested as such a material, severe O and Ga diffusion into an O-affine deposited film was observed during annealing at high temperatures under vacuum conditions, leading to a damage of the metallization as well as a change of the properties of the substrate and finally to a failure of the device. Therefore, annealing of bare LGS (La 3 Ga 5 SiO 14 substrates at 800 ∘ C under high vacuum conditions is performed to analyze whether this pretreatment improves the suitability and stability of this material for high temperature applications in vacuum. To reveal the influence of the pretreatment on the subsequently deposited metallization, RuAl thin films are used as they are known to oxidize on LGS at high temperatures. A local study of the pretreated and metallized substrates using transmission electron microscopy reveals strong modification of the substrate surface. Micro cracks are visible. The composition of the substrate is strongly altered at those regions. Severe challenges for the application of LGS substrates under high-temperature vacuum conditions arise from these substrate damages, revealing that the pretreatment does not improve the applicability.

  6. Fundamental Studies of Electronic Properties of Materials and Devices for High Power, Compact Terahertz Vacuum Electron Devices (United States)


    Workshop on Computational Electronics, (full length conference paper) Beijing, China, May 2009, pp. 265-268. Available online through IEEE Xplore ...of traveling-wave tube regenerative oscillators,” IEEE Trans Elec Dev, vol 57, 1152-1159 (2010). [5] P. Gao, J. H. Booske, Z.-H. Yang, B. Li, J. He...J. Temkin, “Vacuum Electronic High Power Terahertz Sources,” invited review paper, Inaugural Issue, IEEE Transactions on Terahertz Science and

  7. Technology handbook of vacuum physics

    CERN Document Server

    Beck, A H


    Handbook of Vacuum Physics, Volume 3: Technology is part of a series of publications that presents articles featuring the whole spectrum of vacuum physics. This particular volume presents materials that deal with technology concerns in vacuum mechanics. The first material talks about the utilization of ceramic materials in the construction of vacuum devices. The next paper details the application of vacuum physics in soldering and brazing process. The last article deals with the utilization of vacuum technology in high frequency heating. The book will be of great use to professionals involved

  8. The source of X-rays and high-charged ions based on moderate power vacuum discharge with laser triggering

    Directory of Open Access Journals (Sweden)

    Alkhimova Mariya A.


    Full Text Available The source of X-ray radiation with the energy of quanta that may vary in the range hν = 1÷12 keV was developed for studies in X-ray interaction with matter and modification of solid surfaces. It was based on a vacuum spark discharge with the laser triggering. It was shown in our experiments that there is a possibility to adjust X-ray radiation spectrum by changing the configuration of the electrode system when the energy stored in the capacitor is varied within the range of 1÷17 J. A comprehensive study of X-ray imaging and quanta energy was carried out. These experiments were carried out for the case of both direct and reverse polarity of the voltage on the electrodes. Additionally, ion composition of plasma created in a laser-triggered vacuum discharge was analyzed. Highly charged ions Zn(+21, Cu(+20 and Fe(+18 were observed.

  9. Effect of Injection Velocity on Structure Part Characteristic in AZ50 Die Casting Process with High Vacuum System

    Institute of Scientific and Technical Information of China (English)


    When diecasting large and thin Mg alloy parts, material defects occur, which include porosity, nonuniform mechanical properties, irregular surfaces, and incomplete filling. To resolve these problems, it is necessary to have uniform injection velocities and temperatures as well as control the melt. This study investigated the feasibility of producing large and thin components using a die caster by attaching a high vacuum system. In particular, the effects of injection velocity on surface quality and the mechanical properties of the products were investigated. Hence, an injection velocity scheme and a die structure capable of casting in a vacuum were proposed. As a result, it was found that the critical low injection velocity was 0.2 m/s to produce large thin Mg alloy structures having good mechanical properties.

  10. Microfabricated triggered vacuum switch (United States)

    Roesler, Alexander W.; Schare, Joshua M.; Bunch, Kyle


    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  11. A High-resolution Vacuum Ultraviolet Laser Photoionization and Photoelectron Study of the Co Atom (United States)

    Huang, Huang; Wang, Hailing; Luo, Zhihong; Shi, Xiaoyu; Chang, Yih-Chung; Ng, C. Y.


    We have measured the vacuum ultraviolet-photoionization efficiency (VUV-PIE) spectrum of Co in the energy range of 63,500-67,000 cm-1, which covers the photoionization transitions of Co(3d74s2 4F9/2) \\to Co+(3d8 3F4), Co(3d74s2 4F7/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F3), Co(3d74s2 4F9/2) \\to Co+(3d8 3F2), and Co(3d74s2 4F9/2) \\to Co+(3d74s1 5F5). We have also recorded the pulsed field ionization photoelectron spectrum of Co in the same energy range, allowing accurate determinations of ionization energies (IEs) for the photoionization transitions from the Co(3d74s2 4F9/2) ground neutral state to the Co+(3F J ) (J = 4 and 3) and Co+(5F5) ionic states, as well as from the Co(3d74s2 4F7/2) excited neural state to the Co+(3d8 3F3) ionic state. The high-resolution nature of the VUV laser used has allowed the observation of many well-resolved autoionizing resonances in the VUV-PIE spectrum, among which an autoionizing Rydberg series, 3d74s1(5F5)np (n = 19-38), converging to the Co+(3d74s1 5F5) ionic state from the Co(3d74s2 4F9/2) ground neutral state is identified. The fact that no discernible step-like structures are present at these ionization thresholds in the VUV-PIE spectrum indicates that direct photoionization of Co is minor compared to autoionization in this energy range. The IE values, the autoionizing Rydberg series, and the photoionization cross sections obtained in this experiment are valuable for understanding the VUV opacity and abundance measurement of the Co atom in stars and solar atmospheres, as well as for benchmarking the theoretical results calculated in the Opacity Project and the IRON Project, and thus are of relevance to astrophysics.

  12. Ultrahigh vacuum/high pressure chamber for surface x-ray diffraction experiments (United States)

    Bernard, P.; Peters, K.; Alvarez, J.; Ferrer, S.


    We describe an ultrahigh vacuum chamber that can be internally pressurized to several bars and that is designed to perform surface x-ray diffraction experiments on solid-gas interfaces. The chamber has a cylindrical beryllium window that serves as the entrance and exit for the x rays. The sample surface can be ion bombarded with an ancillary ion gun and annealed to 1200 K.

  13. Literacy and Text Reading in Middle and High School Social Studies and English Language Arts Classrooms (United States)

    Swanson, Elizabeth; Wanzek, Jeanne; McCulley, Lisa; Stillman-Spisak, Stephanie; Vaughn, Sharon; Simmons, Deborah; Fogarty, Melissa; Hairrell, Angela


    This study reports vocabulary and reading comprehension instructional practices implemented in middle and high school social studies and language arts classrooms. It also describes text reading practices. We conducted 137 observations of 11 social studies and 9 language arts teachers over the course of 1 academic year. We observed instructional…

  14. Harvesting Robots for High-value Crops: State-of-the-art Review and Challenges Ahead

    NARCIS (Netherlands)

    Bac, C.W.; Henten, van E.; Hemming, J.; Edan, Y.


    This review article analyzes state-of-the-art and future perspectives for harvesting robots in high-value crops. The objectives were to characterize the crop environment relevant for robotic harvesting, to perform a literature review on the state-of-the-art of harvesting robots using quantitative me

  15. Preventing and Reversing Vacuum-Induced Optical Losses in High-Finesse Tantalum (V) Oxide Mirror Coatings

    CERN Document Server

    Gangloff, Dorian; Wu, Tailin; Bylinskii, Alexei; Braverman, Boris; Gutierrez, Michael; Nichols, Rosanna; Li, Junru; Aichholz, Kai; Cetina, Marko; Karpa, Leon; Jelenković, Branislav; Chuang, Isaac; Vuletić, Vladan


    We study the vacuum-induced degradation of high-finesse optical cavities with mirror coatings composed of SiO$_2$-Ta$_{2}$O$_{5}$ dielectric stacks, and present methods to protect these coatings and to recover their initial quality factor. For separate coatings with reflectivities centered at 370 nm and 422 nm, a vacuum-induced continuous increase in optical loss occurs if the surface-layer coating is made of Ta$_{2}$O$_{5}$, while it does not occur if it is made of SiO$_2$. The incurred optical loss can be reversed by filling the vacuum chamber with oxygen at atmospheric pressure, and the recovery rate can be strongly accelerated by continuous laser illumination at 422 nm. Both the degradation and the recovery processes depend strongly on temperature. We find that a 1 nm-thick layer of SiO$_2$ passivating the Ta$_{2}$O$_{5}$ surface layer is sufficient to reduce the degradation rate by more than a factor of 10, strongly supporting surface oxygen depletion as the primary degradation mechanism.

  16. Gravitational vacuum (United States)

    Grigoryan, L. S.; Saakyan, G. S.


    The existence of a special gravitational vacuum is considered in this paper. A phenomenological method differing from the traditional Einsteinian formalization is utilized. Vacuum, metric and matter form a complex determined by field equations and at great distances from gravitational masses vacuum effects are small but could be large in powerful fields. Singularities and black holes justify the approach as well as the Ambartsmyan theory concerning the existence of supermassive and superdense prestallar bodies that then disintegrate. A theory for these superdense bodies is developed involving gravitational field equations that describe the vacuum by an energy momentum tensor and define the field and mass distribution. Computations based on the theory for gravitational radii with incompressible liquid models adequately reflecting real conditions indicate that a gravitational vacuum could have considerable effects on superdense stars and could have radical effects for very large masses.

  17. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne


    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...... extraction in a prospective observational study. Setting. Rigshospitalet, University Hospital of Copenhagen. Population. For development an obstetric expert from each labor ward in Denmark (28 departments) were invited to participate. For validation nine first-year residents and ten chief physicians...... with daily work in the obstetric field were tested. Methods. The Delphi method was used for development of the scale. In a simulated vacuum extraction scenario first-year residents and obstetric chief physicians were rated using the developed OSATS scale for vacuum extraction to test construct validity...

  18. English Teaching Strategies Research——Based on the Vocational High School Art Students’ Learning Style

    Institute of Scientific and Technical Information of China (English)

    Sun; Jianxia


    Diagnosing learners’ learning style is meaningful for "student一centered" teaching mode and individualized teaching.But the teaching strategies based on the students’ learning style should gain the same attention.Seldom do researchers regard vocational high school art students as their subjects.Using Reid’s Perceptual Learning Style Survey as the research instrument, this paper viewed vocational high school art students as the subjects; the purpose is to find some effective strategies to teach art students of vocational high school well.

  19. English Teaching Strategies Research--Based on the Vocational High School Art Students’Learning Style

    Institute of Scientific and Technical Information of China (English)

    Sun Jianxia


    Diagnosing learners' learning style is meaningful for “student-centered” teaching mode and individualized teaching.But the teaching strategies based on the students' learning style should gain the same attention.Seldom do researchers regard vocational high school art students as their subjects.Using Reid’s Perceptual Learning Style Survey as the research instrument, this paper viewed vocational high school art students as the subjects;the purpose is to find some effective strategies to teach art students of vocational high school well.

  20. Metals and metal oxides particles produced by pulsed laser ablation under high vacuum


    SIRAJ, Khurram; TABASSUM, Yasir SOHAIL and Aasma


    A pulsed KrF Excimer laser (248 nm, 15 mJ) was utilized to synthesize different particles on (111) Si substrate under vacuum \\sim 10-6 torr using Aluminum (Al), Platinum (Pt), Tungsten (W), Molybdenum (Mo), Cadmium Oxide (CdO), and Yttrium Oxide (Y2O3) targets. Scanning electron microscope (SEM) was used to study particle size distribution on silicon substrate. The size of individual metal particles was found to be ranging from 71 nm to 2 m m whereas metal oxides particles were found...

  1. Production of ceramic-metal joints for high-vacuum applications and development of simulation program for discharge tube

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. H.; Chung, K. H. [Seoul National University, Seoul (Korea)


    To develop a ceramic-metal jointed tube for high-vacuum applications, metalizing process and active metal brazing were investigated. Active metal brazing was adopted as a joining process to produce a high-vacuum tube which had high joint strength and reliability. A possibility for the development of new composition of Mo-Mn paste was studied. Also, to improve the strength and reliability of active metal brazed joint, TiN coating was introduced as a diffusion barrier. It was revealed that TiN coating could improve the joint strength and reliability. 100mm {phi} tube joint was produced using incusil ABA brazing alloy. The strength and reliability of manufactured tube showed higher value than commercial one. The electric field distribution in ceramic tube under high voltage was analyzed. Two dimensional electric field distribution was investigated under the existence of charged particles. From this result, electric field distribution at the surface of ceramic tube and the location of high electric field was predicted. Finally, Arc discharge was simulated to analyze the effect of arc discharge on the discharge tube wall. The maximum temperature of arc was 12000-13000K. The wall temperature was increased 100-170K by the arc discharge. 45 refs., 57 figs., 4 tabs. (Author)

  2. Quasi-adiabatic vacuum-based column housing for very high-pressure liquid chromatography. (United States)

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A


    A prototype vacuum-based (10(-6)Torr) column housing was built to thermally isolate the chromatographic column from the external air environment. The heat transfer mechanism is solely controlled by surface radiation, which was minimized by wrapping the column with low-emissivity aluminum tape. The adiabaticity of the column housing was quantitatively assessed from the measurement of the operational pressure and fluid temperature at the outlet of a 2.1mm×100mm column (sub-2 μm particles). The pressure drop along the column was raised up to 1kbar. The enthalpy balance of the eluent (water, acetonitrile, and one water/acetonitrile mixture, 70/30, v/v) showed that less than 1% of the viscous heat generated by friction of the fluid against the packed bed was lost to the external air environment. Such a vacuum-based column oven minimizes the amplitude of the radial temperature gradients across the column diameter and maximizes its resolving power.

  3. Trapping of xenon gas in closed inner spaces of carbon nanomaterials for stable gas storage under high-vacuum condition (United States)

    Kobayashi, Keita; Yasuda, Hidehiro


    Xe gas can be trapped in the closed inner spaces of glassy carbon derived from C60 fullerene by thermal coalescence of C60 in Xe atmosphere and in cap-opened carbon nanotubes (CNTs) covered with an ionic liquid by soaking Xe-adsorbing CNTs in an ionic liquid. The trapped Xe gas is detected by energy dispersive X-ray spectrometry using a spectrometer mounted on an analytical transmission electron microscope. The closed inner spaces store gas molecules even under high-vacuum condition (˜10-5 Pa).

  4. Probing vacuum birefringence under a high-intensity laser field with gamma-ray polarimetry at the GeV scale

    CERN Document Server

    Nakamiya, Yoshihide; Moritaka, Toseo; Seto, Keita


    Probing vacuum structures deformed by high intense fields is of great interest in general. In the context of quantum electrodynamics (QED), the vacuum exposed by a linearly polarized high-intensity laser field is expected to show birefringence. We consider the combination of a 10 PW laser system to pump the vacuum and 1 GeV gamma-rays to probe the birefringent effect. The vacuum birefringence can be measured via the polarization flip of the probe gamma-rays. We discuss the design of the gamma-ray polarimeter and then evaluate the measurability of the reduction of the degree of linear polarization due to the appearance of birefringence. We found that the measurement is indeed feasible given a realistic set of laser parameters and achievable pulse statistics.

  5. Carbon Nanotube-based Cold Cathode for High Power MicrowaveVacuum Electronic Devices: A Potential Field Emitter

    Directory of Open Access Journals (Sweden)

    P. Verma


    Full Text Available Carbon nanotubes (CNTs can be grown in the form of small, sharp spikes capable of carrying very highcurrent densities which suggest great potential application of CNTs as cold cathode in high power microwavevacuum device applications. These cold cathode vacuum microwave devices are expected to be ideally suitedfor air-borne and space applications. This paper  reports the initial efforts made in the development of coldcathode using PECVD grown vertically-aligned matrix of CNTs with uniform height and optimum tip densityon silicon substrate. The high aspect ratio (of the order of 10,000 and novel electrical, mechanical, and thermalproperties of the CNT are found to be very attractive characteristics for emission of large and stable currentdensities at reasonably low field. The field emission current voltage characteristics of a typical cathode gaveemission current density in excess of 35 mA/cm2 at reasonably low field. The emission current in most of thesamples is found to be stable over long period of time but is greatly effected by the vacuum condition duringmeasurement. The initial measured data suggests great promise for achieving high current densities at practicalelectric fields.Defence Science Journal, 2008, 58(5, pp.650-654, DOI:

  6. Photochemical/Microchannel Plasma Reactors Driven By High Power Vacuum Ultraviolet Lamps (United States)

    Shin, Chul; Park, Sung-Jin; Eden, Gary


    Experiments are being conducted in which molecular dissociation or other chemical reactions in microchannel plasmas are accelerated by the introduction of vacuum ultraviolet photons. Initial emphasis is being placed on recently-developed Xe2 lamps that are efficient sources of 172 nm (h ν 7.2 eV) photons. Thin, flat lamps, fabricated from fused silica and having microcavity arrays internal to the lamp, have been developed by the University of Illinois and Eden Park Illumination and produce intensities above 200 mW/cm2. Integrating such lamps into a microcavity plasma reactor yields a hybrid photochemical/plasma system in which product yield and power consumption can be optimized. The selectivity of photodissociation in generating radicals and atomic fragments offers new synergies in plasma processing. Data concerning CO2 dissociation in arrays of microchannel plasmas, and the modification of this process by external 172 nm radiation, will be presented.

  7. Electron-beam-ignited, high-frequency-driven vacuum ultraviolet excimer light source

    CERN Document Server

    Dandl, T; Heindl, T; Krücken, R; Wieser, J; Ulrich, A


    Transformation of a table-top electron beam sustained 2.45 GHz RF discharge in rare gases into a self burning discharge has been observed for increasing RF-amplitude. Thereby, the emission spectrum undergoes significant changes in a wide spectral range from the vacuum ultraviolet (VUV) to the near infrared. A strong increase of VUV excimer emission is observed for the self burning discharge. The so called first excimer continuum, in particular, shows a drastic increase in intensity. For argon this effect results in a brilliant light source emitting near the 105 nm short wavelength cutoff of LiF windows. The appearance of a broad-band continuum in the UV and visible range as well as effects of RF excitation on the atomic line radiation and the so called third excimer continuum are briefly described.

  8. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites (United States)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng


    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  9. High-temperature compatible 3D-integration processes for a vacuum-sealed CNT-based NEMS (United States)

    Gueye, R.; Lee, S. W.; Akiyama, T.; Briand, D.; Roman, C.; Hierold, C.; de Rooij, N. F.


    A System-in-Package (SiP) concept for the 3D-integration of a Single Wall Carbon Nanotube (SWCNT) resonator with its CMOS driving electronics is presented. The key element of this advanced SiP is the monolithic 3D-integration of the MEMS with the CMOS electronics using Through Silicon Vias (TSVs) on an SOI wafer. This SiP includes: A glass cap vacuum-sealed to the main wafer using an eutectic bonding process: a low leak rate of 2.7 10-9 mbar•l/s was obtained; Platinum-TSVs, compatible with the SWCNT growth and release process; The TSVs were developed in a "via first" process and characterized at high-temperature — up to 850 °C. An ohmic contact between the Pt-metallization and the SOI silicon device layer was obtained; The driving CMOS electronic device is assembled to the MEMS using an Au stud bump technology. Keywords: System-in-Package (SiP), vacuum packaging, eutectic bonding, "via-first" TSVs, high-temperature platinum interconnects, ohmic contacts, Au-stud bumps assembly, CMOS electronics.

  10. Design and fabrication of high performance wafer-level vacuum packaging based on glass-silicon-glass bonding techniques (United States)

    Zhang, Jinwen; Jiang, Wei; Wang, Xin; Zhou, Jilong; Yang, Huabing


    In this paper, a high performance wafer-level vacuum packaging technology based on GSG triple-layer sealing structure for encapsulating large mass inertial MEMS devices fabricated by silicon-on-glass bulk micromachining technology is presented. Roughness controlling strategy of bonding surfaces was proposed and described in detail. Silicon substrate was thinned and polished by CMP after the first bonding with the glass substrate and was then bonded with the glass micro-cap. Zr thin film was embedded into the concave of the micro-cap by a shadow-mask technique. The glass substrate was thinned to about 100 µm, wet etched through and metalized for realizing vertical feedthrough. During the fabrication, all patterning processes were operated carefully so as to reduce extrusive fragments to as little as possible. In addition, a high-performance micro-Pirani vacuum gauge was integrated into the package for monitoring the pressure and the leak rate further. The result shows that the pressure in the package is about 120 Pa and has no obvious change for more than one year indicating 10-13 stdcc s-1 leak rate.

  11. Vacuum chamber with distributed titanium sublimation pumping for the G-line wiggler at Cornell High Energy Synchrotron Source (United States)

    Li, Y.; He, Y.; Mistry, N. B.


    This article describes a 3-m-long vacuum chamber for the new wiggler magnet at the Cornell Electron Storage Ring (CESR) for the synchrotron light beam line of the Cornell High Energy Synchrotron Source (CHESS). Copper was chosen as the main chamber material for its good electric and thermal conductivities. Proper mechanical design and welding procedure were implemented to meet very tight tolerances to ensure adequate vertical aperture for the stored beams in CESR while allowing the required small wiggler gap. Distributed titanium sublimation pumping is incorporated along the 3 m length of the chamber to provide sufficient pumping speed and capacity for CESR and CHESS operations. The chamber pumping performance was evaluated prior to installation. Linear distributed pumping speeds at the beam line of ~720 l/s/m for N2 and CO and ~4000 l/s/m for H2 were measured. The measured pumping capacities for N2, CO and H2 are ~1.0, ~2.0 and ~77 Torr l, respectively, for each titanium sublimation cycle. Measurements also showed that CO molecules adsorb on the N2 and H2 saturated titanium films with virtually the same initial sticking coefficient as on a fresh titanium film. Analyses indicated very different CO adsorption mechanisms between the N2 and H2 saturated titanium films. While the replacement of surface H2 by CO was observed, little desorption of nitrogen was measured. Operational experience showed excellent vacuum pumping performance over two years after the chamber installation.

  12. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsmeyer, Amanda R.; Morris, John R. [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States); Gordon, Wesley O.; Mantooth, Brent A.; Lalain, Teri A. [Research and Technology Directorate, U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010 (United States); Davis, Erin Durke [OptiMetrics, Inc., Abingdon, Maryland 21009 (United States)


    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  13. Electron stimulated carbon adsorption in ultra high vacuum monitored by Auger Electron Spectroscopy (AES)

    CERN Document Server

    Scheuerlein, C


    Electron stimulated carbon adsorption at room temperature (RT) has been studied in the context of radiation induced surface modifications in the vacuum system of particle accelerators. The stimulated carbon adsorption was monitored by AES during continuous irradiation by 2.5 keV electrons and simultaneous exposure of the sample surface to CO, CO2 or CH4. The amount of adsorbed carbon was estimated by measuring the carbon Auger peak intensity as a function of the electron irradiation time. Investigated substrate materials are technical OFE copper and TiZrV non-evaporable getter (NEG) thin film coatings, which are saturated either in air or by CO exposure inside the Auger electron spectrometer. On the copper substrate electron induced carbon adsorption from gas phase CO and CO2 is below the detection limit of AES. During electron irradiation of the non-activated TiZrV getter thin films, electron stimulated carbon adsorption from gas phase molecules is detected when either CO or CO2 is injected, whereas the CH4 ...

  14. Influence of electrode surface microstructures on the state of short vacuum gaps after interruption of high-frequency currents (United States)

    Niayesh, Kaveh


    In this paper the influences of electrode surface microstructures on the electrical field near the new cathode surface and on the distribution of ion density and velocity in the space-charge region after interruption of high-frequency currents in short vacuum gaps have been studied. To investigate these effects, the equations of conservation of mass and momentum are solved two dimensionally in the space-charge region. The results indicate a considerable increase in ion density at the points with high electrical fields, which results in an enhancement of the electrical field at these points compared with one-dimensional calculations. Considering the calculated electrical field near the cathode surface and the power density deposited into the cathode surface by ions, the initiation of a breakdown during the post arc period under the mechanism of explosive electron emission may be possible.

  15. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties. (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao


    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  16. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo


    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  17. Cooling of the Mechanical Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum (United States)

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W.; D'Urso, Brian


    We present a magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable trapping from atmospheric pressure to high vacuum. Characterization and feedback cooling of the mechanical motion of the trapped particle are described. This static trap is achieved by permanent magnets and ferromagnetic pole pieces. The magnetic field confines the particle in two dimensions, while confinement in the third dimension relies on gravity. The weak trapping forces result in mechanical oscillation frequencies in the extremely low to super low frequency range and exceptionally high sensitivity to external forces. Particles can be trapped for an indefinite length of time without active cooling. With feedback, the mechanical motion can be cooled by several orders of magnitude. With trapped diamond nanocrystals containing nitrogen-vacancy centers, the system has potential as a platform for experiments in quantum nanomechanics. This material is based upon work supported by the National Science Foundation under Grant No. 1540879.

  18. Current State of the Art in High Brightness LEDs (United States)

    Craford, George


    LED's have been commercially available since the 1960's. For many years they were used primarily for indicator applications. The remarkable increase in materials technology and efficiency that has been achieved since the early 1990's for AlInGaP red and amber LEDs, and InGaN green and blue LEDs, has enabled the penetration of markets such as outdoor display, signaling, and automotive brake light and turn signal applications. White LEDs, which are either blue LEDs combined with a phosphor, or a combination of red, green, and blue LEDs, are being used in emerging applications such as cell phone flash, television backlights, projection, and automotive headlights. In addition, to efficiency improvements these applications have required the development of higher power packages and, in some of these applications which are etendue limited, higher luminance devices. High power devices are commercially available which are capable of 140 lumens output and have an efficacy of around 70 lm/W for white emission. New package and chip technologies have been demonstrated which have a luminance of 38 mega nits (Mcd/m^2), approximately 50% more luminance than that of an automotive headlamp halogen bulb (˜25 mega nits). The recent progress in materials technology, packaging, and chip technology makes it clear that LED's will become important for general illumination applications. The rate of LED penetration of this market will depend upon continued increases in performance and lower costs as well as better control of the white spectral emission. Efficiency, current density, and costs are closely linked because the cost in dollars/lumen is inversely proportional to how many lumens can be realized from each unit of device area for a given device type. Performance as high as 138 lm/W, and over 40% wall plug efficiency, has been reported for low power research devices and over 90 lm/W for high power research devices. It is clear that high power commercial products with performance in

  19. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Jannis Lübbe


    Full Text Available The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density dz at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density dΔf at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured dz, we predict dΔf for specific filter settings, a given level of detection-system noise spectral density dzds and the cantilever-thermal-noise spectral density dzth. We find an excellent agreement between the calculated and measured values for dΔf. Furthermore, we demonstrate that thermal noise in dΔf, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.

  20. High School Teachers' Perspectives on the English Language Arts Common Core State Standards: An Exploratory Study (United States)

    Ajayi, Lasisi


    This was an exploratory study that examined high school teachers' perspectives about their early experiences with the English language arts Common Core State Standards. The sources of data for the study included a survey and structured interviews. Twenty-three high school ELA teachers from one unified school district in Southern California…

  1. War and Peace in the Pictures Drawn by the Students of a Fine Arts High School (United States)

    Aktas, Özgür


    This study aims to identify high school students' perception of war and peace. Therefore, the students were asked to draw pictures depicting war and peace. The study was conducted at a Fine Arts High School. This study is a qualitative research. According to the assessments made on the results of the study, the students drew pictures containing…

  2. The Effect of the Time Management Art on Academic Achievement among High School Students in Jordan (United States)

    Al-Zoubi, Maysoon


    This study aimed at recognizing the effect of the Time Management Art on academic achievement among high school students in the Hashemite Kingdom of Jordan. The researcher employed the descriptive-analytic research to achieve the purpose of the study where he chose a sample of (2000) high school female and male students as respondents to the…

  3. Vacuum Valve

    CERN Multimedia


    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  4. Cultivating Common Ground: Integrating Standards-Based Visual Arts, Math and Literacy in High-Poverty Urban Classrooms (United States)

    Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline


    The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…

  5. Growth of high-quality CuInSe sub 2 polycrystalline films by magnetron sputtering and vacuum selenization

    CERN Document Server

    Xie Da Tao; Wang Li; Zhu Feng; Quan Sheng Wen; Meng Tie Jun; Zhang Bao Cheng; Chen J


    High-quality CuInSe sub 2 thin films have been prepared using a two stages process. Cu and In were co-deposited onto glass substrates by magnetron sputtering method to produce a predominant Cu sub 1 sub 1 In sub 9 phase. The alloy films were selenised and annealed in vacuum at different temperature in the range of 200-500 degree C using elemental selenium in a closed graphite box. X-ray diffraction and scanning electron microscopy were used to characterize the films. It is found that the polycrystalline and single-phase CuInSe sub 2 films were uniform and densely packed with a grain size of about 3.0 mu m

  6. Ultra thin films of gadolinium deposited by evaporation in ultra high vacuum conditions: Composition, growth and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Sancho, O.A.; Castro-Gonzalez, D.; Araya-Pochet, J.A. [Centro de Investigacion en Ciencia e Ingenieria de Materiales, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Escuela de Fisica, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Vargas-Castro, W.E., E-mail: [Centro de Investigacion en Ciencia e Ingenieria de Materiales, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica); Escuela de Fisica, Universidad de Costa Rica, 2060 San Pedro, San Jose (Costa Rica)


    Ultra-thin gadolinium films with thicknesses between 8 and 101 A were deposited on AT-cut crystalline quartz substrates under ultra high vacuum conditions, and subsequently subjected to composition and morphologic characterization through X-ray photo-spectroscopy analysis and atomic force microscopy. Oxygen contamination is found on the samples, and its amount is estimated in terms of the thickness of an oxygen layer over the gadolinium films after subtracting the contribution to the XPS spectra of the underlying background. Atomic force microscope pictures provide evidence of having metal island films, with two growing regimes: the Volmer-Weber mode for the thinner films considered and the Stranski-Krastanov growing mode for the thicker ones. From evaluation of the sticking coefficient, the shape of the islands is approximated in terms of oblate spheroid caps and variation of the contact angle with film mass thickness is reported.

  7. The fabrication of a double-layer atom chip with through silicon vias for an ultra-high-vacuum cell (United States)

    Chuang, Ho-Chiao; Lin, Yun-Siang; Lin, Yu-Hsin; Huang, Chi-Sheng


    This study presents a double-layer atom chip that provides users with increased diversity in the design of the wire patterns and flexibility in the design of the magnetic field. It is more convenient for use in atomic physics experiments. A negative photoresist, SU-8, was used as the insulating layer between the upper and bottom copper wires. The electrical measurement results show that the upper and bottom wires with a width of 100 µm can sustain a 6 A current without burnout. Another focus of this study is the double-layer atom chips integrated with the through silicon via (TSV) technique, and anodically bonded to a Pyrex glass cell, which makes it a desired vacuum chamber for atomic physics experiments. Thus, the bonded glass cell not only significantly reduces the overall size of the ultra-high-vacuum (UHV) chamber but also conducts the high current from the backside to the front side of the atom chip via the TSV under UHV (9.5 × 10-10 Torr). The TSVs with a diameter of 70 µm were etched through by the inductively coupled plasma ion etching and filled by the bottom-up copper electroplating method. During the anodic bonding process, the electroplated copper wires and TSVs on atom chips also need to pass the examination of the required bonding temperature of 250 °C, under an applied voltage of 1000 V. Finally, the UHV test of the double-layer atom chips with TSVs at room temperature can be reached at 9.5 × 10-10 Torr, thus satisfying the requirements of atomic physics experiments under an UHV environment.

  8. Extending the laserspray ionization concept to produce highly charged ions at high vacuum on a time-of-flight mass analyzer. (United States)

    Trimpin, Sarah; Ren, Yue; Wang, Beixi; Lietz, Christopher B; Richards, Alicia L; Marshall, Darrell D; Inutan, Ellen D


    A new matrix compound, 2-nitrophloroglucinol, is reported which not only produces highly charged ions similar to electrospray ionization (ESI) under atmospheric pressure (AP) and intermediate pressure (IP) laserspray ionization (LSI) conditions but also the most highly charged ions so far observed for small proteins in mass spectrometry (MS) under high vacuum (HV) conditions. This new matrix extends the compounds that can successfully be employed as matrixes with LSI, as demonstrated on an LTQ Velos (Thermo) at AP, a matrix-assisted laser desorption/ionization (MALDI)-ion mobility spectrometry (IMS) time-of-flight (TOF) SYNAPT G2 (Waters) at IP, and MALDI-TOF Ultraflex, UltrafleXtreme, and Autoflex Speed (Bruker) mass spectrometers at HV. Measurements show that stable multiple charged molecular ions of proteins are formed under all pressure conditions indicating softer ionization than MALDI, which suffers a high degree of metastable fragmentation when multiply charged ions are produced. An important analytical advantage of this new LSI matrix are the potential for high sensitivity equivalent or better than AP-LSI and vacuum MALDI and the potential for enhanced mass selected fragmentation of the abundant highly charged protein ions. A second new LSI matrix, 4,6-dinitropyrogallol, produces abundant multiply charged ions at AP but not under HV conditions. The differences in these similar compounds ability to produce multiply charged ions under HV conditions is believed to be related to their relative ability to evaporate from charged matrix/analyte clusters.

  9. 75 FR 76019 - Compliance Policy Guide Sec. 390.500 Definition of “High-Voltage Vacuum Switch”-21 CFR 1002.61(a... (United States)


    ... HUMAN SERVICES Food and Drug Administration Compliance Policy Guide Sec. 390.500 Definition of ``High... Administration, HHS. ACTION: Notice; withdrawal. SUMMARY: The Food and Drug Administration (FDA) is announcing the withdrawal of Compliance Policy Guide Sec. 390.500 Definition of ``High-Voltage Vacuum...

  10. Vacuum ultraviolet spectroscopy I

    CERN Document Server

    Samson, James A; Lucatorto, Thomas


    This volume is for practitioners, experimentalists, and graduate students in applied physics, particularly in the fields of atomic and molecular physics, who work with vacuum ultraviolet applications and are in need of choosing the best type of modern instrumentation. It provides first-hand knowledge of the state-of-the-art equipment sources and gives technical information on how to use it, along with a broad reference bibliography.Key Features* Aimed at experimentalists who are in need of choosing the best type of modern instrumentation in this applied field* Contains a detailed chapter on la

  11. Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qi [State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian Liaoning 116024 (China); Liaoning Key Laboratory of Advanced Polymer Matrix Composites and College of Aerospace Engineering, Shenyang Aerospace University, Shenyang Liaoning 110136 (China); Chen Ping, E-mail: [State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian Liaoning 116024 (China) and Liaoning Key Laboratory of Advanced Polymer Matrix Composites and College of Aerospace Engineering, Shenyang Aerospace University, Shenyang Liaoning 110136 (China); Gao Yu; Mu Jujie; Chen Yongwu; Lu Chun [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and College of Aerospace Engineering, Shenyang Aerospace University, Shenyang Liaoning 110136 (China); Liu Dong [State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian Liaoning 116024 (China)


    Highlights: {yields} The level of cross-links was improved to a certain extent. {yields} The thermal stability was firstly improved and then decreased. {yields} The transverse and longitudinal CTE were both determined by the degree of interfacial debonding. {yields} The mass loss ratio increases firstly and then reaches a plateau value. {yields} The surface morphology was altered and the surface roughness increased firstly and then decreased. {yields} The transverse tensile strength was reduced. {yields} The flexural strength increased firstly and then decreased to a plateau value. {yields} The ILSS increased firstly and then decreased to a plateau value. - Abstract: The aim of this article was to investigate the effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in dynamic mechanical properties and thermal stability were characterized by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively. The changes in linear coefficient of thermal expansion (CTE) were measured in directions perpendicular and parallel to the fiber direction, respectively. The outgassing behavior of the composites were examined. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). Changes in mechanical properties including transverse tensile strength, flexural strength and interlaminar shear strength (ILSS) were measured. The results indicated that the vacuum thermal cycling could improve the crosslinking degree and the thermal stability of resin matrix to a certain extent, and induce matrix outgassing and thermal stress, thereby leading to the mass loss and the interfacial debonding of the composite. The degradation in transverse tensile strength was caused by joint effects of the matrix outgassing and the interfacial debonding, while the changes in flexural strength and ILSS were affected by a competing

  12. Vacuum measurement on vacuum packaged MEMS devices

    Energy Technology Data Exchange (ETDEWEB)

    Gan Zhiyin; Lin Dong; Wang Xuefang; Chenggang; Zhang Honghai; Liu Sheng [Institute of Microsystems and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China, 430074 (China)


    This paper investigates the relationship between the resonance impedance of a tuning fork quartz oscillator and the small size cavity vacuum pressure and develops an on-line vacuum measurement system to track real-time vacuum pressure in MEMS devices. Furthermore, authors completely analyze all facts that affect the resonance impedance. A set of metal vacuum packaged devices have been monitored for more than 10 months using this on-line vacuum measurement system. The results indicate that it is very critical to investigate vacuum packaging processes, reliability and durability of the vacuum devices by using this on-line vacuum measurement system.

  13. New Vacuum Solar Telescope

    Institute of Scientific and Technical Information of China (English)


    With its pure aperture up to 985mm, the New Vacuum Solar Telescope of China (NVST) has become the world's biggest vacuum solar telescope. The main science task of NVST is the high-resolution observation of photosphere and chromosphere including their fine structure of magnetic field on the sun. The NVST was equipped with many new technologies and powerful instruments, such as an adaptive optical system, a polarization analyzer, two vertical spectrographs, a high-resolution image system and a very narrow Ha filter (0.125A).

  14. Superoleophobicity under vacuum (United States)

    Liu, Xinjie; Wang, Xiaolong; Liang, Yongmin; Bell, Steven E. J.; Liu, Weimin; Zhou, Feng


    By using superoleophobic alumina and low vapor pressure oils we have been able to study wetting behavior at high vacuum. Here, we show that a superoleophobic state can exist for some probe liquids, even under high vacuum. However, with other liquids the surfaces are only superoloephobic because air is trapped beneath the droplet and the contact angle decreases dramatically (150°-120°) if this air is removed. These observations open up the possibility of designing materials which fully exploit the potential of physically trapped air to achieve extreme oleophobicity and/or hydrophobicity.

  15. Common Core Standards for High School English Language Arts: A Quick-Start Guide (United States)

    Kendall, John; Frazee, Dana; Ryan, Susan


    High school teachers and leaders with responsibility for English language arts (ELA) need this handy guide to successfully implement the Common Core in their respective grade levels. Getting a copy for every staff member ensures they know: (1) How grades 11-12 ELA content differs from and builds upon 9-10 standards; (2) How the four strands…


    Directory of Open Access Journals (Sweden)

    Cahit AKSU


    Full Text Available This study, aiming to examine student quantities applied to Fine Arts high School according to various variables was implemented with General Scanning Technic among Scanning Model and documentary scanning from Descriptive Researches. When we examine applications made to Fine Arts High School Music Departments Special Talent Exams in 2014-2015 Semester we see that less than 30 applications were made to 45% of departments having 30 students quota and because significant numbers of students didn’t apply to necessitate making exams and nearly half of these departments couldn’t get qualified and quantified students and in general in talent exams 71% of Music Departments of Fine Arts High Schools couldn’t fill their student quotas, even in the second placement special talent exam made for 2014-2015 semester 22 GSL Music Departments couldn’t reach their student qouota and when examine this year’s applications to Music Departments of Fine Arts High Schools with the last year’s rate number of applications decreased between 3-70% and schools with such decrease were equal to 60% of study sampling. This situation gives important messages and implies that: success rate of students graduating from these schools will decrease year by year and this fact will reflect to higher education institutions giving professional music education.

  17. Literature Survey Concerning State of the Art and Surface Generation in High Speed Milling

    DEFF Research Database (Denmark)

    Bissacco, Giuliano

    This report constitutes a short description of a literature survey concerning the state of the art and latest achievements on the rather new and powerful technology of high speed milling and its modelling, particularly looking at modelling of the generated surfaces. This task has been conducted i...

  18. ?Ffects of Using of Contemporary Art in High Education on Students Metacognitive Awareness (United States)

    Delibaltova, Vasya


    The aim of this study was to determine the effects of the use of contemporary art in High Education on Students' Metacognitive Awareness from students' point of view after their involvement in specially designed activities. The learning context was created under the main thesis that metacognitive development can be supported by the creation of…

  19. High-precision potassium measurements using laser-induced breakdown spectroscopy under high vacuum conditions for in situ K–Ar dating of planetary surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yuichiro, E-mail: [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sugita, Seiji [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Kameda, Shingo [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan); Miura, Yayoi N. [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Ishibashi, Ko; Ohno, Sohsuke [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Kamata, Shunichi [Hokkaido University Graduate School of Science, 8-2-10 Kita-10 Nishi-8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Arai, Tomoko [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan); Morota, Tomokatsu [Department of Earth and Environmental Sciences, Nagoya University, Furo Chikusa, Nagoya, Aichi 464-8601 (Japan); Namiki, Noriyuki [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Matsui, Takafumi [Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016 (Japan)


    We conducted a series of laser induced breakdown spectroscopy (LIBS) experiments for K measurements under high vacuum conditions (10{sup -6} Pa) for the purpose of developing in-situ isochron type K–Ar dating instruments for planetary missions. Unlike whole rock measurement methods, isochron measurements require LIBS experiments in a vacuum chamber because simultaneous Ar isotopic measurements are necessary. However, detailed examination of detection limits and accuracy of this method at low pressures has not been examined extensively before. In this study, the capability of K measurements under high vacuum conditions was examined using LIBS. A compact Czerny-Turner type spectrometer equipped with a charge-coupled device (CCD) as a detector was employed. Twenty-three geologic standard samples were measured using the LIBS method. The second strongest K emission line at 769.89 nm was used for calibration because the strongest emission line at 766.49 nm may suffer from strong interference from another emission line. A calibration curve was constructed for K using internal normalization with the oxygen line at 777 nm and well fitted by a power-law function. Based on the prediction band method, the detection limit and the quantitation limit were estimated to be 300 and 800 ppm, respectively. The 1σ relative uncertainty of the K calibration was 20% for 1 wt.% K{sub 2}O and 40% for 3000 ppm K{sub 2}O. If the amount of Ar is measured with 15% error for the 3.5 billion years rocks containing 1 and 0.3 wt.% K{sub 2}O, the K–Ar ages would be determined with 10% and 20% 1σ errors, respectively. This level of precision will significantly improve the current Martian chronology, which has uncertainty about a factor of two to four. These results indicate that the concentration of K can be measured quantitatively under high vacuum conditions using a combination of instruments that have previously been carried in planetary missions, which suggests the viability of building in

  20. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H


    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  1. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.


    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  2. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.


    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  3. High-reflectivity multilayer mirrors for a vacuum-ultraviolet interval of 35-50nm. (United States)

    Uspenskii, Y A; Levashov, V E; Vinogradov, A V; Fedorenko, A I; Kondratenko, V V; Pershin, Y P; Zubarev, E N; Fedotov, V Y


    Sc-Si multilayers are suggested as high-reflectivity coatings for a VUV interval of 35-50 nm. Fabricated mirrors show normal-incidence reflectivity of 30-54%, which is high enough for effective manipulation of the beams of compact-discharge, laser-driven x-ray lasers. The values obtained are not, however, limits for Sc-Si coatings. Theoretical estimations as well as electron microscopy studies of Sc-Si interfaces indicate a large potential for a further increase in their reflectivity.

  4. 1.5 kW high-peak-power vacuum ultraviolet flash lamp using a pulsed silent discharge of krypton gas (United States)

    Kawanaka, J.; Shirai, T.; Kubodera, S.; Sasaki, W.


    A 1.5 kW high-peak-power discharge lamp with short emission duration of 140 ns has been developed in the vacuum ultraviolet spectral region. Our numerical calculation ensured that the peak emission at 147 nm was due to singlet excimers (1Σ), which were mainly produced via electron-collisional mixing of triplet excimers (3Σ).

  5. Effects of Precipitates in Cu upon Impact Fracture : An Ultra-High-Vacuum Study with Local Probe Scanning Auger/Electron Microscopy

    NARCIS (Netherlands)

    Agterveld, D.T.L. van; Palasantzas, G.; Hosson, J.Th.M. De


    In situ fracture under ultra-high vacuum (UHV) conditions of copper-alloys containing copper sulfide precipitates exhibits areas in the form of pits. The wide variety of morphologies depends significantly on the size of the existing precipitate. For large precipitates, the fractured surface reveals

  6. Baryogenesis in false vacuum

    CERN Document Server

    Hamada, Yuta


    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scale such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops the large vacuum expectation value in the early universe, the lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with a second Higgs doublet and a singlet scalar.

  7. High-Efficiency Solar Thermal Vacuum Demonstration Completed for Refractive Secondary Concentrator (United States)

    Wong, Wayne A.


    Common to many of the space applications that utilize solar thermal energy--such as electric power conversion, thermal propulsion, and furnaces--is a need for highly efficient, solar concentration systems. An effort is underway at the NASA Glenn Research Center to develop the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, the refractive secondary concentrator enables very high system concentration ratios (10,000 to 1) and very high temperatures (>2000 K). The innovative refractive secondary concentrator offers significant advantages over all other types of secondary concentrators. The refractive secondary offers the highest throughput efficiency, provides for flux tailoring, requires no active cooling, relaxes the pointing and tracking requirements of the primary concentrator, and enables very high system concentration ratios. This technology has broad applicability to any system that requires the conversion of solar energy to heat. Glenn initiated the development of the refractive secondary concentrator in support of Shooting Star, a solar thermal propulsion flight experiment, and continued the development in support of Space Solar Power.

  8. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Marneffe, J.-F. de, E-mail:; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R. [IMEC v.z.w., 3001 Leuven (Belgium); Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M. [IMEC v.z.w., 3001 Leuven (Belgium); Department of Chemistry, KULeuven, 3001 Leuven (Belgium); Goodyear, A.; Cooke, M. [Oxford Instruments Plasma Technology, BS49 4AP Bristol (United Kingdom)


    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  9. Sensitivity to Dark Energy candidates by searching for four-wave mixing of high-intensity lasers in the vacuum

    CERN Document Server

    Homma, Kensuke


    Theoretical challenges to understand Dark Matter and Dark Energy suggest the existence of low-mass and weakly coupling fields in the universe. The quasi-parallel photon-photon collision system (QPS) can provide chances to probe the resonant production of these light dark fields and the induced decay by the coherent nature of laser fields simultaneously. By focusing high-intensity lasers with different colors in the vacuum, new colors emerge as the signature of the interaction. Because four photons in the initial and final states interplay via the dark field exchange, this process is analogous to four-wave mixing in quantum optics, where the frequency sum and difference among the incident three waves generate the fourth wave with a new frequency via the nonlinear property of crystals. The interaction rate of the four-wave mixing process has the cubic dependence on the intensity of each wave. Therefore, if high-intensity laser fields are given, the sensitivity to the weakly coupling of dark fields to photons ra...

  10. Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography. (United States)

    Boursier, Laure; Souchon, Vincent; Dartiguelongue, Cyril; Ponthus, Jérémie; Courtiade, Marion; Thiébaut, Didier


    The development of efficient conversion processes requires extended knowledge on vacuum gas oils (VGOs). Among these processes, hydrocracking is certainly one of the best suited to meet the increasing demand on high quality diesel fuels. Most of refractory and inhibiting compounds towards hydrocracking and especially nitrogen containing compounds are contained in a fraction of the VGO called the resin fraction, which corresponds to the most polar fraction of a VGO obtained by liquid chromatography (LC) fractionation on a silica column. However, the lack of resolution observed through existing analytical methods does not allow a detailed characterization of these fractions. A recent study showed that comprehensive high temperature two-dimensional gas chromatography (HT-GC×GC) methods could be optimized in order to elute heavy compounds. This method was implemented for the analysis of VGO resin fractions and complete elution was reached. Firstly, the method was validated through repeatability, accuracy, linearity and response factors calculations. Four VGO resin fractions were analyzed and their HT-GC×GC simulated distillation curves were compared to their GC simulated distillation (GC-SimDist) curves. This comparison showed that the method allows complete elution of most of the analyzed VGO resin fractions. However, a detailed characterization of these fractions is not yet obtained due to the very large number of heteroatomic and aromatic species that a flame ionization detector can detect. Current work aims at increasing the selectivity of GC×GC by using heteroatom selective detectors in order to improve the characterization of such products.

  11. A proposal for testing subcritical vacuum pair production with high power lasers

    CERN Document Server

    Gregori, G; Rajeev, P P; Chen, H; Clarke, R J; Huffman, T; Murphy, C D; Prozorkevich, A V; Roberts, C D; Röpke, G; Schmidt, S M; Smolyansky, S A; Wilks, S; Bingham, R; 10.1016/j.hedp.2009.11.001


    We present a proposal for testing the prediction of non-equilibrium quantum field theory below the Schwinger limit. The proposed experiments should be able to detect a measurable number of gamma rays resulting from the annihilation of pairs in the focal spot of two opposing high intensity laser beams. We discuss the dependence of the expected number of gamma rays with the laser parameters and compare with the estimated background level of gamma hits for realistic laser conditions.

  12. A proposal for testing subcritical vacuum pair production with high power lasers.

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, G.; Blaschke, D. B.; Rajeev, P. P.; Chen, H.; Clarke, R. J.; Huffman, T.; Murphy, C. D.; Prozorkevich, A. V.; Roberts, C. D.; Ropke, G.; Schmidt, S. M.; Smolyansky, S. A.; Wilks, S.; Bingham, R.; Physics; Univ. of Oxford; Rutherford Appleton Lab.; Univ. of Wroclaw; Joint Inst. for Nuclear Research; LLNL; Saratov State Univ.; Univ. Rostock; Technische Univ. Dortmund; Forschungszentrum Julich GmbH


    We present a proposal for testing the prediction of non-equilibrium quantum field theory below the Schwinger limit. The proposed experiments should be able to detect a measurable number of gamma rays resulting from the annihilation of pairs in the focal spot of two opposing high-intensity laser beams. We discuss the dependence of the expected number of gamma rays with the laser parameters and compare with the estimated background level of gamma hits for realistic laser conditions.

  13. 大型高真空容器的气体负荷分析%Gas load analysis of large-scale high vacuum vessel

    Institute of Scientific and Technical Information of China (English)

    陆长胜; 于文泉; 黄金祥; 陆艳君; 岳向吉; 巴德纯


    With the improvement of science and technology , the development of some vacuum equipments goes toward large scale and high vacuum . Analysis shows that material degassing and gas leakage are the main gas load of large-scale high vacuum vessels . In order to enhance the technical level of large high-vacuum equipments , degassing and leakage should be given more attention in the design of chamber and sealing structure , leak detection design and technological analysis for manufacturing process .%随着科学技术的进步,某些用途的真空装置向大型化、高真空度的方向发展。分析表明材料出气和漏气是大型高真空容器的主要气体负荷,在容器及密封结构设计、检漏设计、制造工艺技术分析中应重点研究,以提高大型高真空装备的技术水平。

  14. New Applications of Scanning Tunneling Microscopy in Air, Liquids, and Ultra-High Vacuum (United States)

    Dovek, Moris Musa

    Scanning tunneling microscopy (STM) offers a wide range of applications besides being a high resolution tool for atomic scale surface structure determination. We present three applications that are of particular relevance to integrated circuit fabrication: molecular imaging of ultrathin resists, nanometer scale lithography, and epitaxial growth characterization on an atomically flat substrate. The use of thin organic films as ultrathin resists for nanometer scale fabrication and information recording requires an understanding of their microstructure. We have used the Langmuir-Blodgett technique to prepare and the STM to study monolayer and submonolayer films of poly(octadecylacrylate) (PODA) and poly(methylmethacrylate) (PMMA) on graphite. One striking feature was the degree of order observed; a second was the morphological differences between films of submonolayer thickness and those of at least one monolayer. We were also able to locally modify and apparently cut through the polymer fibrils by pulsing the gap voltage in excess of 4 V. Nanometer-scale surface modification has important potential applications in areas such as high resolution lithography for solid-state devices or high density data storage. The STM can be used for surface modification by either mechanical indentation of the surface with the very sharp tip or by applying short voltage or current pulses across the tunnel junction. We review some of the mechanical writing techniques on Au(111), which render depressions of approximately 100 A in diameter. We also introduce a technique for writing permanent features on graphite of 40 A average and 20 A minimum diameter with an average resolvable spacing of 60 A. We found the reliability of the writing process on graphite to depend strongly on the presence of water vapor. STM can also be used to analyze epitaxial growth on an atomic scale, a resolution range not available to SEM, HRTEM, and REM, which have so far been the only tools used to verify

  15. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    O’Toole, A., E-mail:, E-mail: [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail:, E-mail: [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)


    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  16. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger


    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  17. Preparation and thermal stability on non-vacuum high temperature solar selective absorbing coatings

    Institute of Scientific and Technical Information of China (English)

    HAO Lei; WANG ShuMao; JIANG LiJun; LIU XiaoPeng; LI HuaLing; LI ZhiNian


    Spectrally selective TiAI/TiAIN/TiAION/TiAIO coating was deposited on stainless steel and copper sub-strates using a multi-arc ion plating system.The structure,morphology,optical reflectance and elec-trical resistivity were investigated by X-ray diffraction (XRD),scanning electron microscopy (SEM),spectrophotometer and four-point probe meter,respectively.The results show that the coating exhibits high absorptance (-0.9) and low emittance (0.09-0.19).The coating remains stable in air up to 650℃ for 1h.These properties are of extraordinary interest in solar thermal power generations and energy saving buildings.

  18. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer (United States)

    O'Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Shaner, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Asadoor, M.; Bhawal, A.; Gong, P.; Kim, C.; Lottarini, A.; Minenkov, Y.; Murphy, C.


    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  19. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)


    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  20. Reduction of Listeria innocua contamination in vacuum-packaged dry-cured Italian pork products after high hydrostatic pressure treatment

    Directory of Open Access Journals (Sweden)

    Giuseppe Merialdi


    Full Text Available The present work aims to present the results of the application of a treatment with high hydrostatic pressure (HHP on Italian fermented and dry-cured pork products. The products used in this study were portioned cured ham, portioned bacon and salami, vacuumpackaged and produced by a single processing company. Two studies were conducted on a single batch of the three products by means of an artificial contamination with Listeria innocua as a surrogate of L. monocytogenes. In the first trial a superficial contamination was obtained by immersion for 3 min in the culture broth with a concentration of approximately 9 log cfu/mL. At the end of the inoculum step, the pieces were dred at room temperature and vacuum packaged. In the second trial 50 kg of minced pork meat were contaminated before production of salami. In both cases the inoculum contained 5 strains of L. innocua. Subsequently, in both trials, 10 samples were randomly divided into two groups of 5 pieces each: i TH group, samples treated with HHP; ii group C, control samples, not subjected to any treatment. All samples were stored at refrigeration temperature at the end of HHP treatments (if applied, and analyzed for the determination of the surface (1st trial and deep (2nd trial quantitative contamination of L. innocua. pH and aW were also determined on 3 pieces of each products belonging to group C. The difference between the medians of the log cfu/cm2 or g established between controls and treated were compared using the non-parametric test (Kruskal-Wallis test with P<0.01. In all products and in both trials the level of contamination detected in treatment groups was always significantly lower than in controls (P<0.01. In particular, in vacuum-packaged ham, bacon and salami viability logarithmic viability reductions equal to -2.29, -2.54 and -2.51 were observed, respectively. This study aimed to evaluate a not-thermal treatment on Italian cured or fermented pork products. The results of

  1. Temporal distribution of electron and ion emission caused by laser excitation of optical surfaces in ultra-high vacuum (United States)

    Siekhaus, W. J.; Chase, L. L.; Milam, D.


    We have measured electron and ion emission under high vacuum conditions from several semiconductor and insulator surfaces excited by the first and third harmonics of a 1.06 micron Nd laser. The dependence of this emission on laser fluence and wavelength is consistent with a multiphoton excitation process. The dependence on laser pulse length implies, however, that other processes, either diffusive, thermal or thermomechanical, are also involved. Additional information is provided by the temporal and spatial distribution of the charge emission. The most extensive results have been obtained with single crystals of ZnS, for which nearly equal magnitudes of negative and positive charge emission are observed. The results suggest the possibility that the observed charge emission results primarily from the ejection of neutral atoms and molecules from the surface, followed by selective multiphoton ionization of one or more of the neutral species. The irreversible surface modification implied by the observed emission may be the precursor to observable surface damage. Detailed studies of the properties of the emitted particles may be very useful in developing a basic understanding of the damage mechanisms.

  2. Improved ion transmission from atmospheric pressure to high vacuum using a multicapillary inlet and electrodynamic ion funnel interface (United States)

    Kim; Udseth; Smith


    A heated multicapillary inlet and ion funnel interface was developed to couple an electrospray ionization (ESI) source to a high-vacuum stage for obtaining improved sensitivity in mass spectrometric applications. The inlet was constructed from an array of seven thin-wall stainless steel tubes soldered into a central hole of a cylindrical heating block. An electrodynamic ion funnel was used in the interface region to more effectively capture, focus, and transmit ions from the multicapillary inlet. The interface of seven capillary inlets with the ion funnel showed more than 7 times higher transmission efficiency compared to that of a single capillary inlet with the ion funnel and a 23-fold greater transmission efficiency than could be obtained using the standard orifice-skimmer interface of a triple-quadrupole MS. The multiple-capillary inlet and ion funnel interface showed an overall 10% ion transmission efficiency and approximately 3-4% overall detection efficiency of ions from solution based (i.e., prior to electrospray). The improved performance was achieved under conditions where ESI operation is robust and results in a significant increase in dynamic range.

  3. Impact of high oxygen and vacuum retail ready packaging formats on lamb loin and topside eating quality. (United States)

    Frank, Damian Conrad; Geesink, Geert; Alvarenga, Tharcilla I R C; Polkinghorne, Rod; Stark, Janet; Lee, Michael; Warner, Robyn


    Lamb steaks from semimembranosus (SM) and longissimus thoracis et lumborum (LTL) muscles were allocated to three different packaging treatments - Darfresh® vacuum skin packaging (VSP), Darfresh® Bloom packaging (80% O2:20% CO2; Hi-Ox-DB) or high oxygen modified atmosphere packaging (80% O2:20% CO2; Hi-Ox-MAP) - and stored in simulated retail display for 5 or 10days and then subjected to consumer sensory and chemical analyses. Hi-Ox-MAP and Hi-Ox-DB samples had lower tenderness, flavor, juiciness and overall liking scores and higher TBARS values, compared to VSP. Hi-Ox-MAP samples deteriorated in juiciness and flavor between 5 and 10days. Hi-Ox-MAP LTL samples had a lower myofibrillar fragmentation index, consistent with reduced proteolysis, although desmin proteolysis and desmin and troponin-T cross-linking were not influenced by packaging. The LTL exhibited greater desmin degradation and reduced desmin cross-linking relative to the SM, supporting the higher tenderness scores in this muscle. Direct packaging of lamb into retail ready VSP may provide the sheepmeat industry with greater flexibility while increasing consumer satisfaction.

  4. Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India)], E-mail:; Khan, Mohd. Alim [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Kumar, Mahesh; Shivaprasad, S.M. [Surface Physics and Nanostructures Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Satyanarayana, B.S. [MIT Innovation Centre and Electronics and Communication Department, Manipal Institute of Technology, Manipal-579104 (India); Dixit, P.N. [Plasma Processed Materials Group, National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi-110 012 (India); Bhattacharyya, R. [Emeritus Scientist, National Physical Laboratory, New Delhi-110012 (India); Khan, M.Y. [Department of Physics, Jamia Millia Islamia, Central University, New Delhi-110025 (India)


    The application of a sufficiently high negative substrate bias, during the growth of tetrahedral amorphous carbon (ta-C), is usually associated with low sp{sup 3} bonding configuration and stressed films. However, in an effort to understand and utilize the higher pseudo thermo dynamical conditions during the film growth, at high negative substrate bias (- 300 V), reported here is a study on ta-C films grown under different hydrogen and nitrogen concentration. As grown ta-C films were studied under different negative substrate bias conditions. The variation of the sp{sup 3} content and sp{sup 3}/sp{sup 2} ratio in the ta-C films exhibits a trend similar to those reported in literature, with a subtle variation in this report being the substrate bias voltage, which was observed to be around - 200 V, for obtaining the highest sp{sup 3} (80%) bonding and sp{sup 3}/sp{sup 2} (3.95) ratio. The hydrogen and nitrogen incorporated ta-C films studied, at a bias of - 300 V, show an increase in sp{sup 3} (87-91%) bonding and sp{sup 3}/sp{sup 2} (7-10) ratio in the range of studies reported. The inference is drawn on the basis of the set of data obtained from measurements carried out using X-ray photoelectron spectroscopy, X-ray induced Auger electron spectroscopy and Raman spectroscopy of as grown and hydrogen and nitrogen incorporated ta-C films deposited using an S bend filtered cathodic vacuum arc system. The study indicates the possibility of further tailoring ta-C film properties and also extending capabilities of the cathodic arc system for developing carbon based films for electronics and tribological applications.

  5. Electrical characterization of SiGeSn grown on Ge substrate using ultra high vacuum chemical vapor deposition (United States)

    Ahoujja, Mo; Kang, S.; Hamilton, M.; Yeo, Y. K.; Kouvetakis, J.; Menendez, J.


    There has been recently considerable interest in growing SiyGe1-x-ySnx alloys for the fabrication of photonic devices that could be integrated with Si technologies. We report temperature dependent Hall (TDH) measurements of the hole concentration and mobility from high quality p-type doped Si0.08Ge0.90Sn0.02 layers grown on p-type doped Ge substrates using ultra high vacuum chemical vapor deposition. The TDH measurements show the hole sheet density remains constant at low temperatures before slightly decreasing and dipping at ˜ 125 K. It then exponentially increases with temperature due to the activation of shallow acceptors. At temperatures above ˜ 450 K, the hole sheet density increases sharply indicating the onset of intrinsic conduction in the SiGeSn and/or Ge layers. To extract the electrical properties of the SiGeSn layer alone, a parametric fit using a multi layer conducting model is applied to the measured hole concentration and mobility data. The analysis yields boron and gallium doping concentrations of 3x10^17 cm-3 and 1x10^18 cm-3 with activation energies of 10 meV and 11 meV for the SiGeSn layer and Ge substrate, respectively. Furthermore, a temperature independent hole sheet concentration of ˜5x10^15 cm-2 with a mobility of ˜250 cm^2/Vs, which is believed to be due to an interfacial layer between the SiGeSn layer and the Ge substrate, is also determined.

  6. An electrostatic ion pump with nanostructured Si field emission electron source and Ti particle collectors for supporting an ultra-high vacuum in miniaturized atom interferometry systems (United States)

    Basu, Anirban; Velásquez-García, Luis F.


    We report a field emission-based, magnetic-less ion pump architecture for helping maintain a high vacuum within a small chamber that is compatible with miniaturized cold-atom interferometry systems. A nanostructured silicon field emitter array, with each nano-sharp tip surrounded by a self-aligned proximal gate electrode, is used to generate a surplus of electrons that cause impact ionization of gas molecules. A two-stage cylindrical electron collector, made of titanium, is used to increase the travel distance of the electrons, augmenting the ionization probability; gas ionization is subsequently followed by gettering of the ions by a negatively charged, annular-shaped titanium electrode. A proof-of-concept pump prototype was characterized using a 25 cm3 stainless steel vacuum chamber backed up by an external turbomolecular pump, a diaphragm pump, and a standard ion pump. Pumping action was observed with the electrostatic pump operating alone after an initial rapid rise of the chamber pressure due to electron/ion scrubbing. In addition, running the electrostatic pump in combination with the standard ion pump results in a lower vacuum level compared to the vacuum level produced by the standard ion pump acting alone. A proposed reduced-order model accurately predicts the functional dependence of the pressure versus time data and provides a good estimate of the characteristic pumping time constant inferred from the experiments.

  7. Hadron Contribution to Vacuum Polarisation (United States)

    Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.


    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.

  8. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat. (United States)

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R


    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  9. Set-up of a High-Resolution 300 mK Atomic Force Microscope in an Ultra-High Vacuum Compatible 3He/10T Cryostat

    CERN Document Server

    von Allwörden, Henning; Köhler, Arne; Eelbo, Thomas; Schwarz, Alexander; Wiesendanger, Roland


    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where tip and sample can be exchanged in-situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  10. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat (United States)

    von Allwörden, H.; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.


    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  11. Comment on "The Lamb Shift and Ultra High Energy Cosmic Rays" and Comment on "Vacuum Polarization Energy Losses of High Energy Cosmic Rays"

    CERN Document Server

    Deligny, O


    The cosmic rays spectrum has been shown to extend well beyond 10^20 eV. With nearly 20 events observed in the last 40 years, it is now established that particles with energies near or above 10^21 eV. No nearby astrophysical object has been shown to correlate with the arrival directions of the highest energy events, yet the exponential cut-off in the high energy end of the spectrum one expects to see in the case of far sources is not visible. It was recently pointed out that the influence of the vacuum of quantum electrodynamics on particle propagation could explain qualitatively this mystery. This note is a critic to these ideas.

  12. FOREWORD: The 4th CCM International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa) (United States)

    Legras, Jean-Claude; Jousten, Karl; Severn, Ian


    The fourth CCM (Consultative Committee for Mass and related quantities) International Conference on Pressure Metrology from Ultra-High Vacuum to Very High Pressures (10-9 Pa to 109 Pa) was held at the Institute of Physics in London from 19-21 April 2005. The event, which was organized by the Low, Medium and High Pressure working groups of the CCM, was attended by in excess of one hundred participants with representatives from five continents and every regional metrology organization. The purpose of this conference is to review all the work that is devoted to the highest quality of pressure measurement by primary standards as well as the dissemination of the pressure scale. A total of 52 papers were presented orally, and 26 as posters, in sessions that covered the following topics: Latest scientific advances in pressure and vacuum metrology Innovative transfer standards, advanced sensors and new instrument development Primary (top-level) measurement standards International and regional key comparisons New approaches to calibration It is interesting the note that since the third conference in 1999 the pressure range covered has increased by two orders of magnitude to 109 Pa, to take into account more exacting scientific and industrial demands for traceable vacuum measurement. A further feature of the conference was the increased range of instrumentation and techniques used in the realization and potential realization of pressure standards. Seton Bennett, Director of International Metrology at the National Physical Laboratory, opened the conference and Andrew Wallard, Director of the Bureau International des Poids et Mesures (BIPM), gave the keynote address which described the implementation of the mutual recognition arrangement and the resulting removal of metrological barriers to international trade. Many experts have contributed significant amounts of their time to organize the event and to review the submitted papers. Thanks are due to all of these people

  13. The Paseo Fine and Performing Arts Magnet High School, 1989-1990, 1990-1991, 1991-1992. Summative Evaluation. (United States)

    Newbill, Sharon L.

    This document looks at the Kansas City, Missouri, Paseo Academy of Fine and Performing Arts Magnet High School's three-year implementation of the magnet theme of the Long-Range Magnet School Plan. In addition to the core curriculum, five theme strands (visual arts, music, theater, creative writing, and dance) were offered to 9th through 11th grade…

  14. Household vacuum cleaners vs. the high-volume surface sampler for collection of carpet dust samples in epidemiologic studies of children

    Directory of Open Access Journals (Sweden)

    Buffler Patricia A


    Full Text Available Abstract Background Levels of pesticides and other compounds in carpet dust can be useful indicators of exposure in epidemiologic studies, particularly for young children who are in frequent contact with carpets. The high-volume surface sampler (HVS3 is often used to collect dust samples in the room in which the child had spent the most time. This method can be expensive and cumbersome, and it has been suggested that an easier method would be to remove dust that had already been collected with the household vacuum cleaner. However, the household vacuum integrates exposures over multiple rooms, some of which are not relevant to the child's exposure, and differences in vacuuming equipment and practices could affect the chemical concentration data. Here, we compare levels of pesticides and other compounds in dust from household vacuums to that collected using the HVS3. Methods Both methods were used in 45 homes in California. HVS3 samples were collected in one room, while the household vacuum had typically been used throughout the home. The samples were analyzed for 64 organic compounds, including pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls (PCBs, using GC/MS in multiple ion monitoring mode; and for nine metals using conventional microwave-assisted acid digestion combined with ICP/MS. Results The methods agreed in detecting the presence of the compounds 77% to 100% of the time (median 95%. For compounds with less than 100% agreement, neither method was consistently more sensitive than the other. Median concentrations were similar for most analytes, and Spearman correlation coefficients were 0.60 or higher except for allethrin (0.15 and malathion (0.24, which were detected infrequently, and benzo(kfluoranthene (0.55, benzo(apyrene (0.55, PCB 105 (0.54, PCB 118 (0.54, and PCB 138 (0.58. Assuming that the HVS3 method is the "gold standard," the extent to which the household vacuum cleaner method yields relative risk

  15. Assessing the feasibility of a high-temperature, helium-cooled vacuum vessel and first wall for the Vulcan tokamak conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.S., E-mail: [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States); Hartwig, Z.S.; Olynyk, G.M.; Payne, J.E. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States)


    The Vulcan conceptual design (R = 1.2 m, a = 0.3 m, B{sub 0} = 7 T), a compact, steady-state tokamak for plasma-material interaction (PMI) science, must incorporate a vacuum vessel capable of operating at 1000 K in order to replicate the temperature-dependent physical chemistry that will govern PMI in a reactor. In addition, the Vulcan divertor must be capable of handling steady-state heat fluxes up to 10 MW m{sup -2} so that integrated materials testing can be performed under reactor-relevant conditions. A conceptual design scoping study has been performed to assess the challenges involved in achieving such a configuration. The Vulcan vacuum system comprises an inner, primary vacuum vessel that is thermally and mechanically isolated from the outer, secondary vacuum vessel by a 10 cm vacuum gap. The thermal isolation minimizes heat conduction between the high-temperature helium-cooled primary vessel and the water-cooled secondary vessel. The mechanical isolation allows for thermal expansion and enables vertical removal of the primary vessel for maintenance or replacement. Access to the primary vessel for diagnostics, lower hybrid waveguides, and helium coolant is achieved through {approx}1 m long intra-vessel pipes to minimize temperature gradients and is shown to be commensurate with the available port space in Vulcan. The isolated primary vacuum vessel is shown to be mechanically feasible and robust to plasma disruptions with analytic calculations and finite element analyses. Heat removal in the first wall and divertor, coupled with the ability to perform in situ maintenance and replacement of divertor components for scientific purposes, is achieved by combining existing helium-cooled techniques with innovative mechanical attachments of plasma facing components, either in plate-type helium-cooled modules or independently bolted, helium-jet impingement-cooled tiles. The vacuum vessel and first wall design enables a wide range of potential PFC materials and

  16. Use of vacuum tubes in test instrumentation for measuring characteristics of fast high-voltage semiconductor devices (United States)

    Berning, D.


    Circuits are described that permit measurement of fast events occurring in power semiconductors. These circuits were developed for the dynamic characterization of transistors used in inductive-load switching applications. Fast voltage clamping using vacuum diodes is discussed, and reference is made to a unique circuit that was built for performing nondestructive, reverse-bias, second-breakdown tests on transistors.

  17. Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Nils M.; Steinmann, Vera; Hertel, Dirk; Meerholz, Klaus [Department fuer Chemie, Universitaet Koeln, Luxemburger Strasse 116, 50939 Koeln (Germany); Buerckstuemmer, Hannah; Wuerthner, Frank [Institut fuer Organische Chemie and Roentgen Research Center for Complex Material Systems, Universitaet Wuerzburg, Am Hubland, 97074 Wuerzburg (Germany); Hwang, Jaehyung [BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen (Germany)


    Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes. (United States)

    Kronenberg, Nils M; Steinmann, Vera; Bürckstümmer, Hannah; Hwang, Jaehyung; Hertel, Dirk; Würthner, Frank; Meerholz, Klaus


    Identically configured bulk heterojunction organic solar cells based on merocyanine dye donor and fullerene acceptor compounds (see figure) are manufactured either from solution or by vacuum deposition, to enable a direct comparison. Whereas the former approach is more suitable for screening purposes, the latter approach affords higher short-circuit current density and power conversion efficiency.

  19. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de


    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  20. Vacuum Brazing of Accelerator Components (United States)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.


    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  1. Effect of High Temperature Storage in Vacuum, Air, and Humid Conditions on Degradation of Gold/Aluminum Wire Bonds in PEMs (United States)

    Teverovsky, Alexander


    Microcircuits encapsulated in three plastic package styles were stored in different environments at temperatures varying from 130 C to 225 C for up to 4,000 hours in some cases. To assess the effect of oxygen, the parts were aged at high temperatures in air and in vacuum chambers. The effect of humidity was evaluated during long-term highly accelerated temperature and humidity stress testing (HAST) at temperatures of 130 C and 150 C. High temperature storage testing of decapsulated microcircuits in air, vacuum, and HAST chambers was carried out to evaluate the role of molding compounds in the environmentally-induced degradation and failure of wire bonds (WB). This paper reports on accelerating factors of environment and molding compound on WB failures. It has been shown that all environments, including oxygen, moisture, and the presence of molding compounds reduce time-to-failures compared to unencapsulated devices in vacuum conditions. The mechanism of the environmental effect on KB degradation is discussed.

  2. Combined high-pressure cell-ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry

    DEFF Research Database (Denmark)

    Johansson, Martin; Jørgensen, Jan Hoffmann; Chorkendorff, Ib


    An apparatus for fabrication, surface analysis in ultrahigh vacuum, and testing of the catalytic activity of model metal alloy catalysts is described. Arrays of model catalysts are produced by electron-beam deposition of up to four metals simultaneously onto a substrate. The surface analysis...... techniques available are scanning electron microscopy, x-ray photoemission spectroscopy, ion scattering spectroscopy, Auger electron spectroscopy, sputter profiling, and temperature programmed desorption. The catalytic activity of the model catalysts is tested individually by scanning a combined gas delivery...... be studied on a substrate 10 mm in diameter. A high pressure cell with an all-metal sealed ultrahigh vacuum lock is also described as part of the work. ©2004 American Institute of Physics....

  3. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail:, E-mail:; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D., E-mail:, E-mail: [Leibniz-Institut für Plasmaforschung und Technologie e.V., Felix-Hausdorff-Straße 2, 17489 Greifswald (Germany)


    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  4. Experimental Investigation on the Influence of Axial Magnetic Field Distribution on Resisting the Constriction of a High-Current Vacuum Arc

    Institute of Scientific and Technical Information of China (English)

    SHI Zongqian; LIU Zhigang; JIA Shenli; SONG Xiaochuan; WANG Lijun


    Effect of the axial magnetic field (AMF) on resisting the constriction of a high-current vacuum arc is studied in this paper. Two typical AMF distributions were investigated, i.e., the traditional bell-shaped AMF, and the saddle-shaped AMF. Experiments were conducted in a detachable vacuum chamber with a rms arc current in the range of 10 kA to 25 kA. The arc column was photographed by a high-speed digital camera with an exposure time of 2 microseconds. The constriction of the vacuum arc was compared by processing the images of the arc column under the two different field configurations and numerically determining the dimensions of the arc column near the electrodes. It was also confirmed that the AMF distribution had a signifcant influence on its effectiveness in resisting arc constriction, Furthermore, the AMF strength near the periphery of the arc is more influential than that at the centre of the electrodes in resisting arc constriction.

  5. State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (United States)

    State of the Art High-Throughput Approaches to Genotoxicity: Flow Micronucleus, Ames II, GreenScreen and Comet (Presented by Dr. Marilyn J. Aardema, Chief Scientific Advisor, Toxicology, Dr. Leon Stankowski, et. al. (6/28/2012)

  6. Quantum Electrodynamics vacuum polarization solver

    CERN Document Server

    Carneiro, Pedro; Fonseca, Ricardo; Silva, Luís


    The self-consistent modeling of vacuum polarization due to virtual electron-positron fluctuations is of relevance for many near term experiments associated with high intensity radiation sources and represents a milestone in describing scenarios of extreme energy density. We present a generalized finite-difference time-domain solver that can incorporate the modifications to Maxwells equations due to virtual vacuum polarization. Our multidimensional solver reproduced in one dimensional configurations the results for which an analytic treatment is possible, yielding vacuum harmonic generation and birefringence. The solver has also been tested for two-dimensional scenarios where finite laser beam spot sizes must be taken into account. We employ this solver to explore different types of counter-propagating configurations that can be relevant for future planned experiments aiming to detect quantum vacuum dynamics at ultra-high electromagnetic field intensities.

  7. Vacuum-Packaging Technology for IRFPAs (United States)

    Matsumura, Takeshi; Tokuda, Takayuki; Tsutinaga, Akinobu; Kimata, Masafumi; Abe, Hideyuki; Tokashiki, Naotaka

    We developed vacuum-packaging equipment and low-cost vacuum packaging technology for IRFPAs. The equipment is versatile and can process packages with various materials and structures. Getters are activated before vacuum packaging, and we can solder caps/ceramic-packages and caps/windows in a high-vacuum condition using this equipment. We also developed a micro-vacuum gauge to measure pressure in vacuum packages. The micro-vacuum gauge uses the principle of thermal conduction of gases. We use a multi-ceramic package that consists of six packages fabricated on a ceramic sheet, and confirm that the pressure in the processed packages is sufficiently low for high-performance IRFPA.

  8. Vacuum mechatronics. Proceedings. (United States)

    Belinski, S. E.; Shirazi, M.; Hackwood, S.; Beni, G.

    The discipline of vacuum mechatronics is the design and development of vacuum-compatible, computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. Vacuum mechantronics is relevant to research engineers in integrated circuit manufacturing, surface physics, food processing, biotechnology, materials handling, space sciences and manufacturing.

  9. Development of Subischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations (United States)


    International Organization for Stan- dardization, Li-Ion = lithium -ion, VAS = vacuum-assisted sus- pension. *Address all correspondence to Stefania Fatone...both electrical pumps, a lithium -ion (Li-Ion) battery powered a direct current motor, which ran a small capacity pump. Microprocessor circuitry...were deter- mined prior to initiation of the test. At the three weight settings tested for the Harmony P2 and Harmony HD pumps, there were no

  10. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields

    CERN Document Server

    Misra, Shashank; Drozdov, Ilya K; Seo, Jungpil; Gyenis, Andras; Kingsley, Simon C J; Jones, Howard; Yazdani, Ali


    We describe the construction and performance of a scanning tunneling microscope (STM) capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically-resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of perform...

  11. Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals. (United States)

    Merzlikin, Sergiy V; Borodin, S; Vogel, D; Rohwerder, M


    In this work, a newly developed UHV-based high precision low background setup for hydrogen thermal desorption analysis (TDA) of metallic samples is presented. Using an infrared heating with a low thermal capacity enables a precise control of the temperature and rapid cool down of the measurement chamber. This novel TDA-set up is superior in sensitivity to almost every standard hydrogen analyzer available commercially due to the special design of the measurement chamber, resulting in a very low hydrogen background. No effects of background drift characteristic as for carrier gas based TDA instruments were observed, ensuring linearity and reproducibility of the analysis. This setup will prove to be valuable for detailed investigations of hydrogen trapping sites in steels and other alloys. With a determined limit of detection of 5.9×10(-3)µg g(-1) hydrogen the developed instrument is able to determine extremely low hydrogen amounts even at very low hydrogen desorption rates. This work clearly demonstrates the great potential of ultra-high vacuum thermal desorption mass spectroscopy instrumentation.

  12. Artful creation

    DEFF Research Database (Denmark)

    Darsø, Lotte


    An introduction to the field of Arts-in-Business outlining 4 different approaches: 1) Art as decoration, 2) Art as intertainment, 3) Arts as instrumental, 4) Art as strategic......An introduction to the field of Arts-in-Business outlining 4 different approaches: 1) Art as decoration, 2) Art as intertainment, 3) Arts as instrumental, 4) Art as strategic...

  13. Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate--The effects of street sweeping, vacuum cleaning, high pressure washing, and milling. (United States)

    Winston, Ryan J; Al-Rubaei, Ahmed M; Blecken, Godecke T; Viklander, Maria; Hunt, William F


    The surface infiltration rates (SIR) of permeable pavements decline with time as sediment and debris clog pore spaces. Effective maintenance techniques are needed to ensure the hydraulic functionality and water quality benefits of this stormwater control. Eight different small-scale and full-scale maintenance techniques aimed at recovering pavement permeability were evaluated at ten different permeable pavement sites in the USA and Sweden. Maintenance techniques included manual removal of the upper 2 cm of fill material, mechanical street sweeping, regenerative-air street sweeping, vacuum street sweeping, hand-held vacuuming, high pressure washing, and milling of porous asphalt. The removal of the upper 2 cm of clogging material did not significantly improve the SIR of concrete grid paves (CGP) and permeable interlocking concrete pavers (PICP) due to the inclusion of fines in the joint and bedding stone during construction, suggesting routine maintenance cannot overcome improper construction. For porous asphalt maintenance, industrial hand-held vacuum cleaning, pressure washing, and milling were increasingly successful at recovering the SIR. Milling to a depth of 2.5 cm nearly restored the SIR for a 21-year old porous asphalt pavement to like-new conditions. For PICP, street sweepers employing suction were shown to be preferable to mechanical sweepers; additionally, maintenance efforts may become more intensive over time to maintain a threshold SIR, as maintenance was not 100% effective at removing clogging material.

  14. Development of high-pressure dry ice blasting method for decontamination. 3. Barrel type- and vacuum type- dry ice blasting methods

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Morishita, Yoshitsugu; Tanimoto, Ken-ichi


    In order to decrease radioactivity of high-level radioactive wastes to low-level (lower than 500 {mu}Sv/h), the dry-ice blasting method has been developing. This method can decontaminate radioactive wastes up to 10{sup 2} in decontamination factor, and can minimize the secondary generated wastes. However, the method was not applicable to smaller and lighter objects because the objects scatter with the blasting flow. Two types of decontamination method, which are a barrel type- and a vacuum type- dry ice blasting methods, therefore, were planned. The barrel type method can decontaminate smaller solid wastes with preventing the scattering of the wastes by blast pressure. The vacuum type method has advantages to localize and collect the removed contamination from larger wastes. In this work, their basic efficiency on decontamination were investigated experimentally using painted specimens simulating contaminated wastes. Basic characteristics regarding with both barrel type- and the vacuum type- methods were obtained from above experiments. Moreover, items to be improved were clarified. (J.P.N.)

  15. Folklore and High Art Displayed Together to Welcome Chinese New Year

    Institute of Scientific and Technical Information of China (English)



    During the Spring Festival this year, National Art Museum of China (NAMOC) displayed traditional folk art together with Chinese and foreign artists' painting masterpieces in celebration of Chinese New Year.

  16. Danto and Art Criticism

    Directory of Open Access Journals (Sweden)

    Cynthia Freeland


    Full Text Available In this article I examine the relationship between Arthur Danto's philosophy of art and his practice of art criticism. Danto has said that he included many actual examples of discussions of art in The Transfiguration of the Commonplace because of the feeling that, previously, philosophers had theorized about art in a vacuum. And since the time of publishing that book, he has written on a wide variety of both historical and contemporary artists and art practices. Danto's philosophy of art commits him to an account of the practice of art criticism as interpretation. However, I question whether the Danto-esque interpretive essay can serve as an adequate model for art criticism. My primary claim is that art criticism must include a more strongly evaluative element than Danto's theory leaves room for, since on his view, the critic primarily explains meaning by examining how it is embodied in a work. This leaves open the question of which meanings count as valuable or important. In his more recent work Danto has explored a "Hegelian" view that art is primarily about art, but this view too does not allow for art to be evaluated or "criticized" on the basis of whether or how well it tackles the more profound questions of meaning.

  17. Access to High School Arts Education: Why Student Participation Matters as Much as Course Availability (United States)

    Thomas, M. Kathleen; Singh, Priyanka; Klopfenstein, Kristin; Henry, Thomas


    There is renewed interest in the role of arts education in the curriculum of U.S. public schools not only because of the intrinsic value of the arts and its believed impact on achievement, but because cultivating creativity is thought to promote innovation and fuel economic growth. Still, we know little about basic access to arts education. Using…

  18. Vacuum Technology and Standardization-An Update (United States)

    Akram, H. M.; Rashid, H.


    Vacuum technology has been vital for the progress in almost every field of modern industrial & scientific research and technological developments. Research in this field is therefore important for the rapid progress in other sophisticated technologies. The modern society require precise know-how of vacuum metrology for its complex and sophisticated manufacturing processes and research activities. Accuracy in vacuum measurements is therefore an essential need for every application. The required accuracy is achieved with the help of well-calibrated vacuum gauges and this is possible only, if there exist proper vacuum standards of required range and accuracy. In this paper, a brief review of recently developed different vacuum standards, namely Standard Mercury Manometer, Standard Volume Expansion System and Standard Orifice Flow System will be presented, employed for the calibration of low, medium and high vacuum gauges respectively. Our recently developed standards are simple in design, least in vibration & degassing rate with desired accuracy, ease of operation and cost effective.

  19. Proposal to negotiate a collaboration agreement for the design and prototyping of a machine for laser treatment of metallic vacuum chamber walls for electron cloud mitigation at the High Luminosity LHC

    CERN Document Server


    Proposal to negotiate a collaboration agreement for the design and prototyping of a machine for laser treatment of metallic vacuum chamber walls for electron cloud mitigation at the High Luminosity LHC

  20. Very-Low-Cost, Rugged Vacuum System (United States)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve


    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP

  1. The vacuum universe the vacuum deposit and the dimensional hierarchy

    CERN Document Server

    Chung Ding Yu


    In this paper, it is proposed that the universe not only gains its existence from the vacuum but also fattens itself with the vacuum. It is the vacuum universe. The vacuum is deposited in the inflationary universe before the inflation. During the inflation, the deposited vacuum is spent to acquire space. In terms of elementary particles, the deposited vacuum is spent to dilute (fractionalize) the primordial high mass mixed 9-branes to form the low mass hierarchical mixed branes from 9 to 3 whose masses decrease with the space-time dimension numbers. This formation of the hierarchical mixed branes is followed by the internal empty space formation. The internal empty space is generate internally by the annihilation of some of the mixed branes through charge symmetry. The energy released is cosmic radiation. The inflationary emergence of the hierarchical mixed branes and the non-inflationary emergence of cosmic radiation after the inflation constitute the hybrid inflation. The mixed 3-brane is the mixture of lep...

  2. Fabrication of highly transparent Al-ion-implanted ZnO thin films by metal vapor vacuum arc method (United States)

    Lee, Han; Sivashanmugan, Kundan; Kao, Chi-Yuan; Liao, Jiunn-Der


    In this study, we utilized the metal vapor vacuum arc technique to implant vaporized aluminum (Al) ions in zinc oxide (ZnO) thin films. By adjusting the ion implantation dose and operational parameters, the conductivity and optical properties of the ZnO thin film can be controlled. The electrical sheet resistance of Al-ion-implanted ZnO decreased from 3.02 × 107 to 3.03 × 104 Ω/sq, while the transparency of the film was mostly preserved (91.5% at a wavelength of 550 nm). The ZnO thin-film Young’s modulus significantly increased with increasing Al ion dose.

  3. The effect of molybdenum on niobium, titanium carbonitride precipitate evolution and grain refinement in high-temperature vacuum carburizing alloys (United States)

    Enloe, Charles M.

    Existing commercial carburizing alloys can be processed at higher temperatures and shorter processing times utilizing vacuum carburizing due to the suppression of intergranular oxidation. To provide resistance to undesired grain coarsening at these elevated temperatures and associated reduction in fatigue performance, microalloyed steel variants have been developed which employ fine Ti- and Nb-carbonitrides to suppress grain growth. Grain coarsening resistance is believed to be limited by the coarsening resistance of the precipitates themselves at high temperature, so further alloy/processing developments to enhance microalloy precipitate coarsening resistance based on a greater mechanistic understanding of solute interaction with microalloy precipitates would be beneficial. Molybdenum is known to affect microalloy precipitate evolution during processing in ferrite and austenite, but a unified explanation of the role of Mo in precipitate evolution is still lacking. Accordingly, the effect of molybdenum on microalloy precipitate size and composition evolutions and the associated onset of abnormal grain growth in austenite was investigated in Mo-bearing and Mo-free, Nb,Ti-microalloyed SAE 4120 steels. Molybdenum additions of 0.30 wt pct to alloys containing Nb additions of 0.05 and 0.10 wt pct Nb delayed the onset of abnormal grain growth in hot-rolled alloys reheated and soaked at 1050 °C and 1100 °C. The coarsening rate of microalloy precipitates was also reduced in Mo-bearing alloys relative to Mo-free alloys during isothermal soaking at 1050 °C, 1100 °C, and 1150 °C. The observed microalloy precipitate coarsening rates exceeded those predicted by the Lifshitz-Slyozov-Wagner relation for volume-diffusion-controlled coarsening, which is attributed to an initial bimodal precipitate size distribution prior to reheating to elevated temperature. Heat-treatments of hot-rolled alloys (tempering and solutionizing) prior to reheating to elevated temperature in

  4. CERN Accelerator School: A vacuum well filled

    CERN Multimedia


    CAS and the ALBA Synchrotron Light Facility (Consortium CELLS) jointly organized a specialized school on 'Vacuum in Accelerators' in Platja d'Aro, Spain from 16 to 24 May, 2006. The last CAS course dedicated to the vacuum was organized in 1999, so there was plenty of ground to cover. The challenging programme proposed a review of the latest state of the art developments in the field and included 36 hours of course work. A one-day excursion to Barcelona was also part of the programme. A record of 93 students of more than 24 nationalities attended the course, not only from Europe and North America, but also from Brazil, China, India, Jordan, Morocco and Taiwan. European industry showed a welcome and solid interest in the school both by sending participants to the course, and by providing a few scholarships for highly deserving young students, who would not otherwise have been able to participate without this support. Feedback from the participants acknowledged the expertise of the lecturers, as well as the ...

  5. Indian Vacuum Society: The Indian Vacuum Society (United States)

    Saha, T. K.


    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  6. Technical specification for vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, J. (ed.)


    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  7. p-Si(1 1 1):H/ionic liquid interface investigated through a combination of electrochemical measurements and reflection high energy electron diffraction surface analysis in vacuum (United States)

    Watanabe, Ko; Maruyama, Shingo; Matsumoto, Yuji


    A combination study of electrochemical measurements and reflection high energy electron diffraction (RHEED) surface analysis experiments in a vacuum was first demonstrated to characterize a p-Si(1 1 1):H/ionic liquid interface. Mott-Schottky plot analysis was made to successfully not only evaluate the acceptor density and flat band potential of the p-Si(1 1 1):H, but also get some insight into its surface states. Furthermore, the electric double layer capacitance and specific adsorption properties at the IL/Si(1 1 1):H interface as well as the electrochemical interface stability will be discussed in this paper.


    Directory of Open Access Journals (Sweden)

    N. Haala


    Full Text Available Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project “Benchmark on High Density Aerial Image Matching”, which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  9. Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies. (United States)

    Adler, Desmond C; Stenger, Jens; Gorczynska, Iwona; Lie, Henry; Hensick, Teri; Spronk, Ron; Wolohojian, Stephan; Khandekar, Narayan; Jiang, James Y; Barry, Scott; Cable, Alex E; Huber, Robert; Fujimoto, James G


    Gold punchwork and underdrawing in Renaissance panel paintings are analyzed using both three-dimensional swept source / Fourier domain optical coherence tomography (3D-OCT) and high resolution digital photography. 3D-OCT can generate en face images with micrometer-scale resolutions at arbitrary sectioning depths, rejecting out-of-plane light by coherence gating. Therefore 3D-OCT is well suited for analyzing artwork where a surface layer obscures details of interest. 3D-OCT also enables cross-sectional imaging and quantitative measurement of 3D features such as punch depth, which is beneficial for analyzing the tools and techniques used to create works of art. High volumetric imaging speeds are enabled by the use of a Fourier domain mode locked (FDML) laser as the 3D-OCT light source. High resolution infrared (IR) digital photography is shown to be particularly useful for the analysis of underdrawing, where the materials used for the underdrawing and paint layers have significantly different IR absrption properties. In general, 3D-OCT provides a more flexible and comprehensive analysis of artwork than high resolution photography, but also requires more complex instrumentation and data analysis.

  10. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. (United States)

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian


    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  11. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    Directory of Open Access Journals (Sweden)

    Zhenyu Luo


    Full Text Available This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  12. Quantum vacuum magnetic birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Berceau, Paul; Battesti, Remy; Fouche, Mathilde; Frings, Paul; Nardone, Marc; Portugall, Oliver; Rikken, Geert L. J. A.; Rizzo, Carlo, E-mail: [UPR 3228, CNRS-UPS-UJF-INSA, Laboratoire National des Champs Magnetiques Intenses (France)


    In this contribution to EXA2011 congress, we present the status of the BMV (Birefringence Magnetique du Vide) experiment which is based on the use of a state-of-the-art optical resonant cavity and high pulsed magnetic fields, and it is hosted by the Laboratoire National des Champs Magnetiques Intenses in Toulouse, France.

  13. Discontinuation of cART postpartum in a high prevalence district of South Africa in 2014



    Background Combination antiretroviral therapy (cART) is the current strategy to prevent mother-to-child transmission (PMTCT) of HIV. Women initiated on cART should continue taking treatment life-long or stop after cessation of breastfeeding depending on their CD4 cell count or on their World Health Organization (WHO) staging. Keeping people living with HIV on treatment is essential for the success of any antiretroviral therapy (ART) programme. There has been a rapid scale-up of cART in the PM...

  14. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Z.


    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user`s risk and may lead to rejection of the whole assembly.

  15. Ultra-High-Vacuum Problem for 200 keV Polarized Electron Gun with NEA-GaAs Photocathode

    CERN Document Server

    Nakanishi, T; Kuwahara, M; Naniwa, K; Okumi, S; Yamamoto, M; Yamamoto, N; Yasui, K


    For a polarized electron source based on photoemission from GaAs, a NEA (Negative Electron Affinity) surface makes an indispensable role to extract polarized electrons in conduction band into vacuum. The NEA surface is also considered as a best surface to provide a beam with a minimum initial beam-emittance. However, the NEA surface state is realized by a mono-layer of electric dipole moment (that is Ga(-)-Cs(+)) formed at the surface and thus it is easily degraded by desorption of harmful residual gas, desorption of harmful gas created by field emission from HV-cathodes and ion back-bombardment. In order to reduce the effects of (a) and (c), extremely good UHV is required. Presently total pressure of 4·10-12

  16. Correlation between Grades 4th, 8th, and 11th English Language Arts Scores and High School Graduation (United States)

    Parese, Errin C.


    The focus of this research was on students' low graduation rate in a New York State high school, investigating a possible correlation between students' longitudinal English Language Arts (ELA) exams and their graduation status. In the 2010-11 school year, 25% of the students at the high school of study failed to graduate, a rate which was 5% lower…

  17. A Different Perspective t o Fine Art High School Students i n Emotional Intelligence

    Directory of Open Access Journals (Sweden)



    Full Text Available The aim of this study is to examine the emot ional intelligence of different high school students . To this end; EQ - NED and personal information form developed by the researcher were used to collect information about the variable in order to determine the emotional intelligence of the participating st udents to the research. In this study data were collected from a total of 439, 246 female and 193 male students through these scales . T he data were analyzed by using SPSS Windows 17.0 program . To evaluate the data , descriptive statistical methods (frequenc y, percentage, mean, standard deviation were used. Kruskal - Wallis H - test and Mann - Whitney U analysis test were usedas non - parametric hypothesis testing procedures. According to the r esearch results, the mean of the total score of emotional intelligence sho wed a significant difference in terms of school variables where the students study . In the study, EQ T, EQ 1, EQ 2 and EQ 3 scores of the students studying Fine Arts and Sports High School are found higher than the students studying in other high schools.

  18. State of the art in high accuracy high detail DTMs derived from ALS (United States)

    Pfeifer, N.; Briese, C.; Mandlburger, G.; Höfle, B.; Ressl, C.


    High-resolution Digital Terrain Models (DTMs) representing the bare Earth are a fundamental input for various applications in geomorphology. Airborne laser scanning (ALS) is established as a standard tool for deriving DTMs over large areas with unprecedented accuracy. Due to advances in sensor technology and in processing algorithms in the recent years the obtainable accuracy is still increasing. Accuracy is understood as the deviation from the elevation at one specified point to its true value. These advances may lead to a more efficient data acquisition, if reduced accuracy is targeted, but also allow data acquisition schemes with more detail becoming visible, i.e. small features of the relief. For the latter a high internal precision, i.e. repeatability, is necessary. The essential advances in the technologies are improvements in ranging through the introduction of full-waveform (FWF) laser scanning and rigorous models of strip adjustment. In FWF laser scanning the time-dependent strength of the backscattered signal is recorded. This is opposed to the analogue processing of the incoming energy and storage of one arrival time of discrete-return systems. In a simple one-echo situation, the arrival time corresponds to the maximum of the waveform. By applying a decomposition of the full waveform into single echoes, which are transformed copies of the emitted signal, it is possible to retrieve more echoes per shot. Additionally, if echoes of individual scatterers are overlapping, FWF sensors might be able to separate them, whereas discrete return systems might rather only be able to derive one collective arrival time. Finally, the overlay of two echoes does not have the maxima at the same positions as the individual echoes. Additionally, the pulse repetition rate of laser scanners has increased, which allows higher point densities and therefore higher richness of detail. These advances in data acquisition increase the precision within one ALS strip. Deficiencies in

  19. Cultivating Imaginative Thinking: Teacher Strategies Used in High-Performing Arts Education Classrooms (United States)

    Fleming, Josephine; Gibson, Robyn; Anderson, Michael; Martin, Andrew J.; Sudmalis, David


    This article reports on recent case-study research that examined teacher- and student-level processes in nine Australian arts classrooms. The selected classrooms, based on the results of a connected longitudinal study, demonstrated strong positive links between arts participation and academic motivation, engagement and achievement. The focus here…

  20. Study of impurity distribution in mechanically polished, chemically treated and ultra-high vacuum degassed pure Niobium samples using TOFSIMS technique

    CERN Document Server

    Bose, A


    The performance of Superconducting radio frequency cavities (SCRF) are highly dependent on the surface treatment processes, which in turn is influenced by the chemistry within the penetration depth of Niobium (Nb). The present study analyses various impurities within the RF penetration depth (~50nm) of Nb samples treated by SCRF cavity processing techniques like colloidal silica polishing (simulating centrifugal barrel polishing), buffer chemical polishing (BCP), high pressure rinsing (HPR) and degassing under ultra high vacuum (UHV) condition at 600{\\deg}C for 10hrs. Various modes of Time of flight secondary ion mass spectrometry (TOFSIMS) technique was employed to study the effect of the above treatments on the vast spectrum of impurities that include interstitials, hydrocarbons, oxides, acidic residuals, reaction products and metallic impurities. UHV degassing treatment was the only treatment capable of reducing hydrogen contamination, but, it led to extensive oxygen, carbon and metallic impurities in the ...

  1. RFQ Vacuum brazing at CERN

    CERN Document Server

    Mathot, S


    The aim of this paper is to describe the vacuum brazing procedure used at CERN for the brazing of Radio Frequency Quadrupole (RFQ). The RFQ is made of high precision machined OFE copper pieces assembled together. Vacuum brazing is one of the most promising techniques used to join the individual components leading to vacuum tightness and high precision alignment. The RFQ modules brazed at CERN are made of four 100 or 120 cm long vanes (two major and two minor vanes). Our brazing procedure consists of two steps. The first step involves the brazing of the four vanes in a horizontal position. The second step consists of brazing the vacuum stainless steel flanges to the copper structure in a vertical position. The paper describes the problems encountered with the alignment and the vacuum tightness. The difficulties related to the stress relaxation of the machined copper pieces during the brazing heat treatment are discussed. In addition, the solutions developed to improve the alignment of the brazed RFQ’s are...

  2. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies (United States)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.


    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.

  3. Vacuum-Insulated, Flexible Cryostats for Long HTS Cables: Requirements, Status, and Prospects.

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Demko, Jonathan A [ORNL; Roden, Mark L [ORNL; Maguire, J. F. [American Superconductor Corporation, Westborough, MA; Weber, C. S. [SuperPower Incorporated, Schenectady, New York


    Several high temperature superconducting (HTS) cable demonstration projects have begun operation on the electric grid in the last few years with the liquid nitrogen-cooled cable contained in one or more vacuum-insulated, flexible cryostats with lengths up to 600 meters. These grid demonstration projects are prototypes of the anticipated commercial market which will require superconducting cable lengths in the multiple kilometer range with the vacuum-jacketed cryostats in underground ducts providing acceptable thermal insulation for decades. The current state-of-the art for flexible cryostats (installation constraints, heat loads with a good and degraded vacuum, impact of cable bends, getter lifetime and reliability) is discussed. Further development needed to meet the challenging commercial HTS cable application is outlined.

  4. A 'NanoSuit' surface shield successfully protects organisms in high vacuum: observations on living organisms in an FE-SEM. (United States)

    Takaku, Yasuharu; Suzuki, Hiroshi; Ohta, Isao; Tsutsui, Takami; Matsumoto, Haruko; Shimomura, Masatsugu; Hariyama, Takahiko


    Although extremely useful for a wide range of investigations, the field emission scanning electron microscope (FE-SEM) has not allowed researchers to observe living organisms. However, we have recently reported that a simple surface modification consisting of a thin extra layer, termed 'NanoSuit', can keep organisms alive in the high vacuum (10(-5) to 10(-7) Pa) of the SEM. This paper further explores the protective properties of the NanoSuit surface-shield. We found that a NanoSuit formed with the optimum concentration of Tween 20 faithfully preserves the integrity of an organism's surface without interfering with SEM imaging. We also found that electrostatic charging was absent as long as the organisms were alive, even if they had not been coated with electrically conducting materials. This result suggests that living organisms possess their own electrical conductors and/or rely on certain properties of the surface to inhibit charging. The NanoSuit seems to prolong the charge-free condition and increase survival time under vacuum. These findings should encourage the development of more sophisticated observation methods for studying living organisms in an FE-SEM.

  5. Thermal Gradient During Vacuum-Deposition Dramatically Enhances Charge Transport in Organic Semiconductors: Toward High-Performance N-Type Organic Field-Effect Transistors. (United States)

    Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung


    A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm(2) V(-1) s(-1), more than a factor of 2 higher than the mobility of 0.25 cm(2) V(-1) s(-1) submitted to conventional thermal annealing and the mobility of 0.29 cm(2) V(-1) s(-1) from the horizontally applied temperature gradient.

  6. Adding high time resolution to charge-state-specific ion energy measurements for pulsed copper vacuum arc plasmas

    CERN Document Server

    Tanaka, Koichi; Zhou, Xue; Anders, André


    Charge-state-resolved ion energy-time-distributions of pulsed Cu arc plasma were obtained by using direct (time dependent) acquisition of the ion detection signal from a commercial ion mass-per-charge and energy-per-charge analyzer. We find a shift of energies of Cu2+, Cu3+ and Cu4+ ions to lower values during the first few hundred microseconds after arc ignition, which is evidence for particle collisions in the plasma. The generation of Cu1+ ions in the later part of the pulse, measured by the increase of Cu1+ signal intensity and an associated slight reduction of the mean charge state point to charge exchange reactions between ions and neutrals. At the very beginning of the pulse, when the plasma expands into vacuum and the plasma potential strongly fluctuates, ions with much higher energy (over 200 eV) were observed. Early in the pulse, the ion energies observed are approximately proportional to the ion charge state, and we conclude that the acceleration mechanism is primarily based on acceleration in an e...

  7. Physisorption of ammonia on AISI 304L stainless steel at different surface temperature under high vacuum conditions

    Directory of Open Access Journals (Sweden)

    A. de Castro


    Full Text Available The physisorption of ammonia molecules (sticking on the walls of a stainless steel pipe (AISI 304L has been studied at different wall temperatures (323-473K. The total amount of ammonia that is retained on the walls, once equilibrium is reached, has been measured by differentially-pumped mass spectrometry in gas exposure laboratory experiments. The results show ammonia retentions in the range of μg/cm2 resulting in a multilayer adsorption with lower amounts of stuck ammonia at higher temperatures of the stainless steel surface. The sticking coefficient follows an exponential decay evolution with time. The activation energy of the process has been estimated by an Arrhenius fit, assuming that the characteristic time for this decay is inversely proportional to the kinetic adsorption constant. A value of 0.15eV per ammonia molecule has been obtained, being in agreement with nominal values for the physisorption of small molecules or atoms (CO, N2, Ar… that can be found in the specialized literature. The implication of these results in the possible extrapolation to the ITER vacuum system under nitrogen seeded plasma operation is also addressed.

  8. Direct growth of Ge1-xSnx films on Si using a cold-wall ultra-high-vacuum chemical-vapor-deposition system

    Directory of Open Access Journals (Sweden)

    Aboozar eMosleh


    Full Text Available Germanium tin alloys were grown directly on Si substrate at low temperatures using a cold-wall ultra-high vacuum chemical vapor deposition system. Epitaxial growth was achieved by adopting commercial gas precursors of germane and stannic chloride without any carrier gases. The X-ray diffraction analysis showed the incorporation of Sn and that the Ge1-xSnx films are fully epitaxial and strain relaxed. Tin incorporation in the Ge matrix was found to vary from 1% to 7%. The scanning electron microscopy images and energy dispersive X-ray spectra maps show uniform Sn incorporation and continuous film growth. Investigation of deposition parameters shows that at high flow rates of stannic chloride the films were etched due to the production of HCl. The photoluminescence study shows the reduction of bandgap from 0.8 eV to 0.55 eV as a result of Sn incorporation.

  9. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham. (United States)

    Fuentes, Verónica; Utrera, Mariana; Estévez, Mario; Ventanas, Jesús; Ventanas, Sonia


    The effect of high hydrostatic pressure (HHP) (600MPa) and intramuscular fat content (IMF) on colour parameters and oxidative stability of lipids and proteins in sliced vacuum-packaged Iberian dry-cured ham during refrigerated storage (120 days at 2°C) was investigated. Several studies have investigated the influence of HHP on lipid oxidation of meat products. However, its effects on protein carbonylation, as also the influence of IMF content on this carbonylation are poorly understood. HHP treatment had a significant effect on lean lightness after 0 and 120 days of storage while IMF content increased lightness and yellowness over time. Regarding oxidative stability, the effect of HHP treatment depended on IMF content samples with a high IMF having greater lipid instability while samples with a low IMF underwent more protein carbonylation.

  10. Laser-accelerated high-energy ions: state of-the-art and applications

    Energy Technology Data Exchange (ETDEWEB)

    Borghesi, M [School of Mathematics and Physics, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Fuchs, J [Laboratoire pour l' Utilisation des Lasers Intenses, Ecole Polytechnique, Palaiseau (France); Willi, O [Institut fuer Laser-und Plasmaphysik, Heinrich-Heine-Universitaet, Duesseldorf (Germany)


    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short (t < 1ps) and intense (I{lambda}{sup 2}> 10{sup 18} W cm{sup -2} {mu}m{sup -2}) laser pulses with solid targets has been one of the most important results of recent laser-plasma research. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large ({approx}TV/m) space charge fields at the target interfaces. In view of a number of advantageous properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. Among these, their possible use in hadrontherapy, with potential reduction of facility costs, has been proposed recently. This paper will briefly review the current state-of-the-art in laser-driven proton/ion source development, and will discuss the progress needed in order to implement some of the above applications. Recent results relating to the optimization of beam energy, spectrum and collimation will be presented.

  11. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony


    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  12. Vacuum-sealed casting process under pressure

    Institute of Scientific and Technical Information of China (English)

    LI Chen-xi; GUO Tai-ming; WU Chun-jing; WANG Hong


    A new casting method, the vacuum-sealed mold casting under pressure, has been developed, and thin wall iron castings with high precision and smooth surface have been produced successfully with this casting method. The experimental results show that the liquid iron has a very excellent filling ability because a high negative pressure is formed in the mold cavity during filling process. The vacuum-sealed mold under pressure has very high compressive strength greater than 650 kPa, which is 3-4 times as high as that of the molds produced by high-pressure molding process or vacuum-sealed molding process.

  13. ''History of Theatre'' Web Sites: A Brief History of the Writing Process in a High School ESL Language Arts Class (United States)

    Parks, Susan; Huot, Diane; Hamers, Josiane; Lemonnier, France H.


    This article reports on how Quebec Francophone high school students, enrolled in a program which featured an environment rich in information and communication technologies (ICTs), appropriated the writing process over a four-year period (Grades 7-10) in the context of their ESL language arts courses. Data for the study were obtained using…

  14. Arte precolombino, arte moderno y arte latinoamericano


    Gamboa Hinestrosa, Pablo


    ¿Cuál es la vigencia del arte precolombino? ¿Qué ha aportado ala corriente del arte universal? ¿Qué se deben mutuamente arte modernoy arte precolombino? Estos planteamientos nos sirven para establecerla vigencia del arte precolombino en Latinoamérica, buscandoantecedentes desde los tiempos de la Conquista hasta nuestros días.

  15. Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. (United States)

    Pabuccu, E G; Caglar, G S; Tangal, S; Haliloglu, A H; Pabuccu, R


    As a part of male assessment, conventional sperm parameters including morphologic features have been dedicated as major factors influencing fertilisation and pregnancy rates in assisted reproductive technology (ART). Genomic integrity of spermatozoa has also been found to influence fertility prognosis, and hence, sperm DNA fragmentation index (DFI) has been adopted by many centres to document this entity. Despite several suggested approaches, there is lack of universal consensus on optimising fertility outcomes in males with high sperm DFI. In this context, the results from cycles using testicular spermatozoa (TESA) obtained by aspiration were compared with those of ejaculated spermatozoa (EJ) in normozoospermic subjects with high sperm DFI and previous ART failures. Clinical (41.9% versus 20%) and ongoing pregnancy rates (38.7% versus 15%) were significantly better and miscarriages were lower in TESA group when compared to EJ group. Sperm DFI should be a part of male partner's evaluation following unsuccessful ART attempts. When high DFI is detected (>30%), ICSI using testicular spermatozoa obtained by TESA seems an effective option particularly for those with repeated ART failures in terms of clinical, ongoing pregnancies and miscarriages even though conventional sperm parameters are within normal range.

  16. A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products

    CERN Document Server

    Kuznetsov, A V; Westerberg, L; Lyapin, V G; Aleklett, K; Loveland, W; Bondorf, J P; Jakobsson, B; Whitlow, H J; El-Bouanani, M


    A compact Ultra-High Vacuum (UHV) compatible instrument for time of flight-energy measurements of slow heavy reaction products from nuclear reactions has been designed and tested at the CELSIUS storage ring in Uppsala. The construction is based on MicroChannel Plate (MCP) time detectors of the electron mirror type and silicon p-i-n diodes, and permits the detectors to be stacked side-by-side to achieve large solid angle coverage. This kind of telescope measures the Time of Flight (ToF) and Energy (E) of the particle from which one can reconstruct mass. The combination of an ultra-thin cluster gas-jet target and thin carbon emitter foils allows one to measure heavy residues down to an energy of approx 35 keV/nucleon from the interactions of 400 MeV/nucleon sup 1 sup 6 O with sup n sup a sup t Xe gas targets.

  17. Design and Development of the Telescope-deployment High-vacuum teleOperated Rover (THOR) in an Airless Body Environment

    CERN Document Server

    Womack, Chris; Kruger, Laura; DeGeorge, Kelsey; Tuan, Karynna; Burns, Jack


    The harsh environment on the lunar surface presents unique technological challenges for space exploration. This paper presents research on the design and development of the Tele- scope-deployment High-vacuum teleOperated Rover (THOR), currently being built and tested in the Lunar and Airless Bodies Simulator (LABS) facility at the University of Colorado Boulder. This rover is fabricated entirely out of cost-effective commercial off-the-shelf (COTS) components and materials. THOR can potentially survive for more than one simulated year in conditions similar to that of the lunar environment, demonstrating the successful initial results of a first phase research study on material and electronic survivability in an extreme environment such as the Moon.

  18. In situ studies of the atomic layer deposition of thin HfO{sub 2} dielectrics by ultra high vacuum atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kolanek, Krzysztof, E-mail: kolanek@tu-cottbus.d [Brandenburg University of Technology, Department of Applied Physics and Sensors, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany); Tallarida, Massimo; Karavaev, Konstantin; Schmeisser, Dieter [Brandenburg University of Technology, Department of Applied Physics and Sensors, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)


    We studied in situ the initial stages of atomic layer deposition (ALD) of HfO{sub 2} by an ultra high vacuum atomic force microscope working in frequency-modulation mode. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf and water as precursors, were performed on the Si(001)/SiO{sub 2} substrate maintained at 230 {sup o}C. After each ALD cycle we studied the influence of the HfO{sub 2} growth on the surface height histogram, the root mean square roughness, the surface fractal dimension and the autocorrelation function. This detailed analysis of the surface topography allowed us to confirm the completion of the first HfO{sub 2} layer after four ALD cycles.

  19. Updates of the KArLE Experiment: New Libs Calibration Under High Vacuum for the Quantification of Potassium in Basalt for In Situ Geochronology (United States)

    Devismes, D.; Cohen, B. A.; Li, Z.-H.; Miller, J. S.


    In planetary exploration, in situ absolute geochronology is one of the main important measurements that needs to be accomplished. Until now, on Mars, the age of the surface is only determined by crater density counting, which gives relative ages. These ages can have a lot of uncertainty as they depend on many parameters. More than that, the curves must be ties to absolute ages. Thus far, only the lost lander Beagle 2 was designed to conduct absolute geochronology measurements, though some recent attempts using MSL Curiosity show that this investigation is feasible and should be strongly encouraged for future flight. Experimental: The Potassium (K)-Argon Laser Experiment (KArLE) is being developed at MSFC through the NASA Planetary Instrument Definition and Development Program (PIDDP). The goal of this experiment is to provide in situ geochronology based on the K-Ar method. A laser ablates a rock under high vacuum, creating a plasma which is sensed by an optical spectrometer to do Laser Induced Breakdown Spectroscopy (LIBS). The ablated material frees gases, including radiogenic 40Ar,which is measured by a mass spectrometer (MS). As the potassium is a content and the 40Ar is a quantity, the ablated mass needed in order to relate them. The mass is given by the product of the ablated volume by the density of this material. So we determine the mineralogy of the ablated material with the LIBS spectra and images and calculate its density. The volume of the pit is measured by using microscopy. LIBS measurement of K under high vacuum: Three independant projects [1, 2, 3] including KArLE, are developing geochronological instruments based on this LA-LIBS-MS method. Despite several differences in their setup, all of them have validated the methods with analyses and ages. However, they all described difficulties with the LIBS measurements of K [3,4]. At ambient pressure, the quantification of K by LIBS on geological materials can be accurate [5]. However the protocol of the LA

  20. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: Towards Bose-Einstein condensation of vacuum ultraviolet photons

    CERN Document Server

    Wahl, Christian; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin


    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the $5p^6 - 5p^56s$ transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 155 and 180 nm wavelength are reported.

  1. 真空引纸器在高速纸机中的运用%Application of vacuum threading belt in high speed paper machines

    Institute of Scientific and Technical Information of China (English)



    The structure, principle, adjustment and maintenance for vacuum threading facilities from two type of treading equipment in high speed paper machine were introduced. From safety reliability ideas and hommization management, it was discussed that the old paper machines in domestic are transformed so as to improve threading automation.%  介绍两种运用在高速纸机中的真空引纸设备的结构、操作原理、调整及维修,并从安全可靠理念、人性化管理出发,探讨在国内的一些老旧纸机相关部位方面进行改造安装、提高引纸的自动化程度。

  2. Potential method for gas production: high temperature co-pyrolysis of lignite and sewage sludge with vacuum reactor and long contact time. (United States)

    Yang, Xiao; Yuan, Chengyong; Xu, Jiao; Zhang, Weijiang


    Lignite and sewage sludge were co-pyrolyzed in a vacuum reactor with high temperature (900°C) and long contact time (more than 2h). Beneficial synergetic effect on gas yield was clearly observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The gas volume yield, gas lower heating value (LHV), fixed carbon conversion and H2/CO ratio were 1.42 Nm(3)/kg(blend fuel), 10.57 MJ/Nm(3), 96.64% and 0.88% respectively, which indicated this new method a feasible one for gas production. It was possible that sewage sludge acted as gasification agents (CO2 and H2O) and catalyst (alkali and alkaline earth metals) provider during co-pyrolysis, promoting CO2-char and H2O-char gasification which, as a result, invited the improvement of gas volume yield, gas lower heating value and fixed carbon conversion.

  3. Art Academy

    Institute of Scientific and Technical Information of China (English)


    Created in 1996 by Mauritians Anna Patten and Sanedhip Bhimjee,Art Academy has gained a high profile due to its dance creation Katha’zz.Mixing new styles with traditional Kathak,the academy produces visual poetry that keeps it busy traveling around the world. Last September,along with the Mauritian presidential delegation,Art Academy presented Chinese audiences a real taste of Mauritian culture. Choreographer,dancer and set designer Bhimjee spoke to ChinAfrica from Mauritius about Katha’zz and its fusion with Chinese folk music.

  4. Mass flux response comparisons of a 200-MHz surface acoustic wave (SAW) resonator microbalance to a 15-MHz thermoelectric quartz crystal microbalance (TQCM) in a high-vacuum environment (United States)

    Wallace, Donald A.; Bowers, William D.


    Using a 200 MHz Surface Acoustic Wave (SAW) resonator device as a high-vacuum molecular deposition microbalance, similar to a bulk quartz crystal microbalance (QCM), and an often-used 15 MHz thermoelectric QCM (TQCM), a comparison of various parameters was made during a high-vacuum outgassing experiment. The source of molecular outgassing was a bright aluminum foil which was cooled to liquid nitrogen temperature and alternately, to ambient temperature. The two sensors, the SAW QCM and the TQCM were placed next to each other and viewed only the aluminum foil. In this high-vacuum environment, a comparison between various parameters, i.e., mass sensitivity, long term drift rate, stability, thermal effects and dynamic range of the SAW and the TQCM, was obtained.

  5. Vacuum Energy: Myths and Reality


    Volovik, G. E.


    We discuss the main myths related to the vacuum energy and cosmological constant, such as: ``unbearable lightness of space-time''; the dominating contribution of zero point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition...

  6. Physical Vacuum in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto


    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  7. Vacuum Birefringence as a Vacuum Emission Process

    CERN Document Server

    Karbstein, Felix


    We argue that the phenomenon of vacuum birefringence in strong inhomogeneous electromagnetic fields can be most efficiently analyzed in terms of a vacuum emission process. In this contribution, we exemplarily stick to the case of vacuum birefringence in a stationary perpendicularly directed, purely magnetic background field extending over a finite spatial extent. Similar field configurations are realized in the BMV and PVLAS experiments. We demonstrate that we can reproduce the conventional constant field result. Our focus is on effects which arise when the probe photons originate in the field free region, are directed towards the magnetic field region, and detected well after the interaction with the magnetic field has taken place, again at zero field.

  8. Formation of stress students in the process of notions of martial arts in high school

    Directory of Open Access Journals (Sweden)

    Uskov S.V.


    Full Text Available Various aspects of the development of resistance to psychophysiological stress among students in the classroom arts. In the experiment involved 40 students (20 - boys, 20 girls. In the experiment, teaching methods and means of special psychological training in the martial arts. Disclosed the specifics of individual psycho-oriented methodology in the modern system of martial arts. The possibility of its use in physical education classes. It is noted that not all stress are barriers health, and only excessive. The most destructive are excessive psychogenic stresses caused by adverse of psychological factors. Psychogenic stress has a great destructive impact on health. It is a major cause of morbidity students. Recommended didactically well-designed prevention techniques.

  9. Abnormal piezoresponse behavior of Pb(Mg1/3Nb2/3)O3-30%PbTiO3 single crystal studied by high vacuum scanning force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZENG Huarong; YIN Qingrui; LI Guorong; LUO Haosu; XU Zhenkui


    The piezoresponse behavior dependence of the Pb(Mg1/3Nb2/3)O3-30%PbTiO3 single crystal on the vacuum degree has been investigated by scanning force microscopy in the piezoresponse mode under high vacuum. Unusual piezo- response behavior related to the screening charges compensation mechanism is observed on the (111) crystal face. The significant piezoresponse degradation behavior with low piezoresponse signal under high vacuum is attributed to the instability of thepolarization state due to the insufficient compensation of the intrinsic screening charges for the polarization charges in PMN-30%PT single crystal. In contrast, the remarkable domain contrast of the sample at ambient pressure is owing to the dominant surface screening charges deriving from surface adsorption, which plays an important role in determining the stability of the domain behavior and in achieving the optimal properties.

  10. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian


    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  11. Do light cured ART conventional high-viscosity glass-ionomer sealants perform better than resin-composite sealants: a 4-year randomized clinical trial

    NARCIS (Netherlands)

    Zhang, W.; Chen, X.; Fan, M.W.; Mulder, J.; Huysmans, M.C.D.N.J.M.; Frencken, J.E.F.M.


    OBJECTIVE: The hypotheses tested were: the cumulative survival rates of dentin caries lesion-free pits and fissures of ART conventional high-viscosity glass-ionomer sealants with light-curing (high-intensity LED) and glass-carbomer sealants are higher than those of conventional ART sealants and resi

  12. A Web-Based Peer-Assessment Approach to Improving Junior High School Students' Performance, Self-Efficacy and Motivation in Performing Arts Courses (United States)

    Hsia, Lu-Ho; Huang, Iwen; Hwang, Gwo-Jen


    In this paper, a web-based peer-assessment approach is proposed for conducting performing arts activities. A peer-assessment system was implemented and applied to a junior high school performing arts course to evaluate the effectiveness of the proposed approach. A total of 163 junior high students were assigned to an experimental group and a…

  13. Missouri Assessment Program (MAP), Spring 1999: High School Communication Arts, Released Items, Grade 11. (United States)

    Missouri State Dept. of Elementary and Secondary Education, Jefferson City.

    This document deals with testing in communication arts for 11th graders in Missouri public schools. The document contains the following items from the Test Booklet: "Two Words" (Isabel Allende) (Session 1, Items 5, 6, and 7); "Gumshoes Turn to Internet for Spadework" (Nicole Gaouette) (Session 1, Item 5); a writing prompt; and…

  14. The Methodological Framework of Occupational Training in Culture and Art High Schools of Kazakhstan (United States)

    Kulbekova, ?igul K.; Tleubayeva, Balzhan S.; Tleubayev, Seraly Sh.; Saparova, Yulduz A.; Dildebayeva, Gulmira R.; Daribayeva, Raushan D.; Omar, Esen O.


    The purpose of this study is to examine specific features of the traditional Kazakh dances as the methodological foundation of training specialists in the culture and art universities. The article describes the main typologies of Kazakh dances, such as ritual and ceremonial, combative-hunting, work dances, household-imitative dances, festive and…

  15. Missouri Assessment Program (MAP), Spring 1999: High School Communication Arts, Released Items, Grade 11. (United States)

    Missouri State Dept. of Elementary and Secondary Education, Jefferson City.

    This document deals with testing in communication arts for 11th graders in Missouri public schools. The document contains the following items from the Test Booklet: "Two Words" (Isabel Allende) (Session 1, Items 5, 6, and 7); "Gumshoes Turn to Internet for Spadework" (Nicole Gaouette) (Session 1, Item 5); a writing prompt; and a writer's…

  16. Instrument Description and Performance Evaluation of a High-Order Adaptive Optics System for the 1 m New Vacuum Solar Telescope at Fuxian Solar Observatory (United States)

    Rao, Changhui; Zhu, Lei; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue'an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Gu, Naiting; Liu, Yangyi


    A high-order solar adaptive optics (AO) system including a fine tracking loop and a high-order wavefront correction loop has been installed at the 1 m New Vacuum Solar Telescope of the Fuxian Solar Observatory, in routine operation since 2016. The high-order wavefront correction loop consists of a deformable mirror with 151 actuators, a correlating Shack-Hartmann wavefront sensor with 102 subapertures of which the Absolute Difference Square Algorithm is used to extract the gradients, and a custom-built real-time controller based on a Field-Programmable Gate Array (FPGA) and multi-core Digital Signal Processor (DSP). The frame rate of the wavefront sensor is up to 3500 Hz and this is, to our knowledge, the fastest solar AO system. This AO system can work with a Fried parameter r 0, at the 500 nm wavelength, of larger than 3 cm. The first 65 modes of the Zernike aberrations can be efficiently corrected and the Strehl ratio of the corrected TiO image for the solar pore is superior to 0.75 with the Fried parameter r 0 larger than 10 cm. In this paper, the design of the system is described, and high-resolution solar observational images are presented. Furthermore, the performances of the AO system are evaluated according to the data recorded by the real-time controller.

  17. Cervical spine annulus vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Bohrer, S.P.; Chen, Y.M.


    Thirty-eight annulus vacuums in 27 patients were analyzed with regard to location, configuration, and associated vertebral abnormalities such as degenerative changes, absent and compressed anterosuperior vertebral body corners, and annulus calcification. It is concluded that most annulus vacuums are a degenerative phenomenon at the attachment of the annulus to bone. These vacuums may be associated with other degenerative changes such as osteophytes and annulus calcification. Vacuums have a strong association with compressed anterosuperior corners. These deformed corners are thought to be early osteophytes and may be related to previous trauma, a vertebra with an absent corner, and/or normal motion. Small annulus vacuums adjacent to vertebral corners with a normal appearance are more likely to result from acute trauma.

  18. Cervical spine annulus vacuum. (United States)

    Bohrer, S P; Chen, Y M


    Thirty-eight annulus vacuums in 27 patients were analyzed with regard to location, configuration, and associated vertebral abnormalities such as degenerative changes, absent and compressed anterosuperior vertebral body corners, and annulus calcification. It is concluded that most annulus vacuums are a degenerative phenomenon at the attachment of the annulus to bone. These vacuums may be associated with other degenerative changes such as osteophytes and annulus calcification. Vacuums have a strong association with compressed anterosuperior corners. These deformed corners are thought to be early osteophytes and may be related to previous trauma, a vertebra with an absent corner, and/or normal motion. Small annulus vacuums adjacent to vertebral corners with a normal appearance are more likely to result from acute trauma.

  19. ELETTRA vacuum system (United States)

    Bernardini, M.


    A status report of the vacuum system of ELETTRA, the 2 GeV, 400 mA light source under construction in Trieste, will be described. The Vacuum project, presented at ``Synchrotron Radiation Vacuum Workshop'' at Riken (Japan 22-24 March 1990) and more recently at EVC-2, the European Vacuum Conference at Trieste (Italy 21-26 May 1990), is now in the phase of testing a prototype sector, which is 1/24 of the ring circumference. Details and some technological aspects of the fabrication will be reviewed together with the vacuum performances. Results of laboratory experiments on components, standard or not, allowed us to finalize the main choices in light of the general philosophy of the project and will be properly summarized.

  20. Estado da arte da cromatografia gasosa de alta resolução e alta temperatura State of the art of high temperature high resolution gas chromatography

    Directory of Open Access Journals (Sweden)

    Alberto dos Santos Pereira


    Full Text Available The developments in stationary phase synthesis and capillary column technology, have opened new perspectives in analysis of high molecular mass compounds (³600 daltons and thermolabile organic compounds by High Temperature High Resolution Gas Chromatography (HT-HRGC. HT-HRGC is a new analytical borderline and its application to the analysis of high molecular mass compounds is still in its infancy. The apolar and medium polar gum phases can now be operated at temperatures up to 400-480ºC, being used for the analysis of n-alcanes up to C-100, lipids, oligosaccharides, industrial resins, polyglycerols, cyclodextrins, porphyrins, etc. This technique should play a leading role as a powerful tool, for many different analysis types, in multidisciplinary fields of Science.

  1. 防止高速重轨钢真空喷溅的生产实践%Production practice for preventing vacuum splashing of high speed heavy rail

    Institute of Scientific and Technical Information of China (English)

    段光豪; 王光进; 朱志鹏


    The mechanism of high speed heavy rail splashing in the vacuumize process was analyzed,it was found that existing of oxidizing slag in vacuum chamber and rapid decreasing of vacuum degree were the main reasons for the splashing.According to the practical production,the improvement measures for controlling vacuum degree and slag deposition in vacuum chamber,optimizing driving gas mode,changing the time for adding carbon powder and ferromanganese were put forward,which obtained better effects.%对高速重轨钢在抽真空过程中发生喷溅的机理进行分析,发现真空室内含有氧化性积渣以及真空度的快速下降是导致喷溅的主要原因。结合生产实践,提出了控制真空度、真空室内积渣及优化驱动气体模式和碳粉、锰铁加入时间等改进措施,取得了较好的效果。

  2. Vacuum Furnace - Integrated "Sub zero" Treatment

    Institute of Scientific and Technical Information of China (English)

    B. Zieger; Hubert Schulte


    The vacuum heat treatment with overpressure gas quenching is more and more accepted due to considerable advantages compared to the traditional oil and salt bath processes. Continuous further developments and new concepts like multi-directional cooling systems, a separate quenching chamber and "sub zero" systems lead towards an oxidation free and low distortion vacuum heat treatment for a broad range of parts and materials. Short and energy saving processes guarantee a high economic efficiency and environmental compatibility.The "sub zero" system which is integrated into the standard vacuum furnace achieves a heat treatment result with a high conversion of retained austenite in fully automatic hardening and tempering processes.

  3. Vacuum insulation - Panel properties and building applications. HiPTI - High Performance Thermal Insulation - IEA/ECBCS Annex 39 - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Erb, M. (ed.)


    This paper takes a look at the properties of vacuum insulation panels (VIP) that have already been developed some time ago for use in appliances such as refrigerators and deep-freezers. Their insulation performance is a factor of five to ten times better than that of conventional insulation. The paper discusses the use of such panels in buildings to provide thin, highly-insulating constructions for walls, roofs and floors. The motivation for examining the applicability of high performance thermal insulation in buildings is discussed, including solutions where severe space limitations and other technical and aesthetic considerations exist. The use of nano-structured materials and laminated foils is examined and discussed. The questions arising from the use of such panels in buildings is discussed and the open questions and risks involved are examined. Finally, an outlook on the introduction of VIP technology is presented and quality assurance aspects are examined. This work was done within the framework of the Task 39 'High Performance Thermal Insulation' of the 'Energy Conservation in Buildings and Community Systems ECBCS' programme of the International Energy Agency IEA.

  4. Modified growth of Ge quantum dots using C{sub 2}H{sub 4} mediation by ultra-high vacuum chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.W. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China)], E-mail:; Chen, P.S. [Department of Materials Science and Engineering, Minghsin University of Science and Technology, Hsinchu 30401, Taiwan (China); Cheng, S.L. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Department of Chemical and Materials Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, M.H. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 11677, Taiwan (China); Chang, H.T. [Institute of Materials Science and Engineering, National Central University, Jhong-Li 32001, Taiwan (China); Lee, C.-H.; Liu, C.W. [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)


    C{sub 2}H{sub 4} mediations were used to modify the Stranski-Krastanow growth mode of Ge dots on Si(0 0 1) at 550 deg. C by ultra-high vacuum chemical vapor deposition. With appropriate C{sub 2}H{sub 4}-mediation to modify the Si surface, the elongated Ge hut clusters can be transformed to highly uniform Ge domes with a high Ge composition at the core. These C{sub 2}H{sub 4}-mediated Ge dots, almost bounded by {l_brace}1 1 3{r_brace} facets, have an average diameter and height of 55 and 9 nm, respectively. We propose two major mechanisms to depict the formation of these C{sub 2}H{sub 4}-mediated Ge dots: (i) an almost hydrogen-passivated Si surface to limit the nucleation sites for dot formation, and (ii) the incorporation of Ge atoms, repelled by the C-rich areas, into the existing Ge dots. This work provides a useful scheme to tune the topography of Ge dots in an UHV/CVD condition for possible optoelectronic applications.

  5. High-temperature two-dimensional gas chromatography of hydrocarbons up to nC60 for analysis of vacuum gas oils. (United States)

    Dutriez, Thomas; Courtiade, Marion; Thiébaut, Didier; Dulot, Hugues; Bertoncini, Fabrice; Vial, Jérôme; Hennion, Marie-Claire


    In a tense energetic context, the characterization of heavy petroleum fractions becomes essential. Conventional comprehensive two-dimensional gas chromatography (2D-GC or GCxGC) is widely used for middle distillates analysis, but only a few applications are devoted to these heavier fractions. In this paper, it is shown how the optimization of GCxGC separation allowed the determination of suitable high-temperature (HT) conditions, adjusting column properties and operating conditions. 2D separations were evaluated using 2D separation criteria and a new concept of 2D asymmetry (As(2D)). New HT conditions allowed the extension of GCxGC range of applications to heavier hydrocarbons, up to nC(60). A first application of high-temperature two-dimensional gas chromatography (HT-2D-GC) to a full vacuum gas oil (VGO) feed stock is described. Comparisons with other standardized methods illustrate the high potential of HT-2D-GC for heavy fractions analysis.

  6. Baking results of KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M. [National Fusion Research Institute, Daejeon (Korea, Republic of)


    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported.

  7. High IP-10 levels decrease T cell function in HIV-1-infected individuals on ART (United States)

    Ramirez, L. A.; Arango, T. A.; Thompson, E.; Naji, M.; Tebas, P.; Boyer, J. D.


    HIV-1-infected subjects, despite control of viral replication with ART, have an altered immune cytokine/chemokine milieu. Changes in systemic cytokines and chemokines can alter immune responses. IP-10, in particular, has been associated with pathogenesis in a number of conditions, and we found that IP-10 is increased in serum in subjects who are HIV-1 infected and on stable ART compared with HIV-1-uninfected individuals. In a series of in vitro studies, we found that PBMCs exposed to IP-10 showed a significant decrease in the number of cells capable of secreting IFN-γ, as well as other cytokines, when stimulated with recall antigens. Furthermore, treatment with IP-10 led to decreased antigen-specific calcium signaling and MAPK38 phosphorylation. Importantly, the cytokines, as well as proliferative responses, could be enhanced with an IP-10 Nab. Our findings suggest that IP-10-modulating drugs may potentially enhance T cell responses to vaccination and HIV-1 in HIV+ subjects on ART. PMID:25157027

  8. Art Imitating Art

    Directory of Open Access Journals (Sweden)

    Eric Brook


    Full Text Available Using as a contextual reference my experience of seeing the original and copy of Michelangelo's David in Florence, I briefly introduce how the Platonic legacy has affected that discourse. The Western preference in art and aesthetics is typically in favor of the original over the copy, despite whatever indiscernibility may exist between them. Since Arthur Danto has treated this phenomenon in his text The Transfiguration of the Commonplace, his relevant comments are considered and adapted for the purpose of working through how one understands the relationship between the original and copy in terms of a criterion for defining art.

  9. Thermophoretic vacuum wand (United States)

    Klebanoff, Leonard Elliott; Rader, Daniel John


    A thermophoretic vacuum wand that is particularly suited for transporting articles in a cleanroom environment so that potential particle contaminants in the air do not become adhered to the surface of the article is described. The wand includes a housing having a platen with a front surface with suction port(s) through the platen; a vacuum source for applying a negative pressure to the suction port(s); and heating device for the object. Heating the article when it is held by the vacuum wand affords thermophoretic protection that effectively prevents particles in the air from depositing onto the article.

  10. Evading death by vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, A. [Universidade de Lisboa, Centro de Fisica Teorica e Computacional, Faculdade de Ciencias, Lisboa (Portugal); Ferreira, P.M.; Santos, Rui [Universidade de Lisboa, Centro de Fisica Teorica e Computacional, Faculdade de Ciencias, Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal); Ivanov, I.P. [Universite de Liege, IFPA, Liege (Belgium); Sobolev Institute of Mathematics, Novosibirsk (Russian Federation); Silva, Joao P. [Instituto Superior de Engenharia de Lisboa, Lisboa (Portugal); Universidade Tecnica de Lisboa, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisboa (Portugal)


    In the Standard Model, the Higgs potential allows only one minimum at tree level. But the open possibility that there might be two scalar doublets enriches the vacuum structure, allowing for the risk that we might now be in a metastable state, which we dub the panic vacuum. Current experiments at the LHC are probing the Higgs particle predicted as a result of the spontaneous symmetry breaking. Remarkably, in the two Higgs model with a softly broken U(1) symmetry, the LHC experiments already allow to exclude many panic vacuum solutions. (orig.)

  11. Conformational studies of self-organized regioregular poly(3-dodecylthiophene)s using non-contact atomic force microscopy in ultra high vacuum condition

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shukichi [Kansai Advanced Research Center, National Institute of Information and Communications Technology (KARC-NiCT), 588-2, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan)]. E-mail:; Grevin, Benjamin [Laboratoire de Physique des Metaux Synthetiques UMR5819-SprAM, DRFMC CEA-Grenoble, 17 rue des Martyrs 38054 Grenoble Cedex 9 (France); Rannou, Patrice [Laboratoire de Physique des Metaux Synthetiques UMR5819-SprAM, DRFMC CEA-Grenoble, 17 rue des Martyrs 38054 Grenoble Cedex 9 (France); Suzuki, Hitoshi [Kansai Advanced Research Center, National Institute of Information and Communications Technology (KARC-NiCT), 588-2, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan); Mashiko, Shinro [Kansai Advanced Research Center, National Institute of Information and Communications Technology (KARC-NiCT), 588-2, Iwaoka, Nishi-ku, Kobe 651-2492 (Japan)


    Conformations of one of the variations of {pi}-conjugated poly-alkylthiophene, poly(3-dodecylthiophene)s (P3DDT)s on the surface in ultra high vacuum (UHV) were investigated by non-contact atomic force microscopy (NC-AFM) operated by frequency-modulation mode (FM-mode). From individual molecules to several multi-layered ones, polymer chains on the surface were clearly resolved on conducting highly oriented pyrolytic graphite (HOPG) substrates and insulating mica ones, respectively. Solvent evaporation was found to have two stages, which influenced the diffusion, ordering, and adhesion processes of polymer chains on the substrate. To keep the ordered conformations of deposited polymer chains when they are transferred from ambient condition to UHV, these evaporation processes should be carefully considered. The initial conformation of polymers on the substrate was found to depend strongly on the lattice matching conditions and interactions between polymers and substrates. Formations of stripe-like structures of P3DDT polymers were found on the mica substrates, which is promising for device application.

  12. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Meezan, N. B., E-mail:; Hopkins, L. F. Berzak; Pape, S. Le; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others


    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.

  13. Space simulation chambers for complete satellites: High vacuum and extreme temperatures challenges; Camaras de simulacion espacial para satelites completos: los retos de alto vacio y temperaturas extremas

    Energy Technology Data Exchange (ETDEWEB)

    Galan, M.; Cazador, M.


    During any satellite development phase, many operational factors can only be experimentally determined by testing under the most extreme environmental conditions that will be encountered in its life. Simulating the different temperatures, thermal loads and vacuum conditions allows analyzing the suitability of new materials, components and systems for these extreme conditions. In a space project, thermal vacuum testing reaches 70% of the total testing costs. They are the most similar conditions to the real ones that will be encountered in the outer space.In this article, the function of both the thermal and vacuum subsystems are explained and analyzed.Thermal control units are the most fundamental part in a space simulation chamber; they must cover the required extreme temperature range with the required heating and cooling speed. The vacuum subsystem must allow reaching the required operating pressure within the specified time, handling significant degassing loads both from the satellite and the large exposed surfaces inside the chamber. (Author) 6 refs.

  14. Development of Subischial Prosthetic Sockets with Vacuum-Assisted Suspension for Highly Active Persons with Transfemoral Amputations (United States)


    comfort during sitting, standing, walking, and running in highly active transfemoral prosthesis users. The Specific Aims of this project are to: A1...with 3 lost to follow up (Table 1). Of the remaining 7 subjects, 6 have completed baseline biomechanics testing in their standard of care socket; 6/7...have completed baseline fluoroscopy testing in their standard of care socket; 3/7 have completed biomechanics testing in the sub-ischial socket (data

  15. Art Deco 设计手法在高层居住建筑立面的运用%The application of Art Deco design technique in high-rise residential building facade

    Institute of Scientific and Technical Information of China (English)



    This PaPer introduced the concePt and style characteristics of Art Deco design method,analyzed the Prevalent cause of Art Deco style in high-rise residential building,from the Physical modeling,detailed modeling,color and material and other asPects,elaborated the aPPlication of Art Deco design technique in high-rise residential building facade design,in order to achieve the desired artistic effect.%介绍了 Art Deco 设计手法的概念及风格特征,分析了 Art Deco 风格在高层居住建筑中盛行的原因,从形体造型、细部造型、色彩与材质等方面,阐述了 Art Deco 设计手法在高层居住建筑立面设计中的应用,以达到预期的艺术效果。

  16. The evaluation of popular music in the United States, Germany and the Netherlands: a comparison of the use of high art and popular aesthetic criteria

    NARCIS (Netherlands)

    van Venrooij, A.; Schmutz, V.


    Popular music has apparently gained much in status and artistic legitimacy. Some have argued that popular music criticism has assimilated the evaluative criteria traditionally associated with high art aesthetics to legitimate pop music as a serious art form, while others have claimed that popular mu

  17. Improved Vacuum-Tight Connector (United States)

    Rudin, Frank


    Simple reinforcing tube increases service life and improves seal. Short stainless-steel tube inserted in copper tube to reinforce against compression, preventing leaks due to thermal distortion or to collapse under squeeze of ferrule in compressure fitting. Several test specimens of improved connector constructed, tested, and evaluated. Fittings not only operated successfully at required operating conditions of vacuum and temperature but also consistently demonstrated high reliability after loosened and tightened many times.

  18. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))


    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  19. NCSX Vacuum Vessel Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Viola, M. E.; Brown, T.; Heitzenroeder, P.; Malinowski, F.; Reiersen, W.; Sutton, L.; Goranson, P.; Nelson, B.; Cole, M.; Manuel, M.; McCorkle, D.


    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120º vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1" of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120º vessel segments are formed by welding two 60º segments together. Each 60º segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8" (20.3 cm) wide spacer "spool pieces." The vessel must have a total leak rate less than 5 X 10-6 t-l/s, magnetic permeability less than 1.02μ, and its contours must be within 0.188" (4.76 mm). It is scheduled for completion in January 2006.

  20. On Puthoff's Semiclassical Electron and Vacuum Energy (United States)

    Pereira, N. R.


    A possible connection between a point electron and vacuum energy was recently claimed by Puthoff (Int. J. Theor. Phys. 46, 3005 (2007)). He envisions a point electron as an ideally conducting spherical shell with a distributed charge on the surface, in equilibrium with the radiation pressure from electromagnetic vacuum fluctuations on the outside, and claims that his analysis demonstrates the reality of high-energy-density vacuum fluctuation fields. The present paper finds, instead, that the analysis is meaningless without specific knowledge on the cutoff frequency that is a free parameter in the model.

  1. Handbook of vacuum technology

    CERN Document Server


    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  2. Cosmology of gravitational vacuum

    CERN Document Server

    Burdyuzha, V; Pacheco, J


    Production of gravitational vacuum defects and their contribution to the energy density of our Universe are discussed. These topological microstructures (defects) could be produced in the result of creation of the Universe from "nothing" when a gravitational vacuum condensate has appeared. They must be isotropically distributed over the isotropic expanding Universe. After Universe inflation these microdefects are smoothed, stretched and broken up. A part of them could survive and now they are perceived as the structures of Lambda-term and an unclustered dark matter. It is shown that the parametrization noninvariance of the Wheeler-De Witt equation can be used to describe phenomenologically vacuum topological defects of different dimensions (worm-holes, micromembranes, microstrings and monopoles). The mathematical illustration of these processes may be the spontaneous breaking of the local Lorentz-invariance of the quasi-classical equations of gravity. Probably the gravitational vacuum condensate has fixed tim...

  3. Cold Vacuum Drying Facility (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  4. ISR Intersection Vacuum Chamber

    CERN Multimedia


    This special vacuum chamber presenting a lateral opening at the beam crossing point is one of the many chambers specifically designed for a particular experiment. Here it is shown during assembly at the ISR mechanical worshop.

  5. Vacuum Camera Cooler (United States)

    Laugen, Geoffrey A.


    Acquiring cheap, moving video was impossible in a vacuum environment, due to camera overheating. This overheating is brought on by the lack of cooling media in vacuum. A water-jacketed camera cooler enclosure machined and assembled from copper plate and tube has been developed. The camera cooler (see figure) is cup-shaped and cooled by circulating water or nitrogen gas through copper tubing. The camera, a store-bought "spy type," is not designed to work in a vacuum. With some modifications the unit can be thermally connected when mounted in the cup portion of the camera cooler. The thermal conductivity is provided by copper tape between parts of the camera and the cooled enclosure. During initial testing of the demonstration unit, the camera cooler kept the CPU (central processing unit) of this video camera at operating temperature. This development allowed video recording of an in-progress test, within a vacuum environment.

  6. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry


    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  7. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.


    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.


    Directory of Open Access Journals (Sweden)

    Anahita Dehkhoda


    Full Text Available With the aim of increasing the sugars concentration in dilute-acid ligno-cellulosic hydrolyzate to more than 100 g/l for industrial applications, the hydrolyzate from spruce was concentrated about threefold by high-pressure or vacuum evaporations. It was then fermented by repeated fed-batch cultivation using flocculating Saccharomyces cerevisiae with no prior detoxification. The sugars and inhibitors concentrations in the hydrolyzates were compared after the evaporations and also fermenta-tion. The evaporations were carried out either under vacuum (VEH at 0.5 bar and 80°C or with 1.3 bar pressure (HPEH at 107.5°C, which resulted in 153.3 and 164.6 g/l total sugars, respectively. No sugar decomposition occurred during either of the evaporations, while more than 96% of furfural and to a lesser extent formic and acetic acids disappeared from the hydrolyzates. However, HMF and levulinic acid remained in the hydrolyzates and were concentrated proportionally. The concentrated hydrolyzates were then fermented in a 4 l bioreactor with 12-22 g/l yeast and 0.14-0.22 h-1 initial dilute rates (ID. More than 84% of the fermentable sugars present in the VEH were fermented by fed-batch cultivation using 12 g/l yeast and initial dilution rate (ID of 0.22 h-1, and resulted in 0.40±0.01 g/g ethanol from the fermentable sugars in one cycle of fermentation. Fermentation of HPEH was as successful as VEH and resulted in more than 86% of the sugar consumption under the corresponding conditions. By lowering the initial dilution rate to 0.14 h-1, more than 97% of the total fermentable sugars were consumed, and ethanol yield was 0.44±0.01 g/g in one cycle of fermentation. The yeast was able to convert or assimilate HMF, levulinic, acetic, and formic acids by 96, 30, 43, and 74%, respectively.

  9. High-Resolution Infrared-Vacuum Ultraviolet Photoion and Pulsed Field Ionization-Photoelectron Methods for Spectroscopic Studies of Neutrals and Cations

    Institute of Scientific and Technical Information of China (English)

    Xi Xing; Beth Reed; Mi Kyung Bahng; Peng Wang; Hin Koo Woo; Sun Jong Baek; Chee Shine Lam; Cheuk Yiu Ng


    We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR- OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VUV) laser to photoionize the IR excited species, high-resolution IR spectra of polyatomic neutrals can be obtained with high sensitivity. The fact that this IR-VUV-photoion (IR-VUV-PI) method is based on VUV photoionization probe, and thus, allows the identification of the neutral IR absorber, makes it applicable for IR spectroscopy measurements of isotopemers, radicals, and clusters, which usually exist as impure samples. The highly resolved IR-VUV-PI measurements achieved using the single mode IR-OPO laser have made possible the selection of single rovibrational states of CH3X (X=Br and I), C2H4, and C3H4 for VUV-pulsed field ionization-photoelectron (VUV-PFI-PE) measurements, resulting in rovibrationally resolved photoelectron spectra for these polyatomic molecules. These experiments show that the signal- to-noise ratios of the IR-VUV-PI and IR-VUV-PFI-PE spectra obtained by employing the high-resolution IR-OPO laser are significantly higher than those observed in previous IR-VUV-PI and IR-VUV-PFI-PE studies using a low-resolution IR-OPO laser. Further improvement in sensitivity of IR-VUV-PI and IR- VUV-PFI-PE measurements by using the collinear arrangement of IR-VUV lasers and molecular beam is discussed.

  10. Generation of a quasi-monoenergetic high energy proton beam from a vacuum-sandwiched double layer target irradiated by an ultraintense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Nam Kim, Kyung; Lee, Kitae, E-mail:; Hee Park, Seong; Young Lee, Ji; Uk Jeong, Young; Vinokurov, Nikolay [Center for Quantum-Beam-based Radiation Research, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Gi Kim, Yong [Department of Physics, Kongju National University, Kongju (Korea, Republic of)


    An acceleration mechanism to generate a high energy proton beam with a narrow energy spread in the laser-induced plasma acceleration of a proton beam is proposed; this mechanism employs two thin foils separated by a narrow vacuum gap. Instead of a thin sheath field at the plasma surfaces, it utilizes an electrostatic field formed in the bulk of the plasma. From a one-dimensional fluid analysis, it has been found that with an appropriate target thickness, protons on the front surface of the second layer can be fed into the plasma, in which the protons are accelerated by an electrostatic field built into the bulk of the plasma. This leads to a proton beam with higher energy and a narrower energy spread than those accelerated at the rear surface of the second layer. The acceleration mechanism is also verified by a two-dimensional particle-in-cell simulation. With a 27-fs long and 2×10{sup 19} W/cm{sup 2} intense laser pulse, a proton beam with an 18-MeV peak energy and a 35% energy spread is generated. The peak energy is higher than that from the rear surface of the second layer by a factor of 3.

  11. Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing. (United States)

    Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan


    Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres.

  12. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: towards Bose-Einstein condensation of vacuum ultraviolet photons (United States)

    Wahl, Christian; Brausemann, Rudolf; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin


    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high-pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the 5p^6-5p^56s transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 158 and 180 nm wavelength are reported.

  13. Wireless Integrated Microelectronic Vacuum Sensor System (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun


    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  14. High levels of psychosocial readiness for ART in an African population at the onset of treatment. (United States)

    Wolff, Brent; Mbonye, Martin; Coutinho, Aartin; Amuron, Barbara; Nkabala, Robert; Jaffar, Shabbar; Grosskurth, Heiner


    Adherence at the earliest stages of treatment is likely to be influenced by prior illness trajectories and future expectations, best captured (and addressed) before treatment begins. We examined the influence of illness trajectories and treatment expectations on psychosocial readiness to start antiretroviral therapy (ART) in Jinja, Uganda. In-depth interviews were conducted between October 2005 and April 2006 with 41 members of an AIDS support organisation on their first day of treatment. Transcribed texts were translated, coded and analysed thematically using NVIVO-7 software. Results indicated that acute fear of death and progressive withdrawal from social, economic and sexual roles narrowed focus on survival, while efficacy-enhancing experiences with septrin prophylaxis and trust in counsellors reinforced belief in HIV diagnosis and importance of adherence. Most enjoyed supportive home environments after disclosing their serostatus. Lack of money for food and transport was anticipated as the main barriers to future adherence, particularly among women. Integrating strong counselling support with ART provision helped channel the power of shared illness experience into positive motivation to adhere at the onset of treatment.

  15. "Flat-Fish" Vacuum Chamber

    CERN Multimedia


    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  16. Art and human embryonic stem cells: from the bench to the high street. (United States)

    Duprat, Sebastien


    ESTOOLS, a project funded by the European Commission (FP6), gathers expertise on human embryonic stem cells in 10 countries of the European Research Area. The ESTOOLS outreach program uses Art extensively as the only universal cross-cultural and cross-religion means of communication. The Smile of a Stem Cell photo exhibition, a major component of this program, aims to fill a missing link between public dissemination of science and science-illiterate citizens. Scientists are also engaged to stand at a distance from their work and observe it with an outsider's perspective, which enhances their competency to communicate science. The photo exhibition, by its situation upstream of scientific education, makes itself open to interest and enthusiasm among a public with no prerequired scientific knowledge or abilities.

  17. Signal Processing in High-End Hearing Aids: State of the Art, Challenges, and Future Trends

    Directory of Open Access Journals (Sweden)

    U. Rass


    Full Text Available The development of hearing aids incorporates two aspects, namely, the audiological and the technical point of view. The former focuses on items like the recruitment phenomenon, the speech intelligibility of hearing-impaired persons, or just on the question of hearing comfort. Concerning these subjects, different algorithms intending to improve the hearing ability are presented in this paper. These are automatic gain controls, directional microphones, and noise reduction algorithms. Besides the audiological point of view, there are several purely technical problems which have to be solved. An important one is the acoustic feedback. Another instance is the proper automatic control of all hearing aid components by means of a classification unit. In addition to an overview of state-of-the-art algorithms, this paper focuses on future trends.

  18. Technology Study on Producing High Melting Point Microcrystalline Wax From Shenbei/Daqing Vacuum Residue Oil%沈北/大庆减压渣油生产高熔点微晶蜡工艺研究

    Institute of Scientific and Technical Information of China (English)

    金秀英; 陈白莉; 杜晓敏; 王玉玲; 范燕


      沈北/大庆减压渣油中含有丰富的微晶蜡。将渣油亚临界丙烷脱沥青得到轻脱油,再经酮苯脱油-白土精制生产高熔点微晶蜡。说明大庆、沈北混合原油减压渣油经脱沥青等系列工艺处理生产光亮油和微晶蜡的技术可行性,提出了大庆、沈北混合原油减压渣油综合利用的途径。%There is abundant microcrystalline wax in Shenbei/Taqing vacuum residue oil. Light deasphalting oil is often obtained from vacuum residue oil by subcritical propane deasphalting process, then microcrystalline wax with high melting point can be produced by butanone-toluene solvent deoiling and clay-treated refining. In this paper,the technical and economic feasibility of producing bright stock and microcrystalline wax from the vacuum residue of Daqing and Shenbei mixed crude by deasphalting etc.processes was discussed according to the pilot plant test results .Utilization ways of vacuum residue of Daqing and Shenbei mixed crude were put forward.

  19. Experiment on heat transfer and temperature distribution of insulation jacket in a high-vacuum-multilayer-insulation cryogenic tank after sudden, catastrophic loss of insulation vacuum%高真空多层绝热低温容器完全真空丧失后传热及绝热夹层内温度分布规律实验

    Institute of Scientific and Technical Information of China (English)

    谢高峰; 朱鸣; 汪荣顺


    在搭建了高真空多层绝热低温容器完全真空丧失传热研究实验台的基础上,分别利用干燥氮气、二氧化碳、氧气、氦气及空气为破空介质,进行了高真空多层绝热低温容器发生完全真空丧失事故后的传热实验研究.实验中通过流量计和温度采集系统测得了高真空多层绝热低温容器在发生完全真空丧失事故后的排放率和绝热夹层内的温度分布规律.实验结果表明,导入高真空多层绝热低温容器绝热夹层的气体种类对其完全真空丧失后的传热过程有很大的影响.%A test rig for high-vacuum-multilayer-insulation( HVMLI) cryogenic tank was built up and experiments were conducted on a sudden, catastrophic loss of insulation vacuum ( SCLIV) cryogenic tank by using gases of nitrogen, carbon dioxide, oxygen, helium and air as leaking medium respectively. The venting rates and temperature in the insulation jacket were measured after five kinds of gas leaking into it. The results show that the type of gas leaking into the vacuum interlayer has great influence on the process of heat transfer after when the loss of vacuum happens.

  20. Fate of Electroweak Vacuum during Preheating

    CERN Document Server

    Ema, Yohei; Nakayama, Kazunori


    Our electroweak vacuum may be metastable in light of the current experimental data of the Higgs/top quark mass. If this is really the case, high-scale inflation models require a stabilization mechanism of our vacuum during inflation. A possible candidate is the Higgs-inflaton/-curvature coupling because it induces an additional mass term to the Higgs during the slow roll regime. However, after the inflation, the additional mass term oscillates, and it can potentially destabilize our electroweak vacuum via production of large Higgs fluctuations during the inflaton oscillation era. In this paper, we study whether or not the Higgs-inflaton/-curvature coupling can save our vacuum by properly taking account of Higgs production during the preheating stage. We put upper bounds on the Higgs-inflaton/-curvature coupling, and discuss possible dynamics that might relax them.

  1. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume


    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  2. Ahşap Kurutmada Çevre Dostu bir Teknoloji : Yüksek Frekans / High-Frequency-Vacuum Wood Drying Technology

    Directory of Open Access Journals (Sweden)

    Cengiz Güler


    Full Text Available Katma değerli olmasına karşın kurutulması güç ağaç türlerine ait kalın kerestelerin, klasik kurutma metoduyla çok uzun sürelerde kurutulabilmesi ve istenen kalite düzeylerinin tam olarak elde edilememesi nedeniyle günümüzde Yüksek Frekans-Vakum kombinasyonlu kurutma metodu (YFV kendini göstermiş durumdadır. Geçmişte özellikle yatırım maliyetleri ve teknolojik altyapı zorlukları nedeniyle yaygınlaşamayan bu yöntem tekrar güncel hale gelmiştir. Bu kurutma metodunda prensip; ısı kaynağının, elektrik enerjisi olmasıdır. Dolayısı ile katı ve sıvı yakıta göre çevre dostu olduğu kabul edilebilir. Bu metot ile ağaç malzemeye gönderilen elektromanyetik dalgaların meydana getirdiği ısıdan yararlanmak suretiyle, kalın ve güç kuruyan, başlangıç nemi yüksek olan ağaç türlerinin %10 un altındaki sonuç nemlerine kadar çok kısa sürelerde kurutulması amaçlanmaktadır. Bu çalışmada öncelikle kurutma teknoloji hakkında genel bilgi verilmiştir. Daha sonra ise, günümüze kadar yapılan orijinal çalışmalar özetlenerek klasik yöntemle kurutulmasında önemli zorluklar olan, kurutma süresi çok uzun olan veya hiç kurutulamayan Meşe, Ceviz, Kayın, İroko, Kestane gibi ağaç türlerinin kalın kerestelerinin kurutulması denemelerinden elde edilen sonuçlar ortaya konulmuştur. Son bölümde ise elde edilen bu sonuçlar özellikle metodun donanım ve işletme giderleri, ortaya çıkan kurutma süreleri ve kalite düzeyleri, çevreye uyumlu teknoloji ekseninde ele alınmıştır. Ayrıca, bu metodun kereste kurutma dışında diğer tarımsal ürün ve atıkların kurutulmasında kullanılabilir olması nedeniyle çevreye uyumlu üretim ve geri dönüşüme sağladığı katkı da bu kapsamda irdelenmiştir. High-Frequency-Vacuum Wood Drying Technology High density wood species dried very long period’s and very low quality levels with method in conventional drying. So High

  3. Acetylene Vacuum Carburizing

    Institute of Scientific and Technical Information of China (English)

    Hitoshi Iwata


    Almost 30 years has passed since the publication of materials on vacuum carburizing technology, and is attracting a great deal of attention as a technology capable of being used as a substitute for gas carburizing technology.However, the technology was not popular except in specific fields. The main reason for this is due to a variety of harmful influences accompanying the sooting problems caused by CH4 or C3H8. We have succeeded in that the occurrence of sooting was suppressed by utilizing acetylene, at extremely low pressure for carburizing (below 1 kPa). This process is now showing the excellent quality and prospects for this technology in terms of quality, economy and safety. At present almost 70 practical mass production furnaces are used in production lines, in Japan and abroad. At this time, we will report summary of the present acetylene vacuum carbufizing process and the actual results obtained by these acetylene vacuum carbufizing furnaces for mass production.

  4. Model electrochemical interfaces in ultra-high vacuum: solvent-induced surface potential profiles on Pt(111) from work-function measurements and infrared Stark effects (United States)

    Kizhakevariam, Naushad; Villegas, Ignacio; Weaver, Michael J.


    The influence of various solvents upon the interfacial-potential profile on Pt(111) has been investigated by means of work-function changes and infrared frequency Stark shifts attending sequential-molecular dosing in ultra-high vacuum (UHV) at a suitably low temperature (ca. 100 K) with the primary objective of assessing the role of surface solvation in related electrochemical systems. The solvents examined — dichloromethane, benzene, acetone, acetonitrile, methanol, and ammonia — span a range of polarity and other solvating properties. These species were dosed onto both clean and CO-saturated Pt(111), the Stark shifts being evaluated for the CO stretching mode of terminally co-ordinated carbon monoxide. Marked decreases (≥ 1 eV) in the work function, Φ, and hence in the surface potential, φ, are observed on the addition of most solvents onto clean Pt(111). Milder yet still substantial Φ decreases are also observed for solvent dosage upon CO-saturated Pt(111). These latter Φ changes correlate approximately with the observed vCO frequency downshifts, suggesting that the latter property is also sensitive to the solvent-induced electrostatic interfacial field. The functional form of both the Φ decreases and the corresponding vCO frequency downshifts induced by solvent dosage provide insight into the dosage-dependent potential profile and its relationship to both the monolayer and multilayer solvent structure. The present findings are also briefly compared with corresponding vtCO - Φ data obtained for potassium atom dosing, where the surface potential is altered instead by varying the surface electronic charge in the presence of a given solvent. The underlying factors responsible for the surprisingly large solvent-induced surface potential shifts are discussed in detail, and the likely importance of the surface electronic charge distribution as well as solvent dipole orientation and adsorbate-metal charge sharing is pointed out.

  5. High blood lead levels in ceramic folk art workers in Michoacan, Mexico. (United States)

    Fernandez, G O; Martinez, R R; Fortoul, T I; Palazuelos, E


    Ceramic folk art workers are at risk for developing lead intoxication. These workers live in small settlements, which often lack sanitation services, and these individuals work with ceramics in their homes. The study population comprised individuals of all ages from three rural communities in central Michoacan (Tzintzuntzan, Tzintzunzita, and Colonia Lazaro Cardenas). A survey questionnaire, which was provided to each individual, included questions about household characteristics, presence of a clay oven in the home, and use of lead oxide ("greta") and other hazardous products. Venous blood samples were obtained from the workers. We found lead exposure to be reduced if the home floor was covered and if the house had been painted < or =1 y prior to study. Blood lead levels exceeded the maximum level permitted, but the levels were lower than those found in the 1970s, during which time study techniques for analyzing samples differed from those used in the present study. In addition, activity patterns of the populations differed during the two studies.

  6. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)


    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  7. Handbook of vacuum physics

    CERN Document Server


    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  8. Analysis and Treatment of Common Faults of High Voltage Vacuum Contactor%高压真空接触器常见故障的处理及原因分析

    Institute of Scientific and Technical Information of China (English)



    High voltage vacuum contactors are widely used in high voltage power system of power plant. In order to help the field workers correctly and promptly treat the common faults of high voltage vacuum contactors, this paper introduced the working principle of high voltage vacuum contactor operating mechanism, detailedly described the common faults and treatment methods in previous operation and maintenance, and analyzed the causes of the faults. In addition, suggestions were offered to reduce the fault rate of high voltage vacuum contactors.%高压真空接触器在发电厂高压厂用电系统中应用广泛.若发生的故障处理不及时,将会直接影响发电厂机组的安全经济运行.为帮助现场工作人员正确、及时处理高压真空接触器的常见故障,笔者根据多年的实践经验,首先对高压真空接触器操作机构的工作原理进行简要叙述,然后重点对实际运行和检修维护中发现的故障及处理经过进行详细描述,对造成故障的原因进行分析,最后对如何降低高压真空接触器故障发生率提出建议.

  9. Standards for Art Teacher Preparation (United States)

    National Art Education Association, 2009


    The National Art Education Association (NAEA) is committed to ensuring student access to a highly qualified, certified visual arts educator in every K-12 public school across the United States, recognizing that effective arts instruction is a core component to a 21st-century education. "Standards for Art Teacher Preparation" represents the…

  10. The art of scent

    DEFF Research Database (Denmark)

    Stenslund, Anette


    At the Museum of Art and Design in New York the The Art of Scent (1889–2012) exhibition announced its declared aim of bringing to the forefront of the arts what has long been considered the fallen angel of the senses: it would inscribe scent into fine art through a display characterised by its ex...... situ superiority detached from everyday culture in situ. The exhibition would thus give cause to sketch in a phenomenology of the art of scent that opts for greater inclusion of visitors’ experienced noses. Unfolding within the framework of Martin Heidegger’s critique of aesthetics and the advocacy...... of art, this paper argues that scent that is not of high culture may yet, phenomenologically speaking, be considered great art....

  11. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation. (United States)

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J


    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  12. Vacuum levels and milk-flow-dependent vacuum drops affect machine milking performance and teat condition in dairy cows. (United States)

    Besier, J; Bruckmaier, R M


    Different levels of claw vacuum during machine milking may influence milking performance and teat condition. The claw vacuum acts on the teat and is responsible for removal and transport of milk but is also causing potential effects on the teat tissue. In the absence of milk flow, the claw vacuum is similar as the system vacuum. During milk flow, the claw vacuum drops to lower levels depending on lifting height and tube length and diameter, which may influence milking performance and the mechanical load on the teat tissue. The goal of the present study was to investigate the effects of high system vacuum and extremely low claw vacuum during milk flow on milking performance and teat condition after milking recorded by ultrasound. Treatments were control (treatment 1) with a system vacuum of 42 and a minimum claw vacuum during milk flow of 33 kPa; treatment 2 representing a system vacuum of 50 kPa, with a minimum claw vacuum almost similar as treatment 1 (34 kPa); and treatment 3 with the same system vacuum as treatment 1 but a claw vacuum drop during milk flow down to 24 kPa. Total milk yield was similar in all treatments, but strip yield was lower in treatment 3 than in the other treatments. Milk flow was similar in treatment 1 and treatment 2, but was reduced in treatment 3, thus causing a prolonged milking time in treatment 3. Teat wall thickness was increased and teat cistern diameter was decreased in treatment 2 as compared with the other treatments. The results demonstrate that the minimum claw vacuum had the main influence on milking performance independent of the level of the system vacuum and related vacuum drops and a low minimum claw vacuum caused low milk flow and long milking times. Teat condition at the end of milking, however, was mainly dependent on the system vacuum, and the load on the teat tissue was obviously increased at a system vacuum of 50 kPa. This effect was obviously occurring toward the end of milking when milk flow decreased and hence

  13. 高负压劈核技术在硬核白内障复明手术中的效果观察%Effect of High Vacuum Phaco Chop Technique for Hard Nucleolus Cataract

    Institute of Scientific and Technical Information of China (English)



    Objective To observe the effect of high vacuum phaco chop technique for hard nucleolus cataract. Methods 51 cases (65 eyes) of hard nucleolus cataract were performed by high vacuum phaco chop. Results The best corrected visual acuity (BCVA) ≥ 0. 3 was in 56 eyes (86%) one day after operation. The best corrected visual acuity (BCVA) ≥ 0.3 was in 61 eyes (94%) one month after operation. 3 eyes had posterior capsule rupture in operation. Conclusion High vacuum phaco chop technique is safe and effective for hard nucleolus cataract.%目的观察高负压劈核技术在硬核白内障手术的效果.方法采用高负压下劈核技术对51例65眼硬核白内障进行超声乳化手术.结果术后1 d矫正视力≥0.3者56眼(86%),术后1个月矫正视力≥0.3者61眼(94%),后囊膜破裂3例.结论高负压劈核技术对硬核白内障具有安全高效的复明效果.

  14. ISR vacuum system

    CERN Multimedia


    A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.

  15. LEP vacuum chamber, prototype

    CERN Multimedia


    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  16. LEP Vacuum Chamber

    CERN Multimedia


    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  17. ISR vacuum system

    CERN Multimedia


    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  18. The vacuum strikes back

    CERN Multimedia


    "Modern physics has shown that the vacuum, previously thought of as a stated of total nothingness, is really a seething background of virtual particles springing in and out of eixstence until they can seize enough energy to materialize as "real" particles." (1,5 page)

  19. The rotating quantum vacuum

    CERN Document Server

    Davies, Paul Charles William; Manogue, C A; Davies, Paul C W; Dray, Tevian; Manogue, Corinne A


    We derive conditions for rotating particle detectors to respond in a variety of bounded spacetimes and compare the results with the folklore that particle detectors do not respond in the vacuum state appropriate to their motion. Applications involving possible violations of the second law of thermodynamics are briefly addressed.

  20. Vacuum packaging technology for mass production of uncooled IRFPAs (United States)

    Ito, Takuya; Tokuda, Takayuki; Kimata, Masafumi; Abe, Hideyuki; Tokashiki, Naotaka


    We developed vacuum packaging equipment and low-cost vacuum packaging technology for the mass production of uncooled IRFPAs. The equipment consists of two chambers with identical construction. Two-chamber architecture provides flexibility in the vacuum packaging process, so we can bake the components and achieve getter activation by heating, stem/cap soldering, and cap/window soldering in a series under high-vacuum conditions. Heaters and component-holding jigs are made of graphite to assure rapid and uniform heating to 500°C. The batch size is 27 if we choose a 15-mm diameter TO8 package and can be increased by enlarging the graphite heater area. We also developed a micro-vacuum gauge to evaluate the vacuum level in encapsulated packages. The operation principle of this vacuum gauge is based on thermal conduction by air molecules. It can be integrated in IRFPA chips since the fabrication process is compatible with that for IRFPAs. We encapsulated the vacuum gauges in TO8 packages with our vacuum packaging equipment, and confirmed that the pressure in fabricated packages is sufficiently low for high performance IRFPA operation (<< 1 Pa) with the micro-vacuum gauges.

  1. Organisational Art

    DEFF Research Database (Denmark)

    Ferro-Thomsen, Martin

    creation of a practical utopia (?heterotopia?) in the organisational context. The case study makes use of both art- and organisational theory. The thesis concludes with an outline of a framework for OA that is derived from contemporary theory of mainly Relational Aesthetics (Bourriaud), Conceptual Art......University of Copenhagen / Learning Lab Denmark. 2005 Kort beskrivelse: Organisational Art is a tentative title for an art form that works together with organisations to produce art. This is most often done together with non-artist members of the organisation and on-site in their social context. OA...... is characterised as socially engaged, conceptual, discursive, site-specific and contextual. Abstract: This investigation is about Organisational Art (OA), which is a tentative title for an art form that works together with organisations (companies, institutions, communities, governments and NGOs) to produce art...

  2. Research on vacuum membrane distillation technique disposing of high concentration inorganic salt reverse osmosis dense dewatering%减压膜蒸馏技术处理无机高盐 RO 浓排水研究

    Institute of Scientific and Technical Information of China (English)

    郭建中; 路全忠; 杨才伟


      针对无机高盐 RO 浓排水具有含盐量高难处理的特点,本文研究了减压膜蒸馏技术处理无机高盐RO 浓排水试验阶段中不同料液温度、真空度、流速对膜通量的影响.结果表明:料液温度、真空度、流速与膜通量存在相关性.随着料液温度和真空度的提高,膜通量会相应增加;随着料液流速的增加膜通量也有增加,但流速小于0.2 m/s 时对膜通量的影响明显,当流速大于0.2m/s 时对膜通量影响小%  Aimed at the characteristic of high salinity and difficult dispose of high concentration inorganic salt reverse osmosis dewatering, this paper studies the vacuum membrane distillation technique dispose of high concentration inorganic salt reverse osmosis dewatering, and analyse the influence of different vacuum, material fluid temperature, flow velocity to membrane flux. The result shows that there is a correlation between membrane flux and vacuum, material fluid temperature and flow velocity. With increasing of vacuum and material fluid temperature, membrane flux increased accordingly; and when the velocity increased and membrane flux increased at the same time. With the velocity was less than 0.2 m/s, the influence to membrane flux came to be obvious, when the velocity was above 0.2 m/s, the influence to membrane flux went light.

  3. Rock Art (United States)

    Henn, Cynthia A.


    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  4. Tritium handling in vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)


    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  5. Gas bearing operates in vacuum (United States)

    Perkins, G. S.


    Bearing has restrictions to reduce air leaks and is connected to external pumpout facility which removes exhausted air. Token amount of air which is lost to vacuum is easily removed by conventional vacuum pump.

  6. Assessment of the State of the Art of Ultra High Temperature Ceramics (United States)

    Johnson, Sylvia; Gasch, Matt; Stackpoole, Mairead


    Ultra High Temperature Ceramics (UHTCs) are a family of materials that includes the borides, carbides and nitrides of hafnium-, zirconium- and titanium-based systems. UHTCs are famous for possessing some of the highest melting points of known materials. In addition, they are very hard, have good wear resistance, mechanical strength, and relatively high thermal conductivities (compared to other ceramic materials). Because of these attributes, UHTCs are ideal for thermal protection systems, especially those that require chemical and structural stability at extremely high operating temperatures. UHTCs have the potential to revolutionize the aerospace industry by enabling the development of sharp hypersonic vehicles or atmospheric entry probes capable of the most extreme entry conditions.

  7. Surge-damping vacuum valve (United States)

    Bullock, Jack C.; Kelly, Benjamin E.


    A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.

  8. HiPTI - High Performance Thermal Insulation, Annex 39 to IEA/ECBCS-Implementing Agreement. Vacuum insulation in the building sector. Systems and applications

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Moosmann, A.; Steinke, G.; Schonhardt, U.; Fregnan, F. [Fachhochschule Nordwestschweiz (FHNW), Muttenz (Switzerland); Simmler, H.; Brunner, S.; Ghazi, K.; Bundi, R. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland); Heinemann, U.; Schwab, H. [ZAE Bayern, Wuerzburg (Germany); Cauberg, H.; Tenpierik, M. [Delft University of Technology, Delft (Netherlands); Johannesson, G.; Thorsell, T. [Royal Institute of Technology (KTH), Stockholm (Sweden); Erb, M.; Nussbaumer, B. [Dr. Eicher und Pauli AG, Basel and Bern (Switzerland)


    This final report on vacuum insulation panels (VIP) presents and discusses the work done under IEA/Energy Conservation in Buildings and Community Systems (ECBCS) Annex 39, subtask B on the basis of a wide selection of reports from practice. The report shows how the building trade deals with this new material today, the experience gained and the conclusions drawn from this work. As well as presenting recommendations for the practical use of VIP, the report also addresses questions regarding the effective insulation values to be expected with current VIP, whose insulation performance is stated as being a factor of five to eight times better than conventional insulation. The introduction of this novel material in the building trade is discussed. Open questions and risks are examined. The fundamentals of vacuum insulation panels are discussed and the prerequisites, risks and optimal application of these materials in the building trade are examined.

  9. Ultrahigh-vacuum facility for high-resolution grazing-angle X-ray diffraction at a vertical wiggler source of synchrotron radiation. (United States)

    Sakata, O; Tanaka, Y; Nikolaenko, A M; Hashizume, H


    A versatile ultrahigh-vacuum chamber has been designed for grazing-angle X-ray standing-wave and diffraction experiments at the vertical wiggler source of the Photon Factory. Unlike at other sources, the vertically polarized X-rays from the wiggler favour the use of a horizontal scattering geometry. The X-ray chamber is equipped with a hemispherical beryllium window, which allows any scattering angle to be attained and secondary emissions to be measured. The chamber is of a compact design, sitting on a precision rotary table which is rotated for scans. Samples are introduced from a portable vessel. The whole procedure can be performed in a vacuum better than 10(-7) Pa. The system has successfully been applied to a grazing-angle X-ray standing-wave experiment, which determined the dimer bond length and the domain structure of Si(001) surfaces deposited with monolayer arsenic.

  10. Comparison of State-of-the-Art Digital Control and Analogue Control for High Bandwidth Point of Load Converters

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Schneider, Henrik; Andersen, Michael Andreas E.


    The purpose of this paper is to present a comparison of state-of-the-art digital and analogue control for a Buck converter with synchronous rectification. The digital control scheme is based on a digital self-oscillating modulator that allows the sampling frequency to be higher than the switching...... frequency of the converter. Voltage mode control is used in both the analogue and digital control schemes. The experimental results show that it is possible to design a digitally controlled Buck converter that has the same performance as can be achieved using commercially available analogue control ICs....... The performance of the analogue system can however be increased by using a separate operational amplifier as error amplifier. Thus analogue control is still the best option if high control bandwidth and fast transient response to load steps are important design parameters....

  11. Vacuum system of SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India); Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India)


    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N{sub 2} and O{sub 2} gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N{sub 2} gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN{sub 2} cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10{sup −4} mbar and 1.0 × 10{sup −5} mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10{sup −6} mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10{sup −5} mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10{sup −5} mbar is achieved inside the cryostat. Baking of the

  12. Increased HIV incidence in men who have sex with men despite high levels of ART-induced viral suppression: analysis of an extensively documented epidemic.

    Directory of Open Access Journals (Sweden)

    Andrew N Phillips

    Full Text Available BACKGROUND: There is interest in expanding ART to prevent HIV transmission, but in the group with the highest levels of ART use, men-who-have-sex-with-men (MSM, numbers of new infections diagnosed each year have not decreased as ARTcoverage has increased for reasons which remain unclear. METHODS: We analysed data on the HIV-epidemic in MSM in the UK from a range of sources using an individual-based simulation model. Model runs using parameter sets found to result in good model fit were used to infer changes in HIV-incidence and risk behaviour. RESULTS: HIV-incidence has increased (estimated mean incidence 0.30/100 person-years 1990-1997, 0.45/100 py 1998-2010, associated with a modest (26% rise in condomless sex. We also explored counter-factual scenarios: had ART not been introduced, but the rise in condomless sex had still occurred, then incidence 2006-2010 was 68% higher; a policy of ART initiation in all diagnosed with HIV from 2001 resulted in 32% lower incidence; had levels of HIV testing been higher (68% tested/year instead of 25% incidence was 25% lower; a combination of higher testing and ART at diagnosis resulted in 62% lower incidence; cessation of all condom use in 2000 resulted in a 424% increase in incidence. In 2010, we estimate that undiagnosed men, the majority in primary infection, accounted for 82% of new infections. CONCLUSION: A rise in HIV-incidence has occurred in MSM in the UK despite an only modest increase in levels of condomless sex and high coverage of ART. ART has almost certainly exerted a limiting effect on incidence. Much higher rates of HIV testing combined with initiation of ART at diagnosis would be likely to lead to substantial reductions in HIV incidence. Increased condom use should be promoted to avoid the erosion of the benefits of ART and to prevent other serious sexually transmitted infections.

  13. [Art-chance and art-experience in classical Greece]. (United States)

    Ban, Deokjin


    In Classical Greece, works defining the nature of art appeared in the various disciplines like medicine, rhetoric, dietetics, architecture and painting. Hippocratic authors tried to show that an art of medicine existed indeed. They contrasted the concept of art with that of chance, not experience that Plato and Aristotle distinguished from art. In fact there are similarities and discrepancies between Hippocratic epistemology and Platoic epistemology. Hippocratic authors maintained that the products of chance were not captured by art. They distinguished the domain of art charactered by explanatory knowledge and prediction from the domain of chance ruled by the unexplained and the unforeseeable. They minimized the role of luck and believed the role of art. Hippocratic authors thought that professional ability contained both knowledge and experience. In Hippocratic corpus, experience is a synonym of competence and usually has a positive meaning. But Plato gave empirical knowledge the disdainful sense and decided a ranking between two types of knowledge. Both Hippocratic authors and Plato held that a genuine art had connection with explanatory knowledge of the nature of its subject matter. A common theme that goes through arguments about art-chance and art-chance is the connection between art and nature. Hippocratic authors and Plato regarded art as a highly systematic process. Art provides us with general and explanatory knowledge of human nature. Art and nature is a mutual relationship. The systematic understanding of nature helps us gain the exactness of art and an exact art helps us understand nature well.

  14. State of art report for high temperature wear test of SMART MCP and CEDM bearing material

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Hu; Lee, Jae Seon; Park, Jin Seok; Kim, Ji Ho; Kim, Jong In


    Wear resistance properties of machine elements has been more critical in view of its significant effect on life extension, economics and material saving because it has been recognized that nearly 80 percent of damages of mechanical elements in the friction pairs are due to the material loss by wear. And wear properties have direct influence on the life of a machine in a great extend under extremely severe operating condition. Therefore highly improved wear properties of machine elements operating in such circumstances is heavily required. The purpose of this report is to survey current technology for high temperature wear test in order to establish the test plan for the life evaluation of SMART MCP and CEDM bearing materials. Friction and wear test will be done under high pressure (170 MPa) and high temperature (350 degree C) with water as lubricant to simulate the operating condition of the nuclear power reactor. Because pump type for MCP is selected as the caned motor pump which needs no mechanical sealing, the rotating shaft on which bearing is fully submerged by main coolant with high temperature. So MCP bearing operates without additional lubricant. CEDM is adopted as the ball-screw type with fine controllability. So the driving part is designed as the immersed-in type by main coolant. Therefore the anti-wear and reliability of driving parts are much consequent to guarantee the lifetime and the safety of the whole system. Tribometer adapted to high temperature and pressure circumstance is needed to execute bearing material testing. Test parameters are material, sliding speed, sliding distance and applied load. In order to identify the wear mechanism, optical microscope and surface roughness testers are required. The result of this report will provide an elementary data to develop bearing materials and to estimate bearing lifetime for the bearings of MCP and CEDM in SMART. (author)

  15. 高压真空断路器的检修与维护%Maintenance of High Voltage Vacuum Circuit Breaker

    Institute of Scientific and Technical Information of China (English)


    Vacuum circuit breaker has advantages of large capacity, good arc extin-guishing performance, long life of contact head, a small amount of operation maintenance and long maintenance cycle. Therefore, the vacuum circuit breaker has been widely used in every substation of Jigang Group Co., Ltd. The problems in maintenance of the vacuum circuit breaker are analyzed, and the improvement suggestions and measures are offered.%  真空断路器具有开断容量大、灭弧性能好、触头寿命长、运行维护量小、检修周期长等特点。因此,真空断路器在济钢各个变电站得到了广泛的应用。针对济钢内部真空断路器维护检修中出现的一些问题进行分析,并提出改进建议和措施。

  16. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems (United States)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.


    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  17. [Art therapy and "art brut"]. (United States)

    Kovács, Emese; Simon, Lajos


    The authors in this article explor the most important steps of the development of the research on the psychopathology of expression. They introduce the development of Art Brut and it's place in art history. They deal with the characteristics of art therapy.

  18. Art Rocks with Rock Art! (United States)

    Bickett, Marianne


    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  19. "Bridging" Engineering & Art: An Outreach Approach for Middle and High School Students (United States)

    Asiabanpour, Bahram; DesChamps-Benke, Nicole; Wilson, Thomas; Loerwald, Matthew; Gourgey, Hannah


    This paper describes a novel outreach approach to high school and middle school students to familiarize them with engineering functions and methods. In this approach students participated in a seven-day summer research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping,…

  20. Cold Vacuum Drying (CVD) Set Point Determination

    Energy Technology Data Exchange (ETDEWEB)



    The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge, the SCIC receives signals from MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.

  1. Dry vacuum pumps (United States)

    Sibuet, R.


    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  2. A Rotating Quantum Vacuum

    CERN Document Server

    De Lorenci, V A


    We investigate which mapping we have to use to compare measurements made in a rotating frame to those made in an inertial frame. Using a "Lorentz-like" coordinate transformation we obtain that creation-anihilation operators of a massless scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state (a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. After this, introducing an apparatus device coupled linearly with the field we obtain that there is a strong correlation between number of rotating particles (in a given state) obtained via canonical quantization and via response function of the rotating detector. Finally, we analyse polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view.

  3. High-temperature flaw assessment procedure: A state-of-the-art survey

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, M.B.; Takahashi, Y.


    High-temperature crack growth under cyclic, static, and combined loading is received with an emphasis on fracture mechanics aspects. Experimental studies of the effects of loading history, microstructure, temperature, and environment on crack growth behavior are described and interpreted. The experimental evidence is used to examine crack growth parameters and theoretical models for fatigue, creep, and creep-fatigue crack propagation at elevated temperatures. The limitations of both elastic and elastic-plastic fracture mechanics for high-temperature subcritical crack growth are assessed. Existing techniques for modeling critical crack growth/ligament instability failure are also presented. Related topics of defect modeling and engineering flaw assessment procedures, nondestructive evaluation methods, and probabilistic failure analysis are briefly discussed. 142 refs., 33 figs.

  4. [High-intensity focused ultrasound and prostate cancer: technology, state of the art and future]. (United States)

    Vespasiani, G; Asimakopoulos, A D; Finazzi Agrò, E; Virgili, G


    BACKGROUND. The potential applications of the high-intensity focused ultrasound (HIFU) as a minimally invasive therapy of the localized prostate cancer explain the growing interest of the urologic community towards this technique. HIFU has been assessed for its role in the treatment of localized prostate cancer in patients who otherwise would not have benefited from surgery, and in local recurrences after radiation failure. Methods. Relevant information on HIFU treatment was identified through a literature search of published studies. RESULTS. High biochemical efficacy, excellent tumor local control and favorable mid- and long-term oncological data with a low morbidity rate have been shown in many series of patients. CONCLUSIONS. Although HIFU is a recent and emerging technology, it has been well studied and developed to a point that HIFU will undoubtedly be an effective alternative to radiation therapy.

  5. Mineral resources of high-tech metals in Russia: State of the art and outlook (United States)

    Bortnikov, N. S.; Volkov, A. V.; Galyamov, A. L.; Vikent'ev, I. V.; Aristov, V. V.; Lalomov, A. V.; Murashov, K. Yu.


    Seven main ore-forming systems—porphyry and epithermal; orogenic related to granitic intrusions; magmatic ultramafic; volcanic-hosted massive sulfide and volcanic-sedimentary; sedimentary basins; related to alkaline magmatic activity; and placers and weathering mantles—are sources of high-tech critical metals. The following promising types of ore deposits containing high-tech critical metals as by-products are recognized: Cu-Mo porphyry, Fe-Cu-Au and Pb-Zn skarn, base-metal epithermal, volcanic-hosted massive sulfide, base-metal stratiform, various tin deposits, and placers containing rare metals including REE. The mineral resources of critical metals in Russia are compared with those known in other countries. The contents of high-tech critical metals in ores of some noble-metal deposits of the Russian Northeast are reported. It is shown that the subsurface of Russia possesses considerable mineral resource potential for hightech critical metals, which allows new enterprises to be created or production of operating enterprises to increase.

  6. Bake-Out Mobile Controls for Large Vacuum Systems

    CERN Document Server

    Blanchard, S; Gomes, P; Pereira, H; Kopylov, L; Merker, S; Mikheev, M


    Large vacuum systems at CERN (Large Hadron Collider - LHC, Low Energy Ion Rings - LEIR...) require bake-out to achieve ultra-high vacuum specifications. The bake-out cycle is used to decrease the outgassing rate of the vacuum vessel and to activate the Non-Evaporable Getter (NEG) thin film. Bake-out control is a Proportional-Integral-Derivative (PID) regulation with complex recipes, interlocks and troubleshooting management and remote control. It is based on mobile Programmable Logic Controller (PLC) cabinets, fieldbus network and Supervisory Control and Data Acquisition (SCADA) application. The CERN vacuum installations include more than 7 km of baked vessels; using mobile cabinets reduces considerably the cost of the control system. The cabinets are installed close to the vacuum vessels during the time of the bake-out cycle. Mobile cabinets can be used in any of the CERN vacuum facilities. Remote control is provided through a fieldbus network and a SCADA application

  7. Arte Brasileno Erudito y Arte Brasileno Popular. (Brazilian Fine Art and Brazilian Popular Art) (United States)

    Valladares, Clarival Do Prado


    Class differences in Brazil explain the inequality between the art produced in the high strata of society and that originating in the economically inferior communities. Genuine expression of art degenerates for two reasons: the influence of modern industrial civilization and the tendency to satisfy the taste of the acquisitive group. (Author/MF)

  8. High incidence of intermittent care in HIV-1-infected patients in Curaçao before and after starting cART. (United States)

    Hermanides, H S; Holman, R; Gras, L; Winkel, C N; Gerstenbluth, I; de Wolf, F; Duits, A J


    Retention in care is one of the major challenges to scaling up and maximizing the effectiveness of combination antiretroviral therapy (cART). High attrition rates have been reported in the Caribbean region, varying from 6% to 23%. We studied the incidence of and risk factors for intermittent care in a cohort of adult HIV-1-positive patients, who entered into care in Curaçao between January 2005 and July 2009. A total of 214 therapy-naïve HIV-1-infected patients aged 15 years or older, entered HIV care between January 2005 and July 2009. Intermittent care was defined as at least one period of 365 days or longer in which there was no HIV care contact in Curaçao. Cox regression models were used to identify characteristics associated with time to intermittent care. In all, 203 (95%) patients could be classified as having intermittent or continuous care. The incidence of intermittent care before starting cART was 25.4 per 100 person years observation (PYO), whilst it was 6.1 per 100 PYO after starting cART. Being born outside Curaçao was associated with intermittent care before and after starting cART. Time from diagnosis to entry into care was an independent predictor for intermittent care before starting cART. Younger age was independently associated with intermittent care after starting cART. Half of the patients returned to care after intermitting care. Upon returning to care, median CD4 count was 264 cells/mm(3) (IQR, 189-401) for those who intermitted care before starting cART, and 146 cells/mm(3) (IQR, 73-436) in those who intermitted care after starting cART. In conclusion, the incidence of intermitting care is high in Curaçao, especially before starting cART, and intermitting care before starting cART is an independent predictor for starting cART late.

  9. Four wave mixing as a probe of the vacuum (United States)

    Tennant, Daniel M.


    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  10. The Marriage of Rigorous Academics and Technical Instruction with State-of-the-Art Technology: A Success Story of the William T. McFatter Technical High School (United States)

    Blasik, Katherine; Williams, Richard G.; Johnson, Jeanette; Boegli, D. Robert


    The search for high school reform leads to William T. McFatter Technical High School in Broward County Public Schools, Florida. The purpose of this article is to highlight key information about the school and to demonstrate the success of its rigorous academic and technical instruction with state-of-the-art technology. By sharing this…

  11. Vocabulary Instruction and Mexican-American Bilingual Students: How Two High School Teachers Integrate Multiple Strategies to Build Word Consciousness in English Language Arts Classrooms (United States)

    Ajayi, Lasisi


    Despite the significance of vocabulary knowledge to student learning, limited studies have examined English language arts (ELA) teachers' skills and practices that may be effective for building word consciousness in high school Mexican-American bilingual students. The research objective of the present study is to examine how two high school ELA…

  12. Cost-effectiveness of pre-exposure prophylaxis targeted to high-risk serodiscordant couples as a bridge to sustained ART use in Kampala, Uganda

    Directory of Open Access Journals (Sweden)

    Roger Ying


    Full Text Available Introduction: Despite scale-up of antiretroviral therapy (ART for treating HIV-positive persons, HIV incidence remains elevated among those at high risk such as persons in serodiscordant partnerships. Antiretrovirals taken by HIV-negative persons as pre-exposure prophylaxis (PrEP has the potential to avert infections in individuals in serodiscordant partnerships. Evaluating the cost-effectiveness of implementing time-limited PrEP as a short-term bridge during the first six months of ART for the HIV-positive partner to prevent HIV transmission compared to increasing ART coverage is crucial to informing policy-makers considering PrEP implementation. Methods: To estimate the real world delivery costs of PrEP, we conducted micro-costing and time and motion analyses in an open-label prospective study of PrEP and ART delivery targeted to high-risk serodiscordant couples in Uganda (the Partners Demonstration Project. The cost (in USD, in 2012 of PrEP and ART for serodiscordant couples was assessed, with and without research components, in the study setting. Using Ministry of Health costs, the cost of PrEP and ART provision within a government programme was estimated, as was the cost of providing PrEP in addition to ART. We parameterized an HIV transmission model to estimate the health and economic impacts of 1 PrEP and ART targeted to high-risk serodiscordant couples in the context of current ART use and 2 increasing ART coverage to 55% of HIV-positive persons with CD4 ≤500 cells/µL without PrEP. The incremental cost-effectiveness ratios (ICERs per HIV infection and disability-adjusted life year (DALY averted were calculated over 10 years. Results: The annual cost of PrEP and ART delivery for serodiscordant couples was $1058 per couple in the study setting and $453 in the government setting. The portion of the programme cost due to PrEP was $408 and $92 per couple per year in the study and government settings, respectively. Over 10 years, a

  13. Fostering Ecological Literacy: A Case Study of the Saint John Harbour in Two High School English Language Arts Classrooms (United States)

    Douglas, Velta

    Integrating environmental education into curriculum in a way that tackles the holistic and complicated nature of multi-dimensional issues continues to be a challenge for educators and administrators. There is potential in using ecological literacy to introduce local environmental case studies into English Language Arts high school classrooms. This research examines the experiences of two ELA classrooms in one Saint John, NB, high school with a two-week unit based on stakeholder relationships within the Saint John Harbour. Through presentations by guest speakers and research sourced from local community groups, students learned about the highly complex environmental issues that inform management decisions for the Harbour. Using these materials as background, students participated in a mock stakeholders meeting. Case study methodology was used to explore student learning in both a higher-level and a lower-level grade 10 ELA class. Data for the analysis included: cognitive mapping exercises; oral and written classroom assignments and activities; a videotape of the mock stakeholder meetings; a focus group interview with selected students; and researcher field notes. Data demonstrated significant student learning about environmental issues including increased sophistication in describing links between and among environmental issues affecting the harbour, and much more complex understandings of the positions and roles of the various stakeholder groups. Some important areas of resistance to new learning were also evident. Implications for practice and policy and recommendations for future research are discussed.

  14. The high-risk recipient: the Eighth Annual American Society of Transplant Surgeons' State-of-the-Art Winter Symposium. (United States)

    Sung, Randall S; Pomfret, Elizabeth A; Andreoni, Kenneth A; Baker, Talia B; Peters, Thomas G


    The evolution of organ transplantation has produced results so successful that many transplant programs commonly see recipients with medical risks, which in the past, would have prohibited transplantation. The Eighth Annual American Society of Transplant Surgeons State-of-the-Art Winter Symposium focused on the high-risk recipient. The assessment of risk has evolved over time, as transplantation has matured. The acceptance of risk associated with a given candidate today is often made in consideration of the relative value of the organ to other candidates, the regulatory environment, and philosophical notions of utility, equity, and fairness. In addition, transplant programs must balance outcomes, transplant volume, and the costs of organ transplantation, which are impacted by high-risk recipients. Discussion focused on various types of high-risk recipients, such as those with coronary artery disease, morbid obesity, and hepatitis C; strategies to reduce risk, such as down-staging of hepatocellular carcinoma and treatment of pulmonary hypertension; the development of alternatives to transplantation; and the degree to which risk can or should be used to define candidate selection. These approaches can modify the impact of recipient risk on transplant outcomes and permit transplantation to be applied successfully to a greater variety of patients.

  15. A highly intensified ART regimen induces long-term viral suppression and restriction of the viral reservoir in a simian AIDS model.

    Directory of Open Access Journals (Sweden)

    Iart Luca Shytaj

    Full Text Available Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART in a wide range of viremic conditions (10³-10⁷ viral RNA copies/mL in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir, an integrase inhibitor (raltegravir, a protease inhibitor (ritonavir-boosted darunavir and the CCR5 blocker maraviroc. All animals stably displayed viral loads below the limit of detection of the assay (i.e. <40 RNA copies/mL after starting highly intensified ART. By increasing the sensitivity of the assay to 3 RNA copies/mL, viral load was still below the limit of detection in all subjects tested. Importantly, viral DNA resulted below the assay detection limit (<2 copies of DNA/5*10⁵ cells in PBMCs and rectal biopsies of all animals at the end of the follow-up, and in lymph node biopsies from the majority of the study subjects. Moreover, highly intensified ART decreased central/transitional memory, effector memory and activated (HLA-DR⁺ effector memory CD4⁺ T-cells in vivo, in line with the role of these subsets as the main cell subpopulations harbouring the virus. Finally, treatment with highly intensified ART at viral load rebound following suspension of a previous anti-reservoir therapy eventually improved the spontaneous containment of viral load following suspension of the second therapeutic cycle, thus leading to a persistent suppression of viremia in the absence of ART. In conclusion, we show, for the first time, complete suppression of viral load by highly intensified ART and a likely associated restriction of the viral reservoir in the macaque AIDS model, making it a useful platform for testing

  16. Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications

    Directory of Open Access Journals (Sweden)

    Konstantinos Kontis


    Full Text Available This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable.

  17. Cold Vacuum Drying (CVD) Set Point Determination

    Energy Technology Data Exchange (ETDEWEB)



    The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO annulus on high Tempered Water (TW) inlet temperature. For the MCO isolation and purge, the SCIC receives MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switch status, seismic trip status, and time-under-vacuum trips signals. The SCIC system will isolate the MCO and start an SCHe system purge if any of the following occur. (1) Isolation and purge from one of the SCHe ''isolation'' and ''purge'' buttons is manually initiated (administratively controlled). (2) The first vacuum cycle exceeds 8 hours at vacuum, or any subsequent vacuum cycle exceeds 4 hours at vacuum without re-pressurizing the MCO for a minimum of 4 hours. (This is referred to as the 8/4/4 requirement and provides thermal equilibrium within the MCO.) (3) MCO is below atmospheric pressure and the helium flow is below the minimum required to keep hydrogen less than 4% by volume. (When MCO pressure is below 12 torr there is insufficient hydrogen to exceed the 4% level and therefore no purge is required. A five minute time delay on low flow allows flow to be stopped in order to reach < 12 torr.) (4) The duration for the transition from above atmospheric pressure to vacuum (time to reach pressure below -11.7 psig [{approx}155 torr]) exceeds 5 minutes. (5) The duration for the transition from vacuum (below -11.1 psig [{approx}185 torr]) back to pressure [greater than 0.5 psig] exceeds 5 minutes. (6) MCO reaches a vacuum state (<0.5 psig) without an adequate, verified purge volume. (The MCO must be maintained above atmospheric pressure

  18. Installation Art

    DEFF Research Database (Denmark)

    Petersen, Anne Ring

    Despite its large and growing popularity – to say nothing of its near-ubiquity in the world’s art scenes and international exhibitions of contemporary art –installation art remains a form whose artistic vocabulary and conceptual basis have rarely been subjected to thorough critical examination....... In Installation Art: Between Image and Stage, Anne Ring Petersen aims to change that. She begins by exploring how installation art developed into an interdisciplinary genre in the 1960s, and how its intertwining of the visual and the performative has acted as a catalyst for the generation of new artistic...... phenomena. It investigates how it became one of today’s most widely used art forms, increasingly expanding into consumer, popular and urban cultures, where installation’s often spectacular appearance ensures that it meets contemporary demands for sense-provoking and immersive cultural experiences. The main...

  19. Testing of a vacuum insulated flexible line with flowing liquid nitrogen during the loss of insulating vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Duckworth, Robert C [ORNL; Gouge, Michael J [ORNL; Roden, Mark L [ORNL


    Long length vacuum insulated lines are used to carry flowing liquid nitrogen in several high temperature superconducting cable projects. An important, but rare, failure scenario is the abrupt or catastrophic loss of the thermal insulating vacuum producing a rapid increase in heat transfer to the liquid nitrogen stream. In this experimental investigation, a vacuum superinsulated 3 inch by 5 inch NPS (88.9 mm by 141.3 mm) flexible cryostat is subjected to an abrupt loss of vacuum in order to measure the thermal response of a flowing liquid nitrogen stream and the temperature response of the cryostat. The measured outlet stream temperature has a slight peak shortly after the loss of vacuum incident and decreases as the cryostat warms up. The heat loads measured before and after the vacuum loss event are reported. Measurements of the temperatures in the multi-layer superinsulation are also discussed.

  20. Mindful art. (United States)

    Malafouris, Lambros


    Bullot & Reber (B&R) begin asking if the study of the mind's inner life can provide a foundation for a science of art. Clearly there are many epistemological problems involved in the study of the cognitive and affective basis of art appreciation. I argue that context is key. I also propose that as long as the "mind's life" continues to be perceived as an "inner" intracranial phenomenon, little progress can be made. Mind and art are one.

  1. 2008 State-of-the-art: Development of the Geological Disposal System for High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, Jong Youl; Jung, Jong Tae; Kim, Sung Ki; Lee, Min Soo; Kook, Dong Hak


    This report is for grasping the current status of the time of high level radioactive waste(HLW) disposal and being useful for our conceptual repository design. We performed the analyses for the HLW disposal design of preceding countries. This analyses include design principles, and comparisons for the all characteristics of HLW source, disposal canister, buffer specification, and disposal systems. During the past 10 years, retrievability concept are getting more important with perceiving the waste as new resources and almost countries planning the disposal are concerning more complex designs including this new concept. According to this trend, our country also should investigate the compliance of retrievability with our own disposal design concept. Most countries applies 'Cost Estimation base on conceptual design' method on disposal cost estimation in compliance with their own situation. Even though several estimation conditions, e.g. disposal scale and estimation time, are different, our rough estimation values for the unit disposal cost of PWR and CANDU spent fuels are analogous to other countries' values.

  2. Recent advances in vacuum sciences and applications (United States)

    Mozetič, M.; Ostrikov, K.; Ruzic, D. N.; Curreli, D.; Cvelbar, U.; Vesel, A.; Primc, G.; Leisch, M.; Jousten, K.; Malyshev, O. B.; Hendricks, J. H.; Kövér, L.; Tagliaferro, A.; Conde, O.; Silvestre, A. J.; Giapintzakis, J.; Buljan, M.; Radić, N.; Dražić, G.; Bernstorff, S.; Biederman, H.; Kylián, O.; Hanuš, J.; Miloševič, S.; Galtayries, A.; Dietrich, P.; Unger, W.; Lehocky, M.; Sedlarik, V.; Stana-Kleinschek, K.; Drmota-Petrič, A.; Pireaux, J. J.; Rogers, J. W.; Anderle, M.


    Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

  3. Mathematical Model for the Continuous Vacuum Drying

    Institute of Scientific and Technical Information of China (English)

    DAI Hui-liang


    An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.

  4. Vacuum interrupters and thyratrons as opening switches (United States)

    Honig, E. M.

    High power opening switches for inductive storage for large scale energy storage applications are described. The triggered vacuum interrupter and the magnetically quenched thyratrons are discussed. By electrically retriggering the discharge in the vacuum interrupter between pulses, the dependence on mechanical motion is eliminated. This should enable repetition rate operation at 10 to 15 kHz while still maintaining the vacuum interrupter's proven interrupting performance of tens of kiloamps at tens of kilovolts. The magnetically quenched thyratron uses a cross magnetic field to raise the switch impedance by decreasing the electron mobility and driving the discharge into an arc chute wall where it is quenched. Attempts to understand the basic mechanisms involved and to increase the switch, ratings, and particularly the conduction time, are discussed.

  5. Friedmann cosmology with decaying vacuum density

    CERN Document Server

    Borges, H A


    Among the several proposals to solve the incompatibility between the observed small value of the cosmological constant and the huge value obtained by quantum field theories, we can find the idea of a decaying vacuum energy density, leading from high values at early times of universe evolution to the small value observed nowadays. In this paper we consider a variation law for the vacuum density recently proposed by Schutzhold on the basis of quantum field estimations in the curved, expanding background, characterized by a vacuum density proportional to the Hubble parameter. We show that, in the context of an isotropic and homogeneous, spatially flat model, the corresponding solutions retain the well established features of the standard cosmology, and, in addition, are in accordance with the observed cosmological parameters. Our scenario presents an initial phase dominated by radiation, followed by a dust era long enough to permit structure formation, and by an epoch dominated by the cosmological term, which te...

  6. Vacuum packaging design and analysis for UFPA (United States)

    Liu, Dafu; Xu, Qinfei


    Uncooled focal plane array (UFPA) has broad application prospects in civilian and space because it's cheaper, more compact and high reliability. Many research institutes and companies have carried out the research of uncooled focal plane array. This paper shows a vacuum package design of UFPA, and its architecture will be given. The assembly is an all-metal vacuum package, which has been proven rugged and reliable. Out-gassing, permeation, evaporator, and air leak are factors to reduce the component vacuum lifetime. Theoretical analysis shows that material out-gassing is the main factor of pressure rise inside package. Theoretical analysis and calculation show that designed metallic structure can meet the need of 10-years life.

  7. Vacuum System for HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    曹曾; 崔成和; 刘德权; 蔡萧; 高霄燕


    The vacuum system for HL-2A was built in 2003. The test results indicated that this system is feasible. It consists of three main parts: a pumping system, a pumping divertor and a glow discharge cleaning (GDC) system. For the pumping system, there are three main functions:(1) evacuating the vacuum vessel thus to produce an ultra high vacuum, (2) removal of impurities released during baking and (3) pumping during GDC. The pumping divertor controls the particles at the plasma edge and the GDC system provides a clean wall conditioning. During the first campaign of physical trial experiment on HL-2A, the ultimate pressure reached 4.6×10-6 Pa, and of ASDEX.

  8. Development of vacuum die-casting process

    Institute of Scientific and Technical Information of China (English)

    Masashi Uchida


    The vacuum die-casting process, started 25 years ago in Japan, has been widely applied. This technology contributes very much to improvement of castings quality. The main factor causing the defects of die castings is the trapped air in the mold cavity, while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting. At the same time, due to the shot speed and the casting pressure reduced in half, the service life of the die is prolonged and the productivity is enhanced, as well. Vacuum die-casting process is of great significance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.

  9. Teaching Conversations, Contemporary Art, and Figure Drawing (United States)

    Graham, Mark A.


    An important problem for high school art teachers is deciding what belongs in the art curriculum. What works of art, media, or ideas will inspire their students to more fully develop their own artistic potential and critically engage with contemporary art and culture? What artifacts of art, visual culture, or material culture should be included…

  10. Vacuum bell therapy (United States)

    Sesia, Sergio


    Background For specific therapy to correct pectus excavatum (PE), conservative treatment with the vacuum bell (VB) was introduced more than 10 years ago in addition to surgical repair. Preliminary results using the VB were encouraging. We report on our 13-year experience with the VB treatment including the intraoperative use during the Nuss procedure and present some technical innovations. Methods A VB with a patient-activated hand pump is used to create a vacuum at the anterior chest wall. Three different sizes of vacuum bells, as well as a model fitted for young women, exist. The appropriate size is selected according to the individual patient’s age and ventral surface. The device should be used at home for a minimum of 30 minutes (twice a day), and may be used up to a maximum of several hours daily. The intensity of the applied negative pressure can be evaluated with an integrated pressure gauge during follow-up visits. A prototype of an electronic model enables us to measure the correlation between the applied negative pressure and the elevation of the anterior chest wall. Results Since 2003, approx. 450 patients between 2 to 61 years of age started the VB therapy. Age and gender specific differences, depth of PE, symmetry or asymmetry, and concomitant malformations such as scoliosis and/or kyphosis influence the clinical course and success of VB therapy. According to our experience, we see three different groups of patients. Immediate elevation of the sternum was confirmed thoracoscopically during the Nuss procedure in every patient. Conclusions The VB therapy has been established as an alternative therapeutic option in selected patients suffering from PE. The initial results up to now are encouraging, but long-term results comprising more than 15 years are so far lacking, and further evaluation and follow-up studies are necessary. PMID:27747177

  11. Plasmons in QED vacuum (United States)

    Petrov, E. Yu.; Kudrin, A. V.


    The problem of longitudinal oscillations of an electric field and a charge polarization density in a quantum electrodynamics (QED) vacuum is considered. Within the framework of semiclassical analysis, we calculate time-periodic solutions of bosonized (1 +1 )-dimensional QED (massive Schwinger model). Applying the Bohr-Sommerfeld quantization condition, we determine the mass spectrum of charge-zero bound states (plasmons) which correspond in quantum theory to the found classical solutions. We show that the existence of such plasmons does not contradict any fundamental physical laws and study qualitatively their excitation in a (3 +1 )-dimensional real world.

  12. Art Appreciation

    Institute of Scientific and Technical Information of China (English)


    Zhuo Dehui graduated from Guangzhou Academy of Fine Arts in 1973 with a specialty in lacquer painting, and shortly thereafter began teaching at the school. Zhuo has conducted research and actively created decorative art for many decades, and has often led groups of students deep into the areas inhabited by minority nationalities, The two paintings shown here represent his impressions and depictions of

  13. Art Photography


    Bate, D.


    The book introduces the key themes central to the interactions between photography and art, from the earliest days of photography in the 1830s to the present day, examining the many ways in which photography has become central to the development of modern and contemporary art.

  14. Art Markets

    NARCIS (Netherlands)

    P.A. Arora (Payal); F.R.R. Vermeylen (Filip)


    textabstractThe advent of digitization has had a profound impact on the art market and its institutions. In this chapter, we focus on the market for visual arts as it finds its expression in (among other) paintings, prints, drawings, photographs, sculpture and the like. These artistic disciplines cl

  15. High lifetime risk of cardiovascular disease vs low 10-year Framingham risk score in HIV-infected subjects under ART in Spain: the Coronator study

    Directory of Open Access Journals (Sweden)

    C Miralles


    Full Text Available Purpose: Due to the relative low age of HIV-infected patients, Framingham risk score (FRS usually estimates a low CVD risk. Lifetime risk estimations use the risk of developing CVD over the course of an individual's remaining lifetime and may be useful in communicating the risk of CVD to young patients. Our aim is to estimate the lifetime risk of CVD in a representative sample of HIV patients under antiretroviral therapy in Spain. Methods: Cross-sectional analysis in 10 HIV units across Spain, including information on demographics, HIV disease status, treatment history and cardiovascular risk factors of subject under ART. Lifetime CVD risk was calculated with the method of Berry et al, which classifies the lifetime risk in five mutually exclusive categories: 1. All risk factors are optimal; 2. At least one risk factor is not optimal; 3. At least one risk factor is elevated; 4. One major risk factor is present; and 5. Two or more major risk factors are present. Risk factors included are cholesterol level, blood pressure, diabetes and tobacco smoking. We grouped these five categories in two major groups, low-risk (groups 1+2+3 and high-risk category (groups 4+5. We calculated the prevalence of having a high lifetime risk, and its crude and aOR (adjusted by age, sex, place of origin, education level, transmission category, time since HIV diagnosis, CDC stage, current and nadir CD4 count, HCV coinfection, time on current and total ART, being on the first ART regimen, and PI vs. NNRTI regimen. Results: We included 839 subjects free of previous CVD disease: 72% men, median age 45.6y, median CD4 count 598 cells, median time since HIV diagnosis 11y, median time on ART 6.3y, 87% had undetectable VL. Estimated 10-year CVD risk was low (<5% in 78% of the patients, and intermediate (5–10% in 20%. Lifetime risk estimation shows a high risk profile for 71.4% of the population studied (≥1 major risk factors. Factors significantly and independently

  16. Art Appreciation

    Institute of Scientific and Technical Information of China (English)


    Modern embossed forged copper has an elegant character. This art form works well as decoration for the walls of buildings. Chen Chuan, the designer, pursues a look of simplicity and powerfulness in his works Auspiciousness and Harmony, which is based on the themes of man and nature. Chen carefully plans the arrangement of convex and concave parts, adding texture by hammering or scraping in many small points and fine lines. With a steel pick, the artist creates a surface sometimes rough and matte, sometimes smooth and shiny. Chen Chuan graduated from the Hubei Institute of Arts in 1965, and was deputy director of the Shandong Provincial Art Gallery from 1984 to 1991. A member of the China Artists Association and the China Graphic Art Association, Chen Chuan is ranked as a first-class artisan, and currently serves as director of the forge copper art office of the Shandong Academy. He has won awards at exhibitions held both at home and abroad.

  17. Compact Vacuum Pump for Titan Lander Missions Project (United States)

    National Aeronautics and Space Administration — For a number of years Creare has developed, fabricated, and tested highly miniaturized, high vacuum pumps specifically designed for mass spectrometers used on NASA...

  18. State-of-the-Art of Extreme Pressure Lubrication Realized with the High Thermal Diffusivity of Liquid Metal. (United States)

    Li, Haijiang; Tian, Pengyi; Lu, Hongyu; Jia, Wenpeng; Du, Haodong; Zhang, Xiangjun; Li, Qunyang; Tian, Yu


    Sliding between two objects under very high load generally involves direct solid-solid contact at molecular/atomic level, the mechanism of which is far from clearly disclosed yet. Those microscopic solid-solid contacts could easily lead to local melting of rough surfaces. At extreme conditions, this local melting could propagate to the seizure and welding of the entire interface. Traditionally, the microscopic solid-solid contact is alleviated by various lubricants and additives based on their improved mechanical properties. In this work, we realized the state-of-the-art of extreme pressure lubrication by utilizing the high thermal diffusivity of liquid metal, 2 orders of magnitude higher than general organic lubricants. The extreme pressure lubrication property of gallium based liquid metal (GBLM) was compared with gear oil and poly-α-olefin in a four-ball test. The liquid metal lubricates very well at an extremely high load (10 kN, the maximum capability of a four-ball tester) at a rotation speed of 1800 rpm for a duration of several minutes, much better than traditional organic lubricants which typically break down within seconds at a load of a few kN. Our comparative experiments and analysis showed that this superextreme pressure lubrication capability of GBLM was attributed to the synergetic effect of the ultrafast heat dissipation of GBLM and the low friction coefficient of FeGa3 tribo-film. The present work demonstrated a novel way of improving lubrication capability by enhancing the lubricant thermal properties, which might lead to mechanical systems with much higher reliability.

  19. Spontaneous Steinbeck: The Influence of Arts Integration, Primarily Spontaneous Painting, on the Reader Response of High School Juniors to "The Grapes of Wrath" (United States)

    Klasek, Catherine Huey


    This paper addresses my experience with a group of 11th grade students and their reading of The Grapes of Wrath (1939, 2002) by John Steinbeck. I questioned how the application of visual arts integration strategies, specifically the use of spontaneously created paintings, might influence the reader responses of my high school junior-level…

  20. 高中艺术班(美术)教学策略初探%Teaching Strategy of High School Art Classes

    Institute of Scientific and Technical Information of China (English)



    艺术班学生是高中生的一个特殊群体,对艺术考生在专业学习中的具体心理表现加以分析,有针对性地制定及调整教学策略。%Art students in the class is a special group of high school students,candidates in the professional study of art in analyzing the performance of specific psychological,targeted to develop and adjust their teaching strategies.

  1. Art History in 3-D (United States)

    Snyder, Jennifer


    Students often have a hard time equating time spent on art history as time well spent in the art room. Likewise, art teachers struggle with how to keep interest in their classrooms high when the subject turns to history. Some teachers show endless videos, with the students nodding sleepily along to the narrator. Others try to incorporate small…

  2. Pseudo-redundant vacuum energy

    CERN Document Server

    Batra, Puneet; Hui, Lam; Kabat, Daniel


    We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a non-minimal coupling to curvature. We give a recipe for constructing models, including R + 1/R type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting see-saw behavior: a large underlying cosmological constant gives rise to both low and high curvature solutions. Such models could be statistically favored in the string landscape.

  3. Arts Entrepreneurship

    DEFF Research Database (Denmark)

    Gartner, Bill


    Contribution to the opinion series “Perspectives” on arts entrepreneurship; how arts entrepreneurship is situated in relation to other disciplines or fields; what problems we are grappling with as scholars, practitioners, teachers, and artists; and what are the research questions we are attempting...... to answer individually or as a field. Under the headline “Perspectives on Arts Entrepreneurship, part 2”, are responses from: William B. Gartner, Professor of Entrepreneurship at Copenhagen Business School and California Lutheran University; Joseph Roberts, Director of the Coleman Fellows Program, Associate...

  4. Elemental Scanning Devices Authenticate Works of Art (United States)


    To better detect aluminum compounds, Marshall Space Flight Center partnered with KeyMaster Inc. (later acquired by Madison, Wisconsin-based Bruker AXS Inc.) to develop a vacuum pump system that could be attached to X-ray fluorescence (XRF) scanners. The resulting technology greatly expanded XRF scanner capabilities, and hundreds of museums now use them to authenticate artifacts and works of art.

  5. Arte en la industria = Art in the industry

    Directory of Open Access Journals (Sweden)

    Enrique Nuere


    Full Text Available Resumen ¿Puede alcanzar un objeto industrial la categoría de obra de arte? En la sociedad actual se tiende a identificar la obra de arte como un objeto de alto valor económico, hasta el punto que el arte se considera como un rentable valor de inversión, y el mercantilismo que impregna el mundo en que vivimos desvirtúa lo que hoy realmente pueda considerarse arte. Abstract Can an industrial object reach the art category? In today's society we tend to identify the work of art as an object of high economic value, to the point that art is considered a profitable investment value, and commercialism that permeates the world we live in, really distorts today what can be considered art today.

  6. Art Appreciation

    Institute of Scientific and Technical Information of China (English)


    Luo Zhongli. now a professor with the Oil Painting Department in the Sichuan Academy of Fine Arts became famous in the Chinese painters’ circle in 1980 with his enormous painting, Father. This painting also led the rise

  7. Art & Alchemy

    DEFF Research Database (Denmark)

    -century portrayals of alchemists, and alchemy's tortured status as a forerunner of photography. Art and Alchemy indicates that alchemy indeed has several connections with art by examining some of the pictorial and literary books that disseminated alchemical symbols and ideas, delving into images, which in one way......Partly because of alchemy's dismissal from the Parnassus of rational sciences, the interplay between this esoteric knowledge and the visual arts is still a surprisingly neglected research area. This collection of articles covering the time span from the Late Middle Ages to the twentieth century...... intends, however, to challenge the current neglect. Areas on which its twelve authors cast new light include alchemical gender symbolism in Renaissance, Mannerist and modernist art, alchemical ideas of transformation in Italian fifteenth-century landscape imagery, Netherlandish seventeenth...


    Price, G.W.


    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  9. Research on high flow bidirectional sealed three vacuum eccentric butterfly valves design research%高流量双向密封三偏心真空蝶阀的设计

    Institute of Scientific and Technical Information of China (English)



    通过Solidworks软件对高流量双向密封三偏心真空蝶阀进行整体建模,论述了高流量双向密封三偏心真空蝶阀的结构特点。运用COSMOS及CoSMOSFLOWWORKS分析了蝶阀承压部件应力,并对不同开度下的流场进行模拟,为绘制流量特性曲线及求解不同开度下的K值提供了可靠的参数。%This paper uses Solidworks software to high flow bidirectional sealed three vacuum eccentric butterfly valve for the whole modeling, analysis of the high flow of two-way sealing structure characteristics of three vacuum eccentric butterfly valves, and the use of COSMOS and COSMOSFLOWWORKS butterfly valve on pressure parts stress analysis, to different degrees under the flow field simulation, for the latter part of drawing the flow characteristic curve and solving different opening degree under the Kv value provides reliable parameters.

  10. Rock Art


    Huyge, Dirk


    Rock art, basically being non-utilitarian, non-textual anthropic markings on natural rock surfaces, was an extremely widespread graphical practice in ancient Egypt. While the apogee of the tradition was definitely the Predynastic Period (mainly fourth millennium BCE), examples date from the late Palaeolithic (c. 15,000 BCE) until the Islamic era. Geographically speaking, “Egyptian” rock art is known from many hundreds of sites along the margins of the Upper Egyptian and Nubian Nile Valley and...


    Institute of Scientific and Technical Information of China (English)


    In Naive Girls, Zhang Nan portrays three country girls with brightly decorative colors commonly seen in Chinese folk art. Their individuality is portrayed with the contrasting colors of their clothing, yet the whole picture is harmonious. The naivete of country girls is distilled into art. Delight portrays a fishing girl drying fish in the open air. On her bamboo hat hang strings of fish. The background is painted with skills used in traditional Chinese water and ink painting.

  12. Vacuum Energy Sequestering and Graviton Loops

    CERN Document Server

    Kaloper, Nemanja


    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.


    NARCIS (Netherlands)



    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at relati

  14. Vacuum enhanced cutaneous biopsy instrument (United States)

    Collins, Joseph


    A syringe-like disposable cutaneous biopsy instrument equipped with a tubular blade at its lower end, and designed so that a vacuum is created during use, said vacuum serving to retain undeformed a plug of tissue cut from a patient's skin.

  15. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas


    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N...

  16. Vacuum Gas Tungsten Arc Welding (United States)

    Weeks, J. L.; Todd, D. T.; Wooten, J. R.


    A two-year program investigated vacuum gas tungsten arc welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. After a vacuum chamber and GTAW power supply were modified, several difficult-to-weld materials were studied and key parameters developed. Finally, Incoloy 903 weld overlays were produced without microfissures.

  17. Breather cloth for vacuum curing (United States)

    Reed, M. W.


    Finely-woven nylon cloth that has been treated with Teflon improves vacuum adhesive bonding of coatings to substrates. Cloth is placed over coating; entire assembly, including substrate, coating, and cloth, is placed in plastic vacuum bag for curing. Cloth allows coating to "breathe" when bag is evacuated. Applications include bonding film coatings to solar concentrators and collectors.

  18. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity (United States)


    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  19. Vacuum energy as dark matter (United States)

    Albareti, F. D.; Cembranos, J. A. R.; Maroto, A. L.


    We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as nonrelativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.

  20. Vacuum energy as dark matter

    CERN Document Server

    Albareti, F D; Maroto, A L


    We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as non-relativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.

  1. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z


    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  2. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Hänsel-Ziegler, W.; Freund, H.-J. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Seiler, A. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Laboratorium für Applikationen der Synchrotronstrahlung, KIT Campus Süd, Kaiserstr. 12, 76131 Karlsruhe (Germany); Bondarchuk, O. [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); CIC energiGUNE, Parque Tecnologico, C/Albert Einstein 48, CP 01510 Minano (Alava) (Spain); Risse, T., E-mail: [Fritz-Haber-Institut der MPG, Faradayweg 4-6, 14195 Berlin (Germany); Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin (Germany)


    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  3. The HIE-ISOLDE Vacuum System

    CERN Document Server

    Vandoni, G; Radwan, K; Chiggiato, P


    The High Intensity and Energy Isolde (HIE-Isolde) project aims at increasing the energy and intensity of the radioactive ion beams (RIB) delivered by the present Rex-Isolde facility. Energy up to 10MeV/amu will be reached by a new post-accelerating, superconducting (SC) linac. Beam will be delivered via a HEBT to three experimental stations for nuclear physics. To keep the SC linac compact and avoid cold-warm transitions, the cryomodules feature a common beam and insulation vacuum. Radioactive ion beams require a hermetically sealed vacuum, with transfer of the effluents to the nuclear ventilation chimney. Hermetically sealed, dry, gas transfer vacuum pumps are preferred to gas binding pumps, for an optimized management of radioactive contamination risk during maintenance and intervention. The vacuum system of the SC-linac is isolated by two fast valves, triggered by fast reacting cold cathode gauges installed on the warm linac, the HEBT and the experimental stations. Rough pumping is distributed, while the H...

  4. ALICE's first vacuum bakeout a success

    CERN Multimedia


    At the beginning of April, the ALICE central beryllium beam pipe and absorber beam pipes were successfully conditioned. The installation and bakeout shell surround the beam pipe (lower left), running through the middle of the ITS and TPC. Notice the high-tech cooling system, an additional precaution to avoid overheating the ALICE detection equipment.One end of the vacuum sector during the bakeout and pure gas refill. It is unusual for a vacuum sector to end as it does in the middle of a non-accessible detector and made the installation and cabling of the bakeout equipment a more difficult procedure. Just before Easter, the first bakeout and NEG activation of experimental chambers in the LHC was carried out, followed by ultra pure gas refill. The bakeout consisted of externally heating the chambers under vacuum in order to lower their outgassing. This same heating process also activates the NEG, a coating on the inside surface of the beam vacuum chambers, which pumps the residual gas. ALICE's bakeout was pa...

  5. True random numbers from amplified quantum vacuum. (United States)

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V


    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  6. High Energy Density Physics and Applications with a State-of-the-Art Compact X-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    Beg, Farhat N [University of California San Diego


    particularly address the key issues associated with x-pinches, which include radiation transport, energetic particle transport, supersonic jet formation, using state-of-the-art compact pulsed power drivers. All the primary objectives of the proposed work were met. These objectives include: • Understanding of the fundamental physics of hot and dense plasma formation, implosion to less than 1 µm size due to the radiation enhanced collapse and energetic electron heating, • Study of the jet formation mechanism, which is of interest due to the astrophysical jets and deposition of energy by energetic electrons in jets, • Characterization of an x-pinch as a point x-ray source for the phase contrast radiography of beryllium cryogenic targets for the National Ignition Facility (NIF) experiments. The work carried out included a strong educational component involving both undergraduate and graduate students. Several undergraduate students from University of California San Diego participated in this project. A post-doctoral fellow, Dr. Simon Bott and two graduate students, David Haas and Erik Shipton contributed to every aspect of this project. The success of the project can be judged from the fact that fifteen peer-reviewed papers were published in high quality journals. In addition several presentations were made to a number of scientific meetings.

  7. Development of Beryllium Vacuum Chamber Technology for the LHC

    CERN Document Server

    Veness, R; Dorn, C


    Beryllium is the material of choice for the beam vacuum chambers around collision points in particle colliders due to a combination of transparency to particles, high specific stiffness and compatibility with ultra-high vacuum. New requirements for these chambers in the LHC experiments have driven the development of new methods for the manufacture of beryllium chambers. This paper reviews the requirements for experimental vacuum chambers. It describes the new beryllium technology adopted for the LHC and experience gained in the manufacture and installation.

  8. Conceptual design and application studies of piezoelectric crystal motors under ultra-high vacuum conditions; Konzepterstellung und Verwendungsmoeglichkeiten eines Piezokristallmotors im Ultrahochvakuum

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, Jens


    For the operation of accelerators it is important that motions in the vacuum occur. The here produced diploma thesis deals with the possibility to perform thes motions with piezocrystal motors in order to abandon wear-susceptible membrane bellows. For this studies have been performed, which should show for which it is useful to apply a piezocrystal motor. Limits are shown, advances and disadvantages are weighted in the thesis. Construction with with subsequent test of a tandem facility and an outlook on possible future concepts form the main content. [German] Fuer den Betrieb von Beschleunigern ist es wichtig, dass Bewegungen im Vakuum stattfinden. Die hier angefertigte Diplomarbeit befasst sich mit der Moeglichkeit, diese Bewegungen mit Piezokristallmotoren durchzufuehren, um auf verschleissanfaellige Membranbaelge zu verzichten. Hierfuer sind Studien durchgefuehrt worden, die zeigen sollen, wofuer es ratsam ist, einen Piezokristallmotor zu verwenden. Grenzen werden aufgezeigt, Vor- und Nachteile werden in der Arbeit abgewogen. Konstruktion mit anschliessenden Tests eines Tandemaufbaus und ein Ausblick auf moegliche zukuenftige Konzepte bilden den Kerninhalt. (orig.)

  9. Shadow art

    KAUST Repository

    Mitra, Niloy J.


    "To them, I said, the truth would be literally nothing but the shadows of the images." - Plato, The Republic Shadow art is a unique form of sculptural art where the 2D shadows cast by a 3D sculpture are essential for the artistic effect. We introduce computational tools for the creation of shadow art and propose a design process where the user can directly specify the desired shadows by providing a set of binary images and corresponding projection information. Since multiple shadow images often contradict each other, we present a geometric optimization that computes a 3D shadow volume whose shadows best approximate the provided input images. Our analysis shows that this optimization is essential for obtaining physically realizable 3D sculptures. The resulting shadow volume can then be modified with a set of interactive editing tools that automatically respect the often intricate shadow constraints. We demonstrate the potential of our system with a number of complex 3D shadow art sculptures that go beyond what is seen in contemporary art pieces. © 2009 ACM.

  10. An Analysis of High School Mathematics Achievement and English Language Arts Achievement as Predictors of Science Achievement (United States)

    Edwards, Anthony C.


    Science assessments require students to read and comprehend questions and to solve mathematical problems. The purpose of this study is to determine whether the following variables can be used to predict science achievement: English language arts achievement, mathematics achievement, socioeconomic status (SES), limited English proficiency (LEP)…

  11. In-service helium leak testing of vacuum furnace (United States)

    Ahmad, Anis; Tripathi, S. K.; Sawant, P. S.; Mukharjee, D.; Shah, B. K.


    Helium leak detection of vacuum furnaces and equipments used for processing of nuclear material is generally carried out by utilizing vacuum spray technique. In this technique helium leak detector is connected to the furnace, back ground reading is noted and helium gas is sprayed on all the suspected joints. Any increase in back ground is noted as leak signal. Processing of Zirconium alloy cladded fuel pins is carried out in vacuum furnace of about 3 meter length and 500 mm inside diameter. Furnace is connected with two numbers of rotary vacuum pump and one number of diffusion pump for creating vacuum (1 × 10-6 torr) inside the furnace. It is desirable that furnace should have good vacuum and best possible leak tightness during dynamic and static vacuum. During dynamic vacuum at higher temperature although required vacuum is achieved the furnace may have fine leakage through which air may enter and cause oxidation of clad tube leading to change in its coloration. This change in coloration will cause rejection of fuel element. Such fine leakages may not be reflected in the dynamic vacuum of the system at high temperature. During trial run change in coloration of outside surface of clad tube was observed although dynamic vacuum of the furnace was in the range of 1×10-6 torr range. To eliminate such possibilities of oxidation due to fine leakages in the system, it was decided to carry out in-service leak testing of the furnace. Helium leak testing of the furnace was carried out by using vacuum spray method and leaks observed were repaired and furnace was retested to ensure the leak tightness. The in-service helium leak testing of the furnace helped in maintaining its leak tightness during service under dynamic vacuum and prevent oxidation of fuel element. This paper describes the techniques of in- service helium leak testing, it's importance for detection of fine leak under dynamic vacuum and discusses details of the testing method and result obtained.

  12. 低温真空扩散反应制备高性能TiAl合金粉%Preparation of TiAl Alloy Powders by Diffusion Reaction at Low Temperature and in High Vacuum

    Institute of Scientific and Technical Information of China (English)

    王军; 邵慧萍; 郭志猛


    TiAl alloy powder was prepared by high-energy ball milling and heat preservation under the condition of low temperature and high vacuum with titanium powder of 43 μm and aluminium powder of 9~12 μm as starting materials.After heat treated for different time and at different temperatures,the alloying of blended powder of titanium and aluminium was investigated.The results show that the alloy powder with the main intermetallic compounds of TiAl and a small quantity of Ti3Al can be obtained through 1 h high-energy ball milling and heat preservation at 500 ℃ for 2 h,and 600 ℃ for 3 h in high vacuum.The particle size of the prepared alloy powder is about 20 μm.%通过高能球磨均匀混合以及低温真空预烧工艺制备TiAl合金粉,原料为粒度43 μm Ti粉和9~12 μmAl粉,研究不同温度下不同保温时间后Ti、Al混合粉的合金化程度.结果表明:高能球磨1h的Ti、Al混合粉在500℃保温2h,再在600℃保温3h能制得主要为TiAl相和少量Ti3Al相的合金粉,制备合金粉的平均粒径为20μm左右.

  13. Art Therapy

    DEFF Research Database (Denmark)

    Skov, Vibeke; Pedersen, Inge Nygaard


    Abstract Based on a Jungian approach, this article will introduce an integrative model to therapeutic change using art therapy methods as practical tools, with the aim of improving quality of life and in the prevention of depression. In a research study involving six participants, painting, clay......, was that participants gained a new understanding about their personal life. In addition, some participants were able to continue to use art therapy experiences as selfdevelopmental tools after the research study terminated. Jung’s description of the interactive relationship between the two living parts of the psyche...... work and drumming were used together with imagination and personal dialogues linked to the artwork. These art therapy processes attempted to combine the participant’s experience of inner and outer reality. The effect of gaining more knowledge about their inner reality using dreams and symbols...

  14. A Summary and Status of the SNS Ring Vacuum Systems

    CERN Document Server

    Mapes, Michael; Hseuh Hsiao Chaun; Ladd, Peter; Rank, Jim; Smart, Loralie; Todd, Robert J; Weiss, Daniel


    The Spallation Neutron Source (SNS) ring is designed to accumulate high intensity protons. The SNS ring vacuum system consists of the High Energy Beam Transport (HEBT) line, Accumulator Ring and the Ring to Target Beam Transport (RTBT) line. The Accumulator ring has a circumference of 248m with 4 arcs and 4 straight sections, while the RTBT and HEBT have a total length of 350m of beam transport line. Ultrahigh vacuum of 10-9

  15. Vacuum ARC ion sources - activities & developments at LBL

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I. [Lawrence Berkeley Laboratory, CA (United States)


    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  16. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization. (United States)

    Chen, Yi-Hong; Lin, Li-Yen; Lu, Chih-Wei; Lin, Francis; Huang, Zheng-Yu; Lin, Hao-Wu; Wang, Po-Han; Liu, Yi-Hung; Wong, Ken-Tsung; Wen, Jianguo; Miller, Dean J; Darling, Seth B


    Three new tailor-made molecules (DPDCTB, DPDCPB, and DTDCPB) were strategically designed and convergently synthesized as donor materials for small-molecule organic solar cells. These compounds possess a donor-acceptor-acceptor molecular architecture, in which various electron-donating moieties are connected to an electron-withdrawing dicyanovinylene moiety through another electron-accepting 2,1,3-benzothiadiazole block. The molecular structures and crystal packings of DTDCPB and the previously reported DTDCTB were characterized by single-crystal X-ray crystallography. Photophysical and electrochemical properties as well as energy levels of this series of donor molecules were thoroughly investigated, affording clear structure-property relationships. By delicate manipulation of the trade-off between the photovoltage and the photocurrent via molecular structure engineering together with device optimizations, which included fine-tuning the layer thicknesses and the donor:acceptor blended ratio in the bulk heterojunction layer, vacuum-deposited hybrid planar-mixed heterojunction devices utilizing DTDCPB as the donor and C(70) as the acceptor showed the best performance with a power conversion efficiency (PCE) of 6.6 ± 0.2% (the highest PCE of 6.8%), along with an open-circuit voltage (V(oc)) of 0.93 ± 0.02 V, a short-circuit current density (J(sc)) of 13.48 ± 0.27 mA/cm(2), and a fill factor (FF) of 0.53 ± 0.02, under 1 sun (100 mW/cm(2)) AM 1.5G simulated solar illumination.

  17. Cold Vacuum Drying (CVD) Set Point Determination

    Energy Technology Data Exchange (ETDEWEB)



    This document provides the calculations used to determine the error of safety class signals used for the CVD process These errors are used with the Parameter limits to arrive at the initial set point. The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated would result in a safety event. Specifically actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge the SCIC receives signals from MCO pressure (both positive pressure and vacuum) helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.

  18. Vacuum Chamber for the Booster Bending Magnets

    CERN Multimedia


    To minimize eddy currents, induced by the rising magnetic field, the chamber was made from thin stainless steel of high specific electric resistance. For mechanical stength, it was corrugated in a hydro-forming process. The chamber is curved, to follow the beam's orbital path. Under vacuum, the chamber tends to staighten, the ceramic spacer along half of its length keeps it in place (see also 7402458).

  19. European Research on THz Vacuum Amplifiers

    DEFF Research Database (Denmark)

    Brunetti, F.; Cojocarua, C.-S.; de Rossi, A.


    The OPTHER (OPtically Driven TeraHertz AmplifiERs) project represents a considerable advancement in the field of high frequency amplification. The design and realization of a THz amplifier within this project is a consolidation of efforts at the international level from the main players of the Eu...... of the European research, academy and industry in vacuum electronics. This paper describes the status of the project and progress towards the THz amplifier realization....

  20. Chicken Art (United States)

    Bickett, Marianne


    In this article, the author describes how a visit from a flock of chickens provided inspiration for the children's chicken art. The gentle clucking of the hens, the rooster crowing, and the softness of the feathers all provided rich aural, tactile, visual, and emotional experiences. The experience affirms the importance and value of direct…