WorldWideScience

Sample records for arsenic 83

  1. Arsenic

    Science.gov (United States)

    ... of countries, including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States of America. Drinking-water, ... ingestion of inorganic arsenic include developmental effects, neurotoxicity, diabetes, pulmonary disease and cardiovascular disease. Arsenic-induced myocardial ...

  2. Arsenic ototoxicity

    Institute of Scientific and Technical Information of China (English)

    Gulin Gokçen Kesici

    2016-01-01

    High levels of arsenic are found in many parts of the world and more than 100 million people may have been exposed to it. There is growing evidence to indicate that arsenic has a deleterious effect on the auditory system. This paper provides the general information of arsenic and its ototoxic effects.

  3. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Schoolmeester, W.L.; White, D.R.

    1980-02-01

    Arsenic poisoning continues to require awareness of its diverse clinical manifestations. Industry is the major source of arsenic exposure. Although epidemiologic studies strongly contend that arsenic is carcinogenic, there are little supportive research data. Arsenic poisoning, both acute and chronic, is often overlooked initially in the evaluation of the patient with multisystem disease, but once it is suspected, many accurate methods are available to quantitate the amount and duration of exposure. Treatment with dimercaprol remains the mainstay of therapy, and early treatment is necessary to prevent irreversible complications.

  4. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Low, D.G.

    1971-01-01

    The use of arsenic in ant poisons, herbicides, and insecticides affords the necessary contact with the poison by pets. Treatment was discussed in relation to two circumstances: very early poisoning in which the owner has observed ingestion of the arsenic, and when the signs of the poisoning are evident. Treatment for early ingestion involves emptying the stomach before the arsenic can pass in quantity into the intestine. This is followed with a 1% solution of sodium bicarbonate, with the administering of 3 to 6 mg of apomorphine. When signs of arsenic toxicity are already advanced, there is little advantage to be gained by either gastric lavage or administration of an emetic. The treatment then consists of the intramuscular administration of dimercaprol (BAL) at a dosage of 3 mg/lb of body weight three times a day until recovery. This is the specific antidote for arsenic. 1 reference.

  5. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Furr, A.

    1977-01-01

    The route of arsenic exposure is usually by ingestion, thus the veterinarian is concerned with treating either an acute or a peracute condition. The arsenic compounds are considered to be highly toxic with a rapid onset of clinical signs. The toxicity and rapidity of onset are variable, depending upon the age and the species of animal. The chemical form and solubility of the toxicant also play a role in the course of the clinical syndrome. Inorganic arsenicals inhibit the sulfhydryl enzyme systems which are essential for normal cellular respiration and for metabolism of fats and carbohydrates. Therapeutic measures are intended to either remove or inactivate the unabsorbed material in the intestine, protect the alimentary tract, reverse the toxic syndrome and restore the homeostatic equilibrium of the animal. 5 references.

  6. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Low, D.G.

    1974-01-01

    The use of arsenic in ant poisons, herbicides, and insecticides affords the necessary contact with the poison by pets. The gastrointestinal tract appears to suffer the greatest though there may also be injury to the liver and kidneys. The treatments discussed were in relation to very early poisoning in which the owner had observed ingestion of the arsenic, and when the signs of the poisoning were evident. Early observation treatment included emptying the stomach before the arsenic passed in quantity into the intestine. If the signs of toxicity were already advanced, then the treatment consisted of the intramuscular administration of dimercaprol (BAL) at a dosage of 3 mg/lb of body weight three times a day until recovery. l reference.

  7. Clinical manifestations and arsenic methylation after a rare subacute arsenic poisoning accident.

    Science.gov (United States)

    Xu, Yuanyuan; Wang, Yi; Zheng, Quanmei; Li, Bing; Li, Xin; Jin, Yaping; Lv, Xiuqiang; Qu, Guang; Sun, Guifan

    2008-06-01

    One hundred and four workers ingested excessive levels of arsenic in an accident caused by leakage of pipeline in a copper-smelting factory. Clinical examinations were performed by physicians in a local hospital. Excreted urinary arsenic species were determined by cold trap hydride generation atomic absorption spectrometry. In the initial toxic phase, gastrointestinal symptoms were predominant (83 people, 79.8%). Most patients showed leucopenia (72 people, 69.2%), and increased serum alanine aminotransferase (84 people, 80.8%) and aspartate aminotransferase (58 people, 55.8%). Thirty-five patients (33.6%) had elevated red blood cells in urine. After 17 days of admission, many subjects (45 people, 43.3%) developed peripheral neuropathy and 25 of these 45 patients (24.0%) showed a decrease in motor and sensory nerve conduction velocity. In the comparison of urinary arsenic metabolites among subacute arsenic-poisoned, chronic high arsenic-exposed and control subjects, we found that subacute arsenic-poisoned patients had significantly elevated proportions of urinary inorganic arsenic (iAs) and methylarsonic acid (MMA) but reduced proportion of urinary dimethylarsinic acid (DMA) compared with chronic high arsenic-exposed and control subjects. Chronic exposed subjects excreted higher proportions of iAs and MMA but lower proportions of DMA in urine compared with control subjects. These results suggest that gastrointestinal symptoms, leucopenia, and hepatic and urinary injury are predominant in the initial phase of subacute arsenic poisoning. Peripheral neuropathy is the most frequent manifestation after the initial phase. The biomethylation of arsenic decreases in a dose rate-dependent manner.

  8. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  9. BoundaryTile_QUAD83

    Data.gov (United States)

    Vermont Center for Geographic Information — Generated from exact latitude-longitude coordinates and projected from Geographic coordinates (Lat/Long) NAD83 into State Plane Meters NAD83. The Arc/Info GENERATE...

  10. Massive acute arsenic poisonings.

    Science.gov (United States)

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  11. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  12. Cryptic exposure to arsenic.

    Science.gov (United States)

    Rossy, Kathleen M; Janusz, Christopher A; Schwartz, Robert A

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  13. Cryptic exposure to arsenic

    Directory of Open Access Journals (Sweden)

    Rossy Kathleen

    2005-01-01

    Full Text Available Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  14. Arsenic: the forgotten poison?

    Science.gov (United States)

    Barton, E N; Gilbert, D T; Raju, K; Morgan, O S

    1992-03-01

    Chronic arsenic poisoning is an uncommon cause of peripheral neuropathy in Jamaica. A patient with this disorder is described. The insidious nature of chronic arsenic poisoning, with its disabling complications, is emphasised.

  15. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  16. Arsenic compounds toxic to rice

    Energy Technology Data Exchange (ETDEWEB)

    Epps, E.A.; Sturgis, M.B.

    1939-01-01

    A study has been made of the kinds of arsenic compounds that may be toxic to rice and of means for correcting the toxicity. Some of the arsenic compounds in flooded soils are reduced, with consequent increase in soluble arsenic content of the soil and decrease in total arsenic content due to liberation of gaseous compounds of arsenic. It was demonstrated that some of the arsenic was lost as arsine. Many of the naturally-occurring compounds of arsenic are not attacked by the micro-organisms and do not become more soluble. Additions of sulfur to soils containing toxic amounts of arsenic decreased the amount of soluble arsenic in the soil.

  17. Arsenic cardiotoxicity: An overview.

    Science.gov (United States)

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.

  18. Arsenic removal from water

    Science.gov (United States)

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  19. Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning.

    Science.gov (United States)

    Roychowdhury, Tarit

    2010-11-01

    =132), and 6.05mgkg(-1) (range: 0.55-16.7mgkg(-1), n=116), respectively. About 83% and 68% of the urine samples (n=250) contain arsenic above 100 and 200μgl(-1), respectively. Linear regressions show very good correlations between arsenic concentrations in water vs. urine, hair and nail samples from the inhabitants (n=103) of Gutri mouza. About 18.3% of the population (n=930) were registered with arsenical skin lesions.

  20. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  1. BoundaryTile_ORTHO83

    Data.gov (United States)

    Vermont Center for Geographic Information — RF 5000 NAD83 orthophoto edge lines (4000 x 4000 meter grid cells) were generated automatically from the known corner locations (generated by Gary Smith). Corner...

  2. Environmental Source of Arsenic Exposure

    OpenAIRE

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a ...

  3. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  4. Arsenic compounds and cancer.

    Science.gov (United States)

    Axelson, O

    1980-01-01

    Exposure to arsenic compounds has been epidemiologically associated with various types of cancers, particularly cancer of the lung among copper smelters and pesticide workers, whereas skin cancers and liver angiosarcomas have been associated with ingestion of arsenic for treatment of skin disorders, especially psoriasis. Attempts to reproduce cancer in animals have been mainly unsuccessful, however. Experimental evidence suggests that arsenic inhibits DNA repair; this might help to explain the somewhat conflicting observations from epidemiologic studies and animal experiments with regard to carcinogenicity, and perhaps also cardiovascular morbidity related to arsenic exposure. PMID:7463514

  5. Arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Reagor, J.C.

    Reports of heavy metal intoxication submitted to the Texas Veterinary Medical Diagnostic Laboratory indicate that arsenic is the most common heavy metal intoxicant in Texas. The most frequent sources of arsenic are compounds used as herbicides and cotton defoliants. The misuse of these compounds and subsequent intoxication of cattle is discussed in this paper. 8 references, 1 table.

  6. Arsenic in Food

    Science.gov (United States)

    ... Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share Tweet Linkedin Pin it More ... and previous or current use of arsenic-containing pesticides. Are there ... compounds in water, food, air, and soil: organic and inorganic (these together ...

  7. [Acute arsenic poisoning].

    Science.gov (United States)

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment.

  8. [Acute arsenic poisoning].

    Science.gov (United States)

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment. PMID:25486670

  9. Comparison between the effects of alcohol and hexane extract of spirulina in arsenic removal from isolated tissues.

    Science.gov (United States)

    Saha, S K; Misbahuddin, M; Ahmed, A U

    2010-01-01

    Chronic arsenic poisoning (arsenicosis) is a major public health problem in Bangladesh. People are consuming high concentration of arsenic (>10 ppb) through their drinking water. But still now, there is no specific treatment of it. Spirulina, natural bluish-green microalgae, is found to be effective in the treatment of arsenicosis recently. Keeping this fact in mind the present study was conducted in the Department of Pharmacology, BSMMU to compare the effectiveness of alcohol & Hexane extract of Spirulina in arsenic removal from isolated tissues (rat liver). The experiment was performed in two phases-in phase I, liver tissues incubated with arsenic at 37 degree centigrade at different incubation period & accumulation of arsenic was measured. In phase II, arsenic-loaded liver tissues were incubated at 37 degree centigrade in presence and absence of alcohol extract & hexane extract of spirulina. Arsenic removal (%) from liver tissues by alcohol extract and hexane extract of spirulina was estimated by Atomic Absorption Spectrophotometer. This study showed that there is time dependent accumulation of arsenic in isolated liver tissue and highest accumulation found was 0.69 microg/g tissues after 45 minutes incubation, which was highly significant. Removal of arsenic (%) from arsenic loaded liver tissues by alcohol extract & hexane extracts were 33.8% & 83.0% respectively. Between the two extracts of spirulina the hexane extract causes more percentage removal of arsenic which is highly significant (parsenic from rat liver tissues than alcohol extract.

  10. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Science.gov (United States)

    Roberge, Jason; O’Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L.; Harris, Robin B.

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated. PMID:22690182

  11. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  12. Ameliorative potential of Psidium guajava in induced arsenic toxicity in Wistar rats

    Directory of Open Access Journals (Sweden)

    Manju Roy and Sushovan Roy

    2011-04-01

    Full Text Available The study was undertaken to determine the effect of Psidium.guajava leaf extract on arsenic induced biochemical alterations in Wistar rats. Significant (P<0.05 increased glucose serum urea nitrogen and serum creatinine was observed whereas non significant decrease in total protein, calcium and phosphorus was observed. It is concluded that kidney damage caused by arsenic can be repaired up to some extent by AEPG50. [Veterinary World 2011; 4(2.000: 82-83

  13. Determination of arsenic in geological materials by x-ray fluorescence spectrometry after solvent extraction and deposition on a filter

    Science.gov (United States)

    Hubert, A.E.

    1983-01-01

    Rock, soil, or sediment samples are decomposed with a mixture of nitric and sulphuric adds. After reduction from arsenic(V) with ammonium thiosulphate, arsenic(III) is extracted as the chlorocomplex into benzene from a sulphuric-hydrochloric acid medium. The benzene solution is transferred onto a filter-paper disc impregnated with a solution of sodium bicarbonate and potassium sodium tartrate, and the benzene allowed to evaporate. The arsenic present is determined by X-ray fluorescence. In a 0.5-g sample, 1-1000 ppm of arsenic can be determined. The close proximity of the lead L?? peak (2?? 48.73??), to the arsenic K?? peak (2?? 48.83??) does not cause any interference, because lead is not extracted under the experimental conditions. Arsenic values obtained are in agreement with those reported for various reference samples. ?? 1983.

  14. USEPA Arsenic Demonstration Program

    Science.gov (United States)

    The presentation provides background information on the USEPA arsenic removal program. The summary includes information on the history of the program, sites and technology selected, and a summary of the data collected from two completed projects.

  15. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    Institute of Scientific and Technical Information of China (English)

    HUANG; Zechun; CHEN; Tongbin; LEI; Mei; HU; Tiandou; HUANG

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  16. Acute and chronic arsenic toxicity

    OpenAIRE

    Ratnaike, R.

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption o...

  17. Detection of trace amount of arsenic in groundwater by laser-induced breakdown spectroscopy and adsorption

    Science.gov (United States)

    Haider, A. F. M. Y.; Hedayet Ullah, M.; Khan, Z. H.; Kabir, Firoza; Abedin, K. M.

    2014-03-01

    LIBS technique coupled with adsorption has been applied for the efficient detection of arsenic in liquid. Several adsorbents like tea leaves, bamboo slice, charcoal and zinc oxide have been used to enable sensitive detection of arsenic presence in water using LIBS. Among these, zinc oxide and charcoal show the better results. The detection limits for arsenic in water were 1 ppm and 8 ppm, respectively, when ZnO and charcoal were used as adsorbents of arsenic. To date, the determination of 1 ppm of As in water is the lowest concentration of detected arsenic in water by the LIBS technique. The detection limit of As was lowered to even less than 100 ppb by a combination of LIBS technique, adsorption by ZnO and concentration enhancement technique. Using the combination of these three techniques the ultimate concentration of arsenic was found to be 0.083 ppm (83 ppb) for arsenic polluted water collected from a tube-well of Farajikandi union (longitude 90.64°, latitude 23.338° north) of Matlab Upozila of Chandpur district in Bangladesh. This result compares fairly well with the finding of arsenic concentration of 0.078 ppm in the sample by the AAS technique at the Bangladesh Council of Scientific and Industrial Research (BCSIR) lab. Such a low detection limit (1 ppm) of trace elements in liquid matrix has significantly enhanced the scope of LIBS as an analytical tool.

  18. Main: 1H83 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1H83 トウモロコシ Corn Zea mays L. Polyamine Oxidase Precursor Name=Pao; Zea Mays Molecul...GYYGVWQEFEKQYPDANVLLVTVTDEESRRIEQQSDEQTKAEIMQVLRKMFPGKDVPDATDILVPRWWSDRFYKGTFSNWPVGVNRYEYDQLRAPVGRVYFTGEHTSEHYNGYVHGAYLSGIDSAEILINCAQKKMCKYHVQGKYD corn_1H83.jpg ...

  19. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  20. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  1. 20 CFR 631.83 - Coordination.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Coordination. 631.83 Section 631.83 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR PROGRAMS UNDER TITLE III OF THE JOB TRAINING PARTNERSHIP ACT Disaster Relief Employment Assistance § 631.83 Coordination. Funds made...

  2. 4 CFR 83.17 - Fees.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Fees. 83.17 Section 83.17 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS PRIVACY PROCEDURES FOR PERSONNEL RECORDS § 83.17 Fees. (a) Generally, GAO's policy... discretion may charge a fee when the cost for copying the record (at a rate of 20 cents per page) would be...

  3. 45 CFR 83.12 - Recruitment.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Recruitment. 83.12 Section 83.12 Public Welfare... § 83.12 Recruitment. (a) Comparable recruitment. A federally supported entity shall, with respect to... demonstrate that such action is part of a recruitment program which does not have the effect of...

  4. 28 CFR 83.670 - Suspension.

    Science.gov (United States)

    2010-07-01

    ..., in accordance with the Federal Acquisition Regulation for procurement contracts (48 CFR part 9... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Suspension. 83.670 Section 83.670... WORKPLACE (GRANTS) Definitions § 83.670 Suspension. Suspension means an action taken by a Federal...

  5. 7 CFR 959.83 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 959.83 Section 959.83 Agriculture... Regulating Handling Miscellaneous Provisions § 959.83 Effective time. The provisions of this subpart, or any amendment thereto, shall become effective at such time as the Secretary may declare and shall continue...

  6. 7 CFR 966.83 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 966.83 Section 966.83 Agriculture... Regulating Handling Miscellaneous Provisions § 966.83 Effective time. The provisions of this subpart, or any amendment thereto, shall become effective at such time as the Secretary may declare and shall continue...

  7. 7 CFR 948.83 - Effective time.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Effective time. 948.83 Section 948.83 Agriculture... Order Regulating Handling Miscellaneous Provisions § 948.83 Effective time. The provisions of this subpart or any amendments thereto shall become effective at such time as the Secretary may declare...

  8. 28 CFR 83.655 - Individual.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Individual. 83.655 Section 83.655 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) GOVERNMENT-WIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (GRANTS) Definitions § 83.655 Individual. Individual means a natural person....

  9. 49 CFR 176.83 - Segregation.

    Science.gov (United States)

    2010-10-01

    ... Federal Register citations affecting § 176.83, see the List of CFR Sections Affected, which appears in the... 49 Transportation 2 2010-10-01 2010-10-01 false Segregation. 176.83 Section 176.83 Transportation..., DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CARRIAGE BY VESSEL General...

  10. 10 CFR § 205.83 - Contents.

    Science.gov (United States)

    2016-01-01

    ... 10 Energy 3 2016-01-01 2016-01-01 false Contents. § 205.83 Section § 205.83 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Interpretation § 205.83 Contents. (a) The request shall contain a full and complete statement of all relevant facts pertaining to the circumstances,...

  11. 14 CFR 158.83 - Informal resolution.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Informal resolution. 158.83 Section 158.83... PASSENGER FACILITY CHARGES (PFC'S) Termination § 158.83 Informal resolution. The Administrator shall undertake informal resolution with the public agency or any other affected party if, after review...

  12. 4 CFR 83.2 - Administration.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Administration. 83.2 Section 83.2 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS PRIVACY PROCEDURES FOR PERSONNEL RECORDS § 83.2 Administration. The administration of this part is the duty and responsibility of the Director, Personnel, U.S....

  13. 25 CFR 83.1 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Definitions. 83.1 Section 83.1 Indians BUREAU OF INDIAN... GROUP EXISTS AS AN INDIAN TRIBE § 83.1 Definitions. As used in this part: Area Office means a Bureau of... of the history, geography, culture and social organization of the petitioning group. Board means...

  14. 25 CFR 700.83 - Nonprofit organization.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Nonprofit organization. 700.83 Section 700.83 Indians THE... Policies and Instructions Definitions § 700.83 Nonprofit organization. The term nonprofit organization..., professional, or instructional activity on a nonprofit basis and that has established its nonprofit...

  15. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  16. [Arsenic - Poison or medicine?].

    Science.gov (United States)

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine.

  17. Chronic arsenic poisoning.

    Science.gov (United States)

    Hall, Alan H

    2002-03-10

    Symptomatic arsenic poisoning is not often seen in occupational exposure settings. Attempted homicide and deliberate long-term poisoning have resulted in chronic toxicity. Skin pigmentation changes, palmar and plantar hyperkeratoses, gastrointestinal symptoms, anemia, and liver disease are common. Noncirrhotic portal hypertension with bleeding esophageal varices, splenomegaly, and hypersplenism may occur. A metallic taste, gastrointestinal disturbances, and Mee's lines may be seen. Bone marrow depression is common. 'Blackfoot disease' has been associated with arsenic-contaminated drinking water in Taiwan; Raynaud's phenomenon and acrocyanosis also may occur. Large numbers of persons in areas of India, Pakistan, and several other countries have been chronically poisoned from naturally occurring arsenic in ground water. Toxic delirium and encephalopathy can be present. CCA-treated wood (chromated copper arsenate) is not a health risk unless burned in fireplaces or woodstoves. Peripheral neuropathy may also occur. Workplace exposure or chronic ingestion of arsenic-contaminated water or arsenical medications is associated with development of skin, lung, and other cancers. Treatment may incklude the use of chelating agents such as dimercaprol (BAL), dimercaptosuccinic acid (DMSA), and dimercaptopanesulfonic acid (DMPS).

  18. Inorganic arsenic toxicosis in cattle.

    Science.gov (United States)

    Riviere, J E; Boosinger, T R; Everson, R J

    1981-03-01

    In 4 occurrences of arsenic poisoning in cattle, the principal clinical sign was acute hemorrhagic diarrhea attributable to hemorrhagic gastroenteritis. Arsenic concentrations in the liver, kidney and rumen contents varied. In one occurrence, arsenic in the hair of affected survivors was assayed at 0.8-3.40 ppm, vs 0.09-0.10 ppm in randomly selected control samples of hair. Sudden death was the only clinical sign in another occurrence in which gastric contents contained arsenic at 671 ppm. In another occurrence, arsenic poisoning caused lesions similar to those of salmonellosis.

  19. Arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    McLennan, M.W.; Dodson, M.E.

    1972-06-01

    A case of acute arsenic poisoning in cattle was reported. The losses occurred on a property in the south east of South Australia. The weather had been hot for two or three days before the death occurred. The tank supplying the water trough had almost run dry. The cattle then attempted to meet their water requirements by drinking from the sheep dipping vat. A sample of rumen contents and a sample of water from the dipping vat were checked for arsenic. The rumen sample contained 45 ppM As/sub 2/O/sub 3/ and the sample of dipping fluid contained 200 ppM As. The lesions observed were similar to earlier reported arsenic poisoning. 5 references.

  20. Environmental Source of Arsenic Exposure

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  1. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  2. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  3. Acute and chronic arsenic toxicity.

    Science.gov (United States)

    Ratnaike, R N

    2003-07-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water.

  4. Arsenic and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Bianchi F.

    2013-04-01

    Full Text Available A growing body of epidemiologic, experimental and clinical evidence shows that arsenic may exert relevant cardiovascular effects with early damage such as endothelial dysfunction. Early biomarkers of cardiovascular damage together with markers of exposure, genetic and epigenetic effects, DNA damage, apoptosis, oxidative stress remain unexplored and a study is ongoing in Italy.

  5. Rural methods to mitigate arsenic contaminated water

    OpenAIRE

    Parajuli, Krishna

    2013-01-01

    Consumption of arsenic contaminated water is one of the burning issues in the rural world. Poor public awareness program about health effects of drinking arsenic contaminated water and the rural methods to mitigate this problem poses a great threat of arsenic poisoning many people of the rural world. In this thesis, arsenic removal efficiency and the working mechanism of four rural and economical arsenic mitigation technologies i.e. solar oxidation and reduction of arsenic (SORAS), Bucket tr...

  6. Arsenic distribution in waters and its geochemical behavior in sediment of Mahanadi estuary in India.

    Science.gov (United States)

    Mandal, Sanjay Kumar; Majumder, Natasha; Chowdhury, Chumki; Jana, T K; Dutta, Buddhadeb

    2016-08-01

    Distribution of arsenic in the marine environment is associated with its biogeochemical behavior. Indeed, very few studies have been conducted along the seasonal cycle to show its non-conservative behavior in the tropical estuary. The Mahanadi River, one of the major tropical rivers in the peninsular India, drains densely populated and industrialized region of Paradeep port. Over this 1-year study, the variations of inorganic arsenic were examined along the salinity gradient of the Mahanadi estuary, with the aim to provide some insights into the mechanisms that control arsenic concentrations and behavior under estuarine mixing. Arsenic in the estuary was derived from both natural and anthropogenic sources, and it displayed partial removal from the water in the mixing zone. Results of geo-accumulation index indicated that sediments were uncontaminated and they acted as a sink for arsenic. The diffusive fluxes from water to sediment were estimated to be 9.05 μg m(-2) day(-1) at Chaumohona, 9.83 μg m(-2) day(-1) at Kaudia, and 11.85 μg m(-2) day(-1) at Neherubunglow. The findings of the study suggest that both the removal of arsenic by biogeochemical processes and its diffusive transport from water to sediment are of major importance for both the non-conservative behavior of arsenic in the estuary and its export to the coastal water. PMID:27401504

  7. Aquifer Vulnerability to Arsenic contamination in the Conterminous United States: Health Risks and Economic Implications

    Science.gov (United States)

    Twarakavi, N. C.; Kaluarachchi, J. J.

    2004-12-01

    Arsenic is historically known be toxic to human health. Drinking water contaminated with unsafe levels of arsenic may cause cancer. The toxicity of arsenic is suggested by a MCLG of zero and a low MCL of 10 µg/L, that has been a subject of constant scrutiny. The US Environmental Protection Agency (US EPA), based on the recommendations of the National Academy of Sciences revised the MCL from 1974 value of 50 µg/L to 10 µg/L. The decision was based on a national-level analysis of arsenic concentration data collected by the National Analysis of Water Quality Assessment (NAWQA). Another factor that makes arsenic in drinking water a major issue is the widespread occurrence and a variety of sources. Arsenic occurs naturally in mineral deposits and is also contributed through anthropogenic sources. A methodology using the ordinal logistic regression (LR) method is proposed to predict the probability of occurrence of arsenic in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered the maximum contaminant level (MCL) options of 3, 5, 10, 20, and 50 µg/L as threshold values to estimate the probabilities of arsenic occurrence in ranges defined by a given MCL and a detection limit of 1 µg/L. The fit between the observed and predicted probability of occurrence was around 83% for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic for different aquifer types in the CONUS. The shallow ground water of the western US is more vulnerable to arsenic contamination than the eastern US. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The model results were extended for estimating the health risks and costs posed by arsenic occurrence in the ground water of the United States. The risk assessment showed that counties in southern California, Arizona, Florida, Washington States and a few others scattered

  8. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    OpenAIRE

    Liu, Jie; Zheng, Baoshan; Aposhian, H. Vasken; Zhou, Yunshu; Chen, Ming-liang; Zhang, Aihua; Waalkes, Michael P.

    2002-01-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooki...

  9. Moonshine-related arsenic poisoning.

    Science.gov (United States)

    Gerhardt, R E; Crecelius, E A; Hudson, J B

    1980-02-01

    Twelve sequential cases of arsenic poisoning were reviewed for possible sources of ingestion. Contaminated illicit whiskey (moonshine) appeared to be the source in approximately 50% of the patients. An analysis of.confiscated moonshine revealed that occasional specimens contained high levels of arsenic as a contaminant. Although arsenic poisoning occurs relatively infrequently, contaminated moonshine may be an important cause of the poisoning in some areas of the country.

  10. Arsenic poisoning of Bangladesh groundwater

    Science.gov (United States)

    Nickson, Ross; McArthur, John; Burgess, William; Ahmed, Kazi Matin; Ravenscroft, Peter; Rahmanñ, Mizanur

    1998-09-01

    In Bangladesh and West Bengal, alluvial Ganges aquifers used for public water supply are polluted with naturally occurring arsenic, which adversely affects the health of millions of people. Here we show that the arsenic derives from the reductive dissolution of arsenic-rich iron oxyhydroxides, which in turn are derived from weathering of base-metal sulphides. This finding means it should now be possible, by sedimentological study of the Ganges alluvial sediments, to guide the placement of new water wells so they will be free of arsenic.

  11. Arsenic content of homeopathic medicines

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, H.D.; Saryan, L.A.

    1986-01-01

    In order to test the widely held assumption that homeopathic medicines contain negligible quantities of their major ingredients, six such medicines labeled in Latin as containing arsenic were purchased over the counter and by mail order and their arsenic contents measured. Values determined were similar to those expected from label information in only two of six and were markedly at variance in the remaining four. Arsenic was present in notable quantities in two preparations. Most sales personnel interviewed could not identify arsenic as being an ingredient in these preparations and were therefore incapable of warning the general public of possible dangers from ingestion. No such warnings appeared on the labels.

  12. Removal of arsenic from drinking water using rice husk

    Science.gov (United States)

    Asif, Zunaira; Chen, Zhi

    2015-09-01

    Rice husk adsorption column method has proved to be a promising solution for arsenic (As) removal over the other conventional methods. The present work investigates the potential of raw rice husk as an adsorbent for the removal of arsenic [As(V)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column to check the removal efficiency of arsenic. This method shows maximum removal of As, i.e., 90.7 % under the following conditions: rice husk amount 42.5 g; 7 mL/min flow rate in 5 cm diameter column at the bed height of 28 cm for 15 ppb inlet feed concentration. Removal efficiency was increased from 83.4 to 90.7 % by reducing the particle size from 1.18 mm to 710 µm for 15 ppb concentration. Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. The effect of different operating parameters on the column adsorption was determined using breakthrough curves. In the present study, three kinetic models Adam-Bohart, Thomas and Yoon-Nelson were applied to find out the saturated concentration, fixed bed adsorption capacity and time required for 50 % adsorbate breakthrough, respectively. At the end, solidification was done for disposal of rice husk.

  13. 27 CFR 9.83 - Lake Erie.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lake Erie. 9.83 Section 9... TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.83 Lake Erie. (a) Name. The name of the viticultural area described in this section is “Lake Erie.” (b) Approved...

  14. 27 CFR 71.83 - Evidence.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Evidence. 71.83 Section 71... General § 71.83 Evidence. Any evidence which would be admissible under the rules of evidence governing... his case or defense by oral or documentary evidence, depositions, duly authenticated copies of...

  15. 9 CFR 83.6 - Testing requirements.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Testing requirements. 83.6 Section 83.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE INTERSTATE TRANSPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL PRODUCTS VIRAL HEMORRHAGIC...

  16. 21 CFR 640.83 - General requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false General requirements. 640.83 Section 640.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS...) Preservative. The final product shall not contain a preservative. (b) Storage of bulk solution. After...

  17. 40 CFR 405.83 - [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true 405.83 Section 405.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Ice Cream, Frozen Desserts, Novelties and Other Dairy Desserts...

  18. 28 CFR 83.650 - Grant.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Grant. 83.650 Section 83.650 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) GOVERNMENT-WIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (GRANTS... value to the recipient to carry out a public purpose of support or stimulation authorized by a law...

  19. 18 CFR 367.83 - Training costs.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Training costs. 367.83... Expense Instructions § 367.83 Training costs. When it is necessary that employees be trained to specifically operate or maintain facilities that are being constructed, the related costs must be accounted...

  20. 28 CFR 2.83 - Release planning.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Release planning. 2.83 Section 2.83... Release planning. (a) All grants of parole shall be conditioned on the development of a suitable release... parole date for purposes of release planning for up to 120 days without a hearing. If efforts...

  1. 31 CFR 103.83 - Oral communications.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Oral communications. 103.83 Section... AND REPORTING OF CURRENCY AND FOREIGN TRANSACTIONS Administrative Rulings § 103.83 Oral communications... response to oral requests. Oral opinions or advice by Treasury, the Customs Service, the Internal...

  2. Homicidal arsenic poisoning.

    Science.gov (United States)

    Duncan, Andrew; Taylor, Andrew; Leese, Elizabeth; Allen, Sam; Morton, Jackie; McAdam, Julie

    2015-07-01

    The case of a 50-year-old man who died mysteriously after being admitted to hospital is reported. He had raised the possibility of being poisoned prior to his death. A Coroner's post-mortem did not reveal the cause of death but this was subsequently established by post-mortem trace element analysis of liver, urine, blood and hair all of which revealed very high arsenic concentrations.

  3. Association between Hypertension and Chronic Arsenic Exposure in Drinking Water: A Cross-Sectional Study in Bangladesh

    Directory of Open Access Journals (Sweden)

    Abul Hasnat Milton

    2012-12-01

    Full Text Available Chronic arsenic exposure and its association with hypertension in adults are inconclusive and this cross-sectional study investigated the association. The study was conducted between January and July 2009 among 1,004 participants from 1,682 eligible women and men aged ≥30 years living in rural Bangladesh who had continuously consumed arsenic-contaminated drinking water for at least 6 months. Hypertension was defined as systolic blood pressure ≥140 mmHg (systolic hypertension and diastolic blood pressure ≥90 mmHg (diastolic hypertension. Pulse pressure was calculated by deducting diastolic from systolic pressure and considered to be increased when the difference was ≥55 mmHg. The prevalence of hypertension was 6.6% (95% CI: 5.1–8.3%. After adjustment for other factors, no excess risk of hypertension was observed for arsenic exposure >50μg/L or to that of arsenic exposure as quartiles or as duration. Arsenic concentration as quartiles and >50 μg/L did show a strong relationship with increased pulse pressure (adjusted OR: 3.54, 95% CI: 1.46–8.57, as did arsenic exposure for ≥10 years (adjusted OR: 5.25, 95% CI: 1.41–19.51. Arsenic as quartiles showed a dose response relationship with increased pulse pressure. Our study suggests an association between higher drinking water arsenic or duration and pulse pressure, but not hypertension.

  4. Association between Hypertension and Chronic Arsenic Exposure in Drinking Water: A Cross-Sectional Study in Bangladesh

    Science.gov (United States)

    Islam, Mohammad Rafiqul; Khan, Ismail; Attia, John; Hassan, Sheikh Mohammad Nazmul; McEvoy, Mark; D’Este, Catherine; Azim, Syed; Akhter, Ayesha; Akter, Shahnaz; Shahidullah, Sheikh Mohammad; Milton, Abul Hasnat

    2012-01-01

    Chronic arsenic exposure and its association with hypertension in adults are inconclusive and this cross-sectional study investigated the association. The study was conducted between January and July 2009 among 1,004 participants from 1,682 eligible women and men aged ≥30 years living in rural Bangladesh who had continuously consumed arsenic-contaminated drinking water for at least 6 months. Hypertension was defined as systolic blood pressure ≥140 mmHg (systolic hypertension) and diastolic blood pressure ≥90 mmHg (diastolic hypertension). Pulse pressure was calculated by deducting diastolic from systolic pressure and considered to be increased when the difference was ≥55 mmHg. The prevalence of hypertension was 6.6% (95% CI: 5.1–8.3%). After adjustment for other factors, no excess risk of hypertension was observed for arsenic exposure >50μg/L or to that of arsenic exposure as quartiles or as duration. Arsenic concentration as quartiles and >50 μg/L did show a strong relationship with increased pulse pressure (adjusted OR: 3.54, 95% CI: 1.46–8.57), as did arsenic exposure for ≥10 years (adjusted OR: 5.25, 95% CI: 1.41–19.51). Arsenic as quartiles showed a dose response relationship with increased pulse pressure. Our study suggests an association between higher drinking water arsenic or duration and pulse pressure, but not hypertension. PMID:23222207

  5. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  6. Hyperpolarized 83Kr MRI of lungs

    Science.gov (United States)

    Cleveland, Zackary I.; Pavlovskaya, Galina E.; Elkins, Nancy D.; Stupic, Karl F.; Repine, John E.; Meersmann, Thomas

    2008-12-01

    Hyperpolarized (hp) 83Kr (spin I = 9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp 83Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% 83Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the 83Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The 83Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7 s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp 83Kr T1 differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp 83Kr at 9.4 T field strength is found to be 180 times below the theoretical upper limit.

  7. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    Science.gov (United States)

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  8. Arsenic Mobility and Groundwater Extraction in Bangladesh

    Science.gov (United States)

    Harvey, Charles F.; Swartz, Christopher H.; Badruzzaman, A. B. M.; Keon-Blute, Nicole; Yu, Winston; Ali, M. Ashraf; Jay, Jenny; Beckie, Roger; Niedan, Volker; Brabander, Daniel; Oates, Peter M.; Ashfaque, Khandaker N.; Islam, Shafiqul; Hemond, Harold F.; Ahmed, M. Feroze

    2002-11-01

    High levels of arsenic in well water are causing widespread poisoning in Bangladesh. In a typical aquifer in southern Bangladesh, chemical data imply that arsenic mobilization is associated with recent inflow of carbon. High concentrations of radiocarbon-young methane indicate that young carbon has driven recent biogeochemical processes, and irrigation pumping is sufficient to have drawn water to the depth where dissolved arsenic is at a maximum. The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.

  9. Breton Island, Louisiana Baseline (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Breton Island, Louisiana Baseline (Geographic, NAD83) consists of vector line data that were input into the Digital Shoreline Analysis System (DSAS) version 4.0,...

  10. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  11. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    Science.gov (United States)

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  12. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    Science.gov (United States)

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign. PMID:26476769

  13. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species

    International Nuclear Information System (INIS)

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic. -- Highlights: ► High soil arsenic and organic matter caused a reduction in plant growth. ► A delayed flowering time was observed in high arsenic and organic matter soil. ► Total grain arsenic increased in high arsenic and organic matter soil. ► Percentage organic arsenic in the grain altered in arsenic and organic matter soil. -- The addition of high amounts of organic matter to soils led to an increase in total rice grain arsenic, as well as alteration in the percentage arsenic species in the rice grains

  14. Osteoresorptive arsenic intoxication.

    Science.gov (United States)

    Dani, Sergio Ulhoa

    2013-04-01

    A 47-year-old woman consulted her dermatologist complaining whole body dermatitis, urticaria and irritating bullous eruptions on the plantar and side surfaces of her feet. She had had multiple hypopigmented spots on her skin since her early adulthood. The patient was treated with topical medication without significant improvement of symptoms. One year later she suffered a myocardial infarction, accompanied by refractory anaemia. At the age of 49, a breast cancer was diagnosed and shortly thereafter her last menstruation occurred. At age 50years, upon complaint of weight loss despite normal food intake, Hashimoto thyroiditis with latent hyperthyroidism, vitamin D insufficiency with secondary hyperparathyroidism, and poikilocytic anaemia with anisochromia, hypochromia, anisocytosis, elliptocytes, drepanocytes, dacryocytes, acanthocytes, echinocytes, schizocytes, stomatocytes and target cells were diagnosed. The osteodensitometric and laboratory examinations revealed osteoporosis with sustained elevation of urinary Dipyridinolin-crosslinks (u-Dpd), and urinary arsenic (u-As) of 500μg/l (equivalent to 0.5 parts per million-ppm, 2.5μg/mg creatinine/dl, u-As: Phosphate of 26μg/mmol; the estimated bone As:P and As/kg body weight were 500μg/g and 11.3mg/kg, respectively). Thalassemia, immunoglobinopathy and iron deficiency were excluded. Supplementation with oral vitamin D and calcium, and antiresorptive therapy with intravenous zolendronate normalised the u-Dpd, significantly decreased the urinary arsenic concentration, and cured the anemia and the urticaria. A diagnosis of osteoresorptive arsenic intoxication (ORAI) was established. PMID:23337042

  15. Microbial responses to environmental arsenic.

    Science.gov (United States)

    Páez-Espino, David; Tamames, Javier; de Lorenzo, Víctor; Cánovas, David

    2009-02-01

    Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.

  16. Removing arsenic from drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hathaway, S.W.; Rubel, R. (Environmental Protection Agency, Cincinnati, OH (USA))

    1987-08-01

    Pilot-plant tests of two treatment methods, activated alumina and ion exchange, for removing arsenic from drinking water were evaluated at the Fallon, Nevada, Naval Air Station (NAS). The arsenic concentration was 0.080-0.116 mg/liter, exceeding the 0.05 mg/liter maximum contaminant level. Although the valence of arsenic was not determined, in prechlorination process and test results suggest it was probably arsenic V. Chlorinated drinking water from the NAS was used for evaluating the efficacy of treatment under several different conditions. The activated alumina and ion exchange systems were operated through three different loading and regeneration cycles each. The major water quality factors affecting the removal of arsenic by these methods were pH of feedwater, arsenic concentration, sulfate concentration, and alkalinity. The major operational factors affecting removal were flow rate, down time, and media clogging. Capital and operating costs for arsenic removal are estimated for the activated alumina method at optimum pH (5.5) for each of the three small community systems drawing water from the same aquifer. In addition, several containers of the regeneration waste were used for a special study to characterize, dewater, and render the waste non-toxic for disposal in a sanitary landfill.

  17. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (parsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; parsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  18. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-01

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (parsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; parsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  19. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice

    Energy Technology Data Exchange (ETDEWEB)

    Ye Wenling [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khan, M. Asaduzzaman [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207 (Bangladesh); McGrath, Steve P. [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom); Zhao Fangjie, E-mail: Fangjie.Zhao@bbsrc.ac.uk [Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ (United Kingdom)

    2011-12-15

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. - Highlights: > Pteris vittata removed 3.5-11.4% of the total As from five contaminated paddy soils. > P. vittata decreased phosphate-extractable and soil solution As to a greater extent. > P. vittata reduced As concentration in rice grain by 18-83%. > P. vittata decreased methylated As in rice grain more than inorganic As. - Phytoremediation with P. vittata significantly reduced arsenic uptake by rice from contaminated paddy soils.

  20. Discovery of the Arsenic Isotopes

    CERN Document Server

    Shore, A; Heim, M; Schuh, A; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  1. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  2. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.

    Science.gov (United States)

    Ghosh, Piyasa; Rathinasabapathi, Bala; Ma, Lena Q

    2011-10-01

    The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO₄ and AlAsO₄ minerals (from organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata. PMID:21840210

  3. 14 CFR 33.83 - Vibration test.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.83 Vibration test. (a) Each engine... throughout the declared flight envelope. The engine surveys shall be based upon an appropriate combination...

  4. 22 CFR 8.3 - Scope.

    Science.gov (United States)

    2010-04-01

    ... personnel); (4) Has an organizational structure (e.g., officers) and a staff. (c) Where a group provides... DEPARTMENT OF STATE GENERAL ADVISORY COMMITTEE MANAGEMENT § 8.3 Scope. (a) The Federal Advisory Committee Act... Office of Management and Budget, may establish a group which shall be known as an advisory committee...

  5. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  6. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    Science.gov (United States)

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  7. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  8. RARE CASE REPORT OF CHRONIC ARSENIC POISONING

    OpenAIRE

    Mundle; Neelima; Sushrut; Yogesh; Shukan; Shalik; Siddharth

    2014-01-01

    Today, arsenic is primarily used in the produc tion of glass and semiconductors., Arsenic may be found as a water or food contaminant, particularly in shellfish and other seafood, and often contaminates fruits and vegetables, particularly rice

  9. Inorganic arsenic poisoning in pastured feeder lambs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.A.; Crane, M.R.; Tomson, K.

    1971-01-01

    Clinical signs and necropsy findings in a group of feeder lambs were suggestive of inorganic arsenic poisoning. Source of exposure was established and toxic concentrations of arsenic were detected in the tissues. 13 references, 1 table.

  10. Airborne exposure and estimated bioavailability of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Yager, J.W. [Electric Power Research Inst., Madison, WI (United States); Clewell, H.J. III [ICF Consulting, Fairfax, VA (United States); Hicks, J. [Geomatrix, (United States)

    2000-07-01

    A pilot group of workers were used in a study to determine the relationship between exposure to arsenic present in fly ash particles and urinary excretion of inorganic arsenic and its methylated metabolites. Arsenic was measured in the breathing zone of workers during full shift work schedules and daily urine samples were collected to determine the concentration of arsenic and its metabolites. Airborne particle size distribution samples were collected on six-stage personal cascade impactors. Previous studies of airborne exposure to arsenic in copper smelters predict urinary values nearly three times higher than those seen in exposure to arsenic in fly ash. The results suggest that differences in biological uptake of airborne arsenic probably depend on characteristics such as solubility, particle size and distribution and matrix composition of the arsenic compounds.

  11. Arsenic in the aetiology of cancer.

    Science.gov (United States)

    Tapio, Soile; Grosche, Bernd

    2006-06-01

    Arsenic, one of the most significant hazards in the environment affecting millions of people around the world, is associated with several diseases including cancers of skin, lung, urinary bladder, kidney and liver. Groundwater contamination by arsenic is the main route of exposure. Inhalation of airborne arsenic or arsenic-contaminated dust is a common health problem in many ore mines. This review deals with the questions raised in the epidemiological studies such as the dose-response relationship, putative confounders and synergistic effects, and methods evaluating arsenic exposure. Furthermore, it describes the metabolic pathways of arsenic, and its biological modes of action. The role of arsenic in the development of cancer is elucidated in the context of combined epidemiological and biological studies. However, further analyses by means of molecular epidemiology are needed to improve the understanding of cancer aetiology induced by arsenic.

  12. RARE CASE REPORT OF CHRONIC ARSENIC POISONING

    Directory of Open Access Journals (Sweden)

    Mundle

    2014-12-01

    Full Text Available Today, arsenic is primarily used in the produc tion of glass and semiconductors., Arsenic may be found as a water or food contaminant, particularly in shellfish and other seafood, and often contaminates fruits and vegetables, particularly rice

  13. Arsenic in contaminated soil and river sediment

    Energy Technology Data Exchange (ETDEWEB)

    Bombach, G. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Pierra, A. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany)); Klemm, W. (Freiberg Univ. of Mining and Technology, Inst. of Mineralogy, Geochemistry and Ore Deposits, Freiberg (Germany))

    1994-09-01

    Different areas in the Erzgebirge mountains are contaminated by high arsenic concentration which is caused by the occurrence of ore and industrial sources. The study showed clearly a high concentration of arsenic in the surface and under soil (A and B horizons) in the Freiberg district. The distribution of the arsenic concentration in the area, the content of water soluble arsenic, the several oxidation states (As[sup 3+], As[sup 5+]) and the bonding types have been analyzed. (orig.)

  14. Inorganic arsenic and trace elements in Ghanaian grain staples

    International Nuclear Information System (INIS)

    A total of 549 samples of rice, maize, wheat, sorghum and millet were obtained from markets in Ghana, the EU, US and Asia. Analysis of the samples, originating from 21 countries in 5 continents, helped to establish global mean trace element concentrations in grains; thus placing the Ghanaian data within a global context. Ghanaian rice was generally low in potentially toxic elements, but high in essential nutrient elements. Arsenic concentrations in rice from US (0.22 mg/kg) and Thailand (0.15 mg/kg) were higher than in Ghanaian rice (0.11 mg/kg). Percentage inorganic arsenic content of the latter (83%) was, however, higher than for US (42%) and Thai rice (67%). Total arsenic concentration in Ghanaian maize, sorghum and millet samples (0.01 mg/kg) was an order of magnitude lower than in Ghanaian rice, indicating that a shift from rice-centric to multigrain diets could help reduce health risks posed by dietary exposure to inorganic As. - Highlights: → Arsenic content of Ghanaian rice is higher than in other Ghanaian grain staples. → Compared to global mean values, Ghanaian rice and maize have low As and Cd content. → Most rice imports to Ghana have lower Co, Cu, Mn and Zn content than Ghanaian rice. → Cancer risk posed by Thai rice is slightly higher than for Ghanaian and US rice. → A shift to multigrain diets would reduce health risks due to dietary As exposure. - Ghanaian rice is generally low in potentially toxic trace elements and is of higher nutritional quality than rice imported into the country.

  15. Arsenic - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Arsenic URL of this page: https://medlineplus.gov/languages/arsenic.html Other topics A-Z A B C ... V W XYZ List of All Topics All Arsenic - Multiple Languages To use the sharing features on ...

  16. 21 CFR 556.60 - Arsenic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  17. 29 CFR 1910.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... container in the change-room which prevents dispersion of inorganic arsenic outside the container. (vi) The... readily through the skin. Because inorganic arsenic is a poison, you should wash your hands thoroughly... 29 Labor 6 2010-07-01 2010-07-01 false Inorganic arsenic. 1910.1018 Section 1910.1018...

  18. Chloride sublimation of gold-arsenic concentrates

    International Nuclear Information System (INIS)

    Present article is devoted to chloride sublimation of gold-arsenic concentrates. The results of studies of chloride sublimation of gold-arsenic comprising concentrates of Chore deposit of Tajikistan are considered. It is found that by application sodium chloride for gold-arsenic comprising concentrates it is possible to extract gold and silver from flotation concentrates.

  19. Arsenic intoxication associated with tubulointerstitial nephritis.

    Science.gov (United States)

    Prasad, G V; Rossi, N F

    1995-08-01

    Arsenic poisoning is an often unrecognized cause of renal insufficiency. We report a case of tubulointerstitial nephritis associated with an elevated urinary arsenic concentration. Removal of the putative source of arsenic resulted in symptomatic improvement, resolution of abnormal abdominal radiographs, and stabilization of renal function. This case emphasizes the importance of heavy metal screening in patients with multisystem complaints and tubulointerstitial nephritis.

  20. Agricultural Finance Statistics, 1960-83

    OpenAIRE

    Amols, George; Kaiser, Wilson

    1984-01-01

    This bulletin presents farm financial statistics, including outstanding farm 4ebt by State and lender and average interest rates for agricultural loans charged by selected lenders for 1960-83. Farm debt includes both real estate and nonrea1 estate debt. Lenders include Commodity Credit Corporation (CCC), Federal land banks, production credit associations, Federal intermediate credit banks, commercial banks, life insurance companies, Farmers Home Administration, and individuals and others.

  1. Arsenic – Poison or medicine?

    Directory of Open Access Journals (Sweden)

    Karolina Kulik-Kupka

    2016-04-01

    Full Text Available Arsenic (As is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. Med Pr 2016;67(1:89–96

  2. 4 CFR 83.6 - Accounting of certain disclosures.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Accounting of certain disclosures. 83.6 Section 83.6... Accounting of certain disclosures. (a) With respect to each system of personnel records, GAO shall, except for disclosures made under §§ 83.4(a) and 83.4(b), keep an accurate accounting of— (1) The...

  3. Mineral resource of the month: arsenic

    Science.gov (United States)

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  4. Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation.

    Science.gov (United States)

    Huq, S M Imamul; Joardar, J C; Parvin, S; Correll, Ray; Naidu, Ravi

    2006-09-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999-2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  5. Arsenic-cadmium interaction in rats.

    Science.gov (United States)

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone. PMID:2219140

  6. Arsenic occurrence in New Hampshire drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Peters, S.C.; Blum, J.D.; Klaue, B. [Dartmouth Coll., Hanover, NH (United States). Dept. of Earth Sciences; Karagas, M.R. [Dartmouth Medical School, Hanover, NH (United States). Dept. of Community and Family Medicine

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  7. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (arsenic present in soils or rice paddies is released via volatilization. Additionally, past studies often have not monitored arsenic release in the aqueous phase. Two main pathways for microbial arsenic volatilization are known and include methylation of arsenic during methanogenesis and methylation by arsenite S-adenosylmethionine methyltransferase. In this study, we compare the roles of these two pathways in arsenic volatilization and aqueous mobilization through mesocosm experiments with cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to

  8. The Young Outer Disk of M83

    Science.gov (United States)

    Davidge, T. J.

    2010-08-01

    Deep near-infrared images recorded with NICI on Gemini South are used to investigate the evolved stellar content in the outer southeast quadrant of the spiral galaxy M83. A diffuse population of asymptotic giant branch (AGB) stars is detected, indicating that there are stars outside of the previously identified young and intermediate age star clusters in the outer disk. The brightest AGB stars have M K >= -8, and the AGB luminosity function (LF) is well matched by model LFs that assume ages Innovacion Productiva (Argentina).

  9. Managing hazardous pollutants in Chile: arsenic.

    Science.gov (United States)

    Sancha, Ana María; O'Ryan, Raul

    2008-01-01

    Chile is one of the few countries that faces the environmental challenge posed by extensive arsenic pollution, which exists in the northern part of the country. Chile has worked through various options to appropriately address the environmental challenge of arsenic pollution of water and air. Because of cost and other reasons, copying standards used elsewhere in the world was not an option for Chile. Approximately 1.8 million people, representing about 12% of the total population of the country, live in arsenic-contaminated areas. In these regions, air, water, and soil are contaminated with arsenic from both natural and anthropogenic sources. For long periods, water consumed by the population contained arsenic levels that exceeded values recommended by the World Health Organization. Exposure to airborne arsenic also occurred near several large cities, as a consequence of both natural contamination and the intensive mining activity carried out in those areas. In rural areas, indigenous populations, who lack access to treated water, were also exposed to arsenic by consuming foods grown locally in arsenic-contaminated soils. Health effects in children and adults from arsenic exposure first appeared in the 1950s. Such effects included vascular, respiratory, and skin lesions from intake of high arsenic levels in drinking water. Methods to remove arsenic from water were evaluated, developed, and implemented that allowed significant reductions in exposure at a relatively low cost. Construction and operation of treatment plants to remove arsenic from water first began in the 1970s. Beginning in the 1990s, epidemiological studies showed that the rate of lung and bladder cancer in the arsenic-polluted area was considerably higher than mean cancer rates for the country. Cancer incidence was directly related to arsenic exposure. During the 1990s, international pressure and concern by Chile's Health Ministry prompted action to regulate arsenic emissions from copper smelters. A

  10. Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhilong [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Lu Xiufen [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Watt, Corinna [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Wen Bei [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); He Bin [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Mumford, Judy [National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Human Studies Division, Epidemiology and Biomarkers Branch, Research Triangle Park, NC 27711 (United States); Ning Zhixiong [Ba Men Anti-Epidemic Station, Lin He, Inner Mongolia (China); Xia Yajuan [Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia (China); Le, X. Chris [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada)]. E-mail: xc.le@ualberta.ca

    2006-01-05

    Arsenic in drinking water affects millions of people around the world. While soluble arsenic is commonly measured, the amount of particulate arsenic in drinking water has often been overlooked. We report here determination of the acid-leachable particulate arsenic and soluble arsenicals in well water from an arsenic-poisoning endemic area in Inner Mongolia, China. Water samples (583) were collected from 120 wells in Ba Men, Inner Mongolia, where well water was the primary drinking water source. Two methods were demonstrated for the determination of soluble arsenic species (primarily inorganic arsenate and arsenite) and total particulate arsenic. The first method used solid phase extraction cartridges and membrane filters to separate arsenic species on-site, followed by analysis of the individual arsenic species eluted from the cartridges and filters. The other method uses liquid chromatography separation with hydride generation atomic fluorescence detection to determine soluble arsenic species. Analysis of acidified water samples using inductively coupled plasma mass spectrometry provided the total arsenic concentration. Arsenic concentrations in water samples from the 120 wells ranged from <1 to {approx}1000 {mu}g L{sup -1}. On average, particulate arsenic accounted for 39 {+-} 38% (median 36%) of the total arsenic. In some wells, particulate arsenic was six times higher than the soluble arsenic concentration. Particulate arsenic can be effectively removed using membrane filtration. The information on particulate and soluble arsenic in water is useful for optimizing treatment options and for understanding the geochemical behavior of arsenic in groundwater.

  11. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Fayiga, Abioye O. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States); Ma, Lena Q. [Soil and Water Science Department, University of Florida, Gainesville, FL 32611-0290 (United States) and Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)]. E-mail: lqma@ifas.ufl.edu; Zhou Qixing [Key Laboratory of Terrestrial Ecological Process, Chinese Academy of Sciences, Shenyang 110016 (China)

    2007-06-15

    This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200 mg kg{sup -1} Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8 weeks using NH{sub 4}Cl (water-soluble plus exchangeable, WE-As), NH{sub 4}F (Al-As), NaOH (Fe-As), and H{sub 2}SO{sub 4} (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8 weeks of plant growth, the Al-As and Fe-As fractions were significantly (p < 0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p = 0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic. - Arsenic taken up by P. vittata was from all fractions with most from the Ca-fraction.

  12. Nuclear Chemistry Division annual report FY83

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G. (ed.)

    1983-01-01

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2).

  13. Nuclear Chemistry Division annual report FY83

    International Nuclear Information System (INIS)

    The purpose of the annual reports of the Nuclear Chemistry Division is to provide a timely summary of research activities pursued by members of the Division during the preceding year. Throughout, details are kept to a minimum; readers desiring additional information are encouraged to read the referenced documents or contact the authors. The Introduction presents an overview of the Division's scientific and technical programs. Next is a section of short articles describing recent upgrades of the Division's major facilities, followed by sections highlighting scientific and technical advances. These are grouped under the following sections: nuclear explosives diagnostics; geochemistry and environmental sciences; safeguards technology and radiation effect; and supporting fundamental science. A brief overview introduces each section. Reports on research supported by a particular program are generally grouped together in the same section. The last section lists the scientific, administrative, and technical staff in the Division, along with visitors, consultants, and postdoctoral fellows. It also contains a list of recent publications and presentations. Some contributions to the annual report are classified and only their abstracts are included in this unclassified portion of the report (UCAR-10062-83/1); the full article appears in the classified portion (UCAR-10062-83/2)

  14. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  15. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  16. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    Science.gov (United States)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization but rather appears to increase arsenic mobilization in the aqueous phase, raising concerns with this approach.

  17. Arsenic in Drinking Water-A Global Environmental Problem

    Science.gov (United States)

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  18. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav, S.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3 to 7 km. Settled fly-ash contained 0.0004 to 0.75 percent arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed.

  19. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3-7 km. Settled fly-ash contained 0.0004-0.75% arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed. 5 references.

  20. Epidemiologic evidence of diabetogenic effect of arsenic.

    Science.gov (United States)

    Tseng, Chin-Hsiao; Tseng, Ching-Ping; Chiou, Hung-Yi; Hsueh, Yu-Mei; Chong, Choon-Khim; Chen, Chien-Jen

    2002-07-01

    It is well documented that arsenic can lead to skin lesions, atherosclerotic diseases and cancers. The association between arsenic exposure and diabetes mellitus is a relatively new finding. Up to now, there are six epidemiologic reports linking diabetes mellitus with arsenic exposure from environmental and occupational sources. Two reports in Taiwan carried out in the blackfoot disease-hyperendemic villages, one cross-sectional and one prospective follow-up of the same cohort, indicate that arsenic exposure from drinking artesian well water is associated with prevalence and incidence of diabetes mellitus in a dose-responsive pattern. The observation of the relation between arsenic exposure and diabetes mellitus is further supported by studies carried out in Sweden and Bangladesh. In Sweden, case-control analyses of death records of copper smelters and glass workers revealed a trend of increasing diabetes mellitus with increasing arsenic exposure from inhalation. In Bangladesh, prevalence of diabetes mellitus among arsenic-exposed subjects with keratosis was about five times higher than unexposed subjects. Increasing trends of diabetes mellitus with indices of arsenic exposure in drinking water seems to be independent of the presence of skin lesions associated with arsenic exposure. Although these studies consistently show an association between arsenic exposure and diabetes mellitus, the weak study designs of cross-sectional or case-control, the use of glucosuria or diabetes death as diagnostic criteria and the lack of adjustment for possible confounders in some studies, are major limitations that may reduce the strength of the evidence. PMID:12076511

  1. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  2. Arsenic removal from drinking water during coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Hering, J.G. [California Inst. of Tech., Pasadena, CA (United States); Chen, P.Y. [Industrial Technology Research Inst., Chutung Hsinchu (Taiwan, Province of China); Wilkie, J.A.; Elimelech, M. [Univ. of California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

    1997-08-01

    The efficiency of arsenic removal from source waters and artificial freshwaters during coagulation with ferric chloride and alum was examined in bench-scale studies. Arsenic(V) removal by either ferric chloride or alum was relatively insensitive to variations in source water composition below pH 8. At pH 8 and 9, the efficiency of arsenic(V) removal by ferric chloride was decreased in the presence of natural organic matter. The pH range for arsenic(V) removal with alum was more restricted than with ferric chloride. For source waters spiked with 20 {micro}g/L arsenic(V), final dissolved arsenic(V) concentrations in the product water of less than 2 {micro}g/L were achieved with both coagulants at neutral pH. Removal of arsenic(III) from source waters by ferric chloride was both less efficient and more strongly influenced by source water composition than removal of arsenic(V). The presence of sulfate (at pH 4 and 5) and natural organic matter (at pH 4 through 9) adversely affected the efficiency of arsenic(III) removal by ferric chloride. Arsenic(III) could not be removed from source waters by coagulation with alum.

  3. Acute arsenic poisoning diagnosed late.

    Science.gov (United States)

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months.

  4. The microbial genomics of arsenic.

    Science.gov (United States)

    Andres, Jérémy; Bertin, Philippe N

    2016-03-01

    Arsenic, which is a major contaminant of many aquatic ecosystems worldwide, is responsible for serious public health issues. However, life has evolved various strategies for coping with this toxic element. In particular, prokaryotic organisms have developed processes enabling them to resist and metabolize this chemical. Studies based on genome sequencing and transcriptome, proteome and metabolome profiling have greatly improved our knowledge of prokaryotes' metabolic potential and functioning in contaminated environments. The increasing number of genomes available and the development of descriptive and comparative approaches have made it possible not only to identify several genetic determinants of the arsenic metabolism, but also to elucidate their phylogenetic distribution and their modes of regulation. In addition, studies using functional genomic tools have established the pleiotropic character of prokaryotes' responses to arsenic, which can be either common to several species or species-specific. These approaches also provide promising means of deciphering the functioning of microbial communities including uncultured organisms, the genetic transfers involved and the possible occurrence of metabolic interactions as well as the evolution of arsenic resistance and metabolism.

  5. Acute arsenic poisoning diagnosed late.

    Science.gov (United States)

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months. PMID:26508422

  6. Bimetallic nanoparticles for arsenic detection.

    Science.gov (United States)

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-01

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic. PMID:25938763

  7. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  8. Association of Environmental Arsenic Exposure, Genetic Polymorphisms of Susceptible Genes, and Skin Cancers in Taiwan

    Directory of Open Access Journals (Sweden)

    Ling-I Hsu

    2015-01-01

    Full Text Available Deficiency in the capability of xenobiotic detoxification and arsenic methylation may be correlated with individual susceptibility to arsenic-related skin cancers. We hypothesized that glutathione S-transferase (GST M1, T1, and P1, reactive oxygen species (ROS related metabolic genes (NQO1, EPHX1, and HO-1, and DNA repair genes (XRCC1, XPD, hOGG1, and ATM together may play a role in arsenic-induced skin carcinogenesis. We conducted a case-control study consisting of 70 pathologically confirmed skin cancer patients and 210 age and gender matched participants with genotyping of 12 selected polymorphisms. The skin cancer risks were estimated by odds ratio (OR and 95% confidence interval (CI using logistic regression. EPHX1 Tyr113His, XPD C156A, and GSTT1 null genotypes were associated with skin cancer risk (OR = 2.99, 95% CI = 1.01–8.83; OR = 2.04, 95% CI = 0.99–4.27; OR = 1.74, 95% CI = 1.00–3.02, resp.. However, none of these polymorphisms showed significant association after considering arsenic exposure status. Individuals carrying three risk polymorphisms of EPHX1 Tyr113His, XPD C156A, and GSTs presented a 400% increased skin cancer risk when compared to those with less than or equal to one polymorphism. In conclusion, GSTs, EPHX1, and XPD are potential genetic factors for arsenic-induced skin cancers. The roles of these genes for arsenic-induced skin carcinogenesis need to be further evaluated.

  9. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation

    OpenAIRE

    Huq, S.M. Imamul; Joardar, J.C.; Parvin, S.; Correll, Ray; Naidu, Ravi

    2006-01-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibilit...

  10. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    OpenAIRE

    Wuthiphun, L.; Towatana, P.; Arrykul, S.; V. Chongsuvivatwong

    2007-01-01

    Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash) on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil cove...

  11. PostgreSQL 8.3

    Directory of Open Access Journals (Sweden)

    Pavel Stěhule

    2007-12-01

    Full Text Available Práce na Open Source databázích pokračují nezadržitelným tempem. Vývojáři se musí vyrovnat s rostoucími požadavky uživatelů na objem dat ukládaných do databází, na náročnější požadavky na odezvu atd. Zatím nedostižnou metou je implementace celého standardu ANSI SQL 200x. Všechny databáze z velké trojky (Firebird, MySQL a PostgreSQL používají multigenerační architekturu, cenově orientované hledání optimálního prováděcího plánu, write ahead log atd. MySQL se profiluje jako SQL databáze schopná používat specializované databázové backendy schopné maximální efektivity pro určité konkrétní prostředí. PostgreSQL je široce použitelná databáze, těžící z vynikající stability, s perfektní rozšiřitelností a komfortním prostředím. Konečně Firebird je vynikající embeded databáze, která se osvědčuje v tisících instalacích na desktopech.Podle původního plánu mělo dojít k uvolnění verze 8.3 koncem léta - mělo jít o verzi obsahující patche dokončené pro 8.2, ale v té době nedostatečně otestované. Nakonec se ukázalo, že ty nejdůležitější patche je třeba dopracovat. Jednalo se o tak atraktivní vlastnosti, že se rozhodlo s vydáním nové verze počkat. 8.3 obsahuje integrovaný fulltext, podporu opožděného potvrzování (asynchronní commit, synchronizované sekvenční čtení datových souborů, úspornější ukládání dynamických datových typů (kratších 256byte, HOT updates a sofistikovanější aktualizaci indexů (hot indexes. Z patchů připravených pro 8.2 se v 8.3 neobjeví podpora bitmapových indexů a podpora aktualizovatelných pohledů. Původní řešení založené na pravidlech (rules bylo příliš komplikované. 8.3 obsahuje podporu aktualizovatelných kurzorů, a je docela dobře možné, že aktualizovatelné pohledy budou ve verzi 8.4 implementovány právě s pomocí této třídy kurzorů.Vývoj pokra

  12. Outbreak of arsenic and toxaphene poisoning in Kenyan cattle. [Arsenic was detected in cattle dips

    Energy Technology Data Exchange (ETDEWEB)

    Maitai, C.K.; Kamau, J.A.; Gacuhi, D.M.; Njoroge, S.

    1975-02-15

    In a case of poisoning involving 70 cattle analysis of specimens obtained during post mortem examination showed that the toxic substances were arsenic and toxaphene. This was consistent with both the clinical and post mortem findings. Arsenic was detected in water from an abandoned cattle dip in the farm. Soil samples collected in the vicinity of the dip contained both arsenic and toxaphene.

  13. Method of arsenic removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Ashok (El Cerrito, CA)

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  14. Arsenic--state of the art.

    Science.gov (United States)

    Landrigan, P J

    1981-01-01

    Approximately 1.5 million workers in the United States are exposed to arsenic. Occupational exposure is primarily by inhalation. NIOSH recommends that time-integrated exposure to arsenic in air not exceed 2 micrograms/m3. Recent exposure is accurately measured by urine assay; urine arsenic concentrations above 50 micrograms/liter indicate increased absorption. Hair assay is a semiquantitative index of past exposure. Toxicity is associated primarily with the trivalent (3+) form of arsenic. Acute poisoning is caused most commonly by contaminated food or drink; it is rarely occupational. Chronic intoxication is characterized by dermatitis, hyperpigmentation, keratoses, peripheral neuropathy (primarily sensory), irritation of the upper and lower respiratory tract, and occasionally by hepatic toxicity and peripheral vasculopathy (blackfoot disease). Arsenic is not carcinogenic in animal species, but is mutagenic in Syrian hamster cells. In man, arsenic is known definitely to cause cancer of skin, lung, and liver (angiosarcoma) and possibly to cause lymphoma.

  15. Arsenic stress after the Proterozoic glaciations

    OpenAIRE

    Ernest Chi Fru; Emma Arvestål; Nolwenn Callac; Abderrazak El Albani; Stephanos Kilias; Ariadne Argyraki; Martin Jakobsson

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental mar...

  16. Presence of Arsenic in Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Jason Roberge

    2009-01-01

    Full Text Available Problem statement: This study’s goal was to assess the arsenic concentration of various beverages and broths purchased from a local chain supermarket. A source of chronic arsenic exposure occurs via food and beverage consumption. Groundwater levels of total arsenic are regulated (-1 by the Environmental Protection Agency (EPA but few studies have examined arsenic concentrations in common beverages. Approach: In the initial analysis of 19 items, total arsenic concentration was assessed from a variety of fruit juices, sports drinks, sodas and broths. Items found to contain levels of total arsenic ≥5.0 µg L-1 were further evaluated. Additional analysis included purchasing multiple brands of items ≥5.0 µg L-1and analyzing them for total arsenic and chemical species of arsenic. Results: Among the beverages in the initial analysis, apple juice (10.79 µg L-1 and grape juice (49.87 µg L-1 contained the highest levels of total arsenic. Upon examination of items with As concentrations above 5.0 µg L-1, varying concentrations of total arsenic were found in apple cider (range: 5.41-15.27 µg L-1, apple juice (range: 10.67-22.35 µg L-1, baby fruit juice (range: 13.91-16.51 µg L-1 and grape juice (range: 17.69-47.59 µg L-1. Conclusion: Many commercially available juices contained concentrations of arsenic that were higher than the standard for total arsenic allowed in groundwater as set forth by the EPA. The concentration of As in these juices varied between and within brands. In general, those consuming apple and grape juices are the young and elderly and it is these populations that may be more vulnerable to over exposure of heavy metals.

  17. Arsenic Toxicity in Male Reproduction and Development

    OpenAIRE

    Kim, Yoon-Jae; Kim, Jong-Min

    2015-01-01

    Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic a...

  18. 42 CFR 83.8 - How is a petition submitted?

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How is a petition submitted? 83.8 Section 83.8... Procedures for Adding Classes of Employees to the Cohort § 83.8 How is a petition submitted? The petitioner(s... instructions for preparing and submitting a petition, including an optional petition form, are available...

  19. 29 CFR 8.3 - When to file.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true When to file. 8.3 Section 8.3 Labor Office of the Secretary of Labor PRACTICE BEFORE THE ADMINISTRATIVE REVIEW BOARD WITH REGARD TO FEDERAL SERVICE CONTRACTS Review of Wage Determinations § 8.3 When to file. (a) Requests for review of wage determinations must...

  20. 40 CFR 262.83 - Notification and consent.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Notification and consent. 262.83 Section 262.83 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... for Recovery within the OECD § 262.83 Notification and consent. (a) Applicability. Consent must...

  1. 9 CFR 83.5 - Interstate Certificate of Inspection (ICI).

    Science.gov (United States)

    2010-01-01

    ... laboratory that performed the testing required by § 83.6. (i) The number of fish tested; (ii) The assay(s... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Interstate Certificate of Inspection (ICI). 83.5 Section 83.5 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION...

  2. 45 CFR 400.83 - Mediation and fair hearings.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 2 2010-10-01 2010-10-01 false Mediation and fair hearings. 400.83 Section 400.83... Employment § 400.83 Mediation and fair hearings. (a) Mediation—(1) Public/private RCA program. The State must ensure that a mediation period prior to imposition of sanctions is provided to refugees by...

  3. 4 CFR 83.10 - First Amendment rights.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false First Amendment rights. 83.10 Section 83.10 Accounts GOVERNMENT ACCOUNTABILITY OFFICE RECORDS PRIVACY PROCEDURES FOR PERSONNEL RECORDS § 83.10 First Amendment rights. Personnel records or entries thereon describing how individuals exercise rights guaranteed by...

  4. 28 CFR 83.635 - Drug-free workplace.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Drug-free workplace. 83.635 Section 83.635 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) GOVERNMENT-WIDE REQUIREMENTS FOR DRUG-FREE WORKPLACE (GRANTS) Definitions § 83.635 Drug-free workplace. Drug-free workplace means a site...

  5. Certain cases of poisoning by arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, P.; Fourcade, J.; Ravoire, J.; Bezenech, C.

    1939-05-01

    Cases of acute and chronic poisoning by arsenic are reported. Diffuse pains, angor, edema of the limbs and genitals, complicated by heptic insufficiency and chronic bronchitis were determined in a subject having lived near an industrial plant processing arseniferous ores for several years. The plant emitted several hundred kg of finely dispersed arsenic oxide daily which settled on forage and vegetables. Symptoms of poisoning by arsenic were also detected in cattle in the same area. The installation of Cottrell type dust separators has helped to suppress the arsenic oxide emissions.

  6. Arsenic-bound excitons in diamond

    Science.gov (United States)

    Barjon, J.; Jomard, F.; Morata, S.

    2014-01-01

    A set of new excitonic recombinations is observed in arsenic-implanted diamond. It is composed of two groups of emissions at 5.355/5.361 eV and at 5.215/5.220/5.227 eV. They are respectively attributed to the no-phonon and transverse-optical phonon-assisted recombinations of excitons bound to neutral arsenic donors. From the Haynes rule, an ionization energy of 0.41 eV is deduced for arsenic in diamond, which shows that arsenic is a shallower donor than phosphorus (0.6 eV), in agreement with theory.

  7. Industrial contributions of arsenic to the environment.

    Science.gov (United States)

    Nelson, K W

    1977-08-01

    Arsenic is present in all copper, lead, and zinc sulfide ores and is carried along with those metals in the mining, milling and concentrating process. Separation, final concentration and refining of by-product arsenic as the trioxide is achieved at smelters. Arsenic is the essential consistent element of many compounds important and widely used in agriculture and wood preservation. Lesser amounts are used in metal alloys, glass-making, and feed additives. There is no significant recycling. Current levels of arsenic emissions to the atmosphere from smelters and power plants and ambient air concentrations are given as data of greatest environmental interest. PMID:908308

  8. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  9. Acute arsenic poisoning in two siblings.

    Science.gov (United States)

    Lai, Melisa W; Boyer, Edward W; Kleinman, Monica E; Rodig, Nancy M; Ewald, Michele Burns

    2005-07-01

    We report a case series of acute arsenic poisoning of 2 siblings, a 4-month-old male infant and his 2-year-old sister. Each child ingested solubilized inorganic arsenic from an outdated pesticide that was misidentified as spring water. The 4-month-old child ingested a dose of arsenic that was lethal despite extraordinary attempts at arsenic removal, including chelation therapy, extracorporeal membrane oxygenation, exchange transfusion, and hemodialysis. The 2-year-old fared well with conventional therapy. PMID:15995066

  10. XAS Studies of Arsenic in the Environment

    International Nuclear Information System (INIS)

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples

  11. Arsenic in the soils of Zimapan, Mexico

    International Nuclear Information System (INIS)

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapan Valley range from 4 to 14 700 mg As kg-1. Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg-1 only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment. -- Much of the arsenic is relatively immobile but presents long-term source of arsenic

  12. Chromosome studies in human subjects chronically exposed to arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Vig, B.K.; Figueroa, M.L.; Cornforth, M.N.; Jenkins, S.H.

    1984-01-01

    A two-year study was carried out on human subjects of various ages and backgrounds who had been drinking water containing more than 0.05 mg/liter (0.05 ppm) arsenic for a period of at least five years. The main aim was to correlate the frequency of chromosome aberrations and sister chromatid exchanges in the lymphocytes with the amount of arsenic in the water. In addition, the incidence of skin cancer, fetal wastage, and genetic or developmental abnormalities were explored. Several other variables--eg, coffee, wine, and cigarette consumption; sex; residence (rural vs urban); and exposure to chemicals, smelters, or pesticides--were also taken into consideration. The data on chromosome aberrations (104 exposed and 86 control individuals) and on sister chromatid exchanges (98 exposed and 83 control individuals) did not show that arsenic at concentrations (greater than 0.05 mg/liter) has any effect on these parameters. Similarly, no other health effects of arsenic at these concentrations were found.

  13. The Dust & Gas Properties of M83

    CERN Document Server

    Foyle, K; Mentuch, E; Bendo, G; Dariush, A; Parkin, T; Pohlen, M; Sauvage, M; Smith, M W L; Roussel, H; Baes, M; Boquien, M; Boselli, A; Clements, D L; Cooray, A; Davies, J I; Eales, S A; Madden, S; Page, M J; Spinoglio,

    2012-01-01

    We examine the dust and gas properties of the nearby, barred galaxy M83, which is part of the Very Nearby Galaxy Survey. Using images from the PACS and SPIRE instruments of Herschel, we examine the dust temperature and dust mass surface density distribution. We find that the nuclear, bar and spiral arm regions exhibit higher dust temperatures and masses compared to interarm regions. However, the distribution of dust temperature and mass are not spatially coincident. Assuming a trailing spiral structure, the dust temperature peaks in the spiral arms lie ahead of the dust surface density peaks. The dust mass surface density correlates well with the distribution of molecular gas as traced by CO (J=3-2) images (JCMT) and the star formation rate as traced by H?2 with a correction for obscured star formation using 24 micron emission. Using HI images from THINGS to trace the atomic gas component, we make total gas mass surface density maps and calculate the gas-to-dust ratio. We find a mean gas-to-dust ratio of 84 \\...

  14. [Tracing for arsenic exposure--a differentiation of arsenic compounds is essential for the health assessment].

    Science.gov (United States)

    Weistenhöfer, Wobbeke; Ochsmann, Elke; Drexler, Hans; Göen, Thomas; Klotz, Katrin

    2016-01-01

    Arsenic is ubiquitous and harmful to health in occupation and environment. Arsenic exposure is measured through analysis of arsenic compounds in urine. The identification of several arsenic species is necessary to understand the hazardous potential of the arsenic compounds which differ highly in their toxicity. To estimate the extent of an occupational exposure to arsenic, arsenic species were evaluated for the first time by the working group "Setting of Threshold Limit Values in Biological Material" of the DFG Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area and Biologische Arbeitsstoffreferenzwerte (BAR) of 0.5 μg / L urine for arsenic (III), 0.5 μg / L urine for arsenic (V), 2 μg / L urine for monomethylarsonic acid (MMA) and 10 μg / L urine for dimethylarsinic acid (DMA) were set. If the reference value for total arsenic is exceeded, a further differentiation of arsenic species now enables to estimate the individual health risks taking into account special influences such as seafood consumption.

  15. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  16. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  17. Arsenic and Other Metals’ Presence in Biomarkers of Cambodians in Arsenic Contaminated Areas

    Directory of Open Access Journals (Sweden)

    Penradee Chanpiwat

    2015-11-01

    Full Text Available Chemical analyses of metal (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ba, and Pb concentrations in hair, nails, and urine of Cambodians in arsenic-contaminated areas who consumed groundwater daily showed elevated levels in these biomarkers for most metals of toxicological interest. The levels of metals in biomarkers corresponded to their levels in groundwater, especially for As, whose concentrations exceeded the WHO guidelines for drinking water. About 75.6% of hair samples from the population in this study contained As levels higher than the normal level in unexposed individuals (1 mg·kg−1. Most of the population (83.3% showed As urinary levels exceeding the normal (<50 ng·mg−1. These results indicate the possibility of arsenicosis symptoms in residents of the areas studied. Among the three biomarkers tested, hair has shown to be a reliable indicator of metal exposures. The levels of As (r2 = 0.633, Ba (r2 = 0.646, Fe (r2 = 0.595, and Mo (r2 = 0.555 in hair were strongly positively associated with the levels of those metals in groundwater. In addition, significant weak correlations (p < 0.01 were found between levels of exposure to As and As concentrations in both nails (r2 = 0.544 and urine (r2 = 0.243.

  18. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  19. Arsenic mobilization and immobilization in paddy soils

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  20. Arsenic Adsorption Onto Iron Oxides Minerals

    Science.gov (United States)

    Aredes, S.; Klein, B.; Pawlik, M.

    2004-12-01

    The predominant form of arsenic in water is as an inorganic ion. Under different redox conditions arsenic in water is stable in the +5 and +3 oxidation states. Arsenic oxidation state governs its toxicity, chemical form and solubility in natural and disturbed environments. As (III) is found in anoxic environments such as ground water , it is toxic and the common species is the neutral form, H3AsO3. As (V) is found in aerobic conditions such as surface water, it is less toxic and the common species in water are: H2AsO4 - and HAsO4 {- 2}. The water pH determines the predominant arsenate or arsenite species, however, both forms of arsenic can be detected in natural water systems. Iron oxides minerals often form in natural waters and sediments at oxic-anoxic boundaries. Over time they undergo transformation to crystalline forms, such as goethite or hematite. Both As(V) and As(III) sorbs strongly to iron oxides, however the sorption behavior of arsenic is dependent on its oxidation state and the mineralogy of the iron oxides. Competition between arsenic and others ions, such fluoride, sulphate and phosphate also play a role. On the other hand, calcium may increase arsenic adsorption onto iron oxides. Electrokinetic studies and adsorption experiments were carried out in order to determine which conditions favour arsenic adsorption. Hematite, goethite and magnetite as iron based sorbents were used. Test were also conducted with a laterite soil rich in iron minerals. The focus of this study is to evaluate physical and chemical conditions which favour arsenic adsorption onto iron oxides minerals, the results contribute to an understanding of arsenic behaviour in natural and disturbed environments. Furthermore, results could contribute in developing an appropriate remediation technology for arsenic removal in water using iron oxides minerals.

  1. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  2. ARSENIC REMOVAL AND ECOLOGICALLY SAFE CONTAINMENT OF ARSENIC-WASTE: A SUSTAINABLE SOLUTION FOR ARSENIC CRISIS IN CAMBODIA

    Science.gov (United States)

    An appalling degree of arsenic contamination in groundwater has affected more than a million people in wide region of Mekong delta flood plain in Cambodia. Arsenic is by far the most toxic species of all naturally occurring groundwater contaminants and disposal of removed arse...

  3. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  4. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    Science.gov (United States)

    Liu, Jie; Zheng, Baoshan; Aposhian, H Vasken; Zhou, Yunshu; Chen, Ming-Liang; Zhang, Aihua; Waalkes, Michael P

    2002-02-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  5. The IIASA'83 scenario of energy development

    International Nuclear Information System (INIS)

    The prospects for natural gas as a major source of energy supply are good. Spurred by the energy crises of the 'seventies, recent exploration for gas resources as well as technological advances in deep drilling have enhanced the picture of gas as a plentiful fossil resource. Technological improvements in transporting gas over large distances, as piped gas and as a liquid, suggest the strong possibility of gas as an important commodity in energy trade. In addition, gas is a high quality and relatively clean fuel, which is especially attractive in today's world of environmental concern for pollution emissions from energy combustion. Such developments led to the design of the IIASA'83 Scenario of Energy Development, which explored the techno-economic feasibility of the expanded use of gas in energy systems. The work drew on the findings of the IIASA global energy analysis, documented in 'Energy in a Finite World'. All countries of the world were covered in the quantitative analysis, grouped regionally by similarity in energy resources and economic structure and not necessarily on the basis of geographic proximity. The period studied was necessarily the next half century, from 1980 to 2030, in view of the inertia in technological and economic systems and this constraint on the development of energy infrastructures. Global primary energy consumption increases some twofold from 10 TW.a/a to 21.9 TW.a/a over the next 50 years, while economic output globally grows some threefold. The breakdown of global primary energy consumption indicates an absolute increase in the use of all primary energy sources over the study period, with fossil fuels continuing to supply the lion's share of primary energy. The buildup of non-fossil energy sources to global supply levels by 2030 is likely to be constrained by the high capital investments required at a period of modest economic growth and by the sociopolitical controversy surrounding the use of some of these technologies. (author)

  6. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  7. Hijacking membrane transporters for arsenic phytoextraction.

    Science.gov (United States)

    LeBlanc, Melissa S; McKinney, Elizabeth C; Meagher, Richard B; Smith, Aaron P

    2013-01-10

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.

  8. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  9. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining th

  10. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed.

  11. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  12. Arsenic Consumption in the United States.

    Science.gov (United States)

    Wilson, Denise

    2015-10-01

    Exposure limits for arsenic in drinking water and minimal risk levels (MRLs) for total dietary exposure to arsenic have long been established in the U.S. Multiple studies conducted over the last five years have detected arsenic in foods and beverages including juice, rice, milk, broth (beef and chicken), and others. Understanding whether or not each of these foods or drinks is a concern to certain groups of individuals requires examining which types of and how much arsenic is ingested. In this article, recent studies are reviewed and placed in the context of consumption patterns. When single sources of food or drink are considered in isolation, heavy rice eaters can be exposed to the most arsenic among adults while infants consuming formula containing contaminated organic brown rice syrup are the most exposed group among children. Most food and drink do not contain sufficient arsenic to exceed MRLs. For individuals consuming more than one source of contaminated water or food, however, adverse health effects are more likely. In total, recent studies on arsenic contamination in food and beverages emphasize the need for individual consumers to understand and manage their total dietary exposure to arsenic. PMID:26591332

  13. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Science.gov (United States)

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  14. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence

    Science.gov (United States)

    2014-01-01

    Background Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. Methods Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. Results Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2–4.1]; 4.2 [2.1–6.3] and; 5.8 [2.9–8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35–4.0], 2.3 [0.59–6.4], and 3.1 [0.80–8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. Conclusion Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta

  15. CD83 Modulates B Cell Activation and Germinal Center Responses.

    Science.gov (United States)

    Krzyzak, Lena; Seitz, Christine; Urbat, Anne; Hutzler, Stefan; Ostalecki, Christian; Gläsner, Joachim; Hiergeist, Andreas; Gessner, André; Winkler, Thomas H; Steinkasserer, Alexander; Nitschke, Lars

    2016-05-01

    CD83 is a maturation marker for dendritic cells. In the B cell lineage, CD83 is expressed especially on activated B cells and on light zone B cells during the germinal center (GC) reaction. The function of CD83 during GC responses is unclear. CD83(-/-) mice have a strong reduction of CD4(+) T cells, which makes it difficult to analyze a functional role of CD83 on B cells during GC responses. Therefore, in the present study we generated a B cell-specific CD83 conditional knockout (CD83 B-cKO) model. CD83 B-cKO B cells show defective upregulation of MHC class II and CD86 expression and impaired proliferation after different stimuli. Analyses of GC responses after immunization with various Ags revealed a characteristic shift in dark zone and light zone B cell numbers, with an increase of B cells in the dark zone of CD83 B-cKO mice. This effect was not accompanied by alterations in the level of IgG immune responses or by major differences in affinity maturation. However, an enhanced IgE response was observed in CD83 B-cKO mice. Additionally, we observed a strong competitive disadvantage of CD83-cKO B cells in GC responses in mixed bone marrow chimeras. Furthermore, infection of mice with Borrelia burgdorferi revealed a defect in bacterial clearance of CD83 B-cKO mice with a shift toward a Th2 response, indicated by a strong increase in IgE titers. Taken together, our results show that CD83 is important for B cell activation and modulates GC composition and IgE Ab responses in vivo. PMID:26983787

  16. Arsenic pesticides and environmental pollution: exposure, poisoning, hazards and recommendations.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Mohammad, Amina El-Hosini; Morsy, Tosson A

    2013-08-01

    Arsenic is a metalloid element. Acute high-dose exposure to arsenic can cause severe systemic toxicity and death. Lower dose chronic arsenic exposure can result in subacute toxicity that can include peripheral sensorimotor neuropathy, skin eruptions, and hepatotoxicity. Long-term effects of arsenic exposure include an in Due to the physiologic effects of the arsenic on all body systems, thus, chronic arsenic-poisoned patient is a major nursing challenge. The critical care nurse provides valuable assessment and interventions that prevent major multisystem complications from arsenic toxicity.

  17. Research plan for arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The document stresses the implications of recent research findings and emphasizes identification of key strengths and sources of uncertainty and variability in the arsenic risk assessment. This document also explains how information gained through research can: impact the method used in new investigations to assess the risks of arsenic, and support or suggest changes in the assumptiosn and methods used in arsenic risk assessments. This Arsenic Research Plan addresses the protection of human health, especially the research needed to implement the 1996 Safe Drinking Water Act Amendments (SDWAA). It is intended to serve as a blueprint that will be discussed with parties interested in addressing key strengths and uncertainties in the arsenic risk assessment.

  18. Arsenic in Drinking Water—A Global Environmental Problem

    Science.gov (United States)

    Shaofen Wang, Joanna; Wai, Chien M.

    2004-02-01

    Arsenic contamination of groundwater is a global environmental problem affecting a large number of populations, especially in developing countries. The "blackfoot disease"that occurred in Taiwan more than half of a century ago was attributed to drinking arsenic-contaminated water from deep wells containing high concentrations of the trivalent arsenite species. Similar arsenic poisoning cases were reported later in Chinese Inner Mongolia, Bangladesh, and India—all related to drinking groundwater contaminated with arsenic. The maximum contaminant level (MCL) of arsenic in drinking water has been changed recently by the U.S. EPA from 50 ppb to 10 ppb; the compliance date is January 2006. This article summarizes documented global arsenic contamination problems, the regulatory controversy regarding MCL of arsenic in drinking water, and available technologies for removing arsenic from contaminated waters. Methods for analyzing total arsenic and arsenic species in water are also described.

  19. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  20. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  1. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Hui Shen

    2016-02-01

    Full Text Available Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001 following arsenic exposure: inorganic arsenic (iAs, monomethyl arsenic (MMA, dimethyl arsenic (DMA, and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD: 1.00; 95% confidence interval (CI: 0.60–1.40; p< 0.00001 and MMA (SMD: 0.49; 95% CI: 0.21–0.77; p = 0.0006 also increase, while the percentage of DMA (SMD: −0.57; 95% CI: −0.80–−0.31; p< 0.0001, primary methylation index (SMD: −0.57; 95% CI: −0.94–−0.20; p = 0.002, and secondary methylation index (SMD: −0.27; 95% CI: −0.46–−0.90; p = 0.004 decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  2. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  3. Calibration of a Liquid Xenon Detector with Kr-83m

    CERN Document Server

    Kastens, L W; Manzur, A; McKinsey, D N

    2009-01-01

    We report the preparation of a Kr-83m source and its subsequent use in calibrating a liquid xenon detector. Kr-83m atoms were produced through the decay of Rb-83 atoms trapped in zeolite molecular sieve and were then introduced into liquid xenon. Decaying Kr-83m nuclei were detected through liquid xenon scintillation. Conversion electrons with energies of 9.4 keV and 32.1 keV from the decay of Kr-83m were both observed. This calibration source will allow the characterization of the scintillation and ionization response of noble liquid detectors at low energies, highly valuable for the search for WIMP dark matter. Kr-83m may also be useful for measuring fluid flow dynamics, both to understand purification in noble liquid-based particle detectors, as well as for studies of classical and quantum turbulence in superfluid helium.

  4. Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1.

    Science.gov (United States)

    Cárdenas-González, M; Osorio-Yáñez, C; Gaspar-Ramírez, O; Pavković, M; Ochoa-Martínez, A; López-Ventura, D; Medeiros, M; Barbier, O C; Pérez-Maldonado, I N; Sabbisetti, V S; Bonventre, J V; Vaidya, V S

    2016-10-01

    Environmental hazards from natural or anthropological sources are widespread, especially in the north-central region of Mexico. Children represent a susceptible population due to their unique routes of exposure and special vulnerabilities. In this study we evaluated the association of exposure to environmental kidney toxicants with kidney injury biomarkers in children living in San Luis Potosi (SLP), Mexico. A cross-sectional study was conducted with 83 children (5-12 years of age) residents of Villa de Reyes, SLP. Exposure to arsenic, cadmium, chromium, fluoride and lead was assessed in urine, blood and drinking water samples. Almost all tap and well water samples had levels of arsenic (81.5%) and fluoride (100%) above the permissible levels recommended by the World Health Organization. Mean urine arsenic (45.6ppb) and chromium (61.7ppb) were higher than the biological exposure index, a reference value in occupational settings. Using multivariate adjusted models, we found a dose-dependent association between kidney injury molecule-1 (KIM-1) across chromium exposure tertiles [(T1: reference, T2: 467pg/mL; T3: 615pg/mL) (p-trend=0.001)]. Chromium upper tertile was also associated with higher urinary miR-200c (500 copies/μl) and miR-423 (189 copies/μL). Arsenic upper tertile was also associated with higher urinary KIM-1 (372pg/mL). Other kidney injury/functional biomarkers such as serum creatinine, glomerular filtration rate, albuminuria, neutrophil gelatinase-associated lipocalin and miR-21 did not show any association with arsenic, chromium or any of the other toxicants evaluated. We conclude that KIM-1 might serve as a sensitive biomarker to screen children for kidney damage induced by environmental toxic agents. PMID:27431456

  5. Associations between Arsenic in Drinking Water and Pterygium in Southwestern Taiwan

    Science.gov (United States)

    Lin, Wei; Wang, Shu-Li; Wu, Horng-Jiun; Chang, Kuang-Hsi; Yeh, Peter; Chen, Chien-Jen; Guo, How-Ran

    2008-01-01

    Background Pterygium is a fibrovascular growth of the bulbar conjunctiva and underlying subconjunctival tissue that may cause blindness. The mechanism of pterygium formation is not yet fully understood, but pterygium has some tumorlike features. Objectives The objective of this study was to evaluate the association between arsenic exposure through drinking water and the occurrence of pterygium in southwestern Taiwan. Methods We recruited participants > 40 years of age from three villages in the arseniasis-endemic area in southwestern Taiwan (exposure villages) and four neighboring nonendemic villages (comparison villages). Each participant received an eye examination and a questionnaire interview. Photographs taken of both eyes were later graded by an ophthalmologist to determine pterygium status. Results We included 223 participants from the exposure villages and 160 from the comparison villages. The prevalence of pterygium was higher in the exposure villages across all age groups in both sexes and increased with cumulative arsenic exposure. We found a significant association between cumulative arsenic exposure and the prevalence of pterygium. After adjusting for age, sex, working under sunlight, and working in sandy environments, we found that cumulative arsenic exposure of 0.1–15.0 mg/L-year and ≥ 15.1 mg/L-year were associated with increased risks of developing pterygium. The adjusted odds ratios were 2.04 [95% confidence interval (CI), 1.04–3.99] and 2.88 (95% CI, 1.42–5.83), respectively. Conclusions Chronic exposure to arsenic in drinking water was related to the occurrence of pterygium, and the association was still observed after adjusting for exposures to sunlight and sandy environments. PMID:18629320

  6. Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Tongbin; HUANG Zechun; HUANG Yuying; XIE Hua; LIAO Xiaoyong

    2003-01-01

    Synchrotron radiation X-ray fluorescencespectroscopy (SRXRF) was used to study the cellular distri-butions of arsenic and other elements in root, petiole, pinna of a newly discovered arsenic hyperaccumulator, Pteris nervosa. It was shown that there was a trend in P. nervosa totransport arsenic from cortex tissue to vascular tissue in root, and keep arsenic in vascular during transportation in petiole, and transport arsenic from vascular tissue to adaxial cortex tissues in midrib of pinnae. More arsenic was accumulated in mesophyll than in epidermis in pinnae. The distributions of some elements, such as K, Ca, Mn, Fe, Cu, Zn, in petiole, midrib and pinna were similar to that of arsenic, indicating that those cations might cooperate with arsenic in those transportation processes; whereas the distributions of Cl and Br in pinna were the reverse of that of arsenic, indicating that those anions might compete with arsenic in pinna of P. nervosa.

  7. 12 CFR 34.83 - Disposition of real estate.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disposition of real estate. 34.83 Section 34.83 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY REAL ESTATE LENDING AND APPRAISALS Other Real Estate Owned § 34.83 Disposition of real estate. (a) Disposition. A national bank may comply with its obligation to dispose...

  8. ANTIAMNESIC ACTIVITY OF THE NICOTINIC AGONIST DBO-83 IN MICE

    OpenAIRE

    Ghelardini, C; Galeotti, N; Giuliani, F.; D. Barlocco; Bartolini, A.

    1998-01-01

    The effect of administration of DBO-83 on memory processes was evaluated in the mouse passive avoidance test. DBO-83 (1–5 mgkg–1 ip) prevented amnesia induced by scopolamine (1.5 mgkg–1 ip), mecamylamine (20 mgkg–1 ip) and dihydro-b-erythroidine (10 mg per mouse i.c.v.). In the same experimental conditions, DBO-83 (10 mgkg–1 ip) also prevented baclofen (2 mgkg–1 ip), clonidine (0.125 mgkg–1 ip) and diphenhydramine (20 mgkg–1 ip) amnesia in mice. The antiamnesic effect of DBO-83 wa...

  9. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    OpenAIRE

    Yager, J W; Hicks, J B; FABIANOVA, E

    1997-01-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic a...

  10. ARSENIC SPECIATION IN CARROT EXTRACTS WITH AN EMPHASIS ON THE DETECTION OF MMA(III) AND MMTA

    Science.gov (United States)

    The two predominant routes of arsenic exposure are dietary ingestion and drinking water consumption. Dietary arsenic, unlike drinking water arsenic, contains a variety of arsenicals with dramatically different toxicities. The list of arsenicals detected in dietary samples conti...

  11. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic.

    Science.gov (United States)

    Zhang, Hai-Nan; Yang, Lina; Ling, Jian-Ya; Czajkowsky, Daniel M; Wang, Jing-Fang; Zhang, Xiao-Wei; Zhou, Yi-Ming; Ge, Feng; Yang, Ming-Kun; Xiong, Qian; Guo, Shu-Juan; Le, Huang-Ying; Wu, Song-Fang; Yan, Wei; Liu, Bingya; Zhu, Heng; Chen, Zhu; Tao, Sheng-Ce

    2015-12-01

    Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies.

  12. A broad view of arsenic.

    Science.gov (United States)

    Jones, F T

    2007-01-01

    In the mind of the general public, the words "arsenic" and "poison" have become almost synonymous. Yet, As is a natural metallic element found in low concentrations in virtually every part of the environment, including foods. Mining and smelting activities are closely associated with As, and the largest occurrence of As contamination in the United States is near the gold mines of northern Nevada. Inhabitants of Bangladesh and surrounding areas have been exposed to water that is naturally and heavily contaminated with As, causing what the World Health Organization has described as the worst mass poisoning in history. Although readily absorbed by humans, most inorganic As (>90%) is rapidly cleared from the blood with a half-life of 1 to 2 h, and 40 to 70% of the As intake is absorbed, metabolized, and excreted within 48 h. Arsenic does not appreciably bioaccumulate, nor does it biomagnify in the food chain. The United States has for some time purchased more As than any other country in the world, but As usage is waning, and further reductions appear likely. Arsenic is used in a wide variety of industrial applications, from computers to fireworks. All feed additives used in US poultry feeds must meet the strict requirements of the US Food and Drug Administration Center for Veterinary Medicine (Rockville, MD) before use. Although some public health investigators have identified poultry products as a potentially significant source of total As exposure for Americans, studies consistently demonstrate that <1% of samples tested are above the 0.5 ppm limit established by the US Food and Drug Administration Center for Veterinary Medicine. Although laboratory studies have demonstrated the possibility that As in poultry litter could pollute ground waters, million of tons of litter have been applied to the land, and no link has been established between litter application and As contamination of ground water. Yet, the fact that <2% of the United States population is involved in

  13. Social implications of arsenic poisoning in Bangladesh.

    Science.gov (United States)

    Hassan, M Manzurul; Atkins, Peter J; Dunn, Christine E

    2005-11-01

    Besides its toxicity, groundwater arsenic contamination creates widespread social problems for its victims and their families in Bangladesh. There is, for instance, a tendency to ostracise arsenic-affected people, arsenicosis being thought of as a contagious disease. Within the community, arsenic-affected people are barred from social activities and often face rejection, even by their immediate family members. Women with visible arsenicosis symptoms are unable to get married and some affected housewives are divorced by their husbands. Children with symptoms are not sent to school in an effort to hide the problem. This paper employs mainly qualitative methods to interpret people's understandings about the toxic impact of groundwater arsenic poisoning on their social lives. Arsenic-affected patients in southwest Bangladesh were asked to determine their 'own priorities' in measuring arsenic toxicity on their social activities and to explore their perceptions about their own survival strategies. We found that patients' experiences reveal severe negative social impacts, and a sharp difference of perceptions about arsenic and social issues between arsenicosis patients and unaffected people.

  14. Arsenic contamination and arsenicosis in China

    International Nuclear Information System (INIS)

    Arsenicosis is a serious environmental chemical disease in China mainly caused by drinking water from pump wells contaminated by high levels of arsenic. Chronic exposure of humans to high concentrations of arsenic in drinking water is associated with skin lesions, peripheral vascular disease, hypertension, blackfoot disease, and high risk of cancers. Lead by the Ministry of Health of China, we carried out a research about arsenicosis in China recently. Areas contaminated with arsenic from drinking water are determined by 10% pump well water sample method while areas from burning coal are determined by existing data. Two epidemic areas of Shanxi Province and Inner Mongolia are investigated for the distribution of pump wells containing high arsenic. Well water in all the investigated villages of Shanxi Province showed polluted by high arsenic, and the average rate of unsafe pump well water is 52%. In Inner Mongolia, the high percentage of pump wells containing elevated arsenic is found only in a few villages. The average rate of unsafe pump well water is 11%. From our research, we find that new endemic areas are continuously emerging in China. Up to now, epidemic areas of arsenicosis mainly involve eight provinces and 37 counties in China. In the affected areas, the discovery of wells and coal with high levels of arsenic is continuing sporadically, and a similar scattered distribution pattern of patients is also being observed

  15. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant.

  16. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant. PMID:27363151

  17. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  18. Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China

    OpenAIRE

    Li, Dasheng; An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P.

    2006-01-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnos...

  19. Arsenic in North Carolina: public health implications.

    Science.gov (United States)

    Sanders, Alison P; Messier, Kyle P; Shehee, Mina; Rudo, Kenneth; Serre, Marc L; Fry, Rebecca C

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes.

  20. 4 CFR 83.9 - Social Security number.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Social Security number. 83.9 Section 83.9 Accounts... number. (a) GAO may not require individuals to disclose their Social Security Number (SSN) unless... what statutory or other authority such number is solicited, and what uses will be made of it....

  1. 36 CFR 1192.83 - Mobility aid accessibility.

    Science.gov (United States)

    2010-07-01

    ... accessible by 49 CFR part 37, the vehicle is not required to be equipped with a car-borne device. Where each.... 1192.83 Section 1192.83 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS... on the ultimate strength of the material. Nonworking parts, such as platform, frame, and...

  2. 50 CFR 216.83 - Importation of birds or mammals.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Importation of birds or mammals. 216.83... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING AND IMPORTING OF MARINE MAMMALS Pribilof Islands Administration § 216.83 Importation of birds or mammals. No mammals or...

  3. 28 CFR 345.83 - Job safety training.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Job safety training. 345.83 Section 345.83 Judicial Administration FEDERAL PRISON INDUSTRIES, INC., DEPARTMENT OF JUSTICE FEDERAL PRISON... coordination with the institution Safety Manager. Participation in the training shall be documented in a...

  4. 21 CFR 1240.83 - Approval of watering points.

    Science.gov (United States)

    2010-04-01

    ... communicable diseases. (b) The Commissioner of Food and Drugs may base his approval or disapproval of a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Approval of watering points. 1240.83 Section 1240.83 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  5. 37 CFR 1.83 - Content of drawing.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Content of drawing. 1.83... COMMERCE GENERAL RULES OF PRACTICE IN PATENT CASES National Processing Provisions The Drawings § 1.83 Content of drawing. (a) The drawing in a nonprovisional application must show every feature of...

  6. 4 CFR 83.11 - Official Personnel Folder.

    Science.gov (United States)

    2010-01-01

    ... 4 Accounts 1 2010-01-01 2010-01-01 false Official Personnel Folder. 83.11 Section 83.11 Accounts... Memorandum of Understanding and the provisions of regulations of U.S. OPM contained in 5 CFR parts 293, 294... temporary nature filed on the left side of the Folder; and (ii) Ensure that all permanent documents of...

  7. 30 CFR 47.83 - Disclosure in a medical emergency.

    Science.gov (United States)

    2010-07-01

    ... TRAINING HAZARD COMMUNICATION (HazCom) Trade Secret Hazardous Chemical § 47.83 Disclosure in a medical... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Disclosure in a medical emergency. 47.83... confidentiality agreement, the operator must immediately disclose the identity of a trade secret chemical to...

  8. 33 CFR 83.26 - Fishing vessels (Rule 26).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fishing vessels (Rule 26). 83.26... NAVIGATION RULES RULES Lights and Shapes § 83.26 Fishing vessels (Rule 26). (a) Exhibition of only prescribed lights and shapes. A vessel engaged in fishing, whether underway or at anchor, shall exhibit only...

  9. 15 CFR 923.83 - Mediation of amendments.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Mediation of amendments. 923.83... Programs § 923.83 Mediation of amendments. (a) Section 307(h)(2) of the Act provides for mediation of... management program. Accordingly mediation is available to states or federal agencies when a...

  10. 24 CFR 81.83 - Civil money penalties.

    Science.gov (United States)

    2010-04-01

    ... provisions are not inconsistent with any of the procedures in this part or FHEFSSA, with 24 CFR part 26... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Civil money penalties. 81.83... § 81.83 Civil money penalties. (a) Imposition. The Secretary may impose a civil money penalty on a...

  11. 12 CFR 41.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... maintain or destroy any record pertaining to a consumer that is not imposed under any other law; or (2... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disposal of consumer information. 41.83 Section... Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 41.83...

  12. 30 CFR 816.83 - Coal mine waste: Refuse piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 816.83 Section... ACTIVITIES § 816.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 816.81, the... drainage may not be diverted over the outslope of the refuse piles. Runoff from the areas above the...

  13. 30 CFR 817.83 - Coal mine waste: Refuse piles.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Refuse piles. 817.83 Section... ACTIVITIES § 817.83 Coal mine waste: Refuse piles. Refuse piles shall meet the requirements of § 817.81, the... drainage may not be diverted over the outslope of the refuse pile. Runoff from areas above the refuse...

  14. Determination of total arsenic, inorganic and organic arsenic species in wine.

    Science.gov (United States)

    Herce-Pagliai, C; Moreno, I; González, G; Repetto, M; Cameán, A M

    2002-06-01

    Forty-five wine samples from the south of Spain of different alcoholic strength were analysed for total arsenic and its inorganic [As(III), As(V)] and organic (monomethylarsonic acid [MMAA], dimethylarsinic acid [DMAA]) species. The As levels of the wine samples ranged from 2.1 to 14.6 microg l(-1). The possible effect of the alcoholic fermentation process on the levels of the total arsenic and arsenical species was studied. The average total arsenic levels for the different samples were very similar, without significant differences between all types of wines. In table wines and sherry, the percentages of total inorganic arsenic were 18.6 and 15.6%, with DMAA or MMAA being the predominant species, respectively. In most samples, DMAA was the most abundant species, but the total inorganic aresenic fraction was considerable, representing 25.4% of the total concentration of the element. The estimated daily intakes of total arsenic and total inorganic arsenic for average Spanish consumers were 0.78 and 0.15 microg/person day(-1), respectively. The results suggest that the consumption of these types of wines makes no significant contribution to the total and inorganic arsenic intake for normal drinkers. However, wine consumption contributes a higher arsenic intake than through consumption of beers and sherry brandies.

  15. Insights into arsenic multi-operons expression and arsenic resistance mechanisms in Rhodopseudomonas palustris CGA009

    Directory of Open Access Journals (Sweden)

    Chungui eZhao

    2015-09-01

    Full Text Available Arsenic (As is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2 and ars3 in R. palustris. In this study, we investigated how arsenic multi-operons contributed to arsenic detoxification in R. palustris. The expression of ars2 or ars3 operons increased with increasing environmental arsenite (As(III concentrations (up to 1.0 mM while transcript of ars1 operon was not detected in the middle log-phase (55 h. ars2 operon was actively expressed even at the low concentration of As(III (0.01 μM, whereas the ars3 operon was expressed at 1.0 µM of As(III, indicating that there was a differential regulation mechanism for the three arsenic operons. Furthermore, ars2 and ars3 operons were maximally transcribed in the early log-phase where ars2 operon was 5.4-fold higher than that of ars3 operon. A low level of ars1 transcript was only detected at 43 h (early log-phase. Arsenic speciation analysis demonstrated that R. palustris could reduce As(V to As(III.

  16. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose

    2009-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 mu g=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 mu g=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100 - 500 mu g=L) in real Bangladesh tube well water

  17. Environmental arsenic exposure and sputum metalloproteinase concentrations.

    OpenAIRE

    Josyula, Arun B.; Poplin, Gerald S.; Kurzius-Spencer, Margaret; McClellen, Hannah E.; Kopplin, Michael J.; Stürup, Stefan; Clark Lantz, R.; Jefferey L. Burgess

    2006-01-01

    Biomarkers of exposure & early effects: field studiesBiomarker: arsenic, creatinin, MMP levelsExposure/effect represented: arsenicStudy design: cross-sectionalStudy size: 73 subjectsAnalytical technique: ELISA, HPLCTissue/biological material/sample size: urine samplesRelationship with exposure or effect of interest (including dose-response): inorganic arsenic positively correlated with logMMP-9/TIMP-1 ratio in sputum (Pearson's r Ό 0:351, P Ό 0:009) and negatively correlated with the log of s...

  18. Health implications of arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Pontius, F.W. (American Water Works Association, Denver, CO (United States)); Brown, K.G. (Kenneth G. Brown Inc., Chapel Hill, NC (United States)); Chen, C.J. (National Taiwan Univ., Taipei (Taiwan, Province of China). Inst. of Public Health)

    1994-09-01

    The adequacy of the current maximum contaminant level (MCL) for arsenic is being evaluated by the US Environmental Protection Agency. If recent theoretical estimates of chronic effects and cancer risks prove accurate, the current MCL may not effectively protect health. Knowledge of arsenic pharmacokinetics and mechanisms in humans, however, is not complete enough to provide a definitive answer, and current epidemiologic evidence is too inconsistent and too fraught with uncertainty regarding arsenic exposure to be helpful in assessing low-level risks. 85 refs.

  19. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  20. Urinary arsenic levels in timber treatment operators.

    Science.gov (United States)

    Gollop, B R; Glass, W I

    1979-01-10

    An investigation was carried out into arsenic levels in urine of timber treatment operators at six treatment plants in the Waikato-Rotorua area. The mean arsenic level for treatment operators was 222 migrograms/l compared with the normal range of 5-40 micrograms/l. In order to reduce the present significant exposure to treatment chemicals such as arsenic and chromium, it is recommended that the wood preservation industry take engineering measures to reduce the present air emissions and adopt strict work practices in hygiene and protective clothing in similar manner to those handling mercury and lead. PMID:285363

  1. Arsenic burden of cooked rice: Traditional and modern methods.

    Science.gov (United States)

    Sengupta, M K; Hossain, M A; Mukherjee, A; Ahamed, S; Das, B; Nayak, B; Pal, A; Chakraborti, D

    2006-11-01

    Arsenic contamination of rice by irrigation with contaminated groundwater and secondarily increased soil arsenic compounds the arsenic burden of populations dependent on subsistence rice-diets. The arsenic concentration of cooked rice is known to increase with the arsenic concentration of the cooking water but the effects of cooking methods have not been defined. We tested the three major rice cooking procedures followed globally. Using low-arsenic water (As rice: water::1:6; discard excess water) removed up to 57% of the arsenic from rice containing arsenic 203-540 microg/kg. Approximately half of the arsenic was lost in the wash water, half in the discard water. A simple inexpensive rice cooker based on this method has been designed and used for this purpose. Despite the use of low-arsenic water, the contemporary method of cooking unwashed rice at rice:water::1:1.5-2.0 until no discard water remains did not modify the arsenic content. Preliminary washing until clear did remove 28% of the rice arsenic. The results were not influenced by water source (tubewell, dug well, pond or rain); cooking vessel (aluminium, steel, glass or earthenware); or the absolute weight of rice or volume of water. The use of low-As water in the traditional preparation of arsenic contaminated rice can reduce the ingested burden of arsenic. PMID:16876928

  2. Extraction of arsenic as the diethyl dithiophosphate complex with supercritical fluid and quantitation by cathodic stripping voltammetry.

    Science.gov (United States)

    Arancibia, Verónica; López, Alex; Zúñiga, M Carolina; Segura, Rodrigo

    2006-02-28

    The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO(2). Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)(3) were achieved when the experiments were carried out at a pressure of 2500psi, a temperature of 90 degrees C, 2.0mL of methanol, 20.0min of static extraction and 5.0min of dynamic extraction in the presence of 18mg of ADDTP. Analysis of arsenic was made using 150mgL(-1) of Cu(II) in 1M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of -0.50V and the intermetallic compound Cu(x)As(y) was reduced at a potential of -0.77 to -0.82V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)(3) solution was linear from 0.8 to 12.5mugL(-1) of arsenic (LOD 0.5mugL(-1), R=0.9992, t(acc)=60s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10+/-0.18mgkg(-1); pulp 3.83+/-0.19mgkg(-1) and juice 0.71+/-0.09mgL(-1); arsenic in carrots was: skin 2.15+/-0.09mgkg(-1); pulp 0.59+/-0.11mgkg(-1) and juice 0.71+/-0.03mgL(-1). Arsenic in water were: Chiu-Chiu 0.08mgL(-1), Inacaliri 1.12mgL(-1), and Salado river 0.17+/-0.07mgL(-1). PMID:18970500

  3. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  4. Ana insect model for assessing arsenic toxicity: Arsenic elevated glutathione content in the musca domestica and trichoplusia ni

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, K.; Pardini, R.S. [Univ. of Nevada, Reno, NV (United States)

    1995-12-01

    Throughout history, arsenic has acquired an unparalled reputation as a poison. Arsenic was used as a poison as early as 2000 B.C. The toxicity of arsenic (As) extends to mammals, fish, insects, plants and fungi. According to epidemiological evidence, inorganic arsenic compounds have been strongly suggested as human carcinogens. Human exposure to arsenic through various means is correlated with an increased incidence of skin, lung, and possibly liver cancers. Inorganic trivalent arsenic is systematically more poisonous than the pentavalent form and it is possible that pentavalent arsenic is reduced to the trivalent form before exerting any toxic effects. This study focuses on the potential to use two insect species, the housefly, Musca domestica and the cabbage looper moth, Trichoplusia ni, and a model for the study of arsenic toxicity. After 48 hours of exposure to Arsenic, a significant induction of Glutathione level and subsequent decrease in the level of GSSG in both species were observed. 21 refs., 2 figs., 1 tab.

  5. [Effects of organic fertilization on arsenic absorption of pakchoi (Brassica chinensis) on arsenic-contaminated red soil].

    Science.gov (United States)

    Li, Lian-Fang; Geng, Zhi-Xi; Zeng, Xi-Bai; Bai, Ling-Yu; Su, Shi-Ming

    2011-01-01

    A pot experiment with arsenic-contaminated red soil was conducted to study the effects of applying pig dung and chicken manure on the growth and arsenic absorption of pakchoi (Brassica chinensis), and on soil available arsenic. Applying pig dung and chicken manure to the arsenic-contaminated red soil increased the biomass of pakchoi to some extent. Comparing with the control, applying pig dung increased the pakchoi biomass significantly (P Organic fertilization promoted the arsenic absorption of pakchoi, with the arsenic uptake after applying pig dung increased by 20.7%-53.9%. The application of pig dung and chicken manure to arsenic-contaminated red soil could somewhat increase the soil available arsenic content and the arsenic uptake by crops, and thus, increase the risks of agricultural product quality and environment.

  6. Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano

    Science.gov (United States)

    Ormachea Muñoz, Mauricio; Bhattacharya, Prosun; Sracek, Ondra; Ramos Ramos, Oswaldo; Quintanilla Aguirre, Jorge; Bundschuh, Jochen; Maity, Jyoti Prakash

    2015-07-01

    Numerous hot springs and fumaroles occur along the Andes Mountains, in the Bolivian Altiplano, where people use thermal springs for recreational purposes as pools, baths and also for consumption as drinking water and irrigation once it is mixed with natural surface waters; most of these thermal springs emerge from earth surface and flow naturally into the rivers streams which drain further into the Poopó Lake. Physicochemical characteristics of the thermal water samples showed pH from 6.3 to 8.3 with an average of 7.0, redox potential from +106 to +204 mV with an average of +172 mV, temperatures from 40 to 75 °C with an average of 56 °C and high electrical conductivity ranging from 1.8 to 75 mS/cm and averaged 13 mS/cm. Predominant major ions are Na+ and Cl- and the principal water types are 37.5% Na-Cl type and 37.5% Na-Cl-HCO3 type. Arsenic concentrations ranged from 7.8 to 65.3 μg/L and arsenic speciation indicate the predominance of As(III) species. Sediments collected from the outlets of thermal waters show high iron content, and ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic attenuation by adsorption/co-precipitation processes. Arsenic concentrations in cold water samples from shallow aquifers are higher than those in thermal springs (range < 5.6-233.2 μg/L), it is likely that thermal water discharge is not the main source of high arsenic content in the shallow aquifer as they are very immature and may only have a small component corresponding to the deep geothermal reservoir. As people use both thermal waters and cold waters for consumption, there is a high risk for arsenic exposure in the area.

  7. Arsenic poisoning of cattle and other domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Moxham, J.W.; Coup, M.R.

    1968-01-01

    One hundred and sixty-one incidents of arsenic poisoning in domestic animals were recorded at Ruakura Veterinary Diagnostic Station from 1955 to 1967. Cattle was the animal species most subject to arsenic poisoning. Clincal signs, post-mortem findings and sources of arsenic are given. Arsenic poisoning was more prevalent in younger cattle and during the warmer months of the year. With cattle most incidents were associated with carelessly discarded arsenical compounds, although most deaths occurred when these compounds were deliberately used. In other species, losses were generally caused by the deliberate use of arsenical preparations for dipping, drenching and weed spraying. 10 references, 2 tables.

  8. Manufacture of high purity low arsenic anhydrous hydrogen fluoride

    International Nuclear Information System (INIS)

    A process for manufacturing anhydrous hydrogen fluoride with reduced levels of arsenic impurity from arsenic contaminated anhydrous hydrogen fluoride is described which comprises: (a) contacting the anhydrous hydrogen fluoride with an effective amount of hydrogen peroxide to oxidize the arsenic impurity in the presence of a catalyst which comprises a catalytic amount of (i) molybdenum or an inorganic molybdenum compound and (ii) a phosphate compound, at a temperature and for a period of time sufficient to oxidize volatile trivalent arsenic impurities in the anhydrous hydrogen fluoride to non-volatile pentavalent arsenic compounds, and (b) distilling the resulting mixture and recovering anhydrous hydrogen fluoride with reduced levels of arsenic impurity

  9. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  10. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Science.gov (United States)

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies. PMID:26231509

  11. Arsenic Exposure From Drinking Water, Arsenic Methylation Capacity, and Carotid Intima-Media Thickness in Bangladesh

    Science.gov (United States)

    Chen, Yu; Wu, Fen; Graziano, Joseph H.; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T.; Desvarieux, Moise; Ahsan, Habibul

    2013-01-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010–2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: −0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes. PMID:23788675

  12. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh.

    Science.gov (United States)

    Chen, Yu; Wu, Fen; Graziano, Joseph H; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T; Desvarieux, Moise; Ahsan, Habibul

    2013-08-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010-2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: -0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes.

  13. Toxicokinetics and Pharmacokinetic Modeling of Arsenic

    Science.gov (United States)

    This chapter provides an overview of arsenic toxicokinetics and physiologically-basedpharmacokinetic (PBPK) modeling with particular emphasis on key 'actors needed fordevelopment of a model useful for dose-response analysis, applications of arsenicmodels, as well research needs.U...

  14. Arsenic stress after the Proterozoic glaciations.

    Science.gov (United States)

    Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-04

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  15. Health effects of arsenic in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Fowle, J.R.; Abernathy, C.O.; Mass, M.J.; McKinney, J.D.; North, D.W.

    1991-01-01

    Current knowledge about metabolism, essentiality, and toxicity is summarized in the document. These are placed in a risk assessment context. Research needs are identified with their implications for improving the ability to assess risk from exposure to arsenic.

  16. TELOMERASE AND CHRONIC ARSENIC EXPOSURE IN HUMANS

    Science.gov (United States)

    Arsenic exposure has been associated with increased risk of skin, lung and bladder cancer in humans. The mechanisms of carcinogenesis are not well understood. Telomerase, a ribonucleoprotein containing human telomerase reverse transcriptase (hTERT), can extend telomeres of eukary...

  17. Study of arsenic injury to rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, T.; Matsumoto, H.; Okahashi, C.; Wada, M.

    1968-01-01

    Growth injury happened to rice plants when waste liquid flowed from a mercury refinery into paddy fields in July 1967. Arsenic turned out to be the main cause of the growth injury. Investigation of the contaminated fields revealed that the injury was the most severe at the water inlet to the field, and was comparatively slight in the middle of it. The quantity of arsenic absorbed in the soil was very large at the inlet and was decreasingly small towards the centre of them. Moreover, excessive quantities of arsenic were often found on the surface of the fields. The constituent was seen permeating the lower layers of the soil. The permeation was deep in proportion to the good drainage of soil. Drastic measures should be taken with a special reference to quantity of arsenic and type of soil.

  18. Arsenic Induced Decreases in the Vascular Matrix

    OpenAIRE

    Hays, Allison M.; Lantz, R. Clark; Rodgers, Laurel S.; Sollome, James J.; Vaillancourt, Richard R.; Andrew, Angeline S; Hamilton, Joshua W.; Camenisch, Todd D.

    2008-01-01

    Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expres...

  19. Arsenic: Not So Evil After All?

    Science.gov (United States)

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  20. Arsenic accumulation in some higher fungi

    OpenAIRE

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to have an affinity for the toxic element. The arsenic concentrations in the principal edible mushrooms of commerce were found to be very low, i.e. on the average 0.5 mg/kg on dry matter. Among the asc...

  1. Megaloblastic, dyserythropoietic anemia following arsenic ingestion.

    Science.gov (United States)

    Lerman, B B; Ali, N; Green, D

    1980-01-01

    Following acute arsenic ingestion, a 35 year old woman experienced multiple organ failure, including renal and respiratory insufficiency, toxic hepatitis, peripheral neuropathy, and encephalopathy. In addition, she developed an anemia; the bone marrow showed a striking dyserythropoiesis with megaloblastic features. Her recovery was heralded by normalization of the bone marrow morphology, followed by improvement in all other organ dysfunction except for the peripheral neuropathy. Arsenic poisoning is a cause of megaloblastic anemia; early hematologic recovery suggests favorable prognosis.

  2. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks. PMID:26776948

  3. Design for sustainable development--household drinking water filter for arsenic and pathogen treatment in Nepal.

    Science.gov (United States)

    Ngai, Tommy K K; Shrestha, Roshan R; Dangol, Bipin; Maharjan, Makhan; Murcott, Susan E

    2007-10-01

    In the last 20 years, the widespread adoption of shallow tubewells in Nepal Terai region enabled substantial improvement in access to water, but recent national water quality testing showed that 3% of these sources contain arsenic above the Nepali interim guideline of 50 microg/L, and up to 60% contain unsafe microbial contamination. To combat this crisis, MIT, ENPHO and CAWST together researched, developed and implemented a household water treatment technology by applying an iterative, learning development framework. A pilot study comparing 3 technologies against technical, social, and economic criteria showed that the Kanchan Arsenic Filter (KAF) is the most promising technology for Nepal. A two-year technical and social evaluation of over 1000 KAFs deployed in rural villages of Nepal determined that the KAF typically removes 85-90% arsenic, 90-95% iron, 80-95% turbidity, and 85-99% total coliforms. Then 83% of the households continued to use the filter after 1 year, mainly motivated by the clean appearance, improved taste, and reduced odour of the filtered water, as compared to the original water source. Although over 5,000 filters have been implemented in Nepal by January 2007, further research rooted in sustainable development is necessary to understand the technology diffusion and scale-up process, in order to expand access to safe water in the country and beyond.

  4. Disruption of Mitotic Progression by Arsenic.

    Science.gov (United States)

    States, J Christopher

    2015-07-01

    Arsenic is an enigmatic xenobiotic that causes a multitude of chronic diseases including cancer and also is a therapeutic with promise in cancer treatment. Arsenic causes mitotic delay and induces aneuploidy in diploid human cells. In contrast, arsenic causes mitotic arrest followed by an apoptotic death in a multitude of virally transformed cells and cancer cells. We have explored the hypothesis that these differential effects of arsenic exposure are related by arsenic disruption of mitosis and are differentiated by the target cell's ability to regulate or modify cell cycle checkpoints. Functional p53/CDKN1A axis has been shown to mitigate the mitotic block and to be essential to induction of aneuploidy. More recent preliminary data suggest that microRNA modulation of chromatid cohesion also may play a role in escape from mitotic block and in generation of chromosomal instability. Other recent studies suggest that arsenic may be useful in treatment of solid tumors when used in combination with other cytotoxic agents such as cisplatin.

  5. Aquatic arsenic: phytoremediation using floating macrophytes.

    Science.gov (United States)

    Rahman, M Azizur; Hasegawa, H

    2011-04-01

    Phytoremediation, a plant based green technology, has received increasing attention after the discovery of hyperaccumulating plants which are able to accumulate, translocate, and concentrate high amount of certain toxic elements in their above-ground/harvestable parts. Phytoremediation includes several processes namely, phytoextraction, phytodegradation, rhizofiltration, phytostabilization and phytovolatilization. Both terrestrial and aquatic plants have been tested to remediate contaminated soils and waters, respectively. A number of aquatic plant species have been investigated for the remediation of toxic contaminants such as As, Zn, Cd, Cu, Pb, Cr, Hg, etc. Arsenic, one of the deadly toxic elements, is widely distributed in the aquatic systems as a result of mineral dissolution from volcanic or sedimentary rocks as well as from the dilution of geothermal waters. In addition, the agricultural and industrial effluent discharges are also considered for arsenic contamination in natural waters. Some aquatic plants have been reported to accumulate high level of arsenic from contaminated water. Water hyacinth (Eichhornia crassipes), duckweeds (Lemna gibba, Lemna minor, Spirodela polyrhiza), water spinach (Ipomoea aquatica), water ferns (Azolla caroliniana, Azolla filiculoides, and Azolla pinnata), water cabbage (Pistia stratiotes), hydrilla (Hydrilla verticillata) and watercress (Lepidium sativum) have been studied to investigate their arsenic uptake ability and mechanisms, and to evaluate their potential in phytoremediation technology. It has been suggested that the aquatic macrophytes would be potential for arsenic phytoremediation, and this paper reviews up to date knowledge on arsenic phytoremediation by common aquatic macrophytes. PMID:21435676

  6. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  7. Earthworms produce phytochelatins in response to arsenic.

    Science.gov (United States)

    Liebeke, Manuel; Garcia-Perez, Isabel; Anderson, Craig J; Lawlor, Alan J; Bennett, Mark H; Morris, Ceri A; Kille, Peter; Svendsen, Claus; Spurgeon, David J; Bundy, Jacob G

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  8. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    Science.gov (United States)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  9. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    L. Cavalca; A. Corsini; P. Zaccheo; V. Andreoni; G. Muyzer

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This revie

  10. DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMASIII AND DMASIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC

    Science.gov (United States)

    DETERMINATION OF URINARY TRIVALENT ARSENICALS (MMAsIII and DMAsIII) IN INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC. L. M. Del Razo1, M. Styblo2, W. R. Cullen3, and D.J. Thomas4. 1Toxicology Section, Cinvestav-IPN, Mexico, D.F., 2Univ. North Carolina, Chapel Hill, NC; 3Uni...

  11. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Science.gov (United States)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  12. Use of arsenic-73 in research supports USEPA's regulatory decisions on inorganic arsenic in drinking water*

    Science.gov (United States)

    Inorganic arsenic is a natural contaminant of drinking water in the United States and throughout the world. Long term exposure to inorganic arsenic in drinking water at elevated levels (>100 ug/L) is associated with development of cancer in several organs, cardiovascular disease,...

  13. An Analysis on the Spatial Variability of Soil Arsenic Content:Fujian Case%福建省土壤砷含量空间变异性

    Institute of Scientific and Technical Information of China (English)

    陈增文

    2015-01-01

    基于地统计方法分析了省域范围表层土壤(0~20 cm )砷元素的空间变异性。结果表明:研究区土壤砷含量平均值为6.95 mg · kg-1,变异系数141.0%,为强变异性。土壤砷最优理论半变异函数拟合模型为指数模型,其块金效应值83.77%,变量空间相关性较弱。通过各向异性分析表明地质背景、地形可能影响着土壤砷的空间分布。克里格插值图直观地反映出研究区内土壤砷的空间变异特征,调查分析得出,母质母岩、土壤类型、地形等自然因素影响着研究区土壤砷的分布,同时,人类的矿山开采和农业生产活动等对土壤砷的分布也具有重要的影响。%Using geostatistical method, the spatial variability of arsenic content in the surface layer soil (0~20 cm) of Fujian Province is studied. The results show that the average content of soil arse-nic is 6. 95 mg·kg-1 , with its variation coefficient as strong as 141. 0%. The theoretical semivario-gram of soil arsenic is well fitted by an exponential model. The nugget effect of soil arsenic content is 83. 77%, indicating that the spatial correlation of arsenic is weak. Anisotropic analysis shows that the spatial distribution of soil arsenic is affected by geological background and terrain. The spatial varia-bility of soil arsenic in study area can be reflected clearly by the map of the Kriging interpolation. Ac-cording to the results of the investigation and analysis, the distribution of soil arsenic is mainly con-trolled by parent material, soil type and terrain. Meanwhile, mining and agricultural activities are al-so affecting the distribution of soil arsenic.

  14. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China

    International Nuclear Information System (INIS)

    With the aim of better understanding the distribution of arsenic, 144 coal samples were collected from southwestern Guizhou, and the concentrations of arsenic were determined by atomic fluorescence spectrometry (AFS) and inductively coupled plasma mass spectrometry (ICP-MS). The content of arsenic varies from 0.3 ppm to 3.2 wt.%. In most coal samples, the arsenic content was lower than 30 ppm, which was close to a representative value of arsenic concentration of coal in China. Arsenic contents in 37 samples, which were from several small coal mines, were more than 30 ppm, among which only 16 samples were more than 100 ppm, and only a few samples contained more than 1000 ppm, which were very restricted and the coal seams were generally unworkable. Combustion of two kinds of high arsenic coal with and without CaO additive was studied in a bench scale drop tube furnace (DTF) to understand the partition and emission of arsenic in the process. The PM was size segregated by low pressure impactor (LPI) into 13 size stages ranging from 9.8 to 0.0281 μm. X-ray fluorescence spectrometry (XRF) was used to determine the chemical composition of the PM, and inductively coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the arsenic content. A bimodal mode distribution of the PM was formed during coal combustion; the large mode (coarse particle) was formed at 4.0 μm, and the other mode (fine particles) was at about 0.1 μm. A middle mode was gradually obvious in high temperature for both of the two coal combustions, which may have been derived from coagulation and agglomeration of metal elements vapors. More gaseous arsenic was formed in 50% oxygen content than 20% oxygen content. Arsenic in sulfide is easier to vaporize than as arsenate. Along with the increasing temperature from 1100 oC to 1400 oC, the arsenic concentration in PM1 increased from 0.07 mg/N m3 to 0.25 mg/N m3. With the addition of the calcium based sorbent, the arsenic concentration in

  15. Soil arsenic in Armadale, Scotland

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.H.; Lloyd, O.L.; Hubbard, F.H.

    1986-03-01

    As part of an investigation into the high mortality from lung cancer and the high sex ratios of births in Armadale, central Scotland, concentrations of arsenic were measured in soil cores from 48 sites in Armadale and 6 sites in a comparison town. Concentrations in Armadale were substantially higher than those in the comparison town, and many of the highest range of values were in that part of the town where the epidemiological abnormalities of lung cancer and of birth sex ratios were most pronounced. The study indicated that clues to the etiology of high rates of disease in small areas could be sought most profitably if close links were maintained between epidemiological and environmental investigations.

  16. Arsenic-Induced Genotoxicity and Genetic Susceptibility to Arsenic-Related Pathologies

    Directory of Open Access Journals (Sweden)

    Fabrizio Bianchi

    2013-04-01

    Full Text Available The arsenic (As exposure represents an important problem in many parts of the World. Indeed, it is estimated that over 100 million individuals are exposed to arsenic, mainly through a contamination of groundwaters. Chronic exposure to As is associated with adverse effects on human health such as cancers, cardiovascular diseases, neurological diseases and the rate of morbidity and mortality in populations exposed is alarming. The purpose of this review is to summarize the genotoxic effects of As in the cells as well as to discuss the importance of signaling and repair of arsenic-induced DNA damage. The current knowledge of specific polymorphisms in candidate genes that confer susceptibility to arsenic exposure is also reviewed. We also discuss the perspectives offered by the determination of biological markers of early effect on health, incorporating genetic polymorphisms, with biomarkers for exposure to better evaluate exposure-response clinical relationships as well as to develop novel preventative strategies for arsenic- health effects.

  17. Arsenic neurotoxicity--a review.

    Science.gov (United States)

    Vahidnia, A; van der Voet, G B; de Wolff, F A

    2007-10-01

    Arsenic (As) is one of the oldest poisons known to men. Its applications throughout history are wide and varied: murder, make-up, paint and even as a pesticide. Chronic As toxicity is a global environmental health problem, affecting millions of people in the USA and Germany to Bangladesh and Taiwan. Worldwide, As is released into the environment by smelting of various metals, combustion of fossil fuels, as herbicides and fungicides in agricultural products. The drinking water in many countries, which is tapped from natural geological resources, is also contaminated as a result of the high level of As in groundwater. The environmental fate of As is contamination of surface and groundwater with a contaminant level higher than 10 particle per billion (ppb) as set by World Health Organization (WHO). Arsenic exists in both organic and inorganic species and either form can also exist in a trivalent or pentavalent oxidation state. Long-term health effects of exposure to these As metabolites are severe and highly variable: skin and lung cancer, neurological effects, hypertension and cardiovascular diseases. Neurological effects of As may develop within a few hours after ingestion, but usually are seen in 2-8 weeks after exposure. It is usually a symmetrical sensorimotor neuropathy, often resembling the Guillain-Barré syndrome. The predominant clinical features of neuropathy are paresthesias, numbness and pain, particularly in the soles of the feet. Electrophysiological studies performed on patients with As neuropathy have revealed a reduced nerve conduction velocity, typical of those seen in axonal degeneration. Most of the adverse effects of As, are caused by inactivated enzymes in the cellular energy pathway, whereby As reacts with the thiol groups of proteins and enzymes and inhibits their catalytic activity. Furthermore, As-induced neurotoxicity, like many other neurodegenerative diseases, causes changes in cytoskeletal protein composition and hyperphosphorylation

  18. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    Science.gov (United States)

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries.

  19. Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas.

    Science.gov (United States)

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2004-03-01

    The short term human exposure studies conducted on populations exposed to high concentrations of inorganic arsenic in soil have been inconsistent in demonstrating a relationship between environmental concentrations and exposure measures. In Australia there are many areas with very high arsenic concentrations in residential soil most typically associated with gold mining activities in rural areas. This study aimed to investigate the relationship between environmental arsenic and urinary inorganic arsenic concentrations in a population living in a gold mining area (soil arsenic concentrations between 9 and 9900 mg kg(-1)), and a control population with low arsenic levels in soil (between 1 and 80 mg kg(-1)). Risk factors for increased urinary arsenic concentrations were also explored. There was a weak but significant relationship between soil arsenic concentrations and inorganic urinary arsenic concentration with a Spearman correlation coefficient of 0.39. When participants with greater than 100 mg kg(-1) arsenic in residential soil were selected, the coefficient increased to 0.64. The geometric mean urinary inorganic arsenic concentration for the exposed group was 1.64 microg L(-1) (risk factors. These results show that high concentrations of arsenic in soil can make a contribution to urinary inorganic arsenic concentrations.

  20. 1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — 1922 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service...

  1. 1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — 1950 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service...

  2. Trails, RS2477, centerlines83, Published in 2008, Duchesne County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Trails, RS2477 dataset, was produced all or in part from Other information as of 2008. It is described as 'centerlines83'. Data by this publisher are often...

  3. 1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — 1869 Digitized Shoreline for Breton Island, Louisiana (Geographic, NAD83) consists of vector shoreline data that were derived from a set of National Ocean Service...

  4. Arsenic and the Epigenome: Linked by Methylation(SOT)

    Science.gov (United States)

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  5. Map of Arsenic concentrations in groundwater of the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  6. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  7. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration. PMID:24933913

  8. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  9. Solid materials for removing arsenic and method thereof

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, Paul R. (Livermore, CA); Coleman, Sabre J. (Oakland, CA); Sanner, Robert D. (Livermore, CA); Dias, Victoria L. (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2010-09-28

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  10. Arsenic-related Bowen's disease, palmar keratosis, and skin cancer.

    OpenAIRE

    Cöl, M; Cöl, C; Soran, A; Sayli, B S; Oztürk, S

    1999-01-01

    Chronic arsenical intoxication can still be found in environmental and industrial settings. Symptoms of chronic arsenic intoxication include general pigmentation or focal "raindrop" pigmentation of the skin and the appearance of hyperkeratosis of the palms of the hands and soles of the feet. In addition to arsenic-related skin diseases including keratosis, Bowen's disease, basal-cell-carcinoma, and squamous-cell carcinoma, there is also an increased risk of some internal malignancies. Arsenic...

  11. Solid materials for removing arsenic and method thereof

    Science.gov (United States)

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  12. Analytical Strategies for the Determination of Arsenic in Rice

    OpenAIRE

    Bruno E. S. Costa; Luciana M. Coelho; Cleide S. T. Araújo; Rezende, Helen C.; Coelho, Nívia M. M.

    2016-01-01

    Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentr...

  13. Arsenic on the Hands of Children after Playing in Playgrounds

    OpenAIRE

    Kwon, Elena; Zhang, Hongquan; Wang, Zhongwen; Jhangri, Gian S; Lu, Xiufen; Fok, Nelson; Gabos, Stephan; Li, Xing-Fang; Le, X. Chris

    2004-01-01

    Increasing concerns over the use of wood treated with chromated copper arsenate (CCA) in playground structures arise from potential exposure to arsenic of children playing in these playgrounds. Limited data from previous studies analyzing arsenic levels in sand samples collected from CCA playgrounds are inconsistent and cannot be directly translated to the amount of children’s exposure to arsenic. The objective of this study was to determine the quantitative amounts of arsenic on the hands of...

  14. Arsenic Contamination in Groundwater of Bangladesh: Perspectives on Geochemical, Microbial and Anthropogenic Issues

    Directory of Open Access Journals (Sweden)

    Shafi M. Tareq

    2011-11-01

    Full Text Available A groundwater, sediment and soil chemistry and mineralogical study has been performed to investigate the sources and mobilization process of Arsenic (As in shallow aquifers of Bangladesh. The groundwater from the shallow aquifers is characterized by high concentrations of Arsenic (47.5–216.8 µg/L, iron (0.85–5.83 mg/L, and phosphate, along with high electrical conductivity (EC. The groundwater has both very low oxidation-reduction potential (Eh and dissolved oxygen (DO values indicating reducing conditions. By contrast, the deep aquifers and surface waters (pond, canal have very low concentrations of Arsenic ( < 6 µg/L, iron (0.12–0.39 mg/L, and phosphate along with a relatively low EC. Furthermore, the values of Eh and DO are high, indicating oxic to suboxic conditions. Arsenic is inversely correlated with Eh values in the upper aquifer, whereas no relationship in the deeper aquifer is observed. These results suggest that As mobilization is clearly linked to the development of reducing conditions. The clayey silt, enriched in Fe, Mn, Al oxides and organic matter, and deposited in the middle unit of shallow aquifers, contains moderately high concentrations of As, whereas the sediments of deep aquifers and silty mud surface soils from paddy fields and ponds contain a low content of As (Daudkandi area. Arsenic is strongly correlated with the concentrations of Fe, Mn and Al oxides in the core samples from the Daudkandi and Marua areas. Arsenic is present in the oxide phase of Fe and Mn, phyllosilicate minerals and in organic matter in sediments. This study suggests that adsorption or precipitation of As-rich Fe oxyhydroxide on the surface or inner sites of biotite might be responsible for As concentrations found in altered biotite minerals by Seddique et al. Microbially or geochemically mediated reductive dissolution of Fe oxyhydroxides is the main mechanism for As release. The reducing conditions are caused by respiratory decomposition of

  15. Childhood cancer incidence and arsenic exposure in drinking water in Nevada.

    Science.gov (United States)

    Moore, Lee E; Lu, Meng; Smith, Allan H

    2002-01-01

    Inorganic arsenic exposure through drinking water causes cancer in adults; however, the carcinogenic potential in children remains unknown. A recent leukemia cluster in Churchill County, Nevada, where arsenic levels in water supplies are relatively high, has prompted concern. The authors investigated the incidence of childhood cancer between 1979 and 1999 in all 17 Nevada counties, grouped by low (i.e., water supplies. The standardized incidence ratios (SIRs) for all childhood cancers combined were 1.00 (95% confidence interval [CI] = 0.94, 1.06), 0.72 (95% CI = 0.43, 1.12), and 1.25 (95% CI = 0.91, 1.69) for low-, medium-, and high-exposure counties, respectively. There was no relationship between arsenic levels in water and childhood leukemia (SIRs = 1.02, 0.61, and 0.86, respectively [95% CIIs = 0.90, 1.15; 0.12, 1.79; and 0.37, 1.70, respectively]). For all childhood cancers, excluding leukemias, the SIRs were 0.99 (95% CI = 0.92, 1.07), 0.82 (95% CI = 0.42, 1.22), and 1.37 (0.92, 1.83), respectively. The excess in 5- to 9-yr-old children and 10- to 14-yr-old children was in bone cancers, and the excess in 15- to 19-yr-old young adults was primarily in lymphomas. The findings in this study are reassuring in that leukemia risks were not increased at the concentrations of arsenic in water found in this study. Nonetheless, the results raise the possibility that there are increased risks for nonleukemic childhood cancers that require confirmation in other studies, particularly those in which higher exposures are addressed.

  16. Arsenic

    Science.gov (United States)

    ... may also expose normal cells in a lab dish to the substance to see if it causes ... www.cancer.org . Known and Probable Human Carcinogens National organizations and websites Along with the American Cancer ...

  17. Arsenic management through well modification and simulation

    Science.gov (United States)

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  18. Arsenic management through well modification and simulation.

    Science.gov (United States)

    Halford, Keith J; Stamos, Christina L; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 microg/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 microg/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulic-conductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 microg/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 microg/L over a 20-year period. PMID:20113363

  19. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  20. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    OpenAIRE

    Madhurima Pandey; Sushma Yadav; Piyush Kant Pandey

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically ...

  1. Population Based Exposure Assessment of Bioaccessible Arsenic in Carrots

    Science.gov (United States)

    The two predominant arsenic exposure routes are food and water. Estimating the risk from dietary exposures is complicated, owing to the chemical form dependent toxicity of arsenic and the diversity of arsenicals present in dietary matrices. Two aspects of assessing dietary expo...

  2. Effect of drinking arsenic-contaminated water in children

    Directory of Open Access Journals (Sweden)

    Kunal K Majumdar

    2012-01-01

    Full Text Available Chronic arsenic toxicity due to drinking of arsenic-contaminated water has been a major environmental health hazard throughout the world including India. Although a lot of information is available on health effects due to chronic arsenic toxicity in adults, knowledge of such effect on children is scanty. A review of the available literature has been made to highlight the problem in children. Scientific publications on health effects of chronic arsenic toxicity in children with special reference to psychological issues are reviewed. The prevalence of skin abnormalities such as pigmentation change and keratosis, the diagnostic signs of chronic arsenic toxicity, vary in various arsenic-exposed children population in different regions of the world. The occurrence of chronic lung disease including pulmonary interstitial fibrosis has been described in arsenic-exposed children in Chile. Affection of intellectual function has also been reported to occur in arsenic-exposed children studied in Thailand, Bangladesh, and India. Methylation patterns of arsenic in children aggregate in families and are correlated in siblings, providing evidence of a genetic basis for the variation in arsenic methylation. Chronic arsenic toxicity due to drinking of arsenic-contaminated water causes significant morbidity in children resulting in skin lesions, lung disease, and defect in intellectual function.

  3. The Arsenic Project: A multidisciplinary Project in Nicaragua

    NARCIS (Netherlands)

    Admiraal, M.; Couasnon, A.; Huijzenveld, T.; Hutten, R.; Schölvinck, O.; Van Veen, N.

    2015-01-01

    In Nicaragua, active research for arsenic started in 1996, after the first case of arsenic poisoning was reported in a rural community. Arsenic concentrations present in drinking water cause chronic poisoning, which depending on the exposure, lead to several life-threatening long term effects. It i

  4. 21 CFR 862.3120 - Arsenic test system.

    Science.gov (United States)

    2010-04-01

    ... arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and blood. Measurements obtained by this device are used in the diagnosis and treatment of arsenic poisoning. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section...

  5. TRACE ANALYSIS OF ARSENIC BY COLORIMETRY, ATOMIC ABSORPTION, AND POLAROGRAPHY

    Science.gov (United States)

    A differential pulse polarographic method was developed for determining total arsenic concentrations in water samples from ash ponds at steam-electric generating plants. After digestion of the sample and isolation of arsenic by solvent extraction, the peak current for arsenic is ...

  6. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    Science.gov (United States)

    Diversity of arsenic metabolism in cultured human cancer cell lines. Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  7. Application of microchips AMPL-8.3 and DISC-8.3 for work with semiconductor strip detectors

    International Nuclear Information System (INIS)

    The objective of the work was to widespread the sphere of microchips AMPL-8.3 and DISC-8.3 application to the silicon strip detectors. As a result two versions of preamplifiers were designed for 16-channel PCB ADB-16, intended for gaseous detectors. At present this electronics is used for methodical researches of detectors, for stand tests and creation of prototype systems for new high energy physics experiments. (authors)

  8. Complementary arsenic speciation methods: A review

    Energy Technology Data Exchange (ETDEWEB)

    Nearing, Michelle M., E-mail: michelle.nearing@rmc.ca; Koch, Iris, E-mail: koch-i@rmc.ca; Reimer, Kenneth J., E-mail: reimer-k@rmc.ca

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC–ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC–ICP-MS can be used to identify compounds not extracted for HPLC–ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenic-sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC–ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI–MS) with HPLC–ICP-MS provides confirmation of arsenic compounds identified during the HPLC–ICP-MS analysis, identification of unknown compounds observed during the HPLC–ICP-MS analysis and further resolves HPLC–ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC–ICP-MS and ESI–MS, HPLC–ICP-MS helps to focus the ESI–MS selection of ions. Numerous studies have shown that the information obtained from HPLC–ICP-MS analysis can be greatly enhanced by complementary approaches. - Highlights: • HPLC–ICP-MS is the most common method used for arsenic speciation. • HPLC limitations include

  9. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis. PMID:14670068

  10. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis.

  11. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    Science.gov (United States)

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  12. Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.

    Science.gov (United States)

    Garla, Roobee; Ganger, Renuka; Mohanty, Biraja P; Verma, Shivcharan; Bansal, Mohinder P; Garg, Mohan L

    2016-07-29

    The major cause of toxicity of trivalent arsenicals is due to their interaction with the sulfhydryl groups in proteins. Because of its high content, Metallothionein (MT) provides one of the most favorable conditions for the binding of As(III) ions to it. MT has long been anticipated for providing resistance in case of arsenic (As) toxicity with similar mechanism as in case of cadmium toxicity. The present study investigates whether the sequestration of As ions by MT is one of the mechanisms in providing protection against acute arsenic toxicity. A rat model study on the metal stoichiometric analysis of MT1 isoform isolated from the liver of arsenic treated, untreated and zinc treated animals has been carried out using the combination of particle induced X-ray emission (PIXE) and electrospray ionisation mass spectrometry (ESI-MS). The results revealed the absence of arsenic bound MT1 in the samples isolated from arsenic treated animals. Although, both Cu and Zn ions were present in MT1 samples isolated from all the treatment groups. Moreover, only partially metallated MT1 with varying number of Zn ions were observed in all the groups. These results suggest that the role of MT during acute arsenic toxicity is different from its already established role in case of cadmium toxicity.

  13. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-16

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  14. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  15. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  16. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  17. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2016-01-01

    Full Text Available In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members. Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  18. Arsenic biotransformation and volatilization in transgenic rice.

    Science.gov (United States)

    Meng, Xiang-Yan; Qin, Jie; Wang, Li-Hong; Duan, Gui-Lan; Sun, Guo-Xin; Wu, Hui-Lan; Chu, Cheng-Cai; Ling, Hong-Qing; Rosen, Barry P; Zhu, Yong-Guan

    2011-07-01

    • Biotransformation of arsenic includes oxidation, reduction, methylation, and conversion to more complex organic arsenicals. Members of the class of arsenite (As(III)) S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di-, and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. • Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa) cv Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). • Both monomethylarsenate (MAs(V)) and dimethylarsenate (DMAs(V)) were detected in the roots and shoots of transgenic rice. After 12 d exposure to As(III), the transgenic rice gave off 10-fold greater volatile arsenicals. • The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, theoretically providing a potential stratagem for phytoremediation. PMID:21517874

  19. Occurrence of arsenic contamination in Canada: sources, behavior and distribution.

    Science.gov (United States)

    Wang, Suiling; Mulligan, Catherine N

    2006-08-01

    Recently there has been increasing anxieties concerning arsenic related problems. Occurrence of arsenic contamination has been reported worldwide. In Canada, the main natural arsenic sources are weathering and erosion of arsenic-containing rocks and soil, while tailings from historic and recent gold mine operations and wood preservative facilities are the principal anthropogenic sources. Across Canada, the 24-h average concentration of arsenic in the atmosphere is generally less than 0.3 microg/m3. Arsenic concentrations in natural uncontaminated soil and sediments range from 4 to 150 mg/kg. In uncontaminated surface and ground waters, the arsenic concentration ranges from 0.001 to 0.005 mg/L. As a result of anthropogenic inputs, elevated arsenic levels, above ten to thousand times the Interim Maximum Acceptable Concentration (IMAC), have been reported in air, soil and sediment, surface water and groundwater, and biota in several regions. Most arsenic is of toxic inorganic forms. It is critical to recognize that such contamination imposes serious harmful effects on various aquatic and terrestrial organisms and human health ultimately. Serious incidences of acute and chronic arsenic poisonings have been revealed. Through examination of the available literature, screening and selecting existing data, this paper provides an analysis of the currently available information on recognized problem areas, and an overview of current knowledge of the principal hydrogeochemical processes of arsenic transportation and transformation. However, a more detailed understanding of local sources of arsenic and mechanisms of arsenic release is required. More extensive studies will be required for building practical guidance on avoiding and reducing arsenic contamination. Bioremediation and hyperaccumulation are emerging innovative technologies for the remediation of arsenic contaminated sites. Natural attenuation may be utilized as a potential in situ remedial option. Further

  20. Arsenic Speciation in Blue Mussels (Mytilus edulis) Along a Highly Contaminated Arsenic Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Whaley-Martin, K.J.; Koch, I.; Moriarty, M.; Reimer, K.J. (Royal)

    2012-11-01

    Arsenic is naturally present in marine ecosystems, and these can become contaminated from mining activities, which may be of toxicological concern to organisms that bioaccumulate the metalloid into their tissues. The toxic properties of arsenic are dependent on the chemical form in which it is found (e.g., toxic inorganic arsenicals vs nontoxic arsenobetaine), and two analytical techniques, high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and X-ray absorption spectroscopy (XAS), were used in the present study to examine the arsenic species distribution in blue mussels (Mytilus edulis) obtained from an area where there is a strong arsenic concentration gradient as a consequence of mining impacted sediments. A strong positive correlation was observed between the concentration of inorganic arsenic species (arsenic compounds with no As-C bonds) and total arsenic concentrations present in M. edulis tissues (R{sup 2} = 0.983), which could result in significant toxicological consequences to the mussels and higher trophic consumers. However, concentrations of organoarsenicals, dominated by arsenobetaine, remained relatively constant regardless of the increasing As concentration in M. edulis tissue (R{sup 2} = 0.307). XANES bulk analysis and XAS two-dimensional mapping of wet M. edulis tissue revealed the presence of predominantly arsenic-sulfur compounds. The XAS mapping revealed that the As(III)-S and/or As(III) compounds were concentrated in the digestive gland. However, arsenobetaine was found in small and similar concentrations in the digestive gland as well as the surrounding tissue suggesting arsenobetaine may being used in all of the mussel's cells in a physiological function such as an intracellular osmolyte.

  1. ARSENIC DEGRADATION BY Pseudomonas aeruginosa FOR WATER BIOREMEDIATION. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Esther E. Pellizzari

    2015-03-01

    Full Text Available The aim of this study was to investigate the arsenic resistance in pure cultivations of Pseudomonas aeruginosa isolated from Presidencia Roque Sáenz Peña groundwater (Chaco province, and evaluate the possibility of its use to remove arsenic from groundwater. Strains were immobilized in natural stone and cultivated in salts broth and 1 mgAs/L. The arsenic resistance and biofilm formation were observed, obtaining interaction between cells, rock and arsenic. Arsenic removal was evaluated during 3 months and its final percentage of the experiment was 60%.

  2. Arsenic Exposure and the Induction of Human Cancers

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.

  3. Determination of total arsenic in soil and arsenic-resistant bacteria from selected ground water in Kandal Province, Cambodia

    International Nuclear Information System (INIS)

    Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30-35 deg C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic. (author)

  4. 83mKr, a potentially powerful PAC probe

    Science.gov (United States)

    Arenz, M.; Vianden, R.

    2013-05-01

    In the decay of 83Rb to 83mKr and the subsequent decay to the 83Kr ground state a 553-9.4 keV γ- γ and a 17.85-9.4 keV e-- γ cascade are populated. The intermediate 9.4 keV 7/2 + state with a half-life of 154 ns is a perfect candidate for the application of the perturbed angular correlation (PAC) technique. Thus, it is possible to investigate the lattice environment of the implanted probes via the electric quadrupole interaction of the 9.4 keV 7/2 + state with the electric field gradient produced by the host lattices. Details of the production of this new PAC probe and planned measurements will be discussed.

  5. Speciation of arsenic in sulfidic waters

    Directory of Open Access Journals (Sweden)

    Ford Robert G

    2003-03-01

    Full Text Available Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  6. Current developments in toxicological research on arsenic.

    Science.gov (United States)

    Bolt, Hermann M

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwater, and pollution due to mining activities. As-induced cardiovascular disorders and carcinogenesis present themselves as a major research focus. The high priority of this issue is now recognized politically in a number of countries, research funds have been made available. Also experimental research on toxicokinetics and toxicodynamics and on modes of toxic action is moving very rapidly. The matter is of high regulatory concern, and effective preventive measures are required in a number of countries.

  7. [Noncirrhotic liver fibrosis after chronic arsenic poisoning].

    Science.gov (United States)

    Piontek, M; Hengels, K J; Borchard, F; Strohmeyer, G

    1989-10-27

    A 67-year-old woman with portal hypertension, splenomegaly without portal vein thrombosis, leucopenia and thrombocytopenia of splenic origin had repeated episodes of life-threatening haemorrhage from esophageal varices. Since childhood she had suffered from psoriasis and had been treated over a period of 15 years with Fowler's solution (in all about 25 g of arsenic trioxide). She had the characteristic skin lesions of arsenical poisoning-palmar hyperkeratoses and two basal cell carcinomas on the trunk. Histological examination of a wedge biopsy from the liver showed definite structural changes with fibrosis around the central veins and in the portal tracts. There was no evidence of cirrhotic alteration. The hepatocytes were normal by light microscopy and electron microscopy. This case of noncirrhotic hepatic fibrosis is considered to have been caused by chronic arsenical poisoning.

  8. Emissions of arsenic in Sweden and their reduction.

    Science.gov (United States)

    Lindau, L

    1977-08-01

    The role of arsenic in Sweden is generally described, including raw materials, exports/imports, products, consumption, etc. An attempt was also made to estimate the transport of arsenic in Sweden. The quantities of arsenic in raw materials, the emissions of arsenic from such processes as copper smelters and chemical industries, and the amounts of products containing arsenic were calculated. The studies show that a copper smelter is the main user of arsenical materials, the very largest emitting source and also the plant which manufacturers most arsenic products. A summary of measurements of arsenic in air, water and soil in Sweden has also been made. The concentrations near a smelter, in the Baltic, in cities and in "clean-air areas" are given. The efforts made to date to reduce the emissions of arsenic and the measures planned for the next few years are described. A reduction has already been achieved and a further rather large decrease will come, especially in arsenic levels in water. The possibilities of minimizing the use of materials and products containing arsenic is also discussed. PMID:908306

  9. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  10. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  11. The Case for Visual Analytics of Arsenic Concentrations in Foods

    Directory of Open Access Journals (Sweden)

    Omotayo R. Awofolu

    2010-04-01

    Full Text Available Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i metabolism of arsenic in the human body; (ii arsenic concentrations in various foods; (ii factors affecting arsenic uptake in plants; (ii introduction to visual analytics; and (iv benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.

  12. Inorganic arsenic levels in baby rice are of concern

    International Nuclear Information System (INIS)

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as μg/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe

  13. Inorganic arsenic levels in baby rice are of concern

    Energy Technology Data Exchange (ETDEWEB)

    Meharg, Andrew A. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom)], E-mail: a.meharg@abdn.ac.uk; Sun, Guoxin [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Williams, Paul N. [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Adomako, Eureka; Deacon, Claire [School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen AB24 3UU (United Kingdom); Zhu, Yong-Guan [Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Feldmann, Joerg; Raab, Andrea [Department of Chemistry, University of Aberdeen, Meston Building, Meston Walk, Aberdeen AB24 3UE (United Kingdom)

    2008-04-15

    Inorganic arsenic is a chronic exposure carcinogen. Analysis of UK baby rice revealed a median inorganic arsenic content (n = 17) of 0.11 mg/kg. By plotting inorganic arsenic against total arsenic, it was found that inorganic concentrations increased linearly up to 0.25 mg/kg total arsenic, then plateaued at 0.16 mg/kg at higher total arsenic concentrations. Inorganic arsenic intake by babies (4-12 months) was considered with respect to current dietary ingestion regulations. It was found that 35% of the baby rice samples analysed would be illegal for sale in China which has regulatory limit of 0.15 mg/kg inorganic arsenic. EU and US food regulations on arsenic are non-existent. When baby inorganic arsenic intake from rice was considered, median consumption (expressed as {mu}g/kg/d) was higher than drinking water maximum exposures predicted for adults in these regions when water intake was expressed on a bodyweight basis. - Median consumption of organic arsenic levels for UK babies from baby rice is above threshold considered safe.

  14. ARSENIC CONTAMINATION IN DRINKING WATER: AN ASSESSMENT FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Meltem BİLİCİ ÇALIŞKAN

    2009-01-01

    Full Text Available Arsenic is one of the most abundant elements in the earth's crust and classified as a non-metal or a metalloid. Arsenic is toxic and carcinogen and in the environment occurs from both natural and anthropogenic sources. In the aqueous environment inorganic arsenic appears commonly in forms of arsenite (As(III and arsenate (As(V. pH, redox potential, and the presence of complexing ions such as ions of sulfur, iron, and calcium determine the arsenic valence and speciation. Because of the naturally occurring arsenic contamination in groundwater in many parts of the world many people have faced with risk of arsenic poisoning. In Turkey especially in the west regions, natural water sources contained much higher levels of arsenic than maximum contaminated level (MCL set (10 ?g/L were determined. In this study, arsenic problem and its reasons in Turkey were investigated. For this purpose, arsenic analyses were carried out and higher levels of arsenic than MCL was detected in some regions of Izmir. High levels of arsenic in these natural waters were considered to be associated with the dissolution of some minerals and rock formation.

  15. Trivalent arsenic inhibits the functions of chaperonin complex.

    Science.gov (United States)

    Pan, Xuewen; Reissman, Stefanie; Douglas, Nick R; Huang, Zhiwei; Yuan, Daniel S; Wang, Xiaoling; McCaffery, J Michael; Frydman, Judith; Boeke, Jef D

    2010-10-01

    The exact molecular mechanisms by which the environmental pollutant arsenic works in biological systems are not completely understood. Using an unbiased chemogenomics approach in Saccharomyces cerevisiae, we found that mutants of the chaperonin complex TRiC and the functionally related prefoldin complex are all hypersensitive to arsenic compared to a wild-type strain. In contrast, mutants with impaired ribosome functions were highly arsenic resistant. These observations led us to hypothesize that arsenic might inhibit TRiC function, required for folding of actin, tubulin, and other proteins postsynthesis. Consistent with this hypothesis, we found that arsenic treatment distorted morphology of both actin and microtubule filaments. Moreover, arsenic impaired substrate folding by both bovine and archaeal TRiC complexes in vitro. These results together indicate that TRiC is a conserved target of arsenic inhibition in various biological systems. PMID:20660648

  16. Arsenic in the soils of Zimapán, Mexico.

    Science.gov (United States)

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-02-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.

  17. Arsenic species and chemistry in groundwater of southeast Michigan

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2002-01-01

    Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 ??g/l, the average being 29 ??g/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 ??g/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals. ?? 2002 Elsevier Science Ltd. All rights reserved.

  18. Method development for arsenic analysis by modification in spectrophotometric technique

    Directory of Open Access Journals (Sweden)

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  19. A global health problem caused by arsenic from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Ng, J.C.; Wang, J.P.; Shraim, A. [University of Queensland, Brisbane, Qld. (Australia). National Research Center for Environmental Toxicology

    2003-09-01

    Arsenic is a carcinogen to both humans and animals. Arsenicals have been associated with cancers of the skin, lung, and bladder. Clinical manifestations of chronic arsenic poisoning include non-cancer end point of hyper- and hypo-pigmentation, keratosis, hypertension, cardiovascular diseases and diabetes. Epidemiological evidence indicates that arsenic concentration exceeding 50 {mu}g l{sup -1} in the drinking water is not public health protective. The current WHO recommended guideline value for arsenic in drinking water is 10 {mu}g l{sup -1}, whereas many developing countries are still having a value of 50 {mu}g 1{sup -1}. It has been estimated that tens of millions of people are at risk exposing to excessive levels of arsenic from both contaminated water and arsenic-bearing coal from natural sources. The global health implication and possible intervention strategies were also discussed in this review article.

  20. Coping with arsenic-based pesticides on Dine (Navajo) textiles

    Science.gov (United States)

    Anderson, Jae R.

    Arsenic-based pesticide residues have been detected on Arizona State Museum's (ASM) Dine (Navajo) textile collection using a handheld portable X-ray (pXRF) spectrometer. The removal of this toxic pesticide from historic textiles in museums collections is necessary to reduce potential health risks to Native American communities, museum professionals, and visitors. The research objective was divided into three interconnected stages: (1) empirically calibrate the pXRF instrument for arsenic contaminated cotton and wool textiles; (2) engineer an aqueous washing treatment exploring the effects of time, temperature, agitation, and pH conditions to efficiently remove arsenic from wool textiles while minimizing damage to the structure and properties of the textile; (3) demonstrate the devised aqueous washing treatment method on three historic Navajo textiles known to have arsenic-based pesticide residues. The preliminary results removed 96% of arsenic from a high arsenic concentration (~1000 ppm) textile opposed to minimal change for low arsenic concentration textiles (<100 ppm).

  1. Phytoremediation of arsenic in submerged soil by wetland plants.

    Science.gov (United States)

    Jomjun, Nateewattana; Siripen, Trichaiyaporn; Maliwan, Saeouy; Jintapat, Nateewattana; Prasak, Thavornyutikarn; Somporn, Choonluchanon; Petch, Pengchai

    2011-01-01

    Wetland aquatic plants including Canna glauca L., Colocasia esculenta L. Schott, Cyperus papyrus L. and Typha angustifolia L. were used in the phytoremediation of submerged soil polluted by arsenic (As). Cyperus papyrus L. was noticed as the largest biomass producer which has arsenic accumulation capacity of 130-172 mg As/kg plant. In terms of arsenic removal rate, however, Colocasia esculenta L. was recognized as the largest and fastest arsenic remover in this study. Its arsenic removal rate was 68 mg As/m2/day while those rates of Canna glauca L., Cyperus papyrus L. and Typha angustifolia L. were 61 mg As/m2/day, 56 mg As/m2/day, and 56 mg As/m2/day, respectively. Although the 4 aquatic plants were inferior in arsenic accumulation, their high arsenic removal rates were observed. Phytostabilization should be probable for the application of these plants. PMID:21598766

  2. Complementary arsenic speciation methods: A review

    Science.gov (United States)

    Nearing, Michelle M.; Koch, Iris; Reimer, Kenneth J.

    2014-09-01

    The toxicity of arsenic greatly depends on its chemical form and oxidation state (speciation) and therefore accurate determination of arsenic speciation is a crucial step in understanding its chemistry and potential risk. High performance liquid chromatography with inductively coupled mass spectrometry (HPLC-ICP-MS) is the most common analysis used for arsenic speciation but it has two major limitations: it relies on an extraction step (usually from a solid sample) that can be incomplete or alter the arsenic compounds; and it provides no structural information, relying on matching sample peaks to standard peaks. The use of additional analytical methods in a complementary manner introduces the ability to address these disadvantages. The use of X-ray absorption spectroscopy (XAS) with HPLC-ICP-MS can be used to identify compounds not extracted for HPLC-ICP-MS and provide minimal processing steps for solid state analysis that may help preserve labile compounds such as those containing arsenicsbnd sulfur bonds, which can degrade under chromatographic conditions. On the other hand, HPLC-ICP-MS is essential in confirming organoarsenic compounds with similar white line energies seen by using XAS, and identifying trace arsenic compounds that are too low to be detected by XAS. The complementary use of electrospray mass spectrometry (ESI-MS) with HPLC-ICP-MS provides confirmation of arsenic compounds identified during the HPLC-ICP-MS analysis, identification of unknown compounds observed during the HPLC-ICP-MS analysis and further resolves HPLC-ICP-MS by identifying co-eluting compounds. In the complementary use of HPLC-ICP-MS and ESI-MS, HPLC-ICP-MS helps to focus the ESI-MS selection of ions. Numerous studies have shown that the information obtained from HPLC-ICP-MS analysis can be greatly enhanced by complementary approaches.

  3. Electromagnetically induced absorption in metastable 83Kr atoms

    CERN Document Server

    Kale, Y B; Mishra, S R; Singh, S; Rawat, H S

    2015-01-01

    We report electromagnetically induced absorption (EIA) resonances of sub-natural linewidth (FWHM) in metastable noble gas 83Kr* atoms using degenerate two level schemes (DTLSs). This is the first observation of EIA effect in a metastable noble gas atoms. Using these spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition from 4p55s[3/2]2 to 4p55p[5/2]3 hyperfine manifolds of 83Kr* atoms, we have measured the Lande's g-factor (gF) for the lower level (F = 13/2) of the closed transition accurately with small applied magnetic fields of few Gauss.

  4. Synthesis of [8-3H]pentostatin

    International Nuclear Information System (INIS)

    Starting from 3-(2-deoxy-β-D-erythro-pentofuranosyl)-6, 7-dihydroimidazo[4,5-d][1,3]diazepin-8(3H)-one (4), the synthesis of both the R- and S-isomers of [8-3H]pentostatin has been achieved. The separation of the desired R-isomer in ca. 24% overall chemical yield from the R,S-mixture was effected by preparative reverse-phase chromatography utilizing a C18 stationary support. Crystalline product of high specific activity (227 mCi/mmole) was obtained. (author)

  5. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  6. Arsenic in Drinking Water and Its Removal

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenzhong; Deng Huiping; Zhan Jian

    2007-01-01

    Superfluous arsenic in drinking water can do harm to human health.In this paper,a broad overview of the available technologies for arsenic removal has been presented on the basis of literature survey.The main treatment methods included coagulation-sedimentation,adsorption separation and ion exchange,membrane technique,which have both advantages and disadvantages.It concluded that the selection of treatment process should be site specific and prevailing conditions and no process can serve the purpose under diverse conditions as each technology has its own limitations,In order to gain good results,some methods should be improved.

  7. Immobilisation of arsenic by iron(II)-oxidizing bacteria

    Science.gov (United States)

    Kappler, A.; Hohmann, C.; Winkler, E.; Muehe, M.; Morin, G.

    2008-12-01

    Arsenic-contaminated groundwater is an environmental problem that affects about 1-2% of the world's population. As arsenic-contaminated water is also used for irrigating rice fields, the uptake of arsenic via rice is in some cases even higher than via drinking water. Arsenic is often of geogenic origin and in many cases bound to iron(III) minerals. Microbial iron(III) reduction leads to dissolution of Fe(III) minerals and thus the arsenic bound to these minerals is released to the environment. In turn, iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation followed by iron(III) mineral formation. Here, we present work on arsenic co-precipitation and immobilization by anaerobic and aerobic iron(II)-oxidizing bacteria. Co-precipitation batch experiments with pure cultures of nitrate-dependent, phototrophic, and microaerophilic Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation. Iron and arsenic speciation and redox state are determined by X- ray diffraction and synchrotron-based X-ray absorption methods (EXAFS, XANES). Microcosm experiments are set-up either with liquid media or with rice paddy soil amended with arsenic. Rice paddy soil from arsenic contaminated rice fields in China that include a natural population of Fe(II)-oxidizing microorganisms is used as inoculum. Dissolved and solid-phase arsenic and iron are quantified, Arsenic speciation is determined and the iron minerals are identified. Additionally, Arsenic uptake into the rice plant is quantified and a gene expression pattern in rice (Oryza sativa cv Gladia) is determined by microarrays as a response to the presence of Fe(II)-oxidizing bacteria.

  8. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  9. Outbreak of chronic arsenic poisoning among retired workers from an arsenic mine in Japan.

    Science.gov (United States)

    Ishinishi, N; Kodama, Y; Nobutomo, K; Inamasu, T; Kunitake, E; Suenaga, Y

    1977-01-01

    Retired former workers of Matsuo Arsenic Mine of Miyazaki prefecture in Japan were subjected to extensive medical examination. The number of retired workers subjected to examination were 61 of 208 workers who were engaged in the works of the mine and were tracked down by the work rolls. These workers left the mine more than 15 years prior to the time of the examination. The main works in the mine were classified as mining, dressing of ores, refining, and clerical work. Several findings such as arsenodermatitis, depigmentation, performation of nasal septum, hyposmia, anosmia, and peripheral nervous disturbance attributed to exposure to arsenic were observed in 9 of 21 roasters who often worked in the arsenic kitchen. No characteristic findings of arsenic poisoning, that is, gastrointestinal disturbance, disorder of the cardiovascular system, hematopoietic disorders, or liver disturbance were observed in the retired workers. Another notable finding was that 8 cases diagnosed as pneumoconiosis were found in 18 miners. PMID:908287

  10. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L.

  11. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic.

    Science.gov (United States)

    Liu, Xiao-Juan; Zhao, Quan-Li; Sun, Guo-Xin; Williams, Paul; Lu, Xiu-Jun; Cai, Jing-Zhu; Liu, Wen-Ju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic.

  12. The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic.

    Science.gov (United States)

    Kala, S V; Neely, M W; Kala, G; Prater, C I; Atwood, D W; Rice, J S; Lieberman, M W

    2000-10-27

    Worldwide, millions of people are exposed to arsenic in drinking water that exceeds the World Health Organization standard of 10 microg/liter by as much as 50-300-fold, yet little is known about the molecular basis for arsenic excretion. Here we show that transport of arsenic into bile depends on the MRP2/cMOAT transporter and that glutathione is obligatory for such transport. Using reversed phase liquid chromatography/mass spectrometry, we demonstrate that two arsenic-glutathione complexes not previously identified in vivo, arsenic triglutathione and methylarsenic diglutathione, account for most of the arsenic in the bile. The structure of the compounds was also confirmed by nuclear magnetic resonance spectroscopy. Our findings may help explain the increased susceptibility of malnourished human populations to arsenic. PMID:10938093

  13. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    丁振华; 郑宝山; 张杰; H.; E.; Belkin; R.; B.; Finkelman; 赵峰华; 周代兴; 周运书; 陈朝刚

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer ( EMPA) , scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX) , X-ray diffraction analysis (XRD) , low temperature ashing (LTA) , transmission electron microscopy (TEM) , X-ray absorption fine structure (XAFS) , instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+ , combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  14. Collection of $^{83}$Rb at low implantation energy for KATRIN

    CERN Multimedia

    Zboril, M

    KATRIN, the KArlsruhe TRItium Neutrino experiment aims to measure the neutrino mass by spectroscopy of the tritium $\\beta$-decay at the endpoint by means of Magnetic Adiabatic Collimation combined with an Electrostatic filter (MAC-E filter). To monitor the HV-system of the KATRIN-setup, we would need one or two $^{83}$Rb sources roughly every half a year.

  15. Native American Education Program, 1982-83. OEE Evaluation Report.

    Science.gov (United States)

    Inman, Deborah

    During 1982-83, the Native American Education Program provided after-school and summer session instruction and supportive services to approximately 450 Native American grade K-12 students scattered throughout New York City. Goals of visiting and interviewing 50% of the target population were realized, with 220 home visits made. Materials and…

  16. 38 CFR 8.3 - Revival of insurance.

    Science.gov (United States)

    2010-07-01

    ... life insurance which are equal to or greater in amount than the total of the monthly premiums which... income provision lapsed at the same time as the life insurance, the premium for the provision will be... INSURANCE Premiums § 8.3 Revival of insurance. (a) If the sole reason death or total disability...

  17. 12 CFR 263.83 - Issuance of capital directives.

    Science.gov (United States)

    2010-01-01

    ... established in the Board's Capital Adequacy Guidelines, or as otherwise established under the procedures... Capital Adequacy Guidelines or the procedures in § 263.85 of this subpart by a certain date; (2) Adhere to... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Issuance of capital directives. 263.83...

  18. 25 CFR 83.7 - Mandatory criteria for Federal acknowledgment.

    Science.gov (United States)

    2010-04-01

    ... following evidence and/or other evidence that the petitioner meets the definition of community set forth in... evidence that the petitioner meets the definition of political influence or authority in § 83.1. (i) The... maintenance of norms and the enforcement of sanctions to direct or control behavior; (iv) Organize...

  19. 48 CFR 1852.216-83 - Fixed price incentive.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Fixed price incentive. 1852... 1852.216-83 Fixed price incentive. As prescribed in 1816.406-70(c), insert the following clause: Fixed Price Incentive (OCT 1996) The target cost of this contract is $___. The Target profit of this...

  20. STS-83 Onboard Photo: Comet Hale-Bopp

    Science.gov (United States)

    1997-01-01

    This is a Microgravity Science Laboratory-1 (MLS-1) onboard STS-83 photo of the most recent comet to date, Hale-Bopp, which passed by Earth during the spring and summer of 1997. In this view, the comet is visible during sunset. The streaks and distorted lights seen in the bottom of the photo are city lights and petroleum fires.

  1. 9 CFR 83.7 - Shipping containers; cleaning and disinfection.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Shipping containers; cleaning and... HEMORRHAGIC SEPTICEMIA § 83.7 Shipping containers; cleaning and disinfection. (a) All live fish that are to be... been cleaned and disinfected. (1) Cleaning and disinfection of shipping containers must be monitored...

  2. 40 CFR 98.83 - Calculating GHG emissions.

    Science.gov (United States)

    2010-07-01

    ... process emissions of CO2 from cement manufacturing, metric tons. CO2 Cli,m = Total annual emissions of CO2... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Cement Production § 98.83 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each kiln using the procedure in paragraphs...

  3. 33 CFR 83.15 - Crossing situation (Rule 15).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Crossing situation (Rule 15). 83... situation (Rule 15). (a) Vessel which must keep out of the other vessel's way. When two power-driven vessels... Rivers, or water specified by the Secretary, a power-driven vessel crossing a river shall keep out of...

  4. 14 CFR 61.83 - Eligibility requirements for student pilots.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Eligibility requirements for student pilots... TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Student Pilots § 61.83 Eligibility requirements for student pilots. To be eligible for a student...

  5. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  6. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  7. Interaction of Arsenic with Zinc and Organics in a Rice (Oryza sativa L.–Cultivated Field in India

    Directory of Open Access Journals (Sweden)

    Dilip Kumar Das

    2005-01-01

    Full Text Available A laboratory experiment on an Inceptisol with pH 7.6, organic carbon 6.8 g kg–1, and 0.5 M NaHCO3 extractable arsenic 0.4 mg kg–1 was conducted to study the interaction effect of graded levels of arsenic (0, 5, and 10 mg kg–1 with zinc (0, 10, and 20 mg kg–1 and organics (0, 1, and 2% on soil weight basis separately on the mobilization of arsenic in soils.The results show that the amount of 0.5 M NaHCO3 extractable arsenic at pH 8.5 increased with the progress of submergence up to 35 days. However, the increase in arsenic concentration was correlated with decreasing application of graded levels of Zn as zinc sulfate. The intensity of reduction varied with varying levels of Zn, being higher (0.73–2.72 mg kg–1 in the treatment where Zn was at 10 mg kg–1 and lower (0.70–1.08 mg kg–1 with Zn at 20 mg kg–1 application.The amount of arsenic content in the soil significantly decreased with the application of varying levels of organics. However, such depressive effect was found more pronounced with well-decomposed farm yard manure than that of vermicompost. The results of field experiments showed that the grain yield between continuous flooding (4.84 t ha–1 and intermittent flooding up to 40 days after transplanting then continuous flooding (4.83 t ha–1 with the application of ZnSO4 at 25 kg ha–1 did not vary. The lowest grain yield (3.65 t ha–1 was recorded in the treatment where intermittent flooding was maintained throughout the growth period without the application of Zn. The amount of arsenic content was, however, recorded much lower in the treatment where intermittent flooding throughout the growth period was maintained with ZnSO4.

  8. Wild plants as tools for the remediation of abandoned mining sites with a high arsenic content

    Science.gov (United States)

    Martínez-Lopez, Salvadora; Martínez-Sanchez, MJose; Perez-Sirvent, Carmen; Martínez, Lucia B.; Bech, Jaume

    2014-05-01

    The aim of this study was to assess the environmental risk posed by arsenic when new vegetation types are introduced, analyzing the transfer of arsenic in different plant species that grow spontaneously in mining areas of SE Spain (Sierra Minera of Cartagena), and the contribution of such plants to the environmental risk represented by their ingestion by animals living in the same ecosystems. When dealing with remediation projects in zones affected by mining activities, the risk posed by the ingestion of the plants by fauna is often forgotten. To study the transfer to the trophic chain, two mammals, sheep and vole, were selected. The risk analysis was centered in the contribution of these natural plants to the ingestion calculated. For this study, 21 vegetal species naturally growing in the soils were collected from the Sierra Minera. The vegetal material studied is clearly associated with the Mediterranean Region (S.E. of Spain) and the plant species collected are endemisms and plants characteristic of the zone. Physico-chemical properties were obtained by means of the usual procedures. To determine the arsenic content, the soil samples and plant materials were digested in a microwave system and the arsenic concentration was determined using atomic fluorescence spectrometry with an automated continuous flow hydride generation system. A semiquantitative estimation of the mineralogical composition of the samples was made by X Ray Diffraction analysis. The soils were classified into three groups: Low (group 1) (7-35 mg/kg) medium (group 2) (35-327 mg/kg) and high (group 3) (> 327 mg/kg), according to their As content. The mineralogy and As content of the soils studied depends on the materials related with mining activity. The descriptive statistical analysis of the population of plants studied showed the As range in roots to be 0.31-150 mg/kg while leaf concentrations were lower (0.21-83.4 mg/kg). The potential risk of As entering the food chain through of the plant

  9. Soil Contamination by Arsenic in Urban Areas: A case study of Arak City

    Directory of Open Access Journals (Sweden)

    E Solgi

    2015-08-01

    Conclusion: It seems that arsenic in soil is controlled by natural and anthropogenic factors. The highest concentrations of arsenic in center and the north areas reflected arsenic loading is originated from anthropogenic sources such as vehicles and industrial processes.

  10. Evaluation of Exposure to Arsenic in Residential Soil

    Energy Technology Data Exchange (ETDEWEB)

    Tsuji, Joyce S.; Van Kerkhove, Maria D.; Kaetzel, Rhonda; Scrafford, Carolyn; Mink, Pamela; Barraj, Leila M.; Crecelius, Eric A.; Goodman, Michael

    2005-12-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89?17.7 ?g/L, respectively) and older participants (3.8, 1.9, 0.91?19.9 ?g/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background.

  11. Arsenic Speciation in Honeysuckle (Lonicera japonica Thunb.) from China.

    Science.gov (United States)

    Tang, Fubin; Ni, Zhanglin; Liu, Yihua; Yu, Qing; Wang, Zhikun; Mo, Runhong

    2015-11-01

    In this study, honeysuckle, a common Chinese herbal medicine, produced from different areas was investigated for total arsenic and arsenic species concentration. The total arsenic concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and ranged from 275 to 635 μg kg(-1). A microwave-assisted procedure with 1 % phosphoric acid (v/v) was used for the extraction of arsenic species in honeysuckle. The total arsenic species concentration found by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) was in agreement with the total arsenic concentration determined by the ICP-MS analysis after the microwave digestion. Arsenate (As(V)) with an average proportion of 54.3 % was the predominant arsenic species in honeysuckle. The order of concentration is as follows: As(V) > arsenite (As(III)) > dimethylarsinic acid (DMA) > arsenobetaine (AsB) > monomethylarsonic acid (MMA). The proportion of organic arsenic (24.7 %) was higher than that in most terrestrial plants. Moreover, the distributions of arsenic species in the honeysuckle from different producing areas were significantly different. This study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.

  12. Arsenic hydrogeochemistry in an irrigated river valley - A reevaluation

    Science.gov (United States)

    Nimick, D.A.

    1998-01-01

    Arsenic concentrations in ground water of the lower Madison River valley, Montana, are high (16 to 176 ??g/L). Previous studies hypothesized that arsenic-rich river water, applied as irrigation, was evapoconcentrated during recharge and contaminated the thin alluvial aquifer. Based on additional data collection and a reevaluation of the hydrology and geochemistry of the valley, the high arsenic concentrations in ground water are caused by a unique combination of natural hydrologic and geochemical factors, and irrigation appears to play a secondary role. The high arsenic concentrations in ground water have several causes: direct aquifer recharge by Madison River water having arsenic concentrations as high as 100 ??g/L, leaching of arsenic from Tertiary volcano-clastic sediment, and release of sorbed arsenic where redox conditions in ground water are reduced. The findings are consistent with related studies that demonstrate that arsenic is sorbed by irrigated soils in the valley. Although evaporation of applied irrigation water does not significantly increase arsenic concentrations in ground water, irrigation with arsenic-rich water raises other environmental concerns.

  13. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  14. Evaluation of electrokinetic remediation of arsenic-contaminated soils.

    Science.gov (United States)

    Kim, Soon-Oh; Kim, Won-Seok; Kim, Kyoung-Woong

    2005-09-01

    The potential of electrokinetic (EK) remediation technology has been successfully demonstrated for the remediation of heavy metal-contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples; a kaolinite soil artificially contaminated with arsenic and an arsenic-bearing tailing-soil taken from the Myungbong (MB) gold mine area. The effectiveness of enhancing agents was investigated using three different types of cathodic electrolytes; deionized water (DIW), potassium phosphate (KH(2)PO(4)) and sodium hydroxide (NaOH). The results of the experiments on the kaolinite show that the potassium phosphate was the most effective in extracting arsenic, probably due to anion exchange of arsenic species by phosphate. On the other hand, the sodium hydroxide seemed to be the most efficient in removing arsenic from the tailing-soil. This result may be explained by the fact that the sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through the desorption of arsenic species as well as the dissolution of arsenic-bearing minerals. PMID:16237600

  15. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri;

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, stri...

  16. Arsenic immobilization of Teniente furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, R. [Japan Oil, Gas, and Metals National Corp., Kawasaki (Japan); Tateiwa, H. [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan); Almendares, C. [Centro de Investigacion Minera y Metalurgica, Santiago (Chile); Sanchez, G. [CODELCO, Santiago (Chile). Division Ventanas

    2007-07-01

    A 5-year joint Japanese-Chilean project to modify the treatment of furnace dust from a converter in Chile producing harmful amounts of arsenic and lead was described. A pilot plant was constructed to evaluate the method's commercialization potential. Flue dust was recovered by a dust collector installed to capture suspended dust generated by the smelting furnace. Arsenic content was approximately 15 per cent. Ninety per cent of the arsenic was then liquidated to lixivia and dissolved by leaching flue dust with sulphuric acid. The leaching rate decreased when flue dust had a high content of residual sulfide ore. A flotation device was then incorporated in the treatment process in order to increase the copper recovery rate. A solvent recovery process was then adopted to recover the copper and zinc contained in the solution after the arsenic recovery. An economic evaluation of the process indicated that efforts should be made to improve the efficiency of the dust treatment method. 5 refs., 6 tabs., 10 figs.

  17. Speciation of arsenic in environmental waters

    International Nuclear Information System (INIS)

    A system for speciation of arsenic in environmental waters by selective hydride formation and on-line AAS is described. Starting from literature data, the separation scheme and the necessary apparatus are outlined. Preliminary practical experience then leads to the formulation of further improvements and accompanying testing experiments. (author). 51 refs, 7 figs, 1 tab

  18. Influence of arsenic on iron sulfide transformations

    NARCIS (Netherlands)

    Wolthers, M.; Butler, I.B.; Rickard, D.

    2007-01-01

    The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfi

  19. Understanding arsenic contamination of groundwater in Bangladesh

    International Nuclear Information System (INIS)

    The problem of water contamination by naturally occurring arsenic confronts governments, public and private utilities, and the development community with a new challenge for implementing operational mitigation activities under difficult conditions of imperfect knowledge - especially for arsenic mitigation for the benefit of the rural poor. With more than a conservative estimate of 20 million of its 130 million people assumed to be drinking contaminated water and another 70 million potentially at risk, Bangladesh is facing what has been described as perhaps the largest mass poisoning in history. High concentrations of naturally occurring arsenic have already been found in water from tens of thousands of tube wells, the main source of potable water, in 59 out of Bangladesh's 64 districts. Arsenic contamination is highly irregular, so tube wells in neighboring locations or even different depths can be safe. Arsenic is extremely hazardous if ingested in drinking water or used in cooking in excess of the maximum permissible limit of 0.01 mg/liter over an extended period of time. Even in the early 1970s, most of Bangladesh's rural population got its drinking water from surface ponds and nearly a quarter of a million children died each year from water-borne diseases. Groundwater now constitutes the major source of drinking water in Bangladesh with 95% of the drinking water coming from underground sources. The provision of tube well water for 97 percent of the rural population has been credited with bringing down the high incidence of diarrheal diseases and contributing to a halving of the infant mortality rate. Paradoxically, the same wells that saved so many lives now pose a threat due to the unforeseen hazard of arsenic. The provenance of arsenic rich minerals in sediments of the Bengal basin as a component of geological formations is believed to be from the Himalayan mountain range. Arsenic has been found in different uncropped geological hard rock formations

  20. Questions and Answers: Apple Juice and Arsenic

    Science.gov (United States)

    ... and monomethylarsonic acid (MMA), may also be a health concern. Are apple and other fruit juices safe to drink? The FDA has been ... this, the FDA is considering how any possible health risk from these two forms of ... arsenic in fruit juice? The FDA has proposed an “action level” ...

  1. Arsenic accumulation in some higher fungi

    NARCIS (Netherlands)

    Stijve, T.; Vellinga, Else C.; Herrmann, A.

    1990-01-01

    The high arsenic concentrations reported in literature for Laccaria amethystina were amply confirmed. In addition, it was demonstrated that Laccaria fraterna also accumulates the element, whereas in other species of Laccaria the phenomenon was far less outspoken. Few other basidiomycetes proved to h

  2. Arsenic(III Immobilization on Rice Husk

    Directory of Open Access Journals (Sweden)

    Malay Chaudhuri

    2013-02-01

    Full Text Available A number of large aquifers in various parts of the world have been identified with contamination by arsenic. Long-term exposure to arsenic in drinking water causes cancer of the skin, lungs, urinary bladder and kidney, as well as skin pigmentation and hyperkeratosis. Arsenic occurs in groundwater in two valence states, as trivalent arsenite [As(III] and pentavalent arsenate [As(V]. As(III is more toxic and more difficult to remove from water by adsorption on activated alumina. In this study, immobilization (adsorption of As(III by quaternized rice husk was examined. Batch adsorption test showed that extent of adsorption was dependent on pH, As (III concentration, contact time and rice husk dose. Maximum adsorption occurred at pH 7-8, and equilibrium adsorption was attained in 2 h. Equilibrium adsorption data were described by the Langmuir and Freundlich isotherm models. According to the Langmuir isotherm, adsorption capacity of quaternized rice husk is 0.775 mg As(III/g, which is 4.3x higher than that (0.180 mg As(III/g of activated alumina. Quaternized rice husk is a potentially useful adsorbent for removing arsenic from groundwater.

  3. Peripheral vascular diseases resulting from chronic arsenical poisoning.

    Science.gov (United States)

    Yu, Hsin-Su; Lee, Chih-Hung; Chen, Gwo-Shing

    2002-03-01

    Drinking water contaminated by arsenic remains a major public health problem. Long-term arsenic exposure has been found to be associated with peripheral vascular diseases in a variety of studies. Reports of vascular effects of arsenic in drinking water, which span almost 100 years, have been published in Taiwan, Chile, Mexico, and China. This paper reviewed the association of peripheral vascular diseases resulting from arsenic exposure to drinking water from the clinical and pathological points of view. An endemic peripheral vascular disorder called "blackfoot disease" has been noticed in a limited area in Taiwan. This disease results in gangrene in the extremities. It has been associated with the ingestion of high concentrations of arsenic-tainted artesian well water. Epidemiological studies confirmed a dose-response relationship between long-term arsenic exposure and the occurrence of blackfoot disease. Whereas arsenic has induced various clinical manifestations of vascular effects in Chile, Mexico and China, they do not compare in magnitude or severity to the blackfoot disease found in Taiwan. The pathogenesis of vascular effects induced by arsenic is still controversial. The possible mechanisms include endothelial cell destruction, arsenic-associated atherogenesis, carotene and zinc deficiency, and/or some immunological mechanism. Microcirculatory assessments revealed that deficits of capillary blood flow and permeability exist in clinically normal skin of patients with chronic arsenical poisoning. The vascular effects of chronic arsenic poisoning may involve cardiovascular and cerebrovascular systems as well. In view of the increasing public health problems caused by arsenic exposure, vascular effects should be included in the future study of health effects of arsenic.

  4. Association of Genetic Variation in Cystathionine-β-Synthase and Arsenic Metabolism

    OpenAIRE

    Porter, Kristin E.; Basu, Anamika; Alan E Hubbard; Bates, Michael N.; Kalman, David; Rey, Omar; Smith, Allan; Smith, Martyn T.; Steinmaus, Craig; Skibola, Christine F.

    2010-01-01

    Variation in individual susceptibility to arsenic-induced disease may be partially explained by genetic differences in arsenic metabolism. Mounting epidemiological evidence and in vitro studies suggest that methylated arsenic metabolites, particularly monomethylarsonic (MMA3), are more acutely toxic than inorganic arsenic; thus, MMA3 may be the primary toxic arsenic species. To test the role of genetic variation in arsenic metabolism, polymorphisms in genes involved in one-carbon metabolism [...

  5. CD83 modulates B cell function in vitro: increased IL-10 and reduced Ig secretion by CD83Tg B cells.

    Directory of Open Access Journals (Sweden)

    Birte Kretschmer

    Full Text Available The murine transmembrane glycoprotein CD83 is an important regulator for both thymic T cell maturation and peripheral T cell responses. Recently, we reported that CD83 also has a function on B cells: Ubiquitous transgenic (Tg expression of CD83 interfered with the immunoglobulin (Ig response to infectious agents and to T cell dependent as well as T cell independent model antigen immunization. Here we compare the function of CD83Tg B cells that overexpress CD83 and CD83 mutant (CD83mu B cells that display a drastically reduced CD83 expression. Correlating with CD83 expression, the basic as well as the lipopolysaccharide (LPS induced expression of the activation markers CD86 and MHC-II are significantly increased in CD83Tg B cells and reciprocally decreased in CD83mu B cells. Wild-type B cells rapidly upregulate CD83 within three hours post BCR or TLR engagement by de novo protein synthesis. The forced premature overexpression of CD83 on the CD83Tg B cells results in reduced calcium signaling, reduced Ig secretion and a reciprocally increased IL-10 production upon in vitro activation. This altered phenotype is mediated by CD83 expressed on the B cells themselves, since it is observed in the absence of accessory cells. In line with this finding, purified CD83mu B cells displayed a reduced IL-10 production and slightly increased Ig secretion upon LPS stimulation in vitro. Taken together, our data strongly suggest that CD83 is expressed by B cells upon activation and contributes to the regulation of B cell function.

  6. Airborne arsenic and urinary excretion of arsenic metabolites during boiler cleaning operations in a Slovak coal-fired power plant.

    Science.gov (United States)

    Yager, J W; Hicks, J B; Fabianova, E

    1997-08-01

    Little information is available on the relationship between occupational exposure to inorganic arsenic in coal fly ash and urinary excretion of arsenic metabolites. This study ws undertaken in a coal-fired power plant in Slovakia during a routine maintenance outage. Arsenic was measured in the breathing zone of workers during 5 consecutive workdays, and urine samples were obtained for analysis of arsenic metabolites--inorganic arsenic (Asi), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA)--prior to the start of each shift. Results from a small number of cascade impactor air samples indicated that approximately 90% of total particle mass and arsenic was present in particle size fractions >/= 3.5 micron. The 8-hr time-weighted average (TWA) mean arsenic air concentration was 48.3 microg/m3 (range 0.17-375.2) and the mean sum of urinary arsenic (SigmaAs) metabolites was 16.9 microg As/g creatinine (range 2.6-50.8). For an 8-hr TWA of 10 microg/m3 arsenic from coal fly ash, the predicted mean concentration of the SigmaAs urinary metabolites was 13.2 microg As/G creatinine [95% confidence interval (CI), 10.1-16.3). Comparisons with previously published studies of exposure to arsenic trioxide vapors and dusts in copper smelters suggest that bioavailability of arsenic from airborne coal fly ash (as indicated by urinary excretion) is about one-third that seen in smelters and similar settings. Arsenic compound characteristics, matrix composition, and particle size distribution probably play major roles in determining actual uptake of airborne arsenic. PMID:9347899

  7. Determining the solid phases hosting arsenic in Mekong Delta sediments

    Science.gov (United States)

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.

    2011-12-01

    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  8. Composite charge 8/3 resonances at the LHC

    Science.gov (United States)

    Matsedonskyi, Oleksii; Riva, Francesco; Vantalon, Thibaud

    2014-04-01

    In composite Higgs models with partial compositeness, the small value of the observed Higgs mass implies the existence of light fermionic resonances, the top partners, whose quantum numbers are determined by the symmetry (and symmetry breaking) structure of the theory. Here we study light top partners with electric charge 8/3, which are predicted, for instance, in some of the most natural composite Higgs realizations. We recast data from two same sign lepton searches and from searches for microscopic blackholes into a bound on its mass, M 8/3 > 940 GeV. Furthermore, we compare potential reach of these searches with a specifically designed search for three same-sign leptons, both at 8 and 14TeV. We provide a simplified model, suitable for collider analysis.

  9. Composite Charge 8/3 Resonances at the LHC

    CERN Document Server

    Matsedonskyi, Oleksii; Vantalon, Thibaud

    2014-01-01

    In composite Higgs models with partial compositeness, the small value of the observed Higgs mass implies the existence of light fermionic resonances, the top partners, whose quantum numbers are determined by the symmetry (and symmetry breaking) structure of the theory. Here we study light top partners with electric charge 8/3, which are predicted, for instance, in some of the most natural composite Higgs realizations. We recast data from two same sign lepton searches and from searches for microscopic blackholes into a bound on its mass, M8/3 > 940 GeV. Furthermore, we compare potential reach of these searches with a specifically designed search for three same-sign lepton, both at 8 and 14 TeV. We provide a simplified model, suitable for collider analysis.

  10. Low doses of arsenic, via perturbing p53, promotes tumorigenesis.

    Science.gov (United States)

    Ganapathy, Suthakar; Li, Ping; Fagman, Johan; Yu, Tianqi; Lafontant, Jean; Zhang, Guojun; Chen, Changyan

    2016-09-01

    In drinking water and in workplace or living environments, low doses of arsenic can exist and operate as a potent carcinogen. Due to insufficient understanding and information on the pervasiveness of environmental exposures to arsenic, there is an urgent need to elucidate the underlying molecular mechanisms of arsenic regarding its carcinogenic effect on human health. In this study, we demonstrate that low doses of arsenic exposure mitigate or mask p53 function and further perturb intracellular redox state, which triggers persistent endoplasmic reticulum (ER) stress and activates UPR (unfolded protein response), leading to transformation or tumorigenesis. Thus, the results suggest that low doses of arsenic exposure, through attenuating p53-regulated tumor suppressive function, change the state of intracellular redox and create a microenvironment for tumorigenesis. Our study also provides the information for designing more effective strategies to prevent or treat human cancers initiated by arsenic exposure. PMID:27425828

  11. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi;

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross...

  12. Extracting Objects from Ada83 Programs: A Case Study

    Institute of Scientific and Technical Information of China (English)

    XU Baowen; ZHOU Yuming

    2001-01-01

    Reengineering legacy systems written in conventional procedural languages to equivalent OO systems makes software more maintainable and reliable. This paper proposes a method for extracting objects from legacy Ada83 systems using module features. First, metrics are developed to measure module cohesion. Then, effects on cohesion from changing module components are analyzed and rules about how to extract inheritance relations among objects are given. At the end of this paper, an object-extracting algorithm using module features is proposed.

  13. Apollo 11 Cmdr Neil Armstrong watches STS-83 launch

    Science.gov (United States)

    1997-01-01

    Apollo 11 Commander Neil A. Armstrong and his wife, Carol, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission.

  14. Pocket-book for the fuel trade 1982/83

    Energy Technology Data Exchange (ETDEWEB)

    Temming, D.

    1982-01-01

    The 'Pocket-book for the fuel trade 82/83' has been planned as a compendium of the fuel trade and as a buyer's guide for the fuel tradesman. It contains beside technical and economical informations about solid and liquid fuels indications to legal questions (competition, price and cartel laws, labor and social laws, responsability questions) and taxes and duties. A comprehensive list of the trade organizations of the fuel trade is also included.

  15. Atypical non-fatal arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, M.W.M.

    1969-06-07

    Arsenic poisoning was found to be the cause of a herd of dairy cows suddenly becoming ill, developing pyrexia and diarrhea, with a gradual deterioration in health. There was also a reduction in the yield of milk. It was proven that the feed bins were strongly positive for arsenic. When the source of the arsenic was removed, the cows showed a rapid recovery in most cases.

  16. Resistance to Arsenic- and Antimony-Based Drugs

    OpenAIRE

    Milena Salerno; Arlette Garnier-Suillerot

    2003-01-01

    Organic arsenicals were the first antimicrobial agents specifically synthesized for the treatment of infectious diseases such as syphilis and sleeping sickness. For the treatment of diseases caused by trypanosomatid parasites, organic derivatives of arsenic and the related metalloid antimony are still the drugs of choice. Arsenic trioxide, As203, has been used for a long time in traditional Chinese medicines for treatment of various diseases, and it has recently been shown to be clinically ac...

  17. Metal Attraction: An Ironclad Solution to Arsenic Contamination?

    OpenAIRE

    Frazer, Lance

    2005-01-01

    Inorganic arsenic—the more acutely toxic form of this metalloid element—contaminates drinking water supplies around the world. In the United States, the most serious arsenic contamination occurs in the West, Midwest, Southwest, and Northeast; as many as 20 million people—many getting their water from unregulated private wells—may be exposed to excess arsenic in their drinking water. In Bangladesh, it’s estimated that as many as 40 million people may be suffering from arsenic poisoning; contam...

  18. Health effects of arsenic in drinking water: Research needs

    Energy Technology Data Exchange (ETDEWEB)

    Fowle, J.R.

    1991-01-01

    Research needed to resolve the uncertainties of cancer risk from ingestion of arsenic in drinking water is described. The recommendations fall into two categories reflecting the areas of greatest uncertainty regarding the assessment of arsenic risk: research on the mechanism of cancer, and research on the metabolism and detoxification of arsenic. The recommendations are discussed in light of risk assessment and risk management issues, stressing the need for scientists to interpret research findings for decision managers.

  19. Rice consumption contributes to arsenic exposure in US women

    OpenAIRE

    Gilbert-Diamond, Diane; Cottingham, Kathryn L.; Gruber, Joann F.; Punshon, Tracy; Sayarath, Vicki; Gandolfi, A. Jay; Baker, Emily R.; Jackson, Brian P.; Folt, Carol L; Margaret R Karagas

    2011-01-01

    Emerging data indicate that rice consumption may lead to potentially harmful arsenic exposure. However, few human data are available, and virtually none exist for vulnerable periods such as pregnancy. Here we document a positive association between rice consumption and urinary arsenic excretion, a biomarker of recent arsenic exposure, in 229 pregnant women. At a 6-mo prenatal visit, we collected a urine sample and 3-d dietary record for water, fish/seafood, and rice. We also tested women's ho...

  20. Chronic renal insufficiency from cortical necrosis induced by arsenic poisoning.

    Science.gov (United States)

    Gerhardt, R E; Hudson, J B; Rao, R N; Sobel, R E

    1978-08-01

    A 39-year-old man had anuria and azotemia and was found to be suffering from acute arsenic poisoning. After two peritoneal dialyses, partial renal function returned, and the patient has survived for five years without dialysis. Renal cortical necrosis was demonstrated by renal biopsy and renal calcification. We suggest that arsenic be added to the list of substances capable of causing renal cortical necrosis and recommend consideration of this complication in cases of arsenical poisoning.

  1. Management considerations to minimize environmental impacts of arsenic following monosodium methylarsenate (MSMA) applications to turfgrass.

    Science.gov (United States)

    Mahoney, Denis J; Gannon, Travis W; Jeffries, Matthew D; Matteson, Audrey R; Polizzotto, Matthew L

    2015-03-01

    Monosodium methylarsenate (MSMA) is an organic arsenical herbicide currently utilized in turfgrass and cotton systems. In recent years, concerns over adverse impacts of arsenic (As) from MSMA applications have emerged; however, little research has been conducted in controlled field experiments using typical management practices. To address this knowledge gap, a field lysimeter experiment was conducted during 2012-2013 to determine the fate of As following MSMA applications to a bareground and an established turfgrass system. Arsenic concentrations in soil, porewater, and aboveground vegetation, were measured through one yr after treatment. Aboveground vegetation As concentration was increased compared to nontreated through 120 d after initial treatment (DAIT). In both systems, increased soil As concentrations were observed at 0-4 cm at 30 and 120 DAIT and 0-8 cm at 60 and 365 DAIT, suggesting that As was bound in shallow soil depths. Porewater As concentrations in MSMA-treated lysimeters from a 30-cm depth (22.0-83.8 μg L(-1)) were greater than those at 76-cm depth (0.4-5.1 μg L(-1)). These results were combined with previous research to devise management considerations in systems where MSMA is utilized. MSMA should not be applied if rainfall is forecasted within 7 DAIT and/or in areas with shallow water tables. Further, disposing of MSMA-treated turfgrass aboveground vegetation in a confined area - a common management practice for turfgrass clippings - may be of concern due to As release to surface water or groundwater as the vegetation decomposes. Finally, long-term MSMA use may cause soil As accumulation and thus downward migration of As over time; therefore, MSMA should be used in rotation with other herbicides. PMID:25556868

  2. Upper limit of 83Rb release into the gas phase from a 83mKr calibration source for the XENON project

    International Nuclear Information System (INIS)

    The isomer 83mKr with its half-life of 1.83 h is an ideal calibration source for a liquid noble gas dark matter experiment like the XENON project. For such a low counting experiment the possibility that traces of the much longer living mother isotop 83Rb (t1/2 = 86.2 d) contaminate the detector must be avoided. In this work the 83Rb release of a 1.8 MBq strong 83Rb source embedded in zeolite spheres has been investigated by searching for the characteristic 83Rb γ lines with the ultra-sensitive germanium detector Gator at LNGS after collecting a possible 83Rb release in a cryogenic trap for about 10 days. No signal has been found. The corresponding upper limit for the 83Rb release of 200μBq means, that such a 83Rb source as 83mKr generator can be used at the XENON project as well as for the KATRIN experiment. % without the danger of contaminating the detector with 83Rb. The germanium detector also allowed to set upper limits on the possible release of the isotopes 84Rb and 86Rb, which were produced during the 83Rb production at the Rez cyclotron to some amount.

  3. ARSENIC CONTAMINATION IN DRINKING WATER: AN ASSESSMENT FOR TURKEY

    OpenAIRE

    Meltem BİLİCİ ÇALIŞKAN; Ayşegül PALA

    2009-01-01

    Arsenic is one of the most abundant elements in the earth's crust and classified as a non-metal or a metalloid. Arsenic is toxic and carcinogen and in the environment occurs from both natural and anthropogenic sources. In the aqueous environment inorganic arsenic appears commonly in forms of arsenite (As(III)) and arsenate (As(V)). pH, redox potential, and the presence of complexing ions such as ions of sulfur, iron, and calcium determine the arsenic valence and speciation. Because of the nat...

  4. Arsenical keratoses in Bangladesh--update and prevention strategies.

    Science.gov (United States)

    Ruiz de Luzuriaga, Arlene M; Ahsan, Habibul; Shea, Christopher R

    2011-01-01

    Arsenic is considered a Class I human carcinogen by the International Agency for Research on Cancer because of its increased risk for skin cancer, as well as internal cancers, such as lung and bladder cancer. Arsenic contamination of drinking water in Bangladesh has been called the "largest mass poisoning of a population in history." This inorganic arsenic contamination is of natural origin, with arsenic thought to be released to the groundwater from the surrounding sediment. Arsenicosis and its risk factors and prevention and management are discussed in this article.

  5. Reduction and coordination of arsenic in Indian mustard.

    Science.gov (United States)

    Pickering, I J; Prince, R C; George, M J; Smith, R D; George, G N; Salt, D E

    2000-04-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an As(III)-tris-thiolate complex. The majority of the arsenic remains in the roots as an As(III)-tris-thiolate complex, which is indistinguishable from that found in the shoots and from As(III)-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element.

  6. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    OpenAIRE

    Peltekov A.B.; Boyanov B.S.; Markova T.S.

    2014-01-01

    The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS). In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5). In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine...

  7. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  8. Environmental Arsenic Exposure and Microbiota in Induced Sputum

    Directory of Open Access Journals (Sweden)

    Allison G. White

    2014-02-01

    Full Text Available Arsenic exposure from drinking water is associated with adverse respiratory outcomes, but it is unknown whether arsenic affects pulmonary microbiota. This exploratory study assessed the effect of exposure to arsenic in drinking water on bacterial diversity in the respiratory tract of non-smokers. Induced sputum was collected from 10 subjects with moderate mean household water arsenic concentration (21.1 ± 6.4 ppb and 10 subjects with low household water arsenic (2.4 ± 0.8 ppb. To assess microbiota in sputum, the V6 hypervariable region amplicons of bacterial 16s rRNA genes were sequenced using the Ion Torrent Personal Genome Machine. Microbial community differences between arsenic exposure groups were evaluated using QIIME and Metastats. A total of 3,920,441 sequence reads, ranging from 37,935 to 508,787 per sample for 316 chips after QIIME quality filtering, were taxonomically classified into 142 individual genera and five phyla. Firmicutes (22%, Proteobacteria (17% and Bacteriodetes (12% were the main phyla in all samples, with Neisseriaceae (15%, Prevotellaceae (12% and Veillonellacea (7% being most common at the genus level. Some genera, including Gemella, Lactobacillales, Streptococcus, Neisseria and Pasteurellaceae were elevated in the moderate arsenic exposure group, while Rothia, Prevotella, Prevotellaceae Fusobacterium and Neisseriaceae were decreased, although none of these differences was statistically significant. Future studies with more participants and a greater range of arsenic exposure are needed to further elucidate the effects of drinking water arsenic consumption on respiratory microbiota.

  9. The revival of the ancient drug-arsenic

    Institute of Scientific and Technical Information of China (English)

    黄晓军

    2003-01-01

    Arsenic, a natural substance, has been used as a traditional Chinese medicine for more than a thousand years. However, this medicine fell into disuse in the 1930s following the advent of radiotherapy and conventional cytotoxic drugs and reports about arsenic poisoning from its long-term low-dose ingestion. Until the late 1970s, it had its rebirth when a series of research papers from China described the successful application of AiLing-1,1 a traditional Chinese compound, containing arsenic trioxide (ATO) and other ingredients. Research into the molecular mechanisms of arsenic action has furthered clinical application of this drug.

  10. Hepatic venoocclusive disease and perisinusoidal fibrosis secondary to arsenic poisoning.

    Science.gov (United States)

    Labadie, H; Stoessel, P; Callard, P; Beaugrand, M

    1990-10-01

    Hepatic injury secondary to arsenic poisoning has been known long but is poorly documented. A case of a patient with hepatic injury following severe arsenic poisoning is reported. Histological study of the liver demonstrated acute venoocclusive disease and perisinusoidal fibrosis. This case indicates that arsenic poisoning causes veno-occlusive disease in humans. It also suggests that hepatic damage in arsenic poisoning is secondary to vascular endothelial injury and supports the hypothesis that different patterns of hepatic vascular injury might proceed from a common mechanism.

  11. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity

    Institute of Scientific and Technical Information of China (English)

    VV Mathews; P Binu; MV Sauganth Paul; M Abhilash; Alex Manju; R Harikumaran Nair

    2012-01-01

    Objective: To evaluate the efficacy of curcumin in combating arsenic induced hepatic oxidative stress, histopathological changes and the hepatic arsenic accumulation in rat model. Methods:Oxidative stress was induced by oral administration 4 mg/kg b.wt of arsenic trioxide (As2O3,) for 45 days in experimental rats. The level of liver arsenic concentration, lipid peroxidation, reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male Wistar rats. Hepatotoxicity was assessed by quantifying the aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phophatase (ALP). Hepatoprotective efficacy of curcumin (15 mg/kg b.wt) was evaluated by combination treatment with As2O3. Results: As2O3 administration leads to the generation of reactive oxygen species (ROS), arsenic accumulation, serum marker enzymes release and decrease in antioxidant enzymes in liver. Retention of arsenic in liver caused increased level of lipid peroxidation with a concomitant decline in the glutathione dependant antioxidant enzymes and antiperoxidative enzymes. Curcumin treatment protected the liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress. And also a significant decrease in hepatic arsenic accumulation and serum marker enzymes was observed. Histopathological examination revealed a curative improvement in liver tissue. Conclusions:These findings lead to the conclusion that curcumin may have the potential to protect the liver from arsenic-induced toxic effects.

  12. Arsenical keratoses in Bangladesh--update and prevention strategies.

    Science.gov (United States)

    Ruiz de Luzuriaga, Arlene M; Ahsan, Habibul; Shea, Christopher R

    2011-01-01

    Arsenic is considered a Class I human carcinogen by the International Agency for Research on Cancer because of its increased risk for skin cancer, as well as internal cancers, such as lung and bladder cancer. Arsenic contamination of drinking water in Bangladesh has been called the "largest mass poisoning of a population in history." This inorganic arsenic contamination is of natural origin, with arsenic thought to be released to the groundwater from the surrounding sediment. Arsenicosis and its risk factors and prevention and management are discussed in this article. PMID:21095527

  13. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Science.gov (United States)

    Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations. PMID:17431310

  14. Human arsenic poisoning issues in central-east Indian locations: biomarkers and biochemical monitoring.

    Science.gov (United States)

    Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima

    2007-03-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  15. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  16. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  17. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  18. [Peripheral neuropathy caused by acute arsenic poisoning].

    Science.gov (United States)

    Ramírez-Campos, J; Ramos-Peek, J; Martínez-Barros, M; Zamora-Peralta, M; Martínez-Cerrato, J

    1998-01-01

    Although peripheral neuropathy is a fairly common finding in chronic arsenic poisoning, little is known about the acute effects of this metal on peripheral nerves. This report shows clinical and electrophysiological findings in a patient who developed peripheral neuropathy only three days after a high-dose ingestion of this metal due to a failed suicide attempt. We speculate that peripheral nerves and some cranial nerves can show not only clinical but also subclinical involvement that can only be detected by neurophysiological studies.

  19. Arsenic trioxide: safety issues and their management

    Institute of Scientific and Technical Information of China (English)

    Wing-Yan AU; Yok-Lam KWONG

    2008-01-01

    Arsenic trioxide (As2O3) has been used medicinally for thousands of years.Its therapeutic use in leukaemia was described a century ago.Recent rekindling in the interest of As2O3 is due to its high efficacy in acute promyelocytic leukaemia (APL).As2O3 has also been tested clinically in other blood and solid cancers.Most studies have used intravenous As2O3,although an oral As2O3 is equally efficacious.Side effects of As2O3 are usually minor,including skin reactions,gastrointestinal upset,and hepatitis.These respond to symptomatic treatment or temporary drug cessation,and do not compromise subsequent treatment with As2O3.During induction therapy in APL,a leucocytosis may occasionally occur,which can be associated with fluid accumulation and pulmonary infiltration.The condition is similar to the APL differentiation syndrome during treatment with all-trans retinoic acid,and responds to cytoreductive treatment and corticosteroids.Intravenous As2O3 treatment leads to QT prolongation.In the presence of under-lying cardiopulmonary diseases or electrolyte disturbances,particularly hypokalaemia and hypomagnesaemia,serious arrhythmias may develop,with torsades du pointes reported in 1% of cases.This may be related to a dose-dependent arsenic-mediated inhibition of potassium ion channels that compro-mises cardiac repolarization.Because of slow intestinal absorption,oral-As2O3 gives a lower plasma arsenic concentration,which is associated with lesser QT prolongation and hence a more favorable cardiac safety profile.As2O3 does not appear to enter the central nervous system.However,if the blood brain barrier is breached,elemental arsenic may enter the cerebrospinal fluid.As2O3 is predomi-nantly excreted in the kidneys,and dose adjustment is required when renal func-tion is impaired.

  20. Arsenic concentrations in groundwaters of Cyprus

    Science.gov (United States)

    Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Nicolaidou Kanari, P.; Petronda, A.; Ward, N. I.

    2012-10-01

    SummaryCyprus being a Mediterranean island with long dry summers and mild winters suffers from water deficiency and over exploitation of its water resources. Groundwater in Cyprus is a valuable natural resource as approximately 50% of the total water needs come from underground water supplies. According to the Directive 118/2006/EC, groundwater should be protected from deterioration and chemical pollution, this is particularly important for groundwater dependent ecosystems and for the use of groundwater as a water supply for human consumption. During 2007 to 2009, as part of a national monitoring programme, 84 boreholes were sampled in Cyprus and subsequently analysed for total arsenic by inductively coupled plasma mass spectrometry (ICP-MS). The groundwater concentrations ranged from <0.3 to 41 μg/L As. Several boreholes located in a rural farming district near Nicosia had concentrations above the World Health Organisation (WHO) Drinking Water Guideline limit of 10 μg/L As. Evaluation of the groundwater sampling procedure for boreholes provided data recommending that water samples should be collected after an initial borehole washout for 5 min. Further sampling of these boreholes in 2010, revealed total arsenic concentrations of <0.3-64.2 μg/L As, with the predominant arsenic species (determined using a novel field-based methodology) being arsenate (AsV). The maximum total arsenic concentration is 6-fold higher than the WHO Drinking Water Guideline limit (10 μg/L As) and approximately half of the United Nations Food and Agriculture Organisation (UN-FAO) irrigational limit of 100 μg/L As.

  1. Arsenic toxicity: the effects on plant metabolism

    Directory of Open Access Journals (Sweden)

    Patrick eFinnegan

    2012-06-01

    Full Text Available The two forms inorganic arsenic, arsenate (AsV and arsenite (AsIII, are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analogue of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or other sulfhydryl-containing groups. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. These effects are reflected in a dramatic restructuring of amino acid pools in Arabidopsis thaliana upon AsV exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified.

  2. Arsenic evolution in fractured bedrock wells in central Maine, USA

    Science.gov (United States)

    Yang, Q.; Zheng, Y.; Culbertson, C.; Schalk, C.; Nielsen, M. G.; Marvinney, R.

    2010-12-01

    Elevated arsenic concentration in fractured bedrock wells has emerged as an important and challenging health problem, especially in rural areas without public water supply and mandatory monitoring of private wells. This has posed risks of skin, bladder, prostate diseases and cancers to private well users. In central Maine, including the study site, 31% of bedrock wells in meta-sedimentary formations have been reported of elevated arsenic concentrations of > 10 µg/L. Geophysical logging and fracture specific water sampling in high arsenic wells have been conducted to understand how water flowing through the aquifers enters the boreholes and how arsenic evolves in the fracture bedrock wells. Two domestic wells in Manchester, Maine, located 50 meter apart with 38 µg/L and 73 µg/L of arsenic in unfiltered water, were investigated to characterize fractures by geophysical logging and to determine flow rates by pumping test. Water samples, representing the bore hole and the fractures, were collected and analyzed for arsenic under ambient and pumping conditions. Transmissivity of the fractures was estimated at 0.23-10.6 m2/day. Water with high dissolved arsenic was supplied primarily by high yielding fractures near the bottom of the borehole. Dissolved arsenic concentrations in borehole water increased as fracture water with high arsenic was replacing borehole water with initially low dissolved arsenic in response to pumping. The precipitation of iron particulates enriched in arsenic was common during and after pumping. Laboratory experiment on well water samples over a period of 16 days suggested that in the borehole arsenic was mainly settled with iron enriched particles, likely amorphous ferric oxyhydroxides, with possibly minor adsorption on the iron minerals. Another bedrock well in Litchfield, Maine, with 478 µg/L of arsenic in the unfiltered well water, is being investigated to quantify and reconstruct of the groundwater flow under ambient and pumping conditions

  3. Construction of a modular arsenic resistance operon in E. coli and the production of arsenic nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthew Charles Edmundson

    2015-10-01

    Full Text Available Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study we have produced E. coli strains containing arsenic resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the wild-type is resistant up to 20 mM sodium arsenate the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We also investigated the use of introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0, providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals.

  4. Arsenic metabolites in humans after ingestion of wakame seaweed

    Directory of Open Access Journals (Sweden)

    Hata A.

    2013-04-01

    Full Text Available Seaweed contains large amounts of various arsenic compounds such as arsenosugars (AsSugs, but their relative toxicities have not yet been fully evaluated. A risk evaluation of dietary arsenic would be necessary. After developing an arsenic speciation analysis of wakame seaweed (Undaria pinnatifida, we conducted a wakame ingestion experiment using volunteers. Five volunteers ingested 300 g of commercial wakame after refraining from seafood for 5 days. Arsenic metabolites in the urine were monitored over a 5-day period after ingestion. Total arsenic concentration of the wakame seaweed was 34.3 ± 2.1 mg arsenic/kg (dry weight, n = 3. Two AsSugs, 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β-ribofuranosyloxy]-propylene glycol (AsSug328 and 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β- ribofuranosyl-oxy]-2-hydroxypropyl-2,3-dihydroxy-propyl phosphate (AsSug482 were detected, but arsenobetaine, dimethylarsinic acid (DMA, monomethylarsonic acid, and inorganic arsenics (iAs were not detected. The major peak was AsSug328, which comprised 89% of the total arsenic. Approximately 30% of the total arsenic ingested was excreted in the urine during the 5-day observation. Five arsenic compounds were detected in the urine after ingestion, the major one being DMA, which comprised 58.1 ± 5.0% of the total urinary arsenic excreted over the 5 days. DMA was believed to be metabolized not from iAs but from AsSugs, and its biological half-time was approximately 13 h.

  5. Arsenic speciation of geothermal waters in New Zealand.

    Science.gov (United States)

    Lord, Gillian; Kim, Nick; Ward, Neil I

    2012-12-01

    Total arsenic and four arsenic species; arsenite (iAs(III)), arsenate (iAs(V)), dimethylarsinic acid (DMA(V)) and monomethylarsonic acid (MA(V)), are reported in 28 geothermal features from the Taupo Volcanic Zone (TVZ) and Waikato region of New Zealand. Samples were collected for arsenic speciation analysis via a solid phase extraction (SPE) kit allowing the separation, stabilisation and pre-concentration of the species at the time of sample collection in the field. This is the first research to present data for arsenic species collected by this technique in geothermal waters from New Zealand. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), ranged from 0.008 to 9.08 mg l⁻¹ As. The highest levels were discovered in three features in Tokaanu (Taumatapuhipuhi, Takarea #5 and #6), with arsenic concentrations of 8.59, 8.70 and 9.08 mg l⁻¹ As, respectively. Inorganic arsenic species were predominant in the geothermal waters, with arsenite contributing to more than 70% of the total arsenic in the majority of samples. Organic species were also determined in all samples, indicating the presence of microbial activity. A potential risk to human health was highlighted due to the high levels of arsenic, mainly as arsenite, in geothermal features linked to bathing pools. Further research is needed into dermal absorption as a potential route of arsenic exposure whilst bathing in these hot pools, as it may contribute to an occurrence of acute arsenic-related health problems.

  6. Higgs interpretation of zeta (8.3 GeV)

    International Nuclear Information System (INIS)

    We interpret the recently observed zeta (8.3 GeV) to be a Higgs boson of the SU(2) x U(1) model with two Higgs doublets. If zeta is a Nambu-Goldstone boson of a new approximate symmetry, then a second light neutral Higgs of mass less than 25 GeV is expected. Our fermion couplings enhance the rate for UPSILON → γ + zeta by approx. 100 compared to the standard one Higgs model. Other experimental tests are suggested

  7. Internal conversion in highly stripped 83Kr ions

    International Nuclear Information System (INIS)

    The L-conversion coefficients of the 9.4 keV transition between the first excited state of Jπ = 7/2+ and the 9/2+ ground state of 83Kr have been measured in ions of ionicity q from 28 to 33. These coefficients are sensitive to changes in L-shell wave functions as electrons are successively removed. Preliminary results are αL(q) = 14.7(10), 14.8(10), 14.1(8), 14.7(10), 15.1(22) and 19.4(80) for q=28, 29, 30, 31,32 and 33 respectively. 2 figs., 1 tab., 4 refs. (author)

  8. Internal conversion in highly stripped 83Kr ions

    International Nuclear Information System (INIS)

    The total decay probabilities per unit time of the first excited 9.4-keV state in 83Kr have been measured in ions of ionicity q from 28 to 32. Using a γ-decay probability per unit time of 0.255(2)x106 s-1 gives internal conversion coefficients of 14.6(11), 14.9(10), 14.1(9), 14.6(11), and 15.2(24) for q=28--32, respectively. These values are compared with theoretical predictions

  9. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  10. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  11. Effects of organic matter and ageing on the bioaccessibility of arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Louise; Koch, Iris [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada); Reimer, Kenneth J., E-mail: reimer-k@rmc.ca [Environmental Sciences Group, Royal Military College, P.O. Box 17 000, Station Forces, Kingston, Ontario K7K7B4 (Canada)

    2011-10-15

    Arsenic-contaminated soils may pose a risk to human health. Redevelopment of contaminated sites may involve amending soils with organic matter, which potentially increases arsenic bioaccessibility. The effects of ageing on arsenic-contaminated soils mixed with peat moss were evaluated in a simulated ageing period representing two years, during which arsenic bioaccessibility was periodically measured. Significant increases (p = 0.032) in bioaccessibility were observed for 15 of 31 samples tested, particularly in comparison with samples originally containing >30% bioaccessible arsenic in soils naturally rich in organic matter (>25%). Samples where percent arsenic bioaccessibility was unchanged with age were generally poor in organic matter (average 7.7%) and contained both arsenopyrite and pentavalent arsenic forms that remained unaffected by the organic matter amendments. Results suggest that the addition of organic matter may lead to increases in arsenic bioaccessibility, which warrants caution in the evaluation of risks associated with redevelopment of arsenic-contaminated land. - Highlights: > Adding organic matter to contaminated soils may increase arsenic bioaccessibility. > Ageing soils with >25% organic matter can lead to increased arsenic bioaccessibility. > No changes in arsenic bioaccessibility for soils poor in organic matter (mean 7.7%). > No changes in arsenic bioaccessibility for samples containing arsenopyrite. > Organic matter in soil may favour oxidation of trivalent arsenic to pentavalent form. - Adding organic carbon may increase arsenic bioaccessibility, especially in samples originally containing >30% bioaccessible arsenic in organic carbon-rich soils (>25%).

  12. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic Re

  13. Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS

    Science.gov (United States)

    Inorganic species are considered more toxic to humans than organic arsenic and total arsenic. Analysis of total arsenic in metallic form, organic and inorganic arsenic species from seaweeds and dietary supplements using LC-ICP-MS was developed. Solvent extraction with sonication and microwave extr...

  14. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium.

    Science.gov (United States)

    Maizel, Daniela; Utturkar, Sagar M; Brown, Steven D; Ferrero, Marcela A; Rosen, Barry P

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8. PMID:25883298

  15. Draft Genome Sequence of Brevibacterium linens AE038-8, an Extremely Arsenic-Resistant Bacterium

    OpenAIRE

    Maizel, Daniela; Utturkar, Sagar M.; Brown, Steven D.; Ferrero, Marcela A.; ROSEN, BARRY P.

    2015-01-01

    To understand the arsenic biogeocycles in the groundwaters at Tucumán, Argentina, we isolated Brevibacterium linens sp. strain AE38-8, obtained from arsenic-contaminated well water. This strain is extremely resistant to arsenicals and has arsenic resistance (ars) genes in its genome. Here, we report the draft genome sequence of B. linens AE38-8.

  16. PEPTIDE BINDING AS A MODE OF ACTION FOR THE CARCINOGENICITY AND TOXICITY OF ARSENIC

    Science.gov (United States)

    Arsenic exposure leads to tumors in human skin, lung, urinary bladder, kidney and liver. Three likely initial stages of arsenical-macromolecular interaction are (1) binding of trivalent arsenicals to the sulfhydryl groups of peptides and proteins, (2) arsenical-induced generation...

  17. Detecting and quantifying lewisite degradation products in environmental samples using arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Bass, D.A.; Yaeger, J.S.; Kiely, J.T.; Crain, J.S.; Shem, L.M.; O`Neill, H.J.; Gowdy, M.J. [Argonne National Lab., IL (United States); Besmer, M.; Mohrman, G.B. [Rocky Mountain Arsenal, Commerce City, CO (United States)

    1995-12-31

    This report describes a unique method for identifying and quantifying lewisite degradation products using arsenic (III) and arsenic (IV) speciation in solids and in solutions. Gas chromatographic methods, as well as high-performance liquid chromatographic methods are described for separation of arsenic species. Inductively coupled plasma-mass spectrographic methods are presented for the detection of arsenic.

  18. Internal conversion in highly-stripped {sup 83}Kr ions

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, K.E.; Ahmad, I.; Gehring, J. [and others

    1995-08-01

    The transition probability per unit time for the decay of a nuclear level via internal conversion (IC), {lambda}IC, depends on the electron environment of the nucleus. For example, inner-shell conversion in highly-charged ions can change appreciably as electrons are successively removed from the ion. Magnetic dipole (Ml) transitions are especially sensitive to this effect since the internal conversion depends strongly on the electron density at the nucleus. Hence, measurements of {lambda}IC,q, the internal conversion rate in an ion with charge state q, can provide good tests of theoretical electron wave functions if the electron configuration in the ions is known. In a previous experiment, a new method which identifies charge-changing events during passage of ion beams through a magnetic spectrometer was used to determine {lambda}IC,q for the 14.4-keV isomer in {sup 57}Fe. This contribution reports measurements made using the same technique for the 9.4-keV isomer in {sup 83}Kr. A beam of {sup 83}Kr with energy 650 MeV bombarded a Au target with a thickness 300 {mu}g cm{sup -2}. Secondary scattered beams were accepted and analyzed by an Enge magnetic spectrometer. The numbers of excited nuclei decaying during passage through the spectrometer and their internal conversion rates were deduced from the pattern of events measured in the spectrometer focal plane.

  19. Internal conversion in highly-stripped 83Kr ions

    International Nuclear Information System (INIS)

    The transition probability per unit time for the decay of a nuclear level via internal conversion (IC), λIC, depends on the electron environment of the nucleus. For example, inner-shell conversion in highly-charged ions can change appreciably as electrons are successively removed from the ion. Magnetic dipole (Ml) transitions are especially sensitive to this effect since the internal conversion depends strongly on the electron density at the nucleus. Hence, measurements of λIC,q, the internal conversion rate in an ion with charge state q, can provide good tests of theoretical electron wave functions if the electron configuration in the ions is known. In a previous experiment, a new method which identifies charge-changing events during passage of ion beams through a magnetic spectrometer was used to determine λIC,q for the 14.4-keV isomer in 57Fe. This contribution reports measurements made using the same technique for the 9.4-keV isomer in 83Kr. A beam of 83Kr with energy 650 MeV bombarded a Au target with a thickness 300 μg cm-2. Secondary scattered beams were accepted and analyzed by an Enge magnetic spectrometer. The numbers of excited nuclei decaying during passage through the spectrometer and their internal conversion rates were deduced from the pattern of events measured in the spectrometer focal plane

  20. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability.

    Science.gov (United States)

    Failler, Marion; Gee, Heon Yung; Krug, Pauline; Joo, Kwangsic; Halbritter, Jan; Belkacem, Lilya; Filhol, Emilie; Porath, Jonathan D; Braun, Daniela A; Schueler, Markus; Frigo, Amandine; Alibeu, Olivier; Masson, Cécile; Brochard, Karine; Hurault de Ligny, Bruno; Novo, Robert; Pietrement, Christine; Kayserili, Hulya; Salomon, Rémi; Gubler, Marie-Claire; Otto, Edgar A; Antignac, Corinne; Kim, Joon; Benmerah, Alexandre; Hildebrandt, Friedhelm; Saunier, Sophie

    2014-06-01

    Ciliopathies are a group of hereditary disorders associated with defects in cilia structure and function. The distal appendages (DAPs) of centrioles are involved in the docking and anchoring of the mother centriole to the cellular membrane during ciliogenesis. The molecular composition of DAPs was recently elucidated and mutations in two genes encoding DAPs components (CEP164/NPHP15, SCLT1) have been associated with human ciliopathies, namely nephronophthisis and orofaciodigital syndrome. To identify additional DAP components defective in ciliopathies, we independently performed targeted exon sequencing of 1,221 genes associated with cilia and 5 known DAP protein-encoding genes in 1,255 individuals with a nephronophthisis-related ciliopathy. We thereby detected biallelic mutations in a key component of DAP-encoding gene, CEP83, in seven families. All affected individuals had early-onset nephronophthisis and four out of eight displayed learning disability and/or hydrocephalus. Fibroblasts and tubular renal cells from affected individuals showed an altered DAP composition and ciliary defects. In summary, we have identified mutations in CEP83, another DAP-component-encoding gene, as a cause of infantile nephronophthisis associated with central nervous system abnormalities in half of the individuals. PMID:24882706

  1. Magnetic and gaseous spiral arms in M83

    CERN Document Server

    Frick, P; Beck, R; Sokoloff, D; Shukurov, A; Ehle, M; Lundgren, A

    2016-01-01

    Isotropic and anisotropic wavelet transforms are used to decompose the images of the spiral galaxy M83 in various tracers to quantify structures in a range of scales from 0.2 to 10 kpc. We use ATCA radio polarization observations at {\\lambda}6 cm and 13 cm and APEX sub-mm observations at 870 {\\mu}m, which are first published here, together with maps of the emission of warm dust, ionized gas, molecular gas and atomic gas. The spatial power spectra are similar for the tracers of dust, gas and total magnetic field, while the spectra of the ordered magnetic field are significantly different. The wavelet cross-correlation between all material tracers and total magnetic field are high, while the structures of the ordered magnetic field are poorly correlated with those of other tracers. -- The magnetic field configuration in M83 contains pronounced magnetic arms. Some of them are displaced from the corresponding material arms, while others overlap with the material arms. The magnetic field vectors at {\\lambda}6 cm a...

  2. A prospective cohort study of the association between drinking water arsenic exposure and self-reported maternal health symptoms during pregnancy in Bangladesh

    Science.gov (United States)

    2014-01-01

    Background Arsenic, a common groundwater pollutant, is associated with adverse reproductive health but few studies have examined its effect on maternal health. Methods A prospective cohort was recruited in Bangladesh from 2008–2011 (N = 1,458). At enrollment (<16 weeks gestational age [WGA]), arsenic was measured in personal drinking water using inductively-coupled plasma mass spectrometry. Questionnaires collected health data at enrollment, at 28 WGA, and within one month of delivery. Adjusted odds ratios (aORs) and 95% confidence intervals (95% CI) for self-reported health symptoms were estimated for each arsenic quartile using logistic regression. Results Overall, the mean concentration of arsenic was 38 μg/L (Standard deviation, 92.7 μg/L). A total of 795 women reported one or more of the following symptoms during pregnancy (cold/flu/infection, nausea/vomiting, abdominal cramping, headache, vaginal bleeding, or swollen ankles). Compared to participants exposed to the lowest quartile of arsenic (≤0.9 μg/L), the aOR for reporting any symptom during pregnancy was 0.62 (95% CI = 0.44-0.88) in the second quartile, 1.83 (95% CI = 1.25-2.69) in the third quartile, and 2.11 (95% CI = 1.42-3.13) in the fourth quartile where the mean arsenic concentration in each quartile was 1.5 μg/L, 12.0 μg/L and 144.7 μg/L, respectively. Upon examining individual symptoms, only nausea/vomiting and abdominal cramping showed consistent associations with arsenic exposure. The odds of self-reported nausea/vomiting was 0.98 (95% CI: 0.68, 1.41), 1.52 (95% CI: 1.05, 2.18), and 1.81 (95% CI: 1.26, 2.60) in the second, third and fourth quartile of arsenic relative to the lowest quartile after adjusting for age, body mass index, second-hand tobacco smoke exposure, educational status, parity, anemia, ferritin, medication usage, type of sanitation at home, and household income. A positive trend was also observed for abdominal cramping (P for trend <0.0001). A

  3. ASSESSING ARSENIC EXPOSURE AND SKIN HYPERKERATOSIS IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    Arsenic is a known human carcinogen. The inorganic forms, especially arsenite (As+3), are believed to be the most toxic species. Methylation is often considered to be thedetoxification pathway for the metabolism of inorganic arsenic. The ground water in Ba Men, Inner Mo...

  4. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.;

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of...

  5. Arsenic drinking water regulations in developing countries with extensive exposure.

    Science.gov (United States)

    Smith, Allan H; Smith, Meera M Hira

    2004-05-20

    The United States Public Health Service set an interim standard of 50 microg/l in 1942, but as early as 1962 the US Public Health Service had identified 10 microg/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 microg/l of arsenic over many years may die from internal cancers attributable to arsenic, with lung cancer being the surprising main contributor. A prudent public health response is to reduce the permissible drinking water arsenic concentrations. However, the appropriate regulatory response in those developing countries with large populations with much higher concentrations of arsenic in drinking water, often exceeding 100 microg/l, is more complex. Malnutrition may increase risks from arsenic. There is mounting evidence that smoking and arsenic act synergistically in causing lung cancer, and smoking raises issues of public health priorities in developing countries that face massive mortality from this product. Also, setting stringent drinking water standards will impede short term solutions such as shallow dugwells. Developing countries with large populations exposed to arsenic in water might reasonably be advised to keep their arsenic drinking water standards at 50 microg/l.

  6. Adsorption characteristics of arsenic and boron by soil

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, M.

    1986-01-01

    In order to obtain baseline data concerning the surface and ground water pollution caused by coal ash disposal, adsorption characteristics of arsenic (III) and boron by soil have been studied through laboratory experiments. The main results are as follows: (1) Arsenic (III) and boron adsorption on soil was strongly dependent on pH with adsorption maxima at pH 8 and 8-9, respectively. (2) Arsenic (III) and boron adsorption on soil over the entire concentration ranges investigated could be described by the Langmuir adsorption isotherm and the Freundlich adsorption isotherm, respectively. The Henry adsorption isotherm was also applicable over the lower concentration ranges of arsenic (III) and boron (As (III): < 0.1 deltag/ml; B: < 5deltag/ml.) (3) Arsenic (III) and boron adsorption on soil is controlled mainly by the contents of extractable Fe oxide and hydroxide for arsenic (III) and by the contents of extractable Al hydroxide and allophane (amorphous aluminium silicates) for boron. (4) Adsorption and movement of arsenic (III) and boron during the infiltration of coal ash leachate in soil layer were investigated by means of the unsteady-state, one-dimensional convective-diffusive mass transport model. This model is very useful for evaluation and prediction of the contamination of ground water by trace elements such as arsenic (III) and boron leached at coal ash disposal site.

  7. Arsenic from community water fluoridation: quantifying the effect.

    Science.gov (United States)

    Peterson, Emily; Shapiro, Howard; Li, Ye; Minnery, John G; Copes, Ray

    2016-04-01

    Community water fluoridation is a WHO recommended strategy to prevent dental carries. One debated concern is that hydrofluorosilicic acid, used to fluoridate water, contains arsenic and poses a health risk. This study was undertaken to determine if fluoridation contributes to arsenic in drinking water, to estimate the amount of additional arsenic associated with fluoridation, and compare this to the National Sanitation Foundation/American National Standards Institute (NSF/ANSI) standard and estimates from other researchers. Using surveillance data from Ontario drinking water systems, mixed effects linear regression was performed to examine the effect of fluoridation status on the difference in arsenic concentration between raw water and treated water samples. On average, drinking water treatment was found to reduce arsenic levels in water in both fluoridated and non-fluoridated systems by 0.2 μg/L. However, fluoridated systems were associated with an additional 0.078 μg/L (95% CI 0.021, 0.136) of arsenic in water when compared to non-fluoridated systems (P = 0.008) while controlling for raw water arsenic concentrations, types of treatment processes, and source water type. Our estimate is consistent with concentrations expected from other research and is less than 10% of the NSF/ANSI standard of 1 μg/L arsenic in water. This study provides further information to inform decision-making regarding community water fluoridation.

  8. The microbial arsenic cycle in Mono Lake, California.

    Science.gov (United States)

    Oremland, Ronald S; Stolz, John F; Hollibaugh, James T

    2004-04-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO(2) into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less "extreme" environments, such as drinking water aquifers. PMID:19712427

  9. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  10. Poisoning the mind : arsenic contamination and cognitive achievement of children

    OpenAIRE

    Asadullah, Mohammad Niaz; Chaudhury, Nazmul

    2008-01-01

    Bangladesh has experienced the largest mass poisoning of a population in history owing to contamination of groundwater with naturally occurring inorganic arsenic. Continuous drinking of such metal-contaminated water is highly cancerous; prolonged drinking of such water risks developing diseases in a span of just 5-10 years. Arsenicosis-intake of arsenic-contaminated drinking water-has imp...

  11. Arsenic Methylation, Oxidative Stress and Cancer - Is there a Link?

    Science.gov (United States)

    Arsenic is a multiorgan human carcinogen. The best-known example of this effect occurred in subgroups of the Taiwanese population who were chronically exposed to high levels of naturally occurring arsenic in drinking water and developed cancers of the skin, lung, urinary bladde...

  12. FIELD STUDY OF ARSENIC REMOVAL FROM GROUNDWATER BY ZEROVALENT IRON

    Science.gov (United States)

    Contamination of ground-water resources by arsenic is a widespread environmental problem; consequently, there is a need for developments and improvements of remedial technologies to effectively manage arsenic contamination in ground water and soils. In June 2005, a 7 m long, 14 ...

  13. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  14. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V.P. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  15. Poisoned Playgrounds: Arsenic in "Pressure-Treated" Wood.

    Science.gov (United States)

    Sharp, Renee; Walker, Bill

    This study of 180 pressure-treated wood samples shows that treated wood is a much greater source of arsenic exposure for children than arsenic-contaminated drinking water. The report determines that an average 5-year-old, playing less than 2 weeks on a chromated-copper-arsenate-treated (CCA) wood play set would exceed the lifetime cancer risk…

  16. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  17. Assessment of natural arsenic in groundwater in Cordoba Province, Argentina.

    Science.gov (United States)

    Francisca, Franco M; Carro Perez, Magalí E

    2009-12-01

    Groundwater in the central part of Argentina contains arsenic concentrations that, in most cases, exceed the value suggested by international regulations. In this region, Quaternary loessical sediments with a very high volcanic glass fraction lixiviate arsenic and fluoride after weathering. The objectives of this study are to analyze the spatial distribution of arsenic in different hydrogeological regions, to define the naturally expected concentration in an aquifer by means of hydrogeochemistry studies, and to identify emergent health evidences related to cancer mortality in the study area. The correlation between arsenic and fluoride concentrations in groundwater is analyzed at each county in the Cordoba Province. Two dimensionless geoindicators are proposed to identify risk zones and to rapidly visualize the groundwater quality related to the presence of arsenic and fluoride. A surface-mapping system is used to identify the spatial variability of concentrations and for suggesting geoindicators. The results show that the Chaco-Pampean plain hydrogeologic region is the most affected area, with arsenic and fluoride concentrations in groundwater being generally higher than the values suggested by the World Health Organization (WHO) for drinking water. Mortality related to kidney, lung, liver, and skin cancer in this area could be associated to the ingestion of arsenic-contaminated water. Generated maps provide a base for the assessment of the risk associated to the natural occurrence of arsenic and fluoride in the region. PMID:19165608

  18. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    NARCIS (Netherlands)

    Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediat

  19. CHURCHILL COUNTY, NEVADA ARSENIC STUDY: WATER CONSUMPTION AND EXPOSURE BIOMARKERS

    Science.gov (United States)

    The US Environmental Protection Agency is required to reevaluate the Maximum Contaminant Level (MCL) for arsenic in 2006. To provide data for reducing uncertainties in assessing health risks associated with exposure to low levels (<200 g/l) of arsenic, a large scale biomarker st...

  20. Analytical Strategies for the Determination of Arsenic in Rice

    Directory of Open Access Journals (Sweden)

    Bruno E. S. Costa

    2016-01-01

    Full Text Available Arsenic is an element of concern given its toxicological significance, even at low concentrations. Food is a potential route of exposure to inorganic arsenic and in this regard arsenic in rice is associated with soil contamination, fertilizer application, and the use of arsenic-containing irrigation water. Therefore, there is a need to investigate the regional rice crops with a view to future discussions on the need for possible regulatory measures. Several studies have reported high concentrations of arsenic in rice grown in soils irrigated with contaminated water; however, procedures used, including sample pretreatment and preconcentration steps, have to be followed to ensure sensitivity, accuracy, and reproducibility. Arsenic is a difficult element to measure in complex matrices, such as foods, because the matrix must be destroyed at an elevated temperature without the loss of the analyte or contamination. This review summarizes the major methods for the determination of arsenic in rice samples. The main purpose of this review is to provide an update on the recent literature concerning the strategies for the determination of arsenic and to critically discuss their advantages and weaknesses. These difficulties are described along with recent developments aimed at overcoming these potential issues.

  1. Arsenic in Ground-Water Resources of the United States

    Science.gov (United States)

    Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Focazio, Michael J.

    2000-01-01

    Arsenic is a naturally occurring element in rocks, soils, and the waters in contact with them. Recognized as a toxic element for centuries, arsenic today also is a human health concern because it can contribute to skin, bladder, and other cancers (National Research Council, 1999). Recently, the National Research Council (1999) recommended lowering the current maximum contaminant level (MCL) allowed for arsenic in drinking water of 50 ?g/L (micrograms per liter), citing risks for developing bladder and other cancers. The U.S. Environmental Protection Agency (USEPA) will propose a new, and likely lower, arsenic MCL during 2000 (U.S. Environmental Protection Agency, 2000). This fact sheet provides information on where and to what extent natural concentrations of arsenic in ground water exceed possible new standards. The U.S. Geological Survey (USGS) has collected and analyzed arsenic in potable (drinkable) water from 18,850 wells in 595 counties across the United States during the past two decades. These wells are used for irrigation, industrial purposes, and research, as well as for public and private water supply. Arsenic concentrations in samples from these wells are similar to those found in nearby public supplies (see Focazio and others, 1999). The large number of samples, broad geographic coverage, and consistency of methods produce a more accurate and detailed picture of arsenic concentrations than provided by any previous studies.

  2. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... p.34-36. (2001) DATA Arsenic in ground-water resources of the United States : U.S. Geological Survey Fact Sheet 063-00. (2000) ... analysis on the occurrence of arsenic in ground-water resources of the United States and limitations in drinking-water-supply characterizations : U.S. ...

  3. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  4. A novel method to remove arsenic from water

    Science.gov (United States)

    McDonald, Kyle J.

    Arsenic is a toxic metalloid that is found ubiquitously in earth's crust. The release of arsenic into the aqueous environment and the subsequent contamination in drinking water supplies is a worldwide health crisis. Arsenic is the culprit of the largest mass poisoning of a population in history and the number one contaminant of concern in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Priority List of Hazardous Substances. Practical, affordable, and reliable treatment technologies have yet to be developed due to the difficulty in overcoming many socioeconomic and geochemical barriers. Recent studies have reported that cupric oxide (CuO) nanoparticles have shown promising characteristics as a sorbent to remove arsenic from water. However, these studies were conducted in controlled environments and have yet to test the efficacy of this treatment technology in the field. In this manuscript, a flow through adsorption column containing CuO nanoparticles was developed for lab based studies to remove arsenic from water. These studies were expanded to include a field demonstration of the CuO nanoparticle flow through adsorption column to remove naturally occurring arsenic from groundwater associated with agriculture, domestic groundwater, and in situ recovery (ISR) uranium production process water. A major limitation for many treatment technologies is the difficulties presented in the disposal of waste byproducts such as sludge and spent media. In the research contained in this manuscript, we investigate the processes of regenerating the CuO nanoparticles using sodium hydroxide (NaOH). The use of the regenerated CuO nanoparticles was examined in batch experiments and implemented in the flow through column studies. The ability to regenerate and reuse a sorbent drastically reduces costs involved in manufacturing and disposal of spent media. Also, the CuO nanoparticles were evaluated in batch experiments for the removal of naturally

  5. Oral arsenic trioxide poisoning and secondary hazard from gastric content.

    Science.gov (United States)

    Kinoshita, Hidenori; Hirose, Yasuo; Tanaka, Toshiharu; Yamazaki, Yoshihiko

    2004-12-01

    In a suicide attempt, a 54-year-old man ingested arsenic trioxide. Gastric lavage was performed, but most of the poison remained as a mass in his stomach. A total gastrectomy was also performed to avoid intestinal perforation and arsenic poisoning. After the operation, he developed ventricular fibrillation. At one point, his circulation recovered spontaneously, but he later died from refractory circulatory failure. Many medical staff members were exposed to fumes from the patient's stomach. Some of the staff were diagnosed with corneal erosion or laryngitis. Because arsenic trioxide reacts with acid to produce arsine, the symptoms experienced by medical staff are directly attributable to arsine produced as a result of the reaction of arsenic trioxide with gastric acid. This case highlights the need for the introduction of protective measures to safeguard medical staff from exposure to arsine gas during the treatment of patients poisoned from ingested arsenic trioxide.

  6. Outbreak of fatal arsenic poisoning caused by contaminated drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, C.W.; Stroube, R.B.; Rubio, T.; Siudyla, E.A.; Miller, G.B. Jr.

    An outbreak of subacute poisoning occurred among nine members of a family; eight were ill with gastrointestinal symptoms, four developed encephalopathy, and two died. Abnormal liver function tests and leukopenia were common laboratory findings. Epidemiologic and environmental investigations traced the source of arsenic exposure to a farm well with water containing 108 ppm arsenic. The soil adjacent to the well was also contaminated with arsenic, possibly from waste pesticide. Presumably, arsenic gained access to the well through obvious leaks in the well's casing. To our knowledge, this is only the second reported outbreak of fatal arsenic poisoning from contaminated drinking water and one of few instances where illness followed exposure to a toxic substance which was disposed of, or possibly disposed of, in an indiscriminate manner.

  7. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  8. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  9. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.

    Science.gov (United States)

    Roy, Ram Vinod; Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; D, Rakesh; Kim, Donghern; Yin, Yuanqin; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.

  10. Outbreak of fatal arsenic poisoning caused by contaminated drinking water.

    Science.gov (United States)

    Armstrong, C W; Stroube, R B; Rubio, T; Siudyla, E A; Miller, G B

    1984-01-01

    An outbreak of subacute poisoning occurred among nine members of a family; eight were ill with gastrointestinal symptoms, four developed encephalopathy, and two died. Abnormal liver function tests and leukopenia were common laboratory findings. Epidemiologic and environmental investigations traced the source of arsenic exposure to a farm well with water containing 108 ppm arsenic. The soil adjacent to the well was also contaminated with arsenic, possibly from waste pesticide. Presumably, arsenic gained access to the well through obvious leaks in the well's casing. To our knowledge, this is only the second reported outbreak of fatal arsenic poisoning from contaminated drinking water and one of few instances where illness followed exposure to a toxic substance which was disposed of, or possibly disposed of, in an indiscriminate manner.

  11. Well water arsenic exposure, arsenic induced skin-lesions and self-reported morbidity in Inner Mongolia

    Science.gov (United States)

    Arsenic exposure from contaminated well water is a cause of skin and bladder cancer and linked to numerous other adverse health effects. Residents of the Bayingnormen region of Inner Mongolia, China, have been exposed to arsenic-contaminated well water for over 20 years but few s...

  12. Correlation between Arsenic Concentration in Drinking Water and Human Hair

    Directory of Open Access Journals (Sweden)

    M Mosaferi, M Yunesian, AR Mesdaghinia, S Nasseri, AH Mahvi, H Nadim

    2005-01-01

    Full Text Available Exposure to inorganic arsenic mainly occurs via drinking water, however because of potential changing of water sources during time, there is not consensus over the best route for assessment of past exposures to arsenic. At present study, we compared three potential sources of data in this regard. Thirty nine human hair samples were taken from persons residing in three villages of Bijar city in Kurdistan province of Iran with different drinking water sources and different levels of arsenic. All the subjects were female and at least one gram of scalp hair was gathered from the distal part of participants’ hair. Samples were analyzed using Neutron Activation Analysis method. Arsenic concentration of water samples were measured using Silver Diethyl Ditiocarbomate Method (SDDC and the total intake of arsenic through drinking water were calculated for each participant. According to results, arsenic content of drinking water ranged from 0 to 0.455 mg/l (average: 0.18. The figures for arsenic concentration in hair were from 0.012 to 3.41 mg/kg (average: of 0.53 and for calculated total intake from 0 to 8.9g (average: 2.02. A close relationship between calculated total intake via drinking water and arsenic concentration in hair (R=0.711, P<0.001 was obtained and also relationship between current arsenic content of drinking water and arsenic concentration in hair (R= 0.662, p<0.001. Using age as a covariate did not alter the results.

  13. Biological removal of arsenic pollution by soil fungi.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.

  14. Attenuation of arsenic neurotoxicity by curcumin in rats

    International Nuclear Information System (INIS)

    In view of continued exposure to arsenic and associated human health risk including neurotoxicity, neuroprotective efficacy of curcumin, a polyphenolic antioxidant, has been investigated in rats. A significant decrease in locomotor activity, grip strength (26%) and rota-rod performance (82%) was observed in rats treated with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) as compared to controls. The arsenic treated rats also exhibited a decrease in the binding of striatal dopamine receptors (32%) and tyrosine hydroxylase (TH) immunoreactivity (19%) in striatum. Increased arsenic levels in corpus striatum (6.5 fold), frontal cortex (6.3 fold) and hippocampus (7.0 fold) associated with enhanced oxidative stress in these brain regions, as evident by an increase in lipid perioxidation, protein carbonyl and a decrease in the levels of glutathione and activity of superoxide dismutase, catalase and glutathione peroxidase with differential effects were observed in arsenic treated rats compared to controls. Simultaneous treatment with arsenic (sodium arsenite, 20 mg/kg body weight, p.o., 28 days) and curcumin (100 mg/kg body weight, p.o., 28 days) caused an increase in locomotor activity and grip strength and improved the rota-rod performance in comparison to arsenic treated rats. Binding of striatal dopamine receptors and TH expression increased while arsenic levels and oxidative stress decreased in these brain regions in co-treated rats as compared to those treated with arsenic alone. No significant effect on any of these parameters was observed in rats treated with curcumin (100 mg/kg body weight, p.o., 28 days) alone compared to controls. A significant protection in behavioral, neurochemical and immunohistochemical parameters in rats simultaneously treated with arsenic and curcumin suggest the neuroprotective efficacy of curcumin.

  15. Brackett Gamma Imaging of the Nucleus of M83

    Science.gov (United States)

    Crosthwaite, L. P.; Turner, J. L.; Beck, S. C.; Meier, D. S.

    2004-12-01

    The gas-rich nucleus of barred spiral galaxy, M83, is a hotbed of star formation, with a total infrared luminosity of 4 X 109 Lo. We have observed the nucleus of M83 with the near infrared spectrometer, NIRSPEC, on Keck 2 to obtain high resolution Brγ recombination line spectra of the nucleus. Simultaneous imaging with the SCAM camera in a broadband K filter shows the position of the slit on the near-infrared galaxy. This allows us to map the nucleus with a continuum reference. The SCAM image shows a bright peak at the nucleus and a complex semi-circular arc of emission to the southwest. We stepped the 0.5'' X 24'' length slit in small declination increments to map a 20'' X 20'' region just west of the nucleus. Individual spectra were used to form a ra-dec-lambda cube and an integrated intensity map of Brγ . A total of 1.1 X 10-16 W m-2 of Brγ emission is detected in the map, in good agreement with previous low resolution observations (Turner, Ho, & Beck 1987, ApJ, 313, 644). This is not corrected for extinction within the molecular clouds in M83 or to the nebulae themselves and is therefore a lower limit to the true Brγ flux. Extinction is estimated to be at least a magnitude in the near-IR as measured in larger (4'') beams (Turner et al.) The bulk of the Brγ emission extends along the northern portion of the near-IR continuum semi-circle. Twenty percent of the total Brγ emission comes from single a 3'' (FWHM) source located 5'' west of the near-IR nucleus. The complementary NIRSPEC Brα data we have obtained will eventually allow us to evaluate the near-IR extinction on subarcsecond sizescales and obtain an extinction-corrected estimate of the Lyman continuum rate and therefore the number of ionizing stars.

  16. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    Science.gov (United States)

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  17. Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli.

    Science.gov (United States)

    Singh, Shailendra; Kang, Seung Hyun; Lee, Wonkyu; Mulchandani, Ashok; Chen, Wilfred

    2010-03-01

    Phytochelatin (PC) is a naturally occurring peptide with high affinity towards arsenic (As). In this article, we demonstrated the systematic engineering of PC-producing E. coli for As accumulation by addressing different bottlenecks in PC synthesis as well as As transport. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) was expressed in E. coli resulting in 18 times higher As accumulation. PC production was further increased by co-expressing a feedback desensitized gamma-glutamylcysteine synthetase (GshI*), resulting in 30-fold higher PC levels and additional 2-fold higher As accumulation. The significantly increased PC levels were exploited further by co-expressing an arsenic transporter GlpF, leading to an additional 1.5-fold higher As accumulation. These engineering steps were finally combined in an arsenic efflux deletion E. coli strain to achieve an arsenic accumulation level of 16.8 micromol/g DCW, a 80-fold improvement when compared to a control strain not producing phytochelatins.

  18. Toxicity of arsenic in humans. (Latest citations from the Life Sciences Collection database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The bibliography contains citations concerning arsenic toxicity to humans. Citations examine arsenic assays, neurological effects, epidemiological studies, arsenic levels in drinking water, carcinogenesis, excretion studies, and industrial sources of arsenic poisoning. The interaction of arsenic with other heavy metals such as cadmium and lead is also discussed. In vivo and in vitro studies are described. (Contains a minimum of 123 citations and includes a subject term index and title list.)

  19. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia.

    Science.gov (United States)

    Jovanovic, Dragana; Jakovljević, Branko; Rašić-Milutinović, Zorica; Paunović, Katarina; Peković, Gordana; Knezević, Tanja

    2011-02-01

    Vojvodina, a northern region of Serbia, belongs to the Pannonian Basin, whose aquifers contain high concentrations of arsenic. This study represents arsenic levels in drinking water in ten municipalities in Serbia. Around 63% of all water samples exceeded Serbian and European standards for arsenic in drinking water. Large variations in arsenic were observed among supply systems. Arsenic concentrations in public water supply systems in Vojvodina were much higher than in other countries in the Pannonian Basin.

  20. Study of Arsenic Presence in Drinking Water Sources: A Case Study

    OpenAIRE

    Z Kamali; Borghei, M; AM Hassani; H Taghipour; M Mosaferi; A Ghadirzadeh

    2008-01-01

    Background and Objectives: Conducted studies about arsenic have shown that consumption of water contaminated with arsenic can causes different adverse health effects in consumers. World Health Organization (WHO) has enacted 10µg/L arsenic in drinking water as a guideline value. Regarding some reports about arsenic presence in a village of Hashtrood county and related health effects and also considering this fact that determination of arsenic as a poisoning chemical is not included in ro...

  1. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  2. WRENDA 83/84. World request list for nuclear data

    International Nuclear Information System (INIS)

    WRENDA 83/84 is the eighth edition of the World Request List for Nuclear Data. This list is produced from a computer file of nuclear data requests, maintained by the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The requests are provided by official bodies, such as national nuclear data committees, through four regional data centers serving all Member States of the IAEA. Each request included indicates: that the estimated accuracy of the nuclear data available does not satisfy the requirements encountered, and that, consequently, new data measurements and/or data evaluations with improved accuracy are highly desirable. WRENDA is intended to serve as a guide to experimentalists, evaluators and administrators when planning nuclear data measurement and evaluation programs. The requests in this edition come from 15 different countries and one international organization. (author)

  3. Evidence for shape coexistance in 81,83Kr

    International Nuclear Information System (INIS)

    In the course of systematic investication of few-particle and collective states in the mass 80 region, the excitations in 81,83Kr have been studied in-beam via (α,3n) reactions. Most of the data were derived from experiments at the Stockholm cyclotron, where coincidence relations, angular distributions, relative excitation functions and the linear polarization of the γ-rays were measured. To obtain precise data on the Doppler shift (DSA method) of the γ-rays, the spectra at 30 deg and 150 deg and, respectively, at 45 deg and 135 deg relative to the beam axis were measured alternatingly. Since DSA data are most reliable for the highest levels reached with a certain beam energy, additional measurements were performed at the Rossendorf cyclotron using α-particles of 27 MeV which excite lower spin states than the 42 MeV α-particles used in the main part of the experiments

  4. Anomalous k⊥(-8/3) spectrum in electron magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2013-12-27

    Electron magnetohydrodynamic turbulence is investigated under the presence of a relatively strong external magnetic field b0e∥ and through three-dimensional direct numerical simulations. Our study reveals the emergence of a k⊥(-8/3) scaling for the magnetic energy spectrum at scales k∥(D)≤k⊥≤k⊥(D), where k∥(D) and k⊥(D) are, respectively, the typical largest dissipative scales along and transverse to the b0 direction. Unlike standard magnetohydrodynamic, this turbulence regime is characterized by filaments of electric currents parallel to b0. The anomalous scaling is in agreement with a heuristic model in which the transfer in the parallel direction is negligible. Implications for solar wind turbulence are discussed.

  5. Decontamination analysis of the NUWAX-83 accident site using DECON

    International Nuclear Information System (INIS)

    This report presents an analysis of the site restoration options for the NUWAX-83 site, at which an exercise was conducted involving a simulated nuclear weapons accident. This analysis was performed using a computer program deveoped by Pacific Northwest Laboratory. The computer program, called DECON, was designed to assist personnel engaged in the planning of decontamination activities. The many features of DECON that are used in this report demonstrate its potential usefulness as a site restoration planning tool. Strategies that are analyzed with DECON include: (1) employing a Quick-Vac option, under which selected surfaces are vacuumed before they can be rained on; (2) protecting surfaces against precipitation; (3) prohibiting specific operations on selected surfaces; (4) requiring specific methods to be used on selected surfaces; (5) evaluating the trade-off between cleanup standards and decontamination costs; and (6) varying of the cleanup standards according to expected exposure to surface

  6. Composite charge 8/3 resonances at the LHC

    International Nuclear Information System (INIS)

    In composite Higgs models with partial compositeness, the small value of the observed Higgs mass implies the existence of light fermionic resonances, the top partners, whose quantum numbers are determined by the symmetry (and symmetry breaking) structure of the theory. Here we study light top partners with electric charge 8/3, which are predicted, for instance, in some of the most natural composite Higgs realizations. We recast data from two same sign lepton searches and from searches for microscopic blackholes into a bound on its mass, M8/3>940 GeV. Furthermore, we compare potential reach of these searches with a specifically designed search for three same-sign leptons, both at 8 and 14 TeV. We provide a simplified model, suitable for collider analysis

  7. The infrared massive stellar content of M 83

    Science.gov (United States)

    Williams, S. J.; Bonanos, A. Z.; Whitmore, B. C.; Prieto, J. L.; Blair, W. P.

    2015-06-01

    Aims: We present an analysis of archival Spitzer images and new ground-based and Hubble Space Telescope (HST) near-infrared (IR) and optical images of the field of M 83 with the goal of identifying rare, dusty, evolved massive stars. Methods: We present point source catalogs consisting of 3778 objects from Spitzer Infrared Array Camera (IRAC) Band 1 (3.6 μm) and Band 2 (4.5 μm), and 975 objects identified in Magellan 6.5 m FourStar near-IR J and Ks images. A combined catalog of coordinate matched near- and mid-IR point sources yields 221 objects in the field of M 83. Results: We find 49 strong candidates for massive stars which are very promising objects for spectroscopic follow-up. Based on their location in a B - V versus V - I diagram, we expect at least 24, or roughly 50%, to be confirmed as red supergiants. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.Figures 12-23 are available in electronic form at http://www.aanda.orgFull Tables 1 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A100

  8. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  9. Isolation of arsenic-tolerant bacteria from arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Vorasan Sobhon*

    2008-04-01

    Full Text Available The disposal of toxic heavy metals such as arsenic posed high risk to the environment. Arsenite [As(III], a reduced form of arsenic, is more toxic and mobile than arsenate [As(V]. The aim of this work was to isolate arsenic-tolerant bacteria from contaminated soil collected in Ronphibun District, Nakorn Srithammarat Province, followed by screening these bacteria for their ability to adsorb arsenite. Twenty-four bacterial isolates were obtained from samples cultivated in basal salts medium plus 0.1% yeast extract and up to 40 mM sodium-arsenite at 30oC under aerobic condition. From these, isolates B-2, B-3, B-4, B-21, B-25 and B-27 produced extracellular polymeric-like substances into the culture medium, which may potentially be used in the bioremediation of arsenic and other contaminants. All isolates displayed arsenite adsorbing activities in the ranges of 36.87-96.93% adsorption from initial concentration of 40 mM sodium-arsenite, without any arsenic transforming activity. Five isolates with the highest arsenite adsorbing capacity include B-4, B-7, B-8, B-10 and B-13 which adsorbed 80.90, 86.72, 87.08, 84.36 and 96.93% arsenite, respectively. Identification of their 16S rDNA sequences showed B -7, B-8, and B-10 to have 97%, 99% and 97% identities to Microbacterium oxydans, Achromobacter sp. and Ochrobactrum anthropi, respectively. Isolates B-4 and B-13, which did not show sequence similarity to any bacterial species, may be assigned based on their morphological and biochemical characteristics to the genus Streptococcus and Xanthomonas, respectively. Thus, both isolates B-4 and B-13 appear to be novel arsenite adsorbing bacteria within these genuses.

  10. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite.

    Science.gov (United States)

    Wang, Yuheng; Morin, Guillaume; Ona-Nguema, Georges; Brown, Gordon E

    2014-12-16

    Bioreduction of As(V) and As-bearing iron oxides is considered to be one of the key processes leading to arsenic pollution in groundwaters in South and Southeast Asia. Recent laboratory studies with simple aqueous media showed that secondary Fe(II)-bearing phases (e.g., magnetite and green rust), which commonly precipitate during bioreduction of iron oxides, captured arsenic species. The aim of the present study was to follow arsenic speciation during the abiotic Fe(II)-induced transformation of As(III)- and As(V)-doped lepidocrocite to magnetite, and to evaluate the influence of arsenic on the transformation kinetics and pathway. We found green rust formation is an intermediate phase in the transformation. Both As(III) and As(V) slowed the transformation, with the effect being greater for As(III) than for As(V). Prior to the formation of magnetite, As(III) adsorbed on both lepidocrocite and green rust, whereas As(V) associated exclusively with green rust, When magnetite precipitated, As(III) formed surface complexes on magnetite nanoparticles and As(V) is thought to have been incorporated into the magnetite structure. These processes dramatically lowered the availability of As in the anoxic systems studied. These results provide insights into the behavior of arsenic during magnetite precipitation in reducing environments. We also found that As(V) removal from solution was higher than As(III) removal following magnetite formation, which suggests that conversion of As(III) to As(V) is preferred when using As-magnetite precipitation to treat As-contaminated groundwaters.

  11. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan

    International Nuclear Information System (INIS)

    Long-term exposure to ingested inorganic arsenic is associated with peripheral vascular disease (PVD) in the blackfoot disease (BFD)-hyperendemic area in Taiwan. This study further examined the interaction between arsenic exposure and urinary arsenic speciation on the risk of PVD. A total of 479 (220 men and 259 women) adults residing in the BFD-hyperendemic area were studied. Doppler ultrasound was used to diagnose PVD. Arsenic exposure was estimated by an index of cumulative arsenic exposure (CAE). Urinary levels of total arsenic, inorganic arsenite (AsIII) and arsenate (AsV), monomethylarsonic acid (MMAV), and dimethylarsinic acid (DMAV) were determined. Primary methylation index [PMI = MMAV/(AsIII + AsV)] and secondary methylation index (SMI = DMAV/MMAV) were calculated. The association between PVD and urinary arsenic parameters was evaluated with consideration of the interaction with CAE and the confounding effects of age, sex, body mass index, total cholesterol, triglycerides, cigarette smoking, and alcohol consumption. Results showed that aging was associated with a diminishing capacity to methylate inorganic arsenic and women possessed a more efficient arsenic methylation capacity than men did. PVD risk increased with a higher CAE and a lower capacity to methylate arsenic to DMAV. The multivariate-adjusted odds ratios for CAE of 0, 0.1-15.4, and >15.4 mg/L x year were 1.00, 3.41 (0.74-15.78), and 4.62 (0.96-22.21), respectively (P 6.93, PMI > 1.77 and SMI > 6.93, PMI > 1.77 and SMI ≤ 6.93, and PMI ≤ 1.77 and SMI ≤ 6.93 were 1.00, 2.93 (0.90-9.52), 2.85 (1.05-7.73), and 3.60 (1.12-11.56), respectively (P V have a higher risk of developing PVD in the BFD-hyperendemic area in Taiwan

  12. Mucosal immunization with attenuated Salmonella Typhi expressing anthrax PA83 primes monkeys for accelerated serum antibody responses to parenteral PA83 vaccine

    OpenAIRE

    Galen, James E.; Chinchilla, Magaly; Marcela F. Pasetti; Wang, Jin Yuan; Zhao, LiCheng; Arciniega-Martinez, Ivonne; Silverman, David J.; Levine, Myron M.

    2009-01-01

    Salmonella enterica serovar Typhi vaccine strain CVD 908-htrA was genetically engineered for stable plasmid-based expression of protective antigen of anthrax toxin (PA83) fused with the export protein ClyA (ClyA-PA83). The priming potential of CVD 908-htrA expressing ClyA-PA83 was assessed in 12 rhesus and 20 cynomolgus macaques immunized mucosally (intranasally) on days 0 and 14. A parenteral boost with purified PA83 plus alum was given to rhesus macaques on days 42 and 225; cynomolgus monke...

  13. Incineration treatment of arsenic-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Waterland, L.R.; King, C.; Richards, M.K.; Thurnau, R.C.

    1991-01-01

    An incineration test program was conducted at the US Environmental Protection Agency's Incineration Research Facility to evaluate the potential of incineration as a treatment option for contaminated soils at the Baird and McGuire Superfund site in Holbrook, Massachusetts. The purpose of these tests was to evaluate the incinerability of these soils in terms of the fate of arsenic and lead and the destruction of organic contaminants during the incineration process. The test program consisted of a series of bench-scale experiments with a muffle furnace and a series of incineration tests in a pilot-scale rotary kiln incinerator system.

  14. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  15. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    International Nuclear Information System (INIS)

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  16. On concentration dependence of arsenic diffusivity in silicon

    Science.gov (United States)

    Velichko, O. I.

    2016-05-01

    An analysis of the equations used for modeling thermal arsenic diffusion in silicon has been carried out. It was shown that for arsenic diffusion governed by the vacancy-impurity pairs and the pairs formed due to interaction of impurity atoms with silicon self-interstitials in a neutral charge state, the doping process can be described by the Fick’s second law equation with a single effective diffusion coefficient which takes into account two impurity flows arising due to interaction of arsenic atoms with vacancies and silicon self-interstitials, respectively. Arsenic concentration profiles calculated with the use of the effective diffusivity agree well with experimental data if the maximal impurity concentration is near the intrinsic carrier concentration. On the other hand, for higher impurity concentrations a certain deviation in the local regions of arsenic distribution is observed. The difference from the experiment can occur due to the incorrect use of effective diffusivity for the description of two different impurity flows or due to the formation of nonuniform distributions of neutral vacancies and neutral self-interstitials in heavily doped silicon layers. We also suppose that the migration of nonequilibrium arsenic interstitial atoms makes a significant contribution to the formation of a low concentration region on thermal arsenic diffusion.

  17. Ground Water Arsenic Contamination: A Local Survey in India

    Science.gov (United States)

    Kumar, Arun; Rahman, Md. Samiur; Iqubal, Md. Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    Background: In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. Methods: In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem. PMID:27625765

  18. Investigation of biomethylation of arsenic and tellurium during composting

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Bone, Roland A., E-mail: roland.diaz@uni-due.de [Microbiology I and Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 3-5, 45141 Essen (Germany); Raabe, Maren [Municipal Water and Waste Engineering, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Awissus, Simone; Keuter, Bianca; Menzel, Bernd [Institute for Environmental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 3-5, 45141 Essen (Germany); Kueppers, Klaus [Institute of Applied Botany, University of Duisburg-Essen, Universitaetstrasse 3-5, 45141 Essen (Germany); Widmann, Renatus [Municipal Water and Waste Engineering, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Hirner, Alfred V. [Institute for Environmental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 3-5, 45141 Essen (Germany)

    2011-05-30

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg{sup -1} methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg{sup -1} methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  19. Behavior of arsenic impurity at antimony electric precipitation

    International Nuclear Information System (INIS)

    In the paper the arsenic impurity electrochemical behavior and it purification from antimony by electric precipitation out of fluoride solutions was studied. For this the arsenic sample with mass 0.003-0.006 g has been irradiated at the WWR-SM nuclear reactor during 3-5 hour in the thermal neutron flux 1013 n/cm2 s, after 24 h keeping the sample has being dissolved in the concentrated nitric acid, and then it has been evaporated several times with distillation water addition up to wet precipitation state. It is shown, that arsenic impurity behavior character in the antimony electric precipitation out to fluoride electrolyte depends on the electrolyte content, electrolysis conditions, arsenic valency state in arsenic impurity existence in the five-valency state its joint electric reduction with antimony is practically not observing. In the case the arsenic being in three-valency state, it joint electric reduction with antimony is taking place. In this time the electrolytic antimony contents arsenic impurities less in dozen time than initial material

  20. Investigating groundwater arsenic contamination using aquifer push-pull test

    Science.gov (United States)

    Daigle, A. R.; Jin, Q.

    2009-12-01

    The groundwater of the Southern Willamette Basin, OR is contaminated with arsenic at concentrations as high as several ppm. A single-well push-pull test was conducted to investigate how microbial metabolisms control arsenic occurrence and levels in the bedrock aquifer of the area. During the experiments, a test solution containing ethanol was first injected into the aquifer. As the experiment progressed, dissolved gasses, groundwater, and sediment were sampled to monitor the variations in the chemical parameters, including the speciation of iron, sulfur, and arsenic, in the aquifer. Ethanol amendment stimulated a series of microbial metabolisms, including arsenate reduction, iron reduction, and sulfate reduction. Iron reduction released arsenic sorbed onto the aquifer sediments, increasing groundwater arsenic levels. Arsenate reduction converted arsenate to arsenite and, as a result, most arsenic occurred as arsenite in the groundwater. Results of the experiments demonstrate how different microbial functional groups influenced arsenic contamination in the area. These results also shed new light on potential bioremediation strategies in the area.