WorldWideScience

Sample records for arsenic trioxide-induced apoptosis

  1. JWA is required for arsenic trioxide induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria linked signal pathway

    International Nuclear Information System (INIS)

    Arsenic trioxide, emerging as a standard therapy for refractory acute promyelocytic leukemia, induces apoptosis in a variety of malignant cell lines. JWA, a novel retinoic acid-inducible gene, is known to be involved in apoptosis induced by various agents, for example, 12-O-tetradecanoylphorbol 13-acetate, N-4-hydroxy-phenyl-retinamide and arsenic trioxide. However, the molecular mechanisms underlying how JWA gene is functionally involved in apoptosis remain largely unknown. Herein, our studies demonstrated that treatment of arsenic trioxide produced apoptosis in HeLa and MCF-7 cells in a dose-dependent manner and paralleled with increased JWA expression. JWA expression was dependent upon generation of intracellular reactive oxygen species induced by arsenic trioxide. Knockdown of JWA attenuated arsenic trioxide induced apoptosis, and was accompanied by significantly reduced activity of caspase-9, enhanced Bad phosphorylation and inhibited MEK1/2, ERK1/2 and JNK phosphorylations. Arsenic trioxide induced loss of mitochondrial transmembrane potential was JWA-dependent. These findings suggest that JWA may serve as a pro-apoptotic molecule to mediate arsenic trioxide triggered apoptosis via a reactive oxygen species and mitochondria-associated signal pathway

  2. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  3. Role of Signal Regulatory Protein α in Arsenic Trioxide-induced Promyelocytic Leukemia Cell Apoptosis.

    Science.gov (United States)

    Pan, Chaoyun; Zhu, Dihan; Zhuo, Jianjiang; Li, Limin; Wang, Dong; Zhang, Chen-Yu; Liu, Yuan; Zen, Ke

    2016-01-01

    Signal regulatory protein α (SIRPα) has been shown to operate as a negative regulator in cancer cell survival. The mechanism underneath such function, however, remains poorly defined. In the present study, we demonstrate that overexpression of SIRPα in acute promyelocytic leukemia (APL) cells results in apoptosis possibly via inhibiting the β-catenin signaling pathway and upregulating Foxo3a. Pharmacological activation of β-catenin signal pathway attenuates apoptosis caused by SIRPα. Interestingly, we also find that the pro-apoptotic effect of SIRPα plays an important role in arsenic trioxide (ATO)-induced apoptosis in APL cells. ATO treatment induces the SIRPα protein expression in APL cells and abrogation of SIRPα induction by lentivirus-mediated SIRPα shRNA significantly reduces the ATO-induced apoptosis. Mechanistic study further shows that induction of SIRPα protein in APL cells by ATO is mediated through suppression of c-Myc, resulting in reduction of three SIRPα-targeting microRNAs: miR-17, miR-20a and miR-106a. In summary, our results demonstrate that SIRPα inhibits tumor cell survival and significantly contributes to ATO-induced APL cell apoptosis. PMID:27010069

  4. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90α/β also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  5. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation.

    Directory of Open Access Journals (Sweden)

    Yicun Wu

    Full Text Available Arsenic trioxide (ATO, one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL. However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm, up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO.

  6. Arsenic trioxide induces apoptosis in human platelets via C-Jun NH2-terminal kinase activation.

    Science.gov (United States)

    Wu, Yicun; Dai, Jin; Zhang, Weilin; Yan, Rong; Zhang, Yiwen; Ruan, Changgeng; Dai, Kesheng

    2014-01-01

    Arsenic trioxide (ATO), one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL). However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax and down-regulation of Bcl-2 and Bcl-XL, caspase-3 activation, and phosphotidylserine (PS) exposure in platelets. ATO did not induce surface expression of P-selectin and PAC-1 binding, whereas, obviously reduced collagen, ADP, and thrombin induced platelet aggregation. ATO dose-dependently induced c-Jun NH2-terminal kinase (JNK) activation, and JNK specific inhibitor dicumarol obviously reduced ATO-induced ΔΨm depolarization in platelets. Clinical therapeutic dosage of ATO was intraperitoneally injected into C57 mice, and the numbers of circulating platelets were significantly reduced after five days of continuous injection. The data demonstrate that ATO induces caspase-dependent apoptosis via JNK activation in platelets. ATO does not incur platelet activation, whereas, it not only impairs platelet function but also reduces circulating platelets in vivo, suggesting the possible pathogenesis of thrombocytopenia in patients treated with ATO. PMID:24466103

  7. Arsenic Trioxide Induces Apoptosis in Human Platelets via C-Jun NH2-Terminal Kinase Activation

    OpenAIRE

    Yicun Wu; Jin Dai; Weilin Zhang; Rong Yan; Yiwen Zhang; Changgeng Ruan; Kesheng Dai

    2014-01-01

    Arsenic trioxide (ATO), one of the oldest drugs in both Western and traditional Chinese medicine, has become an effective anticancer drug, especially in the treatment of acute promyelocytic leukemia (APL). However, thrombocytopenia occurred in most of ATO-treated patients with APL or other malignant diseases, and the pathogenesis remains unclear. Here we show that ATO dose-dependently induces depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax and down-re...

  8. Mechanisms of arsenic trioxide induced apoptosis of human cervical cancer HeLa cells and protection by Bcl-2

    Institute of Scientific and Technical Information of China (English)

    邓友平; 林晨; 郑杰; 梁萧; 陈洁平; 付明; 肖培根; 吴旻

    1999-01-01

    It was recently reported that arsenic trioxide (As2O3) can induce complete remission in patients with acute promyelocytic leukemia (APL). In this present article, the biological effect of As2O3 on human cervical cancer HeLa cells and HeLa cells overexpressing Bcl-2 is studied. By MTT and colony forming ability assays, morphology alteration, flow cytometric analysis, DNA gel electrephoresis and in situ cell death detection (TUNEL), it was found that As2O3 inhibited the growth of HeLa cells and induced G2/M arrest and apoptosis of the cells. RT-PCR, Northern blot, Western blot analysis revealed that As2O3 induced HeLa cell apoptosis possibly via decreasing the expression of c-myc and viral genes. HeLa cells overexpressing Bcl-2 partly resist As2O3 induced apoptosis, which might be relative to preventing the cells from As2O3 caused G2/M block, downregulation of c-myc gene expression and inhibition of viral gene expression was also noted, However, it was found that As2O3 at a high concentratio

  9. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells

    OpenAIRE

    Kumar, Sanjay; Yedjou, Clement G.; Tchounwou, Paul B.

    2014-01-01

    Background Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), which accounts for approximately 10% of all acute myloid leukemia cases. It is a blood cancer that is formed by chromosomal mutation. Each year in the United States, APL affects about 1,500 patients of all age groups and causes approximately 1.2% of cancer deaths. Arsenic trioxide (ATO) has been used successfully for treatment of APL patients, and both induction and consolidated therapy have resulted i...

  10. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21WAF1/CIP1) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF mediates

  11. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  12. Curcumin reduces the expression of survivin, leading to enhancement of arsenic trioxide-induced apoptosis in myelodysplastic syndrome and leukemia stem-like cells.

    Science.gov (United States)

    Zeng, Yingjian; Weng, Guangyang; Fan, Jiaxin; Li, Zhangqiu; Wu, Jianwei; Li, Yuanming; Zheng, Rong; Xia, Pingfang; Guo, Kunyuan

    2016-09-01

    Low response, treatment-related complications and relapse due to the low sensitivity of myelodysplastic syndrome (MDS) and leukemia stem cells (LSCs) or pre‑LSCs to arsenic trioxide (ATO), represent the main problems following treatment with ATO alone in patients with MDS. To solve these problems, a chemosensitization agent can be applied to increase the susceptibility of these cells to ATO. Curcumin (CUR), which possesses a wide range of anticancer activities, is a commonly used chemosensitization agent for various types of tumors, including hematopoietic malignancies. In the present study, we investigated the cytotoxic effects and potential mechanisms in MDS-SKM-1 and leukemia stem-like KG1a cells treated with CUR and ATO alone or in combination. CUR and ATO exhibited growth inhibition detected by MTT assays and apoptosis analyzed by Annexin V/PI analyses in both SKM-1 and KG1a cells. Apoptosis of SKM-1 and KG1a cells determined by Annexin V/PI was significantly enhanced in the combination groups compared with the groups treated with either agent alone. Further evaluation was performed by western blotting for two hallmark markers of apoptosis, caspase-3 and cleaved-PARP. Co-treatment of the cells with CUR and ATO resulted in significant synergistic effects. In SKM-1 and KG1a cells, 31 and 13 proteins analyzed by protein array assays were modulated, respectively. Notably, survivin protein expression levels were downregulated in both cell lines treated with CUR alone and in combination with ATO, particularly in the latter case. Susceptibility to apoptosis was significantly increased in SKM-1 and KG1a cells treated with siRNA-survivin and ATO. These results suggested that CUR increased the sensitivity of SKM-1 and KG1a cells to ATO by downregulating the expression of survivin. PMID:27430728

  13. Arsenic Trioxide Induces Apoptosis and Incapacitates Proliferation and Invasive Properties of U87MG Glioblastoma Cells through a Possible NF-κB-Mediated Mechanism.

    Science.gov (United States)

    Ghaffari, Seyed H; Yousefi, Meysam; Dizaji, Majid Zaki; Momeny, Majid; Bashash, Davood; Zekri, Ali; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2016-01-01

    Identification of novel therapeutics in glioblastoma remains crucial due to the devastating and infiltrative capacity of this malignancy. The current study was aimed to appraise effect of arsenic trioxide (ATO) in U87MG cells. The results demonstrated that ATO induced apoptosis and impeded proliferation of U87MG cells in a dosedependent manner and also inhibited classical NF-κB signaling pathway. ATO further upregulated expression of Bax as an important proapoptotic target of NF-κB and also inhibited mRNA expression of survivin, c-Myc and hTERT and suppressed telomerase activity. Moreover, ATO significantly increased adhesion of U87MG cells and also diminished transcription of NF-κB down-stream targets involved in cell migration and invasion, including cathepsin B, uPA, MMP-2, MMP-9 and MMP-14 and suppressed proteolytic activity of cathepsin B, MMP-2 and MMP-9, demonstrating a possible mechanism of ATO effect on a well-known signaling in glioblastoma dissemination. Taken together, here we suggest that ATO inhibits survival and invasion of U87MG cells possibly through NF-κB-mediated inhibition of survivin and telomerase activity and NF-κB-dependent suppression of cathepsin B, MMP-2 and MMP-9. PMID:27039805

  14. As2O3联合Aspirin对诱导肝癌细胞凋亡的影响%Aspirin enhances arsenic trioxide-induced apoptosis of hepatocarcinoma cells

    Institute of Scientific and Technical Information of China (English)

    郝立晓; 刘铁夫

    2012-01-01

    AIM: To investigate the effect of aspirin combined with arsenic trioxide (As2O3) on human hepatocarcinoma cell line Bel-7402 and to explore the possible mechanisms involved.METHODS: Cultured Bel-7402 cells were incubated with different concentrations of aspirin and As2O3, alone or in combination. After treatment, cell morphology was observed using an inverted microscope, cell proliferation was determined by MTT assay, cell apoptosis was measured by flow cytometry with annexin V/ propidium iodide staining, and cell cycle progression was analyzed by fluorescence-activated cell sorting.RESULTS: As2O3 and aspirin showed different degrees of inhibitory effect on the growth of Bel-7402 cells, and both were concentration-dependent. The two drugs had a synergistic effect, and the inhibitory effect in the combination group was more significant than those in the two monotherpay groups (both P < 0.05). Compared to treatment with 2.0 μmol/L As2O3 alone, treatment with 2.0 μmol/L As2O3 combined with 0.2 mmol/L aspirin significantly increased the apoptosis rate (5.64% ± 0.56% vs 7.35% ± 0.62%, P < 0.05), decreased the percentage of cells in G1 phase (0.52% ± 0.64% vs 32.03% ± 0.97%), and increased the percentages of cells in G2 phase or S phase (9.57% ± 0.82% vs 13.66% ± 0.82%, 50.41% ± 0.32% vs 54.37% ± 0.69%).CONCLUSION: Aspirin enhances As2O3-induced apoptosis of Bel-7402 cells possibly by altering cell cycle progression.%目的:观察As2O3与Aspirin联合应用对肝癌细胞Bel-7402的影响,并探讨其作用机制.方法:体外培养肝癌Bel-7402细胞,Aspirin、As2O3不同浓度孵育细胞.倒置显微镜观察细胞形态学改变,四甲基偶氮唑蓝(MTT)法检测As2O3和Aspirin单独及联合应用对Bel-7402细胞增殖情况的影响,流式细胞术观察细胞凋亡情况,并通过流式软件分析细胞周期变化.结果:As2O3及Aspirin对肝癌Bel-7402细胞生长均呈不同程度的抑制,且呈浓度依赖性.二者联合具有协同作用,药

  15. STUDY ON THE RELATIONSHIP OF ARSENIC TRIOXIDE-INDUCED BIOLOGICAL EFFECTS AND DEGRADATIONOF PML PROTEINS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To understand whether arsenic trioxide (As2O3)-induced biological effects are associated with degradation of PML proteins. Methods Acute promyelocytic leukemia (APL) cell line NB4, acute T-lymphocytic leukemia cell line Jurkat, acute myeloid leukemia cell line U937, and chronic myelocytic leukemia blast crisis cell line K562 were used as in vitro models. In different cell lines, the As2O3-induced bio- logical effects were determined by cell growth, cell viability, cell morphology, and flow cytometry assay on sub- G1 cell content. The alteration of PML proteins was analyzed by immunofluorescence. Results In terms of growth inhibition and apoptosis induction, 1.0μmol/L As2O3 had different effects on different cell lines. However, degradation of PML proteins occurred in all the cell lines with As2O3 treatment. Conclusion As2O3-induced biological effects may be independent of PML protein degradation.

  16. Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells.

    Science.gov (United States)

    Grad, J M; Bahlis, N J; Reis, I; Oshiro, M M; Dalton, W S; Boise, L H

    2001-08-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by slow-growing plasma cells in the bone marrow (BM). Patients with MM typically respond to initial chemotherapies; however, essentially all progress to a chemoresistant state. Factors that contribute to the chemorefractory phenotype include modulation of free radical scavenging, increased expression of drug efflux pumps, and changes in gene expression that allow escape from apoptotic signaling. Recent data indicate that arsenic trioxide (As(2)O(3)) induces remission of refractory acute promyelocytic leukemia and apoptosis of cell lines overexpressing Bcl-2 family members; therefore, it was hypothesized that chemorefractory MM cells would be sensitive to As(2)O(3). As(2)O(3) induced apoptosis in 4 human MM cell lines: 8226/S, 8226/Dox40, U266, and U266/Bcl-x(L). The addition of interleukin-6 had no effect on cell death. Glutathione (GSH) has been implicated as an inhibitor of As(2)O(3)-induced cell death either through conjugating As(2)O(3) or by sequestering reactive oxygen induced by As(2)O(3). Consistent with this possibility, increasing GSH levels with N-acetylcysteine attenuated As(2)O(3) cytotoxicity. Decreases in GSH have been associated with ascorbic acid (AA) metabolism. Clinically relevant doses of AA decreased GSH levels and potentiated As(2)O(3)-mediated cell death of all 4 MM cell lines. Similar results were obtained in freshly isolated human MM cells. In contrast, normal BM cells displayed little sensitivity to As(2)O(3) alone or in combination with AA. Together, these data suggest that As(2)O(3) and AA may be effective antineoplastic agents in refractory MM and that AA might be a useful adjuvant in GSH-sensitive therapies. (Blood. 2001;98:805-813) PMID:11468182

  17. Protective effect of resveratrol on arsenic trioxide-induced nephrotoxicity in rats

    OpenAIRE

    Zhang, Weiqian; Liu, Yan; Ge, Ming; Jing, Jiang; Chen, Yan; Jiang, Huijie; Yu, Hongxiang; Li, Ning; Zhang, Zhigang

    2014-01-01

    BACKGROUD/OBEJECTIVES Arsenic, which causes human carcinogenicity, is ubiquitous in the environment. This study was designed to evaluate modulation of arsenic induced cancer by resveratrol, a phytoalexin found in vegetal dietary sources that has antioxidant and chemopreventive properties, in arsenic trioxide (As2O3)-induced Male Wistar rats. MATERIALS/METHODS Adult rats received 3 mg/kg As2O3 (intravenous injection, iv.) on alternate days for 4 days. Resveratrol (8 mg/kg) was administered (iv...

  18. Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) has been reported to be an effective chemotherapeutic agent for acute promyelocytic leukemia (APL), and, recently, anti-tumor effect has been demonstrated in solid tumors. However, little is known about the mechanism of action of the ATO effect on solid tumor. We investigated the anti-vascular effect of ATO and the potential of combining ATO with radiation therapy. We studied the anti-vascular effect of ATO and radiosensitization of squamous cell carcinoma (SCC) VII murine tumors of C3H mice. The anti-vascular effect was examined using magnetic resonance imaging (MRI), and radiosensitivity was studied by clonogenic assay and tumor growth delay. Histopathological changes of the tumors after various treatments were also observed with hematoxylin and eosin (H and E) staining. Necrosis and blood flow changes in the central region of tumors in the hind limbs of the animals were observed on T2-weighted imaging after an intraperitoneal (i.p.) injection of 8 mg/kg of ATO alone. ATO exposure followed by radiation decreased the clonogenic survival of SCC VII cells compared with either treatment alone. Tumor growth delay after 10-20 Gy of radiation alone was increased slightly compared with control tumors, but the combination of ATO injection 2 hours before exposure to 20 Gy of radiation significantly prolonged tumor growth delay by almost 20 days. The results suggest that ATO and radiation can enhance the radiosensitivity of solid tumor. (author)

  19. Gene Analysis of Arsenic Trioxide—induced Apoptosis of Lymphoma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANGZidong; LIWeiyu; 等

    2002-01-01

    Objective The effect of arsenic trioxide on apoptosis gene expression of Raji cell was explored when Raji cells were incubated with 0.5μmol/L of arsenic trioxide for 6h。Methods Cell culture,extraction and isolation of mRNA,preparation of probes labeled with fluorescence,hybridization technique of DNA chip(each chip containing 200 apoptosis genes,Chinese Shanghai Biostar,In.)were used.Results Arsenic trioxide induced significant changes in 10%(20/200 genes)of the apoptosis genes:18 genes were downregulated,only two upregulated.In particular,inhibitors of apoptosis protein,such as X-linked inhibitor of apoptosis protein,were significantly downregulated.P53 and the other apoptosis genes were also downregulatec.Of the upregulated genes,high expression of heat-shock protein could promote apoptosis of Raji cells.Conclusion The inhibitors of apoptosis protein play an important role in the process of arsenic trioxide-induced apoptosis of Raji cells.

  20. Sulindac enhances arsenic trioxide induced apoptotic potential mediated by reactive oxygen species production in arsenic trioxide-resistant A549 lung carcinoma cells

    International Nuclear Information System (INIS)

    Full text: Recent reports indicate a broad spectrum of antitumor activity for arsenic trioxide (As2 O3) due to its ability to induce apoptosis via intracellular production of reactive oxygen species (ROS). Sulindac and nonsteroidal anti-inflammatory drugs induce apoptosis in a variety of cancer cells, including those of colon, prostate, breast, and leukemia. Therefore, we examined the effects of sulindac on As2O3-induced apoptosis in As2 O3-resistant A549 lung carcinoma cells in clinically available concentrations. Sulindac produced hydrogen peroxide (H 2 O 2 ) and nitric oxide (NO) in a dose-dependent manner and greatly sensitized the cells to As2O3-induced apoptosis. Apoptotic cell death was preceded by collapse of the mitochondrial membrane potential, release of cytochrome c/apoptosis inducing factor(AIF) and activation of caspase-3, -8, -9 activation. Importantly, the combined effect of As2O3 and sulindac was associated with an increased production of intracellular H2O3/reactive nitrogen species(RNS) and was completely suppressed by the reduced glutathione. In conclusion, intracellular ROS/RNS products most likely constitute the key mediators contributing to the combined effect of As2O3 and sulindac. Our data provide evidence for the first time that sulindac may help to extend the therapeutic spectrum of As2O3 and suggest that the combination of As2O3 and sulindac could be more broadly applied in cancer therapy

  1. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Wen-Xiao Xu

    2015-11-01

    Full Text Available Background/Aims: Promyelocytic leukemia (PML protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα to contribute to the initiation of acute promyelocytic leukemia (APL. Arsenic trioxide (ATO upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Methods: Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. Results: ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conclusion: These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts.

  2. Requirement of PML SUMO interacting motif for RNF4- or arsenic trioxide-induced degradation of nuclear PML isoforms.

    Science.gov (United States)

    Maroui, Mohamed Ali; Kheddache-Atmane, Sabrina; El Asmi, Faten; Dianoux, Laurent; Aubry, Muriel; Chelbi-Alix, Mounira K

    2012-01-01

    PML, the organizer of nuclear bodies (NBs), is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As₂O₃) enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM) within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET) assay in living cells, we found that As₂O₃ enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI). In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As₂O₃-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As₂O₃-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As₂O₃-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As₂O₃. PMID:23028697

  3. Requirement of PML SUMO interacting motif for RNF4- or arsenic trioxide-induced degradation of nuclear PML isoforms.

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maroui

    Full Text Available PML, the organizer of nuclear bodies (NBs, is expressed in several isoforms designated PMLI to VII which differ in their C-terminal region due to alternative splicing of a single gene. This variability is important for the function of the different PML isoforms. PML NB formation requires the covalent linkage of SUMO to PML. Arsenic trioxide (As₂O₃ enhances PML SUMOylation leading to an increase in PML NB size and promotes its interaction with RNF4, a poly-SUMO-dependent ubiquitin E3 ligase responsible for proteasome-mediated PML degradation. Furthermore, the presence of a bona fide SUMO Interacting Motif (SIM within the C-terminal region of PML seems to be required for recruitment of other SUMOylated proteins within PML NBs. This motif is present in all PML isoforms, except in the nuclear PMLVI and in the cytoplasmic PMLVII. Using a bioluminescence resonance energy transfer (BRET assay in living cells, we found that As₂O₃ enhanced the SUMOylation and interaction with RNF4 of nuclear PML isoforms (I to VI. In addition, among the nuclear PML isoforms, only the one lacking the SIM sequence, PMLVI, was resistant to As₂O₃-induced PML degradation. Similarly, mutation of the SIM in PMLIII abrogated its sensitivity to As₂O₃-induced degradation. PMLVI and PMLIII-SIM mutant still interacted with RNF4. However, their resistance to the degradation process was due to their inability to be polyubiquitinated and to recruit efficiently the 20S core and the β regulatory subunit of the 11S complex of the proteasome in PML NBs. Such resistance of PMLVI to As₂O₃-induced degradation was alleviated by overexpression of RNF4. Our results demonstrate that the SIM of PML is dispensable for PML SUMOylation and interaction with RNF4 but is required for efficient PML ubiquitination, recruitment of proteasome components within NBs and proteasome-dependent degradation of PML in response to As₂O₃.

  4. Dynamic effects of autophagy on arsenic trioxide-induced death of human leukemia cell line HL60 cells

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Bo GAO; Yan-li JIA; Zheng-hong QIN

    2008-01-01

    Aim: To evaluate the contribution of an autophagic mechanism to the As2O3-induced death of human acute myeloid leukaemia cell line HL60 cells. Methods: The growth inhibition of HL60 cells induced by As2O3 was assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazohum bromide colorimetric assay. The ac-tivation of autophagy was determined with monodansylcadaverine labeling and transmission electron microscope. The role of autophagy in the As2O3-induced death of HL60 cells was assessed using autophagic and lysosomal inhibitors. Immunofluorescence, flow cytometry, and Western blot analysis were used to study the apoptotic and autophagic mechanisms. Results: After treatment with As2O3, the proliferation of HL60 cells was significantly inhibited and the formation of autophagosomes increased. The blockade of autophagy maturation with the autophagy-specific inhibitor 3-methyladenine (3-MA) or the lysosome-neutraliz-ing agent NH4C11 h before As2O3 potentiated the As2O3-induced death of HL60 cells. In contrast, 3-MA attenuated As2O3-induced death when administered 30 min after As2O3. 3-MA and NH4Cl also inhibited As2O3-induced upregulation of microtubule-associated protein 1 light chain 3, the protein required for autophagy in mammalian cells. Following As2O3, lysosomes were activated as indicated by increased levels of cathepsins B and L. The apoptotic response of HL60 cells to As2O3 was suggested by the collapse of mitochondrial membrane potential, re-lease of cytochrome c from mitochondria, and the activation of caspase-3. Pre-treatment with 3-MA prior to As2O3 amplified these apoptotic signals, while post-treatment with 3-MA 30 min after As2O3 attenuated the apoptotic pathways. Conclusion: Autophagy plays complex roles in the As2O3-induced death of HL60 cells; it inhibits As2O3-induced apoptosis in the initiation stage, but amplifies the AS2O3-mediated apoptotic program if it is persistently activated.

  5. Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death

    Institute of Scientific and Technical Information of China (English)

    Changhai Tian; Ping Gao; Yanhua Zheng; Wen Yue; Xiaohui Wang; Haijing Jin; Quan Chen

    2008-01-01

    Intracellular redox homeostasis plays a critical role in determining tumor cells' sensitivity to drug-induced apop-tosis. Here we investigated the role of thioredoxin-1 (TRX1), a key component of redox regulation, in arsenic trioxide (As2O3)-induced apoptosis. Over-expression of wild-type TRX1 in HepG2 cells led to the inhibition of As2O3-induced cytochrome c (cyto c) release, caspase activation and apoptosis, and down-regulation of TRX1 expression by RNAi sensitized HepG, cells to As2O3-induced apoptosis. Interestingly, mutation of the active site of TRX1 from Cys32/35 to Ser32/35 converted this molecule from an apoptotic protector to an apoptotic promoter. In an effort to understand the mechanisms of this conversion, we used isolated mitochondria from mouse liver and found that recombinant wild-type TRX1 could protect mitochondria from the apoptotic changes. In contrast, the mutant form of TRX1 alone elicited mitochondria-related apoptotic changes, including the mitochondrial permeability transition pore (mPTP) opening, loss of mitochondrial membrane potential, and cyto c release from mitochondria. These apoptotic effects were inhibited by cyclosporine A (CsA), indicating that mutant TRX1 targeted to mPTP. Alteration of TRX1 from its reduced form to oxidized form in vivo by 2,4-dinitrochlorobenzene (DNCB), a specific inhibitor of TRX reductase, also sensitized HepG2 cells to As2O3-induced apoptosis. These data suggest that TRX1 plays a central role in regulating apoptosis by blocking cyto c release, and inactivation of TRX1 by either mutation or oxidization of the active site cysteines may sensitize tumor cells to As2O3-induced apoptosis.

  6. PCGF2 negatively regulates arsenic trioxide-induced PML-RARA protein degradation via UBE2I inhibition in NB4 cells.

    Science.gov (United States)

    Jo, Sungsin; Lee, Young Lim; Kim, Sojin; Lee, Hongki; Chung, Heekyoung

    2016-07-01

    Arsenic trioxide (ATO) is a therapeutic agent for acute promyelocytic leukemia (APL) which induces PML-RARA protein degradation via enhanced UBE2I-mediated sumoylation. PCGF2, a Polycomb group protein, has been suggested as an anti-SUMO E3 protein by inhibiting the sumoylation of UBE2I substrates, HSF2 and RANGAP1, via direct interaction. Thus, we hypothesized that PCGF2 might play a role in ATO-induced PML-RARA degradation by interacting with UBE2I. PCGF2 protein was down-regulated upon ATO treatment in human APL cell line, NB4. Knockdown of PCGF2 in NB4 cells, in the absence of ATO treatment, was sufficient to induce sumoylation-, ubiquitylation- and PML nuclear body-mediated degradation of PML-RARA protein. Moreover, overexpression of PCGF2 protected ATO-mediated degradation of ectopic and endogenous PML-RARA in 293T and NB4 cells, respectively. In 293T cells, UBE2I-mediated PML-RARA degradation was reduced upon PCGF2 co-expression. In addition, UBE2I-mediated sumoylation of PML-RARA was reduced upon PCGF2 co-expression and PCGF2-UBE2I interaction was confirmed by co-immunoprecipitation. Likewise, endogenous PCGF2-UBE2I interaction was detected by co-immunoprecipitation and immunofluorescence assays in NB4 cells. Intriguingly, upon ATO-treatment, such interaction was disrupted and UBE2I was co-immunoprecipitated or co-localized with its SUMO substrate, PML-RARA. Taken together, our results suggested a novel role of PCGF2 in ATO-mediated degradation of PML-RARA that PCGF2 might act as a negative regulator of UBE2I via direct interaction. PMID:27030546

  7. Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line

    International Nuclear Information System (INIS)

    In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occurring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified

  8. Arsenic Trioxide Modulates DNA Synthesis and Apoptosis in Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Ndebele

    2010-04-01

    Full Text Available Arsenic trioxide, the trade name Trisenox, is a drug used to treat acute promyleocytic leukemia (APL. Studies have demonstrated that arsenic trioxide slows cancer cells growth. Although arsenic influences numerous signal-transduction pathways, cell-cycle progression, and/or apoptosis, its apoptotic mechanisms are complex and not entirely delineated. The primary objective of this research was to evaluate the effects of arsenic trioxide on DNA synthesis and to determine whether arsenic-induced apoptosis is mediated via caspase activation, p38 mitogen–activated protein kinase (MAPK, and cell cycle arrest. To achieve this goal, lung cancer cells (A549 were exposed to various concentrations (0, 2, 4, 6, 8, and 10 µg/mL of arsenic trioxide for 48 h. The effect of arsenic trioxide on DNA synthesis was determined by the [3H]thymidine incorporation assay. Apoptosis was determined by the caspase-3 fluorescein isothiocyanate (FITC assay, p38 MAP kinase activity was determined by an immunoblot assay, and cell-cycle analysis was evaluated by the propidium iodide assay. The [3H]thymidine-incorporation assay revealed a dose-related cytotoxic response at high levels of exposure. Furthermore, arsenic trioxide modulated caspase 3 activity and induced p38 MAP kinase activation in A549 cells. However, cell-cycle studies showed no statistically significant differences in DNA content at subG1 check point between control and arsenic trioxide treated cells.

  9. The role of Akt on Arsenic trioxide suppression of 3T3-L1 preadipocyte differentiation

    Institute of Scientific and Technical Information of China (English)

    Zhi Xin WANG; Chun Sun JIANG; Lei LIU; Xiao Hui WANG; Hai Jing JIN; Qiao WU; Quan CHEN

    2005-01-01

    The present study investigates the molecular details of how arsenic trioxide inhibits preadipocyte differentiation and examines the role of Akt/PKB in regulation of differentiation and apoptosis. Continual exposure of arsenic trioxide, at the clinic achievable dosage that does not induce apoptosis, suppressed 3T3-L1 cell differentiation into fat cells by inhibiting the expression of PPARγ and C/EBPα and disrupting the interaction between PPARγ and RXRα, which determines the programming of the adipogenic genes. Interestingly, if we treated the cells for 12 or 24 h and then withdrew arsenic trioxide, the cells were able to differentiate to the comparable levels of untreated cells as assayed by the activity of GAPDH, the biochemical marker of preadipocyte differentiation. Long term treatment blocked the differentiation and the activity of GAPDH could not recover to the comparable levels of untreated cells. Continual exposure of arsenic trioxide caused accumulation in G2/M phase and the accumulation of p21. We found that arsenic trioxide induced the expression and the phosphorylation of Akt/PKB and it inhibited the interaction between Akt/PKB and PPARγ. Akt/PKB inhibitor appears to block the arsenic trioxide suppression of differentiation. Our results suggested that Akt/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation.

  10. Role of Calcium Ion in Apoptosis of MD Cancer Cells Induced by Arsenic Trioxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jiuli; WANG Jintao; XU Shiwen

    2008-01-01

    In order to observe the role of calcium ion in apoptosis of MD cancer cells induced by arsenic trioxide, inhibition percentage was detected by MTT assay;morphology changes were examined by fluorescence microscope;apoptosis was examined by DNA Ladder;[Ca2+]i was investigated by spectrofluorimeter in vitro on MDCC-MSB1 cells. The results showed that As2O3 inhibited the proliferation of MDCC-MSB1 cells in concentration dependent manner (P<0.05 or P<0.01);typical apoptosis character was observed by fluorescence microscope;DNA Ladder was observed;the [Ca2+]i was elevated significantly after the treatment of As203 (P<0.05 or P<0.01) and showed a dose-dependent manner. It is concluded that the calcium may play an important role in apoptosis of MD cancer cells induced by arsenic trioxide.

  11. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  12. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca2+) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  13. Arsenic Trioxide Inhibits Cell Growth and Induces Apoptosis through Inactivation of Notch Signaling Pathway in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2012-08-01

    Full Text Available Arsenic trioxide has been reported to inhibit cell growth and induce apoptotic cell death in many human cancer cells including breast cancer. However, the precise molecular mechanisms underlying the anti-tumor activity of arsenic trioxide are still largely unknown. In the present study, we assessed the effects of arsenic trioxide on cell viability and apoptosis in breast cancer cells. For mechanistic studies, we used multiple cellular and molecular approaches such as MTT assay, apoptosis ELISA assay, gene transfection, RT-PCR, Western blotting, and invasion assays. For the first time, we found a significant reduction in cell viability in arsenic trioxide-treated cells in a dose-dependent manner, which was consistent with induction of apoptosis and also associated with down-regulation of Notch-1 and its target genes. Taken together, our findings provide evidence showing that the down-regulation of Notch-1 by arsenic trioxide could be an effective approach, to cause down-regulation of Bcl-2, and NF-κB, resulting in the inhibition of cell growth and invasion as well as induction of apoptosis. These results suggest that the anti-tumor activity of arsenic trioxide is in part mediated through a novel mechanism involving inactivation of Notch-1 and its target genes. We also suggest that arsenic trioxide could be further developed as a potential therapeutic agent for the treatment of breast cancer.

  14. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway.

    Science.gov (United States)

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. PMID:27174766

  15. Arsenic

    Science.gov (United States)

    ... of countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States of America. Drinking-water, ... ingestion of inorganic arsenic include developmental effects, neurotoxicity, diabetes, pulmonary disease and cardiovascular disease. Arsenic-induced myocardial ...

  16. Low concentration of arsenic could induce caspase-3 mediated head kidney macrophage apoptosis with JNK-p38 activation in Clarias batrachus

    International Nuclear Information System (INIS)

    We had earlier demonstrated that chronic exposure (30 days) to micro-molar concentration (0.50 μM) of arsenic induced head kidney macrophage (HKM) death in Clarias batrachus. The purpose of the present study is to characterize the nature of HKM death induced by arsenic and elucidate the signal transduction pathways involved in the process. Arsenic-induced HKM death was apoptotic in nature as evident from DNA gel, Annexin V-propidium iodide, Hoechst 33342 staining and TdT-mediated dUTP nick end labeling (TUNEL) assays. Inhibitor studies and immunoblot analyses further demonstrated that arsenic-induced HKM apoptosis involved activation of caspase-3 and cleavage of poly(ADP-ribose) polymerase, a well-characterized caspase-3 substrate. Preincubation with antioxidants N-acetyl-cysteine or dimethyl sulfoxide significantly lowered reactive oxygen species (ROS) levels in arsenic-treated HKM and prevented caspase activation, malondialdehyde formation and HKM apoptosis. Arsenic induced membrane translocation of the NADPH oxidase subunit p47phox. Preincubation with apocynin and diphenyleneiodonium chloride, both selective inhibitors of NADPH oxidases, prevented p47phox translocation, ROS production and HKM death. Exposure of HKM to arsenic induced the activation of mitogen-activated protein kinase family (MAPK) proteins including c-Jun NH2-terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (p38). Preincubation of HKM with p38 inhibitor SB203580 and JNK inhibitor SP600125 protected the HKM against arsenic-induced apoptosis. We conclude that exposure to micro-molar concentration of arsenic induces ROS generation through the activation of NADPH oxidases, which in turn causes caspase-3 mediated HKM apoptosis. In addition, the study also indicates a role of p38-JNK pathway in arsenic-induced HKM apoptosis in C. batrachus.

  17. Nuclear matrix associated protein PML: an arsenic trioxide apoptosis therapeutic target protein in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    于鼎; 王子慧; 朱立元; 邱殷庆

    2003-01-01

    Objective To investigate arsenic trioxide (As2O3)-induced apoptosis and the effects on cell nuclear matrix related protein promyelocytic leukaemia (PML). Methods HepG2 cells were cultured in MEM medium and treated with 0.5, 2, 5 and 10 μmol/L As2O3 for either 24 h or 96 h at each concentration. In situ terminal deoxynucleotidyl transferase (TdT) labeling (TUNEL) and DNA ladders were used to detect apoptosis. Confocal microscopy and Western blotting were used to observe the expression of PML. Results The growth rates of HepG2 cells were slower in the As2O3 treated than the untreated control group. DNA ladder and TUNEL positive apoptotic cells could be detected in As2O3 treated groups. The expression of PML decreased in HepG2 cells with 2 μmol/L As2O3 treatment. Confocal images demonstrated that the expression of PML protein in HepG2 cell nuclei decreased after treatment with 2 μmol/L As2O3, and micropunctates characteristic of PML protein in HepG2 cell nuclei disappeared after treatment with 5 μmol/L As2O3.Conclusions Our results show that arsenic trioxide can significantly inhibit the growth of HepG2 cells in vitro. As2O3 induces apoptosis in HepG2 tumor cells in a time and concentration dependent manner. As2O3 may degrade the PML protein in HepG2 cell nuclei. The decreased expression of PML in As2O3 treated tumor cells is most likely to be caused by apoptosis. Nuclear matrix associated protein PML could be the target of As2O3 therapy.

  18. Role of arsenic trioxide induced apoptosis in Burkitt lymphoma cell line Raji and influence on C-myc expression%三氧化二砷对Burkitt淋巴瘤细胞株Raji凋亡的诱导作用及C-myc表达的影响

    Institute of Scientific and Technical Information of China (English)

    张继青; 钟雷; 李进娥

    2015-01-01

    目的 探讨三氧化二砷(As2O3)对Burkitt淋巴瘤细胞袜Raji凋亡的诱导作用及C-myc表这的影响.方法 通过噻唑蓝比色法检测观察As2 O3对Raji细胞增殖的影响,流式细胞仪观察As2O3对Raji细胞凋亡的诱导作用,逆转录聚合酶链式反应(RT-PCR)法检测As2O3对C-myc mRNA表达的影响.结果 As2O3对Raji细胞生长有抑制作用,呈剂量和时间依赖关系(P<0.01);As2O3对Raji细胞有诱导凋亡作用,呈剂量和时间依赖关系(P<0.01);随着As2O3浓度升高,C-myc的表达水平明显下降(P<0.01).结论 As2O3对Burkitt淋巴瘤细胞株Raji具有增殖抑制和诱导凋亡作用,其作用机制可能与C-myc表达水平明显下降有关.

  19. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line.

    Science.gov (United States)

    Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment. PMID:20596959

  20. Apoptosis inducing effects of arsenic trioxide on human bladder cancer cell line BIU-87

    Institute of Scientific and Technical Information of China (English)

    童强松; 曾甫清; 赵军; 鲁功成; 郑丽端

    2001-01-01

    Objective To explore the apoptosis inducing effects of arsenictrioxide (As2O3) on human bladder cancer cells and elucidate possible mechanisms. Methods After treatment with As2O3, the growth inhibition rates of human bladder cancer cell line BIU-87 were studied by MTT and cell counts methods. DNA synthesis rates were detected by 3 H-TdR assay. The morphological changes of cancer cells were observed by light and electronic microscopy and cell apoptosis rates were detected by TdT-mediated dUTP nick end labeling (TUNEL). bcl-2 gene expression of BIU-87 cells was observed by strept avidin-biotin complex (SABC) immunohistochemical method. Results As2O3 could effectively inhibit the growth of BIU-87 (P<0.05), which were time and concentration dependent. The inhibition rate of 4.0?μmol/L As2O3 for DNA synthesis of cancer cells was 55.64% (P<0.01). Partial cancer cells presented the characteristic morphological changes of apoptosis which depended on the time of exposure to drug (P<0.05). bcl-2 expression of BIU-87 cells was decreased significantly (P<0.05). Conclusion As2O3 can significantly induce apoptosis in bladder cancer cells by down-regulating the expression of the bcl-2 gene and inhibiting DNA synthesis. This provides a potentially effective method for prevention and cure of human bladder cancer.%目的观察三氧化二砷(As2O3)对人膀胱癌细胞的诱导凋亡作用并探讨其机制。方法采用细胞计数和MTT法检测As2O3对人膀胱癌细胞株BIU-87的生长抑制作用;采用3H-TdR掺入法 检测癌细胞DNA合成速率;采用普通光镜、透射电镜观察癌细胞形态学变化;采用TUNEL检测癌细胞凋 亡比率;采用SABC免疫组化观察BIU-87细胞中bcl-2的表达变化。 结果As2O3可有效地抑制BIU-87细胞的体外生长(P<0.05),并具有时间及浓度依赖性的特点。经 4μmol/LAs2O3作用后,癌细胞DNA合成抑制率为55.64%。部分膀胱癌细胞体积缩小、核固缩、染色质核 膜下聚

  1. Effects of arsenic trioxide and strontium-89 chloride on the cell cycle and apoptosis of human breast cancer cell line MCF-7

    International Nuclear Information System (INIS)

    Objective: To investigate the effects of arsenic trioxide (As2O3) and 89SrCl2 (strontium 89 chloride) co-treatment on the cell cycle and apoptosis of MCF-7 human breast cancer cell line. Methods: The MTT method was applied to explored the impacts of As2O3 on the proliferation of MCF-7 cell, and select the proper concentration of As2O3 to use. The cells were randomly divided into four groups: control group, As2O3 treatment group, 89SrCl2 irradiation group and As2O3 and 89SrCl2 co-treatment group (combining group). The cell cycle distribution and apoptosis were analyzed by flow cytometry at 24 h after treatment. Results: The results showed As2O3 could significantly inhibite the growth of MCF-7 cells and the 24 h ID50 was 11.7μmol/L. The cells during G2/M phase in combining group was significantly more than that in 89SrCl2 irradiation group and the death cells and cells at early stage of apoptosis in combining group predominantly increased, significantly different from that in 89Sr irradiation group (P 2O3could promote G2 arrest apoptosis of the MCF-7 cells induced by exposure to 89SrCl2. (authors)

  2. Synergistic Apoptosis-Inducing Antileukemic Effects of Arsenic Trioxide and Mucuna macrocarpa Stem Extract in Human Leukemic Cells via a Reactive Oxygen Species-Dependent Mechanism

    Directory of Open Access Journals (Sweden)

    Kuan-Hung Lu

    2012-01-01

    Full Text Available The objective of this study was to examine the potential of enhancing the antileukemic activity of arsenic trioxide (ATO by combining it with a folk remedy, crude methanolic extract of Mucuna macrocarpa (CMEMM. Human leukemia cells HL-60, Jurkat, and Molt-3 were treated with various doses of ATO, CMEMM, and combinations thereof for 24 and 48 h. Results indicated that the combination of 2.5 μM ATO and 50 μg/mL CMEMM synergistically inhibited cell proliferation in HL-60 and Jurkat cell lines. Apoptosis triggered by ATO/CMEMM treatment was confirmed by accumulation of cells in the sub-G1 phase in cell cycle analyses, characteristic apoptotic nuclear fragmentation, and increased percentage of annexin V-positive apoptotic cells. Such combination treatments also led to elevation of reactive oxygen species (ROS. The antioxidants N-acetyl cysteine (NAC, butylated hydroxytoluene, and α-tocopherol prevented cells from ATO/CMEMM-induced apoptosis. The ATO/CMEMM-induced activation of caspase-3 and caspase-9 can be blocked by NAC. In summary, these results suggest that ATO/CMEMM combination treatment exerts synergistic apoptosis-inducing effects in human leukemic cells through a ROS-dependent mechanism and may provide a promising antileukemic approach in the future.

  3. Arsenic trioxide and all-trans retinoic acid target NPM1 mutant oncoprotein levels and induce apoptosis in NPM1-mutated AML cells.

    Science.gov (United States)

    Martelli, Maria Paola; Gionfriddo, Ilaria; Mezzasoma, Federica; Milano, Francesca; Pierangeli, Sara; Mulas, Floriana; Pacini, Roberta; Tabarrini, Alessia; Pettirossi, Valentina; Rossi, Roberta; Vetro, Calogero; Brunetti, Lorenzo; Sportoletti, Paolo; Tiacci, Enrico; Di Raimondo, Francesco; Falini, Brunangelo

    2015-05-28

    Nucleophosmin (NPM1) mutations represent an attractive therapeutic target in acute myeloid leukemia (AML) because they are common (∼30% AML), stable, and behave as a founder genetic lesion. Oncoprotein targeting can be a successful strategy to treat AML, as proved in acute promyelocytic leukemia by treatment with all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO), which degrade the promyelocytic leukemia (PML)-retinoic acid receptor fusion protein. Adjunct of ATRA to chemotherapy was reported to be beneficial for NPM1-mutated AML patients. Leukemic cells with NPM1 mutation also showed sensibility to ATO in vitro. Here, we explore the mechanisms underlying these observations and show that ATO/ATRA induce proteasome-dependent degradation of NPM1 leukemic protein and apoptosis in NPM1-mutated AML cell lines and primary patients' cells. We also show that PML intracellular distribution is altered in NPM1-mutated AML cells and reverted by arsenic through oxidative stress induction. Interestingly, similarly to what was described for PML, oxidative stress also mediates ATO-induced degradation of the NPM1 mutant oncoprotein. Strikingly, NPM1 mutant downregulation by ATO/ATRA was shown to potentiate response to the anthracyclin daunorubicin. These findings provide experimental evidence for further exploring ATO/ATRA in preclinical NPM1-mutated AML in vivo models and a rationale for exploiting these compounds in chemotherapeutic regimens in clinics. PMID:25795919

  4. Arsenic trioxide inhibits viability and induces apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Zheng L

    2016-02-01

    Full Text Available Lei Zheng,1,2 Hui Jiang,3 Zhi-Wei Zhang,1 Ke-Nan Wang,1 Qi-Fei Wang,1 Quan-Lin Li,1 Tao Jiang1 1Department of Urology, First Affiliated Hospital of Dalian Medical University, 2Department of Urology, The Fifth People’s Hospital of Dalian, Dalian, 3Department of Urology, Third Affiliated Hospital of Beijing University, Beijing, People’s Republic of China Background: Growing evidence suggests that arsenic trioxide (As2O3 induces apoptosis and inhibits tumor cell growth in prostate cancer (PCa, although details of the mechanism are still inconclusive. We investigated the antitumor effect of As2O3 in human PCa cell lines LNCaP and PC3 and the underlying mechanisms by focusing on the Wnt signaling pathway.Methods: The effect of As2O3 on the viability and apoptosis of PCa cells was investigated by cholecystokinin-8 and flow cytometry. The expression of the related proteins in the Wnt signaling pathway and the downstream target genes of the Wnt signaling pathway was examined by Western blot and quantitative real-time PCR assay. The methylation status of the SFRP1 gene promoter was assessed by bisulfite sequencing.Results: As2O3 inhibited the viability of PCa cells and induced apoptosis of PCa cells in a dose-dependent manner. The protein level of phospho-glycogen synthase kinase-3β was upregulated, whereas the protein level of β-catenin and the mRNA levels of c-MYC, MMP-7, and COX-2 were downregulated in a dose-dependent manner in PCa cells treated with As2O3. In addition, As2O3 pregulated the protein and mRNA levels of secreted frizzled related protein-1, and increased the demethylation of the SFRP1 gene promoter.Conclusion: Our results suggest that As2O3 may inhibit cell viability and induce apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in both androgen-dependent and -independent human PCa. Keywords: arsenic trioxide, CpG island methylation, demethylation, prostate cancer, Wnt signaling pathway

  5. Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways

    International Nuclear Information System (INIS)

    Arsenic (As) is a well-known environmental toxicant and carcinogen as well as an effective chemotherapeutic agent. The underlying mechanism of this dual capability, however, is not fully understood. Tumor suppressor gene p53, a pivotal cell cycle checkpoint signaling protein, has been hypothesized to play a possible role in mediating As-induced toxicity and therapeutic efficiency. In this study, we found that arsenite (As3+) induced apoptosis and cell cycle arrest in a dose-dependent manner in both p53+/+ and p53-/- mouse embryonic fibroblasts (MEFs). There was, however, a distinction between genotypes in the apoptotic response, with a more prominent induction of caspase-3 in the p53-/- cells than in the p53+/+ cells. To examine this difference further, a systems-based genomic analysis was conducted comparing the critical molecular mechanisms between the p53 genotypes in response to As3+. A significant alteration in the Nrf2-mediated oxidative stress response pathway was found in both genotypes. In p53+/+ MEFs, As3+ induced p53-dependent gene expression alterations in DNA damage and cell cycle regulation genes. However, in the p53-/- MEFs, As3+ induced a significant up-regulation of pro-apoptotic genes (Noxa) and down-regulation of genes in immune modulation. Our findings demonstrate that As-induced cell death occurs through a p53-independent pathway in p53 deficient cells while apoptosis induction occurs through p53-dependent pathway in normal tissue. This difference in the mechanism of apoptotic responses between the genotypes provides important information regarding the apparent dichotomy of arsenic's dual mechanisms, and potentially leads to further advancement of its utility as a chemotherapeutic agent

  6. In vitro study on arsenic sulfide (realgar)-induced apoptosis of retinoic acid susceptible or resistant acute promyelocytic leukemia cell lines

    Institute of Scientific and Technical Information of China (English)

    CHEN Si-yu; LIU Shan-xi; LI Xin-min

    2002-01-01

    Objective: To further understand the possible mechanisms of arsenic sulfide (realgar) in the treatment of acute promyelocytic leukemia (APL). Methods: All-trans retinoic acid (ATRA)-susceptible APL cell line (NB4 cells) and ATRA-resistant APL cell line (MR2 subclone) were used as models in vitro. At various times after incubated with various concentrations of realgar, NB4 and MR2 cells were observed by cell viability, cell proliferation and cell morphology; cell cycle and the expression of Annexin V were assayed by flow cytometry. Results: Cell viability and proliferation of NB4 and MR2 cells were inhibited after the treatment,to some extent, in a dose and time dependent manner. 177-711 μg/L of realgar treated NB4 and MR2 cell presented morphologically some features of apoptotic cells such as intact cell membrane, chromatin condensation and nuclear fragmentation, apoptosis body could be found by electron microscopy as well. Sub-G1 ceils andcell cycle arrest were observed by flow cytometry. The proportion of Annexin V -FITC+/PI cells, which represent apoptotic cells, was up-regulated. Conclusion: Realgar could induce apoptosis of acute promyelocytic leukemia cell despite its susceptibility to retinoic acid in the way that may be different from retinoic acid.

  7. ETME, a novel β-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a p53-dependent pathway

    Directory of Open Access Journals (Sweden)

    Zhiying Yu

    2014-12-01

    Full Text Available Arsenic trioxide (ATO has been identified as an effective treatment for acute promyelocytic leukemia (APL but is much less effective against solid tumors such as hepatocellular carcinoma (HCC. In the search for ways to enhance its therapeutic efficacy against solid tumors, we have examined its use in combination with a novel derivative of β-elemene, N-(β-elemene-13-yltryptophan methyl ester (ETME. Here we report the effects of the combination on cell viability, apoptosis, the cell cycle and mitochondria membrane potential (MMP in HCC SMMC-7721 cells. We found that the two compounds acted synergistically to enhance antiproliferative activity and apoptosis. The combination also decreased the MMP, down-regulated Bcl-2 and pro-proteins of the caspase family, and up-regulated Bax and BID, all of which were reversed by the p53 inhibitor, pifithrin-α. In addition, the combination induced cell cycle arrest at the G2/M phase and reduced tumor volume and weight in an xenograft model of nude mice. Overall, the results suggest that ETME in combination with ATO may be useful in the treatment of HCC patients particularly those unresponsive to ATO alone.

  8. Indomethacin-Enhanced Anticancer Effect of Arsenic Trioxide in A549 Cell Line: Involvement of Apoptosis and Phospho-ERK and p38 MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Ali Mandegary

    2013-01-01

    Full Text Available Background. Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX inhibitors with arsenic trioxide (ATO might be a possible treatment option. Methods. Cytotoxicity of ATO, dexamethasone (Dex, celecoxib (Cel, and Indomethacin (Indo individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. Results. The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. Conclusions. Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.

  9. BIMEL is a key effector molecule in oxidative stress-mediated apoptosis in acute myeloid leukemia cells when combined with arsenic trioxide and buthionine sulfoximine

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) is reported to be an effective therapeutic agent in acute promyelocytic leukemia (APL) through inducing apoptotic cell death. Buthionine sulfoximine (BSO), an oxidative stress pathway modulator, is suggested as a potential combination therapy for ATO-insensitive leukemia. However, the precise mechanism of BSO-mediated augmentation of ATO-induced apoptosis is not fully understood. In this study we compared the difference in cell death of HL60 leukemia cells treated with ATO/BSO and ATO alone, and investigated the detailed molecular mechanism of BSO-mediated augmentation of ATO-induced cell death. HL60 APL cells were used for the study. The activation and expression of a series of signal molecules were analyzed with immunoprecipitation and immunoblotting. Apoptotic cell death was detected with caspases and poly (ADP-ribose) polymerase activation. Generation of intracellular reactive oxygen species (ROS) was determined using a redox-sensitive dye. Mitochondrial outer membrane permeabilization was observed with a confocal microscopy using NIR dye and cytochrome c release was determined with immunoblotting. Small interfering (si) RNA was used for inhibition of gene expression. HL60 cells became more susceptible to ATO in the presence of BSO. ATO/BSO-induced mitochondrial injury was accompanied by reduced mitochondrial outer membrane permeabilization, cytochrome c release and caspase activation. ATO/BSO-induced mitochondrial injury was inhibited by antioxidants. Addition of BSO induced phosphorylation of the pro-apoptotic BCL2 protein, BIMEL, and anti-apoptotic BCL2 protein, MCL1, in treated cells. Phosphorylated BIMEL was dissociated from MCL1 and interacted with BAX, followed by conformational change of BAX. Furthermore, the knockdown of BIMEL with small interfering RNA inhibited the augmentation of ATO-induced apoptosis by BSO. The enhancing effect of BSO on ATO-induced cell death was characterized at the molecular level for clinical use

  10. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats

    International Nuclear Information System (INIS)

    Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administration of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS.

  11. Role of JWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsenic trioxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    JWA, a cytoskeleton associated gene, was primarily found to be regulated by all trans-retinoic acid (ATRA), 13 cis-retinoic acid (13 cis-RA) and 12-tetradecano- ylphorbol-13-acetate (TPA). Our previous data showed that JWA might be involved in both cellular differentiation and apoptosis induced by several chemicals. In this study, we addressed the possible mechanism of JWA in the regulation of cell differentiation and apoptosis in NB4, a human acute promyelocytic leukemia cell line. CD11b/CD33 expression and cell cycle were analyzed for detecting of cell differentiation and apoptosis. Both reverse-transcription polymerase chain reaction (RT-PCR) and Western blot assays were used for understanding the expressions of JWA. The results showed that under the indicated concentrations ATRA (10?6 mol/L) and As2O3 (10?6 mol/L) induced cell differentiation and apoptosis separately; while both 4HPR (10?6 mol/L) and TPA (10?7 mol/L) showed dual-directional effects on NB4 cells, they not only trigger cells' differentiation but also induce cells apoptosis at the same time. All chemicals up-regulated JWA expression whatever they trigger cells either differentiation or apoptosis; however, it seems that the chemicals have no effect on PML/RAR? in the treated NB4 cells. Anti-sense JWA oligonucleotide could partially block the ability of TPA in inducing cell differentiation and apoptosis via direct signal pathway. Interestingly, a high molecular weight JWA protein (JWAF) was identified only in de novo primary APL cells and it was also responsible for ATRA treatment. It raises questions of whether the JWAF is a novel APL specific marker and, how it was involved in the known mechanism of APL.

  12. Synergistic Apoptosis-Inducing Antileukemic Effects of Arsenic Trioxide and Mucuna macrocarpa Stem Extract in Human Leukemic Cells via a Reactive Oxygen Species-Dependent Mechanism

    OpenAIRE

    Kuan-Hung Lu; Hui-Ju Lee; Min-Li Huang; Shang-Chih Lai; Yu-Ling Ho; Yuan-Shiun Chang; Chin-Wen Chi

    2012-01-01

    The objective of this study was to examine the potential of enhancing the antileukemic activity of arsenic trioxide (ATO) by combining it with a folk remedy, crude methanolic extract of Mucuna macrocarpa (CMEMM). Human leukemia cells HL-60, Jurkat, and Molt-3 were treated with various doses of ATO, CMEMM, and combinations thereof for 24 and 48 h. Results indicated that the combination of 2.5  μ M ATO and 50  μ g/mL CMEMM synergistically inhibited cell proliferation in HL-60 and Jurkat cell li...

  13. The evolving use of arsenic in pharmacotherapy of malignant disease.

    Science.gov (United States)

    Kritharis, Athena; Bradley, Thomas P; Budman, Daniel R

    2013-06-01

    For more than 2,000 years, arsenic and its derivatives have shown medical utility. Owing to the toxicities and potential carcinogenicity of arsenicals, their popularity has fluctuated. The exact mechanism of action of therapeutic arsenic is not well characterized but likely to involve apoptosis, generation of reactive oxygen species, inhibition of intracellular transduction pathways, and cell functions. Arsenic trioxide has received approval for use in patients with relapsed acute promyelocytic leukemia for remission induction. Arsenic has additionally shown activity in a range of solid tumors, myelodysplastic syndrome, multiple myeloma, and in autoimmune diseases. The following is a review of the history of arsenic, its cellular metabolism, pharmacology, genetic basis of disposition, associated toxicities, and clinical efficacy. PMID:23494203

  14. Metal-induced apoptosis: mechanisms

    International Nuclear Information System (INIS)

    The past decade has seen an intense focus on mechanisms of apoptosis. Many important observations on the various signaling pathways mediating apoptotic cell death have been made and our understanding of the importance of apoptosis in both normal growth and development and pathophysiology has greatly increased. In addition, mechanisms of metal-induced toxicity continue to be of interest given the ubiquitous nature of these contaminants. The purpose of this review is to summarize our current understanding of the apoptotic pathways that are initiated by metals, mainly established (arsenic, cadmium, chromium, nickel, beryllium) and possible (lead, antimony, cobalt) human carcinogens. Increased understanding of metal-induced apoptosis is critical to illuminate mechanisms of metal-induced carcinogenesis, as well as the potential of metal species (arsenic) as chemotherapeutic agents

  15. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  16. Earth Abides Arsenic Biotransformations

    OpenAIRE

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  17. Cryptic exposure to arsenic

    OpenAIRE

    Rossy Kathleen; Janusz Christopher; Schwartz Robert

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving ne...

  18. Massive acute arsenic poisonings.

    Science.gov (United States)

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  19. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    International Nuclear Information System (INIS)

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl2 ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: ► Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. ► Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. ► Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca2+]i homeostasis. ► MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant potential or both.

  20. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India); Binukumar, B.K.; Gill, Kiran Dip [Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012 (India); Flora, Swaran J.S., E-mail: sjsflora@hotmail.com [Division of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior-474 002 (India)

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  1. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  2. Arsenic removal from water

    Science.gov (United States)

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  3. Role of mitochondria, ROS, and DNA damage in arsenic induced carcinogenesis.

    Science.gov (United States)

    Lee, Chih-Hung; Yu, Hsin-Su

    2016-01-01

    The International Agency for Research on Cancer (IARC) declared arsenic a class I carcinogen. Arsenic exposure induces several forms of human cancers, including cancers of skin, lung, liver, and urinary bladder. The majority of the arsenic-induced cancers occur in skin. Among these, the most common is Bowen's disease, characterized by epidermal hyperplasia, full layer epidermal dysplasia, leading to intraepidermal carcinoma as well as apoptosis, and moderate dermal infiltrates, which require the participation of mitochondria. The exact mechanism underlying arsenic induced carcinogenesis remains unclear, although increased reactive oxidative stresses, leading to chromosome abnormalities and uncontrolled growth, and aberrant immune regulations might be involved. Here, we highlight how increased mitochondrial biogenesis and oxidative stress lead to mitochondrial DNA damage and mutation in arsenic induced cancers. We also provide therapeutic rationale for targeting mitochondria in the treatment of arsenic induced cancers. PMID:27100709

  4. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  5. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  6. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    International Nuclear Information System (INIS)

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  7. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    OpenAIRE

    Harris, Robin B; Burgess, Jefferey L.; Maria Mercedes Meza-Montenegro; Luis Enrique Gutiérrez-Millán; Mary Kay O’Rourke; Jason Roberge

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and...

  8. Hydrogen-enriched water restoration of impaired calcium propagation by arsenic in primary keratinocytes

    Science.gov (United States)

    Yu, Wei-Tai; Chiu, Yi-Ching; Lee, Chih-Hung; Yoshioka, Tohru; Yu, Hsin-Su

    2013-11-01

    Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen's disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.

  9. Drinking Water Fact Sheet: Arsenic

    OpenAIRE

    Mesner, Nancy; Daniels, Barbara

    2010-01-01

    This fact sheet provides information about arsenic in drinking water. It includes sections about what arsenic is, where it comes from, health concerns from exposure, drinking water standards, how to know if there is arsenic in a water supply and how to reduce arsenic in drinking water.

  10. Arsenic in Food

    Science.gov (United States)

    ... Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share Tweet Linkedin Pin it More ... and previous or current use of arsenic-containing pesticides. Are there ... compounds in water, food, air, and soil: organic and inorganic (these together ...

  11. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    International Nuclear Information System (INIS)

    has also shown that the arsenic-transformed cells acquired apoptosis resistance. The inhibition of catalase to increase ROS level restored apoptosis capability of arsenic-transformed BEAS-2B cells, further showing that ROS levels are low in these cells. The apoptosis resistance due to the low ROS levels may increase cells proliferation, providing a favorable environment for tumorigenesis of arsenic-transformed cells

  12. Role of reactive oxygen species in arsenic-induced transformation of human lung bronchial epithelial (BEAS-2B) cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Pratheeshkumar, Poyil; Budhraja, Amit; Son, Young-Ok [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States); Shi, Xianglin [Center for Research on Environmental Diseases, University of Kentucky, Lexington, KY 40536 (United States)

    2015-01-09

    report. The present study has also shown that the arsenic-transformed cells acquired apoptosis resistance. The inhibition of catalase to increase ROS level restored apoptosis capability of arsenic-transformed BEAS-2B cells, further showing that ROS levels are low in these cells. The apoptosis resistance due to the low ROS levels may increase cells proliferation, providing a favorable environment for tumorigenesis of arsenic-transformed cells.

  13. Differential cytotoxic effects of arsenic compounds in human acute promyelocytic leukemia cells

    International Nuclear Information System (INIS)

    Arsenic trioxide, As2O3, has successfully been used to treat acute promyelocytic leukemia (APL). Induction of apoptosis in cancerous cells has been proposed to be the underlying mechanism for the therapeutic efficacy of arsenic. To further understand the cytotoxicity of arsenic compounds in APL cells, HL-60 cells were exposed to graded concentrations of the following arsenicals for up to 48 h: arsenic trioxide (AsIII), sodium arsenate (AsV), phenylarsine oxide (PAOIII), monomethylarsonous acid (MMAIII), monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), and the viability and modes of cell death assessed. The arsenic-exposed cells were stained with annexin V-PE and 7-aminoactinomycin D (7-AAD) and analyzed by flow cytometry in order to detect apoptotic and viable cells while cell morphology was visualized using scanning and transmission electron microscopy. Acridine orange staining and microtubule-associated protein 1 light chain 3 (MAP-LC3) detection were used to recognize autophagic cell death. The results showed that the compounds reduced viable HL-60 cells by inducing apoptosis in a concentration-dependent manner. None of the compounds tested caused a significant change in binding of acridine orange or redistribution of MAP-LC3. Potencies of the six different arsenic compounds tested were ranked as PAOIII > MMAIII ≥ AsIII > AsV > MMAV > DMAV. An increase in caspase-3 activity by PAOIII, MMAIII and DMAV implied that these compounds induced apoptosis in HL-60 cells through a caspase-dependent mechanism, but the other arsenic compounds failed to activate caspase-3, suggesting that they induce apoptosis by an alternative pathway.

  14. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  15. The effects of arsenic or the combination of arsenic and radiation exposure is enhanced through the overexpression of the GSTO family member p28

    International Nuclear Information System (INIS)

    Full text: p28 is a member of the GST omega superfamily and has dehydroascorbate reductase, GST, and glutaredoxin activities. Furthermore, p28 is the rate-limiting enzyme in the bio-transformation of arsenic. The monomethyl arsenous reducatase activity of p28 produces dimethylarseniate, the most toxic form of arsenic. We investigated how p28 modulated arsenic cellular sensitivity in two mammalian models: 1) in LY-ar and LY-as cells where p28 is over-expressed and not expressed, respectively; and 2) in stably transfected A549 cells where p28 is over-expressed via a CMV promoter. The LY-ar mouse lymphoma cell line is radio and chemo-resistant and apoptosis refractory, whereas the parental cell line, LY-as, is radiosensitive and apoptotically permissive. In addition, we studied the effect of arsenic as a radiosensitizer in both cell systems. In LY-ar cells arsenic induced a dose- and time- dependent increase in apoptosis, which is comparable to that seen in LY-as cells. Arsenic plus 2.5Gy radiation induced apoptosis in LY-ar cells, which was more than additive. Survival in LY-ar cells was reduced to that of LY-as cells as well as p28 overexpression induced G2/M arrest in A549 cells and the combination of radiation with arsenic decreased the clonogenic survival of both the A549 and A549-p28 cells but the effect is more pronounced in the A549-P28 cell line. A549 and A549-p28 cells did not show a differential response to Taxol, which induces G2/M arrest and cell death via an inhibition of tubulin depolarization. Arsenic modulated the level of reduced GSH in both cell systems in a dose- and time- dependent manner, which correlated with survival outcome. This study illustrated that arsenic acts as a radiosensitizer and p28 augmented the potential of arsenic in inducing apoptosis, G2/M arrest, and radiosensitization. Further studies are underway to examine the bio-chemical pathways involved in arsenic-mediated cell death and the role of p28 therein

  16. Arsenic Transformation Predisposes Human Skin Keratinocytes To UV-induced DNA Damage Yet Enhances Their Survival Apparently by Diminishing Oxidant Response

    OpenAIRE

    Sun, Yang(Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China); Kojima, Chikara; Chignell, Colin; Mason, Ronald; Waalkes, Michael P.

    2011-01-01

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark o...

  17. USEPA Arsenic Demonstration Program

    Science.gov (United States)

    The presentation provides background information on the USEPA arsenic removal program. The summary includes information on the history of the program, sites and technology selected, and a summary of the data collected from two completed projects.

  18. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    Institute of Scientific and Technical Information of China (English)

    HUANG Zechun; CHEN Tongbin; LEI Mei; HU Tiandou; HUANG Qifei

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  19. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R.

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  20. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  1. Arsenic: The Silent Killer

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Andrea (USGS)

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  2. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  3. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    Science.gov (United States)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  4. Arsenic Speciation of Terrestrial Invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ((Simon)); ((Royal))

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  5. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    Science.gov (United States)

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  6. IDENTIFICATION OF INTERSPECIES CONCORDANCE OF MECHANISMS OF ARSENIC-INDUCED BLADDER CANCER

    Science.gov (United States)

    Exposure to arsenic causes cancer by inducing a variety of responses that affect the expression of genes associated with numerous biological pathways leading to altered cell growth and proliferation, signaling, apoptosis and oxidative stress response. Affymetrix GeneChip® arrays ...

  7. The effect of arsenic trioxide on human hepatoma cell line BEL-7402 culturedin vitro

    Institute of Scientific and Technical Information of China (English)

    You Lin Yang; Hong Yu Xu; Yuan Yuan Gao; Qiao Li Wu; Guang Qiang Gao

    2000-01-01

    AIM To study the effect of a wide range of concentration of arsenic trioxide on human hepatoma cell lineBEL-7402 and its mechanism.METHODS The BEL-7402 cells were treated with arsenic trioxide (a final concentration of 0.5, 1 and2 μmol/L, respectively) in various durations or for 4 successive days. The cell growth and proliferation wereobserved by cell counting and cell-growth curve. Morphologic changes were studied under electronmicroscopy. Flow cytometry was used to assay cell-DNA distribution and the protein expression of Bcl-2 andBax was detected by immunocytochemical method.RESULTS The cell growth was significantly inhibited by the different concentrations of arsenic trioxide asrevealed by cell counting and cell-growth curve. Arsenic trioxide treatment at 0.5, 1 and 2 μmol/L, resultedin a sub-G1 cell peak. The decreased G0/G1 phase cell and the increased percentage of S phase cell were observed by flow cytometer, suggesting that the inhibiting effect of arsernic trioxide on BEL-7402 cell lay inG0/G1 phase cell. Apoptotis-related morphology, such as intact cell membrane, nucleic condensation,apoptotic body formation, can be seen under the electron microscopy. High protein expression level of Bcl-2and Bax was detected in 1 and 2 μmol/L arsenic trioxide-treated cells, but that of Bax was more significant.Arsenic trioxide treatment at 0.5 μmol/L resulted in higher expression level of Bcl-2 and lower expressionlevel of Bax compared with control (P1<0.01, P2<0.01).CONCLUSION Arsenic trioxide not only inhibited the proliferation but also induced apoptosis of humanhepatoma cell line BEL-7402. The induced-apoptosis effect of 1 and 2 μmol/L arsenic trioxide was relative tothe expression level of Bcl-2 and Bax.

  8. Rural methods to mitigate arsenic contaminated water

    OpenAIRE

    Parajuli, Krishna

    2013-01-01

    Consumption of arsenic contaminated water is one of the burning issues in the rural world. Poor public awareness program about health effects of drinking arsenic contaminated water and the rural methods to mitigate this problem poses a great threat of arsenic poisoning many people of the rural world. In this thesis, arsenic removal efficiency and the working mechanism of four rural and economical arsenic mitigation technologies i.e. solar oxidation and reduction of arsenic (SORAS), Bucket tr...

  9. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    OpenAIRE

    Liu, Jie; Zheng, Baoshan; Aposhian, H. Vasken; Zhou, Yunshu; Chen, Ming-liang; Zhang, Aihua; Waalkes, Michael P.

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooki...

  10. Transplacental Arsenic Carcinogenesis in Mice

    OpenAIRE

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from day 8 to 18 of gestation,...

  11. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  12. Arsenic speciation in edible mushrooms.

    Science.gov (United States)

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered. PMID:25417842

  13. Arsenic Is A Genotoxic Carcinogen

    Science.gov (United States)

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  14. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  15. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    OpenAIRE

    Linsheng Yang; Jianwei Gao; Jiangping Yu

    2011-01-01

    In contrast to arsenic (As) poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP) induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions), who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the ...

  16. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  17. Arsenic transformation predisposes human skin keratinocytes to UV-induced DNA damage yet enhances their survival apparently by diminishing oxidant response

    International Nuclear Information System (INIS)

    Inorganic arsenic and UV, both human skin carcinogens, may act together as skin co-carcinogens. We find human skin keratinocytes (HaCaT cells) are malignantly transformed by low-level arsenite (100 nM, 30 weeks; termed As-TM cells) and with transformation concurrently undergo full adaptation to arsenic toxicity involving reduced apoptosis and oxidative stress response to high arsenite concentrations. Oxidative DNA damage (ODD) is a possible mechanism in arsenic carcinogenesis and a hallmark of UV-induced skin cancer. In the current work, inorganic arsenite exposure (100 nM) did not induce ODD during the 30 weeks required for malignant transformation. Although acute UV-treatment (UVA, 25 J/cm2) increased ODD in passage-matched control cells, once transformed by arsenic to As-TM cells, acute UV actually further increased ODD (> 50%). Despite enhanced ODD, As-TM cells were resistant to UV-induced apoptosis. The response of apoptotic factors and oxidative stress genes was strongly mitigated in As-TM cells after UV exposure including increased Bcl2/Bax ratio and reduced Caspase-3, Nrf2, and Keap1 expression. Several Nrf2-related genes (HO-1, GCLs, SOD) showed diminished responses in As-TM cells after UV exposure consistent with reduced oxidant stress response. UV-exposed As-TM cells showed increased expression of cyclin D1 (proliferation gene) and decreased p16 (tumor suppressor). UV exposure enhanced the malignant phenotype of As-TM cells. Thus, the co-carcinogenicity between UV and arsenic in skin cancer might involve adaptation to chronic arsenic exposure generally mitigating the oxidative stress response, allowing apoptotic by-pass after UV and enhanced cell survival even in the face of increased UV-induced oxidative stress and increased ODD. - Highlights: → Arsenic transformation adapted to UV-induced apoptosis. → Arsenic transformation diminished oxidant response. → Arsenic transformation enhanced UV-induced DNA damage.

  18. Further evidence against a direct genotoxic mode of action for arsenic-induced cancer

    International Nuclear Information System (INIS)

    Arsenic in drinking water, a mixture of arsenite and arsenate, is associated with increased skin and other cancers in Asia and Latin America, but not the United States. Arsenite alone in drinking water does not cause skin cancers in experimental animals; therefore, it is not a complete carcinogen in skin. We recently showed that low concentrations of arsenite enhanced the tumorigenicity of solar UV irradiation in hairless mice, suggesting arsenic cocarcinogenesis with sunlight in skin cancer and perhaps with different carcinogenic partners for lung and bladder tumors. Cocarcinogenic mechanisms could include blocking DNA repair, stimulating angiogenesis, altering DNA methylation patterns, dysregulating cell cycle control, induction of aneuploidy and blocking apoptosis. Arsenicals are documented clastogens but not strong mutagens, with weak mutagenic activity reported at highly toxic concentrations of inorganic arsenic. Previously, we showed that arsenite, but not monomethylarsonous acid (MMA[III]), induced delayed mutagenesis in HOS cells. Here, we report new data on the mutagenicity of the trivalent methylated arsenic metabolites MMA(III) and dimethylarsinous acid [DMA(III)] at the gpt locus in Chinese hamster G12 cells. Both methylated arsenicals seemed mutagenic with apparent sublinear dose responses. However, significant mutagenesis occurred only at highly toxic concentrations of MMA(III). Most mutants induced by MMA(III) and DMA(III) exhibited transgene deletions. Some non-deletion mutants exhibited altered DNA methylation. A critical discussion of cell survival leads us to conclude that clastogenesis occurs primarily at highly cytotoxic arsenic concentrations, casting further doubt as to whether a genotoxic mode of action (MOA) for arsenicals is supportable

  19. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells

    International Nuclear Information System (INIS)

    Arsenic trioxide (As2O3) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As2O3 affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As2O3 to induce a complete remission in relapsed APL patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As2O3 exposure in leukemia cells.

  20. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    International Nuclear Information System (INIS)

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress

  1. Discovery of the Arsenic Isotopes

    OpenAIRE

    SHORE, A.; A. Fritsch; Heim, M.; Schuh, A.; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  3. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    Science.gov (United States)

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  4. Arsenic Toxicity in Male Reproduction and Development.

    Science.gov (United States)

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-12-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity. PMID:26973968

  5. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  6. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation

    International Nuclear Information System (INIS)

    In this study, a combination of sequential extraction and mineralogical investigation by X-ray diffraction and X-ray photoelectron spectroscopy was employed in order to evaluate arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from mining and smelting. Combination of these techniques indicated that iron oxides and the weathering products of sulfide minerals played an important role in regulating the arsenic retention in the soils. Higher bioaccessibility of arsenic was observed in the following order; i) arsenic bound to amorphous iron oxides (smelter-2), ii) arsenic associated with crystalline iron oxides and arsenic sulfide phase (smelter-1), and iii) arsenic associated with the weathering products of arsenic sulfide minerals, such as scorodite, orpiment, jarosite, and pyrite (mine). Even though the bioaccessibility of arsenic was very low in the mine soil, its environmental impact could be significant due to its high arsenic concentration and mobility. Highlights: • Combination of sequential extraction and mineralogical investigation was employed. • Arsenic was primarily associated with iron oxides and sulfide minerals in soils. • Bioaccessibility of arsenic was affected by arsenic solid-phase speciation. -- We investigated arsenic solid-state speciation in soils, which is crucial for risk assessment and developing suitable remediation strategies in arsenic contaminated sites

  7. ARSENIC TRIOXIDE DOWNREGULATES TELOMERASE ACTIVITY IN HL-60 CELLS

    Institute of Scientific and Technical Information of China (English)

    何冬梅; 张洹

    2002-01-01

    Objective: To evaluate whether arsenic trioxide (AS2O3) could downregulate human telomerase reverse transcriptase (hTERT) gene expression and telomerase activity during induction of apoptosis of HL-60 cells. Methods: Apoptosis was detected by morphological observation and flow cytomertric cell cycle analysis. The expression of hTERT at mRNA and protein levels was analyzed by reverse transcriptase polymerase chain reaction (RT-PCR) and immunofluorescence using fluoresce isothiocyanate (FITC) label, respectively. Telomerase activity was determined by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). Results: Treatment of 2 μmol/L at As2O3 could induce apoptosis of HL-60 cells. hTERT was decreased at both mRNA and protein levels during apoptosis of HL-60 cells. Telomerase activity of HL-60 cells was significantly inhibited. Conclusion:It is suggested that telomerase activity of HL-60 cells might be specifically inhibited by AS2O3 through the downregulation of hTERT gene expression.

  8. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  9. Arsenic Exposure and Toxicology: A Historical Perspective

    OpenAIRE

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states o...

  10. Arsenic in contaminated soil and river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, G. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Pierra, A. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Klemm, W. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany))

    1994-09-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As[sup 3+], As[sup 5+]) and the bonding types have been analyzed. (orig.)

  11. Arsenic in contaminated soil and river sediment

    International Nuclear Information System (INIS)

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As3+, As5+) and the bonding types have been analyzed. (orig.)

  12. 21 CFR 556.60 - Arsenic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  13. Arsenic removal from industrial effluent through electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, N. [Central Electrochemical Research Inst., Karaikudi (India). Dept. of Pollution Control; Madhavan, K. [Coimbatore Inst. of Technology, Coimbatore (India). Dept. of Chemistry

    2001-05-01

    In the present investigation, it is attempted to remove arsenic from smelter industrial wastewater through electro-coagulation. Experiments covering a wide range of operating conditions for removal of the arsenic present in the smelter wastewater are carried out in a batch electrochemical reactor. It has been observed from the present work that arsenic can be removed effectively through electrocoagulation. (orig.)

  14. Chloride sublimation of gold-arsenic concentrates

    International Nuclear Information System (INIS)

    Present article is devoted to chloride sublimation of gold-arsenic concentrates. The results of studies of chloride sublimation of gold-arsenic comprising concentrates of Chore deposit of Tajikistan are considered. It is found that by application sodium chloride for gold-arsenic comprising concentrates it is possible to extract gold and silver from flotation concentrates.

  15. Sphingosine in apoptosis signaling.

    Science.gov (United States)

    Cuvillier, Olivier

    2002-12-30

    The sphingolipid metabolites ceramide, sphingosine, and sphingosine 1-phosphate contribute to controlling cell proliferation and apoptosis. Ceramide and its catabolite sphingosine act as negative regulators of cell proliferation and promote apoptosis. Conversely, sphingosine 1-phosphate, formed by phosphorylation of sphingosine by a sphingosine kinase, has been involved in stimulating cell growth and inhibiting apoptosis. As the phosphorylation of sphingosine diminishes apoptosis, while dephosphorylation of sphingosine 1-phosphate potentiates it, the role of sphingosine as a messenger of apoptosis is of importance. Herein, the effects of sphingosine on diverse signaling pathways implicated in the apoptotic process are reviewed. PMID:12531549

  16. Arsenic – Poison or medicine?

    Directory of Open Access Journals (Sweden)

    Karolina Kulik-Kupka

    2016-04-01

    Full Text Available Arsenic (As is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. Med Pr 2016;67(1:89–96

  17. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    OpenAIRE

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations...

  18. Arsenic mobility in contaminated lake sediments

    International Nuclear Information System (INIS)

    An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates. - Arsenic accumulates at the ground water/lake interface, where it forms insoluble precipitates

  19. Neutron activation analysis of arsenic in Greece

    International Nuclear Information System (INIS)

    Arsenic is considered a toxic trace element for plant, animal, and human organisms. Arsenic and certain arsenic compounds have been listed as carcinogens by the U.S. Environmental Protection Agency. Arsenic is emitted in appreciable quantities into the atmosphere by coal combustion and the production of cement. Arsenic enters the aquatic environment through industrial activities such as smelting of metallic ores, metallurgical glassware, and ceramics as well as insecticide production and use. Neutron activation analysis (NAA) is a very sensitive, precise, and accurate method for determining arsenic. This paper is a review of research studies of arsenic in the Greek environment by NAA performed at our radioanalytical laboratory. The objectives of these studies were (a) to determine levels of arsenic concentrations in environmental materials, (b) to pinpoint arsenic pollution sources and estimate the extent of arsenic pollution, and (c) to find out whether edible marine organisms from the gulfs of Greece receiving domestic, industrial, and agricultural wastes have elevated concentrations of arsenic in their tissues that could render them dangerous for human consumption

  20. Removal processes for arsenic in constructed wetlands.

    Science.gov (United States)

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems. PMID:21549410

  1. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAsIII) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAsIII induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAsIII in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAsIII can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  2. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fayiga, Abioye O. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States) and Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)]. E-mail: lqma@ifas.ufl.edu; Zhou Qixing [Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-06-15

    This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200 mg kg{sup -1} Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8 weeks using NH{sub 4}Cl (water-soluble plus exchangeable, WE-As), NH{sub 4}F (Al-As), NaOH (Fe-As), and H{sub 2}SO{sub 4} (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8 weeks of plant growth, the Al-As and Fe-As fractions were significantly (p < 0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p = 0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic. - Arsenic taken up by P. vittata was from all fractions with most from the Ca-fraction.

  3. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  4. Apoptosis in the Retina

    OpenAIRE

    Crisanti, Patricia; Lecain, Eric; Omri, Boubaker

    2007-01-01

    Retinal degenerations are a common cause of blindness in Western countries. Despite various origins of retinal degeneration it is well recognised that. Apoptosis is the final pathway of photoreceptor neuron cell death in these diseases. So that Ivana Scovassi presents the historical development of our knowledge in: apoptosis, its difference with other forms of cell death as necrosis and analyses when and how apoptosis arises, discussing also the molecular markers in this form of cell death. T...

  5. Bimetallic nanoparticles for arsenic detection.

    Science.gov (United States)

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  6. Determination of arsenic compounds in earthworms

    Energy Technology Data Exchange (ETDEWEB)

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W. [Karl-Franzens-Univ., Graz (Austria). Inst. for Analytical Chemistry; Francesconi, K. [Odense Univ. (Denmark). Inst. of Biology

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  7. Variability in human metabolism of arsenic

    International Nuclear Information System (INIS)

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  8. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  9. Breast-feeding Protects against Arsenic Exposure in Bangladeshi Infants

    OpenAIRE

    Fängström, Britta; Moore, Sophie; Nermell, Barbro; Kuenstl, Linda; Goessler, Walter; Grandér, Margaretha; Kabir, Iqbal; Palm, Brita; Arifeen, Shams El; Vahter, Marie

    2008-01-01

    Background Chronic arsenic exposure causes a wide range of health effects, but little is known about critical windows of exposure. Arsenic readily crosses the placenta, but the few available data on postnatal exposure to arsenic via breast milk are not conclusive. Aim Our goal was to assess the arsenic exposure through breast milk in Bangladeshi infants, living in an area with high prevalence of arsenic-rich tube-well water. Methods We analyzed metabolites of inorganic arsenic in breast milk ...

  10. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    OpenAIRE

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-01-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001)...

  11. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    OpenAIRE

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; ISLAM, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2012-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from baseline to follow-up 4 to 6 months after the household received the intervention. This was assessed through a pre- and postintervention quiz concerning kn...

  12. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  13. Effect of water hyacinth root extract on arsenic level in different organs of arsenic-treated rat

    OpenAIRE

    Shaheen Lipika Quayum

    2007-01-01

    The present study investigated whether the administration of the ethanol extract of water hyacinth (Eichhornia crassipes) ameliorates arsenic from arsenic-treated rats. To induce arsenic accumulation in different organs, arsenic trioxide was administered orally by gavage at a dose of 500 µg/rat/day for 7 days. In search of an effective therapeutic agent to counteract arsenic accumulation and arsenic-induced oxidative stress, different concentrations of ethanol extract of root of water hyacint...

  14. Arsenic trioxide: impact on the growth and differentiation of cancer cells and possible use in cancer therapy

    Directory of Open Access Journals (Sweden)

    Ewelina Hoffman

    2013-08-01

    Full Text Available Arsenic trioxide (As2O3 has recently been identified as an effective drug in different types of cancer therapy. It is a useful pharmacological agent in acute promyelocytic leukemia (APL treatment, especially the form that is resistant to conventional chemotherapy with all-trans retinoic acid (ATRA. What is more, laboratory data suggest that As2O3 is also active when it comes to several solid tumor cell lines. However, the mechanism of action is not fully understood. As2O3 in high doses triggers apoptosis, while in lower concentrations it induces partial differentiation. The As2O3 mechanism of action involves effects on mitochondrial transmembrane potential which lead to apoptosis. It also acts on the activity of JNK kinase, glutathione, caspases, NF-ĸB nuclear factor or pro- and antiapoptotic proteins. This publication presents the current knowledge about the influence of arsenic trioxide in cancer cells.

  15. Current developments in toxicological research on arsenic

    OpenAIRE

    Bolt, Hermann M.

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwate...

  16. Dissolved Air Flotation of arsenic adsorbent particles

    OpenAIRE

    Santander, M.; Valderrama, L.

    2015-01-01

    The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF) and dissolved air flotation (DAF). A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808) as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with fl...

  17. Arsenic Toxicity in Male Reproduction and Development

    OpenAIRE

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-01-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic a...

  18. Acute arsenic poisoning in two siblings.

    Science.gov (United States)

    Lai, Melisa W; Boyer, Edward W; Kleinman, Monica E; Rodig, Nancy M; Ewald, Michele Burns

    2005-07-01

    We report a case series of acute arsenic poisoning of 2 siblings, a 4-month-old male infant and his 2-year-old sister. Each child ingested solubilized inorganic arsenic from an outdated pesticide that was misidentified as spring water. The 4-month-old child ingested a dose of arsenic that was lethal despite extraordinary attempts at arsenic removal, including chelation therapy, extracorporeal membrane oxygenation, exchange transfusion, and hemodialysis. The 2-year-old fared well with conventional therapy. PMID:15995066

  19. XAS Studies of Arsenic in the Environment

    International Nuclear Information System (INIS)

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples

  20. Arsenic in the soils of Zimapan, Mexico

    International Nuclear Information System (INIS)

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg-1. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg-1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  1. Arsenic trioxide down-regulates antiapoptotic genes and induces cell death in mycosis fungoides tumors in a mouse model

    OpenAIRE

    Tun-Kyi, A; Qin, J Z; Oberholzer, P A; Navarini, A A; Hassel, J C; Dummer, R.; Döbbeling, U

    2008-01-01

    BACKGROUND: Mycosis fungoides (MF) is the most frequent cutaneous T-cell lymphoma (CTCL). Arsenic trioxide (As(2)O(3)) has recently been shown to be effective against leukemias, so we studied whether As(2)O(3) induces apoptosis of CTCL cells in vitro. We further investigated if As(2)O(3) is effective in a MF mouse model. MATERIAL AND METHODS: Annexin V/7-amino-actinomycin-D stainings were carried out to investigate if As(2)O(3) induced apoptosis of CTCL cell lines. To study the underlying mec...

  2. Inhibitor of apoptosis proteins and apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yunbo Wei; Tingjun Fan; Miaomiao Yu

    2008-01-01

    Apoptosis is a physiological cell death process that plays a critical role in development, homeostasis, and immune defense of multicellular animals. Inhibitor of apoptosis proteins (IAPs) constitute a family of proteins that possess between one and three baculovirus IAP repeats. Some of them also have a really interesting new gene finger domain, and can prevent cell death by binding and inhibiting active caspases, but are regulated by IAP antagonists. Some evidence also indicates that IAP can modulate the cell cycle and signal transduction. The three main factors, IAPs, IAP antagonists, and caspases, are involved in regulating the progress of apoptosis in many species. Many studies and assumptions have been focused on the anfractuous interactions between these three main factors to explore their real functional model in order to develop potential anticancer drugs.In this review, we describe the classification, molecular structures, and properties of IAPs and discuss the mechanisms of apoptosis. We also discuss the promising significance of clinical applications of IAPs in the diagnosis and treatment of malignancy.

  3. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway

    International Nuclear Information System (INIS)

    Cardiac dysfunction is a major cause of morbidity and mortality worldwide due to its complex pathogenesis. However, little is known about the mechanism of arsenic-induced cardiac abnormalities and the use of antioxidants as the possible protective agents in this pathophysiology. Conditionally essential amino acid, taurine, accounts for 25% to 50% of the amino acid pool in myocardium and possesses antioxidant properties. The present study has, therefore, been carried out to investigate the underlying mechanism of the beneficial role of taurine in arsenic-induced cardiac oxidative damage and cell death. Arsenic reduced cardiomyocyte viability, increased reactive oxygen species (ROS) production and intracellular calcium overload, and induced apoptotic cell death by mitochondrial dependent caspase-3 activation and poly-ADP ribose polymerase (PARP) cleavage. These changes due to arsenic exposure were found to be associated with increased IKK and NF-κB (p65) phosphorylation. Pre-exposure of myocytes to an IKK inhibitor (PS-1145) prevented As-induced caspase-3 and PARP cleavage. Arsenic also markedly increased the activity of p38 and JNK MAPKs, but not ERK to that extent. Pre-treatment with SP600125 (JNK inhibitor) and SB203580 (p38 MAPK inhibitor) attenuated NF-κB and IKK phosphorylation indicating that p38 and JNK MAPKs are mainly involved in arsenic-induced NF-κB activation. Taurine treatment suppressed these apoptotic actions, suggesting that its protective role in arsenic-induced cardiomyocyte apoptosis is mediated by attenuation of p38 and JNK MAPK signaling pathways. Similarly, arsenic intoxication altered a number of biomarkers related to cardiac oxidative stress and other apoptotic indices in vivo and taurine supplementation could reduce it. Results suggest that taurine prevented arsenic-induced myocardial pathophysiology, attenuated NF-κB activation via IKK, p38 and JNK MAPK signaling pathways and could possibly provide a protection against As

  4. Caspases: An apoptosis mediator

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Palai

    2015-03-01

    Full Text Available The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy - dependent biochemical mechanisms. Apoptosis is a widely conserved phenomenon helping many processes, including normal cell turnover, proper development and functioning of the immune system, hormone dependent atrophy etc. Inappropriate apoptosis (either low level or high level leads to many developmental abnormalities like, neurodegenerative diseases, ischemic damage, autoimmune disorders and many types of cancer. To use cells for therapeutic purposes through generating cell lines, it is critical to study the cell cycle machinery and signalling pathways that controls cell death and apoptosis. Apoptotic pathways provide a fundamental protective mechanism that decreases cellular sensitivity to damaging events and allow proper developmental process in multi-cellular organisms. Major mediator of apoptosis is a family of proteins known as caspases. There are mainly fourteen types of caspases but out of them only ten caspasese have got essential role in controlling the process of apoptosis. These ten caspases have been categorized into either initiator caspases (caspase 2, 8, 9, 10 or executioner caspases (caspase 3, 6, 7. Although various types of caspases have been identified so far, the exact mechanisms of action of these groups of proteins is still to be fully understood. The aim of this review is to provide a detail overview of role of different caspases in regulating the process of apoptosis.

  5. Transcriptional changes associated with reduced spontaneous liver tumor incidence in mice chronically exposed to high dose arsenic

    International Nuclear Information System (INIS)

    Exposure of male C3H mice in utero (from gestational days 8-18) to 85 ppm sodium arsenite via the dams' drinking water has previously been shown to increase liver tumor incidence by 2 years of age. However, in our companion study (Ahlborn et al., 2009), continuous exposure to 85 ppm sodium arsenic (from gestational day 8 to postnatal day 365) did not result in increased tumor incidence, but rather in a significant reduction (0% tumor incidence). The purpose of the present study was to examine the gene expression responses that may lead to the apparent protective effect of continuous arsenic exposure. Genes in many functional categories including cellular growth and proliferation, gene expression, cell death, oxidative stress, protein ubiquitination, and mitochondrial dysfunction were altered by continuous arsenic treatment. Many of these genes are known to be involved in liver cancer. One such gene associated with rodent hepatocarcinogenesis, Scd1, encodes stearoyl-CoA desaturase and was down-regulated by continuous arsenic treatment. An overlap between the genes in our study affected by continuous arsenic exposure and those from the literature affected by long-term caloric restriction suggests that reduction in the spontaneous tumor incidence under both conditions may involve similar gene pathways such as fatty acid metabolism, apoptosis, and stress response.

  6. Infrared spectrum of arsenic pentafluoride

    International Nuclear Information System (INIS)

    After a literature review about arsenic fluorides, we give several methods of obtaining very pure AsF5 in order to ascertain the right spectrum of this compound. Our spectra fit well with Akers's observations, and we note that AsF5 structure can be explained in terms of C3v molecular symmetry, with the As-F bond stretching lying at 786 cm-1 and 811 cm-1. (author)

  7. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  8. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  9. Trace elements and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Koudrine, A.V. [Orenburg State Medical Academy, Orenburg (Russian Federation)

    1998-07-01

    It is known that apoptosis is considered to be responsible for selective deletion of cells during embryogenesis, the homeostasis of cell populations in continuously renewing tissues (i.e., serving as a counterbalance to mitosis), and tissue involution in response to chemical or physical stimuli. There are many publications on these questions. On the other hand, the intracellular processes that contribute to apoptosis are incompletely understood. Therefore, the role of apoptosis in the intracellular accumulation and outflow of minerals is of considerable importance in light of both their essential functions and toxic effects. (orig.)

  10. DNA fragmentation in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cleavage of chromosomal DNA into oligonucleosomal size fragments is an integral part of apoptosis. Elegant biochemical work identified the DNA fragmentation factor (DFF) as a major apoptotic endonuclease for DNA fragmentation in vitro. Genetic studies in mice support the importance of DFF in DNA fragmentation and possibly in apoptosis in vivo. Recent work also suggests the existence of additional endonucleases for DNA degradation. Understanding the roles of individual endonucleases in apoptosis, and how they might coordinate to degrade DNA in different tissues during normal development and homeostasis, as well as in various diseased states, will be a major research focus in the near future.

  11. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  12. Arsenic Adsorption Onto Iron Oxides Minerals

    Science.gov (United States)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  13. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  14. Impaired arsenic metabolism in children during weaning

    International Nuclear Information System (INIS)

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 μg/L, range 2.4-940 μg/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  15. ARSENIC REMOVAL AND ECOLOGICALLY SAFE CONTAINMENT OF ARSENIC-WASTE: A SUSTAINABLE SOLUTION FOR ARSENIC CRISIS IN CAMBODIA

    Science.gov (United States)

    An appalling degree of arsenic contamination in groundwater has affected more than a million people in wide region of Mekong delta flood plain in Cambodia. Arsenic is by far the most toxic species of all naturally occurring groundwater contaminants and disposal of removed arse...

  16. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  17. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem

    2013-01-01

    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  18. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  19. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  20. The Chemistry and Metabolism of Arsenic

    Science.gov (United States)

    I. IntrodctionA century of study of the process by which many organisms convert inorganic arsenic into an array of methylated metabolites has answered many questions and has posed some new ones. The capacity of microorganisms to. form volatile arsenic compounds was first recogniz...

  1. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Science.gov (United States)

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  2. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed. PMID:26476885

  3. Arsenic Consumption in the United States.

    Science.gov (United States)

    Wilson, Denise

    2015-10-01

    Exposure limits for arsenic in drinking water and minimal risk levels (MRLs) for total dietary exposure to arsenic have long been established in the U.S. Multiple studies conducted over the last five years have detected arsenic in foods and beverages including juice, rice, milk, broth (beef and chicken), and others. Understanding whether or not each of these foods or drinks is a concern to certain groups of individuals requires examining which types of and how much arsenic is ingested. In this article, recent studies are reviewed and placed in the context of consumption patterns. When single sources of food or drink are considered in isolation, heavy rice eaters can be exposed to the most arsenic among adults while infants consuming formula containing contaminated organic brown rice syrup are the most exposed group among children. Most food and drink do not contain sufficient arsenic to exceed MRLs. For individuals consuming more than one source of contaminated water or food, however, adverse health effects are more likely. In total, recent studies on arsenic contamination in food and beverages emphasize the need for individual consumers to understand and manage their total dietary exposure to arsenic. PMID:26591332

  4. Dental apoptosis: caspases behind

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Fleischmannová, Jana; Míšek, Ivan; Sharpe, P. T.; Tucker, A. S.

    Ljubljana: ECDO, 2007, s. 26-26. [Euroconference on Apoptosis /15./ and Training Course on Concepts and Methods in Programmed Cell Death /4./. Portorož (SI), 26.10.2007-31.10.2007] R&D Projects: GA MŠk OC B23.001; GA AV ČR KJB500450503 Institutional research plan: CEZ:AV0Z50450515 Keywords : dental apoptosis Subject RIV: FF - HEENT, Dentistry

  5. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  6. Methylation of inorganic arsenic by murine fetal tissue explants.

    Science.gov (United States)

    Broka, Derrick; Ditzel, Eric; Quach, Stephanie; Camenisch, Todd D

    2016-07-01

    Although it is generally believed that the developing fetus is principally exposed to inorganic arsenic and the methylated metabolites from the maternal metabolism of arsenic, little is known about whether the developing embryo can autonomously metabolize arsenic. This study investigates inorganic arsenic methylation by murine embryonic organ cultures of the heart, lung, and liver. mRNA for AS3mt, the gene responsible for methylation of arsenic, was detected in all embryonic tissue types studied. In addition, methylated arsenic metabolites were generated by all three tissue types. The fetal liver explants yielded the most methylated arsenic metabolites (∼7% of total arsenic/48 h incubation) while the heart, and lung preparations produced slightly greater than 2% methylated metabolites. With all tissues the methylation proceeded mostly to the dimethylated arsenic species. This has profound implications for understanding arsenic-induced fetal toxicity, particularly if the methylated metabolites are produced autonomously by embryonic tissues. PMID:26446802

  7. Elucidating the pathway for arsenic methylation

    International Nuclear Information System (INIS)

    Although biomethylation of arsenic has been studied for more than a century, unequivocal demonstration of the methylation of inorganic arsenic by humans occurred only about 30 years ago. Because methylation of inorganic arsenic activates it to more reactive and toxic forms, elucidating the pathway for the methylation of this metalloid is a topic of considerable importance. Understanding arsenic metabolism is of public health concern as millions of people chronically consume drinking water that contains high concentrations of inorganic arsenic. Hence, the focus of our research has been to elucidate the molecular basis of the steps in the pathway that leads from inorganic arsenic to methylated and dimethylated arsenicals. Here we describe a new S-adenosylmethionine (AdoMet)-dependent methyltransferase from rat liver cytosol that catalyzes the conversion of arsenite to methylated and dimethylated species. This 42-kDa protein has sequence motifs common to many non-nucleic acid methyltransferases and is closely related to methyltransferases of previously unknown function that have been identified by conceptual translations of cyt19 genes of mouse and human genomes. Hence, we designate rat liver arsenic methyltransferase as cyt19 and suggest that orthologous cyt19 genes encode an arsenic methyltransferase in the mouse and human genomes. Our studies with recombinant rat cyt19 find that, in the presence of an exogenous or a physiological reductant, this protein can catalyze the entire sequence of reactions that convert arsenite to methylated metabolites. A scheme linking cyt19 and thioredoxin-thioredoxin reductase in the methylation and reduction of arsenicals is proposed

  8. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  9. Arsenic Geochemistry in Source Waters of the Los Angeles Aqueduct

    OpenAIRE

    Hering, Janet G; Wilkie, Jennifer A; Chiu, Van Q

    1997-01-01

    Arsenic is a widely distributed constituent of geologic materials, with an average crustal abundance of 1.8 ppm. The natural processes of weathering of arsenic-containing minerals and volcanism contribute arsenic to groundwaters, surface freshwaters, and seawater. Recently, increased attention has focused on arsenic geochemistry in natural waters. This attention has been motivated by concern over the human health effects of arsenic exposure; consumption of drinking water can be a significant,...

  10. A review on environmental factors regulating arsenic methylation in humans

    International Nuclear Information System (INIS)

    Subjects exposed to arsenic show significant inter-individual variation in urinary patterns of arsenic metabolites but insignificant day-to-day intra-individual variation. The inter-individual variation in arsenic methylation can be partly responsible for the variation in susceptibility to arsenic toxicity. Wide inter-ethnic variation and family correlation in urinary arsenic profile suggest a genetic effect on arsenic metabolism. In this paper the environmental factors affecting arsenic metabolism are reviewed. Methylation capacity might reduce with increasing dosage of arsenic exposure. Furthermore, women, especially at pregnancy, have better methylation capacity than their men counterparts, probably due to the effect of estrogen. Children might have better methylation capacity than adults and age shows inconsistent relevance in adults. Smoking and alcohol consumption might be associated with a poorer methylation capacity. Nutritional status is important in the methylation capacity and folate may facilitate the methylation and excretion of arsenic. Besides, general health conditions and medications might influence the arsenic methylation capacity; and technical problems can cause biased estimates. The consumption of seafood, seaweed, rice and other food with high arsenic contents and the extent of cooking and arsenic-containing water used in food preparation may also interfere with the presentation of the urinary arsenic profile. Future studies are necessary to clarify the effects of the various arsenic metabolites including the trivalent methylated forms on the development of arsenic-induced human diseases with the consideration of the effects of confounding factors and the interactions with other effect modifiers

  11. Dithiothreitol abrogates the effect of arsenic trioxide on normal rat liver mitochondria and human hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Arsenic trioxide (ATO) is a known environmental toxicant and a potent chemotherapeutic agent. Significant correlation has been reported between consumption of arsenic-contaminated water and occurrence of liver cancer; moreover, ATO-treated leukemia patients also suffers from liver toxicity. Hence, modulation of ATO action may help to prevent populations suffering from arsenic toxicity as well as help reduce the drug-related side effects. Dithiothreitol (DTT) is a well-known dithiol agent reported to modulate the action of ATO. Controversial reports exist regarding the effect of DTT on ATO-induced apoptosis in leukemia cells. To the best of our knowledge, no report illustrates the modulatory effect of DTT on ATO-induced liver toxicity, the prime target for arsenic. Mitochondria serve as the doorway to apoptosis and have been implicated in ATO-induced cell death. Hence, we attempted to study the modulatory effect of DTT on ATO-induced dysfunction of mammalian liver mitochondria and human hepatocellular carcinoma cell line (Hep3B). We, for the first time, report that ATO produces complex I-mediated electron transfer inhibition, reactive oxygen species (ROS) generation, respiration inhibition, and ATO-induced ROS-mediated mitochondrial permeability transition (MPT) opening. DTT at low concentration (100 μM and less) prevents the effect of ATO-induced complex I-malfunctions. DTT protects mitochondria from ATO-mediated opening of MPT and membrane potential depolarization. DTT also prevented ATO-induced Hep3B cell death. Thus, at low concentrations DTT abrogates the effect of ATO on rat liver mitochondria and Hep3B cell line. Therefore, the present result suggests, that use of low concentration of dithiols as food supplement may prevent arsenic toxicity in affected population

  12. A broad view of arsenic.

    Science.gov (United States)

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  13. ARSENIC SPECIATION IN CARROT EXTRACTS WITH AN EMPHASIS ON THE DETECTION OF MMA(III) AND MMTA

    Science.gov (United States)

    The two predominant routes of arsenic exposure are dietary ingestion and drinking water consumption. Dietary arsenic, unlike drinking water arsenic, contains a variety of arsenicals with dramatically different toxicities. The list of arsenicals detected in dietary samples conti...

  14. Arsenic contamination and arsenicosis in China

    International Nuclear Information System (INIS)

    Arsenicosis is a serious environmental chemical disease in China mainly caused by drinking water from pump wells contaminated by high levels of arsenic. Chronic exposure of humans to high concentrations of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and high risk of cancers. Lead by the Ministry of Health of China, we carried out a research about arsenicosis in China recently. Areas contaminated with arsenic from drinking water are determined by 10% pump well water sample method while areas from burning coal are determined by existing data. Two epidemic areas of Shanxi Province and Inner Mongolia are investigated for the distribution of pump wells containing high arsenic. Well water in all the investigated villages of Shanxi Province showed polluted by high arsenic, and the average rate of unsafe pump well water is 52%. In Inner Mongolia, the high percentage of pump wells containing elevated arsenic is found only in a few villages. The average rate of unsafe pump well water is 11%. From our research, we find that new endemic areas are continuously emerging in China. Up to now, epidemic areas of arsenicosis mainly involve eight provinces and 37 counties in China. In the affected areas, the discovery of wells and coal with high levels of arsenic is continuing sporadically, and a similar scattered distribution pattern of patients is also being observed

  15. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant. PMID:27363151

  16. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  17. Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China

    OpenAIRE

    Li, Dasheng; An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P.

    2006-01-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnos...

  18. Environmental arsenic exposure and sputum metalloproteinase concentrations.

    OpenAIRE

    Josyula, Arun B.; Poplin, Gerald S.; Kurzius-Spencer, Margaret; McClellen, Hannah E.; Kopplin, Michael J.; Stürup, Stefan; Clark Lantz, R.; Jefferey L. Burgess

    2006-01-01

    Biomarkers of exposure & early effects: field studiesBiomarker: arsenic, creatinin, MMP levelsExposure/effect represented: arsenicStudy design: cross-sectionalStudy size: 73 subjectsAnalytical technique: ELISA, HPLCTissue/biological material/sample size: urine samplesRelationship with exposure or effect of interest (including dose-response): inorganic arsenic positively correlated with logMMP-9/TIMP-1 ratio in sputum (Pearson's r Ό 0:351, P Ό 0:009) and negatively correlated with the log of s...

  19. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  20. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water

  1. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri;

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, strict...... regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. While rice protein based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content...

  2. Arsenic(III) Immobilization on Rice Husk

    OpenAIRE

    Malay Chaudhuri; Mohammed Ali Mohammed

    2013-01-01

    A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III)] and pentavalent arsenate [As(V)]. As(III) is more toxic and more difficult to remove from water by adsorption on activated alumina. In this stud...

  3. [Advance on oxidative stress mechanism of arsenic toxicology].

    Science.gov (United States)

    Li, Zhen; An, Yan

    2009-09-01

    Inorganic arsenic is one of proven human carcinogens, which there are so far no sound laboratory-based evidences and there are very few reports in the literature regarding arsenic carcinogenic effects in in vivo animal experiment. Because of this lack of adequate evidences, the mechanism for understanding arsenic toxicology remains vague. Recently, many modes of action for arsenic carcinogenesis have been proposed, oxidative stress is one of the stronger theories of arsenic action modes which have a substantial mass of supporting data. Further more, many researchers have pointed out that induction of oxidative stress by methylated metabolites of inorganic arsenics plays an important role in the toxicity and carcinogenicity of arsenics. The role of oxidative stress induced by arsenic in arsenic toxicology was reviewed. PMID:19877531

  4. Global Atmospheric Transport and Source-Receptor Relationships for Arsenic.

    Science.gov (United States)

    Wai, Ka-Ming; Wu, Shiliang; Li, Xueling; Jaffe, Daniel A; Perry, Kevin D

    2016-04-01

    Arsenic and many of its compounds are toxic pollutants in the global environment. They can be transported long distances in the atmosphere before depositing to the surface, but the global source-receptor relationships between various regions have not yet been assessed. We develop the first global model for atmospheric arsenic to better understand and quantify its intercontinental transport. Our model reproduces the observed arsenic concentrations in surface air over various sites around the world. Arsenic emissions from Asia and South America are found to be the dominant sources for atmospheric arsenic in the Northern and Southern Hemispheres, respectively. Asian emissions are found to contribute 39% and 38% of the total arsenic deposition over the Arctic and Northern America, respectively. Another 14% of the arsenic deposition to the Arctic region is attributed to European emissions. Our results indicate that the reduction of anthropogenic arsenic emissions in Asia and South America can significantly reduce arsenic pollution not only locally but also globally. PMID:26906891

  5. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  6. Apoptosis: una muerte silenciosa

    OpenAIRE

    Isis Casadelvalle Pérez

    2006-01-01

    La apoptosis o muerte celular programada es un tipo de muerte presente en todas las células eucarióticas. Es un proceso ordenado y esencial del desarrollo normal y de mantenimiento de la homeostasis de un organismo. En el presente trabajo se resumen las principales características fisiológicas, bioquímicas y moleculares de la muerte por apoptosis, evento que ocurre de forma apagada o silenciosa, o sea, sin daño celular aparente diferenciándose claramente del proceso de necrosis celular. En es...

  7. [Sphingolipid and apoptosis].

    Science.gov (United States)

    Wang, Jing; Hu, Xiao-Song; Shi, Jie-Ping

    2003-07-01

    Over the last decade, considerable progress has been made in the study of sphingolipids with the development of biological techniques. Sphingolipids play important roles in diverse physiological process, including cytoskeleton migration, angiogenesis, embryonic development and signal transduction. Except for this, the lastest evidence has suggested that sphingolipids and their metabolite (ceramide, sphingosine, sphingosine 1-phosphate) can induce apoptosis in a wide variety of tumor cell lines such as LoVo HT29, Bel7402, A549, CNE2 cells. This paper is attempted to review the recent advances of investigation into the relationship between sphingolipids and apoptosis. PMID:14628466

  8. Arsenic, mode of action at biologically plausible low doses: What are the implications for low dose cancer risk?

    International Nuclear Information System (INIS)

    Arsenic is an established human carcinogen. However, there has been much controversy about the shape of the arsenic response curve, particularly at low doses. This controversy has been exacerbated by the fact that the mechanism(s) of arsenic carcinogenesis are still unclear and because there are few satisfactory animal models for arsenic-induced carcinogenesis. Recent epidemiological studies have shown that the relative risk for cancer among populations exposed to ≤60 ppb As in their drinking water is often lower than the risk for the unexposed control population. We have found that treatment of human keratinocyte and fibroblast cells with 0.1 to 1 μM arsenite (AsIII) also produces a low dose protective effect against oxidative stress and DNA damage. This response includes increased transcription, protein levels and enzyme activity of several base excision repair genes, including DNA polymerase β and DNA ligase I. At higher concentrations (> 10 μM), As induces down-regulation of DNA repair, oxidative DNA damage and apoptosis. This low dose adaptive (protective) response by a toxic agent is known as hormesis and is characteristic of many agents that induce oxidative stress. A mechanistic model for arsenic carcinogenesis based on these data would predict that the low dose risk for carcinogenesis should be sub-linear. The threshold dose where toxicity outweighs protection is hard to predict based on in vitro dose response data, but might be estimated if one could determine the form (metabolite) and concentration of arsenic responsible for changes in gene regulation in the target tissues

  9. Manufacture of high purity low arsenic anhydrous hydrogen fluoride

    International Nuclear Information System (INIS)

    A process for manufacturing anhydrous hydrogen fluoride with reduced levels of arsenic impurity from arsenic contaminated anhydrous hydrogen fluoride is described which comprises: (a) contacting the anhydrous hydrogen fluoride with an effective amount of hydrogen peroxide to oxidize the arsenic impurity in the presence of a catalyst which comprises a catalytic amount of (i) molybdenum or an inorganic molybdenum compound and (ii) a phosphate compound, at a temperature and for a period of time sufficient to oxidize volatile trivalent arsenic impurities in the anhydrous hydrogen fluoride to non-volatile pentavalent arsenic compounds, and (b) distilling the resulting mixture and recovering anhydrous hydrogen fluoride with reduced levels of arsenic impurity

  10. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Science.gov (United States)

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  11. Arsenic stress after the Proterozoic glaciations

    Science.gov (United States)

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  12. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    Science.gov (United States)

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  13. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    Science.gov (United States)

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  14. ARSENIC REMOVAL BY SOFTENING AND COAGULATION

    Science.gov (United States)

    Drinking water regulations for arsenic (As) and disinfection by-product precursor materials (measured as TOC) are becoming increasingly stringent. Among the modifications to conventional treatment that can improve removal of As and TOC, precipitative softening and coagulation are...

  15. Speciation of arsenic in water samples

    International Nuclear Information System (INIS)

    Two methods are presented in this report for the determination of inorganic species of arsenic. For both methods, the parameters influencing the separations have been investigated using radiotracers. Following optimization of the methods; the applicability was tested by determining As(III) and As(V) in real water samples. The detection limit of these arsenic species in both fresh and sea water was about 0.02 μg/L. (author). 2 refs, 3 figs, 3 tabs

  16. Arsenic Induced Decreases in the Vascular Matrix

    OpenAIRE

    Hays, Allison M.; Lantz, R. Clark; Rodgers, Laurel S.; Sollome, James J.; Vaillancourt, Richard R.; Andrew, Angeline S; Hamilton, Joshua W.; Camenisch, Todd D.

    2008-01-01

    Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expres...

  17. Arsenic biotransformation and volatilization in transgenic rice

    OpenAIRE

    Meng, Xiang-yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P.; Zhu, Yong-Guan

    2011-01-01

    Biotransformation of arsenic includes oxidation, reduction, methylation and conversion to more complex organic arsenicals. Members of the class of arsenite [As(III)] S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di- and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants.Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica r...

  18. Arsenic: Not So Evil After All?

    Science.gov (United States)

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  19. Arsenic accumulation in some higher fungi

    OpenAIRE

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to have an affinity for the toxic element. The arsenic concentrations in the principal edible mushrooms of commerce were found to be very low, i.e. on the average 0.5 mg/kg on dry matter. Among the asc...

  20. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  1. ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation.

    Science.gov (United States)

    Dassouki, Zeina; Sahin, Umut; El Hajj, Hiba; Jollivet, Florence; Kfoury, Youmna; Lallemand-Breitenbach, Valérie; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali

    2015-01-15

    The human T-cell lymphotropic virus type I (HTLV-1) Tax transactivator initiates transformation in adult T-cell leukemia/lymphoma (ATL), a highly aggressive chemotherapy-resistant malignancy. The arsenic/interferon combination, which triggers degradation of the Tax oncoprotein, selectively induces apoptosis of ATL cell lines and has significant clinical activity in Tax-driven murine ATL or human patients. However, the role of Tax loss in ATL response is disputed, and the molecular mechanisms driving degradation remain elusive. Here we demonstrate that ATL-derived or HTLV-1-transformed cells are dependent on continuous Tax expression, suggesting that Tax degradation underlies clinical responses to the arsenic/interferon combination. The latter enforces promyelocytic leukemia protein (PML) nuclear body (NB) formation and partner protein recruitment. In arsenic/interferon-treated HTLV-1 transformed or ATL cells, Tax is recruited onto NBs and undergoes PML-dependent hyper-sumoylation by small ubiquitin-like modifier (SUMO)2/3 but not SUMO1, ubiquitination by RNF4, and proteasome-dependent degradation. Thus, the arsenic/interferon combination clears ATL through degradation of its Tax driver, and this regimen could have broader therapeutic value by promoting degradation of other pathogenic sumoylated proteins. PMID:25395419

  2. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  3. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  4. Determination of leachable arsenic from glass ampoules

    International Nuclear Information System (INIS)

    Appreciable amounts of different arsenic compounds are used in the manufacture of glass and glass ampoules (injection vials and bottles) used to store drugs. Exposure/intake of arsenic to human beings may result in skin ulceration, injury to mucous membranes, perforation of nasal septum, skin cancer and keratoses, especially of the palms and soles and may cause detrimental effects. Considering the toxicity of arsenic, even if traces of arsenic from such glass containers/ampoules are leached out, it can impart damage to human beings. To check the possibility of leaching of arsenic from glass ampoules, a simple methodology has been developed. Different makes and varieties of glass ampoules filled with de-ionized water were subjected to high pressure and temperature leaching for varying amount of time using autoclave to create extreme conditions for the maximum leaching out of the analyte. Subsequently, the determination of the arsenic contents in leached water using neutron activation analysis is reported in detail with observations. (author)

  5. Arsenic, reactive oxygen, and endothelial dysfunction.

    Science.gov (United States)

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  6. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  7. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    Science.gov (United States)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  8. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this hypothesis by using radioactive 73As labeled arsenite and vacuum filtration methodology to determine the binding affinity and capacity of 73As arsenite to calf thymus DNA and Type 2A unfractionated histones, histone H3, H4 and horse spleen ferritin. Arsenicals are known to release redox active Fe from ferritin. At concentrations up to about 1 mM, neither DNA nor any of the three proteins studied, Type II-A histones, histone H3, H4 or ferritin, bound radioactive arsenite in a specific manner. Therefore, it appears highly unlikely that initial in situ binding of trivalent arsenicals, followed by in situ oxidative DNA damage, can account for arsenic's carcinogenicity. This experimental evidence (lack of arsenite binding to DNA, histone Type II-A and histone H3, H4) does not rule out other possible oxidative stress modes of action for arsenic such as (a) diffusion of longer lived oxidative stress molecules, such as H2O2 into the nucleus and ensuing oxidative damage, (b) redox chemistry by unbound arsenicals in the nucleus, or (c) arsenical-induced perturbations in Fe, Cu or other metals which are already known to oxidize DNA in vitro and in vivo

  9. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    Science.gov (United States)

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC. L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4. 1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  10. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic

    International Nuclear Information System (INIS)

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic. - Highlights: ► Arsenic speciation was extracted using 1% HNO3 in microwave. ► Inorganic arsenic was the predominant species in all of CHMs samples. ► The highest concentration of inorganic arsenic was found in the Chrysanthemum. - Inorganic arsenic was the predominant species in all of CHMs samples.

  11. Soil arsenic in Armadale, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.H.; Lloyd, O.L.; Hubbard, F.H.

    1986-03-01

    As part of an investigation into the high mortality from lung cancer and the high sex ratios of births in Armadale, central Scotland, concentrations of arsenic were measured in soil cores from 48 sites in Armadale and 6 sites in a comparison town. Concentrations in Armadale were substantially higher than those in the comparison town, and many of the highest range of values were in that part of the town where the epidemiological abnormalities of lung cancer and of birth sex ratios were most pronounced. The study indicated that clues to the etiology of high rates of disease in small areas could be sought most profitably if close links were maintained between epidemiological and environmental investigations.

  12. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China

    International Nuclear Information System (INIS)

    With the aim of better understanding the distribution of arsenic, 144 coal samples were collected from southwestern Guizhou, and the concentrations of arsenic were determined by atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS). The content of arsenic varies from 0.3 ppm to 3.2 wt.%. In most coal samples, the arsenic content was lower than 30 ppm, which was close to a representative value of arsenic concentration of coal in China. Arsenic contents in 37 samples, which were from several small coal mines, were more than 30 ppm, among which only 16 samples were more than 100 ppm, and only a few samples contained more than 1000 ppm, which were very restricted and the coal seams were generally unworkable. Combustion of two kinds of high arsenic coal with and without CaO additive was studied in a bench scale drop tube furnace (DTF) to understand the partition and emission of arsenic in the process. The PM was size segregated by low pressure impactor (LPI) into 13 size stages ranging from 9.8 to 0.0281 μm. X-ray fluorescence spectrometry (XRF) was used to determine the chemical composition of the PM, and inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the arsenic content. A bimodal mode distribution of the PM was formed during coal combustion; the large mode (coarse particle) was formed at 4.0 μm, and the other mode (fine particles) was at about 0.1 μm. A middle mode was gradually obvious in high temperature for both of the two coal combustions, which may have been derived from coagulation and agglomeration of metal elements vapors. More gaseous arsenic was formed in 50% oxygen content than 20% oxygen content. Arsenic in sulfide is easier to vaporize than as arsenate. Along with the increasing temperature from 1100 oC to 1400 oC, the arsenic concentration in PM1 increased from 0.07 mg/N m3 to 0.25 mg/N m3. With the addition of the calcium based sorbent, the arsenic concentration in

  13. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology

    Science.gov (United States)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P.; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-02-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.

  14. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology.

    Science.gov (United States)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-12-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status. PMID:26887578

  15. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L. Comparison of arsenic concentrations in Pennsylvania groundwater by physiographic province indicates that the Central Lowland physiographic province had the highest median arsenic concentration (4.5 µg/L) and the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L (59 percent) and greater than or equal to 10.0 µg/L (43 percent). Evaluation of four major aquifer types (carbonate, crystalline, siliciclastic, and surficial) in Pennsylvania showed that all types had median arsenic concentrations less than 4.0 µg/L, and the highest arsenic concentration (490.0 µg/L) was in a siliciclastic aquifer. The siliciclastic and surficial aquifers had the highest percentage of sample records with arsenic concentrations greater than or equal to 4.0 µg/L and 10.0 µg/L. Elevated arsenic concentrations were associated with low pH (less than or equal to 4.0), high pH (greater than or equal to 8.0), or reducing conditions. For waters classified as anoxic (405 samples), 20 percent of sampled wells contained water with elevated concentrations of arsenic; for waters classified as oxic (1,530 samples) only 10 percent of sampled wells contained water with elevated arsenic concentrations. Nevertheless, regardless of the reduction

  16. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  17. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  18. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  19. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  20. Arsenic and the Epigenome: Linked by Methylation(SOT)

    Science.gov (United States)

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  1. Map of Arsenic concentrations in groundwater of the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  2. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    International Nuclear Information System (INIS)

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As2O3

  3. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stueckle, Todd A., E-mail: tstueckle@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Lu, Yongju, E-mail: yongju6@hotmail.com [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States); Davis, Mary E., E-mail: mdavis@wvu.edu [Department of Physiology, West Virginia University, Morgantown, WV 26506 (United States); Wang, Liying, E-mail: lmw6@cdc.gov [Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505 (United States); Jiang, Bing-Hua, E-mail: bhjiang@jefferson.edu [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Holaskova, Ida, E-mail: iholaskova@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Schafer, Rosana, E-mail: rschafer@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506 (United States); Rojanasakul, Yon, E-mail: yrojan@hsc.wvu.edu [Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506 (United States)

    2012-06-01

    Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6 month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A ‘pro-cancer’ gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment. Highlights: ► Chronic As{sub 2}O

  4. Arsenic

    Science.gov (United States)

    ... may also expose normal cells in a lab dish to the substance to see if it causes ... www.cancer.org . Known and Probable Human Carcinogens National organizations and websites Along with the American Cancer ...

  5. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  6. Accumulation and transport mechanisms of arsenic in rice

    OpenAIRE

    Islam, Md. Rafiqul; Kamiya, Takehiro; Uraguchi, Shimpei; Fujiwara, Toru

    2009-01-01

    Both species of arsenic (As), arsenate and arsenite are highly toxic to plants. Arsenic contamination is a major problem in Southeast Asia particularly in Bangladesh and West Bengal. In these countries, As-contaminated groundwater is widely used for irrigating rice in dry season that results in elevated As accumulation in soils and in rice grain and straw. So it is important for understanding the accumulation and transport mechanisms of arsenic in rice. We monitored increased arsenic content ...

  7. Environmental arsenic exposure and serum matrix metalloproteinase-9

    OpenAIRE

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B

    2012-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was anal...

  8. Effect of drinking arsenic-contaminated water in children

    OpenAIRE

    Majumdar, Kunal K.; Guha Mazumder, D.N.

    2012-01-01

    Chronic arsenic toxicity due to drinking of arsenic-contaminated water has been a major environmental health hazard throughout the world including India. Although a lot of information is available on health effects due to chronic arsenic toxicity in adults, knowledge of such effect on children is scanty. A review of the available literature has been made to highlight the problem in children. Scientific publications on health effects of chronic arsenic toxicity in children with special referen...

  9. Arsenic removal in drinking water by reverse osmosis

    OpenAIRE

    Ahmad, Md. Fayej

    2012-01-01

    Arsenic is widely distributed in nature in the air, water and soil. Acute and chronic arsenic exposure by drinking water has been reported in many countries, especially Argentina, Bangladesh, India, Mexico, Mongolia, Thailand and Taiwan. There are many techniques used to remove arsenic from drinking water. Among them reverse osmosis is widely used. Therefore the purpose of this study is to find the conditions favorable for removal of arsenic from drinking water by using reverse osmosis ...

  10. Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism

    OpenAIRE

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M. A.; Bodnar, Wanda M.; Wishnok, John S.; Styblo, Miroslav; Swenberg, James A.; Fox, James G; Tannenbaum, Steven R.

    2014-01-01

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect th...

  11. Removal of arsenic and COD from industrial wastewaters by electrocoagulation

    OpenAIRE

    H. POIROT; Michon, C.; O. POTIE; S. ZOD; Valentin, G.; Leclerc, J.P.; F. LAPICQU

    2011-01-01

    The paper deals with the treatment of arsenic-containing industrial wastewaters by electrocoagulation. The waste issued from a paper mill industry downstream of the biological treatment by activated sludge was enriched with arsenic salts for the purpose of investigation of the treatment of mixed pollution. First, the treatment of single polluted waters, i.e. containing either the regular organic charge from the industrial waste or arsenic salts only, was studied. In the case of arsenic-contai...

  12. Arsenic on the Hands of Children after Playing in Playgrounds

    OpenAIRE

    Kwon, Elena; Zhang, Hongquan; Wang, Zhongwen; Jhangri, Gian S; Lu, Xiufen; Fok, Nelson; Gabos, Stephan; Li, Xing-Fang; Le, X. Chris

    2004-01-01

    Increasing concerns over the use of wood treated with chromated copper arsenate (CCA) in playground structures arise from potential exposure to arsenic of children playing in these playgrounds. Limited data from previous studies analyzing arsenic levels in sand samples collected from CCA playgrounds are inconsistent and cannot be directly translated to the amount of children’s exposure to arsenic. The objective of this study was to determine the quantitative amounts of arsenic on the hands of...

  13. Arsenic-related Bowen's disease, palmar keratosis, and skin cancer.

    OpenAIRE

    Cöl, M; Cöl, C; Soran, A; Sayli, B S; Oztürk, S

    1999-01-01

    Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic...

  14. Mitochondrial dynamics and apoptosis

    OpenAIRE

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  15. Apoptosis: una muerte silenciosa

    Directory of Open Access Journals (Sweden)

    Isis Casadelvalle Pérez

    2006-01-01

    Full Text Available La apoptosis o muerte celular programada es un tipo de muerte presente en todas las células eucarióticas. Es un proceso ordenado y esencial del desarrollo normal y de mantenimiento de la homeostasis de un organismo. En el presente trabajo se resumen las principales características fisiológicas, bioquímicas y moleculares de la muerte por apoptosis, evento que ocurre de forma apagada o silenciosa, o sea, sin daño celular aparente diferenciándose claramente del proceso de necrosis celular. En ese proceso se destaca la mitocondria, como organelo celular donde mediado por la activación de las caspasas se inicia el paso hacia la muerte celular programada. En el momento actual, la apoptosis ha cobrado un verdadero valor para la mejor comprensión de los procesos biológicos normales en los que este evento está involucrado y que con anterioridad no era tomado en cuenta. En este sentido, se comentan las principales técnicas de detección de muerte celular programada y se aclara que la elección de algunas de ellas depende del modelo de estudio. Tambi én se dan a conocer algunas de las patologías generales en las que este proceso representa un papel determinante y se discute acerca de cómo algunas alteraciones en los mecanismos de regulación de la apoptosis inducen la aparici ón de varias enfermedades, incluyendo aquellos desórdenes en los que ocurre acumulación celular (cáncer, alteración cardiaca, neurodegeneración y SIDA. El estudio y caracterización de este complejo mecanismo ha cambiado profundamente la comprensión de numerosas patologías en los organismos eucariotas.

  16. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  17. Arsenic management through well modification and simulation.

    Science.gov (United States)

    Halford, Keith J; Stamos, Christina L; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 microg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 microg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 microg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 microg/L over a 20-year period. PMID:20113363

  18. Arsenic management through well modification and simulation

    Science.gov (United States)

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  19. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    Science.gov (United States)

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  20. Population Based Exposure Assessment of Bioaccessible Arsenic in Carrots

    Science.gov (United States)

    The two predominant arsenic exposure routes are food and water. Estimating the risk from dietary exposures is complicated, owing to the chemical form dependent toxicity of arsenic and the diversity of arsenicals present in dietary matrices. Two aspects of assessing dietary expo...

  1. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    OpenAIRE

    Madhurima Pandey; Sushma Yadav; Piyush Kant Pandey

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically ...

  2. Well Water Arsenic Exposure, Arsenic Induced Skin-Lesions and Self-Reported Morbidity in Inner Mongolia

    OpenAIRE

    Yajuan Xia; Wade, Timothy J; Kegong Wu; Yanhong Li; Zhixiong Ning; X Chris Le; Binfei Chen; Yong Feng; Mumford, Judy L.; Xingzhou He

    2009-01-01

    Residents of the Bayingnormen region of Inner Mongolia have been exposed to arsenic-contaminated well water for over 20 years, but relatively few studies have investigated health effects in this region. We surveyed one village to document exposure to arsenic and assess the prevalence of arsenic-associated skin lesions and self-reported morbidity. Five-percent (632) of the 12,334 residents surveyed had skin lesions characteristics of arsenic exposure. Skin lesions were strongly associated with...

  3. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    OpenAIRE

    Yongfang Li; Feng Ye; Anwei Wang; Da Wang; Boyi Yang; Quanmei Zheng; Guifan Sun; Xinghua Gao

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking ...

  4. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    OpenAIRE

    Nachman, Keeve E.; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were colle...

  5. Carbonate ions and arsenic dissolution by groundwater

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate

  6. Complementary arsenic speciation methods: A review

    Energy Technology Data Exchange (ETDEWEB)

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  7. Complementary arsenic speciation methods: A review

    International Nuclear Information System (INIS)

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  8. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  9. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2016-01-01

    Full Text Available In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members. Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  10. Comparative Distribution and Retention of Arsenic in Arsenic (+3 Oxidation State) Methyltransferase Knockout and Wild Type Mice

    Science.gov (United States)

    The mouse arsenic (+3 oxidation state) methyltransferase (As3mt) gene encodes a ~ 43 kDa protein that catalyzes conversion of inorganic arsenic into methylated products. Heterologous expression of AS3MT or its silencing by RNA interference controls arsenic methylation phenotypes...

  11. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.; Reimer, K.J. (Royal)

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.

  12. Experimental study on effect of arsenic trioxide on vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Objective: To investigate the effect of arsenic trioxide (As2O3) nanoparticles on rabbit vascular smooth muscle cells in vitro in comparison with normal form As2O3. Methods: The rabbit vascular smooth muscle cells were cultured in vitro. Nano and normal forms of As2O3 with drug concentrations of 3 μmol/L were added into the cells. Cell proliferation curve was drawn according to the light absorption values of MTT test. Flow cytometry was applied to observe the apoptosis. DNA was extracted and underwent electrophoresis. Results: Cell proliferation treated with the 3 μmol/L concentration of As2O3 was inhibited. Cell growth was inhibited markedly with increased treatment time, and the inhibition effect of nano drug form seemed stronger than that of normal form. MTT light absorption values of cells treated at 24, 48 and 72 h showed statistically significant difference (H=10.934, 15.039, 15.539, P2O3, normal drug form of As2O3 and control group of cells without As2O3 were 44.97%, 58.54%, 74.02% respectively. The early apoptosis rates were 16.89%, 11.27%, 11.20%, late apoptosis rates were 26.56%, 23.60%, 12.46%, and necrosis rates were 11.58%, 6.59%, 2.32% respectively. Agarose gel electrophoresis showed 'ladder' strand of DNA, with more strands and obscurity for nano drug form treated cells. Conclusion: Arsenic trioxide may inhibit the growth of rabbit vascular smooth muscle cells. The nano drug form showed stronger inhibition effect than that of the normal drug form. (authors)

  13. Current developments in toxicological research on arsenic.

    Science.gov (United States)

    Bolt, Hermann M

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwater, and pollution due to mining activities. As-induced cardiovascular disorders and carcinogenesis present themselves as a major research focus. The high priority of this issue is now recognized politically in a number of countries, research funds have been made available. Also experimental research on toxicokinetics and toxicodynamics and on modes of toxic action is moving very rapidly. The matter is of high regulatory concern, and effective preventive measures are required in a number of countries. PMID:27092031

  14. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  15. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan

    2011-04-01

    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  16. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  17. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  18. Inorganic arsenic levels in baby rice are of concern

    Energy Technology Data Exchange (ETDEWEB)

    Meharg, Andrew A. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom)], E-mail: a.meharg@abdn.ac.uk; Sun, Guoxin [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Williams, Paul N. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Adomako, Eureka; Deacon, Claire [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Zhu, Yong-Guan [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Feldmann, Joerg; Raab, Andrea [Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE (United Kingdom)

    2008-04-15

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as {mu}g/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe.

  19. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  20. Complementary arsenic speciation methods: A review

    Science.gov (United States)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  1. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  2. Trivalent arsenic inhibits the functions of chaperonin complex.

    Science.gov (United States)

    Pan, Xuewen; Reissman, Stefanie; Douglas, Nick R; Huang, Zhiwei; Yuan, Daniel S; Wang, Xiaoling; McCaffery, J Michael; Frydman, Judith; Boeke, Jef D

    2010-10-01

    The exact molecular mechanisms by which the environmental pollutant arsenic works in biological systems are not completely understood. Using an unbiased chemogenomics approach in Saccharomyces cerevisiae, we found that mutants of the chaperonin complex TRiC and the functionally related prefoldin complex are all hypersensitive to arsenic compared to a wild-type strain. In contrast, mutants with impaired ribosome functions were highly arsenic resistant. These observations led us to hypothesize that arsenic might inhibit TRiC function, required for folding of actin, tubulin, and other proteins postsynthesis. Consistent with this hypothesis, we found that arsenic treatment distorted morphology of both actin and microtubule filaments. Moreover, arsenic impaired substrate folding by both bovine and archaeal TRiC complexes in vitro. These results together indicate that TRiC is a conserved target of arsenic inhibition in various biological systems. PMID:20660648

  3. Arsenic detection in water: YPO4:Eu3+ nanoparticles

    Science.gov (United States)

    Ghosh, Debasish; Luwang, Meitram Niraj

    2015-12-01

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu3+ (5%) doped YPO4nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescence intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste.

  4. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism.

    Science.gov (United States)

    Lu, Kun; Mahbub, Ridwan; Cable, Peter Hans; Ru, Hongyu; Parry, Nicola M A; Bodnar, Wanda M; Wishnok, John S; Styblo, Miroslav; Swenberg, James A; Fox, James G; Tannenbaum, Steven R

    2014-02-17

    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism. PMID:24490651

  5. Method development for arsenic analysis by modification in spectrophotometric technique

    Directory of Open Access Journals (Sweden)

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  6. Occurrence of arsenic in plaice (Pleuronectes platessa), nature of organo-arsenic compound present and its excretion by man.

    OpenAIRE

    Luten, J B; Riekwel-Booy, G; Rauchbaar, A

    1982-01-01

    The arsenic content in 255 samples of plaice (Pleuronectes platessa) varied between 3 and 166 mg/kg. About 65% of the samples had an arsenic content above 10 mg/kg. High (low) arsenic concentration in the fillet corresponds with a high (low) concentration in milt or roe. An excretion experiment with eight human volunteers showed that after the consumption of plaice, 69-85% of the ingested arsenic was excreted in the urine within five days. The organo-arsenic compound present in plaice was iso...

  7. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  8. Solubility and transport of arsenic coal ash

    International Nuclear Information System (INIS)

    An experimental method combined with a numerical model allows a comparison of two methods for the disposal of ash that contains arsenic, from the Rio Escondido coal-fired power plant. The calculation yields significant differences in aquifer migration times for the site. The wet disposal method gave 10 years time and the dry method gave 22 years. Experiments were performed on the rate of dissolution of the arsenic from ash samples; and these results indicate a first order kinetics reaction. 8 refs., 8 figs., 8 tabs

  9. Determination of arsenic in crude petroleum and liquid hydrocarbons.

    Science.gov (United States)

    Puri, B K; Irgolic, K J

    1989-12-01

    Total arsenic was determined in crude petroleum and liquid hydrocarbons derived from crude petroleum by extraction with boiling water or boiling aqueous nitric acid (concentration 0.25 to 2.5 M), mineralization of the extracts with concentrated nitric/sulphuric acid, and reduction of the arsenate to arsine in a hydride generator. The arsine was flushed into a helium-DC plasma. The arsenic emission was monitored at 228.8 nm. The total arsenic concentration in 53 crude oil samples ranged from 0.04 to 514 mg L(-1) (median 0.84 mg L(-1)). Arsenic was also determined in several refined liquid hydrocarbons and in a commercially available arsenic standard in an organic matrix (triphenylarsine in xylene). The method was checked with NIST 1634b "Trace Elements in Residual Fuel Oil". The arsenic concentration found in this standard agreed with the certified value (0.12±0.2 μg g(-1)) within experimental error. Viscous hydrocarbons such as the fuel oil must be dissolved in xylene for the extraction to be successful. Hydride generation applied to an aqueous not-mineralized extract from an oil containing 1.67 μg As mL(-1) revealed, that trimethylated arsenic (520 ng mL(-1)) is the predominant arsenic species among the reducible and detectable arsenic compounds. Monomethylated arsenic (104 ng ml(-1)), inorganic arsenic (23 ng mL(-1)), and dimethylated arsenic (low ng mL(-1)) were also detected. The sum of the concentrations of these arsenic species accounts for only 39% of the total arsenic in the sample. PMID:24202418

  10. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  11. Evaluation of Arsenic Trioxide Potential for Lung Cancer Treatment: Assessment of Apoptotic Mechanisms and Oxidative Damage

    Science.gov (United States)

    Walker, Alice M; Stevens, Jacqueline J; Ndebele, Kenneth; Tchounwou, Paul B

    2016-01-01

    Background Lung cancer is one of the most lethal and common cancers in the world, causing up to 3 million deaths annually. The chemotherapeutic drugs that have been used in treating lung cancer include cisplatin-pemetrexed, cisplastin-gencitabinoe, carboplatin-paclitaxel and crizotinib. Arsenic trioxide (ATO) has been used in the treatment of acute promyelocytic leukemia. However, its effects on lung cancer are not known. We hypothesize that ATO may also have a bioactivity against lung cancer, and its mechanisms of action may involve apoptosis, DNA damage and changes in stress-related proteins in lung cancer cells. Methods To test the above stated hypothesis, lung carcinoma (A549) cells were used as the test model. The effects of ATO were examined by performing 6-diamidine-2 phenylindole (DAPI) nuclear staining for morphological characterization of apoptosis, flow cytometry analysis for early apoptosis, and western blot analysis for stress-related proteins (Hsp70 and cfos) and apoptotic protein expressions. Also, the single cell gel electrophoresis (Comet) assay was used to evaluate the genotoxic effect. Results ATO-induced apoptosis was evidenced by chromatin condensation and formation of apoptotic bodies as revealed by DAPI nuclear staining. Cell shrinkage and membrane blebbing were observed at 4 and 6 µg/ml of ATO. Data from the western blot analysis revealed a significant dose-dependent increase (p < 0.05) in the Hsp 70, caspase 3 and p53 protein expression, and a significant (p < 0.05) decrease in the cfos, and bcl-2 protein expression at 4 and 6 µg/ml of ATO. There was a slight decrease in cytochrome c protein expression at 4 and 6 µg/ ml of ATO. Comet assay data revealed significant dose-dependent increases in the percentages of DNA damage, Comet tail lengths, and Comet tail moment. Conclusion Taken together our results indicate that ATO is cytotoxic to lung cancer cells and its bioactivity is associated with oxidative damage, changes in cellular

  12. THE ROLE OF ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE IN ARSENIC METABOLISM

    Science.gov (United States)

    Arsenic (As) is widely distributed in the environment. Epidemiological studies have linked chronic exposures to inorganic As (iAs) to adverse health effects such as skin lesions, peripheral neuropathy, cardiovascular, hepatic and renal disorders, diabetes mellitus, skin cancer,...

  13. Arsenic resistant bacteria isolated from arsenic contaminated river in the Atacama Desert (Chile).

    Science.gov (United States)

    Escalante, G; Campos, V L; Valenzuela, C; Yañez, J; Zaror, C; Mondaca, M A

    2009-11-01

    In this study, arsenic resistant bacteria were isolated from sediments of an arsenic contaminated river. Arsenic tolerance of bacteria isolated was carried out by serial dilution on agar plate. Redox abilities were investigated using KMnO4. arsC and aox genes were detected by PCR and RT-PCR, respectively. Bacterial populations were identified by RapID system. Forty nine bacterial strains were isolated, of these, 55 % corresponded to the reducing bacteria, 4% to oxidizing bacteria, 8% presented both activities and in 33% of the bacteria none activity was detected. arsC gene was detected in 11 strains and aox genes were not detected. The activity of arsenic transforming microorganisms in river sediment has significant implications for the behavior of the metalloid. PMID:19779656

  14. Apoptosis Resistance in Endometriosis

    Directory of Open Access Journals (Sweden)

    Liselotte Mettler

    2011-08-01

    Full Text Available Introduction: In a cytological analysis of endometriotic lesions neither granulocytes nor cytotoxic T-cells appear in an appreciable number. Based on this observation we aimed to know, whether programmed cell death plays an essential role in the destruction of dystopic endometrium. Disturbances of the physiological mechanisms of apoptosis, a persistence of endometrial tissue could explain the disease. Another aspect of this consideration is the proliferation competence of the dystopic mucous membrane. Methods: Endometriotic lesions of 15 patients were examined through a combined measurement of apoptosis activity with the TUNEL technique (terminal deoxyribosyltransferase mediated dUTP Nick End Labeling and the proliferation activity (with the help of the Ki-67-Antigens using the monoclonal antibody Ki-S5. Results: Twelve out of 15 women studied showed a positive apoptotic activity of 3-47% with a proliferation activity of 2-25% of epithelial cells. Therefore we concluded that the persistence of dystopic endometrium requires proliferative epithelial cells from middle to lower endometrial layers. Conclusion: A dystopia misalignment of the epithelia of the upper layers of the functionalism can be rapidly eliminated by apoptotic procedures.

  15. Evaluation of two new arsenic field test kits capable of detecting arsenic water concentrations close to 10 microg/L.

    Science.gov (United States)

    Steinmaus, Craig M; George, Christine M; Kalman, David A; Smith, Allan H

    2006-05-15

    Millions of people worldwide are exposed to arsenic-contaminated drinking water. Arsenic field test kits may offer a cost-effective approach for measuring these exposures in the field, although the accuracy of some kits used in the past has been poor. In this study, arsenic concentrations were measured in 136 water sources in western Nevada using two relatively new arsenic test kits and compared to laboratory measurements using atomic fluorescence spectroscopy (AFS). Spearman's rank correlation coefficients comparing the Quick Arsenic and Hach EZ kits to laboratory measurements were 0.96 (p or = 500 microg/L), test kit and AFS measurements were in the same category in 71% (Quick Arsenic) and 62% (Hach EZ) of samples, and within one category of each other in 99% (Quick Arsenic) and 97% (Hach EZ) of samples. Both kits identified all water samples with high arsenic concentrations (> 15 microg/L) as being above the United States Environmental Protection Agency's drinking water standard and the World Health Organization's guideline value for arsenic of 10 microg/L. These results suggestthatthese easily portable kits can be used to identify water sources with high arsenic concentrations and may provide an important tool for arsenic surveillance and remediation programs. PMID:16749706

  16. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic.

    Science.gov (United States)

    Kala, S V; Neely, M W; Kala, G; Prater, C I; Atwood, D W; Rice, J S; Lieberman, M W

    2000-10-27

    Worldwide, millions of people are exposed to arsenic in drinking water that exceeds the World Health Organization standard of 10 microg/liter by as much as 50-300-fold, yet little is known about the molecular basis for arsenic excretion. Here we show that transport of arsenic into bile depends on the MRP2/cMOAT transporter and that glutathione is obligatory for such transport. Using reversed phase liquid chromatography/mass spectrometry, we demonstrate that two arsenic-glutathione complexes not previously identified in vivo, arsenic triglutathione and methylarsenic diglutathione, account for most of the arsenic in the bile. The structure of the compounds was also confirmed by nuclear magnetic resonance spectroscopy. Our findings may help explain the increased susceptibility of malnourished human populations to arsenic. PMID:10938093

  17. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    丁振华; 郑宝山; 张杰; H.; E.; Belkin; R.; B.; Finkelman; 赵峰华; 周代兴; 周运书; 陈朝刚

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer ( EMPA) , scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX) , X-ray diffraction analysis (XRD) , low temperature ashing (LTA) , transmission electron microscopy (TEM) , X-ray absorption fine structure (XAFS) , instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+ , combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  18. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  19. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  20. Apoptosis : Target of cancer therapy

    NARCIS (Netherlands)

    Ferreira, CG; Epping, M; Kruyt, FAE; Giaccone, G

    2002-01-01

    Recent knowledge on apoptosis has made it possible to devise novel approaches, which exploit this process to treat cancer. In this review, we discuss in detail approaches to induce tumor cell apoptosis, their mechanism of action, stage of development, and possible drawbacks. Finally, the obstacles y

  1. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  2. Nuclear Apoptosis Contributes to Sarcopenia

    OpenAIRE

    Alway, Stephen E.; Parco M. Siu

    2008-01-01

    Apoptosis results in DNA fragmentation and, subsequently, destruction of cells containing a single nucleus. Our hypothesis is that multinucleated cells such as muscle fibers can experience apoptotic-induced loss of single nuclei (nuclear apoptosis) without destruction of the entire fiber. The loss of nuclei likely contributes to atrophy and sarcopenia. Furthermore, increased chronic activity attenuates apoptotic signaling, which may reduce sarcopenia.

  3. Caspase Family Proteases and Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Ting-Jun FAN; Li-Hui HAN; Ri-Shan CONG; Jin LIANG

    2005-01-01

    Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin-1β-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regulated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain,and Ca2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed.

  4. Parageneses and Crystal Chemistry of Arsenic Minerals

    Czech Academy of Sciences Publication Activity Database

    Majzlan, J.; Drahota, P.; Filippi, Michal

    Chantilly: Mineralogical Society of America, 2014 - (Bowell, J.; Alpers, C.; Jamieson, H.; Nordstrom, D.; Majzlan, J.), s. 17-184. (Reviews in Mineralogy and Geochemistry. 79). ISBN 978-0-939950-94-2 Institutional research plan: CEZ:AV0Z30130516 Institutional support: RVO:67985831 Keywords : arsenic * mineralogy * parageneses * crystal structure Subject RIV: DB - Geology ; Mineralogy

  5. 29 CFR 1910.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... rise to radiological evidence or pneumoconiosis. Arsenic does have a depressant effect upon the bone... regulated areas, food or beverages are not consumed, smoking products, chewing tobacco and gum are not used...-practice controls. (ii) Work operations, such as maintenance and repair activities, for which the...

  6. Arsenic - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... español) Chinese - Simplified (简体中文) Arsenic English 关于砷的常问问题 - 简体中文 (Chinese - Simplified) Food and Drug Administration Spanish (español) Arsénico Characters not ...

  7. Questions and Answers: Apple Juice and Arsenic

    Science.gov (United States)

    ... and monomethylarsonic acid (MMA), may also be a health concern. Are apple and other fruit juices safe to drink? The FDA has been ... this, the FDA is considering how any possible health risk from these two forms of ... arsenic in fruit juice? The FDA has proposed an “action level” ...

  8. Understanding arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  9. Arsenic accumulation in some higher fungi

    NARCIS (Netherlands)

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to h

  10. Speciation of arsenic in environmental waters

    International Nuclear Information System (INIS)

    A system for speciation of arsenic in environmental waters by selective hydride formation and on-line AAS is described. Starting from literature data, the separation scheme and the necessary apparatus are outlined. Preliminary practical experience then leads to the formulation of further improvements and accompanying testing experiments. (author). 51 refs, 7 figs, 1 tab

  11. Arsenic(III Immobilization on Rice Husk

    Directory of Open Access Journals (Sweden)

    Malay Chaudhuri

    2013-02-01

    Full Text Available A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III] and pentavalent arsenate [As(V]. As(III is more toxic and more difficult to remove from water by adsorption on activated alumina. In this study, immobilization (adsorption of As(III by quaternized rice husk was examined. Batch adsorption test showed that extent of adsorption was dependent on pH, As (III concentration, contact time and rice husk dose. Maximum adsorption occurred at pH 7-8, and equilibrium adsorption was attained in 2 h. Equilibrium adsorption data were described by the Langmuir and Freundlich isotherm models. According to the Langmuir isotherm, adsorption capacity of quaternized rice husk is 0.775 mg As(III/g, which is 4.3x higher than that (0.180 mg As(III/g of activated alumina. Quaternized rice husk is a potentially useful adsorbent for removing arsenic from groundwater.

  12. Arsenic mobilization from sediments in microcosms under sulfate reduction.

    Science.gov (United States)

    Sun, Jing; Quicksall, Andrew N; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-06-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful. PMID:27037658

  13. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    Science.gov (United States)

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  14. Evaluation of Exposure to Arsenic in Residential Soil

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  15. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  16. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    Science.gov (United States)

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  17. Soil Contamination by Arsenic in Urban Areas: A case study of Arak City

    Directory of Open Access Journals (Sweden)

    E Solgi

    2015-08-01

    Conclusion: It seems that arsenic in soil is controlled by natural and anthropogenic factors. The highest concentrations of arsenic in center and the north areas reflected arsenic loading is originated from anthropogenic sources such as vehicles and industrial processes.

  18. Inverse association between toenail arsenic and body mass index in a population of welders

    OpenAIRE

    Grashow, Rachel; Zhang, Jinming; Fang, Shona C; Weisskopf, Marc G.; Christiani, David C.; Kile, Molly L.; Cavallari, Jennifer M

    2014-01-01

    Recent data show that arsenic may play a role in obesity-related diseases. However, urinary arsenic studies report an inverse association between arsenic level and body mass index (BMI). We explored whether toenail arsenic, a long-term exposure measure, was associated with BMI in 74 welders with known arsenic exposure. BMI showed significant inverse associations with toenail arsenic (p=0.01), which persisted in models adjusted for demographics, diet and work history. It is unclear whether low...

  19. In Vivo Assessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment

    OpenAIRE

    Juhasz, Albert L.; Smith, Euan; Weber, John; Rees, Matthew; Rofe, Allan; Kuchel, Tim; Sansom, Lloyd; Naidu, Ravi

    2006-01-01

    Background Millions of people worldwide consume arsenic-contaminated rice; however, little is known about the uptake and bioavailability of arsenic species after arsenic-contaminated rice ingestion. Objectives In this study, we assessed arsenic speciation in greenhouse-grown and supermarket-bought rice, and determined arsenic bioavailability in cooked rice using an in vivo swine model. Results In supermarket-bought rice, arsenic was present entirely in the inorganic form compared to greenhous...

  20. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    OpenAIRE

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  1. geochemical controls on arsenic and phosphorus in natural and engineered systems

    OpenAIRE

    Davis, Jason Edward

    2000-01-01

    This thesis elucidates fundamental reactions that can control concentrations of arsenic and phosphate in water sources. High levels of arsenic or phosphorus have significant implications for the environment-- arsenic is extremely toxic to humans while phosphorus can cause eutrophication. Initial work focused on arsenic solids that might exert geochemical control on soluble arsenic. Formation of proposed iron, barium, copper and zinc-arsenic solids were systematically examined under ...

  2. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.;

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast...... of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography–ICP-MS following microwave......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  3. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi; Trang, Pham Thi Kim; Jakobsen, Rasmus; Nhan, Pham Quy; Long, Tran Vu; Viet, Pham Hung; Murray, Andrew Sean

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5...

  4. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    Science.gov (United States)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  5. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters

    Science.gov (United States)

    Winkel, Lenny; Berg, Michael; Amini, Manouchehr; Hug, Stephan J.; Annette Johnson, C.

    2008-08-01

    Arsenic contamination of groundwater resources threatens the health of millions of people worldwide, particularly in the densely populated river deltas of Southeast Asia. Although many arsenic-affected areas have been identified in recent years, a systematic evaluation of vulnerable areas remains to be carried out. Here we present maps pinpointing areas at risk of groundwater arsenic concentrations exceeding 10μgl-1. These maps were produced by combining geological and surface soil parameters in a logistic regression model, calibrated with 1,756 aggregated and geo-referenced groundwater data points from the Bengal, Red River and Mekong deltas. We show that Holocene deltaic and organic-rich surface sediments are key indicators for arsenic risk areas and that the combination of surface parameters is a successful approach to predict groundwater arsenic contamination. Predictions are in good agreement with the known spatial distribution of arsenic contamination, and further indicate elevated risks in Sumatra and Myanmar, where no groundwater studies exist.

  6. A critical review of arsenic exposures for Bangladeshi adults.

    Science.gov (United States)

    Joseph, Tijo; Dubey, Brajesh; McBean, Edward A

    2015-09-15

    Groundwater, the most important source of water for drinking, cooking, and irrigation in Bangladesh, is a significant contributor to the daily human intake of arsenic. Other arsenic intake pathways, established as relevant for Bangladeshi adults through this review, include consumption of contaminated edible plant parts and animal-origin food, inhalation of contaminated air, soil ingestion, betel quid chewing, and tobacco smoking. This review qualifies and quantifies these arsenic intake pathways through analysis of the range of arsenic levels observed in different food types, water, soil, and air in Bangladesh, and highlights the contributions of dietary intake variation and cooking method in influencing arsenic exposures. This study also highlights the potential of desirable dietary patterns and intakes in increasing arsenic exposure which is relevant to Bangladesh where nutritional deficiencies and lower-than-desirable dietary intakes continue to be a major concern. PMID:26004539

  7. Rice consumption contributes to arsenic exposure in US women

    OpenAIRE

    Gilbert-Diamond, Diane; Cottingham, Kathryn L.; Gruber, Joann F.; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A. Jay; Baker, Emily R.; Jackson, Brian P.; Folt, Carol L; Margaret R Karagas

    2011-01-01

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's ho...

  8. Analytical approaches for arsenic determination in air : a critical review

    OpenAIRE

    Sánchez-Rodas Navarro, Daniel Alejandro; Sánchez de la Campa Verdona, Ana María; Alsioufi, Louay

    2015-01-01

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particl...

  9. The Role of Photochemistry the Transport and Transformation of Arsenic

    OpenAIRE

    Sedlak, David L.; Bentley, Abra

    1997-01-01

    Arsenic, a toxic trace element, enters surface waters from abandoned mines and geothermal springs. Once arsenic is discharged to surface waters, photochemical reactions can alter the oxidation state of the metal or cause the dissolution of the mineral phases onto which it could adsorb. To assess the role of these photochemical reactions arsenic fate and transport, we conducted laboratory studies and collected samples from arseniccontaminated surface waters. Results of laboratory studies indic...

  10. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  11. Arsenic geochemistry and human health in South East Asia

    OpenAIRE

    McCarty, Kathleen M.; Hanh, Hoang Thi; Kim, Kyoung-Woong

    2011-01-01

    Arsenic occurs naturally in many environmental components and enters the human body through several exposure pathways. Natural enrichment of arsenic may result in considerable contamination of soil, water, and air. Arsenic in groundwater can exceed values hundreds of time higher than the concentration recommended for drinking water. Such exposure levels indicate a serious potential health risk to individuals consuming raw groundwater. Human activities that have an impact on the environment ma...

  12. Quality of our groundwater resources: arsenic and fluoride

    Science.gov (United States)

    Nordstrom, D. Kirk

    2011-01-01

    Groundwater often contains arsenic or fluoride concentrations too high for drinking or cooking. These constituents, often naturally occurring, are not easy to remove. The right combination of natural or manmade conditions can lead to elevated arsenic or fluoride which includes continental source rocks, high alkalinity and pH, reducing conditions for arsenic, high phosphate, high temperature and high silica. Agencies responsible for safe drinking water should be aware of these conditions, be prepared to monitor, and treat if necessary.

  13. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  14. Alternative technology for arsenic removal from drinking water

    OpenAIRE

    Purenović Milovan

    2007-01-01

    Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in wat...

  15. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  16. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    OpenAIRE

    Peltekov A.B.; Boyanov B.S.; Markova T.S.

    2014-01-01

    The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine...

  17. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  18. Arsenic-transforming microbes and their role in biomining processes.

    Science.gov (United States)

    Drewniak, L; Sklodowska, A

    2013-11-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a toxic (also for themselves) form, and (2) How do these microorganisms cope with this toxic element? In this review, we summarize current knowledge about arsenic-transforming microbes and their role in biomining processes. Special consideration is given to studies that have increased our understanding of how microbial activities are linked to the biogeochemistry of arsenic, by examining (1) where and in which forms arsenic occurs in the mining environment, (2) microbial activity in the context of arsenic mineral dissolution and the mechanisms of arsenic resistance, (3) the minerals used and technologies applied in the biomining of arsenic, and (4) how microbes can be used to clean up post-mining environments. PMID:23299972

  19. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    A sampling train was evaluated using 76As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  20. Chemical characteristics of arsenic in a marine food chain

    International Nuclear Information System (INIS)

    The various chemical forms of 74As accumulated from either water or food by the marine food chain [Fucus spiralis (L.) → Littorina littoralis (L.) → Nucella lapillus] have been separated and characterized. Arsenic components were separated by differential extraction followed by high-voltage paper electrophoresis/paper chromatography of the water-soluble farction and thin-layer chromatography of the lipid-soluble fraction. The algae assimilates arsenic mainly (60%) as one lipid-soluble compound with Rsub(f) = 0.18, and 12 water-soluble organo-arsenic compounds as minor components. On the other hand, the snails produce predominantly one major water-soluble organo-arsenic compound with Rsub(f) = 0.66. This water-soluble arsenic compound was produced by the snails and not by intestinal microbes. Time-course studies on the relative proportions of labelled arsenic compounds in algal tissue indicate a transition from arsenate through water-soluble organo-arsenic components to a lipid-soluble arsenic compound. The water-soluble organo-arsenic compounds in the food chain studied were different from those previously found or proposed in marine organisms. (orig.)

  1. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin

    DEFF Research Database (Denmark)

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; Poplin, Gerald S;

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether...... selenium positively associated with sputum AAT (P=0.004 and P=0.002, respectively). In analyses stratified by town, these relationships remained significant only in Ajo, with the higher arsenic exposure. Reduction in AAT may be a means by which arsenic induces respiratory disease, and selenium may protect...

  2. APOPTOSIS IN WHOLE MOUSE OVARIES

    Science.gov (United States)

    Apoptosis in Whole Mouse Ovaries Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  3. Apoptosis in cancer: therapeutic implications

    OpenAIRE

    Negoescu, A.

    2000-01-01

    This review outlines the principal limitations of the mechanisms of active cell death (ACD, apoptosis) as the basis of tumorigenesis and the rationale of almost all therapies of malignancy. The concentration of cancer therapy in the directon of ACD induction is presented as both the result of progressive understanding of the mechanisms of apoptosis and that of the favourable tumor environment for ACD signal transmission. The latter property induces the by-stand...

  4. Invertebrate Iridovirus Modulation of Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Trevor Williams; Nllesh S. Chitnis; Sh(a)n L. Bilimoria

    2009-01-01

    Programmed cell death (apoptosis) is a key host response to virus infection. Viruses that can modulate host apoptotic responses are likely to gain important opportunities for transmission. Here we review recent studies that demonstrate that particles of Invertebrate iridescent virus 6 (IIV-6) (Iridoviridae, genus Iridovirus), or an IIV-6 virion protein extract, are capable of inducing apoptosis in lepidopteran and coleopteran cells, at concentrations 1000-fold lower than that required to shut-off host macromolecular synthesis. Induction of apoptosis depends on endocytosis of one or more heat-sensitive virion component(s). Studies with a JNK inh ibitor(SP600125) indicated that the JNK signaling pathway is significantly involved in apoptosis in IIV-6 infections of Choristoneurafumiferana ceils. The genome of IIV-6 codes for an inhibitor of apoptosis iap gene (193R) that encodes a protein of 208 aa with 15% identity and 28% similarity in its amino acid sequence to IAP-3 from Cydia pomonella ganulovirus (CpGV). Transcription of IIV-6 iap did not require prior DNA or protein synthesis, indicating that it is an immediate-early class gene. Transient expression and gene knockdown studies have confirmed the functional nature of the IIV-6 iap gene. We present a tentative model for IIV-6 induction and inhibition of apoptosis in insect cells and discuss the potential applications of these findings in insect pest control.

  5. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported. PMID:25438126

  6. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  7. Tropospheric arsenic over marine and continental regions

    International Nuclear Information System (INIS)

    Particulate and vapor concentrations of atmospheric As have been measured over various marine and continental areas. Particulate sample were collected on double Whatman 41 filters. Particulate-vapor samples were collected using an in-line filter system with a 0.45-μm pore size Nuclepore filters as a particle prefilter in front of two Whatman 41 filters impregnated with tetrabutylammonium hydroxide and glycerol for vapor As collection. Arsenic determinations were by destructive neutron activation. The data from the Nuclepore-impregnated filter samples indicates that the major fraction of As in the atmosphere is particulate but a vapor component of As is detectable, most frequently associated with high sampling temperatures and high total As concentrations. With the data presented here, estimates of representative global near-surface concentrations of atmospheric arsenic have been made

  8. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  9. Arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    Shallow groundwater with high arsenic concentrations from naturally occurring sources is the primary source of drinking water for millions of people in Bangladesh. It has resulted in a major public health crisis with as many as 70 million people possibly at risk. The International Atomic Energy Agency (IAEA) is supporting international efforts and the Government of Bangladesh to find alternative, safe and sustainable sources of drinking water. (IAEA)

  10. Arsenic toxicity: the effects on plant metabolism

    Directory of Open Access Journals (Sweden)

    PatrickFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  11. Arsenic trioxide: safety issues and their management

    Institute of Scientific and Technical Information of China (English)

    Wing-Yan AU; Yok-Lam KWONG

    2008-01-01

    Arsenic trioxide (As2O3) has been used medicinally for thousands of years.Its therapeutic use in leukaemia was described a century ago.Recent rekindling in the interest of As2O3 is due to its high efficacy in acute promyelocytic leukaemia (APL).As2O3 has also been tested clinically in other blood and solid cancers.Most studies have used intravenous As2O3,although an oral As2O3 is equally efficacious.Side effects of As2O3 are usually minor,including skin reactions,gastrointestinal upset,and hepatitis.These respond to symptomatic treatment or temporary drug cessation,and do not compromise subsequent treatment with As2O3.During induction therapy in APL,a leucocytosis may occasionally occur,which can be associated with fluid accumulation and pulmonary infiltration.The condition is similar to the APL differentiation syndrome during treatment with all-trans retinoic acid,and responds to cytoreductive treatment and corticosteroids.Intravenous As2O3 treatment leads to QT prolongation.In the presence of under-lying cardiopulmonary diseases or electrolyte disturbances,particularly hypokalaemia and hypomagnesaemia,serious arrhythmias may develop,with torsades du pointes reported in 1% of cases.This may be related to a dose-dependent arsenic-mediated inhibition of potassium ion channels that compro-mises cardiac repolarization.Because of slow intestinal absorption,oral-As2O3 gives a lower plasma arsenic concentration,which is associated with lesser QT prolongation and hence a more favorable cardiac safety profile.As2O3 does not appear to enter the central nervous system.However,if the blood brain barrier is breached,elemental arsenic may enter the cerebrospinal fluid.As2O3 is predomi-nantly excreted in the kidneys,and dose adjustment is required when renal func-tion is impaired.

  12. Arsenic concentrations in groundwaters of Cyprus

    Science.gov (United States)

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  13. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  14. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  15. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-κB, AP-1 and MAPK pathways in human proximal tubular cells.

    Science.gov (United States)

    Gong, Xuezhong; Ivanov, Vladimir N; Hei, Tom K

    2016-09-01

    Our recent study demonstrated that sodium arsenite at a clinically relevant dose induced nephrotoxicity in human renal proximal tubular epithelial cell line HK-2, which could be inhibited by natural product 2,3,5,6-tetramethylpyrazine (TMP) with antioxidant activity. The present study demonstrated that arsenic exposure resulted in protein and enzymatic induction of heme oxygenase-1 (HO-1) in dose- and time-dependent manners in HK-2 cells. Blocking HO-1 enzymatic activity by zinc protoporphyrin (ZnPP) augmented arsenic-induced apoptosis, ROS production and mitochondrial dysfunction, suggesting a critical role for HO-1 as a renal protectant in this procession. On the other hand, TMP, upstream of HO-1, inhibited arsenic-induced ROS production and ROS-dependent HO-1 expression. TMP also prevented mitochondria dysfunction and suppressed activation of the intrinsic apoptotic pathway in HK-2 cells. Our results revealed that the regulation of arsenic-induced HO-1 expression was performed through multiple ROS-dependent signal pathways and the corresponding transcription factors, including p38 MAPK and JNK (but not ERK), AP-1, Nrf2 and NF-κB. TMP inhibited arsenic-induced activations of JNK, p38 MAPK, ERK, AP-1 and Nrf2 and block HO-1 protein expression. The present study, furthermore, demonstrated arsenic-induced expression of arsenic response protein 2 (ARS2) that was regulated by p38 MAPK, ERK and NF-κB. To our knowledge, this is the first report showing that ARS2 involved in arsenic-induced nephrotoxicity, while TMP pretreatment prevented such an up-regulation of ARS2 in HK-2 cells. Given ARS2 and HO-1 sharing the similar regulation mechanism, we speculated that ARS2 might also mediate cell survival in this procession. In summary, our study highlighted a role of HO-1 in the protection against arsenic-induced cytotoxicity downstream from the primary targets of TMP and further indicated that TMP may be used as a potential therapeutic agent in the treatment of arsenic

  16. Arsenic volatilization in model anaerobic biogas digesters

    International Nuclear Information System (INIS)

    Highlights: • Arsenic is volatilized form all model anaerobic digesters, including the non-treated ones. • Volatile As species can be identified and quantified in all digesters. • Non-arsenic treated digesters volatilization rates are higher than Roxarsone treated ones. - Abstract: Arsenic is a class 1 non-threshold carcinogen which is highly ubiquitous. Arsenic undergoes many different transformations (biotic or abiotic) between and within environmental compartments, leading to a number of different chemical species possessing different properties and toxicities. One specific transformation is As biotic volatilization which is coupled with As biomethylation and has been scarcely studied due to inherent sampling issues. Arsenic methylation/volatilization is also linked with methanogenesis and occurs in anaerobic environments. In China, rice straw and animal manure are very often used to produce biogas and both can contain high amounts of As, especially if the rice is grown in areas with heavy mining or smelting industries and if Roxarsone is fed to the animals. Roxarsone is an As-containing drug which is widely used in China to control coccidian intestinal parasites, to improve feed efficiency and to promote rapid growth. Previous work has shown that this compound degrades to inorganic As under anaerobic conditions. In this study the focus is on biotic transformations of As in small microcosms designed as biogas digester models (BDMs) using recently validated As traps, thus, enabling direct quantification and identification of volatile As species. It is shown that although there was a loss of soluble As in the BDMs, their conditions favored biomethylation. All reactors produced volatile As, especially the monomethylarsonic acid spiked ones with 413 ± 148 ng As (mean ± SD, n = 3) which suggest that the first methylation step, from inorganic As, is a limiting factor. The most abundant species was trimethylarsine, but the toxic arsine was present in the

  17. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    Science.gov (United States)

    Hills, Andrew; McArthur, John

    2014-05-01

    The Bengal delta system is a geologically recent feature overlying a deeply incised palaeo-surface formed during the Last Glacial Maximum. This surface is a series of terraces and valleys created by river incision (Goodbred & Kuehl 2003). The terraces were weathered, forming a thin, indurated laterite deposit (Goodbred & Kuehl 2000) at depths greater than 50 m. McArthur et al. (2008) define this as a palaeosol and have identified it at depths greater than 30 m though out Bangladesh and West Bengal. It has been observed that arsenic concentrations at these sites are lower than the rest of the delta. It has been assumed that the surface morphology at sites where there is a palaeosol are similar and can therefore be characterised by remote sensing, in the form of Google Earth images. Sites were selected in Bangladesh and West Bengal, from work by McArthur et al. (2011); Hoque et al. (2012), where groundwater chemistry and sedimentology data are available making it possible to determine if the subsurface is a palaeo-channel or palaeo-interfluve. Arsenic concentration data have been inputted into Google Earth and the palaeo-channels marked where the arsenic concentration is greater than 10 µg/L, and palaeo-interfluves where arsenic concentration is less than 10 µg/L. The surface morphologies in these domains have been examined for similarities, and it was shown that avulsion scars and abandoned river channels are found where arsenic concentrations are greater than 10 µg/L. Conversely the surrounding areas that are devoid of channel scars have arsenic concentrations less than 10 µg/L. Using the correlation between avulsion features being representative of palaeo-channels and high arsenic concentrations, sites were selected that had a similar surface morphology to the type localities. A comparison of these images and arsenic concentrations showed that the postulate is valid for over 80 percent of cases. Where this is not valid, this could indicate that the subsurface

  18. Natural and industrial Arsenic pollution,early predictors of cardiovascular disease

    OpenAIRE

    Bianchi, Fabrizio

    2012-01-01

    Inorganic arsenic and arsenic compounds have been classidied in Group 1 " carcinogenic to humans" by IARC (2004). Both short-and long-term exposure to arsenic can cause several health problems. The interest in cardiovascular effects of human esposures to arsenic is growing.

  19. ACCELERATED SOLVENT EXTRACTION OF ARSENICALS FROM SEAFOOD MATRICES WITH ION CHROMATOGRAPHY AND ICP-MS DETECTION

    Science.gov (United States)

    The two major sources of arsenic exposure are water and diet. Dietary exposure is considerably more difficult to assess because of the diversity of arsenicals present in dietary matrices coupled with species dependent toxicity of arsenic. Dietary arsenic assessments are further c...

  20. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    Science.gov (United States)

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  1. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic Re

  2. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  3. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium.

    Science.gov (United States)

    Maizel, Daniela; Utturkar, Sagar M; Brown, Steven D; Ferrero, Marcela A; Rosen, Barry P

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8. PMID:25883298

  4. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium

    OpenAIRE

    Maizel, Daniela; Utturkar, Sagar M.; Brown, Steven D.; Ferrero, Marcela A.; ROSEN, BARRY P.

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8.

  5. Effects of organic matter and ageing on the bioaccessibility of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Louise; Koch, Iris [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada); Reimer, Kenneth J., E-mail: reimer-k@rmc.ca [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada)

    2011-10-15

    Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land. - Highlights: > Adding organic matter to contaminated soils may increase arsenic bioaccessibility. > Ageing soils with >25% organic matter can lead to increased arsenic bioaccessibility. > No changes in arsenic bioaccessibility for soils poor in organic matter (mean 7.7%). > No changes in arsenic bioaccessibility for samples containing arsenopyrite. > Organic matter in soil may favour oxidation of trivalent arsenic to pentavalent form. - Adding organic carbon may increase arsenic bioaccessibility, especially in samples originally containing >30% bioaccessible arsenic in organic carbon-rich soils (>25%).

  6. Detecting and quantifying lewisite degradation products in environmental samples using arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Kiely, J.T.; Crain, J.S.; Shem, L.M.; O`Neill, H.J.; Gowdy, M.J. [Argonne National Lab., IL (United States); Besmer, M.; Mohrman, G.B. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1995-12-31

    This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic.

  7. Secondary arsenic minerals in the environment: A review

    Czech Academy of Sciences Publication Activity Database

    Drahota, P.; Filippi, Michal

    2009-01-01

    Roč. 35, č. 8 (2009), s. 1243-1255. ISSN 0160-4120 R&D Projects: GA AV ČR KJB300130702 Institutional research plan: CEZ:AV0Z30130516 Keywords : arsenic * secondary arsenic mineral * environmental sample * solubility * environmental stability Subject RIV: DD - Geochemistry Impact factor: 4.786, year: 2009

  8. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  9. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  10. Assessment of natural arsenic in groundwater in Cordoba Province, Argentina.

    Science.gov (United States)

    Francisca, Franco M; Carro Perez, Magalí E

    2009-12-01

    Groundwater in the central part of Argentina contains arsenic concentrations that, in most cases, exceed the value suggested by international regulations. In this region, Quaternary loessical sediments with a very high volcanic glass fraction lixiviate arsenic and fluoride after weathering. The objectives of this study are to analyze the spatial distribution of arsenic in different hydrogeological regions, to define the naturally expected concentration in an aquifer by means of hydrogeochemistry studies, and to identify emergent health evidences related to cancer mortality in the study area. The correlation between arsenic and fluoride concentrations in groundwater is analyzed at each county in the Cordoba Province. Two dimensionless geoindicators are proposed to identify risk zones and to rapidly visualize the groundwater quality related to the presence of arsenic and fluoride. A surface-mapping system is used to identify the spatial variability of concentrations and for suggesting geoindicators. The results show that the Chaco-Pampean plain hydrogeologic region is the most affected area, with arsenic and fluoride concentrations in groundwater being generally higher than the values suggested by the World Health Organization (WHO) for drinking water. Mortality related to kidney, lung, liver, and skin cancer in this area could be associated to the ingestion of arsenic-contaminated water. Generated maps provide a base for the assessment of the risk associated to the natural occurrence of arsenic and fluoride in the region. PMID:19165608

  11. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    International Nuclear Information System (INIS)

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg-1 dry weight of arsenic when exposed to 40 μM for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  12. FIELD STUDY OF ARSENIC REMOVAL FROM GROUNDWATER BY ZEROVALENT IRON

    Science.gov (United States)

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is a need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7 m long, 14 ...

  13. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  14. POU/POE TREATMENT OF ARSENIC IN GROUND WATER

    Science.gov (United States)

    Point-of-use/Point-of-entry (POU/POE) arsenic removal systems were installed in seventeen homes that were found to have high levels of arsenic (50-480ug/L) in their well water. This presetation will describe the process and the problems encountered in selecting the treatment syst...

  15. Arsenic in detergents: Possible danger and pollution hazard

    Science.gov (United States)

    Angino, E.E.; Magnuson, L.M.; Waugh, T.C.; Galle, O.K.; Bredfeldt, J.

    1970-01-01

    Arsenic at a concentration of 10 to 70 parts per million has been detected in several common presoaks and household detergents. Arsenic values of 2 to 8 parts per billion have been measured in the Kansas River. These concentrations are close to the amount (10 parts per billion) recommended by the United States Public Health Service as a drinking-water standard.

  16. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  17. Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1.

    Science.gov (United States)

    Wang, Juan; Wu, Mingyin; Lu, Gan; Si, Youbin

    2016-02-01

    The resistance of Shewanella oneidensis MR-1 to toxic arsenic was investigated by measuring the growth of the bacteria in the presence of As(III) and As(V) in different growth media. The bacteria were shown to biotransform arsenic through the partial methylation of inorganic arsenic into methylated metabolites. This biotransformation of inorganic arsenic by S. oneidensis MR-1 was affected by the methyl donor, the composition of the medium, and the presence of Fe(III). The relative content of methylated arsenic in the medium containing S-adenosyl methionine as the methyl donor was greater than that in the medium containing methylcobalamin. The biotransformation process driven by Fe-reducing bacteria, and occurred in combination with microbially mediated As-Fe reduction in the presence of Fe(III). The results demonstrate that S. oneidensis MR-1 methylates inorganic arsenic into less toxic organoarsenic compounds. This process has potential applications in the bioremediation of environmental arsenic, and the results provide new insights into the control of in situ arsenic pollution. PMID:26692509

  18. Analytical Strategies for the Determination of Arsenic in Rice

    Directory of Open Access Journals (Sweden)

    Bruno E. S. Costa

    2016-01-01

    Full Text Available Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentrations of arsenic in rice grown in soils irrigated with contaminated water; however, procedures used, including sample pretreatment and preconcentration steps, have to be followed to ensure sensitivity, accuracy, and reproducibility. Arsenic is a difficult element to measure in complex matrices, such as foods, because the matrix must be destroyed at an elevated temperature without the loss of the analyte or contamination. This review summarizes the major methods for the determination of arsenic in rice samples. The main purpose of this review is to provide an update on the recent literature concerning the strategies for the determination of arsenic and to critically discuss their advantages and weaknesses. These difficulties are described along with recent developments aimed at overcoming these potential issues.

  19. Arsenic Methylation, Oxidative Stress and Cancer - Is there a Link?

    Science.gov (United States)

    Arsenic is a multiorgan human carcinogen. The best-known example of this effect occurred in subgroups of the Taiwanese population who were chronically exposed to high levels of naturally occurring arsenic in drinking water and developed cancers of the skin, lung, urinary bladde...

  20. Arsenic in Ground-Water Resources of the United States

    Science.gov (United States)

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  1. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... p.34-36. (2001) DATA Arsenic in ground-water resources of the United States : U.S. Geological Survey Fact Sheet 063-00. (2000) ... analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations : U.S. ...

  2. The microbial arsenic cycle in Mono Lake, California.

    Science.gov (United States)

    Oremland, Ronald S; Stolz, John F; Hollibaugh, James T

    2004-04-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO(2) into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less "extreme" environments, such as drinking water aquifers. PMID:19712427

  3. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    NARCIS (Netherlands)

    Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediat

  4. Removal of arsenic from contaminated water using coagulation enhanced microfiltration

    International Nuclear Information System (INIS)

    Results of an innovative arsenic removal process were presented. The process is based on a combination of coagulation and microfiltration processes. Coagulation-Enhanced Microfiltration (CEMF) may eventually become a full-scale commercial technology. This study focused on the process with respect to groundwater treatment because of the importance of arsenic contamination in drinking water. Most experiments were bench-scale using tap water spiked with arsenic. Ferric chloride, which is commonly used in arsenic removal processes was also added. In addition, some tests were conducted on actual arsenic-contaminated water from the effluent treatment plant of a former mining site in Ontario. Results indicate a high arsenic removal efficiency in both spiked and actual water solutions. The microfiltration significantly reduced the level of arsenic in the treatment. This paper described the characteristics of membrane separation. It also presented information regarding chemically enhanced membrane filtration and coagulation-enhanced microfiltration. Bench-scale tests were conducted with both tubular membranes and with immersed capillary membranes. The effect of iron to arsenic ratios on the effectiveness of the system was also tested. It was recommended that future research should include a field study of the process on a pilot-scale to optimize process parameters and to accurately determine the cost of the process. 16 refs., 8 tabs., 9 figs

  5. ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be thedetoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba Men, Inner Mo...

  6. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  7. Arsenic and diabetes and hypertension in human populations: A review

    International Nuclear Information System (INIS)

    Long-term exposure to ingested arsenic from drinking water has been well documented to be associated with an increased risk of diabetes mellitus and hypertension in a dose-response relationship among residents of arseniasis-endemic areas in southwestern Taiwan and Bangladesh. An increased risk of self-reported hypertension but not diabetes was reported in a community-based study of residents who consumed drinking water with a low level of arsenic. Increased glycosylated hemoglobin level and systolic blood pressure were observed in workers occupationally exposed to arsenic. Inconsistent findings of arsenic and diabetes in occupational studies may result from the healthy worker effect and the variation in exposure measurement, age composition, number of patients, accuracy in diagnosis and classification of underlying causes of death, competing causes of death, and method to detect diabetes. The dose-response relationship and toxicological mechanisms of arsenic-induced diabetes and hypertension need further elucidation

  8. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  9. Study on arsenic metabolism in animals by neutron activation analysis

    International Nuclear Information System (INIS)

    Male rats fed a diet of 5% Hijiki or 5% cellulose for 2 weeks, were administered large doses of sodium arsenate (Na2HAsO4) during two days. After 24 to 48 hours of the last arsenic administration, respective organs were isolated and dried. Potions of these were irradiated with thermal neutrons in a research reactor of Research Reactor Institute, Kyoto University, KUR. Arsenic concentrations were determined as gamma radiation from 76As. The Hijiki diet enhanced higher concentrations of arsenic in the blood cells than did the cellulose diet. These results suggested that the Hijiki diet has some effects on arsenic metabolism concerning arsenic distribution in body and its excretion. (author)

  10. Various tolerances to arsenic trioxide between human cortical neurons and leukemic cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; MENG Ran; SUI Xinhua; LI Wenbin; YANG Baofeng

    2006-01-01

    Arsenic trioxide (As2O3) is very effective for treatment of acute promyelocytic leukaemia (APL) but little can pass through the blood-brain-barrier (BBB),which limits its use in the prevention and treatment of central nervous system leukaemia (CNSL). Before creating a non-invasive method to help As2O3 's access, the safe and effective therapeutic concentration of As2O3 in the CNS ought to be known. The changes of apoptosis biomarkers, [Ca2+]i and PKC activity of both leukaemia cells and human cortical neurons, were monitored before and after being treated with As2O3 in vitro with laser confocal microscopy and Western blot. NSE concentration, the neuron invasive biomarker, was monitored by enzyme immunoassay (NSE-EIA). This study revealed that cortical neuron was more tolerable to As2O3 compared to NB4. 1.0 μmol / L As2O3 showed little influence on cortical neuron but effectively promoted apoptosis and induced differentiation of NB4.

  11. Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Lang, Mingxiao; Wang, Xiuchao; Wang, Hongwei; Dong, Jie; Lan, Chungen; Hao, Jihui; Huang, Chongbiao; Li, Xin; Yu, Ming; Yang, Yanhui; Yang, Shengyu; Ren, He

    2016-08-10

    Arsenic trioxide (ATO) has been selected as a promising treatment not only in leukemia but also in solid tumors. Previous studies showed that the cytotoxicity of ATO mainly depends on the induction of reactive oxygen species. However, ATO has only achieved a modest effect in pancreatic ductal adenocarcinoma, suggesting that the existing radical scavenging proteins, such as hypoxia inducible factor-1, attenuate the effect. The goal of this study is to investigate the effect of combination treatment of ATO plus PX-478 (hypoxia-inducible factor-1 inhibitor) and its underlying mechanism. Here, we showed that PX-478 robustly strengthened the anti-growth and pro-apoptosis effect of ATO on Panc-1 and BxPC-3 pancreatic cancer cells in vitro. Meanwhile, in vivo mouse xenograft models also showed the synergistic effect of ATO plus PX-478 compared with any single agent. Further studies showed that the anti-tumor effect of ATO plus PX-478 was derived from the reactive oxygen species-induced apoptosis. We next confirmed that Hypoxia-inducible factor-1 cleared reactive oxygen species by its downstream target, forkhead box O transcription factors, and this effect may justify the strategy of ATO plus PX-478 in the treatment of pancreatic cancer. PMID:27212442

  12. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    Science.gov (United States)

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  13. Accumulation of arsenic in leaves and grain are affected by variety and soil arsenic

    Science.gov (United States)

    The arsenic (As) levels in rice grains and food products can reach toxic levels when produced under certain growing conditions found mostly in Asia. The World Health Organization (WHO) recently set a CODEX limit of 0.2 ppm inorganic As in milled white rice, and lower limits are expected to be set f...

  14. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications

    Czech Academy of Sciences Publication Activity Database

    Majzlan, J.; Plášil, Jakub; Škoda, R.; Gescher, J.; Kögler, F.; Rusznyak, A.; Küsel, K.; Neu, T.R.; Mangold, S.; Rothe, J.

    2014-01-01

    Roč. 48, č. 23 (2014), s. 13685-13693. ISSN 0013-936X R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : extreme arsenic concentration Subject RIV: DB - Geology ; Mineralogy Impact factor: 5.330, year: 2014

  15. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  16. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009

    OpenAIRE

    Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; YANG, SUPING

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we i...

  17. Impact of Arsenic Toxicity on Black Gram and Its Amelioration Using Phosphate

    OpenAIRE

    Saumya Srivastava; Yogesh Kumar Sharma

    2013-01-01

    The toxicity of arsenic in soil and ground water is one of the most important environmental problems particularly in South-East Asia. Arsenic-polluted irrigation water creates hazard in soil environment and also in crop quality. In the present study, response of black gram (Vigna mungo L.) to arsenic with or without phosphate application was investigated. Arsenic-treated plants showed reduction in their growth and pigment content. Arsenic significantly enhanced lipid peroxidation, electrolyte...

  18. Losses of arsenic during the low temperature ashing of atmospheric particulate samples

    International Nuclear Information System (INIS)

    Neutron activation and atomic absorption procedures have been used to study arsenic losses during low temperature ashing at power levels between 50 and 125 watts (RF). Losses of arsenic from ambient atmospheric particulate matter and various synthetic sea salt matrices containing known quantities of arsenic was observed. In general, the magnitude of arsenic losses by this treatment will depend on applied power levels and the physical and chemical properties of the arsenic sample matrix

  19. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  20. Monitoring apoptosis in real time.

    Science.gov (United States)

    Green, Allan M; Steinmetz, Neil D

    2002-01-01

    Many therapeutically active anticancer treatments exert their effect by the induction of apoptosis and necrosis. Serial biopsies in breast cancer patients have suggested that response to therapy correlates with early posttreatment increases in tumor apoptotic index. Radiolabeled technetium Tc 99m-recombinant human (rh) annexin V provides a noninvasive technique for imaging treatment-induced cell death. Annexin V is a naturally occurring human protein that binds avidly to membrane-associated phosphatidylserine (PS). PS is normally found only on the inner leaflet of the cell membrane double layer, but it is actively transported to the outer layer as an early event in apoptosis and becomes available for annexin binding. Annexin also gains access to PS as a result of the membrane fragmentation associated with necrosis. In vitro studies of apoptosis using fluorescein annexin have shown good correlation with assessments of apoptosis documented by nuclear DNA degradation and caspase activation. In vivo localization of intravenously administered Tc 99m-annexin V has been demonstrated in numerous preclinical models of apoptosis, including anti-Fas-mediated hepatic apoptosis, rejection of allogeneic heterotopic cardiac allografts, cyclophosphamide treatment of murine lymphoma, cyclophosphamide-induced apoptosis in bone marrow, and leukocyte apoptosis associated with abscess formation. Scintigraphic studies in humans using Tc 99m-rh annexin V have demonstrated the feasibility of imaging cell death in acute myocardial infarction, in tumors with a high apoptotic index, and in response to anti-tumor chemotherapy of non-small cell lung cancer, small-cell lung cancer, breast cancer, lymphoma, and sarcoma. Increased localization of Tc 99m-rh annexin V within 1 to 3 days of chemotherapy has been noted in some, but not all, subjects with these tumors. To date, most subjects showing increased Tc 99m-rh annexin V uptake after the first course of chemotherapy have shown objective

  1. Cardiomyocytic apoptosis and heart failure

    Institute of Scientific and Technical Information of China (English)

    Quanzhou Feng

    2008-01-01

    Heart failure is a major disease seriously threatening human health.Once left ventricular dysfunction develops,cardiac function usually deteriorates and progresses to congestive heart failure in several months or years even if no factors which accelerate the deterioration repeatedly exist.Mechanism through which cardiac function continually deteriorates is still unclear.Cardiomyocytic apoptosis can occur in acute stage of ischemic heart diseases and the compensated stage of cardiac dysfunction.In this review,we summarize recent advances in understanding the role of cardiomyocytic apoptosis in heart failure.

  2. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  3. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  4. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (AsIII) and arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) were determined. Primary methylation index [PMI = MMAV/(AsIII + AsV)] and secondary methylation index (SMI = DMAV/MMAV) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMAV. The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  5. Regulating effects of arsenic trioxide on cell death pathways and inflammatory reactions of pancreatic acinar cells in rats

    Institute of Scientific and Technical Information of China (English)

    XUE Dong-bo; ZHANG Wei-hui; YUN Xiao-guang; SONG Chun; ZHENG Biao; SHI Xing-ye; WANG Hai-yang

    2007-01-01

    Background It is accepted that inflammatory cytokines play a key role in the development of acute pancreatitis, so blocking the initiation of inflammatory reactions may alleviate pathological changes of acute pancreatitis. We studied the regulatory effect of arsenic trioxide (As2O3) on apoptosis and oncosis of pancreatic acinar cells in vitro and in vivo and its therapeutic effect on acute pancreatitis.Methods Pancreatic acinar cells were isolated by collagenase digestion method. Apoptosis and oncosis of isolated pancreatic acinar cells were detected with Hoechst 33258+PI or Annexin V+PI double fluorescent staining. Amylase and lactate dehydrogenase release were measured. Acute pancreatitis was induced in Wistar rats by intraperitoneal injections of caerulein, and apoptosis was detected with terminal dUTP nick-end labeling method. Tumor necorsis factor α (TNF-α) mRNA, myeloperoxidase, nuclear factor-κB and histological grading of pancreatic damage were measured.Results There was an increased apoptosis but a decreased oncosis of pancreatic acinar cell after the treatment with As2O3. The levels of lactate dehydrogenase and amylase release were markedly decreased in As2O3 treated group.Myeloperoxidase content, TNF-α mRNA level, nuclear factor-κB activation and pathological score in As2O3 treated group were significantly lower than in the untreated group.Conclusions As2O3 can induce apoptosis and reduce oncosis of pancreatic acinar cell, thus resulting in reduced release of endocellular enzyme of acinar cells, reduced inflammatory cell infiltration and decreased the production of inflammatory cytokines, so that the outcome of alleviated pathological changes was finally achieved.

  6. Incineration treatment of arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Waterland, L.R.; King, C.; Richards, M.K.; Thurnau, R.C.

    1991-01-01

    An incineration test program was conducted at the US Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The purpose of these tests was to evaluate the incinerability of these soils in terms of the fate of arsenic and lead and the destruction of organic contaminants during the incineration process. The test program consisted of a series of bench-scale experiments with a muffle furnace and a series of incineration tests in a pilot-scale rotary kiln incinerator system.

  7. Arsenic biotransformation in earthworms from contaminated soils

    OpenAIRE

    Button, Mark; Jenkin, Gawen R.T.; Harrington, Chris F.; Michael J. Watts

    2009-01-01

    Two species of arsenic (As) resistant earthworm, Lumbricus rubellus and Dendrodrillus rubidus, their host soils and soil excretions (casts) were collected from 23 locations at a former As mine in Devon, UK. Total As concentrations, measured by ICP-MS, ranged from 255 to 13,080 mg kg-1 in soils, 11 to 877 mg kg-1 in earthworms and 284 to 4221 mg kg-1 in earthworm casts from a sub-sample of 10 of the 23 investigated sites. The samples were also measured for As speciation using HPLC-ICP-MS to in...

  8. Effects of Arsenic Trioxide on Human Renal Cell Carcinoma Lines in Vitro

    Institute of Scientific and Technical Information of China (English)

    屈凤莲; 李艳芬; 万云霞; 马建辉; 石卫; 储大同; 孙燕

    2004-01-01

    Objective: To observe the effects of arsenic trioxide (As2O3) on human renal cell carcinoma (RCC) lines in vitro and to explore its possible molecular mechanisms. Methods: The microculture tetrazolium (MTT) assay was used to determine the anti-proliferative effects of As2O3 on human RCC lines. Flow cytometry was performed to investigate the effects of As2O3 on cell cycle and cell apoptosis. The reverse transcription-polymerase chain reaction (RT-PCR) was conducted to detect mRNA expression of Bcl-2, Bax, p53and c-myc. Results: As2O3 inhibited the growth of RCC lines in vitro in a concentration-dependent manner. At the concentrations of 0.5, 1.0, 2.0 and 4.0 μmol/L, the inhibition rates of As2O3 on RCC-WCS cells were 27.60%, 30.09%, 41.03% and 50.77%, respectively. Compared with untreated RCC-WCS, there was significant difference at each concentration (P<0.01). As2O3 induced a G1 phase arrest in RCC-LSL cells,but a G2/M phase arrest in RCC-WCS and RCC-SHK. As2O3 induced cell apoptosis in these cell lines. The mRNA level of p53 and c-myc decreased, but no detectable changes of Bcl-2 and Bax were observed after As2O3 treatmen. Conclusion: As2O3 in therapeutic concentrations inhibited the in vitro growth of RCC lines via cell cycle arrest and apoptosis. One of its possible mechanisms was down-regulation of p53 and c-myc. Our results suggest that As2O3 is probably a new candidate agent for the treatment of human renal carcinoma.

  9. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    Science.gov (United States)

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils. PMID:26874625

  10. On concentration dependence of arsenic diffusivity in silicon

    Science.gov (United States)

    Velichko, O. I.

    2016-05-01

    An analysis of the equations used for modeling thermal arsenic diffusion in silicon has been carried out. It was shown that for arsenic diffusion governed by the vacancy-impurity pairs and the pairs formed due to interaction of impurity atoms with silicon self-interstitials in a neutral charge state, the doping process can be described by the Fick’s second law equation with a single effective diffusion coefficient which takes into account two impurity flows arising due to interaction of arsenic atoms with vacancies and silicon self-interstitials, respectively. Arsenic concentration profiles calculated with the use of the effective diffusivity agree well with experimental data if the maximal impurity concentration is near the intrinsic carrier concentration. On the other hand, for higher impurity concentrations a certain deviation in the local regions of arsenic distribution is observed. The difference from the experiment can occur due to the incorrect use of effective diffusivity for the description of two different impurity flows or due to the formation of nonuniform distributions of neutral vacancies and neutral self-interstitials in heavily doped silicon layers. We also suppose that the migration of nonequilibrium arsenic interstitial atoms makes a significant contribution to the formation of a low concentration region on thermal arsenic diffusion.

  11. Determination of arsenic in environmental water by NAA

    International Nuclear Information System (INIS)

    A simple and sensitive method for separation of MMA, DMA, As(III) and As(V) is presented. Inorganic arsenic MMA, DMA, As(III) and As(V) are separated by the use of coprecipitation with Fe(OH)3, cation exchange chromatography and extraction combined with neutron activation analysis. The recovery for MMA, DMA, As(III) and As(V) is 96.4%, 103%, 96.3% and 104%, respectively. The applicability of the method to the arsenic species in a fresh water is demonstrated. The detection limit of the method is 0.02 μg/L of arsenic. The results show that the arsenic concentrations in drinking water of Akebameng range from 204 μg/L to 1125 μg/L, which are much higher than the permitted limit (< 50 μg/L). The dominant species of As in drinking water are inorganic arsenic compounds of which occupy 94%-99% of the total arsenic. The concentrations of MMA and DMA in drinking water vary from 4.61 μg/L to 20.7 μg/L and 5.69-18.2 μg/L, of which the ratio of MMA and DMA to total arsenic ranges from 1% to 6%

  12. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  13. Arsenic pollution in the Yellowknife area from gold smelter activities

    International Nuclear Information System (INIS)

    Gold mined at Yelloknife in the North West Territories of Canada is associated with arsenopyrite ores which necessitates the oxidation of the arsenic and sulphur by roasting at two Yellowknife smelters. As2O3 and SO2 are emitted into the atmosphere, and despite improvements in emission control, significant emissions still occur. In order to asses the arsenic contamination in the local environment and the potential exposures to man, soil samples and samples of the native vegetation were collected in and around Yellowknife and the two smelters. Arsenic and antimony analyses were done by instrumental neutron activation analysis using the SLOWPOKE facility at University of Toronto. Zinc, copper, lead and cadmium analyses were done by atomic adsorption spectrophotometry. Arsenic was found to be accumulated in the soils in the vicinity of the two smelters to levels of several thousand ppm. Antimony levels were about 10% of arsenic and were highly correlated with arsenic. Zinc occured to 500 ppm around the smelters. Soil arsenic levels are sufficiently high to inhibit root growth in soils over a very extensive area. (author)

  14. Investigation of biomethylation of arsenic and tellurium during composting

    International Nuclear Information System (INIS)

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg-1 methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg-1 methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  15. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  16. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 1013 n/cm2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  17. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    International Nuclear Information System (INIS)

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg-1, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores

  18. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, M.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom); Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)], E-mail: mark.taggart@uclm.es; Mateo, R. [Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); Charnock, J.M.; Bahrami, F. [Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Green, A.J. [Department of Wetland Ecology, Estacion Biologica de Donana, CSIC, Pabellon del Peru, Avenida Maria Luisa s/n, 41013 Seville (Spain); Meharg, A.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom)

    2009-03-15

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg{sup -1}, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores.

  19. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  20. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  1. Protein Kinase C-δ mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    International Nuclear Information System (INIS)

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta (ΔPKC-δ). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the ΔPKC-δ, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that ΔPKC-δ mediated the down-regulation of hnRNP K protein during apoptosis: PKC-δ inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-δ-deficient apoptotic KG1a cells; conditional induction of ΔPKC-δ in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of ΔPKC-δ. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-δ down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  2. Apoptosis detection in histological sections

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, Lenka; Míšek, Ivan

    2003-01-01

    Roč. 72, č. 7 (2003), s. 18-19. ISSN 0001-7213. [Congress of the European Association of Veterinary Anatomists/24./. 21.07.2002-25.07.2002, Brno] R&D Projects: GA ČR GP204/02/P112 Institutional research plan: CEZ:AV0Z5045916 Keywords : apoptosis Subject RIV: FF - HEENT, Dentistry

  3. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.

    Science.gov (United States)

    Anawar, Hossain M; Akai, Junji; Sakugawa, Hiroshi

    2004-02-01

    Arsenic leaching by bicarbonate ions has been investigated in this study. Subsurface sediment samples from Bangladesh were treated with different carbonate and bicarbonate ions and the results demonstrate that the arsenic leaching efficiency of the carbonate solutions decreased in the order of Na2CO3>NaHCO3>BaCO3>MnCO3. Sodium carbonate and bicarbonate ions extracted arsenic most efficiently; Na2CO3 leached maximum 118.12 microg/l of arsenic, and NaHCO3, 94.56 microg/l of arsenic from the Ganges delta sediments after six days of incubation. The arsenic concentrations extracted in the batch experiments correlated very well with the bicarbonate concentrations. The kinetics study of arsenic release indicates that arsenic-leaching rate increased with reaction time in bicarbonate solutions. Bicarbonate ions can extract arsenic from sediment samples in both oxic and anoxic conditions. A linear relationship found between arsenic contents in core samples and those in leachates suggests that dissolved arsenic concentration in groundwater is related to the amount of arsenic in aquifer sediments. In batch experiment, bicarbonate solutions effectively extracted arsenic from arsenic adsorbed iron oxyhydroxide, reflecting that bicarbonate solutions may mobilize arsenic from iron and manganese oxyhydroxide in sediments that are ubiquitous in subsurface core samples. Carbonate ion may form complexes on the surface sites of iron hydroxide and substitute arsenic from the surface of minerals and sediments resulting in release of arsenic to groundwater. Like in the batch experiment, arsenic and bicarbonate concentrations in groundwater of Bangladesh correlated very well. Therefore, bicarbonate leaching is presumed to be one important mechanism to mobilize arsenic in bicarbonate dominated reducing aquifer of Bangladesh and other parts of the world as well. PMID:14602108

  4. Analytical artefacts in the speciation of arsenic in clinical samples

    International Nuclear Information System (INIS)

    Urine and blood samples of cancer patients, treated with high doses of arsenic trioxide were analysed for arsenic species using HPLC-HGAFS and, in some cases, HPLC-ICPMS. Total arsenic was determined with either flow injection-HGAFS in urine or radiochemical neutron activation analysis in blood fractions (in serum/plasma, blood cells). The total arsenic concentrations (during prolonged, daily/weekly arsenic trioxide therapy) were in the μg mL-1 range for urine and in the ng g-1 range for blood fractions. The main arsenic species found in urine were As(III), MA and DMA and in blood As(V), MA and DMA. With proper sample preparation and storage of urine (no preservation agents/storage in liquid nitrogen) no analytical artefacts were observed and absence of significant amounts of alleged trivalent metabolites was proven. On the contrary, in blood samples a certain amount of arsenic can get lost in the speciation procedure what was especially noticeable for the blood cells although also plasma/serum gave rise to some disappearance of arsenic. The latter losses may be attributed to precipitation of As(III)-containing proteins/peptides during the methanol/water extraction procedure whereas the former losses were due to loss of specific As(III)-complexing proteins/peptides (e.g. cysteine, metallothionein, reduced GSH, ferritin) on the column (Hamilton PRP-X100) during the separation procedure. Contemporary analytical protocols are not able to completely avoid artefacts due to losses from the sampling to the detection stage so that it is recommended to be careful with the explanation of results, particularly regarding metabolic and pharmacokinetic interpretations, and always aim to compare the sum of species with the total arsenic concentration determined independently

  5. Analytical artefacts in the speciation of arsenic in clinical samples

    Energy Technology Data Exchange (ETDEWEB)

    Slejkovec, Zdenka [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)], E-mail: zdenka.slejkovec@ijs.si; Falnoga, Ingrid [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Goessler, Walter [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Universitaetsplatz 1, Graz (Austria); Elteren, Johannes T. van [National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Raml, Reingard [Institute of Chemistry - Analytical Chemistry, Karl-Franzens University Graz, Universitaetsplatz 1, Graz (Austria); Podgornik, Helena; Cernelc, Peter [University Medical Centre Ljubljana, Zaloska 7, 1000 Ljubljana (Slovenia)

    2008-01-21

    Urine and blood samples of cancer patients, treated with high doses of arsenic trioxide were analysed for arsenic species using HPLC-HGAFS and, in some cases, HPLC-ICPMS. Total arsenic was determined with either flow injection-HGAFS in urine or radiochemical neutron activation analysis in blood fractions (in serum/plasma, blood cells). The total arsenic concentrations (during prolonged, daily/weekly arsenic trioxide therapy) were in the {mu}g mL{sup -1} range for urine and in the ng g{sup -1} range for blood fractions. The main arsenic species found in urine were As(III), MA and DMA and in blood As(V), MA and DMA. With proper sample preparation and storage of urine (no preservation agents/storage in liquid nitrogen) no analytical artefacts were observed and absence of significant amounts of alleged trivalent metabolites was proven. On the contrary, in blood samples a certain amount of arsenic can get lost in the speciation procedure what was especially noticeable for the blood cells although also plasma/serum gave rise to some disappearance of arsenic. The latter losses may be attributed to precipitation of As(III)-containing proteins/peptides during the methanol/water extraction procedure whereas the former losses were due to loss of specific As(III)-complexing proteins/peptides (e.g. cysteine, metallothionein, reduced GSH, ferritin) on the column (Hamilton PRP-X100) during the separation procedure. Contemporary analytical protocols are not able to completely avoid artefacts due to losses from the sampling to the detection stage so that it is recommended to be careful with the explanation of results, particularly regarding metabolic and pharmacokinetic interpretations, and always aim to compare the sum of species with the total arsenic concentration determined independently.

  6. Arsenic in public water supplies and cardiovascular mortality in Spain

    International Nuclear Information System (INIS)

    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from 10 μg/L. Compared to municipalities with arsenic concentrations 10 μg/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking water were associated with increased cardiovascular mortality at the municipal level. Prospective cohort studies with individual measures of arsenic exposure, standardized cardiovascular outcomes, and adequate adjustment for confounders are needed to confirm these ecological findings. Our study, however, reinforces the need to implement arsenic remediation treatments in water supply systems above the World Health Organization safety standard of 10 μg/L.

  7. Measurements of Arsenic in the Urine and Nails of Individuals Exposed to Low Concentrations of Arsenic in Drinking Water From Private Wells in a Rural Region of Québec, Canada.

    Science.gov (United States)

    Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France

    2016-01-01

    Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p water inorganic arsenic intake (p water inorganic arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic. PMID:26867295

  8. An Immunohistological and in Situ Hybridization Study of Arsenical Keratosis

    OpenAIRE

    FUJIWARA, Hiroshi; Tazawa, Toshio; Yamamoto, Ayako; Ito, Masaaki

    1996-01-01

    Arsenical keratosis (AK) is a common early sign of chronic arsenicism. The association between arsenicism and Bowen's disease is well documented, but a definitive understanding of the relation between AK and Bowen's disease remains elusive. In this study, eight cases of AK were examined immunohistologically with antibodies for cytokeratins, epidermal growth factor receptor, erbB2 protein, c-myc protein, and ki-67. An in situ hybridization study for c-myc, v-erb-B, and erbB2 mRNA was also perf...

  9. Arsenic-transforming microbes and their role in biomining processes

    OpenAIRE

    Drewniak, L.; Sklodowska, A.

    2013-01-01

    It is well known that microorganisms can dissolve different minerals and use them as sources of nutrients and energy. The majority of rock minerals are rich in vital elements (e.g., P, Fe, S, Mg and Mo), but some may also contain toxic metals or metalloids, like arsenic. The toxicity of arsenic is disclosed after the dissolution of the mineral, which raises two important questions: (1) why do microorganisms dissolve arsenic-bearing minerals and release this metal into the environment in a tox...

  10. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  11. Reduction in Urinary Arsenic with Bottled-water Intervention

    OpenAIRE

    Josyula, Arun B.; McClellen, Hannah; Hysong, Tracy A.; Kurzius-Spencer, Margaret; Poplin, Gerald S.; Stürup, Stefan; Burgess, Jefferey L.

    2006-01-01

    The study was conducted to measure the effectiveness of providing bottled water in reducing arsenic exposure. Urine, tap-water and toenail samples were collected from non-smoking adults residing in Ajo (n=40) and Tucson (n=33), Arizona, USA. The Ajo subjects were provided bottled water for 12 months prior to re-sampling. The mean total arsenic (μg/L) in tap-water was 20.3±3.7 in Ajo and 4.0±2.3 in Tucson. Baseline urinary total inorganic arsenic (μg/L) was significantly higher among the Ajo s...

  12. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    International Nuclear Information System (INIS)

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  13. The Total Arsenic Concentrations of Aquatic Products and the Assessment of Arsenic Intake from Aquatic Products in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Yu Guang-Hui

    2015-07-01

    Full Text Available The aim of this study was to assess the contribution of aquatic products consumed by the resident to the daily dietary arsenic intakes of the residents of Guangzhou of Guangdong province in China. All aquatic products were sampled from supermarkets and terminal markets. Accuracy was assured using standard reference material (GBW08551 and recovery experiments. Total arsenic concentrations of aquatic products were determined after acid digestion by hydride generation atomic fluorescent spectrometry. A wide range of arsenic concentration (0.0075-1.2017 mg/kg was found among the various aquatic products, the mean arsenic concentration in aquatic production was 0.2022 mg/kg. The arsenic concentrations of various aquatic products groups were as follows: Crustacean (0.3176±0.2324 mg/kg >Mollusk fish (0.1979±0.2013 mg/k >Saltwater fish (0.1558±0.1119 mg/kg >Freshwater fish (0.1374±0.0970 mg/kg. The range of daily dietary arsenic intake of various residents through the consumption of aquatic products was 5.96-11.85 µg/day. The freshwater fish had the largest contribution to the daily dietary arsenic intakes from aquatic products in all type aquatic products, accounted for around 50%.

  14. Bacterial respiration of arsenic and selenium

    Science.gov (United States)

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  15. Arsenic trioxide: an ancient drug revived

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin

    2012-01-01

    Objective To summarize the clinical applications of arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL),as well as non-APL malignancies and to discuss the mechanisms and adverse effects involved in ATO administration.Data sources The data in this article were collected from PubMed and CHKD database with relevant English and Chinese articles published from 1957 to 2011,with key words including acute promyelocytic leukemia,arsenic trioxide,treatment,and mechanism.Study selection Articles including any information about ATO in the treatment of APL were selected.Results APL is a rare subtype of acute myeloid leukemia,with dismal prognosis under treatment with traditional chemotherapy.ATO impressively increases the complete remission rate and prolongs survival of patients with APL,with only mild and transient adverse effects.The advances in the understanding of multiple mechanisms involved in ATO treatment will benefit more cancers in future.Conclusion Deeper understanding of mechanisms involved in ATO treatment may provide rationales for future clinical applications in a number of human malignancies.Chin Med J 2012; 125( 19):3556-3560

  16. Arsenic chemistry and remediation in Hawaiian soils.

    Science.gov (United States)

    Hue, Nguyen V

    2013-01-01

    Past use of arsenical pesticides has resulted in elevated levels of arsenic (As) in some Hawaiian soils. Total As concentrations of 20-100 mg/kg are not uncommon, and can exceed 900 mg/kg in some lands formerly planted with sugarcane. With high contents of amorphous aluminosilicates and iron oxides in many Hawaii's volcanic ash-derived Andisols, a high proportion (25-30%) of soil As was associated with either these mineral phases or with organic matter. Less than 1% of the total As was water soluble or exchangeable. Furthermore, the soils can sorb As strongly: the addition of 1000 mg/kg as As (+5) resulted in only between 0.03 and 0.30 mg/L As in soil solution. In contrast, soils having more crystalline minerals (e.g., Oxisols) sorb less As and thus often contain less As. Phosphate fertilization increases As bioaccessibility, whereas the addition of Fe(OH)3 decreases it. Brake fern (Pteris vittata L.) can be used to remove some soil As. Concentrations of As in fronds varied on average from 60 mg/kg when grown on a low-As Oxisol to 350 mg/kg when grown on a high-As Andisol. Ratios of leaf As to CaCl2-extractable soil As were 12 and 222 for the Oxisol and Andisol, respectively. PMID:23487989

  17. Inorganic arsenic - SPE HG-AAS method for RICE tested in-house and collaboratively

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Qian, Yiting; Sloth, Jens Jørgen

    Arsenic (As) is a trace element present in the environment and consequently in various food items, e.g. rice, which may contain relatively high concentration of arsenic compared to other foodstuffs of plant origin. Rice contains most often three forms of arsenic; inorganic arsenic (iAs) and the m......Arsenic (As) is a trace element present in the environment and consequently in various food items, e.g. rice, which may contain relatively high concentration of arsenic compared to other foodstuffs of plant origin. Rice contains most often three forms of arsenic; inorganic arsenic (i...... and is one of the major contributors to the iAs exposure in many countries. The work presented here describes the development, validation and application of a simple and inexpensive method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds (MA...

  18. Removal of arsenic from ground water samples collected from West Bengal, India

    International Nuclear Information System (INIS)

    Arsenic contamination in ground water is one of the major concerns in many parts of the world including Bangladesh and India. Considering the high toxicity of arsenic, World Health Organization (WHO) has set a provisional guideline value of 10 μg L-1 for arsenic in drinking water. Several methods have been adopted for the removal of arsenic from drinking water. Most of the methods fail to remove As(III), the most toxic form of arsenic. An extra oxidative treatment step is essential for effective removal of total arsenic. Manganese dioxide (MnO2) oxidizes As(III) to As(V). Removal of arsenic from water using manganese dioxide has been reported. During this work, removal of arsenic from ground water samples collected from arsenic contaminated area of West Bengal, India were carried out using MnO2

  19. Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract.

    Science.gov (United States)

    Chávez-Capilla, Teresa; Beshai, Mona; Maher, William; Kelly, Tamsin; Foster, Simon

    2016-12-01

    Humans are exposed to organic arsenic species through their diet and therefore, are susceptible to arsenic toxicity. Investigating the transformations occurring in the gastrointestinal tract will influence which arsenic species to focus on when studying metabolism in cells. Using a physiologically based extraction test, the bioaccessibility of arsenic species was determined after the simulated gastrointestinal digestion of rice, seaweed and fish. Pure standards of the major arsenic species present in these foodstuffs (arsenic glutathione complexes, arsenosugars and short chain fatty acids) were also evaluated to assess the effect of the food matrix on bioaccessibility and transformation. Approximately 80% of arsenic is released from these foodstuffs, potentially becoming available. Hydrolysis and demethylation of arsenic glutathione complexes and arsenosugars standards was observed, but no transformations occurred to arsenosugars present in seaweed. Demethylation of MA and DMA from rice occurs increasing the amount of inorganic arsenic species available for metabolism. PMID:27374523

  20. DEVELOPMENT OF ARSENIC SPECIATION METHODOLOGY FOR DETERMINING BACKGROUND EXPOSURE LEVELS OF INORGANIC ARSENIC IN DIETARY SAMPLES AND APPLICATION TO IN VITRO BIOACCESSIBILITY STUDIES

    Science.gov (United States)

    Ingestion of arsenic is the primary route of exposure for most people, with dietary intake and drinking water as the primary sources of that exposure. Traditionally, measurements of arsenic dietary intake are based on food consumption data coupled with total arsenic data from a ...

  1. Management of the Arsenic Groundwater System Lagunera - MEXICO

    Science.gov (United States)

    Boochs, P. W.; Billib, M.; Aparicio, J.; Gutierrez, C.

    2007-05-01

    Arsenic in drinking water is considered one of the most important environmental causes of cancer mortality in the world. Groundwater resources of the Comarca Lagunera region (Northern Mexico), which represents the main source of drinking water for more than 2 million people in the area, show arsenic concentrations ranging from 5 to 750 micro g/l. Large areas have concentrations quite above the Mexican standard of 25 micro g/l for human use and consumption. The aquifer is overexploited and the groundwater levels at the central part of the aquifer are drawn down more than 100 m in less than 50 years. The drawdown provoked the dissolution and migration of the geogenic existing arsenic within the aquifer. The presence of arsenic has been related to several potential sources. It was found out, that the main source is geothermal activity, less mining and the use of arsenical pesticides. The process of the geneses of the arsenic pollution implicates, that the highest content is on the bottom of the aquifer. Data analysis showed, that arsenic concentration is correlated to the age of the groundwater. "Older" water has higher arsenic content than "younger" water and the oldest water can be found at the bottom of the aquifer. Before 1950 the groundwater level in the Comarca Lagunera was close to the surface and there were only dug and shallow wells with low groundwater abstraction. The water was pumped from the upper parts of the aquifer and because this was "young" water it had low arsenic content. Then after 1950 a lot of wells, mainly for irrigation, were built and in 2002 there were 2350 active wells with an abstraction of about 1088 Mio cbm/year. In consequence to this the groundwater level decreased extraordinary. More and more "older" water was pumped and the arsenic content increased. Furthermore at the beginning of 1960 the river Nazas was canalized and lined, so that the natural groundwater recharge by infiltration from the river was stopped. By this way, the

  2. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  3. A methodological approach for the identification of arsenic bearing phases in polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Matera, V.; Le Hecho, I.; Laboudigue, A.; Thomas, P.; Tellier, S.; Astruc, M

    2003-11-01

    Arsenic in the three polluted soils is mainly associated with neoformed amorphous iron (hydr)oxides. - A methodological approach is used to characterize arsenic pollution in three soils and to determine arsenic speciation and association with solid phases in three polluted soils. HPLC-ICP-MS was used for arsenic speciation analysis, SEM-EDS and XRD for physical characterization of arsenic pollution, and sequential chemical extractions to identify arsenic distribution. Arsenic was concentrated in the finest size fractions also enriched in iron and aluminium. Total arsenic concentrations in soils are close to 1%. Arsenic was mainly present as arsenate, representing more than 90% of total arsenic. No crystallised arsenic minerals were detected by XRD analysis. SEM-EDS observations indicated arsenic/iron associations. Modified Tessier's procedure showed that arsenic was mainly extracted from amorphous iron oxide phase. The results of this methodological approach lead to predict the formation of iron arsenates in the case of one of the studied soils while arsenic sorption on iron amorphous (hydr)oxides seemed to be the determinant in the two other soils.

  4. A methodological approach for the identification of arsenic bearing phases in polluted soils

    International Nuclear Information System (INIS)

    Arsenic in the three polluted soils is mainly associated with neoformed amorphous iron (hydr)oxides. - A methodological approach is used to characterize arsenic pollution in three soils and to determine arsenic speciation and association with solid phases in three polluted soils. HPLC-ICP-MS was used for arsenic speciation analysis, SEM-EDS and XRD for physical characterization of arsenic pollution, and sequential chemical extractions to identify arsenic distribution. Arsenic was concentrated in the finest size fractions also enriched in iron and aluminium. Total arsenic concentrations in soils are close to 1%. Arsenic was mainly present as arsenate, representing more than 90% of total arsenic. No crystallised arsenic minerals were detected by XRD analysis. SEM-EDS observations indicated arsenic/iron associations. Modified Tessier's procedure showed that arsenic was mainly extracted from amorphous iron oxide phase. The results of this methodological approach lead to predict the formation of iron arsenates in the case of one of the studied soils while arsenic sorption on iron amorphous (hydr)oxides seemed to be the determinant in the two other soils

  5. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    International Nuclear Information System (INIS)

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  6. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China)

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  7. The role of apoptosis in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    B. D. Uhal

    2008-12-01

    Full Text Available Apoptosis has been defined as "gene-directed cellular self-destruction" and is an active process that is tightly regulated by a number of gene products, which promote or block cell death. Apoptotic death can be triggered by a wide variety of stimuli and, importantly, not all cells necessarily undergo apoptosis in response to the same stimulus. Abnormal regulation of apoptosis has been implicated in a wide range of diseases and approaches to modifying apoptosis represent important future therapeutic strategies. Idiopathic pulmonary fibrosis (IPF is a progressive and relentless disease involving scarring of the lung, which has been recognised as the most lethal interstitial lung disease. In the lungs of IPF patients, increased epithelial apoptosis, together with decreased apoptosis of myofibroblasts, represents persistent findings (particularly in areas of collagen deposition supporting an interaction between altered apoptosis and the pathogenesis of the disease. Data from human tissues and animal models are refining current knowledge of the processes involved in this pathogenesis. This has challenged the dogma that IPF is purely a disease of unresolved inflammation by emphasising the central roles played by the alveolar epithelial cell and myofibroblasts and, as part of that role, the importance of altered apoptosis. Evidence suggests blockade of epithelial cell apoptosis can prevent subsequent collagen deposition, and induction of myofibroblast apoptosis, at least theoretically, would be expected to resolve ongoing fibrosis. These two concepts raise the prospect of therapeutic intervention aimed at modifying apoptosis and, thus, fibrosis in idiopathic pulmonary fibrosis.

  8. N-6-Adenine-Specific DNA Methyltransferase 1 (N6AMT1) Polymorphisms and Arsenic Methylation in Andean Women

    OpenAIRE

    Harari, Florencia; Engström, Karin; Concha, Gabriela; Colque, Graciela; Vahter, Marie; Broberg, Karin

    2013-01-01

    BACKGROUND: In humans, inorganic arsenic is metabolized to methylated metabolites mainly by arsenic (+3 oxidation state) methyltransferase (AS3MT). AS3MT polymorphisms are associated with arsenic metabolism efficiency. Recently, a putative N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) was found to methylate arsenic in vitro. OBJECTIVE: We evaluated the role of N6AMT1 polymorphisms in arsenic methylation efficiency in humans. METHODS: We assessed arsenic methylation efficiency in 188 w...

  9. Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India.

    Science.gov (United States)

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2013-03-01

    Sixty-four arsenic (As) resistant bacteria isolated from an arsenic rich groundwater sample of West Bengal were characterized to investigate their potential role in subsurface arsenic mobilization. Among the isolated strains predominance of genera Agrobacterium/Rhizobium, Ochrobactrum and Achromobacter which could grow chemolitrophically and utilize arsenic as electron donor were detected. Higher tolerance to As(3+) [maximum tolerable concentration (MTC): ≥10 mM], As(5+) (MTC: ≥100 mM) and other heavy metals like Cu(2+), Cr(2+), Ni(2+) etc. (MTC: ≥10 mM), presence of arsenate reductase and siderophore was frequently observed among the isolates. Ability to produce arsenite oxidase and phosphatase enzyme was detected in 50 and 34 % of the isolates, respectively. Although no direct correlation among taxonomic identity of bacterial strains and their metabolic abilities as mentioned above was apparent, several isolates affiliated to genera Ochrobactrum, Achromobacter and unclassified Rhizobiaceae members were found to be highly resistant to As(3+) and As(5+) and positive for all the test properties. Arsenate reductase activity was found to be conferred by arsC gene, which in many strains was coupled with arsenite efflux gene arsB as well. Phylogenetic incongruence between the 16S rRNA and ars genes lineages indicated possible incidence of horizontal gene transfer for ars genes. Based on the results we propose that under the prevailing low nutrient condition inhabitant bacteria capable of using inorganic electron donors play a synergistic role wherein siderophores and phosphatase activities facilitate the release of sediment bound As(5+), which is subsequently reduced by arsenate reductase resulting into the mobilization of As(3+) in groundwater. PMID:23238642

  10. Oceanic arsenic detoxication: the path of arsenic in marine food chains

    International Nuclear Information System (INIS)

    Arsenate appears to be readily metabolized by all marine algae. Its metabolism and mechanisms for biodegradation of the accumulated arsenolipids was investigated. The objective was to acquire sufficient understanding of the paths of arsenic in marine food chains to be able to evaluate the problems it might present to marine organisms and their effective productivity and the hazards its intermediates might present in marine products for human nutrition

  11. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    International Nuclear Information System (INIS)

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg-1 in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg-1. - Highlights: → Environmental assessment of an abandoned arsenical tungsten mining exploitation. → Under the present soils conditions As mobility is relatively low, with [As]soluble/[As]total ≤ 2%. → The highest risk of As mobilisation would take place under reducing conditions. → The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. → The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  12. Photooxidation of arsenic(III) to arsenic(V) on the surface of kaolinite clay.

    Science.gov (United States)

    Ding, Wei; Wang, Yajie; Yu, Yingtan; Zhang, Xiangzhi; Li, Jinjun; Wu, Feng

    2015-10-01

    As one of the most toxic heavy metals, the oxidation of inorganic arsenic has drawn great attention among environmental scientists. However, little has been reported on the solar photochemical behavior of arsenic species on top-soil. In the present work, the influencing factors (pH, relative humidity (RH), humic acid (HA), trisodium citrate, and additional iron ions) and the contributions of reactive oxygen species (ROS, mainly HO and HO2/O2(-)) to photooxidation of As(III) to As(V) on kaolinite surfaces under UV irradiation (λ=365nm) were investigated. Results showed that lower pH facilitated photooxidation, and the photooxidation efficiency increased with the increase of RH and trisodium citrate. Promotion or inhibition of As(III) photooxidation by HA was observed at low or high dosages, respectively. Additional iron ions greatly promoted the photooxidation, but excessive amounts of Fe(2+) competed with As(III) for oxidation by ROS. Experiments on scavengers indicated that the HO radical was the predominant oxidant in this system. Experiments on actual soil surfaces proved the occurrence of As(III) photooxidation in real topsoil. This work demonstrates that the photooxidation process of As(III) on the soil surface should be taken into account when studying the fate of arsenic in natural soil newly polluted with acidic wastewater containing As(III). PMID:26456603

  13. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    Energy Technology Data Exchange (ETDEWEB)

    Otones, V. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Garcia-Sanchez, A.; Santa Regina, I. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Murciego, A. [Department of Geology, Plza. de los Caidos s/n., Salamanca University, 37008 Salamanca (Spain)

    2011-10-15

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg{sup -1} in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg{sup -1}. - Highlights: > Environmental assessment of an abandoned arsenical tungsten mining exploitation. > Under the present soils conditions As mobility is relatively low, with [As]{sub soluble}/[As]{sub total} {<=} 2%. > The highest risk of As mobilisation would take place under reducing conditions. > The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. > The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  14. Speciation of arsenic and mercury in feed: why and how?

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sloth, Jens Jørgen

    The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area of...... toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic...... mercury. In the present paper an overview of the current knowledge on arsenic and mercury speciation in feed and analytical methodologies for arsenic and mercury speciation analysis are given. Additionally the current status and expected future developments within legislation for trace element speciation...

  15. Speciation neutron activation analysis for arsenic in marine fish

    International Nuclear Information System (INIS)

    Neutron activation analysis (NAA) methods involving chemical separations prior to irradiations can be developed to determine the species of an element. The technique can be called speciation NAA (SNAA). We have developed SNAA methods for assaying various arsenic species, namely As(III), As(V), dimethyl arsonic acid (DMA), monomethylarsinic acid (MMA), arsenobetaine (AsB), organically bound arsenic (OBAs), and lipid-soluble arsenic (LSAs) in marine fish samples. The method involves extraction by a methanol-MIBK-water system, cation exchange chromatography, and HPLC followed by NAA. The detection limits for various arsenic species are around 20 ng g-1 of fish under the experimental conditions of 2-h irradiation in a neutron flux of 5x1011 cm-2 s-1 at the Dalhousie University SLOWPOKE-2 facility. Details of the methods and results are presented

  16. A terminal molybdenum arsenide complex synthesized from yellow arsenic.

    Science.gov (United States)

    Curley, John J; Piro, Nicholas A; Cummins, Christopher C

    2009-10-19

    A terminal molybdenum arsenide complex is synthesized in one step from the reactive As(4) molecule. The properties of this complex with its arsenic atom ligand are discussed in relation to the analogous nitride and phosphide complexes. PMID:19764796

  17. ARSENIC INDUCTION OF HEME OXYGENASE AS A BIOMARKER

    Science.gov (United States)

    Useful biomarkers of arsenic effects in both experimental animals and humans are needed. Arsenate and arsenite are good inducers of rat hepatic and renal heme oxygenase (HO); monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are not. Therefore, HO enzyme induction ...

  18. Treatment of arsenic-contaminated water using akaganeite adsorption

    Science.gov (United States)

    Cadena C., Fernando; Johnson, Michael D.

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  19. Speciation of arsenic and mercury in feed: why and how?

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sloth, Jens Jørgen

    2011-01-01

    The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area of...... toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic...... mercury. In the present paper an overview of the current knowledge on arsenic and mercury speciation in feed and analytical methodologies for arsenic and mercury speciation analysis are given. Additionally the current status and expected future developments within legislation for trace element speciation...

  20. The polarographic electroreduction of uranyl ion in arsenic acid solution

    International Nuclear Information System (INIS)

    The electroreduction of uranyl ion in arsenic acid studied by d.c. polarography shows one reduction wave at all the used arsenic acid concentrations corresponding to one electron reduction mechanism. At low arsenic acid concentration (0,1 - 0,3 M)UO2(ClO4)2 is reduced to HUO2AsO4. At higher acid concentration (0,6 M) the HUO2AsO4 molecules are reduced to UO2+ (pentavalent uranium). It is also reliable to study polarographic behaviour of uranyl ions in arsenic acid solutions up to pH 3,01. It is also possible to apply this method for the analytical determination of uranyl ion concentrations up to 2 mM. (Author)

  1. Biotransformation of inorganic arsenic in germfree and conventional mice

    International Nuclear Information System (INIS)

    Whole-body retention of orally administered 74As-labelled arsenic increased with increasing dose (0.4-4 mg/kg b.wt) in mice. As(III) was retained to a greater extent than As(V) at the high doses. Methylated arsenic (in percent of dose) in 48-hour urine decreased with increasing dose level. As(III) was generally more methylated than As(V). Differences in retention in relation to valence state and dose is discussed against the differences in methylation, binding and excretion of the different forms of arsenic. Germfree mice were shown to methylate inorganic arsenic to the same extent as conventional mice. Intestinal bacteria can thus not be a major source of methylation in mice. (author)

  2. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  3. Detection of Arsenic in the Atmospheres of Dying Stars

    CERN Document Server

    Chayer, Pierre; Kruk, Jeffrey W

    2014-01-01

    We report the detection of As V resonance lines observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of three hot DA white dwarfs: G191-B2B, WD0621-376, and WD2211-495. The stars have effective temperatures ranging from 60,000 K to 64,000 K and are among the most metal-rich white dwarfs known. We measured the arsenic abundances not only in these stars, but also in three DO stars in which As has been detected before: HD149499B, HZ21, and RE0503-289. The arsenic abundances observed in the DA stars are very similar. This suggests that radiative levitation may be the mechanism that supports arsenic. The arsenic abundance in HZ21 is significantly lower than that observed in HD149499B, even though the stars have similar atmospheric parameters. An additional mechanism may be at play in the atmospheres of these two DO stars.

  4. Plants as useful vectors to reduce environmental toxic arsenic content.

    Science.gov (United States)

    Mirza, Nosheen; Mahmood, Qaisar; Maroof Shah, Mohammad; Pervez, Arshid; Sultan, Sikander

    2014-01-01

    Arsenic (As) toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants. PMID:24526924

  5. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Directory of Open Access Journals (Sweden)

    Nosheen Mirza

    2014-01-01

    Full Text Available Arsenic (As toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  6. Arsenic in public water supplies and cardiovascular mortality in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Ma Jose, E-mail: pmedrano@isciii.es [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Boix, Raquel; Pastor-Barriuso, Roberto [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Palau, Margarita [Subdireccion General de Sanidad Ambiental y Salud Laboral, Direccion General de Salud Publica y Sanidad Exterior, Ministerio de Sanidad y Politica Social, Madrid (Spain); Damian, Javier [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Ramis, Rebeca [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); CIBER en Epidemiologia y Salud Publica (CIBERESP), Madrid (Spain); Barrio, Jose Luis del [Departamento de Salud Publica, Universidad Rey Juan Carlos, Madrid (Spain); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States)

    2010-07-15

    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from <1 to 118 {mu}g/L. Compared to the overall Spanish population, sex- and age-adjusted mortality rates for cardiovascular (SMR 1.10), coronary (SMR 1.18), and cerebrovascular (SMR 1.04) disease were increased in municipalities with arsenic concentrations in drinking water >10 {mu}g/L. Compared to municipalities with arsenic concentrations <1 {mu}g/L, fully adjusted cardiovascular mortality rates were increased by 2.2% (-0.9% to 5.5%) and 2.6% (-2.0% to 7.5%) in municipalities with arsenic concentrations between 1-10 and>10 {mu}g/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking

  7. Utility of arsenic-treated bird skins for DNA extraction

    Directory of Open Access Journals (Sweden)

    Gamauf Anita

    2011-06-01

    Full Text Available Abstract Background Natural history museums receive a rapidly growing number of requests for tissue samples from preserved specimens for DNA-based studies. Traditionally, dried vertebrate specimens were treated with arsenic because of its toxicity and insect-repellent effect. Arsenic has negative effects on in vivo DNA repair enzymes and consequently may inhibit PCR performance. In bird collections, foot pad samples are often requested since the feet were not regularly treated with arsenic and because they are assumed to provide substantial amounts of DNA. However, the actual influence of arsenic on DNA analyses has never been tested. Findings PCR success of both foot pad and body skin samples was significantly lower in arsenic-treated samples. In general, foot pads performed better than body skin samples. Moreover, PCR success depends on collection date in which younger samples yielded better results. While the addition of arsenic solution to the PCR mixture had a clear negative effect on PCR performance after the threshold of 5.4 μg/μl, such high doses of arsenic are highly unlikely to occur in dried zoological specimens. Conclusions While lower PCR success in older samples might be due to age effects and/or DNA damage through arsenic treatment, our results show no inhibiting effect on DNA polymerase. We assume that DNA degradation proceeds more rapidly in thin tissue layers with low cell numbers that are susceptible to external abiotic influences. In contrast, in thicker parts of a specimen, such as foot pads, the outermost horny skin may act as an additional barrier. Since foot pads often performed better than body skin samples, the intention to preserve morphologically important structures of a specimen still conflicts with the aim to obtain optimal PCR success. Thus, body skin samples from recently collected specimens should be considered as alternative sources of DNA.

  8. Microbial arsenic metabolism: New twists on an old poison

    Science.gov (United States)

    Stolz, J.F.; Basu, P.; Oremland, R.S.

    2010-01-01

    Phylogenetically diverse microorganisms metabolize arsenic despite its toxicity and are part of its robust iogeochemical cycle. Respiratory arsenate reductase is a reversible enzyme, functioning in some microbes as an arsenate reductase but in others as an arsenite oxidase. As(III) can serve as an electron donor for anoxygenic photolithoautotrophy and chemolithoautotrophy. Organoarsenicals, such as the feed additive roxarsone, can be used as a source of energy, releasing inorganic arsenic.

  9. Factors influencing the metabolism of inorganic arsenic in humans

    OpenAIRE

    Lindberg, Anna-Lena

    2007-01-01

    p>Inorganic arsenic (iAs), a naturally occurring drinking water contaminant, is a potent human carcinogen and toxicant. It is believed that in humans, as well as in most mammals, inorganic arsenic is biotransformed via reduction and methylation using one-carbon metabolism with S-adenosyl methionine (SAM) as methyl donor, and is excreted mainly in urine as dimethylarsinate (DMA) and methylarsonate (MA) as well as some unmethylated iAs (arsenate (As(V)) and arsenite (As(III))....

  10. Assessing Anthracene and Arsenic Contamination within Buffalo River Sediments

    OpenAIRE

    Adrian Gawedzki; K. Wayne Forsythe

    2012-01-01

    Anthracene and arsenic contamination concentrations at various depths in the Buffalo River were analyzed in this study. Anthracene is known to cause damage to human skin and arsenic has been linked to lung and liver cancer. The Buffalo River is labelled as an Area of Concern defined by the Great Lakes Water Quality Agreement between Canada and the United States. It has a long history of industrial activity located in its near vicinity that has contributed to its pollution. An ordinary kriging...

  11. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    OpenAIRE

    Peng Chen; Lei Yan; Qiang Wang; Hongyu Li

    2013-01-01

    The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed high...

  12. Arsenic-Based Antineoplastic Drugs and Their Mechanisms of Action

    OpenAIRE

    Ralph, Stephen John

    2008-01-01

    Arsenic-based compounds have become accepted agents for cancer therapy providing high rates of remission of some cancers such as acute promyelocytic leukemia (APL). The mechanisms by which arsenic-containing compounds kill cells and reasons for selective killing of only certain types of cancer cells such as APLs have recently been delineated. This knowledge was gained in parallel with increasing understanding and awareness of the importance of intracellular redox systems and regulation of the...

  13. Study of arsenic diffusion in dental therapy by nuclear methods

    International Nuclear Information System (INIS)

    Activation by fast neutrons (14 MeV) allows the evaluation of radioactive arsenic distribution in the different parts of teeth of which the nerve was killed. As an average 60 % of the arsenic is found in the upper part 4.3 % in the middle part and 2.2 % in the apical part. About 34 % of arsenious anhydride is diffused into the organism. This quantitative analysis is a contribution to the therapeutic choice in function of element diffusion

  14. Cancer excess after arsenic exposure from contaminated milk powder

    DEFF Research Database (Denmark)

    Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki;

    2011-01-01

    Long-term exposure to inorganic arsenic is related to increased risk of cancer in the lung, skin, bladder, and, possibly, other sites. However, little is known about the consequences of developmental exposures in regard to cancer risk. During early summer in 1955, mass arsenic poisoning of infant...... occurred in the western part of Japan because of contaminated milk powder. Okayama Prefecture was most severely affected. We examined whether the affected birth cohorts in this prefecture experienced increased cancer mortality....

  15. Field Deployable Method for Arsenic Speciation in Water.

    Science.gov (United States)

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  16. Carbon Nanotubes Technology for Removal of Arsenic from Water

    OpenAIRE

    Ali Naghizadeh; Ahmad Reza Yari; Hamid Reza Tashauoei; Mokhtar Mahdavi; Elham Derakhshani; Rahman Rahimi; Pegah Bahmani; Hiva Daraei; Esmaeil Ghahremani

    2012-01-01

    Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1):6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough poi...

  17. Arsenic mobilization processes in the red river delta, Vietnam. Towards a better understanding of the patchy distribution of dissolved arsenic in alluvial deposits

    Energy Technology Data Exchange (ETDEWEB)

    Eiche, Elisabeth

    2009-07-01

    In this work the spatial variability of dissolved arsenic concentrations in aquifers was studied in a small village in the vicinity of Ha Noi, Vietnam. The main goal was to identify major geochemical, sedimentological and hydrochemical differences between high and low arsenic regions. Furthermore, the behaviour of arsenic and other elements during sequential extractions on a micrometer scale was characterized with micro synchrotron XRF analysis. Based on the results a conceptual model was developed which could explain the current situation in the village. Moreover, it could help to identify high arsenic areas throughout the world and, therefore, prevent the installation of drinking water wells in arsenic burdened regions. (orig.)

  18. Effects of arsenic trioxide on voltage-dependent potassium channels and on cell proliferation of human multiple myeloma cells

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin; WANG Wei; WEI Qing-fang; FENG Tie-ming; TAN Li-jun; YANG Bao-feng

    2007-01-01

    @@ Arsenic trioxide (ATO) can induce cellular apoptosis and inhibit the activities of multiple myeloma (MM)cells in vitro,1 but how it works is not very clear. Recent studies showed that ATO worked on the voltagedependent potassium channel and L-type calcium channel in myocardial cells,2-5 but the effect of ATO on ion channels of tumor cells was rarely reported. As the potassium channel plays an important role in controlling cell proliferation,6 we studied the effects of ATO on the voltage-dependent potassium current (Ikv) of the voltage-dependent potassium channel in an MM cell line,and probed into the relationship between changes of the Ikv caused by ATO and cell proliferation.

  19. Apoptosis in irradiated murine tumors.

    Science.gov (United States)

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors. PMID:1886987

  20. Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.

    Science.gov (United States)

    Mohan, Thotegowdanapalya C; Castrillo, Gabriel; Navarro, Cristina; Zarco-Fernández, Sonia; Ramireddy, Eswarayya; Mateo, Cristian; Zamarreño, Angel M; Paz-Ares, Javier; Muñoz, Riansares; García-Mina, Jose M; Hernández, Luis E; Schmülling, Thomas; Leyva, Antonio

    2016-06-01

    The presence of arsenic in soil and water is a constant threat to plant growth in many regions of the world. Phytohormones act in the integration of growth control and stress response, but their role in plant responses to arsenic remains to be elucidated. Here, we show that arsenate [As(V)], the most prevalent arsenic chemical species in nature, causes severe depletion of endogenous cytokinins (CKs) in the model plant Arabidopsis (Arabidopsis thaliana). We found that CK signaling mutants and transgenic plants with reduced endogenous CK levels showed an As(V)-tolerant phenotype. Our data indicate that in CK-depleted plants exposed to As(V), transcript levels of As(V)/phosphate-transporters were similar or even higher than in wild-type plants. In contrast, CK depletion provoked the coordinated activation of As(V) tolerance mechanisms, leading to the accumulation of thiol compounds such as phytochelatins and glutathione, which are essential for arsenic sequestration. Transgenic CK-deficient Arabidopsis and tobacco lines show a marked increase in arsenic accumulation. Our findings indicate that CK is an important regulatory factor in plant adaptation to arsenic stress. PMID:27208271

  1. Carbon Nanotubes Technology for Removal of Arsenic from Water

    Directory of Open Access Journals (Sweden)

    Ali Naghizadeh

    2012-08-01

    Full Text Available Please cite this article as: Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P. Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 2012;1(1:6-11. Aims of the Study: This study was aimed to investigate the adsorption mechanism of the arsenic removal from water by using carbon nanotubes in continuous adsorption column. Materials & Methods: Independent variables including carbon nanotubes dosage, contact time and breakthrough point were carried out to determine the influence of these parameters on the adsorption capacity of the arsenic from water. Results: Adsorption capacities of single wall and multiwall carbon nanotubes were about 148 mg/g and 95 mg/g respectively. The experimental data were analyzed using Langmuir and Freundlich isotherm models and equilibrium data indicate the best fit obtained with Langmuir isotherm model. Conclusions: Carbon nanotubes can be considered as a promising adsorbent for the removal of arsenic from large volume of aqueous solutions. References: 1. Lomaquahu ES, Smith AH. Feasibility of new epidemiology studies on arsenic exposures at low levels. AWWA Inorganic Contaminants Workshop. San Antonio; 1998. 2. Burkel RS, Stoll RC. Naturally occurring arsenic in sandstone aquifer water supply wells of North Eastern Wisconsin. Ground Water Monit Remediat 1999;19(2:114-21. 3. Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 2006;137(1: 464-79. 4. Meenakshi RCM. Arsenic removal from water: a review. Asian J Water Environ Pollut 2006;3(1:133-9. 5. Wickramasinghe SR, Binbing H, Zimbron J, Shen Z, Karim MN. Arsenic removal by coagulation and filtration: comparison of ground waters from United States and Bangladesh. Desalination 2004;169:231-44. 6. Hossain MF. Arsenic contamination in Bangladesh-an overview. Agric Ecosyst Environ 2006;113(1-4:1-16. 7. USEPA, Arsenic. Final

  2. Arsenic incorporation into authigenic pyrite, Bengal Basin sediment, Bangladesh

    Science.gov (United States)

    Lowers, H.A.; Breit, G.N.; Foster, A.L.; Whitney, J.; Yount, J.; Uddin, Md. N.; Muneem, Ad. A.

    2007-01-01

    Sediment from two deep boreholes (???400 m) approximately 90 km apart in southern Bangladesh was analyzed by X-ray absorption spectroscopy (XAS), total chemical analyses, chemical extractions, and electron probe microanalysis to establish the importance of authigenic pyrite as a sink for arsenic in the Bengal Basin. Authigenic framboidal and massive pyrite (median values 1500 and 3200 ppm As, respectively), is the principal arsenic residence in sediment from both boreholes. Although pyrite is dominant, ferric oxyhydroxides and secondary iron phases contain a large fraction of the sediment-bound arsenic between approximately 20 and 100 m, which is the depth range of wells containing the greatest amount of dissolved arsenic. The lack of pyrite in this interval is attributed to rapid sediment deposition and a low sulfur flux from riverine and atmospheric sources. The ability of deeper aquifers (>150 m) to produce ground water with low dissolved arsenic in southern Bangladesh reflects adequate sulfur supplies and sufficient time to redistribute the arsenic into pyrite during diagenesis.

  3. Accumulation and distribution of arsenic and cadmium by tea plants

    Institute of Scientific and Technical Information of China (English)

    Yuan-zhi SHI; Jian-yun RUAN; Lifeng MA; Wen-yan HAN; Fang WANG

    2008-01-01

    It is important to research the rules about accumulation and distribution of arsenic and cadmium by tea plants, which will give us some scientific ideas about how to control the contents of arsenic and cadmium in tea. In this study, by field inves- tigation and pot trial, we found that mobility of arsenic and cadmium in tea plants was low. Most arsenic and cadmium absorbed were fixed in feeding roots and only small amount was transported to the above-ground parts. Distribution of arsenic and cadmium, based on their concentrations of unit dry matter, in tea plants grown on un-contaminated soil was in the order: feeding roots>stems≈main roots>old leaves>young leaves. When tea plants were grown on polluted soils simulated by adding salts of these two metals, feeding roots possibly acted as a buffer and defense, and arsenic and cadmium were transported less to the above- ground parts. The concentration of cadmium in soil significantly and negatively correlated with chlorophyll content, photosyn- thetic rate, transpiration rate and biomass production of tea plants.

  4. Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico

    International Nuclear Information System (INIS)

    Inorganic arsenic exposure in drinking water has been recently related to diabetes mellitus. To evaluate this relationship the authors conducted in 2003, a case-control study in an arseniasis-endemic region from Coahuila, a northern state of Mexico with a high incidence of diabetes. The present analysis includes 200 cases and 200 controls. Cases were obtained from a previous cross-sectional study conducted in that region. Diagnosis of diabetes was established following the American Diabetes Association criteria, with two fasting glucose values ≥126 mg/100 ml (≥7.0 mmol/l) or a history of diabetes treated with insulin or oral hypoglycemic agents. The next subject studied, subsequent to the identification of a case in the cross-sectional study was taken as control. Inorganic arsenic exposure was measured through total arsenic concentrations in urine, measured by hydride-generation atomic absorption spectrophotometry. Subjects with intermediate total arsenic concentration in urine (63.5-104 μg/g creatinine) had two-fold higher risk of having diabetes (odds ratio=2.16; 95% confidence interval: 1.23, 3.79), but the risk was almost three times greater in subjects with higher concentrations of total arsenic in urine (odds ratio=2.84; 95% confidence interval: 1.64, 4.92). This data provides additional evidence that inorganic arsenic exposure may be diabetogenic

  5. Fractionation of inorganic arsenic by adjusting hydrogen ion concentration.

    Science.gov (United States)

    Oliveira, Andrea; Gonzalez, Mario Henrique; Queiroz, Helena Müller; Cadore, Solange

    2016-12-15

    The inorganic fraction of arsenic species, iAs=∑[As(III)+As(V)] present in fish samples can be quantified in the presence of other arsenic species also found in fishes, such as: monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and arsenobetaine (AsB). The toxic arsenic fraction was selected taking into account the dissociation constants of these arsenic species in different hydrogen ions concentration leading to the arsine formation from iAs compounds detected as As(III) by HG AAS. For thus, a microwave assisted extraction was carried out using HCl 1molL(-1) in order to maintain the integrity of the arsenic species in this mild extraction media. Recovery experiments were done for iAs fraction, in the presence of other arsenic species. The recovery values obtained for iAs fraction added were quantitative about 87-107% (for N=3, RSD⩽3%). The limit of detection (LOD), and the limit of quantification (LOQ), were 5μgkg(-1) and 16μgkg(-1) respectively. PMID:27451157

  6. Identification of the third binding site of arsenic in human arsenic (III methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiangli Li

    Full Text Available Arsenic (III methyltransferase (AS3MT catalyzes the process of arsenic methylation. Each arsenite (iAs(3+ binds to three cysteine residues, methylarsenite (MMA(3+ binds to two, and dimethylarsenite (DMA(3+ binds to one. However, only two As-binding sites (Cys156 and Cys206 have been confirmed on human AS3MT (hAS3MT. The third As-binding site is still undefined. Residue Cys72 in Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM may be the third As-binding site. The corresponding residue in hAS3MT is Cys61. Functions of Cys32, Cys61, and Cys85 in hAS3MT are unclear though Cys32, Cys61, and Cys85 in rat AS3MT have no effect on the enzyme activity. This is why the functions of Cys32, Cys61, and Cys85 in hAS3MT merit investigation. Here, three mutants were designed, C32S, C61S, and C85S. Their catalytic activities and conformations were determined, and the catalytic capacities of C156S and C206S were studied. Unlike C85S, mutants C32S and C61S were completely inactive in the methylation of iAs(3+ and active in the methylation of MMA(3+. The catalytic activity of C85S was also less pronounced than that of WT-hAS3MT. All these findings suggest that Cys32 and Cys61 markedly influence the catalytic activity of hAS3MT. Cys32 and Cys61 are necessary to the first step of methylation but not to the second. Cys156 and Cys206 are required for both the first and second steps of methylation. The S(C32 is located far from arsenic in the WT-hAS3MT-SAM-As model. The distances between S(C61 and arsenic in WT-hAS3MT-As and WT-hAS3MT-SAM-As models are 7.5 Å and 4.1 Å, respectively. This indicates that SAM-binding to hAS3MT shortens the distance between S(C61 and arsenic and promotes As-binding to hAS3MT. This is consistent with the fact that SAM is the first substrate to bind to hAS3MT and iAs is the second. Model of WT-hAS3MT-SAM-As and the experimental results indicate that Cys61 is the third As-binding site.

  7. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sturup, Stefan

    1994-01-01

    Addition of carbon as methanol or ammonium carbonate to the aqueous analyte solutions in combination with increased plasma power input enhanced the inductively coupled plasma mass spectrometry (ICP-MS) signal intensities of arsenic and selenium. In the presence of the optimum 3% v/v methanol...... concentration the signal intensities achieved were about 4500-5000 counts s-1 per ng ml-1 of arsenic and about 700-1100 counts s-1 per ng ml-1 of selenium (Se-82), corresponding to enhancement factors of 3.5-4.5 compared with aqueous solution for the two elements. Differences in sensitivity (calculated on the...... basis of analyte atom) were observed between the individual arsenic species and between the selenium species in aqueous as well as in carbon-added solutions. The presence of 3% v/v methanol in the analyte solutions doubled the level of the background signal for arsenic and selenium, but its fluctuation...

  8. Arsenic removal from aqueous solution using ferrous based red mud sludge.

    Science.gov (United States)

    Li, Yiran; Wang, Jun; Luan, Zhaokun; Liang, Zhen

    2010-05-15

    Ferrous based red mud sludge (FRS) which combined the iron-arsenic co-precipitation and the high arsenic adsorption features was developed aimed at low arsenic water treatment in rural areas. Arsenic removal studies shown that FRS in dosage of 0.2 or 0.3g/l can be used effectively to remove arsenic from aqueous solutions when initial As(V) concentration was 0.2 or 0.3mg/l. Meanwhile, turbidity of supernatant in disturbing water was lower than 2 NTU after 24h. The pH range (4.5-8.0) for FRS in effective arsenic removal was applicable in natural circumstance. Phosphate can greatly reduce the arsenic removal efficiency while the presence of carbonate had no significant effect on arsenic removal. Arsenic fractionation experiments showed that amorphous hydrous oxide-bound arsenic was the major components. When aqueous pH was decreased from 8.0 to 4.5, arsenic in FRS was not obviously released. The high arsenic uptake capability, good settlement performance and cost-effective characteristic of FRS make it potentially attractive material for the arsenic removal in rural areas. PMID:20034742

  9. Bioaccessibility and excretion of arsenic in Niu Huang Jie Du Pian pills

    International Nuclear Information System (INIS)

    Traditional Chinese medicines (TCMs) often contain significant levels of potentially toxic elements, including arsenic. Niu Huang Jie Du Pian pills were analyzed to determine the concentration, bioaccessibility (arsenic fraction soluble in the human gastrointestinal system) and chemical form (speciation) of arsenic. Arsenic excretion in urine (including speciation) and facial hair were studied after a one-time ingestion. The pills contained arsenic in the form of realgar, and although the total arsenic that was present in a single pill was high (28 mg), the low bioaccessibility of this form of arsenic predicted that only 4% of it was available for absorption into the bloodstream (1 mg of arsenic per pill). The species of arsenic that were solubilized were inorganic arsenate (As(V)) and arsenite (As(III)) but DMAA and MMAA were detected in urine. Two urinary arsenic excretion peaks were observed: an initial peak several (4-8) hours after ingestion corresponding to the excretion of predominantly As(III), and a larger peak at 14 h corresponding predominantly to DMAA and MMAA. No methylated As(III) species were observed. Facial hair analysis revealed that arsenic concentrations did not increase significantly as a result of the ingestion. Arsenic is incompletely soluble under human gastrointestinal conditions, and is metabolized from the inorganic to organic forms found in urine. Bioaccessible arsenic is comparable to the quantity excreted. Facial hair as a bio-indicator should be further tested

  10. Arsenic chemistry in the rhizosphere of Pteris vittata L. and Nephrolepis exaltata L

    International Nuclear Information System (INIS)

    This greenhouse experiment evaluated the influence of arsenic uptake by arsenic hyperaccumulator Pteris vittata L. and non-arsenic hyperaccumulator Nephrolepis exaltata L. on arsenic chemistry in bulk and rhizosphere soil. The plants were grown for 8 weeks in a rhizopot with a soil containing 105 mg kg-1 arsenic. The soil arsenic was fractionated into five fractions with decreasing availability: non-specifically bound (N), specifically bound (S), amorphous hydrous-oxide bound (A), crystalline hydrous-oxide bound (C), and residual (R). P. vittata produced larger plant biomass (7.38 vs. 2.32 mg plant-1) and removed more arsenic (2.61 vs. 0.09 mg pot-1 arsenic) than N. exaltata. Plant growth reduced water-soluble arsenic, and increased soil pH (P. vittata only) in the rhizosphere soil. P. vittata was more efficient than N. exaltata to access arsenic from all fractions (39-64% vs. 5-39% reduction). However, most of the arsenic taken up by both plants was from the A fraction (67-77%) in the rhizosphere soil, the most abundant (61.5%) instead of the most available (N fraction). - Plant arsenic uptake altered arsenic distribution in different fractions in the rhizosphere soil

  11. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    Science.gov (United States)

    Baron, Patrick A.; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. Results: The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conclusions: Conventional chicken meat had higher i

  12. Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: Revelation of unusual high levels of inorganic arsenic

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Julshamn, Kåre

    2008-01-01

    The present study reports the findings of unusual high levels of inorganic arsenic in samples of blue mussels (Mytilus edulis L.). A total of 175 pooled samples of blue mussels from various locations along the Norwegian coastline were analyzed for their content of total arsenic and inorganic...... arsenic. Total arsenic was determined using inductively coupled plasma mass spectrometry (ICPMS) following microwave-assisted acidic digestion of the samples. Inorganic arsenic was determined using an anion-exchange HPLC-ICPMS method following microwave-assisted alkaline solubilization of the samples....... For the majority of the samples (78%) the concentration of total arsenic was below 3 mg kg(-1) wet weight (ww) and inorganic arsenic constituted...

  13. Comparison of Low Concentration and High Concentration Arsenic Removal Techniques and Evaluation of Concentration of Arsenic in Ground Water: A Case Study of Lahore, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Yasar, Abdullah; Tabinda, Amtul Bari; Shahzadi, Uzma; Saleem, Pakeeza [GC University, Lahore (Pakistan)

    2014-10-15

    The main focus of this study was the evaluation of arsenic concentration in the ground water of Lahore at different depth and application of different mitigation techniques for arsenic removal. Twenty four hours of solar oxidation gives 90% of arsenic removal as compared to 8 hr. or 16 hr. Among oxides, calcium oxide gives 96% of As removal as compared to 93% by lanthanum oxide. Arsenic removal efficiency was up to 97% by ferric chloride, whereas 95% by alum. Activated alumina showed 99% removal as compared to 97% and 95% removal with bauxite and charcoal, respectively. Elemental analysis of adsorbents showed that the presence of phosphate and silica can cause a reduction of arsenic removal efficiency by activated alumina, bauxite and charcoal. This study has laid a foundation for further research on arsenic in the city of Lahore and has also provided suitable techniques for arsenic removal.

  14. Amphoteric arsenic in GaN

    CERN Document Server

    Wahl, U; Araújo, J P; Rita, E; Soares, JC

    2007-01-01

    We have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive $^{73}$As. We give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that As$\\scriptstyle_{Ga}\\,$ " anti-sites ” are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called “ miscibility gap ” in ternary GaAs$\\scriptstyle_{1-x}$N$\\scriptstyle_{x}$ compounds, which cannot be grown with a single phase for values of $x$ in the range 0.1<${x}$< 0.99.

  15. Amphoteric arsenic in GaN

    International Nuclear Information System (INIS)

    The authors have determined the lattice location of implanted arsenic in GaN by means of conversion electron emission channeling from radioactive 73As. They give direct evidence that As is an amphoteric impurity, thus settling the long-standing question as to whether it prefers cation or anion sites in GaN. The amphoteric character of As and the fact that AsGa 'antisites' are not minority defects provide additional aspects to be taken into account for an explanantion of the so-called miscibility gap in ternary GaAs1-xNx compounds, which cannot be grown with a single phase for values of x in the range of 0.1< x<0.99

  16. Arsenic sorption onto disordered mackinawite as a control on the mobility of arsenic in the ambient sulphidic environment

    OpenAIRE

    Wolthers, M.; Charlet, L.; Weijden, C.H. van der

    2003-01-01

    Arsenate, As (V), sorption onto synthetic disordered mackinawite (FeSam) follows Langmuir-type behaviour. As (V) is not reduced prior to or during sorption. Arsenite, As (III) sorption can be expressed by a Freundlich isotherm. Comparison of the experimental sorption isotherms to field data describing the mobility of arsenic in a Bangladesh aquifer shows that arsenic mobility may be controlled by As (V) sorption onto FeSam in the aquifer sediment.

  17. The molecular mechanism of arsenic carcinogenesis

    International Nuclear Information System (INIS)

    Arsenic compounds are known human carcinogens. Although many carcinogens are also mutagens, arsenite is not mutagenic in the V79 (hprt and Na+/K+ ATPase) system or in the G12 (qpt) system. This clearly indicates that arsenite per se does not cause any type of mutation detectable at these loci, including point mutations, small deletions and multilocus deletions. The lack of arsenic mutagenesis has led to studies emphasizing its comutagenicity. In this study, arsenite was found to enhance both UV- and MNU-mutagenesis in V79 or G12 cells. Although arsenite is comutagenic with both UV254 and UV360, the latter seems more important because of its natural relevance. The ability of arsenite to inhibit the repair of MNU-induced DNA damage was measured by a nick translation assay which measures DNA strand breaks by incorporating radioactive dNMP at their 3'OH ends in permeabilized V79 cells. It was found that strand breaks resulting from MNU or its repair accumulate in the presence of arsenite. MNU-induced poly(ADP-ribose) synthesis, measured by the incorporation of [3H]NAD+ in permeabilized cells, was also increased by post-treatment of the cells with arsenite. This supports the hypothesis that arsenite inhibits the completion of DNA repair. The accumulated strand breaks in the presence of arsenite are probably not due to direct inhibition of DNA polymerase α, the presumed repair enzyme, since very high concentrations of arsenite are needed. DNA polymerase β and DNA ligase are probably not the direct targets of arsenite for a similar reason. Thus arsenite probably inhibits the completion of DNA repair in an indirect way. Arsenite per se can inhibit metabolic cooperation and it can induce SV40 gene amplification. This suggests arsenite might also function as a tumor-promoter

  18. Total arsenic in selected food samples from Argentina: Estimation of their contribution to inorganic arsenic dietary intake.

    Science.gov (United States)

    Sigrist, Mirna; Hilbe, Nandi; Brusa, Lucila; Campagnoli, Darío; Beldoménico, Horacio

    2016-11-01

    An optimized flow injection hydride generation atomic absorption spectroscopy (FI-HGAAS) method was used to determine total arsenic in selected food samples (beef, chicken, fish, milk, cheese, egg, rice, rice-based products, wheat flour, corn flour, oats, breakfast cereals, legumes and potatoes) and to estimate their contributions to inorganic arsenic dietary intake. The limit of detection (LOD) and limit of quantification (LOQ) values obtained were 6μgkg(-)(1) and 18μgkg(-)(1), respectively. The mean recovery range obtained for all food at a fortification level of 200μgkg(-)(1) was 85-110%. Accuracy was evaluated using dogfish liver certified reference material (DOLT-3 NRC) for trace metals. The highest total arsenic concentrations (in μgkg(-)(1)) were found in fish (152-439), rice (87-316) and rice-based products (52-201). The contribution to inorganic arsenic (i-As) intake was calculated from the mean i-As content of each food (calculated by applying conversion factors to total arsenic data) and the mean consumption per day. The primary contributors to inorganic arsenic intake were wheat flour, including its proportion in wheat flour-based products (breads, pasta and cookies), followed by rice; both foods account for close to 53% and 17% of the intake, respectively. The i-As dietary intake, estimated as 10.7μgday(-)(1), was significantly lower than that from drinking water in vast regions of Argentina. PMID:27211625

  19. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard

    Energy Technology Data Exchange (ETDEWEB)

    Newton, Kimberly [School of Natural Science, Hampshire College, 869 West Street, Amherst, MA 01002 (United States); Amarasiriwardena, Dulasiri [School of Natural Science, Hampshire College, 869 West Street, Amherst, MA 01002 (United States)]. E-mail: dula@hampshire.edu; Xing, Baoshan [Department of Plant and Soil Sciences, University of Massachusetts, Amherst, MA 01003 (United States)

    2006-09-15

    Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind 'tightly' to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil. - The distribution of arsenic species [i.e., As (III), As (V), and methylated arsenic species (DMA, MMA)] on the soil surface and in a depth profile as well as those associated with humic acids is discussed.

  20. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard

    International Nuclear Information System (INIS)

    Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind 'tightly' to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil. - The distribution of arsenic species [i.e., As (III), As (V), and methylated arsenic species (DMA, MMA)] on the soil surface and in a depth profile as well as those associated with humic acids is discussed

  1. Development of suitable hydroponics system for phytoremediation of arsenic-contaminated water using an arsenic hyperaccumulator plant Pteris vittata.

    Science.gov (United States)

    Huang, Yi; Miyauchi, Keisuke; Inoue, Chihiro; Endo, Ginro

    2016-01-01

    In this study, we found that high-performance hydroponics of arsenic hyperaccumulator fern Pteris vittata is possible without any mechanical aeration system, if rhizomes of the ferns are kept over the water surface level. It was also found that very low-nutrition condition is better for root elongation of P. vittata that is an important factor of the arsenic removal from contaminated water. By the non-aeration and low-nutrition hydroponics for four months, roots of P. vittata were elongated more than 500 mm. The results of arsenate phytofiltration experiments showed that arsenic concentrations in water declined from the initial concentrations (50 μg/L, 500 μg/L, and 1000 μg/L) to lower than the detection limit (0.1 μg/L) and about 80% of arsenic removed was accumulated in the fern fronds. The improved hydroponics method for P. vittata developed in this study enables low-cost phytoremediation of arsenic-contaminated water and high-affinity removal of arsenic from water. PMID:26549187

  2. Arsenic contamination of soils and agricultural plants through irrigation water in Nepal

    International Nuclear Information System (INIS)

    This study monitored the influence of arsenic-contaminated irrigation water on alkaline soils and arsenic uptake in agricultural plants at field level. The arsenic concentrations in irrigation water ranges from -1 where the arsenic concentrations in the soils were measured from 6.1 to 16.7 mg As kg-1. The arsenic content in different parts of plants are found in the order of roots > shoots > leaves > edible parts. The mean arsenic content of edible plant material (dry weight) were found in the order of onion leaves (0.55 mg As kg-1) > onion bulb (0.45 mg As kg-1) > cauliflower (0.33 mg As kg-1) > rice (0.18 mg As kg-1) > brinjal (0.09 mg As kg-1) > potato (-1). - The arsenic content in soil and plants is influenced by the degree of arsenic amount in irrigated water

  3. Arsenic alters ATP-dependent Ca²+ signaling in human airway epithelial cell wound response.

    Science.gov (United States)

    Sherwood, Cara L; Lantz, R Clark; Burgess, Jefferey L; Boitano, Scott

    2011-05-01

    Arsenic is a natural metalloid toxicant that is associated with occupational inhalation injury and contaminates drinking water worldwide. Both inhalation of arsenic and consumption of arsenic-tainted water are correlated with malignant and nonmalignant lung diseases. Despite strong links between arsenic and respiratory illness, underlying cell responses to arsenic remain unclear. We hypothesized that arsenic may elicit some of its detrimental effects on the airway through limitation of innate immune function and, specifically, through alteration of paracrine ATP (purinergic) Ca²+ signaling in the airway epithelium. We examined the effects of acute (24 h) exposure with environmentally relevant levels of arsenic (i.e., immune functions (e.g., ciliary beat, salt and water transport, bactericide production, and wound repair). Arsenic-induced compromise of such airway defense mechanisms may be an underlying contributor to chronic lung disease. PMID:21357385

  4. Effect of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Pot experiment was conducted to understand the effect of phosphorus on arsenic accumulation in As-hyperaccumulator Chinese brake (Pteris vittata L.). It is shown that arsenic concentrations in the fronds and rhizoids, the arsenic bioaccumulation factor, and the total arsenic in the fronds were not influenced significantly under low levels of phosphorus (≤400 mg/kg) and increased sharply under high levels of phosphorus (>400 mg/ kg). The discovery implies that the efficiency of arsenic removal in phytoremediation using the hyperaccumulating plant can be greatly elevated by the phosphorus addition at high rates. The interaction between the accumulation of phosphorus and that of arsenic in plant was stimulated mutually. The result represents that Chinese brake is a good material for plant physiologist to conduct comparative and mechanism studies on the uptake behaviors of phosphorus and arsenic, and phosphorus is also a potential accelerator for phytoremediation of arsenic-contaminated soils.

  5. THE ROLE OF VALENCE AND METHYLATION STATE ON THE ACTIVITY OF ARSENIC DURING MITOSIS

    Science.gov (United States)

    Trivalent methylated arsenicals are much more potent DNA damaging agents, clastogens, and large deletion mutagens than are their inorganic and pentavalent counterparts. Previously we had noticed that many of the arsenicals induced "c-type" anaphases characteristic of spindle pois...

  6. DNA DAMAGE INDUCED BY METHYLATED TRIVALENT ARSENICALS: ROLE OF REACTIVE OXYGEN SPECIES

    Science.gov (United States)

    Exposure to arsenic is worldwide due to both natural and man-made processes. Arsenic-associated human diseases include lung, liver, bladder and skin cancer, cardiovascular and vascular disorders, neurological disorders, skin diseases, and liver disorders. Premalignant skin lesi...

  7. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui; Hu, Yunhu

    2016-08-01

    A combination of thermogravimetric analysis (TG) and laboratory-scale circulated fluidized bed combustion experiment was conducted to investigate the thermochemical, kinetic and arsenic retention behavior during co-combustion bituminous coal with typical agricultural biomass. Results shown that ignition performance and thermal reactivity of coal could be enhanced by adding biomass in suitable proportion. Arsenic was enriched in fly ash and associated with fine particles during combustion of coal/biomass blends. The emission of arsenic decreased with increasing proportion of biomass in blends. The retention of arsenic may be attributed to the interaction between arsenic and fly ash components. The positive correlation between calcium content and arsenic concentration in ash suggesting that the arsenic-calcium interaction may be regarded as the primary mechanism for arsenic retention. PMID:27136608

  8. Determination of Total Arsenic in Seaweed Products by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Seaweed products are widely consumed as food nowadays. Seaweeds are known to contain arsenic due to their capability to accumulate arsenic from the environment. Arsenic is a known toxic element which naturally occurs in the environment. Ingestion of high levels of arsenic will cause several adverse health effects. Arsenic in food occurs at trace concentrations which require sensitive and selective analysis methods to perform elemental analysis on. Validated neutron activation analysis was used to determine the arsenic contents in seaweed products namely catoni from domestic product and nori from foreign products. The total arsenic concentration in the samples analyzed ranges from 0.79 mg/kg to 30.14 mg/kg with mean concentration 14.39 mg/kg. The estimated exposure to arsenic contributed by the analyzed products is from 0.07% up to 8.54% of the established provisional tolerable daily intake (PTDI) which is still far below the maximum tolerable level. (author)

  9. Maternal drinking water arsenic exposure and perinatal outcomes in Inner Mongolia, China

    Science.gov (United States)

    Exposure to high levels of arsenic has been reported to increase adverse birth outcomes including spontaneous abortion, preterm birth, and low birthweight. This study evaluated the relationship between maternal arsenic exposure and perinatal endpoints (term birthweight, preterm ...

  10. REMOVAL OF ARSENIC FROM GROUNDWATER USING NATURALLY OCCURRING IRON OXIDES IN RURAL REGIONS OF MONGOLIA

    Science.gov (United States)

    We have found that the iron oxide particles produced by grinding naturally occurring iron ores are very effective in removing arsenic from water. The arsenic adsorption isothermal of the particles h...

  11. A Case control study of cardiovascular disease and arsenic exposure in Inner Mongolia, China

    Science.gov (United States)

    Background: Millions of people are at risk from the adverse effects of waterborne arsenic. Although the cardiovascular effects of high exposures to arsenic have been well documented, few individual level prospective studies have assessed cardiovascular risk at moderate exposures....

  12. Biomarkers for assessing potential carcinogenic effects of chronic arsenic exposure in Inner Mongolia, CHINA

    Science.gov (United States)

    Arsenic is ubiquitous in the environment. Chronic arsenic exposure via drinking water has been associated. with carcinogenic, cardiovascular, neurological and diabetic effects in humans and has been of great public health concern worldwide. In 2001, U.S. Environmental Protection ...

  13. Molecular signal transduction in vascular cell apoptosis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes.

  14. DNA degradation and Apoptosis : DNA degradation

    OpenAIRE

    Torriglia, Alicia; Padron, Laura

    2005-01-01

    Apoptosis, is a form of programmed cell death essential for the development and maintenance of multicellular organisms. DNA degradation is one of the hallmarks of apoptosis. The central component of the apoptotic machinery is a proteolytic system involving caspases and non-caspases proteases. CAD, a caspase-activated DNase, is the endonuclease responsible for DNA degradation during caspase-dependent apoptosis. The relationship between non-caspase proteases and endonucleases is less clear and ...

  15. Apoptosis in normal oral tissues and odontogenesis

    OpenAIRE

    Ruchita Bali; Akhilesh Chandra; Renuka Verma

    2013-01-01

    Programmed cell death or apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development, and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions including neurodegenerative diseases, ischemic damage, autoimmune disorders, and many types of cancers. The process of apoptosis is generally ch...

  16. Apoptosis: A Review of Programmed Cell Death

    OpenAIRE

    Elmore, Susan

    2007-01-01

    The process of programmed cell death, or apoptosis, is generally characterized by distinct morphological characteristics and energy-dependent biochemical mechanisms. Apoptosis is considered a vital component of various processes including normal cell turnover, proper development and functioning of the immune system, hormone-dependent atrophy, embryonic development and chemical-induced cell death. Inappropriate apoptosis (either too little or too much) is a factor in many human conditions incl...

  17. Mean total arsenic concentrations in chicken 1989-2000 and estimated exposures for consumers of chicken.

    OpenAIRE

    Lasky, Tamar; Sun, Wenyu; Kadry, Abdel; Hoffman, Michael K

    2004-01-01

    The purpose of this study was to estimate mean concentrations of total arsenic in chicken liver tissue and then estimate total and inorganic arsenic ingested by humans through chicken consumption. We used national monitoring data from the Food Safety and Inspection Service National Residue Program to estimate mean arsenic concentrations for 1994-2000. Incorporating assumptions about the concentrations of arsenic in liver and muscle tissues as well as the proportions of inorganic and organic a...

  18. Candidate Single Nucleotide Polymorphism Markers for Arsenic Responsiveness of Protein Targets

    OpenAIRE

    Graham-Evans, Barbara E.; Udensi, Udensi K.; Tchounwou, Paul B.; Rajendram V. Rajnarayanan; Anyanwu, Matthew N; Cohly, Hari H.P.; Isokpehi, Raphael D.

    2010-01-01

    Arsenic is a toxic metalloid that causes skin cancer and binds to cysteine residues—a property that could be used to infer arsenic responsiveness of a target protein. Non-synonymous Single Nucleotide Polymorphisms (nsSNPs) result in amino acid substitutions and may alter arsenic binding with cysteine residues. Thus, the objective of this investigation was to identify and analyze nsSNPs that lead to substitutions to or from cysteine residues as an indication of increased or decreased arsenic r...

  19. Aberrantly Expressed Genes in HaCaT Keratinocytes Chronically Exposed to Arsenic Trioxide

    OpenAIRE

    Udensi, Udensi K; Cohly, Hari H.P.; Barbara E. Graham-Evans; Kenneth Ndebele; Natàlia Garcia-Reyero; Bindu Nanduri; Tchounwou, Paul B.; Isokpehi, Raphael D.

    2011-01-01

    Inorganic arsenic is a known environmental toxicant and carcinogen of global public health concern. Arsenic is genotoxic and cytotoxic to human keratinocytes. However, the biological pathways perturbed in keratinocytes by low chronic dose inorganic arsenic are not completely understood. The objective of the investigation was to discover the mechanism of arsenic carcinogenicity in human epidermal keratinocytes. We hypothesize that a combined strategy of DNA microarray, qRT-PCR and gene functio...

  20. Predicting water consumption habits for seven arsenic-safe water options in Bangladesh

    OpenAIRE

    Inauen, Jennifer; Tobias, Robert; Mosler, Hans-Joachim

    2013-01-01

    Background: In Bangladesh, 20 million people are at the risk of developing arsenicosis because of excessive arsenic intake. Despite increased awareness, many of the implemented arsenic-safe water options are not being sufficiently used by the population. This study investigated the role of social-cognitive factors in explaining the habitual use of arsenic-safe water options.Methods: Eight hundred seventy-two randomly selected households in six arsenic-affected districts of rural Bangladesh, w...