WorldWideScience

Sample records for arsenic 75 target

  1. Arsenic

    Science.gov (United States)

    Arsenic is a natural element found in soil and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can get into air, water, and the ground from wind- ...

  2. Epigenetic targets of arsenic: emphasis on epigenetic modifications during carcinogenesis.

    Science.gov (United States)

    Roy, Ram Vinod; Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Hitron, John Andrew; Divya, Sasidharan Padmaja; D, Rakesh; Kim, Donghern; Yin, Yuanqin; Zhang, Zhuo; Shi, Xianglin

    2015-01-01

    DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.

  3. Arsenic

    Science.gov (United States)

    ... found in its pure form as a steel grey metal, arsenic is usually part of chemical compounds. ... imply endorsement by the American Cancer Society. No matter who you are, we can help. Contact us ...

  4. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    Science.gov (United States)

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay.

  5. Targeting low-arsenic groundwater with mobile-phone technology in Araihazar, Bangladesh.

    Science.gov (United States)

    van Geen, A; Trevisani, M; Immel, J; Jakariya, Md; Osman, N; Cheng, Z; Gelman, A; Ahmed, K M

    2006-09-01

    The Bangladesh Arsenic Mitigation and Water Supply Program (BAMWSP) has compiled field-kit measurements of the arsenic content of groundwater for nearly five million wells. By comparing the spatial distribution of arsenic inferred from these field-kit measurements with geo-referenced laboratory data in a portion of Araihazar upazila, it is shown here that the BAMWSP data could be used for targeting safe aquifers for the installation of community wells in many villages of Bangladesh. Recent experiences with mobile-phone technology to access and update the BAMWSP data in the field are also described. It is shown that the technology, without guaranteeing success, could optimize interventions by guiding the choice of the drilling method that is likely to reach a safe aquifer and identifying those villages where exploratory drilling is needed.

  6. 75As, 63Cu NMR and NQR characterization of selected arsenic minerals.

    Science.gov (United States)

    Lehmann-Horn, J A; Miljak, D G; Bastow, T J

    2013-01-01

    The direct measurement and identification of solid state arsenic phases using (75)As NMR is made difficult by the simultaneous conditions of large quadrupole moment and low coordination symmetry in many compounds. However, specific arsenic minerals can efficiently be detected and discriminated via nuclear quadrupolar resonance (NQR). We report on the first NMR and NQR measurements in the natural minerals enargite (Cu3AsS4), niccolite (NiAs), arsenopyrite (FeAsS) and loellingite (FeAs2). The NQR frequencies have been determined from both high-field NMR powder patterns and via zero-field frequency sweeps. Density functional theory (DFT) based ab initio calculations support the experimental results. The compounds studied here are common in terms of the known set of As-containing minerals. They are sometimes encountered in the context of base metal or gold mining. The study represents a significant addition to the list of arsenic minerals that can now be detected with NQR techniques.

  7. First-principles study of {sup 75}As NQR in arsenic-chalcogenide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Arthur H [Air Force Research Laboratory, AFRL/RVSE, Kirtland AFB, NM 87117-5776 (United States); Taylor, P C [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Campbell, Kristy A [Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725 (United States); Pineda, Andrew C [Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131-0001 (United States)

    2011-02-09

    We present a theoretical study of the nuclear quadrupole interaction, {nu}{sub Q}, of {sup 75}As in crystalline and amorphous materials containing sulfur and selenium, and compare them with experiment. We studied a combination of hydrogen-terminated molecular clusters and periodic cells at various levels of quantum chemical theory. The results show clearly that the standard density functional theory (DFT) approximations, LDA and GGA, underestimate the nuclear quadrupole (NQR) interaction systematically, while Hartree-Fock theory overestimates it to an even greater degree. However, various levels of configuration interaction and the B3LYP hybrid exchange-correlation functional, which includes some exact exchange, give very good quantitative agreement for As bonded only to the chalcogen species. As-As bonds require highly converged basis sets. We have performed a systematic study of the effect of local distortions around an arsenic atom on {nu}{sub Q} and {eta}. Using a simple, semiclassical model, we have combined our total energy results with our NQR calculations to predict {nu}{sub Q} lineshapes for bond angle and bond length distortions. Our predictions for lineshape, including first and second moments, are in excellent agreement with the results of Su et al for a-As{sub 2}S{sub 3}, a-As{sub 2}Se{sub 3} and a-AsSe. We offer new insight into the distortions that led to this inhomogeneous broadening. Our results show clearly that, for trivalent arsenic atoms with zero or one arsenic nearest neighbor, symmetric bond stretching is the predominant contributor to the {nu}{sub Q} linewidth. However, in the presence of two arsenic nearest neighbors, distortions of the As-As-As apex angle dominates and, in fact, leads to a much larger second moment, in agreement with experiment.

  8. First-principles study of (75)As NQR in arsenic-chalcogenide compounds.

    Science.gov (United States)

    Edwards, Arthur H; Taylor, P C; Campbell, Kristy A; Pineda, Andrew C

    2011-02-09

    We present a theoretical study of the nuclear quadrupole interaction, ν(Q), of (75)As in crystalline and amorphous materials containing sulfur and selenium, and compare them with experiment. We studied a combination of hydrogen-terminated molecular clusters and periodic cells at various levels of quantum chemical theory. The results show clearly that the standard density functional theory (DFT) approximations, LDA and GGA, underestimate the nuclear quadrupole (NQR) interaction systematically, while Hartree-Fock theory overestimates it to an even greater degree. However, various levels of configuration interaction and the B3LYP hybrid exchange-correlation functional, which includes some exact exchange, give very good quantitative agreement for As bonded only to the chalcogen species. As-As bonds require highly converged basis sets. We have performed a systematic study of the effect of local distortions around an arsenic atom on ν(Q) and η. Using a simple, semiclassical model, we have combined our total energy results with our NQR calculations to predict ν(Q) lineshapes for bond angle and bond length distortions. Our predictions for lineshape, including first and second moments, are in excellent agreement with the results of Su et al for a-As(2)S(3), a-As(2)Se(3) and a-AsSe. We offer new insight into the distortions that led to this inhomogeneous broadening. Our results show clearly that, for trivalent arsenic atoms with zero or one arsenic nearest neighbor, symmetric bond stretching is the predominant contributor to the ν(Q) linewidth. However, in the presence of two arsenic nearest neighbors, distortions of the As-As-As apex angle dominates and, in fact, leads to a much larger second moment, in agreement with experiment.

  9. Thick-target PIXE analysis of chromium, copper and arsenic impregnated lumber

    Science.gov (United States)

    Saarela, K.-E.; Harju, L.; Lill, J.-O.; Rajander, J.; Lindroos, A.; Heselius, S.-J.

    1999-04-01

    Chromium, copper and arsenic (CCA) have for decades been used for wood preservation. Of these elements especially arsenic is very toxic. As CCA impregnated wood is still today used for many construction purposes, a monitoring of these metal ions is of great environmental importance. Thick-target PIXE is a powerful method for the determination of trace metals in wood. The TTPIXE method enabled study of variations of the elemental concentrations in lumber treated with CCA impregnation solution. Distribution patterns were obtained for both naturally occurring elements and elements introduced in the treatment process. During the impregnation process a desorption of e.g. alkali metal ions takes place from the wood. The sensitivity of the method is improved by dry ashing of the samples prior to PIXE analysis. The TTPIXE method was calibrated and validated using international certified reference materials (CRM) based on wood material.

  10. Targeting hedgehog signalling by arsenic trioxide reduces cell growth and induces apoptosis in rhabdomyosarcoma.

    Science.gov (United States)

    Boehme, Karen A; Zaborski, Julian J; Riester, Rosa; Schweiss, Sabrina K; Hopp, Ulrike; Traub, Frank; Kluba, Torsten; Handgretinger, Rupert; Schleicher, Sabine B

    2016-02-01

    Rhabdomyosarcomas (RMS) are soft tissue tumours treated with a combination of surgery and chemotherapy. However, mortality rates remain high in case of recurrences and metastatic disease due to drug resistance and failure to undergo apoptosis. Therefore, innovative approaches targeting specific signalling pathways are urgently needed. We analysed the impact of different hedgehog (Hh) pathway inhibitors on growth and survival of six RMS cell lines using MTS assay, colony formation assay, 3D spheroid cultures, flow cytometry and western blotting. Especially the glioma-associated oncogene family (GLI) inhibitor arsenic trioxide (ATO) effectively reduced viability as well as clonal growth and induced cell death in RMS cell lines of embryonal, alveolar and sclerosing, spindle cell subtype, whereas normal skeletal muscle cells were hardly compromised by ATO. Combination of ATO with itraconazole potentiated the reduction of colony formation and spheroid size. These results show that ATO is a promising substance for treatment of relapsed and refractory RMS by directly targeting GLI transcription factors. The combination with itraconazole or other chemotherapeutic drugs has the opportunity to enforce the treatment efficiency of resistant and recurrent RMS.

  11. Microtubules as a Critical Target for Arsenic Toxicity in Lung Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Yinzhi Zhao

    2012-02-01

    Full Text Available To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As3+ on microtubule (MT assembly in vitro (0–40 µM, in cultured rat lung fibroblasts (RFL6, 0–20 µM for 24 h and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks. As3+ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As3+ were concomitant with chromosomal disorientations. As3+ reduced the binding to tubulin of [3H]N-ethylmaleimide (NEM, an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT suggesting As3+ action upon tubulin through -SH groups. In response to As3+, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As3+ and NEM induced MT depolymerization. MT–associated proteins (MAPs essential for the MT stability were markedly suppressed in As3+-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As3+ damage to the lung triggering MT disassembly cascades.

  12. Targeting catalase but not peroxiredoxins enhances arsenic trioxide-induced apoptosis in K562 cells.

    Directory of Open Access Journals (Sweden)

    Li-Li Song

    Full Text Available Despite considerable efficacy of arsenic trioxide (As2O3 in acute promyelocytic leukemia (APL treatment, other non-APL leukemias, such as chronic myeloid leukemia (CML, are less sensitive to As2O3 treatment. However, the underlying mechanism is not well understood. Here we show that relative As2O3-resistant K562 cells have significantly lower ROS levels than As2O3-sensitive NB4 cells. We compared the expression of several antioxidant enzymes in these two cell lines and found that peroxiredoxin 1/2/6 and catalase are expressed at high levels in K562 cells. We further investigated the possible role of peroxirdoxin 1/2/6 and catalase in determining the cellular sensitivity to As2O3. Interestingly, knockdown of peroxiredoxin 1/2/6 did not increase the susceptibility of K562 cells to As2O3. On the contrary, knockdown of catalase markedly enhanced As2O3-induced apoptosis. In addition, we provide evidence that overexpression of BCR/ABL cannot increase the expression of PRDX 1/2/6 and catalase. The current study reveals that the functional role of antioxidant enzymes is cellular context and treatment agents dependent; targeting catalase may represent a novel strategy to improve the efficacy of As2O3 in CML treatment.

  13. Arsenic-induced mitochondrial oxidative damage is mediated by decreased PGC-1α expression and its downstream targets in rat brain.

    Science.gov (United States)

    Prakash, Chandra; Kumar, Vijay

    2016-08-25

    The present study was carried out to investigate the molecular mechanism of arsenic-induced mitochondrial oxidative damage and its relation to biogenesis in rat brain. Chronic sodium arsenite (25 ppm, orally) administration for 12 weeks decreased mitochondrial complexes activities and mRNA expression of selective complexes subunits. The expression of mitochondrial biogenesis regulator PGC-1α, and its downstream targets NRF-1, NRF-2 and Tfam were decreased significantly both at mRNA and protein levels suggesting impaired biogenesis following chronic arsenic-exposure. In addition to this, protein expression analysis also revealed activation of Bax and caspase-3, leading to translocation of cytochrome c from mitochondria to cytosol suggesting induction of apoptotic pathway under oxidative stress. This was further confirmed by electron microscopy study which depicted morphological changes in mitochondria in terms of altered nuclear and mitochondrial shape and chromatin condensation in arsenic-treated rats. The immunohistochemical studies showed both nuclear and cytosolic localization of NRF-1 and NRF-2 in arsenic-exposed rat brain further suggesting regulatory role of these transcription factors under arsenic neurotoxicity. The results of present study indicate that arsenic-induced mitochondrial oxidative damage is associated with decreased mitochondrial biogenesis in rat brain that may present as important target to reveal the mechanism for arsenic-induced neurotoxicity.

  14. Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo.

    Science.gov (United States)

    Zhao, Yinzhi; Toselli, Paul; Li, Wande

    2012-02-01

    To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As³⁺) on microtubule (MT) assembly in vitro (0-40 µM), in cultured rat lung fibroblasts (RFL6, 0-20 µM for 24 h) and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As³⁺ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As³⁺ were concomitant with chromosomal disorientations. As³⁺ reduced the binding to tubulin of [³H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT) suggesting As³⁺ action upon tubulin through -SH groups. In response to As³⁺, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As³⁺ and NEM induced MT depolymerization. MT-associated proteins (MAPs) essential for the MT stability were markedly suppressed in As³⁺-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As³⁺ damage to the lung triggering MT disassembly cascades.

  15. Targeting Safer Aquifer At A Highly Arsenic Contaminated Community; South-Western Bangladesh

    Science.gov (United States)

    Tauhid-Ur-Rahman, Md.

    2010-05-01

    The depositional pattern, geochemistry and mineralogy of the Arsenic (As) contaminated sediments along with the chemistry of groundwaters extracted from the Holocene deposit of an As hotspot, Kalaroa, Southwestern Bangladesh have been investigated in this study. These were done to elucidate a unified view that could explain the accumulation and distribution of As on the sediment surface and its subsequent release into the groundwater. Such view of As distribution mainly helped to find out eventually the possible existence of any safer aquifer that could provide adequate potable water to that targeted community. Two key geochemical parameters, the reaction rate Kr and the partition coefficient, Kd were found to be very promising in explaining the As release mechanism. Showing the realistic natural biotite dissolution process, the in-situ Kr that was derived by applying inverse mass balance model (2.72 × 10-16 /sec), was found to be slower by only three orders of magnitude than that was determined with the laboratory study (3.19×10-13 /sec). A parametric predictor equation, that can calculate the partition coefficient Kd based on the aquifer sediment's minerals such as Fe and Al contents along with pore-water pH was developed in this study. Another Kd model based on the diffuse double layer surface complexation theory has also been developed to compare the appropriateness of the parametric Kd model. These two models were compared with the in-situ based field Kd data and were found in a good agreement. Integrating those two essential geochemical parameters (Kd and Kr), a 1D-Finite Difference numerical model was applied to observe and evaluate the As pollution scenario for the studied Holocene aquifer. The simulation showed very promising results introducing the idea that the deeper aquifer's groundwaters would be remained safe against being contaminated with high As in future, due to the presence of a number of encouraging factors. The most significant among such

  16. Dynamics of arsenic adsorption in the targeted arsenic-safe aquifers in Matlab, south-eastern Bangladesh: Insight from experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Clare, E-mail: crobinson@eng.uwo.ca [Department of Civil and Environmental Engineering, University of Western Ontario, London, N6A 5B9 (Canada)] [NGO Forum for Drinking Water Supply and Sanitation, Lalmatia, Dhaka 1207 (Bangladesh); Broemssen, Mattias von [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)] [Ramboell Sweden AB, Box 4205, SE-102 65 Stockholm (Sweden); Bhattacharya, Prosun; Haeller, Sara; Biven, Annelie [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Hossain, Mohammed [NGO Forum for Drinking Water Supply and Sanitation, Lalmatia, Dhaka 1207 (Bangladesh)] [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Jacks, Gunnar [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Ahmed, Kazi Matin; Hasan, M. Aziz [Department of Geology, University of Dhaka, Dhaka 1000 (Bangladesh); Thunvik, Roger [KTH-International Groundwater Arsenic Research Group, Department of Land and Water Resources Engineering, Royal Institute of Technology, SE-100 44 Stockholm (Sweden)

    2011-04-15

    Research highlights: {yields} Adsorption behaviour of shallow oxidized sediments from Matlab Region in SE Bangladesh is investigated. {yields} Oxidized sediments have a high capacity to adsorb arsenic. {yields} Adsorption capacity will be reduced by high concentration of reactive organic C. {yields} Monitoring of groundwater quality over 5 year period shows relatively stable water chemistry. - Abstract: Targeting shallow low-As aquifers based on sediment colour may be a viable solution for supplying As-safe drinking water to rural communities in some regions of Bangladesh and West Bengal in India. The sustainability of this solution with regard to the long-term risk of As-safe oxidized aquifers becoming enriched with As needs to be assessed. This study focuses on the adsorption behaviour of shallow oxidized sediments from Matlab Region, Bangladesh, and their capacity to attenuate As if cross-contamination of the oxidized aquifers occurs. Water quality analyses of samples collected from 20 tube-wells in the region indicate that while there may be some seasonal variability, the groundwater chemistry in the reduced and oxidized aquifers was relatively stable from 2004 to 2009. Although sediment extractions indicate a relatively low amount of As in the oxidized sediments, below 2.5 mg kg{sup -1}, batch isotherm experiments show that the sediments have a high capacity to adsorb As. Simulations using a surface complexation model that considers adsorption to amorphous Fe(III) oxide minerals only, under-predict the experimental isotherms. This suggests that a large proportion of the adsorption sites in the oxidized sediments may be associated with crystalline Fe(III) oxides, Mn(IV) and Al(III) oxides, and clay minerals. Replicate breakthrough column experiments conducted with lactose added to the influent solution demonstrate that the high adsorption capacity of the oxidized sediments may be reduced if water drawn down into the oxidized aquifers contains high levels of

  17. Nuclear matrix associated protein PML: an arsenic trioxide apoptosis therapeutic target protein in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    于鼎; 王子慧; 朱立元; 邱殷庆

    2003-01-01

    Objective To investigate arsenic trioxide (As2O3)-induced apoptosis and the effects on cell nuclear matrix related protein promyelocytic leukaemia (PML). Methods HepG2 cells were cultured in MEM medium and treated with 0.5, 2, 5 and 10 μmol/L As2O3 for either 24 h or 96 h at each concentration. In situ terminal deoxynucleotidyl transferase (TdT) labeling (TUNEL) and DNA ladders were used to detect apoptosis. Confocal microscopy and Western blotting were used to observe the expression of PML. Results The growth rates of HepG2 cells were slower in the As2O3 treated than the untreated control group. DNA ladder and TUNEL positive apoptotic cells could be detected in As2O3 treated groups. The expression of PML decreased in HepG2 cells with 2 μmol/L As2O3 treatment. Confocal images demonstrated that the expression of PML protein in HepG2 cell nuclei decreased after treatment with 2 μmol/L As2O3, and micropunctates characteristic of PML protein in HepG2 cell nuclei disappeared after treatment with 5 μmol/L As2O3.Conclusions Our results show that arsenic trioxide can significantly inhibit the growth of HepG2 cells in vitro. As2O3 induces apoptosis in HepG2 tumor cells in a time and concentration dependent manner. As2O3 may degrade the PML protein in HepG2 cell nuclei. The decreased expression of PML in As2O3 treated tumor cells is most likely to be caused by apoptosis. Nuclear matrix associated protein PML could be the target of As2O3 therapy.

  18. Risk assessment on mixture toxicity of arsenic, zinc and copper intake from consumption of milkfish, Chanos chanos (Forsskål), cultured using contaminated groundwater in Southwest Taiwan.

    Science.gov (United States)

    Lin, Ming-Chao

    2009-07-01

    Studies on bioaccumulation of arsenic, zinc, and copper in freshwater-cultured milkfish were carried out to assess the risks on human health. The arsenic, zinc, and copper levels in milkfish showed significant positive correlations to the arsenic, zinc, and copper concentrations in pond water. The hazard index of arsenic, zinc, and copper mixture for intake of milkfish (1.75 +/- 0.65) demonstrated that intake of in this way contaminated milkfish will result in non-carcinogenic risk. The target cancer risk of arsenic for intake of the milkfish (2.74 x 10(-4) +/- 1.18 x 10(-4)) indicated that the inhabitants were exposed to arsenic pollution with carcinogenic risk.

  19. New Arsenic Cross Section Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-04

    This report presents calculations for the new arsenic cross section. Cross sections for 73,74,75 As above the resonance range were calculated with a newly developed Hauser-Feshbach code, CoH3.

  20. Arsenic ototoxicity

    Institute of Scientific and Technical Information of China (English)

    Gulin Gokçen Kesici

    2016-01-01

    High levels of arsenic are found in many parts of the world and more than 100 million people may have been exposed to it. There is growing evidence to indicate that arsenic has a deleterious effect on the auditory system. This paper provides the general information of arsenic and its ototoxic effects.

  1. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Schoolmeester, W.L.; White, D.R.

    1980-02-01

    Arsenic poisoning continues to require awareness of its diverse clinical manifestations. Industry is the major source of arsenic exposure. Although epidemiologic studies strongly contend that arsenic is carcinogenic, there are little supportive research data. Arsenic poisoning, both acute and chronic, is often overlooked initially in the evaluation of the patient with multisystem disease, but once it is suspected, many accurate methods are available to quantitate the amount and duration of exposure. Treatment with dimercaprol remains the mainstay of therapy, and early treatment is necessary to prevent irreversible complications.

  2. Arsenic, Anaerobes, and Astrobiology

    Science.gov (United States)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    , Ganymede, Titan or Enceladus (formed by cryo-concentration), arsenotrophy could serve as a credible means of microbial energy conservation. Regrettably, the direct search for arsenic biomarkers is restricted because only one stable isotope exists (75As), which rules out the use of stable isotopic ratios in this regard. However, antimony oxyanions often co-occur with arsenic in the environment. Its two stable isotopes (123Sb and 121Sb) hold the potential to be exploited as a proxy isotopic biomarker for the fingerprint of microbial arsenotrophy. Whether such an approach is feasible needs to be investigated.

  3. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Low, D.G.

    1971-01-01

    The use of arsenic in ant poisons, herbicides, and insecticides affords the necessary contact with the poison by pets. Treatment was discussed in relation to two circumstances: very early poisoning in which the owner has observed ingestion of the arsenic, and when the signs of the poisoning are evident. Treatment for early ingestion involves emptying the stomach before the arsenic can pass in quantity into the intestine. This is followed with a 1% solution of sodium bicarbonate, with the administering of 3 to 6 mg of apomorphine. When signs of arsenic toxicity are already advanced, there is little advantage to be gained by either gastric lavage or administration of an emetic. The treatment then consists of the intramuscular administration of dimercaprol (BAL) at a dosage of 3 mg/lb of body weight three times a day until recovery. This is the specific antidote for arsenic. 1 reference.

  4. Neutrons produced by 75MeV/u 12C—ion on thick targets

    Institute of Scientific and Technical Information of China (English)

    LiGisheng; ZHANGTianmei; 等

    1999-01-01

    Fluence rates and angular distributions of the neutron emitted by 75MeV/u 12C-ion bombardment on thick Be and Au targets have been measured by means of the threshold detector activation method.Based on that,the neutron yields,emission rates in the forward direction and neutron dose equivalent rate distributions were deduced.

  5. 75 FR 35919 - Investment Company Advertising: Target Date Retirement Fund Names and Marketing

    Science.gov (United States)

    2010-06-23

    ... Names and Marketing; Proposed Rule #0;#0;Federal Register / Vol. 75 , No. 120 / Wednesday, June 23, 2010... Company Advertising: Target Date Retirement Fund Names and Marketing AGENCY: Securities and Exchange... name in marketing materials. The Commission is also proposing amendments to rule 482 and rule...

  6. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Jaroslav, S.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3 to 7 km. Settled fly-ash contained 0.0004 to 0.75 percent arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed.

  7. Poisoning of bees by industrial arsenic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, J.

    1962-01-01

    Massive poisoning of bees by industrial arsenic emissions in Czechoslovakia are reviewed. Arsenic emissions from an ore processing plant in Tesin were responsible for massive bee deaths after World War I. Massive death of bees was observed in 1938 in the Krompach region around a copper ore smelting plant which emitted arsenic. Other accidents were reported in 1954 and 1957 in areas around industrial plants and power plants using arsenopyrite-containing low-grade coal or lignite. Arsenic was emitted bound in fly-ash in the form of arsenic trioxide or, in the case of coals containing alkaline chlorides, in the form of arsenic trichloride. The arsenic contamination extended to areas within a radius of 3-7 km. Settled fly-ash contained 0.0004-0.75% arsenic, which was soluble in a citrate-hydrochloric acid solution of pH 3.9, which corresponds to the gastric acid of bees. The arsenic uptake by the bees from pollen was calculated to amount to 1 microgram daily, against a toxic dose of 0.37 microgram. The toxic effect of arsenic on bees can be abated by adding colloidal iron hydroxide to the sugar solution which they are fed. 5 references.

  8. Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy.

    Science.gov (United States)

    Talekar, Meghna; Ganta, Srinivas; Amiji, Mansoor; Jamieson, Stephen; Kendall, Jackie; Denny, William A; Garg, Sanjay

    2013-06-25

    PIK-75 is a phosphatidylinositol 3-kinase (PI3K) inhibitor that shows selectivity toward p110-α over the other PI3K class Ia isoforms p110-β and p110-δ, but it lacks solubility, stability and other kinase selectivity. The purpose of this study was to develop folate-targeted PIK-75 nanosuspension for tumor targeted delivery and to improve therapeutic efficacy in human ovarian cancer model. High pressure homogenization was used to prepare the non-targeted and targeted PIK-75 nanosuspensions which were characterized for size, zeta potential, entrapment efficiency, morphology, saturation solubility and dissolution velocity. In vitro analysis of drug uptake, cell viability and cell survival was conducted in SKOV-3 cells. Drug pharmacokinetics and pAkt expression were determined in SKOV-3 tumor bearing mice. PIK-75 nanosuspensions showed an improvement in dissolution velocity and an 11-fold increase in saturation solubility over pre-milled PIK-75. In vitro studies in SKOV-3 cells indicated a 2-fold improvement in drug uptake and 0.4-fold decrease in IC50 value of PIK-75 following treatment with targeted nanosuspension compared to non-targeted nanosuspension. The improvement in cytotoxicity was attributed to an increase in caspase 3/7 and hROS activity. In vivo studies indicated a 5-10-fold increased PIK-75 accumulation in the tumor with both the nanosuspension formulations compared to PIK-75 suspension. The targeted nanosuspension showed an enhanced downregulation of pAkt compared to non-targeted formulation system. These results illustrate the opportunity to formulate PIK-75 as a targeted nanosuspension to enhance uptake and cytotoxicity of the drug in tumor.

  9. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Low, D.G.

    1974-01-01

    The use of arsenic in ant poisons, herbicides, and insecticides affords the necessary contact with the poison by pets. The gastrointestinal tract appears to suffer the greatest though there may also be injury to the liver and kidneys. The treatments discussed were in relation to very early poisoning in which the owner had observed ingestion of the arsenic, and when the signs of the poisoning were evident. Early observation treatment included emptying the stomach before the arsenic passed in quantity into the intestine. If the signs of toxicity were already advanced, then the treatment consisted of the intramuscular administration of dimercaprol (BAL) at a dosage of 3 mg/lb of body weight three times a day until recovery. l reference.

  10. Arsenic poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Furr, A.

    1977-01-01

    The route of arsenic exposure is usually by ingestion, thus the veterinarian is concerned with treating either an acute or a peracute condition. The arsenic compounds are considered to be highly toxic with a rapid onset of clinical signs. The toxicity and rapidity of onset are variable, depending upon the age and the species of animal. The chemical form and solubility of the toxicant also play a role in the course of the clinical syndrome. Inorganic arsenicals inhibit the sulfhydryl enzyme systems which are essential for normal cellular respiration and for metabolism of fats and carbohydrates. Therapeutic measures are intended to either remove or inactivate the unabsorbed material in the intestine, protect the alimentary tract, reverse the toxic syndrome and restore the homeostatic equilibrium of the animal. 5 references.

  11. Oxidative DNA damage of peripheral blood polymorphonuclear leukocytes, selectively induced by chronic arsenic exposure, is associated with extent of arsenic-related skin lesions

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Qiuling, E-mail: 924969007@qq.com [Department of Toxicology, Public Health College, Shanxi Medical University, No 56 Xin Jian Nan Lu, Taiyuan (030001) (China); Ma, Ning [Faculty of Health Science, Suzuka University of Medical Science, Suzuka, 510-0293 (Japan); Zhang, Jing; Xu, Wenchao; Li, Yong; Ma, Zhifeng; Li, Yunyun; Tian, Fengjie; Zhang, Wenping [Department of Toxicology, Public Health College, Shanxi Medical University, No 56 Xin Jian Nan Lu, Taiyuan (030001) (China); Mu, Jinjun [The Second Hospital, Shanxi Medical University, Taiyuan (030001) (China); Li, Yuanfei [The First Hospital, Shanxi Medical University, Taiyuan (030001) (China); Wang, Dongxing; Liu, Haifang; Yang, Mimi; Ma, Caifeng; Yun, Fen [Department of Toxicology, Public Health College, Shanxi Medical University, No 56 Xin Jian Nan Lu, Taiyuan (030001) (China)

    2013-01-01

    There is increasing evidence that oxidative stress is an important risk factor for arsenic-related diseases. Peripheral blood leukocytes constitute an important defense against microorganisms or pathogens, while the research on the impact of chronic arsenic exposure on peripheral blood leukocytes is much more limited, especially at low level arsenic exposure. The purpose of the present study was to explore whether chronic arsenic exposure affects oxidative stress of peripheral blood leukocytes and possible linkages between oxidative stress and arsenic-induced skin lesions. 75 male inhabitants recruited from an As-endemic region of China were investigated in the present study. The classification of arsenicosis was based on the degree of skin lesions. Arsenic levels were measured in drinking water and urine by Atomic Fluorescence Spectroscopy. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) was tested by Enzyme-Linked Immunosorbent Assay. 8-OHdG of peripheral blood leukocytes was evaluated using immunocytochemical staining. 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs), but not in monocytes (MNs). The 8-OHdG staining of PMN cytoplasm was observed in all investigated populations, while the 8-OHdG staining of PMN nuclei was frequently found along with the elevated amounts of cell debris in individuals with skin lesion. Urinary arsenic levels were increased in the severe skin lesion group compared with the normal group. No relationship was observed between drinking water arsenic or urine 8-OHdG and the degree of skin lesions. These findings indicated that the target and persistent oxidative stress in peripheral blood PMNs may be employed as a sensitive biomarker directly to assess adverse health effects caused by chronic exposure to lower levels of arsenic. -- Highlights: ► Male inhabitants were investigated from an As-endemic region of China. ► 8-OHdG-positive reactions were only present in polymorphonuclear leukocytes (PMNs).

  12. Arsenic in Food

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants Metals Arsenic Share ... of the Method used to Measure Arsenic in Foods Inductively Coupled Plasma-Mass Spectrometric Determination of Arsenic, ...

  13. Stress proteins induced by arsenic.

    Science.gov (United States)

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  14. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic.

    Science.gov (United States)

    Zhang, Hai-Nan; Yang, Lina; Ling, Jian-Ya; Czajkowsky, Daniel M; Wang, Jing-Fang; Zhang, Xiao-Wei; Zhou, Yi-Ming; Ge, Feng; Yang, Ming-Kun; Xiong, Qian; Guo, Shu-Juan; Le, Huang-Ying; Wu, Song-Fang; Yan, Wei; Liu, Bingya; Zhu, Heng; Chen, Zhu; Tao, Sheng-Ce

    2015-12-01

    Arsenic is highly effective for treating acute promyelocytic leukemia (APL) and has shown significant promise against many other tumors. However, although its mechanistic effects in APL are established, its broader anticancer mode of action is not understood. In this study, using a human proteome microarray, we identified 360 proteins that specifically bind arsenic. Among the most highly enriched proteins in this set are those in the glycolysis pathway, including the rate-limiting enzyme in glycolysis, hexokinase-1. Detailed biochemical and metabolomics analyses of the highly homologous hexokinase-2 (HK2), which is overexpressed in many cancers, revealed significant inhibition by arsenic. Furthermore, overexpression of HK2 rescued cells from arsenic-induced apoptosis. Our results thus strongly implicate glycolysis, and HK2 in particular, as a key target of arsenic. Moreover, the arsenic-binding proteins identified in this work are expected to serve as a valuable resource for the development of synergistic antitumor therapeutic strategies.

  15. Identification of small peptides inhibiting the integrase-LEDGF/p75 interaction through targeting the cellular co-factor.

    Science.gov (United States)

    Cavalluzzo, Claudia; Christ, Frauke; Voet, Arnout; Sharma, Ajendra; Singh, Brajendra Kumar; Zhang, Kam Y J; Lescrinier, Eveline; De Maeyer, Marc; Debyser, Zeger; Van der Eycken, Erik

    2013-10-01

    The integration of the viral DNA into the host genome is one of the essential steps in the HIV replication cycle. This process is mediated by the viral enzyme integrase (IN) and lens epithelium-derived growth factor (LEDGF/p75). LEDGF/p75 has been identified as a crucial cellular co-factor of integration that acts by tethering IN to the cellular chromatin. Recently, circular peptides were identified that bind to the C-terminal domain of IN and disrupt the interaction with LEDGF/p75. Starting from the circular peptides, we identified a short peptidic sequence able to inhibit the LEDGF/p75-IN interaction at low μM concentration through its binding to the IN binding site of LEDGF/p75. This discovery can lead to the synthesis of peptidomimetics with high anti-HIV activity targeting the cellular co-factor LEDGF/p75 and not the viral protein IN.

  16. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  17. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  18. Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India.

    Science.gov (United States)

    Srivastava, Saumya; Sharma, Yogesh Kumar

    2013-06-01

    Arsenic in the soil and water of eastern districts of Uttar Pradesh (Ballia and Ghazipur) was estimated. Survey results revealed that arsenic in soil samples ranged from 5.40 to 15.43 parts per million (ppm). In water samples, it ranged from 43.75 to 620.75 parts per billion (ppb) which far exceeded the permissible limit of 10 ppb as recommended by the World Health Organization. Maximum concentration of arsenic in water was found in Haldi village of Ballia (620.75 ppb). However, mean arsenic concentration in water followed the order: Karkatpur (257.21 ppb) soil, maximum arsenic was detected in soil of Sohaon (15.43 ppm). Mean arsenic levels in soils followed the order: Karkatpur (9.24 ppm) Arsenic levels were higher in soils collected from 15-30 cm depth than 0-15 cm from the soil surface.

  19. Rapid detection of arsenic minerals using portable broadband NQR

    Science.gov (United States)

    Lehmann-Horn, J. A.; Miljak, D. G.; O'Dell, L. A.; Yong, R.; Bastow, T. J.

    2014-10-01

    The remote real-time detection of specific arsenic species would significantly benefit in minerals processing to mitigate the release of arsenic into aquatic environments and aid in selective mining. At present, there are no technologies available to detect arsenic minerals in bulk volumes outside of laboratories. Here we report on the first room-temperature broadband 75As nuclear quadrupole resonance (NQR) detection of common and abundant arsenic ores in the Earth crust using a large sample (0.78 L) volume prototype sensor. Broadband excitation aids in detection of natural minerals with low crystallinity. We briefly discuss how the proposed NQR detector could be employed in mining operations.

  20. Routine clinical determination of lead, arsenic, cadmium, and thallium in urine and whole blood by inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Nixon, David E.; Moyer, Thomas P.

    1996-01-01

    For the measurement of As, Cd, Pb, and Tl in urine or whole blood, judicious choices of internal standard elements for matrix correction and the development of a refined isobaric arsenic correction are necessary to produce accurate ICP-MS results. Ga and Rh are chosen as internal standards for As and Cd respectively. Bi is better for the correction of Pb and Tl than Re. An empirically derived equation relating the measurement of 16O 35Cl to the 40Ar 35Cl contribution to the arsenic signal at mass 75 is refined by measuring the responses at mass 51 and 75 for urines with added hydrochloric acid. Overall, ICP-MS results for blood and urine are within 6% of Zeeman GFAAS results for patient samples. For surveys, the overall average of ICP-MS results is within 3% of target.

  1. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Guo, Weiwei; Yan, Lichong; Yang, Ling; Liu, Xiaoyu; E, Qiukai; Gao, Peiye; Ye, Xiaofei; Liu, Wen; Zuo, Ji

    2014-01-01

    Heat shock protein 90 (HSP90) inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70) family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  2. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiwei Guo

    Full Text Available Heat shock protein 90 (HSP90 inhibitors are potential drugs for cancer therapy. The inhibition of HSP90 on cancer cell growth largely through degrading client proteins, like Akt and p53, therefore, triggering cancer cell apoptosis. Here, we show that the HSP90 inhibitor 17-AAG can induce the expression of GRP75, a member of heat shock protein 70 (HSP70 family, which, in turn, attenuates the anti-growth effect of HSP90 inhibition on cancer cells. Additionally, 17-AAG enhanced binding of GRP75 and p53, resulting in the retention of p53 in the cytoplasm. Blocking GRP75 with its inhibitor MKT-077 potentiated the anti-tumor effects of 17-AAG by disrupting the formation of GRP75-p53 complexes, thereby facilitating translocation of p53 into the nuclei and leading to the induction of apoptosis-related genes. Finally, dual inhibition of HSP90 and GRP75 was found to significantly inhibit tumor growth in a liver cancer xenograft model. In conclusion, the GRP75 inhibitor MKT-077 enhances 17-AAG-induced apoptosis in HCCs and increases p53-mediated inhibition of tumor growth in vivo. Dual targeting of GRP75 and HSP90 may be a useful strategy for the treatment of HCCs.

  3. Cryptic exposure to arsenic.

    Science.gov (United States)

    Rossy, Kathleen M; Janusz, Christopher A; Schwartz, Robert A

    2005-01-01

    Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic) and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  4. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  5. Cryptic exposure to arsenic

    Directory of Open Access Journals (Sweden)

    Rossy Kathleen

    2005-01-01

    Full Text Available Arsenic is an odorless, colorless and tasteless element long linked with effects on the skin and viscera. Exposure to it may be cryptic. Although human intake can occur from four forms, elemental, inorganic (trivalent and pentavalent arsenic and organic arsenic, the trivalent inorganic arsenicals constitute the major human hazard. Arsenic usually reaches the skin from occupational, therapeutic, or environmental exposure, although it still may be employed as a poison. Occupations involving new technologies are not exempt from arsenic exposure. Its acute and chronic effects are noteworthy. Treatment options exist for arsenic-induced pathology, but prevention of toxicity remains the main focus. Vitamin and mineral supplementation may play a role in the treatment of arsenic toxicity.

  6. Arsenic speciation patterns in freshwater fish.

    Science.gov (United States)

    Slejkovec, Zdenka; Bajc, Zlatka; Doganoc, Darinka Z

    2004-04-19

    Muscle of 16 freshwater fish (9 different species belonging to 4 different families) was analysed for arsenic species using HPLC separation (anion and cation exchange) followed by on-line UV-decomposition, hydride generation and AFS detection. The main arsenic compounds found in the extracts were arsenobetaine (AsB), which accounted for 92-100% of extractable arsenic in species of salmonids (Salmo marmoratus, Oncorhynchus mykiss, Salmo trutta m. fario), and dimethylarsinic acid (DMAA), which accounted for 75% of extractable arsenic in burbot (Lota lota). AsB was also found in lower concentrations in almost all other fish species analysed (Silurus glanis, L. lota, Barbus barbus, Rutilus pigus virgo, Chondrostoma nasus). Arsenite (As(III)) and trimethylarsine oxide (TMAO) were detected in low concentrations in some representatives of Cyprinidae only (R. pigus virgo, C. nasus). Except in salmonids, an unknown cationic compound was present in most of the samples in relatively low concentrations. Cluster analysis of the generated data seems to indicate that there is a correlation between fish family and the arsenic speciation pattern. This is especially clear for the salmonids which show a completely separate cluster and thus a very distinct arsenic speciation pattern.

  7. Arsenic in North Carolina: public health implications.

    Science.gov (United States)

    Sanders, Alison P; Messier, Kyle P; Shehee, Mina; Rudo, Kenneth; Serre, Marc L; Fry, Rebecca C

    2012-01-01

    Arsenic is a known human carcinogen and relevant environmental contaminant in drinking water systems. We set out to comprehensively examine statewide arsenic trends and identify areas of public health concern. Specifically, arsenic trends in North Carolina private wells were evaluated over an eleven-year period using the North Carolina Department of Health and Human Services database for private domestic well waters. We geocoded over 63,000 domestic well measurements by applying a novel geocoding algorithm and error validation scheme. Arsenic measurements and geographical coordinates for database entries were mapped using Geographic Information System techniques. Furthermore, we employed a Bayesian Maximum Entropy (BME) geostatistical framework, which accounts for geocoding error to better estimate arsenic values across the state and identify trends for unmonitored locations. Of the approximately 63,000 monitored wells, 7712 showed detectable arsenic concentrations that ranged between 1 and 806μg/L. Additionally, 1436 well samples exceeded the EPA drinking water standard. We reveal counties of concern and demonstrate a historical pattern of elevated arsenic in some counties, particularly those located along the Carolina terrane (Carolina slate belt). We analyzed these data in the context of populations using private well water and identify counties for targeted monitoring, such as Stanly and Union Counties. By spatiotemporally mapping these data, our BME estimate revealed arsenic trends at unmonitored locations within counties and better predicted well concentrations when compared to the classical kriging method. This study reveals relevant information on the location of arsenic-contaminated private domestic wells in North Carolina and indicates potential areas at increased risk for adverse health outcomes.

  8. Arsenic pollution sources.

    Science.gov (United States)

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  9. Arsenic removal from water

    Science.gov (United States)

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  10. Arsenic poisoning in livestock.

    Science.gov (United States)

    el Bahri, L; Ben Romdane, S

    1991-06-01

    Arsenic is an important heavy metal intoxicant to livestock. Arsenical pesticides present significant hazards to animal health. The toxicity of arsenic varies with several factors--its chemical form, oxidation states, solubility. The phenylarsonic compounds are the least toxic and are used as feed additives in swine and poultry rations. However, roxarsone has a higher absolute toxicity than arsanilic acid. The mechanism of action is related to its reaction with sulfhydryl groups values to enzyme function and to its ability to uncouple oxydative phosphorylation. Most animals excrete arsenic quite readily. Toxicoses caused by inorganic and aliphatic organic arsenicals result in a different clinical syndrome than that from the phenylarsonic compounds. Arsenic poisoning may be confused with other types of intoxication. The specific antidote for inorganic arsenical poisoning is dimercaprol (BAL).

  11. Arsenic cardiotoxicity: An overview.

    Science.gov (United States)

    Alamolhodaei, Nafiseh Sadat; Shirani, Kobra; Karimi, Gholamreza

    2015-11-01

    Arsenic, a naturally ubiquitous element, is found in foods and environment. Cardiac dysfunction is one of the major causes of morbidity and mortality in the world. Arsenic exposure is associated with various cardiopathologic effects including ischemia, arrhythmia and heart failure. Possible mechanisms of arsenic cardiotoxicity include oxidative stress, DNA fragmentation, apoptosis and functional changes of ion channels. Several evidences have shown that mitochondrial disruption, caspase activation, MAPK signaling and p53 are the pathways for arsenic induced apoptosis. Arsenic trioxide is an effective and potent antitumor agent used in patients with acute promyelocytic leukemia and produces dramatic remissions. As2O3 administration has major limitations such as T wave changes, QT prolongation and sudden death in humans. In this review, we discuss the underlying pathobiology of arsenic cardiotoxicity and provide information about cardiac health effects associated with some medicinal plants in arsenic toxicity.

  12. Disruption of Mitotic Progression by Arsenic.

    Science.gov (United States)

    States, J Christopher

    2015-07-01

    Arsenic is an enigmatic xenobiotic that causes a multitude of chronic diseases including cancer and also is a therapeutic with promise in cancer treatment. Arsenic causes mitotic delay and induces aneuploidy in diploid human cells. In contrast, arsenic causes mitotic arrest followed by an apoptotic death in a multitude of virally transformed cells and cancer cells. We have explored the hypothesis that these differential effects of arsenic exposure are related by arsenic disruption of mitosis and are differentiated by the target cell's ability to regulate or modify cell cycle checkpoints. Functional p53/CDKN1A axis has been shown to mitigate the mitotic block and to be essential to induction of aneuploidy. More recent preliminary data suggest that microRNA modulation of chromatid cohesion also may play a role in escape from mitotic block and in generation of chromosomal instability. Other recent studies suggest that arsenic may be useful in treatment of solid tumors when used in combination with other cytotoxic agents such as cisplatin.

  13. Determining the solid phases hosting arsenic in Mekong Delta sediments

    Science.gov (United States)

    Wucher, M.; Stuckey, J. W.; McCurdy, S.; Fendorf, S.

    2011-12-01

    The major river systems originating from the Himalaya deposit arsenic bearing sediment into the deltas of South and Southeast Asia. High rates of sediment and organic carbon deposition combined with frequent flooding leads to anaerobic processes that release arsenic into the pore-water. Arsenic concentrations in the groundwater of these sedimentary basins are often above the World Health Organization drinking water standard of 10 μg As L-1. As a result, 150 million people are at risk of chronic arsenic poisoning through water and rice consumption. The composition of the iron bearing phases hosting the arsenic in these deltaic sediments is poorly understood. Here we implemented a suite of selective chemical extractions to help constrain the types of arsenic bearing solid phases, which were complimented with synchrotron-based X-ray absorption spectroscopy and X-ray diffraction analyses to define the arsenic and iron mineralogy of the system. Sediment cores were collected in triplicate from a seasonally-inundated wetland in Cambodia at depths of 10, 50, 100, and 150 centimeters. We hypothesize that (i) arsenic will be predominantly associated with iron oxides, and (ii) the ratio of crystalline to amorphous iron oxides will increase with sediment depth (and age). We performed four selective extractions in parallel to quantify the various pools of arsenic. First, 1 M MgCl2 was used to extract electrostatically-bound arsenic (labile forms) from the sediment. Second, 1 M NaH2PO4 targeted strongly adsorbed arsenic. Third, 1 M HCl was used to liberated arsenic coprecipitated with amorphous Fe/Mn oxides, carbonates, and acid-volatile sulfides. Finally, a dithionite extraction was used to account for arsenic associated with reducible Fe/Mn oxides. Through this work, we identified the composition of the phases hosting arsenic at various depths through the soil profile, improving our understanding of how arsenic persists in the aquifer. In addition, defining the arsenic and

  14. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    OpenAIRE

    Harris, Robin B.; Burgess, Jefferey L; Maria Mercedes Meza-Montenegro; Luis Enrique Gutiérrez-Millán; Mary Kay O’Rourke; Jason Roberge

    2012-01-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and...

  15. 75 FR 26939 - Target Corporation: Provisional Acceptance of a Settlement Agreement and Order

    Science.gov (United States)

    2010-05-13

    ... COMMISSION Target Corporation: Provisional Acceptance of a Settlement Agreement and Order AGENCY: Consumer... for the enforcement of the CPSA. 3. Target is a corporation organized and existing under the laws of... May 2006 and August 2007, Target sold, manufactured for sale, offered for sale, distributed...

  16. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    Science.gov (United States)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  17. Arsenic Removal by Liquid Membranes

    Directory of Open Access Journals (Sweden)

    Tiziana Marino

    2015-03-01

    Full Text Available Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III and As(V from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration.

  18. Kinetic and thermodynamic aspects of adsorption of arsenic onto granular ferric hydroxide (GFH).

    Science.gov (United States)

    Banerjee, Kashi; Amy, Gary L; Prevost, Michele; Nour, Shokoufeh; Jekel, Martin; Gallagher, Paul M; Blumenschein, Charles D

    2008-07-01

    Relatively limited information is available regarding the impacts of temperature on the adsorption kinetics and equilibrium capacities of granular ferric hydroxide (GFH) for arsenic (V) and arsenic (III) in an aqueous solution. In general, very little information is available on the kinetics and thermodynamic aspects of adsorption of arsenic compounds onto other iron oxide-based adsorbents as well. In order to gain an understanding of the adsorption process kinetics, a detailed study was conducted in a controlled batch system. The effects of temperature and pH on the adsorption rates of arsenic (V) and arsenic (III) were investigated. Reaction rate constants were calculated at pH levels of 6.5 and 7.5. Rate data are best described by a pseudo first-order kinetic model at each temperature and pH condition studied. At lower pH values, arsenic (V) exhibits greater removal rates than arsenic (III). An increase in temperature increases the overall adsorption reaction rate constant values for both arsenic (V) and arsenic (III). An examination of thermodynamic parameters shows that the adsorption of arsenic (V) as well as arsenic (III) by GFH is an endothermic process and is spontaneous at the specific temperatures investigated.

  19. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer

    Science.gov (United States)

    Shah, Palak; Trinh, Elaine; Qiang, Lei; Xie, Lishi; Hu, Wen-Yang; Prins, Gail S.; Pi, Jingbo; He, Yu-Ying

    2017-01-01

    Exposure to inorganic arsenic in contaminated drinking water poses an environmental public health threat for hundreds of millions of people in the US and around the world. Arsenic is a known carcinogen for skin cancer. However, the mechanism by which arsenic induces skin cancer remains poorly understood. Here, we have shown that arsenic induces p62 expression in an autophagy-independent manner in human HaCaT keratinocytes. In mouse skin, chronic arsenic exposure through drinking water increases p62 protein levels in the epidermis. Nrf2 is required for basal and arsenic-induced p62 up-regulation. p62 knockdown reduces arsenic-induced Nrf2 activity, and induces sustained p21 up-regulation. p62 induction is associated with increased proliferation in mouse epidermis. p62 knockdown had little effect on arsenic-induced apoptosis, while it decreased cell proliferation following arsenic treatment. Our findings indicate that arsenic induces p62 expression to regulate the Nrf2 pathway in human keratinocytes and suggest that targeting p62 may help prevent arsenic-induced skin cancer. PMID:28125038

  20. Strain differences in arsenic-induced oxidative lesion via arsenic biomethylation between C57BL/6J and 129X1/SvJ mice

    Science.gov (United States)

    Wu, Ruirui; Wu, Xiafang; Wang, Huihui; Fang, Xin; Li, Yongfang; Gao, Lanyue; Sun, Guifan; Pi, Jingbo; Xu, Yuanyuan

    2017-01-01

    Arsenic is a common environmental and occupational toxicant with dramatic species differences in its susceptibility and metabolism. Mouse strain variability may provide a better understanding of the arsenic pathological profile but is largely unknown. Here we investigated oxidative lesion induced by acute arsenic exposure in the two frequently used mouse strains C57BL/6J and 129X1/SvJ in classical gene targeting technique. A dose of 5 mg/kg body weight arsenic led to a significant alteration of blood glutathione towards oxidized redox potential and increased hepatic malondialdehyde content in C57BL/6J mice, but not in 129X1/SvJ mice. Hepatic antioxidant enzymes were induced by arsenic in transcription in both strains and many were higher in C57BL/6J than 129X1/SvJ mice. Arsenic profiles in the liver, blood and urine and transcription of genes encoding enzymes involved in arsenic biomethylation all indicate a higher arsenic methylation capacity, which contributes to a faster hepatic arsenic excretion, in 129X1/SvJ mice than C57BL/6J mice. Taken together, C57BL/6J mice are more susceptible to oxidative hepatic injury compared with 129X1/SvJ mice after acute arsenic exposure, which is closely associated with arsenic methylation pattern of the two strains. PMID:28303940

  1. Arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Reagor, J.C.

    Reports of heavy metal intoxication submitted to the Texas Veterinary Medical Diagnostic Laboratory indicate that arsenic is the most common heavy metal intoxicant in Texas. The most frequent sources of arsenic are compounds used as herbicides and cotton defoliants. The misuse of these compounds and subsequent intoxication of cattle is discussed in this paper. 8 references, 1 table.

  2. [Acute arsenic poisoning].

    Science.gov (United States)

    Montelescaut, Etienne; Vermeersch, Véronique; Commandeur, Diane; Huynh, Sophie; Danguy des Deserts, Marc; Sapin, Jeanne; Ould-Ahmed, Mehdi; Drouillard, Isabelle

    2014-01-01

    Acute arsenic poisoning is a rare cause of suicide attempt. It causes a multiple organs failure caused by cardiogenic shock. We report the case of a patient admitted twelve hours after an ingestion of trioxide arsenic having survived thanks to a premature treatment.

  3. Sustainable engineered processes to mitigate the global arsenic crisis in drinking water: challenges and progress.

    Science.gov (United States)

    Sarkar, Sudipta; Greenleaf, John E; Gupta, Anirban; Uy, Davin; Sengupta, Arup K

    2012-01-01

    Millions of people around the world are currently living under the threat of developing serious health problems owing to ingestion of dangerous concentrations of arsenic through their drinking water. In many places, treatment of arsenic-contaminated water is an urgent necessity owing to a lack of safe alternative sources. Sustainable production of arsenic-safe water from an arsenic-contaminated raw water source is currently a challenge. Despite the successful development in the laboratory of technologies for arsenic remediation, few have been successful in the field. A sustainable arsenic-remediation technology should be robust, composed of local resources, and user-friendly as well as must attach special consideration to the social, economic, cultural, traditional, and environmental aspects of the target community. One such technology is in operation on the Indian subcontinent. Wide-scale replication of this technology with adequate improvisation can solve the arsenic crisis prevalent in the developing world.

  4. Binational Arsenic Exposure Survey: Methodology and Estimated Arsenic Intake from Drinking Water and Urinary Arsenic Concentrations

    Directory of Open Access Journals (Sweden)

    Robin B. Harris

    2012-03-01

    Full Text Available The Binational Arsenic Exposure Survey (BAsES was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001, urinary inorganic arsenic concentration (p < 0.001, and urinary sum of species (p < 0.001. Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  5. Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations.

    Science.gov (United States)

    Roberge, Jason; O'Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L; Harris, Robin B

    2012-04-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  6. Associations of arsenic metabolites, methylation capacity, and skin lesions caused by chronic exposure to high arsenic in tube well water.

    Science.gov (United States)

    Yang, Linsheng; Chai, Yuanqing; Yu, Jiangping; Wei, Binggan; Xia, Yajuan; Wu, Kegong; Gao, Jianwei; Guo, Zhiwei; Cui, Na

    2017-01-01

    To investigate the interaction between skin lesion status and arsenic methylation profiles, the concentrations and proportions of arsenic metabolites in urine and arsenic methylation capacities of study subjects were determined. The results showed that the mean urinary concentrations of iAs (inorganic arsenic), MMA (monomethylarsonic acid), DMA (dimethylarsinic acid), and TAs (total arsenic) were 75.65, 68.78, 265.81, and 410.24 μg/L, respectively, in the skin lesions subjects. The highest values were observed in the multiple skin lesions subjects. Higher %iAs and %MMA, and lower %DMA, PMI (primary methylation index), and SMI (secondary methylation index) were found in skin lesions subjects. The multiple skin lesions subjects had highest %iAs and %MMA, and lowest %DMA, PMI, and SMI. The prevalence of skin lesions strongly, positively correlated with arsenic levels in drinking water. The elder persons also had higher frequency of skin lesions compared with younger persons. It can be concluded that arsenic levels in drinking water significantly affected the prevalence of skin lesions. Male subjects usually had higher proportions of skin lesions when compared with female subjects. Moreover, it may be concluded that MMA was significantly related to single skin lesion, whereas DMA and iAs were associated with multiple skin lesions. It seemed that MMA had greater toxicity to hyperkeratosis, whereas DMA and iAs had higher toxicity to depigmentation or pigmentation. © 2015 Wiley Periodicals, Inc. Environ Toxicol 32: 28-36, 2017.

  7. ENZYMOLOGY OF ARSENIC METHYLATION

    Science.gov (United States)

    Enzymology of Arsenic MethylationDavid J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  8. Toxic Substances Portal- Arsenic

    Science.gov (United States)

    ... a naturally occurring element widely distributed in the earth's crust. In the environment, arsenic is combined with ... workplace air (10 µg/m 3 ) for 8 hour shifts and 40 hour work weeks. top References ...

  9. Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xuefeng, E-mail: xuefengr@buffalo.edu [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Gaile, Daniel P. [Department of Biostatistics, School of Public Health and Health Professions, the State University of New York, Buffalo, NY 14214 (United States); Gong, Zhihong [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Qiu, Wenting [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Ge, Yichen [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Zhang, Chuanwu; Huang, Chenping; Yan, Hongtao [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China); Olson, James R. [Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York, Buffalo, NY 14214 (United States); Department of Pharmacology and Toxicology, School of Biomedical Sciences, The State University of New York, Buffalo, NY 14214 (United States); Kavanagh, Terrance J. [Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 (United States); Wu, Hongmei, E-mail: hongmeiwwu@hotmail.com [School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035 (China)

    2015-03-15

    Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100 mg/L) for 60 days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate–cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress. - Highlights: • Chronic arsenic exposure induces changes of hepatic miRNA expression profiles. • Hepatic GCL activity and GSH level in rats are altered following arsenic exposure. • Arsenic induced GCL expression change is

  10. EXAFS study on arsenic species and transformation in arsenic hyperaccumulator

    Institute of Scientific and Technical Information of China (English)

    HUANG Zechun; CHEN Tongbin; LEI Mei; HU Tiandou; HUANG Qifei

    2004-01-01

    Synchrotron radiation extended X-ray absorption fine structure (SR EXAFS) was employed to study the transformation of coordination environment and the redox speciation of arsenic in a newly discovered arsenic hyperaccumulator, Cretan brake (Pteris cretica L. var nervosa Thunb). It showed that the arsenic in the plant mainly coordinated with oxygen, except that some arsenic coordinated with S as As-GSH in root. The complexation of arsenic with GSH might not be the predominant detoxification mechanism in Cretan brake. Although some arsenic in root presented as As(V) in Na2HAsO4 treatments, most of arsenic in plant presented as As(III)-O in both treatments, indicating that As(V) tended to be reduced to As(III) after it was taken up into the root, and arsenic was kept as As(III) when it was transported to the above-ground tissues. The reduction of As(V) primarily proceeded in the root.

  11. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia

    Science.gov (United States)

    Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin

    2016-01-01

    Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and total organic carbon (TOC). Sequencing results revealed that a total of 329–2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate

  12. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia.

    Science.gov (United States)

    Wang, Yanhong; Li, Ping; Jiang, Zhou; Sinkkonen, Aki; Wang, Shi; Tu, Jin; Wei, Dazhun; Dong, Hailiang; Wang, Yanxin

    2016-01-01

    Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with [Formula: see text] and total organic carbon (TOC). Sequencing results revealed that a total of 329-2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal

  13. [Arsenic - Poison or medicine?].

    Science.gov (United States)

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine.

  14. Arsenic-mediated nephrotoxicity.

    Science.gov (United States)

    Robles-Osorio, Ma Ludivina; Sabath-Silva, Elizabeth; Sabath, Ernesto

    2015-05-01

    Chronic kidney disease (CKD) is an important global health problem that affects 8-15% of the population according to epidemiological studies done in different countries. Essential to prevention is the knowledge of the environmental factors associated with this disease, and heavy metals such as lead and cadmium are clearly associated with kidney injury and CKD progression. Arsenic is one of the most abundant contaminants in water and soil, and many epidemiological studies have found an association between arsenic and type 2 diabetes mellitus, hypertension and cancer; however, there is a scarcity of epidemiological studies about its association with kidney disease, and the evidence linking urinary arsenic excretion with CKD, higher urinary excretion of low molecular proteins, albuminuria or other markers of renal in injury is still limited, and more studies are necessary to characterize the role of arsenic on renal injury and CKD progression. Global efforts to reduce arsenic exposure remain important and research is also needed to determine whether specific therapies are beneficial in susceptible populations.

  15. Chronic arsenic poisoning.

    Science.gov (United States)

    Hall, Alan H

    2002-03-10

    Symptomatic arsenic poisoning is not often seen in occupational exposure settings. Attempted homicide and deliberate long-term poisoning have resulted in chronic toxicity. Skin pigmentation changes, palmar and plantar hyperkeratoses, gastrointestinal symptoms, anemia, and liver disease are common. Noncirrhotic portal hypertension with bleeding esophageal varices, splenomegaly, and hypersplenism may occur. A metallic taste, gastrointestinal disturbances, and Mee's lines may be seen. Bone marrow depression is common. 'Blackfoot disease' has been associated with arsenic-contaminated drinking water in Taiwan; Raynaud's phenomenon and acrocyanosis also may occur. Large numbers of persons in areas of India, Pakistan, and several other countries have been chronically poisoned from naturally occurring arsenic in ground water. Toxic delirium and encephalopathy can be present. CCA-treated wood (chromated copper arsenate) is not a health risk unless burned in fireplaces or woodstoves. Peripheral neuropathy may also occur. Workplace exposure or chronic ingestion of arsenic-contaminated water or arsenical medications is associated with development of skin, lung, and other cancers. Treatment may incklude the use of chelating agents such as dimercaprol (BAL), dimercaptosuccinic acid (DMSA), and dimercaptopanesulfonic acid (DMPS).

  16. Arsenic hyperaccumulator Pteris Vittata L. and its arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An arsenic hyperaccumulator Pteris vittata L. (Chinese brake) was first discovered in China by means of field survey and greenhouse cultivation. Field survey showed that Chinese brake had large accumulating capacity to arsenic; the orders of arsenic content in different parts of the fern were as follows: leaves>leafstalks>roots, which is totally different from that of ordinary plants; bioaccumulation coefficients of the above ground parts of the fern decreased as a power function of soil arsenic contents. In the control of pot trials with normal unpolluted soil containing 9 mg/kg of arsenic, the bioaccumulation coefficients of the above ground parts and rhizoids of Chinese brake were as high as 71 and 80 respectively. Greenhouse cultivation in the contaminated soil from mining areas has shown that more than 1 times greater arsenic can be accumulated in the leaves of the fern than that of field samples with the largest content of 5070 mg/kg As on a dry matter basis. During greenhouse cultivation, arsenic content in the leaves of the fern increased linearly with time prolonging. Not only has Chinese brake extraordinary tolerance and accumulation to arsenic, but it grew rapidly with great biomass, wide distribution and easy adaptation to different environmental conditions as well. Therefore, it has great potential in future remediation of arsenic contamination. It also demonstrates important value for studies of arsenic physiology and biochemistry such as arsenic absorption, translocation and detoxification mechanisms in plants.

  17. ORGANIC AND INORGANIC ARSENICALS SENSITIZE HUMAN BRONCHIAL EPITHELIAL CELLS TO HYDROGEN PEROXIDE-INDUCED DNA DAMAGE

    Science.gov (United States)

    The lungs are a target organ for arsenic carcinogenesis, however, its mechanism of action remains unclear. Furthermore, it has been suggested that inorganic arsenic (iAs) can potentiate DNA damage induced by other agents. Once inside the human body iAs generally undergoes two ...

  18. Validation and structural characterization of the LEDGF/p75-MLL interface as a new target for the treatment of MLL-dependent leukemia.

    Science.gov (United States)

    Cermáková, Kateřina; Tesina, Petr; Demeulemeester, Jonas; El Ashkar, Sara; Méreau, Hélène; Schwaller, Juerg; Rezáčová, Pavlína; Veverka, Vaclav; De Rijck, Jan

    2014-09-15

    Mixed lineage leukemia (MLL) fusion-driven acute leukemias represent a genetically distinct subset of leukemias with poor prognosis. MLL forms a ternary complex with the lens epithelium-derived growth factor (LEDGF/p75) and MENIN. LEDGF/p75, a chromatin reader recognizing H3K36me3 marks, contributes to the association of the MLL multiprotein complex to chromatin. Formation of this complex is critical for the development of MLL leukemia. Available X-ray data represent only a partial structure of the LEDGF/p75-MLL-MENIN complex. Using nuclear magnetic resonance spectroscopy, we identified an additional LEDGF/p75-MLL interface, which overlaps with the binding site of known LEDGF/p75 interactors-HIV-1 integrase, PogZ, and JPO2. Binding of these proteins or MLL to LEDGF/p75 is mutually exclusive. The resolved structure, as well as mutational analysis, shows that the interaction is primarily sustained via two aromatic residues of MLL (F148 and F151). Colony-forming assays in MLL-AF9(+) leukemic cells expressing MLL interaction-defective LEDGF/p75 mutants revealed that this interaction is essential for transformation. Finally, we show that the clonogenic growth of primary murine MLL-AF9-expressing leukemic blasts is selectively impaired upon overexpression of a LEDGF/p75-binding cyclic peptide CP65, originally developed to inhibit the LEDGF/p75-HIV-1 integrase interaction. The newly defined protein-protein interface therefore represents a new target for the development of therapeutics against LEDGF/p75-dependent MLL fusion-driven leukemic disorders. Cancer Res; 74(18); 5139-51. ©2014 AACR.

  19. Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yi [Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning 110001 (China); Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 (United States); Tao, Shasha [Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 (United States); Lian, Fangru [Department of Pathology, University of Arizona, 1501 North Campbell Ave, Tucson, AZ 85724 (United States); Chau, Binh T. [Department of Cellular and Molecular Medicine, The University of Arizona, 1501 North Campbell Ave, Tucson, AZ 85724 (United States); Chen, Jie; Sun, Guifan [Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning 110001 (China); Fang, Deyu [Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 (United States); Lantz, R. Clark [Department of Cellular and Molecular Medicine, The University of Arizona, 1501 North Campbell Ave, Tucson, AZ 85724 (United States); Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724 (United States); Zhang, Donna D., E-mail: dzhang@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721 (United States); Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724 (United States)

    2012-12-15

    Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted in pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure. -- Highlights: ► Exposed to arsenic particles and/or SF have elevated Nrf2 and its target genes. ► Sulforaphane prevents pathological alterations, oxidative damage and cell death. ► Sulforaphane alleviates infiltration of inflammatory cells into the lungs. ► Sulforaphane suppresses arsenic-induced proinflammatory cytokine production.

  20. Virtual-screening targeting Human Immunodeficiency Virus type 1 integrase-lens epithelium-derived growth factor/p75 interaction for drug development.

    Science.gov (United States)

    Gu, Wan-Gang; Liu, Bai-Nan; Yuan, Jun-Fa

    2015-02-01

    Three integrase (IN) inhibitors have been approved by FDA for clinical treatment of Human Immunodeficiency Virus (HIV) infection. This stimulates more researchers to focus their studies on this target for anti-HIV drug development. Three steps regarding of IN activity have been validated for inhibitor discovery: strand transfer, 3'-terminal processing, and IN-lens epithelium-derived growth factor (LEDGF)/p75 interaction. Among them, IN-LEDGF/p75 interaction is a new target validated in recent years. Emergence of drug-resistant virus strains makes this target appealing to pharmacologists. Compared with the traditional screening methods such as AlphaScreen and cell-based screening developed for IN inhibitor discovery, virtual screening is a powerful technique in modern drug discovery. Here we summarized the recent advances of virtual-screening targeting IN-LEDFG/p75 interaction. The combined application of virtual screening and experiments in drug discovery against IN-LEDFG/p75 interaction sheds light on anti-HIV research and drug discovery.

  1. Arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    McLennan, M.W.; Dodson, M.E.

    1972-06-01

    A case of acute arsenic poisoning in cattle was reported. The losses occurred on a property in the south east of South Australia. The weather had been hot for two or three days before the death occurred. The tank supplying the water trough had almost run dry. The cattle then attempted to meet their water requirements by drinking from the sheep dipping vat. A sample of rumen contents and a sample of water from the dipping vat were checked for arsenic. The rumen sample contained 45 ppM As/sub 2/O/sub 3/ and the sample of dipping fluid contained 200 ppM As. The lesions observed were similar to earlier reported arsenic poisoning. 5 references.

  2. Arsenic in public water supplies and cardiovascular mortality in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, Ma Jose, E-mail: pmedrano@isciii.es [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Boix, Raquel; Pastor-Barriuso, Roberto [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Palau, Margarita [Subdireccion General de Sanidad Ambiental y Salud Laboral, Direccion General de Salud Publica y Sanidad Exterior, Ministerio de Sanidad y Politica Social, Madrid (Spain); Damian, Javier [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); Ramis, Rebeca [Centro Nacional de Epidemiologia, Instituto de Salud Carlos III, Sinesio Delgado 6, 28029 Madrid (Spain); CIBER en Epidemiologia y Salud Publica (CIBERESP), Madrid (Spain); Barrio, Jose Luis del [Departamento de Salud Publica, Universidad Rey Juan Carlos, Madrid (Spain); Navas-Acien, Ana [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States); Department of Epidemiology, Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (United States)

    2010-07-15

    Background: High-chronic arsenic exposure in drinking water is associated with increased cardiovascular disease risk. At low-chronic levels, as those present in Spain, evidence is scarce. In this ecological study, we evaluated the association of municipal drinking water arsenic concentrations during the period 1998-2002 with cardiovascular mortality in the population of Spain. Methods: Arsenic concentrations in drinking water were available for 1721 municipalities, covering 24.8 million people. Standardized mortality ratios (SMRs) for cardiovascular (361,750 deaths), coronary (113,000 deaths), and cerebrovascular (103,590 deaths) disease were analyzed for the period 1999-2003. Two-level hierarchical Poisson models were used to evaluate the association of municipal drinking water arsenic concentrations with mortality adjusting for social determinants, cardiovascular risk factors, diet, and water characteristics at municipal or provincial level in 651 municipalities (200,376 cardiovascular deaths) with complete covariate information. Results: Mean municipal drinking water arsenic concentrations ranged from <1 to 118 {mu}g/L. Compared to the overall Spanish population, sex- and age-adjusted mortality rates for cardiovascular (SMR 1.10), coronary (SMR 1.18), and cerebrovascular (SMR 1.04) disease were increased in municipalities with arsenic concentrations in drinking water >10 {mu}g/L. Compared to municipalities with arsenic concentrations <1 {mu}g/L, fully adjusted cardiovascular mortality rates were increased by 2.2% (-0.9% to 5.5%) and 2.6% (-2.0% to 7.5%) in municipalities with arsenic concentrations between 1-10 and>10 {mu}g/L, respectively (P-value for trend 0.032). The corresponding figures were 5.2% (0.8% to 9.8%) and 1.5% (-4.5% to 7.9%) for coronary heart disease mortality, and 0.3% (-4.1% to 4.9%) and 1.7% (-4.9% to 8.8%) for cerebrovascular disease mortality. Conclusions: In this ecological study, elevated low-to-moderate arsenic concentrations in drinking

  3. Arsenic inhibits hedgehog signaling during P19 cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jui Tung [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2014-12-15

    Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle. The purpose of this study was to investigate whether arsenic can disrupt Shh signaling in P19 mouse embryonic stem cells, leading to changes muscle and neuronal cell differentiation. P19 embryonic stem cells were exposed to 0, 0.25, or 0.5 μM of sodium arsenite for up to 9 days during cell differentiation. We found that arsenite exposure significantly reduced transcript levels of genes in the Shh pathway in both a time and dose-dependent manner. This included the Shh ligand, which was decreased 2- to 3-fold, the Gli2 transcription factor, which was decreased 2- to 3-fold, and its downstream target gene Ascl1, which was decreased 5-fold. GLI2 protein levels and transcriptional activity were also reduced. However, arsenic did not alter GLI2 primary cilium accumulation or nuclear translocation. Moreover, additional extracellular SHH rescued the inhibitory effects of arsenic on cellular differentiation due to an increase in GLI binding activity. Taken together, we conclude that arsenic exposure affected Shh signaling, ultimately decreasing the expression of the Gli2 transcription factor. These results suggest a mechanism by which arsenic disrupts cell differentiation. - Highlights: • Arsenic exposure decreases sonic hedgehog pathway-related gene expression. • Arsenic decreases GLI2 protein levels and transcriptional activity in P19 cells. • Arsenic exposure does not alter the levels of SHH

  4. Environmental source of arsenic exposure.

    Science.gov (United States)

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  5. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    Science.gov (United States)

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  6. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    Science.gov (United States)

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  7. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain.

    Science.gov (United States)

    Antyborzec, Inga; O'Leary, Valerie B; Dolly, James O; Ovsepian, Saak V

    2016-10-01

    Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75(NTR)) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75(NTR) antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75(NTR) for targeted transduction of vectors to BFCNs in vivo.

  8. Microbial Transformation of Arsenic

    Science.gov (United States)

    Stolz, J. F.

    2004-12-01

    Whether the source is natural or anthropogenic, it has become evident that arsenic is readily transformed by a great diversity of microbial species and has a robust biogeochemical cycle. Arsenic cycling primarily involves the oxidation of As(III) and the reduction of As(V). Over thirty arsenite oxidizing prokaryotes have been reported and include alpha, beta, and gamma Proteobacteria , Deinocci and Crenarchaeota. At least twenty species of arsenate-respiring prokaryotes are now known and include Crenarchaeota, thermophilic bacteria, low and high G+C gram positive bacteria, and gamma, delta, and epsilon Proteobacteria. These organisms are metabolically diverse, and depending on the species, capable of using other terminal electron acceptors (e.g., nitrate, selenate, fumarate, sulfate). In addition to inorganic forms (e.g., sodium arsenate) organoarsenicals can be utilized as a substrate. The feed additive roxarsone (3-nitro-4-hydroxyphenyl arsonic acid) has been shown to readily degrade leading to the release of inorganic arsenic (e.g., As(V)). Degradation proceeds via the cleavage of the arsenate functional group or the reduction of the nitro functional group and deamination. The rapid degradation (within 3 days) of roxarsone by Clostridium sp. strain OhILAs appears to follow the latter pathway and may involve Stickland reactions. The activities of these organisms affect the speciation and mobilization of arsenic, ultimately impacting water quality.

  9. Arsenic in shrimp from Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Bou-Olayan, A.H. [Kuwait Univ. (Kuwait); Al-Yakoob, S.; Al-Hossaini, M. [Kuwait Institute for Scientific Research (Kuwait)

    1995-04-01

    Arsenic is ubiquitous in the environment and can accumulate in food via contaminated soil, water or air. It enters the food chain through dry and wet atmospheric deposition. Combustion of oil and coal, use of arsenical fertilizers and pesticides and smelting of ores contributes significantly to the natural background of arsenic in soils and sediments. The metal can be transferred from soil to man through plants. In spite of variation in acute, subacute, and chronic toxic effects to plants and animals, evidence of nutritional essentiality of arsenic for rats, goats, and guinea pigs has been suggested, but has not been confirmed for humans. Adverse toxic effects of arsenic as well as its widespread distribution in the environment raises concern about levels of arsenic in man`s diet. Higher levels of arsenic in the diet can result in a higher accumulation rate. Arsenic levels in marine organisms are influenced by species differences, size of organism, and human activities. Bottom dwellers such as shrimp, crab, and lobster accumulate more arsenic than fish due to their frequent contact with bottom sediments. Shrimp constitute approximately 30% of mean total seafood consumption in Kuwait. This study was designed to determine the accumulation of arsenic in the commercially important jinga shrimp (Metapenaeus affinis) and grooved tiger prawn (Penaeus semisulcatus). 13 refs., 3 figs., 1 tab.

  10. Rural methods to mitigate arsenic contaminated water

    OpenAIRE

    Parajuli, Krishna

    2013-01-01

    Consumption of arsenic contaminated water is one of the burning issues in the rural world. Poor public awareness program about health effects of drinking arsenic contaminated water and the rural methods to mitigate this problem poses a great threat of arsenic poisoning many people of the rural world. In this thesis, arsenic removal efficiency and the working mechanism of four rural and economical arsenic mitigation technologies i.e. solar oxidation and reduction of arsenic (SORAS), Bucket tr...

  11. Protective effects of thymoquinone against apoptosis and oxidative stress by arsenic in rat kidney.

    Science.gov (United States)

    Sener, Umit; Uygur, Ramazan; Aktas, Cevat; Uygur, Emine; Erboga, Mustafa; Balkas, Gulseren; Caglar, Veli; Kumral, Bahadir; Gurel, Ahmet; Erdogan, Hasan

    2016-01-01

    We aimed to investigate the protective role of thymoquinone (TQ) by targeting its antiapoptotic and antioxidant properties against kidney damage induced by arsenic in rats. We have used the 24 male Sprague-Dawley rats. Rats were divided into three groups. Physiological serum in 10 mL/kg dose as intragastric was given to the control group. Sodium arsenite (10 mg/kg, intragastric by gavage for fifteen days) was given to the arsenic group. Sodium arsenite (10 mg/kg, intragastric by gavage for fifteen days) and TQ (10 mg/kg, intragastric by gavage for 15 days) was given to the arsenic + TQ group. After 15 days, the animals' kidneys were taken theirs, then we have performed histological and apoptotic assessment. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) enzyme activities and malondialdehyde (MDA) levels have examined as the oxidative stress parameters. We have determined the levels of arsenic. Increased renal injury and apoptotic cells have been detected in the arsenic group. Degenerative changes in the arsenic + TQ group were diminished. Although the MDA levels were augmented in the arsenic group, SOD, CAT and GSH-Px enzyme activities were lessened than the other groups. Our findings suggest that TQ may impede the oxidative stress, the cells have been damaged and also the generation of apoptotic cells arisen from arsenic. TQ plays a protective role against arsenic-induced toxicity in kidney and may potentially be used as a remedial agent.

  12. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic.

    Science.gov (United States)

    Macoch, Mélinda; Morzadec, Claudie; Génard, Romain; Pallardy, Marc; Kerdine-Römer, Saadia; Fardel, Olivier; Vernhet, Laurent

    2015-11-01

    Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2-/- mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.

  13. Arsenic poisoning of Bangladesh groundwater

    Science.gov (United States)

    Nickson, Ross; McArthur, John; Burgess, William; Ahmed, Kazi Matin; Ravenscroft, Peter; Rahmanñ, Mizanur

    1998-09-01

    In Bangladesh and West Bengal, alluvial Ganges aquifers used for public water supply are polluted with naturally occurring arsenic, which adversely affects the health of millions of people. Here we show that the arsenic derives from the reductive dissolution of arsenic-rich iron oxyhydroxides, which in turn are derived from weathering of base-metal sulphides. This finding means it should now be possible, by sedimentological study of the Ganges alluvial sediments, to guide the placement of new water wells so they will be free of arsenic.

  14. Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells.

    Science.gov (United States)

    Choudhury, Sreetama; Ghosh, Sayan; Mukherjee, Sudeshna; Gupta, Payal; Bhattacharya, Saurav; Adhikary, Arghya; Chattopadhyay, Sreya

    2016-12-01

    Molecular mechanisms involved in arsenic-induced toxicity are complex and elusive. Liver is one of the most favored organs for arsenic toxicity as methylation of arsenic occurs mostly in the liver. In this study, we have selected a range of environmentally relevant doses of arsenic to examine the basis of arsenic toxicity and the role of pomegranate fruit extract (PFE) in combating it. Male Swiss albino mice exposed to different doses of arsenic presented marked hepatic injury as evident from histological and electron microscopic studies. Increased activities of enzymes alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and alkaline phosphatase corroborated extensive liver damage. It was further noted that arsenic exposure initiated reactive oxygen species (ROS)-dependent apoptosis in the hepatocytes involving loss of mitochondrial membrane potential. Arsenic significantly increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB), coupled with increase in phosphorylated Iκ-B, possibly as adaptive cellular survival strategies. Arsenic-induced oxidative DNA damage to liver cells culminated in p53 activation and increased expression of p53 targets like miR-34a and Bax. Pomegranate polyphenols are known to possess remarkable antioxidant properties and are capable of protecting normal cells from various stimuli-induced oxidative stress and toxicities. We explored the protective role of PFE in ameliorating arsenic-induced hepatic damage. PFE was shown to reduce ROS generation in hepatocytes, thereby reducing arsenic-induced Nrf2 activation. PFE also inhibited arsenic-induced NF-κB-inflammatory pathway. Data revealed that PFE reversed arsenic-induced hepatotoxicity and apoptosis by modulating the ROS/Nrf2/p53-miR-34a axis. For the first time, we have mapped the possible signaling pathways associated with arsenic-induced hepatotoxicity and its rescue by pomegranate polyphenols.

  15. Homicidal arsenic poisoning.

    Science.gov (United States)

    Duncan, Andrew; Taylor, Andrew; Leese, Elizabeth; Allen, Sam; Morton, Jackie; McAdam, Julie

    2015-07-01

    The case of a 50-year-old man who died mysteriously after being admitted to hospital is reported. He had raised the possibility of being poisoned prior to his death. A Coroner's post-mortem did not reveal the cause of death but this was subsequently established by post-mortem trace element analysis of liver, urine, blood and hair all of which revealed very high arsenic concentrations.

  16. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications.

    Science.gov (United States)

    Sun, Yuzhen; Liu, Guangliang; Cai, Yong

    2016-11-01

    Arsenic (As) is a notoriously toxic pollutant of health concern worldwide with potential risk of cancer induction, but meanwhile it is used as medicines for the treatment of different conditions including hematological cancers. Arsenic can undergo extensive metabolism in biological systems, and both toxicological and therapeutic effects of arsenic compounds are closely related to their metabolism. Recent studies have identified methylated thioarsenicals as a new class of arsenic metabolites in biological systems after exposure of inorganic and organic arsenicals, including arsenite, dimethylarsinic acid (DMA(V)), dimethylarsinous glutathione (DMA(III)GS), and arsenosugars. The increasing detection of thiolated arsenicals, including monomethylmonothioarsonic acid (MMMTA(V)), dimethylmonothioarsinic acid (DMMTA(V)) and its glutathione conjugate (DMMTA(V)GS), and dimethyldithioarsinic acid (DMDTA(V)) suggests that thioarsenicals may be important metabolites and play important roles in arsenic toxicity and therapeutic effects. Here we summarized the reported occurrence of thioarsenicals in biological systems, the possible formation pathways of thioarsenicals, and their toxicity, and discussed the biological implications of thioarsenicals on arsenic metabolism, toxicity, and therapeutic effects.

  17. A Phytoremediation Strategy for Arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    A Phytoremediation Strategy for Arsenic Progress Report May, 2005 Richard B. Meagher Principal Investigator Arsenic pollution affects the health of several hundred millions of people world wide, and an estimated 10 million Americans have unsafe levels of arsenic in their drinking water. However, few environmentally sound remedies for cleaning up arsenic contaminated soil and water have been proposed. Phytoremediation, the use of plants to extract and sequester environmental pollutants, is one new technology that offers an ecologically sound solution to a devastating problem. We propose that it is less disruptive to the environment to harvest and dispose of several thousand pounds per acre of contaminated aboveground plant material, than to excavate and dispose of 1 to 5 million pounds of contaminated soil per acre (assumes contamination runs 3 ft deep). Our objective is to develop a genetics-based phytoremediation strategy for arsenic removal that can be used in any plant species. This strategy requires the enhanced expression of several transgenes from diverse sources. Our working hypothesis is that organ-specific expression of several genes controlling the transport, electrochemical state, and binding of arsenic will result in the efficient extraction and hyperaccumulation of arsenic into aboveground plant tissues. This hypothesis is supported by theoretical arguments and strong preliminary data. We proposed six Specific Aims focused on testing and developing this arsenic phytoremediation strategy. During the first 18 months of the grant we made significant progress on five Specific Aims and began work on the sixth as summarized below. Specific Aim 1: Enhance plant arsenic resistance and greatly expand sinks for arsenite by expressing elevated levels of thiol-rich, arsenic-binding peptides. Hyperaccumulation of arsenic depends upon making plants that are both highly tolerant to arsenic and that have the capacity to store large amounts of arsenic aboveground

  18. Arsenic speciation in edible mushrooms.

    Science.gov (United States)

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  19. Implementation of the Arsenic Biosand Filter in Nepal

    Science.gov (United States)

    Murcott, S.; Ngai, T.; Shrestha, R.; Pokharel, K.; Walewijk, S.

    2004-05-01

    water provision, involving training of local women, entrepreneurs, trainers, teachers, and local authorities. A laboratory and three month pilot study conducted in Nepal from September 2002 to January 2003 found that the ABF removed arsenic (range = 87 to 96%, mean = 93%), total coliform (range = 0 to 99%, mean = 58%), E. Coli (range = 0 to >99%, mean = 64%), and iron (range = >90 to >97 %, mean = >93%). This presentation will report on the results of the 2004 ABF implementation program in 25 villages in Nepal, targeting an overall population of 10,000 people and will discuss the ABF technology in the context of other similar low-cost household scale approaches to remediation of arsenic-contaminated groundwater.

  20. Speciation of arsenic using chelation solvent extraction and high performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, Shamil J.; Obenauf, Alison; Punt, Monique [SAIC Canada, Ottawa, Ontario (Canada); Brown, Carl E. [Emergencies Engineering Technology Office, Environmental Technology Centre, Environment Canada, Ottawa, Ontario (Canada)

    2007-02-15

    Research interest in speciation of arsenic stems from its species dependent behavior in the environment and in living organisms. The complexity of the matrix to be analyzed and low concentrations of target arsenic species that may be labile or difficult to chromatogram, indicate that a suitable pre-treatment methodology is required. This study investigated the usefulness of chelation solvent extraction - high performance liquid chromatography (CSE-HPLC) for the speciation of arsenic in water. It involved reacting arsenic with the chelant known for its affinity towards arsenic, followed by extraction, separation, and identification of the arsenic-chelant-arsenic complex. Arsenic species having different physicochemical properties were investigated. Species, such as, As{sub 2}O{sub 3}, As{sub 3}O{sub 5}, KH{sub 2}AsO{sub 4}, Na{sub 2}HAsO{sub 4}, and NaAsO{sub 2}were detected as a group of closely eluted peaks with different retention times and spectral properties, whereas, the organic arsenic species CH {sub 3}Na {sub 2}AsO {sub 3}, o-arsanilic acid, roxarson and triphenyl arsine separated quite well on the EnviroseP-CM HPLC column. Key method parameters, such as, type of HPLC column, composition of mobile phase and organic solvents affecting peak resolution and sensitivity were optimized. Real environmental matrices contaminated with arsenic were analyzed under varying wavelengths ({lambda}{sub max} = 190, 210, 220, 234, 244, and 282 nm), with good precision. Different arsenic species were detected in these samples with excellent background and signal-to-noise ratios demonstrating the robustness of the method. The detection limit, reproducibility, selectivity, accuracy, and dynamic range of the calibration curves were evaluated. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  1. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.

  2. Effects of low arsenic concentration exposure on freshwater fish in the presence of fluvial biofilms.

    Science.gov (United States)

    Tuulaikhuu, Baigal-Amar; Bonet, Berta; Guasch, Helena

    2016-02-15

    Arsenic (As) is a highly toxic element and its carcinogenic effect on living organisms is well known. However, predicting real effects in the environment requires an ecological approach since toxicity is influenced by many environmental and biological factors. The purpose of this paper was to evaluate if environmentally-realistic arsenic exposure causes toxicity to fish. An experiment with four different treatments (control (C), biofilm (B), arsenic (+As) and biofilm with arsenic (B+As)) was conducted and each one included sediment to enhance environmental realism, allowing the testing of the interactive effects of biofilm and arsenic on the toxicity to fish. Average arsenic exposure to Eastern mosquitofish (Gambusia holbrooki) was 40.5 ± 7.5 μg/L for +As treatment and 34.4 ± 1.4 μg/L for B+As treatment for 56 days. Fish were affected directly and indirectly by this low arsenic concentration since exposure did not only affect fish but also the function of periphytic biofilms. Arsenic effects on the superoxide dismutase (SOD) and glutathione reductase (GR) activities in the liver of mosquitofish were ameliorated in the presence of biofilms at the beginning of exposure (day 9). Moreover, fish weight gaining was only affected in the treatment without biofilm. After longer exposure (56 days), effects of exposure were clearly seen. Fish showed a marked increase in the catalase (CAT) activity in the liver but the interactive influence of biofilms was not further observed since the arsenic-affected biofilm had lost its role in water purification. Our results highlight the interest and application of incorporating some of the complexity of natural systems in ecotoxicology and support the use of criterion continuous concentration (CCC) for arsenic lower than 150 μg/L and closer to the water quality criteria to protect aquatic life recommended by the Canadian government which is 5 μg As/L.

  3. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    Science.gov (United States)

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  4. Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter

    Science.gov (United States)

    Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R. L.

    2003-01-01

    Poultry litter often contains arsenic as a result of organo-arsenical feed additives. When the poultry litter is applied to agricultural fields, the arsenic is released to the environment and may result in increased arsenic in surface and groundwater and increased uptake by plants. The release of arsenic from poultry litter, litter-amended soils, and soils without litter amendment was examined by extraction with water and strong acids (HCI and HN03). The extracts were analyzed for As, C, P, Cu, Zn, and Fe. Copper, zinc, and iron are also poultry feed additives. Soils with a known history of litter application and controlled application rate of arsenic-containing poultry litter were obtained from the University of Maryland Agricultural Experiment Station. Soils from fields with long-term application of poultry litter were obtained from a tilled field on the Delmarva Peninsula (MD) and an untilled Oklahoma pasture. Samples from an adjacent forest or nearby pasture that had no history of litter application were used as controls. Depth profiles were sampled for the Oklahoma pasture soils. Analysis of the poultry litter showed that 75% of the arsenic was readily soluble in water. Extraction of soils shows that weakly bound arsenic mobilized by water correlates positively with C, P, Cu, and Zn in amended fields and appears to come primarily from the litter. Strongly bound arsenic correlates positively with Fe in amended fields and suggests sorption or coprecipitation of As and Fe in the soil column.

  5. Evaluation of the arsenic binding capacity of plant proteins under conditions of protein extraction for gel electrophoretic analysis.

    Science.gov (United States)

    Schmidt, Anne-Christine; Steier, Sandra; Otto, Matthias

    2009-03-15

    As prerequisite for the investigation of arsenic-binding proteins in plants, the general influence of different extraction parameters on the binding behaviour of arsenic to the plant protein pool was investigated. The concentration of the extraction buffer affected the extraction yield both for proteins and for arsenic revealing an optimal buffer concentration of 5mM Tris/HCl, pH 8. The addition of 1 or 2% (w/v) SDS to the extraction buffer produced a two- to threefold enhancement of the total protein extraction yield but strongly suppressed the simultaneous extraction of arsenic from 80+/-8% extraction yield obtained without SDS to 48+/-2% in presence of 2% (w/v) SDS. The arsenic binding capacity of the protein fraction obtained after extraction with Tris buffer and protein precipitation by trichloroacetic acid in acetone was estimated to be 1.4+/-0.6% independently on the original spiking concentration of arsenic provided in the form of monomethylarsonate to the extracts. Due to the low total protein concentrations of the plant extracts that varied in the range from 75 to 412 microgmL(-1) depending on the extraction parameters, high arsenic concentrations of 263-1001 mg (kgproteinmass)(-1) resulted for spiking concentrations of 10 mgAsL(-1). The optimized protein isolation procedure was applied to plants grown under arsenic exposure and revealed a similar arsenic binding capacity as for the spiked protein extracts.

  6. Arsenic Mobility and Groundwater Extraction in Bangladesh

    Science.gov (United States)

    Harvey, Charles F.; Swartz, Christopher H.; Badruzzaman, A. B. M.; Keon-Blute, Nicole; Yu, Winston; Ali, M. Ashraf; Jay, Jenny; Beckie, Roger; Niedan, Volker; Brabander, Daniel; Oates, Peter M.; Ashfaque, Khandaker N.; Islam, Shafiqul; Hemond, Harold F.; Ahmed, M. Feroze

    2002-11-01

    High levels of arsenic in well water are causing widespread poisoning in Bangladesh. In a typical aquifer in southern Bangladesh, chemical data imply that arsenic mobilization is associated with recent inflow of carbon. High concentrations of radiocarbon-young methane indicate that young carbon has driven recent biogeochemical processes, and irrigation pumping is sufficient to have drawn water to the depth where dissolved arsenic is at a maximum. The results of field injection of molasses, nitrate, and low-arsenic water show that organic carbon or its degradation products may quickly mobilize arsenic, oxidants may lower arsenic concentrations, and sorption of arsenic is limited by saturation of aquifer materials.

  7. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

    Science.gov (United States)

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q.

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice. PMID:28298917

  8. Arsenic transport by zebrafish aquaglyceroporins

    Directory of Open Access Journals (Sweden)

    Landfear Scott M

    2009-11-01

    Full Text Available Abstract Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII. However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII and antimonite (SbIII was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were named aqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye

  9. Microbial responses to environmental arsenic.

    Science.gov (United States)

    Páez-Espino, David; Tamames, Javier; de Lorenzo, Víctor; Cánovas, David

    2009-02-01

    Microorganisms have evolved dynamic mechanisms for facing the toxicity of arsenic in the environment. In this sense, arsenic speciation and mobility is also affected by the microbial metabolism that participates in the biogeochemical cycle of the element. The ars operon constitutes the most ubiquitous and important scheme of arsenic tolerance in bacteria. This system mediates the extrusion of arsenite out of the cells. There are also other microbial activities that alter the chemical characteristics of arsenic: some strains are able to oxidize arsenite or reduce arsenate as part of their respiratory processes. These type of microorganisms require membrane associated proteins that transfer electrons from or to arsenic (AoxAB and ArrAB, respectively). Other enzymatic transformations, such as methylation-demethylation reactions, exchange inorganic arsenic into organic forms contributing to its complex environmental turnover. This short review highlights recent studies in ecology, biochemistry and molecular biology of these processes in bacteria, and also provides some examples of genetic engineering for enhanced arsenic accumulation based on phytochelatins or metallothionein-like proteins.

  10. Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh

    Science.gov (United States)

    van Geen, A.; Zheng, Y.; Versteeg, R.; Stute, M.; Horneman, A.; Dhar, R.; Steckler, M.; Gelman, A.; Small, C.; Ahsan, H.; Graziano, J. H.; Hussain, I.; Ahmed, K. M.

    2003-05-01

    Arsenic concentrations measured by graphite furnace atomic absorption range from Bangladesh. The proportion of wells that exceed the Bangladesh standard for drinking water of 50 μg/L arsenic increases with depth from 25% between 8 and 10 m to 75% between 15 and 30 m, then declines gradually to less than 10% at 90 m. Some villages within the study area do not have a single well that meets the standard, while others have wells that are nearly all acceptable. In contrast to the distribution of arsenic in the 8-30 m depth range which does not follow any obvious geological feature, the arsenic content of groundwater associated with relatively oxic Pleistocene sand deposits appears to be consistently low. The depth of drilling necessary to reach these low-As aquifers ranges from 30 to 120 m depth within the study area.

  11. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (parsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; parsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  12. Arsenic contamination of groundwater in the Terai region of Nepal: an overview of health concerns and treatment options.

    Science.gov (United States)

    Pokhrel, D; Bhandari, B S; Viraraghavan, T

    2009-01-01

    A review of published information on the arsenic contamination of groundwater in the Terai regions of Nepal showed that the source was mainly geogenic due to the dissolution of the arsenic-bearing minerals. Clinical observations of patients in the arsenic affected districts revealed chronic arsenic poisoning from drinking water. Half a million people inhabiting the region are believed to have been exposed to arsenic levels greater than 50 microg/L in their drinking water. Thirty-one percent of the population (3.5 million) in the region are estimated to have been exposed to arsenic levels between 10 and 50 microg/L. Iron assisted biosand filters currently distributed and in operation are a suitable alternative to mitigate the interim arsenic standard of 50 microg/L, as set by the Nepal Government. Arsenic biosand filters were also effective in removing bacteria and viruses from drinking water in laboratory and field tests. However, groundwater treatment targeting cluster communities in the Terai region is the sustainable way of mitigating the arsenic problem.

  13. Discovery of the Arsenic Isotopes

    CERN Document Server

    Shore, A; Heim, M; Schuh, A; Thoennessen, M

    2009-01-01

    Twenty-nine arsenic isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  14. The roles of toc34 and toc75 in targeting the toc159 preprotein receptor to chloroplasts.

    Science.gov (United States)

    Wallas, Tanya R; Smith, Matthew D; Sanchez-Nieto, Sobeida; Schnell, Danny J

    2003-11-07

    The Toc complex at the outer envelope of chloroplasts initiates the import of nuclear-encoded preproteins from the cytosol into the organelle. The core of the Toc complex is composed of two receptor GTPases, Toc159 and Toc34, as well as Toc75, a beta-barrel membrane channel. Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, suggesting that assembly of the Toc complex is dynamic. In the present study, we used the Arabidopsis thaliana orthologs of Toc159 and Toc34, atToc159 and atToc33, respectively, to investigate the requirements for assembly of the trimeric Toc complex. In addition to its intrinsic GTPase activity, we demonstrate that integration of atToc159 into the Toc complex requires atToc33 GTPase activity. Additionally, we show that the interaction of the two GTPase domains stimulates association of the membrane anchor of atToc159 with the translocon. Finally, we employ reconstituted proteoliposomes to demonstrate that proper insertion of the receptor requires both Toc75 and Toc34. Collectively these data suggest that Toc34 and Toc75 act sequentially to mediate docking and insertion of Toc159 resulting in assembly of the functional translocon.

  15. Mode of occurrence of arsenic in high-As coals from endemic arsenosis areas in southwestern Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    DING Zhen-hua; ZHENG Bao-shao; ZHUANG Min; HU Tian-dou

    2007-01-01

    The use of high As-bearing coals has caused more than 3,000 cases of arsenosis patients in southwest Guizhou Province, China. The mode of occurrence of arsenic in coal is an important key role in understanding its behavior during usage and damage pathway to human health. Coal samples from endemic arsenosis areas were analyzed with INAA, EMPA, SEM-EDX, LTA, XRD, XAFS, and sequential leaching experiment. Arsenic in pyrite is from under the limit of EMPA to 1.75%, and in most cases, the content of arsenic is lower than 0.5%. Besides pyrite and arsenopyrite, SEM-EDX combined with LTA and XRD find that sulfates, clay and phosphates also contain arsenic. XAFS shows that arsenic mainly exists in the form of As5+. More than 50% of arsenic stayes in residual solid and combined with organic matrix in two samples, but most arsenic is leached out in other samples. The occurrence of such exceptionally high As contents in coal and the fact that the arsenic is dominantly organically associated are unique observations.

  16. Validation approach for a fast and simple targeted screening method for 75 antibiotics in meat and aquaculture products using LC-MS/MS.

    Science.gov (United States)

    Dubreil, Estelle; Gautier, Sophie; Fourmond, Marie-Pierre; Bessiral, Mélaine; Gaugain, Murielle; Verdon, Eric; Pessel, Dominique

    2017-04-01

    An approach is described to validate a fast and simple targeted screening method for antibiotic analysis in meat and aquaculture products by LC-MS/MS. The strategy of validation was applied for a panel of 75 antibiotics belonging to different families, i.e., penicillins, cephalosporins, sulfonamides, macrolides, quinolones and phenicols. The samples were extracted once with acetonitrile, concentrated by evaporation and injected into the LC-MS/MS system. The approach chosen for the validation was based on the Community Reference Laboratory (CRL) guidelines for the validation of screening qualitative methods. The aim of the validation was to prove sufficient sensitivity of the method to detect all the targeted antibiotics at the level of interest, generally the maximum residue limit (MRL). A robustness study was also performed to test the influence of different factors. The validation showed that the method is valid to detect and identify 73 antibiotics of the 75 antibiotics studied in meat and aquaculture products at the validation levels.

  17. Arsenic removal by lime softening

    DEFF Research Database (Denmark)

    Kaosol, T.; Suksaroj, C.; Bregnhøj, Henrik

    2002-01-01

    This paper focuses on the study of arsenic removal for drinking water by lime softening. The initial arsenic (V) concentration was 500 and 1,000 ug/L in synthetic groundwater. The experiments were performed as batch tests with varying lime dosages and mixing time. For the synthetic groundwater......, arsenic (V) removal increased with increasing lime dosage and mixing time, as well as with the resulting pH. The residual arsenic (V) in all cases was lower than the WHO guideline of 10 ug/L at pH higher than 11.5. Kinetic of arsenic (V) removal can be described by a first-order equation as C1 = C0*e......^-k*t. The relation between the constant (k value) and increasing lime dosage was found to be linear, described by k = 0.0034 (Dlime). The results support a theory from the literature that the arsenic (V) was removed by precipitation af Ca3(AsO4)2. The results obtained in the present study suggest that lime...

  18. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    Science.gov (United States)

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  19. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic.

    Science.gov (United States)

    Cooper, K L; Yager, J W; Hudson, L G

    2014-01-30

    The rise of melanoma incidence in the United States is a growing public health concern. A limited number of epidemiology studies suggest an association between arsenic levels and melanoma risk. Arsenic acts as a co-carcinogen with ultraviolet radiation (UVR) for the development of squamous cell carcinoma and proposed mechanisms include generation of oxidative stress by arsenic and UVR and inhibition of UVR-induced DNA repair by arsenic. In this study, we investigate similarities and differences in response to arsenic and UVR in keratinocytes and melanocytes. Normal melanocytes are markedly more resistant to UVR-induced cytotoxicity than normal keratinocytes, but both cell types are equally sensitive to arsenite. Melanocytes were more resistant to arsenite and UVR stimulation of superoxide production than keratinocytes, but the concentration of arsenite necessary to inhibit the activity of the DNA repair protein poly(ADP-ribose)polymerase and enhance retention of UVR-induced DNA damage was essentially equivalent in both cell types. These findings suggest that although melanocytes are less sensitive than keratinocytes to initial UVR-mediated DNA damage, both of these important target cells in the skin share a mechanism related to arsenic inhibition of DNA repair. These findings suggest that concurrent chronic arsenic exposure could promote retention of unrepaired DNA damage in melanocytes and act as a co-carcinogen in melanoma.

  20. Phytoremediation of arsenic contaminated soil by arsenic accumulators: a three year study.

    Science.gov (United States)

    Raj, Anshita; Singh, Nandita

    2015-03-01

    To investigate whether phytoremediation can remove arsenic from the contaminated area, a study was conducted for three consecutive years to determine the efficiency of Pteris vittata, Adiantum capillus veneris, Christella dentata and Phragmites karka, on arsenic removal from the arsenic contaminated soil. Arsenic concentrations in the soil samples were analysed after harvesting in 2009, 2010 and 2011 at an interval of 6 months. Frond arsenic concentrations were also estimated in all the successive harvests. Fronds resulted in the greatest amount of arsenic removal. Root arsenic concentrations were analysed in the last harvest. Approximately 70 % of arsenic was removed by P. vittata which was recorded as the highest among the four plant species. However, 60 % of arsenic was removed by A. capillus veneris, 55.1 % by C. dentata and 56.1 % by P. karka of arsenic was removed from the contaminated soil in 3 years.

  1. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species.

    Science.gov (United States)

    Norton, Gareth J; Adomako, Eureka E; Deacon, Claire M; Carey, Anne-Marie; Price, Adam H; Meharg, Andrew A

    2013-06-01

    Arsenic accumulation in rice grain has been identified as a major problem in some regions of Asia. A study was conducted to investigate the effect of increased organic matter in the soil on the release of arsenic into soil pore water and accumulation of arsenic species within rice grain. It was observed that high concentrations of soil arsenic and organic matter caused a reduction in plant growth and delayed flowering time. Total grain arsenic accumulation was higher in the plants grown in high soil arsenic in combination with high organic matter, with an increase in the percentage of organic arsenic species observed. The results indicate that the application of organic matter should be done with caution in paddy soils which have high soil arsenic, as this may lead to an increase in accumulation of arsenic within rice grains. Results also confirm that flooding conditions substantially increase grain arsenic.

  2. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Maria I.S.; Santos, Jorge A.G. [Department of Soil Chemistry, Universidade Federal da Bahia, Cruz das Almas, 44380000 (Brazil); Ma, Lena Q. [Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611-0290 (United States)], E-mail: lqma@ifas.ufl.edu

    2008-07-15

    This greenhouse experiment evaluated arsenic removal by Pteris vittata and its effects on arsenic redistribution in soils. P. vittata grew in six arsenic-contaminated soils and its fronds were harvested and analyzed for arsenic in October, 2003, April, 2004, and October, 2004. The soil arsenic was separated into five fractions via sequential extraction. The ferns grew well and took up arsenic from all soils. Fern biomass ranged from 24.8 to 33.5 g plant{sup -1} after 4 months of growth but was reduced in the subsequent harvests. The frond arsenic concentrations ranged from 66 to 6,151 mg kg{sup -1}, 110 to 3,056 mg kg{sup -1}, and 162 to 2,139 mg kg{sup -1} from the first, second and third harvest, respectively. P. vittata reduced soil arsenic by 6.4-13% after three harvests. Arsenic in the soils was primarily associated with amorphous hydrous oxides (40-59%), which contributed the most to arsenic taken up by P. vittata (45-72%). It is possible to use P. vittata to remediate arsenic-contaminated soils by repeatedly harvesting its fronds. - Pteris vittata was effective in continuously removing arsenic from contaminated soils after three repeated harvests.

  3. Arsenic in the aetiology of cancer.

    Science.gov (United States)

    Tapio, Soile; Grosche, Bernd

    2006-06-01

    Arsenic, one of the most significant hazards in the environment affecting millions of people around the world, is associated with several diseases including cancers of skin, lung, urinary bladder, kidney and liver. Groundwater contamination by arsenic is the main route of exposure. Inhalation of airborne arsenic or arsenic-contaminated dust is a common health problem in many ore mines. This review deals with the questions raised in the epidemiological studies such as the dose-response relationship, putative confounders and synergistic effects, and methods evaluating arsenic exposure. Furthermore, it describes the metabolic pathways of arsenic, and its biological modes of action. The role of arsenic in the development of cancer is elucidated in the context of combined epidemiological and biological studies. However, further analyses by means of molecular epidemiology are needed to improve the understanding of cancer aetiology induced by arsenic.

  4. RARE CASE REPORT OF CHRONIC ARSENIC POISONING

    OpenAIRE

    Mundle; Neelima; Sushrut; Yogesh; Shukan; Shalik; Siddharth

    2014-01-01

    Today, arsenic is primarily used in the produc tion of glass and semiconductors., Arsenic may be found as a water or food contaminant, particularly in shellfish and other seafood, and often contaminates fruits and vegetables, particularly rice

  5. Inorganic arsenic poisoning in pastured feeder lambs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, H.A.; Crane, M.R.; Tomson, K.

    1971-01-01

    Clinical signs and necropsy findings in a group of feeder lambs were suggestive of inorganic arsenic poisoning. Source of exposure was established and toxic concentrations of arsenic were detected in the tissues. 13 references, 1 table.

  6. RARE CASE REPORT OF CHRONIC ARSENIC POISONING

    Directory of Open Access Journals (Sweden)

    Mundle

    2014-12-01

    Full Text Available Today, arsenic is primarily used in the produc tion of glass and semiconductors., Arsenic may be found as a water or food contaminant, particularly in shellfish and other seafood, and often contaminates fruits and vegetables, particularly rice

  7. Insights into arsenic multi-operons expression and arsenic resistance mechanisms in Rhodopseudomonas palustris CGA009

    OpenAIRE

    Chungui eZhao; Yi eZhang; Zhuhua eChan; Shicheng eChen; Suping eYang

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2 and ars3) in R. palustris. In this study, we i...

  8. A medical geology study of an arsenic-contaminated area in Kouhsorkh, NE Iran.

    Science.gov (United States)

    Tabasi, Samira; Abedi, Arezoo

    2012-04-01

    High concentrations of arsenic were determined in sediments from the Kouhsorkh area, Khorasan province, NE Iran. The main rock formations in the area consist of Tertiary volcanic rocks as Tuffaceous sandstone, polymictic conglomerate and andesite. Furthermore, some As-Sb-Au mineralization occurred in this area. Concentrations of arsenic in sediments were determined to range between 4.2 and 268.2 ppm, exceeding US EPA (2004) limits. It seems that young volcanic activity is one of the most important factors for arsenic contamination in this area. The first stage of this medical geology study was done at 2 villages in the Kouhsorkh area in which the arsenic concentration in water is high. People in this residential area suffer from skin diseases including hyperpigmentation, hypopigmentation, keratosis on head, hands, and feet. The 24-h urine specimens were tested for arsenic, the level of total arsenic in urine were determined to range between 13.66 and 75.92 μg/l day, exceeding permissible limits from 5 to 40 μg/day. More systematic studies are needed to determine the link between As exposure and its related diseases.

  9. ARSENIC SEPARATION FROM WATER USING ZEOLITES

    Science.gov (United States)

    Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

  10. Arsenic - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Are Here: Home → Multiple Languages → All Health Topics → Arsenic URL of this page: https://medlineplus.gov/languages/arsenic.html Other topics A-Z A B C ... V W XYZ List of All Topics All Arsenic - Multiple Languages To use the sharing features on ...

  11. 21 CFR 556.60 - Arsenic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  12. Urinary arsenic levels in the French adult population: the French National Nutrition and Health Study, 2006-2007.

    Science.gov (United States)

    Saoudi, Abdessattar; Zeghnoun, Abdelkrim; Bidondo, Marie-Laure; Garnier, Robert; Cirimele, Vincent; Persoons, Renaud; Fréry, Nadine

    2012-09-01

    The French Nutrition and Health Survey (ENNS) was conducted to describe dietary intakes, nutritional status, physical activity, and levels of various biomarkers for environmental chemicals (heavy metals and pesticides) in the French population (adults aged 18-74 years and children aged 3-17 years living in continental France in 2006-2007). The aim of this paper was to describe the distributions of total arsenic and the sum of iAs+MMA+DMA in the general adult population, and to present their main risk factors. In the arsenic study, 1500 and 1515 adults (requested to avoid seafood intake in the previous 3 days preceding urine collection) were included respectively for the analysis of the sum of inorganic arsenic (iAs) and its two metabolites, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), and for the total arsenic. Results were presented as geometric means and selected percentiles of urinary arsenic concentrations (μg/L) and creatinine-adjusted urinary arsenic (μg/g of creatinine) for total arsenic, and the sum of inorganic arsenic and metabolites (iAs+MMA+DMA). The geometric mean concentration of the sum of iAs+MMA+DMA in the adult population living in France was 3.34 μg/g of creatinine [3.23-3.45] (3.75 μg/L [3.61-3.90]) with a 95th percentile of 8.9 μg/g of creatinine (10.68 μg/L). The geometric mean concentration of total arsenic was 11.96 μg/g of creatinine [11.41-12.53] (13.42 μg/L [12.77-14.09]) with a 95th percentile of 61.29 μg/g of creatinine (72.75 μg/L). Urinary concentrations of total arsenic and iAS+MMA+DMA were influenced by sociodemographic and economic factors, and by risk factors such as consumption of seafood products and of wine. In our study, covariate-adjusted geometric means demonstrated several slight differences, due to consumption of fish, shellfish/crustaceans or wine. This study provides the first reference value for arsenic in a representative sample of the French population not particularly exposed to high levels

  13. An Algorithm to Identify Target-Selective Ligands – A Case Study of 5-HT7/5-HT1A Receptor Selectivity

    Science.gov (United States)

    Kurczab, Rafał; Canale, Vittorio; Zajdel, Paweł; Bojarski, Andrzej J.

    2016-01-01

    A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active) and with an additional set of decoys (prepared using DUD methodology), the SVM (Support Vector Machines) models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints), different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance. PMID:27271158

  14. An Algorithm to Identify Target-Selective Ligands - A Case Study of 5-HT7/5-HT1A Receptor Selectivity.

    Directory of Open Access Journals (Sweden)

    Rafał Kurczab

    Full Text Available A computational procedure to search for selective ligands for structurally related protein targets was developed and verified for serotonergic 5-HT7/5-HT1A receptor ligands. Starting from a set of compounds with annotated activity at both targets (grouped into four classes according to their activity: selective toward each target, not-selective and not-selective but active and with an additional set of decoys (prepared using DUD methodology, the SVM (Support Vector Machines models were constructed using a selective subset as positive examples and four remaining classes as negative training examples. Based on these four component models, the consensus classifier was then constructed using a data fusion approach. The combination of two approaches of data representation (molecular fingerprints vs. structural interaction fingerprints, different training set sizes and selection of the best SVM component models for consensus model generation, were evaluated to determine the optimal settings for the developed algorithm. The results showed that consensus models with molecular fingerprints, a larger training set and the selection of component models based on MCC maximization provided the best predictive performance.

  15. Differences in cadmium transfer from tobacco to cigarette smoke, compared to arsenic or lead

    Directory of Open Access Journals (Sweden)

    J.-J. Piadé

    2015-01-01

    Full Text Available Arsenic, cadmium and lead levels in tobacco filler and cigarette smoke were determined in a 568-sample worldwide survey. Median tobacco levels for arsenic, cadmium and lead were 237, 769 and 397 ng/g respectively, comparable to those previously reported albeit somewhat lower for lead and cadmium. Median mainstream smoke yields for arsenic, cadmium and lead were <3.75, 18.2, and <12.8 ng/cig. under ISO, and <8.71, 75.1 and <45.7 ng/cig. under Health Canada Intense (HCI smoking regime respectively. In the case of cigarettes with activated carbon, a selective retention of cadmium but not lead or arsenic was observed. This effect was more pronounced under ISO than under HCI smoking regimes. Cadmium selective retention by activated carbon was confirmed by testing specially designed prototype cigarettes and the causes for this selective filtration were investigated. The differences between cadmium, arsenic and lead in terms of their speciation in tobaccos and in cigarette smoke could be related to their distribution in the ash, butt, mainstream (in gas-phase and particulate-phase and sidestream smoke of a smoked cigarette. The possible formation of organometallic cadmium derivatives in the smoke gas-phase is discussed, the presence of which could adequately explain the observed cadmium selective filtration.

  16. Arsenic – Poison or medicine?

    Directory of Open Access Journals (Sweden)

    Karolina Kulik-Kupka

    2016-04-01

    Full Text Available Arsenic (As is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine. Med Pr 2016;67(1:89–96

  17. Mineral resource of the month: arsenic

    Science.gov (United States)

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  18. Activation of the Nrf2 Pathway by Inorganic Arsenic in Human Hepatocytes and the Role of Transcriptional Repressor Bach1

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2013-01-01

    Full Text Available Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2 pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE- luciferase activity. Both the mRNA and protein levels of NAD(PH:quinone oxidoreductase 1 (NQO1 and heme oxygenase-1 (HO-1 were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1 from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals.

  19. Arsenic mobility in contaminated lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaidis, Nikolaos P.; Dobbs, Gregory M.; Chen, Jing; Lackovic, Jeffrey

    2004-06-01

    An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates. - Arsenic accumulates at the ground water/lake interface, where it forms insoluble precipitates.

  20. Arsenic-cadmium interaction in rats.

    Science.gov (United States)

    Díaz-Barriga, F; Llamas, E; Mejía, J J; Carrizales, L; Santoyo, M E; Vega-Vega, L; Yáñez, L

    1990-11-01

    Simultaneous exposure to cadmium and arsenic is highly probable in the urban area of San Luis Potosi, Mexico due to common localization of copper and zinc smelters. Therefore, in this work, rats were intraperitoneally exposed either to cadmium or arsenic alone, or simultaneously to both metals. The effects of these treatments on three different toxicological parameters were studied. Cadmium modified the LD50 of arsenic and conversely arsenic modified the LD50 for cadmium. At the histopathological level, arsenic appeared to protect against the cadmium effects, especially on testes. This protective effect seemed to be related to the glutathione levels found in this tissue: rats exposed to both arsenic and cadmium, presented glutathione values intermediate to those observed after exposure to either metal alone; arsenic had the highest value and cadmium the lowest. In liver, rats exposed to arsenic, cadmium or arsenic and cadmium, presented glutathione values below those in the saline group, with the lowest value corresponding to the arsenic and cadmium treatment. The results appear to support the proposed interaction between arsenic and cadmium and coexposure to both metals seems to alter certain effects produced by either metal alone.

  1. Arsenic (+3 oxidation state methyltransferase is a specific but replaceable factor against arsenic toxicity

    Directory of Open Access Journals (Sweden)

    Maki Tokumoto

    2014-01-01

    Full Text Available Inorganic metalloids, such as arsenic (As, antimony (Sb, selenium (Se, and tellurium (Te, are methylated in biota. In particular, As, Se, and Te are methylated and excreted in urine. The biomethylation is thought to be a means to detoxify the metalloids. The methylation of As is catalyzed by arsenic (+3 oxidation state methyltransferase (AS3MT. However, it is still unclear whether AS3MT catalyzes the methylation of the other metalloids. It is also unclear whether other factors catalyze the As methylation instead of AS3MT. Recombinant human AS3MT (rhAS3MT was prepared and used in the in vitro methylation of As, Se, and Te. As, but not Se and Te, was specifically methylated in the presence of rhAS3MT. Then, siRNA targeting AS3MT was introduced into human hepatocarcinoma (HepG2 cells. Although AS3MT protein expression was completely silenced by the gene knockdown, no increase in As toxicity was found in the HepG2 cells transfected with AS3MT-targeting siRNA. We conclude that AS3MT catalyzes the methylation of As and not other biomethylatable metalloids, such as Se and Te. We speculate that other methylation enzyme(s also catalyze the methylation of As in HepG2 cells.

  2. Improved removal of arsenic from groundwater using pre-corroded steel and iron tailored granular activated carbon.

    Science.gov (United States)

    Zou, J; Cannon, F S; Chen, W; Dempsey, B A

    2010-01-01

    The authors have combined corrosion of steel fittings or perforated sheets with granular activated carbon (GAC) that had been pre-treated with Fe(III)-citrate, to produce an innovative and low-maintenance technique for removing arsenic from groundwater. Removal of arsenic was measured using two GAC column configurations: rapid small scale column tests (RSSCT's) and mini-column tests. Independent variables included pH, pre-corrosion procedure, and idling of the column (i.e. intentionally stopping flow for defined times in order to create reducing conditions). Use of corroded steel plus pre-treated GAC removed arsenic to below 10 microg/L for up to 248,000 bed volumes (BV) at pH 6, compared to 7,000 BVs for pre-treated GAC without pre-corroded steel. Performance was not as good at pH 6.5 or 7.5. Idling the system recovered the iron corrosion ability by reducing the passive Fe(III) layer on pre-corroded steel surface, as a result the BVs to arsenic breakthrough was doubled. But idling also caused brief periods of arsenic and iron release after restart, due to reductive dissolution of arsenic-containing ferric oxides. GAC was also effective as filtration media for removal of iron (hydr)oxide particles (and associated arsenic) that was released from the pre-corroded iron.

  3. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic.

    Science.gov (United States)

    Dickerson, Aisha S; Rahbar, Mohammad H; Bakian, Amanda V; Bilder, Deborah A; Harrington, Rebecca A; Pettygrove, Sydney; Kirby, Russell S; Durkin, Maureen S; Han, Inkyu; Moyé, Lemuel A; Pearson, Deborah A; Wingate, Martha Slay; Zahorodny, Walter M

    2016-07-01

    Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m(3)) and arsenic concentrations below the 75th percentile (≤0.13 ng/m(3)) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence.

  4. Speciation analysis of arsenic in groundwater from Inner Mongolia with an emphasis on acid-leachable particulate arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhilong [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Lu Xiufen [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Watt, Corinna [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Wen Bei [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); He Bin [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada); Mumford, Judy [National Health and Environmental Effects Research Laboratory, Environmental Protection Agency, Human Studies Division, Epidemiology and Biomarkers Branch, Research Triangle Park, NC 27711 (United States); Ning Zhixiong [Ba Men Anti-Epidemic Station, Lin He, Inner Mongolia (China); Xia Yajuan [Inner Mongolia Center for Endemic Disease Control and Research, Huhhot, Inner Mongolia (China); Le, X. Chris [Department of Public Health Sciences, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, Alta., T6G 2G3 (Canada)]. E-mail: xc.le@ualberta.ca

    2006-01-05

    Arsenic in drinking water affects millions of people around the world. While soluble arsenic is commonly measured, the amount of particulate arsenic in drinking water has often been overlooked. We report here determination of the acid-leachable particulate arsenic and soluble arsenicals in well water from an arsenic-poisoning endemic area in Inner Mongolia, China. Water samples (583) were collected from 120 wells in Ba Men, Inner Mongolia, where well water was the primary drinking water source. Two methods were demonstrated for the determination of soluble arsenic species (primarily inorganic arsenate and arsenite) and total particulate arsenic. The first method used solid phase extraction cartridges and membrane filters to separate arsenic species on-site, followed by analysis of the individual arsenic species eluted from the cartridges and filters. The other method uses liquid chromatography separation with hydride generation atomic fluorescence detection to determine soluble arsenic species. Analysis of acidified water samples using inductively coupled plasma mass spectrometry provided the total arsenic concentration. Arsenic concentrations in water samples from the 120 wells ranged from <1 to {approx}1000 {mu}g L{sup -1}. On average, particulate arsenic accounted for 39 {+-} 38% (median 36%) of the total arsenic. In some wells, particulate arsenic was six times higher than the soluble arsenic concentration. Particulate arsenic can be effectively removed using membrane filtration. The information on particulate and soluble arsenic in water is useful for optimizing treatment options and for understanding the geochemical behavior of arsenic in groundwater.

  5. Arsenic speciation in seafood samples with emphasis on minor constituents. An investigation by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Extracts of 11 samples of shrimp, crab, fish, fish liver, shellfish and lobster digestive gland (hepatopancreas), including five certified reference materials, were investigated for their contents of arsenic compounds (arsenic speciation). The cation-exchange high performance liquid chromatography...... procedure was optimized to separate six cationic arsenicals present in the samples with internal chromatographic standardization by the trimethylselenonium ion, which was detected a m/z 82 (Se-82), in addition to arsenic at m/z 75, by inductively coupled plasma mass spectrometry. The content of each species...... gland, and another unknown (U2) was present at 0.2-6.4% in all samples. The contents of arsenite and arsenate were 0-1.4%, dimethylarsinate 8.2-29% while monomethylarsonate was detected only in oyster at 0.3% of the total extracted arsenic. Finding tetramethylarsonium ion and arsenocholine in a variety...

  6. Urinary Arsenic Metabolites of Subjects Exposed to Elevated Arsenic Present in Coal in Shaanxi Province, China

    Directory of Open Access Journals (Sweden)

    Linsheng Yang

    2011-06-01

    Full Text Available In contrast to arsenic (As poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions, who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China, were reported. The urinary arsenic species, including inorganic arsenic (iAs [arsenite (iAsIII and arsenate (iAsV], monomethylarsonic acid (MMAV and dimethylarsinic acid (DMAV, were determined by high-performance liquid chromatography (HPLC combined with inductively coupled plasma mass spectroscopy (ICP-MS. The relative distributions of arsenic species, the primary methylation index (PMI = MMAV/iAs and the secondary methylation index (SMI = DMAV/MMAV were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  7. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Zheng, B.S.; Aposhian, H.V.; Zhou, Y.S.; Chen, M.L.; Zhang, A.H.; Waalkes, M.P. [NIEHS, Research Triangle Park, NC (USA)

    2002-07-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China was investigated. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such over exposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  8. Methanogenic inhibition by arsenic compounds.

    Science.gov (United States)

    Sierra-Alvarez, Reyes; Cortinas, Irail; Yenal, Umur; Field, Jim A

    2004-09-01

    The acute acetoclastic methanogenic inhibition of several inorganic and organic arsenicals was assayed. Trivalent species, i.e., methylarsonous acid and arsenite, were highly inhibitory, with 50% inhibitory concentrations of 9.1 and 15.0 microM, respectively, whereas pentavalent species were generally nontoxic. The nitrophenylarsonate derivate, roxarsone, displayed moderate toxicity.

  9. Acute arsenic poisoning diagnosed late.

    Science.gov (United States)

    Shumy, Farzana; Anam, Ahmad Mursel; Kamruzzaman, A K M; Amin, Md Robed; Chowdhury, M A Jalil

    2016-04-01

    Acute arsenicosis, although having a 'historical' background, is not common in our times. This report describes a case of acute arsenic poisoning, missed initially due to its gastroenteritis-like presentation, but suspected and confirmed much later, when the patient sought medical help for delayed complications after about 2 months.

  10. The microbial genomics of arsenic.

    Science.gov (United States)

    Andres, Jérémy; Bertin, Philippe N

    2016-03-01

    Arsenic, which is a major contaminant of many aquatic ecosystems worldwide, is responsible for serious public health issues. However, life has evolved various strategies for coping with this toxic element. In particular, prokaryotic organisms have developed processes enabling them to resist and metabolize this chemical. Studies based on genome sequencing and transcriptome, proteome and metabolome profiling have greatly improved our knowledge of prokaryotes' metabolic potential and functioning in contaminated environments. The increasing number of genomes available and the development of descriptive and comparative approaches have made it possible not only to identify several genetic determinants of the arsenic metabolism, but also to elucidate their phylogenetic distribution and their modes of regulation. In addition, studies using functional genomic tools have established the pleiotropic character of prokaryotes' responses to arsenic, which can be either common to several species or species-specific. These approaches also provide promising means of deciphering the functioning of microbial communities including uncultured organisms, the genetic transfers involved and the possible occurrence of metabolic interactions as well as the evolution of arsenic resistance and metabolism.

  11. Cellular arsenic transport pathways in mammals.

    Science.gov (United States)

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  12. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  13. Arsenic chemistry in soils and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of

  14. Silencing KRAS overexpression in arsenic-transformed prostate epithelial and stem cells partially mitigates malignant phenotype.

    Science.gov (United States)

    Ngalame, Ntube N O; Tokar, Erik J; Person, Rachel J; Waalkes, Michael P

    2014-12-01

    Inorganic arsenic is a human carcinogen that likely targets the prostate. Chronic arsenic exposure malignantly transforms the RWPE-1 human prostate epithelial line to chronic arsenic exposed-prostate epithelial (CAsE-PE) cells, and a derivative normal prostate stem cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs). The KRAS oncogene is highly overexpressed in CAsE-PE cells and activation precedes transformation, inferring mechanistic significance. As-CSCs also highly overexpress KRAS. Thus, we hypothesize KRAS activation is key in causing and maintaining an arsenic-induced malignant phenotype, and hence, KRAS knockdown (KD) may reverse this malignant phenotype. RNA interference using shRNAmirs to obtain KRAS KD was used in CAsE-PE and As-CSC cells. Cells analyzed 2 weeks post transduction showed KRAS protein decreased to 5% of control after KD, confirming stable KD. KRAS KD decreased phosphorylated ERK, indicating inhibition of RAS/ERK signaling, a proliferation/survival pathway activated with arsenic transformation. Secreted metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but KRAS KD from 4 weeks on decreased secreted MMP-9 activity by 50% in As-CSCs. Colony formation, a characteristic of cancer cells, was decreased in both KRAS KD transformants. KRAS KD also decreased the invasive capacity of both cell types. KRAS KD decreased proliferation in As-CSCs, consistent with loss of rapid tumor growth. Genes predicted to impact cell proliferation (eg, Cyclin D1, p16, and p21) changed accordingly in both KD cell types. Thus, KRAS silencing impacts aspects of arsenic-induced malignant phenotype, inducing loss of many typical cancer characteristics particularly in As-CSCs.

  15. Knowledge building insights on biomarkers of arsenic toxicity to keratinocytes and melanocytes.

    Science.gov (United States)

    Isokpehi, Raphael D; Udensi, Udensi K; Anyanwu, Matthew N; Mbah, Andreas N; Johnson, Matilda O; Edusei, Kafui; Bauer, Michael A; Hall, Roger A; Awofolu, Omotayo R

    2012-01-01

    Exposure to inorganic arsenic induces skin cancer and abnormal pigmentation in susceptible humans. High-throughput gene transcription assays such as DNA microarrays allow for the identification of biological pathways affected by arsenic that lead to initiation and progression of skin cancer and abnormal pigmentation. The overall purpose of the reported research was to determine knowledge building insights on biomarker genes for arsenic toxicity to human epidermal cells by integrating a collection of gene lists annotated with biological information. The information sets included toxicogenomics gene-chemical interaction; enzymes encoded in the human genome; enriched biological information associated with genes; environmentally relevant gene sequence variation; and effects of non-synonymous single nucleotide polymorphisms (SNPs) on protein function. Molecular network construction for arsenic upregulated genes TNFSF18 (tumor necrosis factor [ligand] superfamily member 18) and IL1R2 (interleukin 1 Receptor, type 2) revealed subnetwork interconnections to E2F4, an oncogenic transcription factor, predominantly expressed at the onset of keratinocyte differentiation. Visual analytics integration of gene information sources helped identify RAC1, a GTP binding protein, and TFRC, an iron uptake protein as prioritized arsenic-perturbed protein targets for biological processes leading to skin hyperpigmentation. RAC1 regulates the formation of dendrites that transfer melanin from melanocytes to neighboring keratinocytes. Increased melanocyte dendricity is correlated with hyperpigmentation. TFRC is a key determinant of the amount and location of iron in the epidermis. Aberrant TFRC expression could impair cutaneous iron metabolism leading to abnormal pigmentation seen in some humans exposed to arsenicals. The reported findings contribute to insights on how arsenic could impair the function of genes and biological pathways in epidermal cells. Finally, we developed visual analytics

  16. The effectiveness of water-treatment systems for arsenic used in 11 homes in Southwestern and Central Ohio, 2013

    Science.gov (United States)

    Thomas, Mary Ann; Ekberg, Mike

    2016-02-23

    the raw water. In general, the treatment systems were less effective at treating higher concentrations of arsenic. For five sites with raw-water arsenic concentrations of 10–30 µg/L, the systems removed 65–81 percent of the arsenic, and the final concentrations were less than the maximum contamination level. For three sites with higher raw-water arsenic concentrations (50–75 µg/L), the systems removed 22–34 percent of the arsenic; and the final concentrations were 4–5 times more than the maximum contamination level. Other characteristics of the raw water may have affected the performance of treatment systems; in general, raw water with the higher arsenic concentrations also had higher pH, higher concentrations of organic carbon and ammonia, and more reducing (methanogenic) redox conditions.For sites with raw-water arsenic concentrations of 10–30 µg/L, two types of systems (reverse osmosis and oxidation/filtration) removed similar amounts of arsenic, but the quality of the treated water differed in other respects. Reverse osmosis caused substantial decreases in pH, alkalinity, and concentrations of most ions. On the other hand, oxidation/filtration using manganese-based media caused a large increase of manganese concentrations, from less than 50 µg/L in raw water to more than 700 µg/L in outflow from the oxidation filtration units.It is not known if the results of this study are widely applicable; the number of systems sampled was relatively small, and each system was sampled only once. Further study may be warranted to investigate whether available methods of arsenic removal are effective/practical for residential use in areas like Ohio, were groundwater with elevated arsenic concentrations is strongly reducing, and the predominant arsenic species is arsenite (As3+).

  17. Extraction Pattern of Arsenic Species with Mineral Composition in Contaminated Soils in Korea

    Science.gov (United States)

    Park, M.; Shin, M.; Yoon, H.; Kim, Y.; Kim, K.; Ko, I.

    2006-12-01

    Specific determination of various arsenic species is gaining increasing attention because the toxicity of arsenic differs with chemical forms such as organic (MMA, DMA) or inorganic (arsenite, arsenate). Knowledge of extraction method for arsenic speciation in contaminated soils then notified and tested by many researchers. However, the analytical technique for separation of different arsenic species has been always challenging in different environmental samples. A achieving correct analytical results and resolving the lowest detection limit is also desirable. Extraction method for arsenic speciation have been studied by many researchers with the use of a variety of extractants such as H3PO4, HCl, Na2CO3, EDTA 'in soils and sediments including plenty of clay. We, in this study, reported a benign extraction method and presented the pattern of arsenic in contaminated soils of different mineral compositions. Soil samples were collected from tailings of 2 places (Kyungbuk, Jeonnam); both were from abandoned metal mines in Korea. Samples were air dried at room temperature and separated by mechanical sieving to three fractions (2mm_200 μm, 200_64μm, arsenic analysis used by KBSI method and modified Garcia-Manyes method for arsenic speciation. We extracted arsenic species from the soils by using a mixture of 1M phosphoric acid and 0.1% ascorbic acid. 0.2g of sample was placed in microwave digestion vessels along with 10ml extraction solution and treated for 15min at 60w microwave power. After the microwave stage, the contents were transferred to 30ml sample bottles and diluted to 16ml with deionized water, then centrifuged for 15min at 2500rpm. Total arsenic concentration of sample was analyzed by using ICP-AES (ICP-OES, Ultima2C, Jobin Yvon) and the arsenic species were analyzed by hyphenated system, SPE-HG-ICP-AES. To identify the mineral phases in bulk soil samples, we used XRD (Phillips X'Pert MPD) under 40kV/30mA condition. XRD data was collected between 5 and 70

  18. The effect of variable environmental arsenic contamination on urinary concentrations of arsenic species.

    OpenAIRE

    Kalman, D A; Hughes, J; BELLE, G.; Burbacher, T; Bolgiano, D; Coble, K; Mottet, N. K.; Polissar, L

    1990-01-01

    Urinary arsenic species have been determined for approximately 3000 urine samples obtained from residents of a community surrounding an arsenic-emitting copper smelter. Levels of inorganic, monomethylated and dimethylated arsenic species ranged from less than 1 microgram/L (the instrumental detection limit) to 180 micrograms/L seen for dimethyl arsenic. Comparison of a subsample of this population that had the least environmental contamination with the subsample having highest environmental a...

  19. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    OpenAIRE

    Wuthiphun, L.; Towatana, P.; Arrykul, S.; Chongsuvivatwong, V

    2007-01-01

    Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash) on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil cove...

  20. The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L.

    Science.gov (United States)

    Pavlík, Milan; Pavlíková, Daniela; Staszková, Ludmila; Neuberg, Marek; Kaliszová, Regina; Száková, Jirina; Tlustos, Pavel

    2010-09-01

    Changes of amino acid concentrations (proline, glutamate, asparagine, aspartate, alanine) and glutamate kinase activity (GKA) in plants under arsenic chronic stress reported here reveal their role in plant arsenic stress adaptation. Results of the pot experiment confirmed the toxic effect of arsenic at tested levels (As1=25 mg As kg(-1) soil, As2=50 mg As kg(-1) soil, As3=75 mg As kg(-1) soil) for spinach. Growing available arsenic contents in soil were associated with the strong inhibition of above-ground biomass and with the enhancement of As plant content. The changes of glutamate, asparagine, aspartate and proline levels in the plants showed strong linear dependences on arsenic concentration in plants (R2=0.60-0.90). Compared to the untreated control, concentrations of free proline and aspartate of As3 treatment were enhanced up to 381% and 162%, respectively. The significant changes of glutamate were observed on As2 and As3 treatments (increased level up to 188, i.e. 617%). Arsenic in plants was shown to be an inhibitor of glutamase kinase activity (R2=0.91). Inhibition of GKA resulted in an increase in the content of glutamate that is used in synthesis of phytochelatins in plant cells. Concentration of alanine did not have a confirmed linear dependence on arsenic concentration in plant (R2=0.05). The changes of its concentrations could be affected by changes of pH in plant cell or induction of alanine aminotransferase by hypoxia.

  1. Levels of toxic arsenic species in native terrestrial plants from soils polluted by former mining activities.

    Science.gov (United States)

    García-Salgado, Sara; Quijano, M Ángeles

    2014-03-01

    Ten native terrestrial plants from soils polluted by former mining activities (Mónica mine, NW Madrid, Spain), with high total arsenic concentration levels (up to 3500 μg g(-1)), have been studied to determine the fraction of arsenic present as toxic forms (inorganic and methylated species), which present a higher mobility and therefore the potential risk associated with their reintegration into the environment is high. Roots and aboveground parts were analyzed separately to assess possible transformations from translocation processes. Extractions were carried out with deionized water by microwave-assisted extraction at a temperature of 90 °C and three extraction steps of 7.5 min each. Total extracted arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry, showing extraction percentages from 9 to 39% (calculated as the ratio between total extracted arsenic (Asext) and total arsenic (AsT) concentrations in plants). Speciation studies, performed by high performance liquid chromatography-photo-oxidation-hydride generation-atomic fluorescence spectrometry, showed the main presence of arsenate (As(v)) (up to 350 μg g(-1)), followed by arsenite (As(iii)), in both plant parts. Monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) were also found only in some plants. On the other hand, the use of 0.5 mol L(-1) acetic acid as an extractant led to higher extraction percentages (33-87%), but lower column recoveries, probably due to the extraction of arsenic compounds different to the toxic free ions studied, which may come from biotransformation mechanisms carried out by plants to reduce arsenic toxicity. However, As(v) concentrations increased up to 800 μg g(-1) in acid medium, indicating the probable release of As(v) from organoarsenic compounds and therefore a higher potential risk for the environment.

  2. Outbreak of arsenic and toxaphene poisoning in Kenyan cattle. [Arsenic was detected in cattle dips

    Energy Technology Data Exchange (ETDEWEB)

    Maitai, C.K.; Kamau, J.A.; Gacuhi, D.M.; Njoroge, S.

    1975-02-15

    In a case of poisoning involving 70 cattle analysis of specimens obtained during post mortem examination showed that the toxic substances were arsenic and toxaphene. This was consistent with both the clinical and post mortem findings. Arsenic was detected in water from an abandoned cattle dip in the farm. Soil samples collected in the vicinity of the dip contained both arsenic and toxaphene.

  3. Method of arsenic removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Ashok (El Cerrito, CA)

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  4. Improved Sustainability of Water Supply Options in Areas with Arsenic-Impacted Groundwater

    Directory of Open Access Journals (Sweden)

    Edward A. McBean

    2013-11-01

    Full Text Available The supply of water for rural populations in developing countries continues to present enormous problems, particularly where there is arsenic contamination in the groundwater, as exists over significant parts of Bangladesh. In response, improvements in the sustainability of water supplies are feasible through the use of a combination of water sources wherein rainwater harvesting is employed for a portion of the year. This can potentially reduce the duration of the year during which arsenic-contaminated groundwater is utilized. As demonstrated, a rainwater cistern volume of 0.5 m3 in the Jessore district area of Bangladesh can provide rainwater for periods averaging 266 days of the year, which allows groundwater at 184 µg/L arsenic to be used as a water supply for the remainder of the year. This dual supply approach provides the body burden equivalent to the interim drinking water guideline of arsenic concentration of 50 µg/L for 365 days of the year (assuming the water consumption rate is 4 L/cap/day for a family of five with a rainwater collection area of 15 m2. If the water use rate is 20 L/cap/day, the same cistern can provide water for 150 days of the year; however, although this is insufficient to supply water to meet the body burden equivalent guideline of 50 µg/L. Results are provided also for different rooftop areas, sizes of cisterns and alternative arsenic guidelines [World Health Organization (WHO and Bangladeshi]. These findings provide useful guidelines on supply options to meet sustainability targets of water supply. However, they also demonstrate that the use of cisterns cannot assist the meeting of the 10 µg/L WHO target arsenic body burden, if the arsenic contamination in the groundwater is high (e.g., at 100 µg/L.

  5. Arsenic geochemistry of groundwater in Southeast Asia.

    Science.gov (United States)

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  6. Arsenic stress after the Proterozoic glaciations

    OpenAIRE

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-01-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental mar...

  7. Presence of Arsenic in Commercial Beverages

    Directory of Open Access Journals (Sweden)

    Jason Roberge

    2009-01-01

    Full Text Available Problem statement: This study’s goal was to assess the arsenic concentration of various beverages and broths purchased from a local chain supermarket. A source of chronic arsenic exposure occurs via food and beverage consumption. Groundwater levels of total arsenic are regulated (-1 by the Environmental Protection Agency (EPA but few studies have examined arsenic concentrations in common beverages. Approach: In the initial analysis of 19 items, total arsenic concentration was assessed from a variety of fruit juices, sports drinks, sodas and broths. Items found to contain levels of total arsenic ≥5.0 µg L-1 were further evaluated. Additional analysis included purchasing multiple brands of items ≥5.0 µg L-1and analyzing them for total arsenic and chemical species of arsenic. Results: Among the beverages in the initial analysis, apple juice (10.79 µg L-1 and grape juice (49.87 µg L-1 contained the highest levels of total arsenic. Upon examination of items with As concentrations above 5.0 µg L-1, varying concentrations of total arsenic were found in apple cider (range: 5.41-15.27 µg L-1, apple juice (range: 10.67-22.35 µg L-1, baby fruit juice (range: 13.91-16.51 µg L-1 and grape juice (range: 17.69-47.59 µg L-1. Conclusion: Many commercially available juices contained concentrations of arsenic that were higher than the standard for total arsenic allowed in groundwater as set forth by the EPA. The concentration of As in these juices varied between and within brands. In general, those consuming apple and grape juices are the young and elderly and it is these populations that may be more vulnerable to over exposure of heavy metals.

  8. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  9. In-tank recirculating arsenic treatment system

    Science.gov (United States)

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  10. Certain cases of poisoning by arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Cristol, P.; Fourcade, J.; Ravoire, J.; Bezenech, C.

    1939-05-01

    Cases of acute and chronic poisoning by arsenic are reported. Diffuse pains, angor, edema of the limbs and genitals, complicated by heptic insufficiency and chronic bronchitis were determined in a subject having lived near an industrial plant processing arseniferous ores for several years. The plant emitted several hundred kg of finely dispersed arsenic oxide daily which settled on forage and vegetables. Symptoms of poisoning by arsenic were also detected in cattle in the same area. The installation of Cottrell type dust separators has helped to suppress the arsenic oxide emissions.

  11. Arsenic-bound excitons in diamond

    Science.gov (United States)

    Barjon, J.; Jomard, F.; Morata, S.

    2014-01-01

    A set of new excitonic recombinations is observed in arsenic-implanted diamond. It is composed of two groups of emissions at 5.355/5.361 eV and at 5.215/5.220/5.227 eV. They are respectively attributed to the no-phonon and transverse-optical phonon-assisted recombinations of excitons bound to neutral arsenic donors. From the Haynes rule, an ionization energy of 0.41 eV is deduced for arsenic in diamond, which shows that arsenic is a shallower donor than phosphorus (0.6 eV), in agreement with theory.

  12. Arsenic speciation and sorption in natural environments

    Science.gov (United States)

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  13. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    Science.gov (United States)

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (Pwater were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, Pwater was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  14. Fabrication and Characterization of Reactively Sputtered AlInGaN Films with a Cermet Target Containing 5% Al and 7.5% In

    Science.gov (United States)

    Lin, Kaifan; Kuo, Dong-Hau

    2016-12-01

    AlInGaN films were deposited at a substrate temperature in the range of 100-400°C and a radio frequency (RF) output power in the range of 90-150 W on Si (100) by reactive sputtering in an (Ar + N2) atmosphere. A (Ga + GaN) cermet target for sputtering, containing 5 at.% aluminum and 7.5 at.% indium powders, was made by hot pressing the mixed metal powders and ceramic GaN. The effects of substrate temperature and sputtering output power on the formation of AlInGaN films and their electrical and optical properties were investigated. X-ray diffraction results showed that AlInGaN films grew with a preferential m-(10bar{1}0 ) growth plane and had a wurtzite crystal structure. The film roughness was influenced by the sputtering power and the film composition. The AlInGaN films deposited at 400°C and 150 W had the best crystallinity, and an electron concentration of 4.5 × 1017 cm-3, a Hall mobility of 497 cm2 V-1 s-1, and an optical bandgap (E g) of 2.71 eV.

  15. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract.

    Science.gov (United States)

    Sayed, Alaa El-Din H; Elbaghdady, Heba Allah M; Zahran, Eman

    2015-12-01

    Arsenic (As) is one of the most relevant environmental global single substance toxicants that have long been regarded as a carcinogenic and genotoxic potential. In this respect, we evaluated the cytogenetic effect of arsenic exposure in Nile tilapia (Oreochromis niloticus), in terms of erythrocyte alteration, apoptosis, and induction of micronuclei. Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phytoantioxidant, anti-inflammatory, and anti-cancerous properties supplementation. The protective role of Spirulina as supplementary feeds was studied in Nile tilapia (O. niloticus) against arsenic-induced cytogenotoxicity. Four groups were assigned as control group (no SP or As), As group (exposed to water-born As in the form of NaAsO2 at 7 ppm), SP1 (SP at 7.5% + As at the same level of exposure), and SP2 (SP at 10% + As at the same level of exposure). As-treated group had a significant increase in all cytogenetic analyses including erythrocyte alteration, apoptosis, and induction of micronuclei after 2 weeks with continuous increase in response after 3 weeks. The combined treatment of Spirulina at two different concentrations of 7.5 and 10% had significantly declined the induction of erythrocyte alteration, apoptosis, and micronuclei formation induced by arsenic intoxication.

  16. Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural tilapia (Oreochromis mossambicus) in blackfoot disease hyperendemic areas.

    Science.gov (United States)

    Jang, Cheng-Shin; Liu, Chen-Wuing; Lin, Kao-Hung; Huang, Feng-Mei; Wang, Sheng-Wei

    2006-03-01

    This work analyzed spatially potential carcinogenic risks associated with ingesting arsenic (As) contents in aquacultural tilapia (Oreochromis mossambicus) in coastal regions of southwestern Taiwan, where the blackfoot disease prevails. Sequential indicator simulation (SIS) was used to reproduce As exposure distributions in groundwater based on their three-dimensional variability. A target cancer risk (TR) associated with ingesting As in aquacultural tilapia was calculated to evaluate the potential risk to human health. Owing to sparse measured data, Monte Carlo simulation and SIS properly accounted for the uncertainty of assessed parameters. The probabilistic risk assessment formulated suitable strategies under various remedial stages. Aquacultural regions with high risks were mapped to elucidate the safety of groundwater use at different depths. Many TRs determined from the risks at the 75th and 95th percentiles exceed one millionth in the regions, indicating that ingesting tilapia farmed in the highly As-polluted regions poses potential cancer threats to human health. The 75th percentile of TR is considered in formulating a remedial strategy for the aquacultural use of groundwater in the preliminary stage. Additionally, this study suggests reducing the use of groundwater in aquaculture or changing the depths from which groundwater is withdrawn in the areas with high risks of cancer.

  17. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  18. [Tracing for arsenic exposure--a differentiation of arsenic compounds is essential for the health assessment].

    Science.gov (United States)

    Weistenhöfer, Wobbeke; Ochsmann, Elke; Drexler, Hans; Göen, Thomas; Klotz, Katrin

    2016-01-01

    Arsenic is ubiquitous and harmful to health in occupation and environment. Arsenic exposure is measured through analysis of arsenic compounds in urine. The identification of several arsenic species is necessary to understand the hazardous potential of the arsenic compounds which differ highly in their toxicity. To estimate the extent of an occupational exposure to arsenic, arsenic species were evaluated for the first time by the working group "Setting of Threshold Limit Values in Biological Material" of the DFG Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area and Biologische Arbeitsstoffreferenzwerte (BAR) of 0.5 μg / L urine for arsenic (III), 0.5 μg / L urine for arsenic (V), 2 μg / L urine for monomethylarsonic acid (MMA) and 10 μg / L urine for dimethylarsinic acid (DMA) were set. If the reference value for total arsenic is exceeded, a further differentiation of arsenic species now enables to estimate the individual health risks taking into account special influences such as seafood consumption.

  19. Chromosome analysis of arsenic affected cattle

    Directory of Open Access Journals (Sweden)

    S. Shekhar

    2014-10-01

    Full Text Available Aim: The aim was to study the chromosome analysis of arsenic affected cattle. Materials and Methods: 27 female cattle (21 arsenic affected and 6 normal were selected for cytogenetical study. The blood samples were collected, incubated, and cultured using appropriate media and specific methods. The samples were analyzed for chromosome number and morphology, relative length of the chromosome, arm ratio, and centromere index of X chromosome and chromosomal abnormalities in arsenic affected cattle to that of normal ones. Results: The diploid number of metaphase chromosomes in arsenic affected cattle as well as in normal cattle were all 2n=60, 58 being autosomes and 2 being sex chromosomes. From the centromeric position, karyotyping studies revealed that all the 29 pair of autosomes was found to be acrocentric or telocentric, and the sex chromosomes (XX were submetacentric in both normal and arsenic affected cattle. The relative length of all the autosome pairs and sex chrosomosome pair was found to be higher in normal than that of arsenic affected cattle. The mean arm ratio of X-chromosome was higher in normal than that of arsenic affected cattle, but it is reverse in case of centromere index value of X-chromosome. There was no significant difference of arm ratio and centromere index of X-chromosomes between arsenic affected and normal cattle. No chromosomal abnormalities were found in arsenic affected cattle. Conclusion: The chromosome analysis of arsenic affected cattle in West Bengal reported for the first time in this present study which may serve as a guideline for future studies in other species. These reference values will also help in comparison of cytological studies of arsenic affected cattle to that of various toxicants.

  20. Interactions between arsenic species and marine algae

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.G.

    1978-01-01

    The arsenic concentration and speciation of marine algae varies widely, from 0.4 to 23 ng.mg/sup -1/, with significant differences in both total arsenic content and arsenic speciation occurring between algal classes. The Phaeophyceae contain more arsenic than other algal classes, and a greater proportion of the arsenic is organic. The concentration of inorganic arsenic is fairly constant in macro-algae, and may indicate a maximum level, with the excess being reduced and methylated. Phytoplankton take up As(V) readily, and incorporate a small percentage of it into the cell. The majority of the As(V) is reduced, methylated, and released to the surrounding media. The arsenic speciation in phytoplankton and Valonia also changes when As(V) is added to cultures. Arsenate and phosphate compete for uptake by algal cells. Arsenate inhibits primary production at concentrations as low as 5 ..mu..g.1/sup -1/ when the phosphate concentration is low. The inhibition is competitive. A phosphate enrichment of > 0.3 ..mu..M alleviates this inhibition; however, the As(V) stress causes an increase in the cell's phosphorus requirement. Arsenite is also toxic to phytoplankton at similar concentrations. Methylated arsenic species did not affect cell productivity, even at concentrations of 25 ..mu..g.1/sup -1/. Thus, the methylation of As(V) by the cell produces a stable, non-reactive compound which is nontoxic. The uptake and subsequent reduction and methylation of As(V) is a significant factor in determining the arsenic biogeochemistry of productive systems, and also the effect that the arsenic may have on algal productivity. Therefore, the role of marine algae in determining the arsenic speciation of marine systems cannot be ignored. (ERB)

  1. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China.

    Science.gov (United States)

    Liu, Jie; Zheng, Baoshan; Aposhian, H Vasken; Zhou, Yunshu; Chen, Ming-Liang; Zhang, Aihua; Waalkes, Michael P

    2002-02-01

    Arsenic is an environmental hazard and the reduction of drinking water arsenic levels is under consideration. People are exposed to arsenic not only through drinking water but also through arsenic-contaminated air and food. Here we report the health effects of arsenic exposure from burning high arsenic-containing coal in Guizhou, China. Coal in this region has undergone mineralization and thus produces high concentrations of arsenic. Coal is burned inside the home in open pits for daily cooking and crop drying, producing a high concentration of arsenic in indoor air. Arsenic in the air coats and permeates food being dried producing high concentrations in food; however, arsenic concentrations in the drinking water are in the normal range. The estimated sources of total arsenic exposure in this area are from arsenic-contaminated food (50-80%), air (10-20%), water (1-5%), and direct contact in coal-mining workers (1%). At least 3,000 patients with arsenic poisoning were found in the Southwest Prefecture of Guizhou, and approximately 200,000 people are at risk for such overexposures. Skin lesions are common, including keratosis of the hands and feet, pigmentation on the trunk, skin ulceration, and skin cancers. Toxicities to internal organs, including lung dysfunction, neuropathy, and nephrotoxicity, are clinically evident. The prevalence of hepatomegaly was 20%, and cirrhosis, ascites, and liver cancer are the most serious outcomes of arsenic poisoning. The Chinese government and international organizations are attempting to improve the house conditions and the coal source, and thereby protect human health in this area.

  2. Possible mechanisms for arsenic-induced proliferative diseases

    Energy Technology Data Exchange (ETDEWEB)

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A. [Dartmouth College and Medical School, Hanover, NH (United States)] [and others

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hour of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.

  3. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Katharine J. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Holloway, Adele [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Cook, Anthony L. [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia); Chin, Suyin P. [Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000 (Australia); Snow, Elizabeth T., E-mail: elizabeth.snow@utas.edu.au [School of Health Sciences, University of Tasmania, Launceston, TAS 7250 (Australia)

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  4. Optimization of microwave-assisted extraction for six inorganic and organic arsenic species in chicken tissues using response surface methodology.

    Science.gov (United States)

    Zhang, Wenfeng; Hu, Yuanan; Cheng, Hefa

    2015-09-01

    Response surface methodology was applied to optimize the parameters for microwave-assisted extraction of six major inorganic and organic arsenic species (As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone) from chicken tissues, followed by detection using a high-performance liquid chromatography with inductively coupled mass spectrometry detection method, which allows the simultaneous analysis of both inorganic and organic arsenic species in the extract in a single run. Effects of extraction medium, solution pH, liquid-to-solid ratio, and the temperature and time of microwave-assisted extraction on the extraction of the targeted arsenic species were studied. The optimum microwave-assisted extraction conditions were: 100 mg of chicken tissue, extracted by 5 mL of 22% v/v methanol, 90 mmol/L (NH4 )2 HPO4 , and 0.07% v/v trifluoroacetic acid (with pH adjusted to 10.0 by ammonium hydroxide solution), ramping for 10 min to 71°C, and holding for 11 min. The method has good extraction performance for total arsenic in the spiked and nonspiked chicken tissues (104.0 ± 13.8% and 91.6 ± 7.8%, respectively), except for the ones with arsenic contents close to the quantitation limits. Limits of quantitation (S/N = 10) for As(III), As(V), dimethyl arsenic acid, monomethyl arsenic acid, p-arsanilic acid, and roxarsone in chicken tissues using this method were 0.012, 0.058, 0.039, 0.061, 0.102, and 0.240 mg/kg (dry weight), respectively.

  5. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain.

    Science.gov (United States)

    Sun, Guo-Xin; Williams, Paul N; Carey, Anne-Marie; Zhu, Yong-Guan; Deacon, Claire; Raab, Andrea; Feldmann, Joerg; Islam, Rafiqul M; Meharg, Andrew A

    2008-10-01

    Rice is more elevated in arsenic than all other grain crops tested to date, with whole grain (brown) rice having higher arsenic levels than polished (white). It is reported here that rice bran, both commercially purchased and specifically milled for this study, have levels of inorganic arsenic, a nonthreshold, class 1 carcinogen, reaching concentrations of approximately 1 mg/kg dry weight, around 10-20 fold higher than concentrations found in bulk grain. Although pure rice bran is used as a health food supplement, perhaps of more concern is rice bran solubles, which are marketed as a superfood and as a supplement to malnourished children in international aid programs. Five rice bran solubles products were tested, sourced from the United States and Japan, and were found to have 0.61-1.9 mg/kg inorganic arsenic. Manufactures recommend approximately 20 g servings of the rice bran solubles per day, which equates to a 0.012-0.038 mg intake of inorganic arsenic. There are no maximum concentration levels (MCLs) set for arsenic or its species in food stuffs. EU and U.S. water regulations, set at 0.01 mg/L total or inorganic arsenic, respectively, are based on the assumption that 1 L of water per day is consumed, i.e., 0.01 mg of arsenic/ day. At the manufacturers recommended rice bran solubles consumption rate, inorganic arsenic intake exceeds 0.01 mg/ day, remembering that rice bran solubles are targeted at malnourished children and that actual risk is based on mg kg(-1) day(-1) intake.

  6. Risk Analysis of Acute Or Chronic Exposure to Arsenic of the Inhabitants in a District of Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Cristina Vázquez

    2016-09-01

    Full Text Available The arsenic occurrence in the water constitutes a serious world health concern due to its toxicity. Depending on the intensity and duration of exposure, this element can be acutely lethal or may have a wide range of health effects in humans and animals. In Argentina, the origin of arsenic is mainly natural, and related to different geological processes. The Argentinean concern about arsenic and its influence on human health dates back to the previous century. The disease ascribed to arsenic contamination was called ‘chronic regional endemic hydroarsenism’. It is produced by the consumption of water with high levels of this element. In our study, we focused in La Matanza district, a very populated site in the Buenos Aires Province. An increasing concern of the inhabitants of the area regarding health problems was detected. In order to establish a full view of arsenic exposure in the area, several matrices and targets were analyzed. As matrices, water and soil samples were analyzed. As targets, canine and human hair was studied. The aim of this study was to investigate acute and chronically exposure to arsenic of La Matanza inhabitants.

  7. Bioaccumulation of Arsenic by Fungi

    Directory of Open Access Journals (Sweden)

    Ademola O. Adeyemi

    2009-01-01

    Full Text Available Problem statement: Arsenic is a known toxic element and its presence and toxicity in nature is a worldwide environmental problem. The use of microorganisms in bioremediation is a potential method to reduce as concentration in contaminated areas. Approach: In order to explore the possible bioremediation of this element, three filamentous fungi-Aspergillus niger, Serpula himantioides and Trametes versicolor were investigated for their potential abilities to accumulate (and possibly solubilize arsenic from an agar environment consisting of non buffered mineral salts media amended with 0.2, 0.4, 0.6 and 0.8% (w/v arsenopyrite (FeAsS. Growth rates, dry weights, arsenic accumulation and oxalate production by the fungi as well as the pH of the growth media were all assessed during this study. Results: There was no visible solubilization of FeAsS particles underneath any of the growing fungal colonies or elsewhere in the respective agar plates. No specific patterns of growth changes were observed from the growth ratios of the fungi on agar amended with different amounts of FeAsS although growth of all fungi was stimulated by the incorporation of varying amounts of FeAsS into the agar with the exception of A. niger on 0.4% (w/v amended agar and T. versicolor on 0.8% (w/v amended agar. The amounts of dry weights obtained for all three fungi also did not follow any specific patterns with different amounts of FeAsS and the quantities obtained were in the order A. niger > S. himantioides > T. versicolor. All fungi accumulated as in their biomasses with all amounts of FeAsS although to varying levels and T. versicolor was the most effective with all amounts of FeAsS while A. niger was the least effective. Conclusion: The accumulation of arsenic in the biomasses of the test fungi as shown in this study may suggested a role for fungi through their bioaccumulating capabilities as agents in the possible bioremediation of arsenic contaminated environments.

  8. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  9. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study

    Energy Technology Data Exchange (ETDEWEB)

    Farzan, Shohreh F. [Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (United States); Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY (United States); Chen, Yu [Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, NY (United States); Rees, Judy R.; Zens, M. Scot [Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (United States); Karagas, Margaret R., E-mail: margaret.r.karagas@dartmouth.edu [Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (United States)

    2015-09-01

    High levels of arsenic exposure have been associated with increases in cardiovascular disease risk. However, studies of arsenic's effects at lower exposure levels are limited and few prospective studies exist in the United States using long-term arsenic exposure biomarkers. We conducted a prospective analysis of the association between toenail arsenic and cardiovascular disease mortality using longitudinal data collected on 3939 participants in the New Hampshire Skin Cancer Study. Using Cox proportional hazard models adjusted for potential confounders, we estimated hazard ratios and 95% confidence intervals associated with the risk of death from any cardiovascular disease, ischemic heart disease, and stroke, in relation to natural-log transformed toenail arsenic concentrations. In this US population, although we observed no overall association, arsenic exposure measured from toenail clipping samples was related to an increased risk of ischemic heart disease mortality among long-term smokers (as reported at baseline), with increased hazard ratios among individuals with ≥ 31 total smoking years (HR: 1.52, 95% CI: 1.02, 2.27), ≥ 30 pack-years (HR: 1.66, 95% CI: 1.12, 2.45), and among current smokers (HR: 1.69, 95% CI: 1.04, 2.75). These results are consistent with evidence from more highly exposed populations suggesting a synergistic relationship between arsenic exposure and smoking on health outcomes and support a role for lower-level arsenic exposure in ischemic heart disease mortality. - Highlights: • Arsenic (As) has been associated with increased cardiovascular disease (CVD) risk. • Little is known about CVD effects at lower levels of As exposure common in the US. • Few have investigated the joint effects of As and smoking on CVD in US adults. • We examine chronic low-level As exposure and smoking in relation to CVD mortality. • Arsenic exposure may increase ischemic heart disease mortality among smokers in US.

  10. Biotechnology based processes for arsenic removal

    NARCIS (Netherlands)

    Huisman, J.; Olde Weghuis, M.; Gonzalez-Contreras, P.A.

    2011-01-01

    The regulations for arsenic control have become strict. Therefore, better technologies to remove arsenic from bleeds and effluents are desired. In addition, no single solution is suitable for all cases. The properties of the process streams and the storage facilities are major factors determining th

  11. 29 CFR 1926.1118 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inorganic arsenic. 1926.1118 Section 1926.1118 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... Inorganic arsenic. Note: The requirements applicable to construction work under this section are...

  12. 29 CFR 1915.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Inorganic arsenic. 1915.1018 Section 1915.1018 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1018 Inorganic arsenic. Note: The requirements applicable to shipyard employment under...

  13. 29 CFR 1910.1018 - Inorganic arsenic.

    Science.gov (United States)

    2010-07-01

    ...) Engineering plans and studies used to determine methods selected for controlling exposure to inorganic arsenic... such exposures. The following three sections quoted from “Occupational Diseases: A Guide to Their.... Arsenic; chronic human intoxication. J. Occup. Med. 2:137. Elkins, H. B. 1959. The Chemistry of...

  14. Hijacking membrane transporters for arsenic phytoextraction.

    Science.gov (United States)

    LeBlanc, Melissa S; McKinney, Elizabeth C; Meagher, Richard B; Smith, Aaron P

    2013-01-10

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator.

  15. Arsenic and human health effects: A review.

    Science.gov (United States)

    Abdul, Khaja Shameem Mohammed; Jayasinghe, Sudheera Sammanthi; Chandana, Ediriweera P S; Jayasumana, Channa; De Silva, P Mangala C S

    2015-11-01

    Arsenic (As) is ubiquitous in nature and humans being exposed to arsenic via atmospheric air, ground water and food sources are certain. Major sources of arsenic contamination could be either through geological or via anthropogenic activities. In physiological individuals, organ system is described as group of organs that transact collectively and associate with other systems for conventional body functions. Arsenic has been associated with persuading a variety of complications in body organ systems: integumentary, nervous, respiratory, cardiovascular, hematopoietic, immune, endocrine, hepatic, renal, reproductive system and development. In this review, we outline the effects of arsenic on the human body with a main focus on assorted organ systems with respective disease conditions. Additionally, underlying mechanisms of disease development in each organ system due to arsenic have also been explored. Strikingly, arsenic has been able to induce epigenetic changes (in utero) and genetic mutations (a leading cause of cancer) in the body. Occurrence of various arsenic induced health effects involving emerging areas such as epigenetics and cancer along with their respective mechanisms are also briefly discussed.

  16. ARSENIC EFFECTS ON TELOMERE AND TELOMERASE ACTIVITY

    Science.gov (United States)

    Arsenic effects on telomere and telomerase activity. T-C. Zhang, M. T. Schmitt, J. Mo, J. L. Mumford, National Research Council and U.S Environmental Protection Agency, NHEERL, Research Triangle Park, NC 27711Arsenic is a known carcinogen and also an anticancer agent for acut...

  17. Summary of four scientific studies on Arsenicum album high dilution effect against Arsenic intoxication in mice

    Directory of Open Access Journals (Sweden)

    Laurence Terzan

    2012-09-01

    Potentized Homeopathic Drug, Arsenicum Album, to Ameliorate Toxicity Induced by Repeated Sublethal Injections of Arsenic Trioxide in Mice. Pathobiology 2008;75:156–170. [6]/ Khuda-Bukhsh AR. Potentized homeopathic drugs act through regulation of gene expression: a hypothesis to explain their mechanism and pathways of action in vivo. Comp Ther Med 1997;5:43–6

  18. Determination of seven arsenic compounds in urine by HPLC-ICP-DRC-MS: a CDC population biomonitoring method.

    Science.gov (United States)

    Verdon, Carl P; Caldwell, Kathleen L; Fresquez, Mark R; Jones, Robert L

    2009-02-01

    A robust analytical method has been developed and validated by use of high-performance liquid chromatography inductively coupled plasma mass spectrometry with Dynamic Reaction Cell (DRC) technology that separates seven arsenic (As) species in human urine: arsenobetaine (AB), arsenocholine, trimethylarsine oxide (TMAO), arsenate (As(V)), arsenite (As(III)), monomethylarsonate, and dimethylarsinate. A polymeric anion-exchange (Hamilton PRP X-100) column was used for separation of the species that were detected at m/z 75 by ICP-DRC-MS (PerkinElmer SCIEX ELAN DRCII) using 10% hydrogen-90% argon as the DRC gas. The internal standard (As) is added postcolumn via an external injector with a sample loop. All analyte peaks were baseline-separated except AB and TMAO. Analytical method limits of detection for the various species ranged from 0.4 to 1.7 microg L(-1) as elemental As. As(III) conversion to As(V) was avoided by adjusting the urine sample to arsenic species yielded results within the certified SRM-CRM limits for As species; likewise, the sum of all species compared favorably to SRM 2670 and 2670a target values for total As. This As speciation method is now being used in a production mode for the analysis of a US population survey, the National Health and Nutrition Examination Survey, as well as for other biomonitoring studies of As exposure. This method meets our requirement for sample throughput of 2,000-3,000 sample analyses per year.

  19. Silibinin ameliorates arsenic induced nephrotoxicity by abrogation of oxidative stress, inflammation and apoptosis in rats.

    Science.gov (United States)

    Prabu, S Milton; Muthumani, M

    2012-12-01

    Arsenic (As) is an environmental and industrial pollutant that affects various organs in human and experimental animals. Silibinin is a naturally occurring plant bioflavonoid found in the milk thistle of Silybum marianum, which has been reported to have a wide range of pharmacological properties. A body of evidence has accumulated implicating the free radical generation with subsequent oxidative stress in the biochemical and molecular mechanisms of As toxicity. Since kidney is the critical target organ of chronic As toxicity, we carried out this study to investigate the effects of silibinin on As-induced toxicity in the kidney of rats. In experimental rats, oral administration of sodium arsenite [NaAsO(2), 5 mg/(kg day)] for 4 weeks significantly induced renal damage which was evident from the increased levels of serum urea, uric acid, creatinine with a significant (p rats. Co-administration of silibinin (75 mg/kg day) along with As resulted in a reversal of As-induced biochemical changes in kidney accompanied by a significant decrease in lipid peroxidation and an increase in the level of renal antioxidant defense system. The histopathological and immunohistochemical studies in the kidney of rats also shows that silibinin (75 mg/kg day) markedly reduced the toxicity of As and preserved the normal histological architecture of the renal tissue, inhibited the caspase-3 mediated tubular cell apoptosis and decreased the NADPH oxidase, iNOS and NF-κB over expression by As and upregulated the Nrf2 expression in the renal tissue. The present study suggests that the nephroprotective potential of silibinin in As toxicity might be due to its antioxidant and metal chelating properties, which could be useful for achieving optimum effects in As-induced renal damage.

  20. Arsenic pesticides and environmental pollution: exposure, poisoning, hazards and recommendations.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Mohammad, Amina El-Hosini; Morsy, Tosson A

    2013-08-01

    Arsenic is a metalloid element. Acute high-dose exposure to arsenic can cause severe systemic toxicity and death. Lower dose chronic arsenic exposure can result in subacute toxicity that can include peripheral sensorimotor neuropathy, skin eruptions, and hepatotoxicity. Long-term effects of arsenic exposure include an in Due to the physiologic effects of the arsenic on all body systems, thus, chronic arsenic-poisoned patient is a major nursing challenge. The critical care nurse provides valuable assessment and interventions that prevent major multisystem complications from arsenic toxicity.

  1. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    Science.gov (United States)

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels.

  2. Arsenic burden survey among refuse incinerator workers

    Directory of Open Access Journals (Sweden)

    Chao Chung-Liang

    2005-01-01

    Full Text Available Background: Incinerator workers are not considered to have arsenic overexposure although they have the risk of overexposure to other heavy metals. Aim: To examine the relationship between arsenic burden and risk of occupational exposure in employees working at a municipal refuse incinerator by determining the concentrations of arsenic in the blood and urine. Settings and Design: The workers were divided into three groups based on their probability of contact with combustion-generated residues, namely Group 1: indirect contact, Group 2: direct contact and Group 3: no contact. Healthy age- and sex-matched residents living in the vicinity were enrolled as the control group. Materials and Methods: Heavy metal concentrations were measured by atomic absorption spectrophotometer. Downstream rivers and drinking water of the residents were examined for environmental arsenic pollution. A questionnaire survey concerning the contact history of arsenic was simultaneously conducted. Statistical analysis: Non-parametric tests, cross-tabulation and multinomial logistic regression. Results: This study recruited 122 incinerator workers. The urine and blood arsenic concentrations as well as incidences of overexposure were significantly higher in the workers than in control subjects. The workers who had indirect or no contact with combustion-generated residues had significantly higher blood arsenic level. Arsenic contact history could not explain the difference. Airborne and waterborne arsenic pollution were not detected. Conclusion: Incinerator workers run the risk of being exposed to arsenic pollution, especially those who have incomplete protection in the workplace even though they only have indirect or no contact with combustion-generated pollutants.

  3. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers.

    Science.gov (United States)

    Lin, Tzu-Yu; Wei, Chia-Cheng; Huang, Chi-Wei; Chang, Chun-Han; Hsu, Fu-Lan; Liao, Vivian Hsiu-Chuan

    2016-03-23

    Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.

  4. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Hui Shen

    2016-02-01

    Full Text Available Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001 following arsenic exposure: inorganic arsenic (iAs, monomethyl arsenic (MMA, dimethyl arsenic (DMA, and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD: 1.00; 95% confidence interval (CI: 0.60–1.40; p< 0.00001 and MMA (SMD: 0.49; 95% CI: 0.21–0.77; p = 0.0006 also increase, while the percentage of DMA (SMD: −0.57; 95% CI: −0.80–−0.31; p< 0.0001, primary methylation index (SMD: −0.57; 95% CI: −0.94–−0.20; p = 0.002, and secondary methylation index (SMD: −0.27; 95% CI: −0.46–−0.90; p = 0.004 decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  5. Influence of glutathione chemical effectors in the response of maize to arsenic exposure.

    Science.gov (United States)

    Requejo, Raquel; Tena, Manuel

    2012-05-01

    To support the key role of glutathione (GSH) in the mechanisms of tolerance and accumulation of arsenic in plants, this work examines the impact of several effectors of GSH synthesis or action in the response of maize (Zea mays L.) to arsenic. Maize was exposed in hydroponics to iso-toxic rates of 150 μM arsenate or 75 μM arsenite for 9 days and GSH effectors, flurazole (an herbicide safener), l-buthionine-sulfoximine (BSO, a known inhibitor of GSH biosynthesis), and dimercaptosuccinate (DMS) and dimercaptopropanesulfonate (DMPS) (two thiols able to displace GSH from arsenite-GSH complexes) were assayed. The main responses of plants to arsenic exposure consisted of a biomass reduction (fresh weight basis) of about 50%, an increase of non-protein thiol (NPTs) levels (especially in the GSH precursor γ-glutamylcysteine and the phytochelatins PC₂ and PC₃) in roots, with little effect in shoots, and an accumulation of between 600 and 1000 ppm of As (dry weight basis) in roots with very little translocation to shoots. Growth inhibition caused by arsenic was partially or completely reversed in plants co-treated with flurazole and arsenate or arsenite, respectively, highly exacerbated in plants co-treated with BSO, and not modified in plants co-treated with DMS or DMPS. These responses correlated well with an increase of both NPTs levels in roots and glutathione transferase activity in roots and shoots due to flurazole treatment, the decrease of NPTs levels in roots caused by BSO and the lack of effect on NPT levels caused by both DMS and DMPS. Regarding to arsenic accumulation in roots, it was not modified by flurazole, highly reduced by BSO, and increased between 2.5- and 4.0-fold by DMS and DMPS. Therefore, tolerance and accumulation of arsenic by maize could be manipulated pharmacologically by chemical effectors of GSH.

  6. Inclusion of soil arsenic bioaccessibility in ecological risk assessment and comparison with biological effects.

    Science.gov (United States)

    Saunders, Jared R; Knopper, Loren D; Koch, Iris; Reimer, Kenneth J

    2011-12-15

    The purpose of this study was to conduct an ecological risk assessment (ERA) for meadow voles (Microtus pennslvanicus) found at three arsenic contaminated sites in Nova Scotia, Canada (as well as two background locations) and to compare the numeric results to measured biomarkers of exposure and effect. The daily intake of arsenic by meadow voles was determined by three separate calculations: estimated daily intake (EDI), bioaccessible estimated daily intake (BEDI, with bioaccessibility of soil included), and actual daily intake (ADI, which is calculated with arsenic concentrations in the stomach contents). The median bioaccessibility of arsenic in soils from the contaminated locations was significantly greater than at background locations. The bioaccessible arsenic concentration in soil from all samples (both contaminated and background) was significantly less than the total concentration. Use of site-specific bioaccessibility (hazard quotients=38 at Upper Seal Harbour (USH); 60 at Lower Seal Harbour (LSH); and 120 at Montague tailings (MONT)) and stomach arsenic contents (hazard quotients=2.1 at USH; 7.9 at LSH; and 6.7 at MONT) in the ERA resulted in lower numeric risk than compared to risk calculated with 100% bioavailability (hazard quotient=180 at USH; 75 at LSH; and 680 at MONT). Further, the use of bioaccessibility on the calculation of risk was aligned with biomarker results (changes in glutathione and micronucleated erythrocytes) in voles captured at the sites. This study provides evidence that using site-specific bioaccessibility in ERAs may provide a more realistic level of conservatism, thereby enhancing the accuracy of predicting risk to wildlife receptors. Furthermore, when numeric risk assessments are combined with site-specific biological data (i.e., biomarkers of exposure and effect), both lines of evidence can be used to make informed decisions about ecological risk and site management.

  7. Evaluation of Exposure to Arsenic in Residential Soil

    OpenAIRE

    Tsuji, JS; Van Kerkhove, MD; Kaetzel, RS; Scrafford, CG; Mink, PJ; Barraj, LM; Crecelius, EA; Goodman, M.

    2005-01-01

    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between...

  8. Combined administration of iron and monoisoamyl-DMSA in the treatment of chronic arsenic intoxication in mice.

    Science.gov (United States)

    Modi, M; Flora, S J S

    2007-11-01

    Co-administration of iron in combination with monoisoamyl dimercaptosuccinic acid (MiADMSA) against chronic arsenic poisoning in mice was studied. Mice preexposed to arsenic (25 ppm in drinking water for 6 months) mice were treated with MiADMSA (50 mg/kg, intraperitoneally) either alone or in combination with iron (75 or 150 mg/kg, orally) once daily for 5 days. Arsenic exposure led to a significant depletion of blood delta-aminolevulinic acid dehydratase (ALAD) activity, hematocrit, and white blood cell (WBC) counts accompanied by small decline in blood hemoglobin level. Hepatic reduced glutathione (GSH) level, catalase and superoxide dismutase (SOD) activities showed a significant decrease while, oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS) levels increased on arsenic exposure, indicating arsenic-induced hepatic oxidative stress. Liver aspartate and alanine transaminases (AST and ALT) activities also decreased significantly on arsenic exposure. Kidney GSH, GSSG, catalase level and SOD activities remained unchanged, while, TBARS level increased significantly following arsenic exposure. Brain GSH, glutathione peroxidase (GPx), and SOD activities decreased, accompanied by a significant elevation of TBARS level after chronic arsenic exposure. Treatment with MiADMSA was marginally effective in reducing ALAD activity, while administration of iron was ineffective when given alone. Iron when co-administered with MiADMSA restored blood ALAD activity. Administration of iron alone had no beneficial effects on hepatic oxidative stress, while in combination with MiADMSA it produced significant decline in hepatic TBARS level compared to the individual effect of MiADMSA. Renal biochemical variables were insensitive to any of the treatments. Combined administration of iron with MiADMSA also had no additional beneficial effect over the individual protective effect of MiADMSA on brain oxidative stress. Interestingly, combined administration of

  9. Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Tongbin; HUANG Zechun; HUANG Yuying; XIE Hua; LIAO Xiaoyong

    2003-01-01

    Synchrotron radiation X-ray fluorescencespectroscopy (SRXRF) was used to study the cellular distri-butions of arsenic and other elements in root, petiole, pinna of a newly discovered arsenic hyperaccumulator, Pteris nervosa. It was shown that there was a trend in P. nervosa totransport arsenic from cortex tissue to vascular tissue in root, and keep arsenic in vascular during transportation in petiole, and transport arsenic from vascular tissue to adaxial cortex tissues in midrib of pinnae. More arsenic was accumulated in mesophyll than in epidermis in pinnae. The distributions of some elements, such as K, Ca, Mn, Fe, Cu, Zn, in petiole, midrib and pinna were similar to that of arsenic, indicating that those cations might cooperate with arsenic in those transportation processes; whereas the distributions of Cl and Br in pinna were the reverse of that of arsenic, indicating that those anions might compete with arsenic in pinna of P. nervosa.

  10. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study

    Science.gov (United States)

    Farzan, Shohreh F.; Chen, Yu; Rees, Judy R.; Zens, M. Scot; Karagas, Margaret R.

    2015-01-01

    High levels of arsenic exposure have been associated with increases in cardiovascular disease risk. However, studies of arsenic’s effects at lower exposure levels are limited and few prospective studies exist in the United States using long-term arsenic exposure biomarkers. We conducted a prospective analysis of the association between toenail arsenic and cardiovascular disease mortality using longitudinal data collected on 3939 participants in the New Hampshire Skin Cancer Study. Using Cox proportional hazard models adjusted for potential confounders, we estimated hazard ratios and 95% confidence intervals associated with the risk of death from any cardiovascular disease, ischemic heart disease, and stroke, in relation to natural-log transformed toenail arsenic concentrations. In this US population, although we observed no overall association, arsenic exposure measured from toenail clipping samples was related to an increased risk of ischemic heart disease mortality among long-term smokers (as reported at baseline), with increased hazard ratios among individuals with ≥ 31 total smoking years (HR: 1.52, 95% CI: 1.02, 2.27), ≥ 30 pack-years (HR: 1.66, 95% CI: 1.12, 2.45), and among current smokers (HR: 1.69, 95% CI: 1.04, 2.75). These results are consistent with evidence from more highly exposed populations suggesting a synergistic relationship between arsenic exposure and smoking on health outcomes and support a role for lower-level arsenic exposure in ischemic heart disease mortality. PMID:26048586

  11. Speciation of Arsenic in Exfoliated Urinary Bladder Epithelial Cells from Individuals Exposed to Arsenic in Drinking Water

    OpenAIRE

    Hernández-Zavala, Araceli; Valenzuela, Olga L.; Matous̆ek, Tomás̆; Drobná, Zuzana; Dĕdina, Jir̆í; García-Vargas, Gonzalo G; Thomas, David J.; Del Razo, Luz M.; Stýblo, Miroslav

    2008-01-01

    Background The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. Objective In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a...

  12. Geostatistical modelling of arsenic in drinking water wells and related toenail arsenic concentrations across Nova Scotia, Canada.

    Science.gov (United States)

    Dummer, T J B; Yu, Z M; Nauta, L; Murimboh, J D; Parker, L

    2015-02-01

    Arsenic is a naturally occurring class 1 human carcinogen that is widespread in private drinking water wells throughout the province of Nova Scotia in Canada. In this paper we explore the spatial variation in toenail arsenic concentrations (arsenic body burden) in Nova Scotia. We describe the regional distribution of arsenic concentrations in private well water supplies in the province, and evaluate the geological and environmental features associated with higher levels of arsenic in well water. We develop geostatistical process models to predict high toenail arsenic concentrations and high well water arsenic concentrations, which have utility for studies where no direct measurements of arsenic body burden or arsenic exposure are available. 892 men and women who participated in the Atlantic Partnership for Tomorrow's Health Project provided both drinking water and toenail clipping samples. Information on socio-demographic, lifestyle and health factors was obtained with a set of standardized questionnaires. Anthropometric indices and arsenic concentrations in drinking water and toenails were measured. In addition, data on arsenic concentrations in 10,498 private wells were provided by the Nova Scotia Department of Environment. We utilised stepwise multivariable logistic regression modelling to develop separate statistical models to: a) predict high toenail arsenic concentrations (defined as toenail arsenic levels ≥0.12 μg g(-1)) and b) predict high well water arsenic concentrations (defined as well water arsenic levels ≥5.0 μg L(-1)). We found that the geological and environmental information that predicted well water arsenic concentrations can also be used to accurately predict toenail arsenic concentrations. We conclude that geological and environmental factors contributing to arsenic contamination in well water are the major contributing influences on arsenic body burden among Nova Scotia residents. Further studies are warranted to assess appropriate

  13. Direct determination of arsenic in fresh and saline waters by electrothermal vaporization inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Conrad Grégoire, D.; de Lourdes Ballinas, Maria

    1997-01-01

    A method is described for the direct determination of arsenic in fresh and saline waters by electrothermal vaporization inductively coupled plasma mass spectrometry. Arsenic could be determined directly in waters containing up to 10 000 μg ml -1 NaCl without interference from the formation of 75ArCl +. For non-saline waters, arsenic was determined directly with the addition to both aqueous calibration standards and samples of 0.1 μg each of Pd and Mg to act as physical carriers. For the analysis of highly saline waters, the use of Pd and Mg chemical modifier served to thermally stabilize arsenic up to a temperature of 1000°C, while the separate addition of 8 mg of ammonium nitrate was used to remove chloride from the sample. This eliminated serious spectral interference on 75As + from 75ArCl +. Although the ArCl + spectral interference was completely eliminated, residual Na co-volatilized with As caused signal suppression, requiring the use of the method of standard additions for calibration. An absolute limit of detection limit for As of 0.069 pg was obtained corresponding to 6.9 pg ml -1 in a 10 μl sample.

  14. Arsenic Induction of Metallothionein and Metallothionein Induction Against Arsenic Cytotoxicity.

    Science.gov (United States)

    Rahman, Mohammad Tariqur; De Ley, Marc

    Human exposure to arsenic (As) can lead to oxidative stress that can become evident in organs such as the skin, liver, kidneys and lungs. Several intracellular antioxidant defense mechanisms including glutathione (GSH) and metallothionein (MT) have been shown to minimize As cytotoxicity. The current review summarizes the involvement of MT as an intracellular defense mechanism against As cytotoxicity, mostly in blood. Zinc (Zn) and selenium (Se) supplements are also proposed as a possible remediation of As cytotoxicity. In vivo and in vitro studies on As toxicity were reviewed to summarize cytotoxic mechanisms of As. Intracellular antioxidant defense mechanisms of MT are linked in relation to As cytotoxicity. Arsenic uses a different route, compared to major metal MT inducers such as Zn, to enter/exit blood cells. A number of in vivo and in vitro studies showed that upregulated MT biosynthesis in blood components are related to toxic levels of As. Despite the cysteine residues in MT that aid to bind As, MT is not the preferred binding protein for As. Nonetheless, intracellular oxidative stress due to As toxicity can be minimized, if not eliminated, by MT. Thus MT induction by essential metals such as Zn and Se supplementation could be beneficial to fight against As toxicity.

  15. Social implications of arsenic poisoning in Bangladesh.

    Science.gov (United States)

    Hassan, M Manzurul; Atkins, Peter J; Dunn, Christine E

    2005-11-01

    Besides its toxicity, groundwater arsenic contamination creates widespread social problems for its victims and their families in Bangladesh. There is, for instance, a tendency to ostracise arsenic-affected people, arsenicosis being thought of as a contagious disease. Within the community, arsenic-affected people are barred from social activities and often face rejection, even by their immediate family members. Women with visible arsenicosis symptoms are unable to get married and some affected housewives are divorced by their husbands. Children with symptoms are not sent to school in an effort to hide the problem. This paper employs mainly qualitative methods to interpret people's understandings about the toxic impact of groundwater arsenic poisoning on their social lives. Arsenic-affected patients in southwest Bangladesh were asked to determine their 'own priorities' in measuring arsenic toxicity on their social activities and to explore their perceptions about their own survival strategies. We found that patients' experiences reveal severe negative social impacts, and a sharp difference of perceptions about arsenic and social issues between arsenicosis patients and unaffected people.

  16. [Competitive Microbial Oxidation and Reduction of Arsenic].

    Science.gov (United States)

    Yang, Ting-ting; Bai, Yao-hui; Liang, Jin-song; Huo, Yang; Wang, Ming-xing; Yuan, Lin-ijang

    2016-02-15

    Filters are widely applied in drinking water treatment plants. Our previous study, which explored the asenic redox in a filter of drinking water plant treating underground water, found that As3+ could be oxidized to As5+ by biogenic manganese oxides, while As5+ could be reduced to As3+ by some microbial arsenic reductases in the biofilter system. This microbial competition could influence the system stability and treatment efficiency. To explore its mechanism, this study selected a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) and a arsenic-reducing strain (Brevibacterium sp. LSJ-9) to investigate their competitive relationship in nutrient acquisition and arsenic redox in the presence of Mn2+, As3+ or As5+ The results revealed that the concentration and valence of Mn and As varied with different reaction time; biological manganese oxides dominated the arsenic redox by rapidly oxidizing the As3+ in the existing system and the As3+ generated by arsenic reductase into As. PCR and RT-PCR results indicated that the arsenic reductase (arsC) was inhibited by the manganese oxidase (cumA). The expression of 16S rRNA in QJX-1 was two orders of magnitude higher than that in LSJ-9, which implied QJX-1 was dominant in the bacterial growth. Our data revealed that hydraulic retention time was critical to the valence of arsenic in the effluent of filter in drinking water treatment plant.

  17. Identification of an Arsenic Resistance and Arsenic-Sensing System in Campylobacter jejuni▿ †

    OpenAIRE

    Wang, Liping; Jeon, Byeonghwa; Sahin, Orhan; Zhang, Qijing

    2009-01-01

    Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility o...

  18. Arsenic adsorption of lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil

    Directory of Open Access Journals (Sweden)

    Wuthiphun, L.

    2007-05-01

    Full Text Available Arsenic adsorption efficiency of soil covering materials (lateritic soil, limestone powder, lime and fly ash on arsenic-contaminated soil obtained from Ronpiboon District, Nakhon Sri Thammarat Province tosolve arsenic air pollution problem was investigated using batch experiments. The four types of the aforementioned soil covering materials were examined to determine their arsenic adsorption efficiency, equilibriumtime as well as adsorption isotherms.The results revealed that among soil covering materials mixed with arsenic-contaminated soil at 10% w/w, the efficiency of arsenic adsorption of fly ash, lateritic soil, lime and limestone powder were 84, 60,38 and 1% respectively. The equilibrium time for lateritic soil at pH 4 was achieved within 4 hrs, whereas pH 7 and 12, the equilibrium time was 6 hrs. For fly ash, 2 hrs were required to reach the equilibrium at pH 12, while the equilibrium time was attained within 6 hrs at pH 4 and 7. Furthermore, lateritic soil possessedhigh arsenic adsorption efficiency at pH 7 and 4 and best fit with the Langmuir isotherm. The fly ash showing high arsenic adsorption efficiency at pH 12 and 7 fit the Freundlich isotherm at pH 12 and Langmuirisotherm at pH 7.This indicated that lateritic soil was suitable for arsenic adsorption at low pH, whilst at high pH,arsenic was well adsorbed by fly ash. The Freundlich and Langmuir isotherm could be used to determine quantities of soil covering materials for arsenic adsorption to prevent arsenic air pollution from arseniccontaminated soils.

  19. Design of HIV-1 integrase inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75: a scaffold hopping approach using salicylate and catechol groups.

    Science.gov (United States)

    Fan, Xing; Zhang, Feng-Hua; Al-Safi, Rasha I; Zeng, Li-Fan; Shabaik, Yumna; Debnath, Bikash; Sanchez, Tino W; Odde, Srinivas; Neamati, Nouri; Long, Ya-Qiu

    2011-08-15

    HIV-1 integrase (IN) is a validated therapeutic target for antiviral drug design. However, the emergence of viral strains resistant to clinically studied IN inhibitors demands the discovery of novel inhibitors that are structurally as well mechanistically different. Herein, we describe the design and discovery of novel IN inhibitors targeting the catalytic domain as well as its interaction with LEDGF/p75, which is essential for the HIV-1 integration as an IN cofactor. By merging the pharmacophores of salicylate and catechol, the 2,3-dihydroxybenzamide (5a) was identified as a new scaffold to inhibit the strand transfer reaction efficiently. Further structural modifications on the 2,3-dihydroxybenzamide scaffold revealed that the heteroaromatic functionality attached on the carboxamide portion and the piperidin-1-ylsulfonyl substituted at the phenyl ring are beneficial for the activity, resulting in a low micromolar IN inhibitor (5p, IC(50)=5 μM) with more than 40-fold selectivity for the strand transfer over the 3'-processing reaction. More significantly, this active scaffold remarkably inhibited the interaction between IN and LEDGF/p75 cofactor. The prototype example, N-(cyclohexylmethyl)-2,3-dihydroxy-5-(piperidin-1-ylsulfonyl) benzamide (5u) inhibited the IN-LEDGF/p75 interaction with an IC(50) value of 8 μM. Using molecular modeling, the mechanism of action was hypothesized to involve the chelation of the divalent metal ions inside the IN active site. Furthermore, the inhibitor of IN-LEDGF/p75 interaction was properly bound to the LEDGF/p75 binding site on IN. This work provides a new and efficient approach to evolve novel HIV-1 IN inhibitors from rational integration and optimization of previously reported inhibitors.

  20. Determination of total arsenic, inorganic and organic arsenic species in wine.

    Science.gov (United States)

    Herce-Pagliai, C; Moreno, I; González, G; Repetto, M; Cameán, A M

    2002-06-01

    Forty-five wine samples from the south of Spain of different alcoholic strength were analysed for total arsenic and its inorganic [As(III), As(V)] and organic (monomethylarsonic acid [MMAA], dimethylarsinic acid [DMAA]) species. The As levels of the wine samples ranged from 2.1 to 14.6 microg l(-1). The possible effect of the alcoholic fermentation process on the levels of the total arsenic and arsenical species was studied. The average total arsenic levels for the different samples were very similar, without significant differences between all types of wines. In table wines and sherry, the percentages of total inorganic arsenic were 18.6 and 15.6%, with DMAA or MMAA being the predominant species, respectively. In most samples, DMAA was the most abundant species, but the total inorganic aresenic fraction was considerable, representing 25.4% of the total concentration of the element. The estimated daily intakes of total arsenic and total inorganic arsenic for average Spanish consumers were 0.78 and 0.15 microg/person day(-1), respectively. The results suggest that the consumption of these types of wines makes no significant contribution to the total and inorganic arsenic intake for normal drinkers. However, wine consumption contributes a higher arsenic intake than through consumption of beers and sherry brandies.

  1. Electrochemical arsenic remediation for rural Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Addy, Susan Amrose [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    Arsenic in drinking water is a major public health problem threatening the lives of over 140 million people worldwide. In Bangladesh alone, up to 57 million people drink arsenic-laden water from shallow wells. ElectroChemical Arsenic Remediation(ECAR) overcomes many of the obstacles that plague current technologies and can be used affordably and on a small-scale, allowing for rapid dissemination into Bangladesh to address this arsenic crisis. In this work, ECAR was shown to effectively reduce 550 - 580 μg=L arsenic (including both As[III]and As[V]in a 1:1 ratio) to below the WHO recommended maximum limit of 10 μg=L in synthetic Bangladesh groundwater containing relevant concentrations of competitive ions such as phosphate, silicate, and bicarbonate. Arsenic removal capacity was found to be approximately constant within certain ranges of current density, but was found to change substantially between ranges. In order of decreasing arsenic removal capacity, the pattern was: 0.02 mA=cm2> 0.07 mA=cm2> 0.30 - 1.1 mA=cm2> 5.0 - 100 mA=cm2. Current processing time was found to effect arsenic removal capacity independent of either charge density or current density. Electrode polarization studies showed no passivation of the electrode in the tested range (up to current density 10 mA=cm2) and ruled out oxygen evolution as the cause of decreasing removal capacity with current density. Simple settling and decantation required approximately 3 days to achieve arsenic removal comparable to filtration with a 0.1 mu m membrane. X-ray Absorption Spectroscopy (XAS) showed that (1) there is no significant difference in the arsenic removal mechanism of ECAR during operation at different current densities and (2) the arsenic removal mechanism in ECAR is consistent with arsenate adsorption onto a homogenous Fe(III)oxyhydroxide similar in structure to 2-line ferrihydrite. ECAR effectively reduced high arsenic concentrations (100

  2. Arsenic in rice: A cause for concern

    DEFF Research Database (Denmark)

    Hojsak, Iva; Braegger, Christian; Bronsky, Jiri

    2015-01-01

    Inorganic arsenic intake is likely to affect long-term health. High concentrations are found in some rice-based foods and drinks widely used in infants and young children. In order to reduce exposure we recommend avoidance of rice drinks for infants and young children. For all rice products, strict...... regulation should be enforced regarding arsenic content. Moreover, infants and young children should consume a balanced diet including a variety of grains as carbohydrate sources. While rice protein based infant formulas are an option for infants with cows' milk protein allergy, the inorganic arsenic content...

  3. Probabilistic Risk Assessment of Cancer from Exposure Inorganic Arsenic in Duplicate Food by Villagers in Ronphibun, Thailand

    Directory of Open Access Journals (Sweden)

    Piyawat Saipan

    2010-07-01

    Full Text Available Ronphibun district is a district in Nakorn Si Thammarat province, within southern Thailand. This district is the site of several former tin mines that were in operation 100 years ago. Arsenic contamination caused by past mining activities remains in the area. The specific purpose of this study was conducted to assess cancer risk in people living within Ronphibun district from exposure to inorganic arsenic via duplicate food using probabilistic risk assessment. A hundred and fifty duplicate food samples were collected from participants. Inorganic arsenic concentrations are determined by hydride generation atomic absorption spectrometry. Inorganic arsenic concentrations in duplicate food ranged from 0.16 to 0.42 μg/g dry weight. The probabilistic carcinogenic risk levels were 6.76 x 10-4 and 1.74 x 10-3 based on the 50th and 95th percentile, respectively. Risk values for people in Ronphibun from exposure to inorganic arsenic remained higher than the acceptable target risk. Sensitivity analysis indicted that exposure duration and concentrations of arsenic in food were the two most influential of cancer risk estimates.

  4. Increasing arsenic sorption on red mud by phosphogypsum addition.

    Science.gov (United States)

    Lopes, G; Guilherme, L R G; Costa, E T S; Curi, N; Penha, H G V

    2013-11-15

    Mining by-products have been tested as adsorbents for arsenic in order to reduce As bioavailability. This study evaluated a red mud (RM) treated with or without phosphogypsum (G) in order to improve its As retention. Red mud and G samples and their mixtures were chemically and mineralogically characterized to gather information concerning their composition, which is key for a better understanding of the adsorbent properties. Phosphogypsum was added to RM in the following proportions: 0, 1, 2, 5, 10, and 25% by weight. These mixtures were subjected to As adsorption and desorption and tested for their maximum adsorption capacity of As (AsMAC). Arsenic adsorption increased upon increasing the proportion of G added to RM. The AsMAC at pure RM reached 909 mg kg(-1), whereas the 75%-RM+25%-G mixture sorbed up to 3333 mg kg(-1) of As, i.e., a 3.5-fold increase in AsMAC. Using G in mixtures with RM increases the efficiency of As adsorption due to the presence of Ca(2+), which alters the charge balance of the adsorbent, leading to the formation of ternary complexes. Addition of G to RM is thus a promising technique to improve As retention, while providing additional value to both by-products, G and RM.

  5. Mathematical model insights into arsenic detoxification

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2011-08-01

    Full Text Available Abstract Background Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs, which then undergoes hepatic methylation to methylarsonic acid (MMAs and a second methylation to dimethylarsinic acid (DMAs. Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation. Methods We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects. Results We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic

  6. MicroRNA-181b and microRNA-9 mediate arsenic-induced angiogenesis via NRP1.

    Science.gov (United States)

    Cui, Yi; Han, Zhongji; Hu, Yi; Song, Ge; Hao, Chanjuan; Xia, Hongfei; Ma, Xu

    2012-02-01

    Environmental exposure to inorganic arsenic compounds has been reported to have serious health effects on humans. Recent studies reported that arsenic targets endothelial cells lining blood vessels, and endothelial cell activation or dysfunction, may underlie the pathogenesis of arsenic-induced diseases and developmental toxicity. It has been reported that microRNAs (miRNAs) may act as an angiogenic switch by regulating related genes. The present study was designed to test the hypothesis that arsenite-regulated miRNAs play pivotal roles in arsenic-induced toxicity. Fertilized eggs were injected via the yolk sac with 100  nM sodium arsenite at Hamburger-Hamilton (HH) stages 6, 9, and 12, and harvested at HH stage 18. To identify the individual miRNAs and mRNAs that may regulate the genetic network, the expression profiles of chick embryos were analyzed by microarray analysis. Microarray analyses revealed that the expression of a set of miRNAs changed after arsenite administration, especially miRNA-9, 181b, 124, 10b, and 125b, which exhibited a massive decrease in expression. Integrative analyses of the microarray data revealed that several miRNAs, including miR-9 and miR-181b, might target several key genes involved in arsenic-induced developmental toxicity. A luciferase reporter assay confirmed neuropilin-1 (Nrp1) as a target of mir-9 and mir-181b. Data from the transwell migration assay and the tube-formation assay indicated that miR-9 and mir-181b inhibited the arsenic-induced EA.hy926 cell migration and tube formation by targeting NRP1. Our study demonstrates that the environmental toxin, sodium arsenite, induced angiogenesis by altering the expression of miRNAs and their cognate mRNA targets.

  7. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    Science.gov (United States)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  8. Ana insect model for assessing arsenic toxicity: Arsenic elevated glutathione content in the musca domestica and trichoplusia ni

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, K.; Pardini, R.S. [Univ. of Nevada, Reno, NV (United States)

    1995-12-01

    Throughout history, arsenic has acquired an unparalled reputation as a poison. Arsenic was used as a poison as early as 2000 B.C. The toxicity of arsenic (As) extends to mammals, fish, insects, plants and fungi. According to epidemiological evidence, inorganic arsenic compounds have been strongly suggested as human carcinogens. Human exposure to arsenic through various means is correlated with an increased incidence of skin, lung, and possibly liver cancers. Inorganic trivalent arsenic is systematically more poisonous than the pentavalent form and it is possible that pentavalent arsenic is reduced to the trivalent form before exerting any toxic effects. This study focuses on the potential to use two insect species, the housefly, Musca domestica and the cabbage looper moth, Trichoplusia ni, and a model for the study of arsenic toxicity. After 48 hours of exposure to Arsenic, a significant induction of Glutathione level and subsequent decrease in the level of GSSG in both species were observed. 21 refs., 2 figs., 1 tab.

  9. [Effects of organic fertilization on arsenic absorption of pakchoi (Brassica chinensis) on arsenic-contaminated red soil].

    Science.gov (United States)

    Li, Lian-Fang; Geng, Zhi-Xi; Zeng, Xi-Bai; Bai, Ling-Yu; Su, Shi-Ming

    2011-01-01

    A pot experiment with arsenic-contaminated red soil was conducted to study the effects of applying pig dung and chicken manure on the growth and arsenic absorption of pakchoi (Brassica chinensis), and on soil available arsenic. Applying pig dung and chicken manure to the arsenic-contaminated red soil increased the biomass of pakchoi to some extent. Comparing with the control, applying pig dung increased the pakchoi biomass significantly (P Organic fertilization promoted the arsenic absorption of pakchoi, with the arsenic uptake after applying pig dung increased by 20.7%-53.9%. The application of pig dung and chicken manure to arsenic-contaminated red soil could somewhat increase the soil available arsenic content and the arsenic uptake by crops, and thus, increase the risks of agricultural product quality and environment.

  10. Arsenic and Other Metals’ Presence in Biomarkers of Cambodians in Arsenic Contaminated Areas

    Directory of Open Access Journals (Sweden)

    Penradee Chanpiwat

    2015-11-01

    Full Text Available Chemical analyses of metal (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Ba, and Pb concentrations in hair, nails, and urine of Cambodians in arsenic-contaminated areas who consumed groundwater daily showed elevated levels in these biomarkers for most metals of toxicological interest. The levels of metals in biomarkers corresponded to their levels in groundwater, especially for As, whose concentrations exceeded the WHO guidelines for drinking water. About 75.6% of hair samples from the population in this study contained As levels higher than the normal level in unexposed individuals (1 mg·kg−1. Most of the population (83.3% showed As urinary levels exceeding the normal (<50 ng·mg−1. These results indicate the possibility of arsenicosis symptoms in residents of the areas studied. Among the three biomarkers tested, hair has shown to be a reliable indicator of metal exposures. The levels of As (r2 = 0.633, Ba (r2 = 0.646, Fe (r2 = 0.595, and Mo (r2 = 0.555 in hair were strongly positively associated with the levels of those metals in groundwater. In addition, significant weak correlations (p < 0.01 were found between levels of exposure to As and As concentrations in both nails (r2 = 0.544 and urine (r2 = 0.243.

  11. Arsenic poisoning of cattle and other domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Moxham, J.W.; Coup, M.R.

    1968-01-01

    One hundred and sixty-one incidents of arsenic poisoning in domestic animals were recorded at Ruakura Veterinary Diagnostic Station from 1955 to 1967. Cattle was the animal species most subject to arsenic poisoning. Clincal signs, post-mortem findings and sources of arsenic are given. Arsenic poisoning was more prevalent in younger cattle and during the warmer months of the year. With cattle most incidents were associated with carelessly discarded arsenical compounds, although most deaths occurred when these compounds were deliberately used. In other species, losses were generally caused by the deliberate use of arsenical preparations for dipping, drenching and weed spraying. 10 references, 2 tables.

  12. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Yi-Chen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Lien, Li-Ming [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Neurology, Shin Kong WHS Memorial Hospital, Taipei, Taiwan (China); Chung, Wen-Ting [Department of Neurology, Wanfang Hospital, Taipei Medical University, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsieh, Fang-I; Hsieh, Pei-Fan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Wu, Meei-Maan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Graduate Institute of Basic Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan (China); Tseng, Hung-Pin [Department of Neurology, Lotung Poh-Ai Hospital, I-Lan, Taiwan (China); Chiou, Hung-Yi, E-mail: hychiou@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, 250 Wusing St., Taipei 11031, Taiwan (China); Chen, Chien-Jen [Genomics Research Center, Academia Sinica, Taipei, Taiwan (China)

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study. Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields

  13. Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano

    Science.gov (United States)

    Ormachea Muñoz, Mauricio; Bhattacharya, Prosun; Sracek, Ondra; Ramos Ramos, Oswaldo; Quintanilla Aguirre, Jorge; Bundschuh, Jochen; Maity, Jyoti Prakash

    2015-07-01

    Numerous hot springs and fumaroles occur along the Andes Mountains, in the Bolivian Altiplano, where people use thermal springs for recreational purposes as pools, baths and also for consumption as drinking water and irrigation once it is mixed with natural surface waters; most of these thermal springs emerge from earth surface and flow naturally into the rivers streams which drain further into the Poopó Lake. Physicochemical characteristics of the thermal water samples showed pH from 6.3 to 8.3 with an average of 7.0, redox potential from +106 to +204 mV with an average of +172 mV, temperatures from 40 to 75 °C with an average of 56 °C and high electrical conductivity ranging from 1.8 to 75 mS/cm and averaged 13 mS/cm. Predominant major ions are Na+ and Cl- and the principal water types are 37.5% Na-Cl type and 37.5% Na-Cl-HCO3 type. Arsenic concentrations ranged from 7.8 to 65.3 μg/L and arsenic speciation indicate the predominance of As(III) species. Sediments collected from the outlets of thermal waters show high iron content, and ferric oxides and hydroxides are assumed to be principal mineral phases for arsenic attenuation by adsorption/co-precipitation processes. Arsenic concentrations in cold water samples from shallow aquifers are higher than those in thermal springs (range < 5.6-233.2 μg/L), it is likely that thermal water discharge is not the main source of high arsenic content in the shallow aquifer as they are very immature and may only have a small component corresponding to the deep geothermal reservoir. As people use both thermal waters and cold waters for consumption, there is a high risk for arsenic exposure in the area.

  14. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic.

    Science.gov (United States)

    Stanton, Bruce A; Caldwell, Kathleen; Congdon, Clare Bates; Disney, Jane; Donahue, Maria; Ferguson, Elizabeth; Flemings, Elsie; Golden, Meredith; Guerinot, Mary Lou; Highman, Jay; James, Karen; Kim, Carol; Lantz, R Clark; Marvinney, Robert G; Mayer, Greg; Miller, David; Navas-Acien, Ana; Nordstrom, D Kirk; Postema, Sonia; Rardin, Laurie; Rosen, Barry; SenGupta, Arup; Shaw, Joseph; Stanton, Elizabeth; Susca, Paul

    2015-09-01

    This report is the outcome of the meeting "Environmental and Human Health Consequences of Arsenic" held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13-15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food, and more than 200 million people ingest arsenic via drinking water at concentrations greater than international standards. Although the US Environmental Protection Agency (EPA) has set a limit of 10 μg/L in public water supplies and the WHO has recommended an upper limit of 10 μg/L, recent studies indicate that these limits are not protective enough. In addition, there are currently few standards for arsenic in food. Those who participated in the Summit support citizens, scientists, policymakers, industry, and educators at the local, state, national, and international levels to (1) establish science-based evidence for setting standards at the local, state, national, and global levels for arsenic in water and food; (2) work with government agencies to set regulations for arsenic in water and food, to establish and strengthen non-regulatory programs, and to strengthen collaboration among government agencies, NGOs, academia, the private sector, industry, and others; (3) develop novel and cost-effective technologies for identification and reduction of exposure to arsenic in water; (4) develop novel and cost-effective approaches to reduce arsenic exposure in juice, rice, and other relevant foods; and (5) develop an Arsenic Education Plan to guide the development of science curricula as well as community outreach and education programs that serve to inform students and consumers about arsenic exposure and engage them in well water testing and development of remediation strategies.

  15. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh.

    Science.gov (United States)

    Chen, Yu; Wu, Fen; Graziano, Joseph H; Parvez, Faruque; Liu, Mengling; Paul, Rina Rani; Shaheen, Ishrat; Sarwar, Golam; Ahmed, Alauddin; Islam, Tariqul; Slavkovich, Vesna; Rundek, Tatjana; Demmer, Ryan T; Desvarieux, Moise; Ahsan, Habibul

    2013-08-01

    We conducted a cross-sectional study to evaluate the interrelationships between past arsenic exposure, biomarkers specific for susceptibility to arsenic exposure, and carotid intima-media thickness (cIMT) in 959 subjects from the Health Effects of Arsenic Longitudinal Study in Bangladesh. We measured cIMT levels on average 7.2 years after baseline during 2010-2011. Arsenic exposure was measured in well water at baseline and in urine samples collected at baseline and during follow-up. Every 1-standard-deviation increase in urinary arsenic (357.9 µg/g creatinine) and well-water arsenic (102.0 µg/L) concentration was related to a 11.7-µm (95% confidence interval (CI): 1.8, 21.6) and 5.1-µm (95% CI: -0.2, 10.3) increase in cIMT, respectively. For every 10% increase in monomethylarsonic acid (MMA) percentage, there was an increase of 12.1 µm (95% CI: 0.4, 23.8) in cIMT. Among participants with a higher urinary MMA percentage, a higher ratio of urinary MMA to inorganic arsenic, and a lower ratio of dimethylarsinic acid to MMA, the association between well-water arsenic and cIMT was stronger. The findings indicate an effect of past long-term arsenic exposure on cIMT, which may be potentiated by suboptimal or incomplete arsenic methylation capacity. Future prospective studies are needed to confirm the association between arsenic methylation capacity and atherosclerosis-related outcomes.

  16. Arsenic stress after the Proterozoic glaciations

    Science.gov (United States)

    Chi Fru, Ernest; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-01

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  17. Arsenic binding to Fucus vesiculosus metallothionein.

    Science.gov (United States)

    Merrifield, Maureen E; Ngu, Thanh; Stillman, Martin J

    2004-11-05

    The seaweed Fucus vesiculosus is a member of the brown algae family. Kille and co-workers [Biochem. J. 338 (1999) 553] reported that this species contains the gene for metallothionein. Metallothionein is a metalloprotein having low molecular weight, and high cysteine content, which binds a range of metals. F. vesiculosus bioaccumulates arsenic from the aquatic environment [Mar. Chem. 18 (1986) 321]. In this paper we describe arsenic binding to F. vesiculosus metallothionein, characterized by electrospray ionization mass spectrometry. Five arsenic-MT species were detected with increasing As to protein ratios. These results provide important information about the metal-chelation behaviour of this novel algal metallothionein which is a putative model for arsenic binding to F. vesiculosus in vivo.

  18. Arsenic stress after the Proterozoic glaciations.

    Science.gov (United States)

    Fru, Ernest Chi; Arvestål, Emma; Callac, Nolwenn; El Albani, Abderrazak; Kilias, Stephanos; Argyraki, Ariadne; Jakobsson, Martin

    2015-12-04

    Protection against arsenic damage in organisms positioned deep in the tree of life points to early evolutionary sensitization. Here, marine sedimentary records reveal a Proterozoic arsenic concentration patterned to glacial-interglacial ages. The low glacial and high interglacial sedimentary arsenic concentrations, suggest deteriorating habitable marine conditions may have coincided with atmospheric oxygen decline after ~2.1 billion years ago. A similar intensification of near continental margin sedimentary arsenic levels after the Cryogenian glaciations is also associated with amplified continental weathering. However, interpreted atmospheric oxygen increase at this time, suggests that the marine biosphere had widely adapted to the reorganization of global marine elemental cycles by glaciations. Such a glacially induced biogeochemical bridge would have produced physiologically robust communities that enabled increased oxygenation of the ocean-atmosphere system and the radiation of the complex Ediacaran-Cambrian life.

  19. Rapid thermal anneal of arsenic implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, A.

    1985-01-01

    The distribution of arsenic implanted into silicon during rapid thermal anneal (RTA) was investigated. Secondary ion mass spectrometry, Rutherford backscattering spectrometry, and channeling techniques were used for the measurement of the total (chemical) dopant profile. The electrically active dopant profiles were measured with sheet resistance, sheet-resistance maps, spreading resistance and pinch resistors. It was found that arsenic profile after RTA is influenced by many parameters including crystallographic orientation of the sample, temperature gradient, and defect structure in the surface part affected by heavy arsenic implant. A diffusion model based on inhomogeneous medium was examined. Exact solutions of the diffusion equation were obtained for the rectangular and Gaussian initial dopant profiles. Calculated results are compared to the measured profiles. It is concluded that model satisfactory predicts the major features of the arsenic diffusion into silicon during RTA.

  20. Rapid Thermal Anneal of Arsenic Implanted Silicon.

    Science.gov (United States)

    Feygenson, Anatoly

    1985-12-01

    The distribution of arsenic implanted into silicon during rapid thermal anneal (RTA) has been investigated. Secondary ion mass spectrometry (SIMS), Rutherford backscattering spectrometry (RBS) and channeling techniques were used for the measurement of the total (chemical) dopant profile. The electrically active dopant profiles were measured with sheet resistance, sheet resistance maps, spreading resistance, and pinch resistors. It has been found that arsenic profile after RTA is influenced by many parameters including crystallographic orientation of the sample, temperature gradient, and defect structure in the surface part affected by heavy arsenic implant. A diffusion model based on inhomogeneous medium was examined. Exact solutions of the diffusion equation were obtained for the rectangular and Gaussian initial dopant profiles. Calculated results are compared to the measured profiles. It is concluded that model satisfactory predicts the major features of the arsenic diffusion into silicon during RTA.

  1. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    Science.gov (United States)

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-01-01

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. PMID:27558664

  2. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Lan Guo

    2016-10-01

    Full Text Available Heavy metals and metalloids such as cadmium [Cd(II] and arsenic [As(III] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.

  3. Computational Studies of Beta Amyloid (Aβ42 with p75NTR Receptor: A Novel Therapeutic Target in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Shine Devarajan

    2014-01-01

    Full Text Available Alzheimer’s disease is a neurodegenerative disorder characterized by the accumulation of beta amyloid plaques (Aβ which can induce neurite degeneration and progressive dementia. It has been identified that neuronal apoptosis is induced by binding of Aβ42 to pan neurotrophin receptor (p75NTR and gave the possibility that beta amyloid oligomer is a ligand for p75NTR. However, the atomic contact point responsible for molecular interactions and conformational changes of the protein upon binding was not studied in detail. In view of this, we conducted a molecular docking and simulation study to investigate the binding behaviour of Aβ42 monomer with p75NTR ectodomain. Furthermore, we proposed a p75NTR-ectodomain-Aβ42 complex model. Our data revealed that, Aβ42 specifically recognizes CRD1 and CRD2 domains of the receptor and formed a “cap” like structure at the N-terminal of receptor which is stabilized by a network of hydrogen bonds. These findings are supported by molecular dynamics simulation that Aβ42 showed distinct structural alterations at N- and C-terminal regions due to the influence of the receptor binding site. Overall, the present study gives more structural insight on the molecular interactions of beta amyloid protein involved in the activation of p75NTR receptor.

  4. Arsenic: Not So Evil After All?

    Science.gov (United States)

    Lykknes, Annette; Kvittingen, Lise

    2003-05-01

    This article presents parts of the history of the element arsenic in order to illustrate processes behind development of knowledge in chemistry. The particular aspects presented here are the use of arsenic as a stimulant by Styrian peasants, in Fowler's solution, in drugs of the 19th century (e.g., salvarsan), and in current medical treatment, all of which challenge the myth of this element as exclusively poisonous.

  5. Biosensors for Inorganic and Organic Arsenicals

    Science.gov (United States)

    Chen, Jian; Rosen, Barry P.

    2014-01-01

    Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted. PMID:25587436

  6. The influence of salinity on toxicological effects of arsenic in digestive gland of clam Ruditapes philippinarum using metabolomics

    Institute of Scientific and Technical Information of China (English)

    JI Chenglong; WU Huifeng; LIU Xiaoli; ZHAO Jianmin; YU Junbao; YIN Xiuli

    2013-01-01

    Ruditapes philippinarum,a clam that thrives in intertidal zones of various salinities,is a useful biomonitor to marine contaminants.We investigated the influence of dilution to 75% and 50% of normal seawater salinity (31.1) on the responses of the digestive gland of R.philippinarum to arsenic exposure (20 μg/L),using nuclear magnetic resonance (NMR)-based metabolomics.After acute arsenic exposure for 48 h,salinity-dependent differential metabolic responses were detected.In normal seawater,arsenic exposure increased the concentrations of branched-chain amino acids,and of threonine,proline,phosphocholine and adenosine,and it decreased the levels of alanine,hypotaurine,glucose,glycogen and ATP in the digestive glands.Differential changes in metabolic biomarkers observed at lower salinity (~23.3)included elevation of succinate,taurine and ATP,and depletion of branched-chain amino acids,threonine and glutamine.Unique effects of arsenic at the lowest salinity (~15.6) included down-regulation of glutamate,succinate and ADP,and up-regulation of phosphocholine.We conclude that salinity influences the metabolic responses of this clam to arsenic.

  7. Earthworms produce phytochelatins in response to arsenic.

    Directory of Open Access Journals (Sweden)

    Manuel Liebeke

    Full Text Available Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  8. Earthworms produce phytochelatins in response to arsenic.

    Science.gov (United States)

    Liebeke, Manuel; Garcia-Perez, Isabel; Anderson, Craig J; Lawlor, Alan J; Bennett, Mark H; Morris, Ceri A; Kille, Peter; Svendsen, Claus; Spurgeon, David J; Bundy, Jacob G

    2013-01-01

    Phytochelatins are small cysteine-rich non-ribosomal peptides that chelate soft metal and metalloid ions, such as cadmium and arsenic. They are widely produced by plants and microbes; phytochelatin synthase genes are also present in animal species from several different phyla, but there is still little known about whether these genes are functional in animals, and if so, whether they are metal-responsive. We analysed phytochelatin production by direct chemical analysis in Lumbricus rubellus earthworms exposed to arsenic for a 28 day period, and found that arsenic clearly induced phytochelatin production in a dose-dependent manner. It was necessary to measure the phytochelatin metabolite concentrations directly, as there was no upregulation of phytochelatin synthase gene expression after 28 days: phytochelatin synthesis appears not to be transcriptionally regulated in animals. A further untargetted metabolomic analysis also found changes in metabolites associated with the transsulfuration pathway, which channels sulfur flux from methionine for phytochelatin synthesis. There was no evidence of biological transformation of arsenic (e.g. into methylated species) as a result of laboratory arsenic exposure. Finally, we compared wild populations of earthworms sampled from the field, and found that both arsenic-contaminated and cadmium-contaminated mine site worms had elevated phytochelatin concentrations.

  9. A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation.

    Science.gov (United States)

    Verma, Shikha; Verma, Pankaj Kumar; Meher, Alok Kumar; Dwivedi, Sanjay; Bansiwal, Amit Kumar; Pande, Veena; Srivastava, Pankaj Kumar; Verma, Praveen Chandra; Tripathi, Rudra Deo; Chakrabarty, Debasis

    2016-03-01

    Elevated arsenic concentration in the environment and agricultural soil is a serious concern to crop production and human health. Among different detoxification mechanisms, the methylation of arsenic is a widespread phenomenon in nature. A number of microorganisms are able to methylate arsenic, but less is known about the arsenic metabolism in fungi. We identified a novel arsenic methyltransferase (WaarsM) gene from a soil fungus, Westerdykella aurantiaca. WaarsM showed sequence homology with all known arsenic methyltransferases having three conserved SAM binding motifs. The expression of WaarsM enhanced arsenic resistance in E. coli (Δars) and S. cerevisiae (Δacr2) strains by biomethylation and required endogenous reductants, preferably GSH, for methyltransferase activity. The purified WaarsM catalyzes the production of methylated arsenicals from both AsIII and AsV, and also displays AsV reductase activity. It displayed higher methyltransferase activity and lower KM 0.1945 ± 0.021 mM and KM 0.4034 ± 0.078 mM for AsIII and AsV, respectively. S. cerevisiae (Δacr2) cells expressing WaarsM produced 2.2 ppm volatile arsenic and 0.64 ppm DMA(v) with 0.58 ppm volatile arsenicals when exposed to 20 ppm AsV and 2 ppm AsIII, respectively. Arsenic tolerance in rice after co-culture with genetically engineered yeast suggested its potential role in arsenic bioremediation. Thus, characterization of WaarsM provides a potential strategy to reduce arsenic concentration in soil with reduced arsenic accumulation in crops grown in arsenic contaminated areas, and thereby alleviating human health risks.

  10. Effects of arsenic on nitrogen metabolism in arsenic hyperaccumulator and non-hyperaccumulator ferns

    Science.gov (United States)

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of two four-month old fern plants, Pteris vittata, an arsenic-hyperaccumulator, and Pteris ensiformis, ...

  11. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Zaccheo, P.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This revie

  12. Evidence against the nuclear in situ binding of arsenicals-oxidative stress theory of arsenic carcinogenesis

    Science.gov (United States)

    A large amount of evidence suggests that arsenicals act via oxidative stress in causing cancer in humans and experimental animals. It is possible that arsenicals could bind in situ close to nuclear DNA followed by Haber-Weiss type oxidative DNA damage. Therefore, we tested this...

  13. Role of complex organic arsenicals in food in aggregate exposure to arsenic

    Science.gov (United States)

    For much of the world’s population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels has been linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is impo...

  14. Low dose chronic treatment of human keratinocytes with inorganic arsenic causes hyperproliferation and altered protein phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.L. [City College of New York, NY (United States); Su, L.; Snow, E.T. [New York Univ. Medical Center, Tuxedo, NY (United States)]|[City College of New York, NY (United States)

    1997-10-01

    Chronic exposure to arsenate [As(V)] or arsenite [As(III)] causes hyperproliferation of normal and SV40-transformed human epidermal keratinocytes. Line 327 SV40-infected human keratinocytes were grown in the presence of either As(III) or As(V) (0.01 to 10 {mu}M) in complete medium for seven days prior to harvesting and counting. Both As(III) and As(V) were cytotoxic at micromolar concentrations, however submicromolar arsenic caused a significant increase in cell growth. Cell numbers in cultures exposed to As(V) were increased more than 186% relative to controls, and an even larger stimulation in cell growth was observed after treatment with 50 nM As(III). Normal non-SV40 T-antigen. Preliminary cell cycle analysis using unselected, log-phase cultures of arsenic-treated keratinocytes shows an increased proportion of cells in S- and G2/M-phase. Isoelectric focusing of phosphotyrosine-containing proteins from cells labeled with {sup 32}P-inorganic phosphate showed that the hyperproliferation of keratinocytes grown in low concentrations of arsenic is accompanied by altered tyrosine-specific protein phosphorylation. A number of phosphorylated proteins were observed in As-treated cells that were not observed in the controls; and minor bands at IEPs of 3.0, 4.2, 7.2, 7.5 and 8.2. These results, together with the lack of direct enzyme inhibition by arsenic shown by Su et al., this volume, suggest that arsenic-induced skin lesions and carcinogenesis may be the result of altered cell cycle control rather than DNA damage or reduced DNA repair.

  15. Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas.

    Science.gov (United States)

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2004-03-01

    The short term human exposure studies conducted on populations exposed to high concentrations of inorganic arsenic in soil have been inconsistent in demonstrating a relationship between environmental concentrations and exposure measures. In Australia there are many areas with very high arsenic concentrations in residential soil most typically associated with gold mining activities in rural areas. This study aimed to investigate the relationship between environmental arsenic and urinary inorganic arsenic concentrations in a population living in a gold mining area (soil arsenic concentrations between 9 and 9900 mg kg(-1)), and a control population with low arsenic levels in soil (between 1 and 80 mg kg(-1)). Risk factors for increased urinary arsenic concentrations were also explored. There was a weak but significant relationship between soil arsenic concentrations and inorganic urinary arsenic concentration with a Spearman correlation coefficient of 0.39. When participants with greater than 100 mg kg(-1) arsenic in residential soil were selected, the coefficient increased to 0.64. The geometric mean urinary inorganic arsenic concentration for the exposed group was 1.64 microg L(-1) (risk factors. These results show that high concentrations of arsenic in soil can make a contribution to urinary inorganic arsenic concentrations.

  16. Arsenic levels in immigrant children from countries at risk of consuming arsenic polluted water compared to children from Barcelona.

    Science.gov (United States)

    Piñol, S; Sala, A; Guzman, C; Marcos, S; Joya, X; Puig, C; Velasco, M; Velez, D; Vall, O; Garcia-Algar, O

    2015-11-01

    Arsenic is a highly toxic element that pollutes groundwater, being a major environmental problem worldwide, especially in the Bengal Basin. About 40% of patients in our outpatient clinics come from those countries, and there is no published data about their arsenic exposure. This study compares arsenic exposure between immigrant and native children. A total of 114 children (57 natives, 57 immigrants), aged 2 months to 16 years, were recruited and sociodemographic and environmental exposure data were recorded. Total arsenic in urine, hair, and nails and arsenic-speciated compounds in urine were determined. We did not find significant differences in total and inorganic arsenic levels in urine and hair, but in organic arsenic monomethylarsenic acid (MMA) and dimethylarsinous acid (DMA) in urine and in total arsenic in nails. However, these values were not in the toxic range. There were significant differences between longer than 5 years exposure and less than 5 years exposure (consumption of water from tube wells), with respect to inorganic and organic MMA arsenic in urine and total arsenic in nails. There was partial correlation between the duration of exposure and inorganic arsenic levels in urine. Immigrant children have higher arsenic levels than native children, but they are not toxic. At present, there is no need for specific arsenic screening or follow-up in immigrant children recently arrived in Spain from exposure high-risk countries.

  17. Detection of arsenic ions with preliminary concentrating on magnetic sorbent

    OpenAIRE

    Kharlyamov, Damir; Dvoryak, Stanislav; Mavrin, Gennady

    2013-01-01

    In represented work a method of arsenic ions concentrating is presented by means of sorption with application of synthetic magnetite, which is successfully used for atomic absorption detection of arsenic in natural waters.

  18. Arsenic uptake by Lemna minor in hydroponic system.

    Science.gov (United States)

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  19. Arsenic and the Epigenome: Linked by Methylation(SOT)

    Science.gov (United States)

    Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically-exposed individuals are susceptible to arsenic poisoning, or arsenicosis. In some exposed populations arsenicosis susceptibility is dependent in part on the abil...

  20. [Pathways of arsenic uptake in prokaryotic and eukaryotic cells].

    Science.gov (United States)

    Lis, Paweł; Litwin, Ireneusz; Maciaszczyk-Dziubińska, Ewa

    2010-01-01

    Mechanisms of arsenic uptake and detoxification are present in all studied organisms. These mechanisms are considerably well described in unicellular organisms such as bacterium Escherichia coli and baker's yeast Saccharomyces cerevisiae, still leaving much to be revealed in multicellular organisms. Full identification of arsenic uptake and detoxification is of great importance. This knowledge can be very helpful in improving effectiveness of arsenic-containing drugs used in chemotherapy of parasitoses as well as in treatment of acute promielyocytic leukemia. Increased proficiency of bioremediation of arsenic-contaminated soils can be obtained by using plants hyperaccumulating arsenic. This kind of plants can be engineered by modulating expression levels of genes encoding arsenic transporters. The same technique may be used to decrease levels of accumulated arsenic in crops. The aim of this paper is to review current knowledge about systems of arsenic uptake in every studied organism--from bacteria to human.

  1. Map of Arsenic concentrations in groundwater of the United States

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The map graphic image at http://water.usgs.gov/GIS/browse/arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about...

  2. Mouse Assay for Determination of Arsenic Bioavailability in Contaminated Soils

    Science.gov (United States)

    Background: Accurate assessment of human exposure estimates from arsenic-contaminated soils depends upon estimating arsenic (As) soil bioavailability. Development of bioavailability assays provides data needed for human health risk assessments and supports development and valida...

  3. Uptake of Arsenic in Rice Plant Varieties Cultivated with Arsenic Rich Groundwater

    Directory of Open Access Journals (Sweden)

    Piyal Bhattacharya

    2010-07-01

    Full Text Available Groundwater of many areas of West Bengal, India is severely contaminated with arsenic. The paddy soil gets con¬taminated from the groundwater and thus there is a probability of bioaccumulation of arsenic in rice plants cultivated with arsenic contaminated groundwater and soil. This study aims at assessing the level of arsenic in irrigation water and soil and to investigate the seasonal bioaccumulation of arsenic in the various parts (straw, husk and grain of the rice plant of differ¬ent varieties in the arsenic affected two blocks (Chakdaha and Ranaghat-I of Nadia district, West Bengal. It was found that the arsenic uptake in rice during the pre-monsoon season is more than that of the post-monsoon season. The accumulation of arsenic found to vary with different rice varieties; the maximum accumulation was in White minikit (0.31±0.005 mg/kg and IR 50 (0.29±0.001 mg/kg rice varieties and minimum was found to be in the Jaya rice variety (0.14±0.002 mg/kg. In rice plant maximum arsenic accumulation occurred in the straw part (0.89±0.019-1.65±0.021 mg/kg compared to the ac¬cumulation in husk (0.31±0.011-0.85±0.016 mg/kg and grain (0.14±0.002-0.31±0.005 mg/kg parts. For any rice sample concentration of arsenic in the grain did not exceed the WHO recommended permissible limit in rice (1.0 mg/kg.

  4. Clinical manifestations and arsenic methylation after a rare subacute arsenic poisoning accident.

    Science.gov (United States)

    Xu, Yuanyuan; Wang, Yi; Zheng, Quanmei; Li, Bing; Li, Xin; Jin, Yaping; Lv, Xiuqiang; Qu, Guang; Sun, Guifan

    2008-06-01

    One hundred and four workers ingested excessive levels of arsenic in an accident caused by leakage of pipeline in a copper-smelting factory. Clinical examinations were performed by physicians in a local hospital. Excreted urinary arsenic species were determined by cold trap hydride generation atomic absorption spectrometry. In the initial toxic phase, gastrointestinal symptoms were predominant (83 people, 79.8%). Most patients showed leucopenia (72 people, 69.2%), and increased serum alanine aminotransferase (84 people, 80.8%) and aspartate aminotransferase (58 people, 55.8%). Thirty-five patients (33.6%) had elevated red blood cells in urine. After 17 days of admission, many subjects (45 people, 43.3%) developed peripheral neuropathy and 25 of these 45 patients (24.0%) showed a decrease in motor and sensory nerve conduction velocity. In the comparison of urinary arsenic metabolites among subacute arsenic-poisoned, chronic high arsenic-exposed and control subjects, we found that subacute arsenic-poisoned patients had significantly elevated proportions of urinary inorganic arsenic (iAs) and methylarsonic acid (MMA) but reduced proportion of urinary dimethylarsinic acid (DMA) compared with chronic high arsenic-exposed and control subjects. Chronic exposed subjects excreted higher proportions of iAs and MMA but lower proportions of DMA in urine compared with control subjects. These results suggest that gastrointestinal symptoms, leucopenia, and hepatic and urinary injury are predominant in the initial phase of subacute arsenic poisoning. Peripheral neuropathy is the most frequent manifestation after the initial phase. The biomethylation of arsenic decreases in a dose rate-dependent manner.

  5. Enhancement of chromosomal damage by arsenic: implications for mechanism.

    OpenAIRE

    1993-01-01

    Arsenic is a naturally occurring metalloid that has been associated with increased incidence of human cancer in certain highly exposed populations. Arsenic is released to the environment by natural means such as solubilization from geologic formations into water supplies. It is also released to occupational and community environments by such activities as nonferrous ore smelting and combustion of fuels containing arsenic. Several lines of evidence indicate that arsenic acts indirectly with ot...

  6. Solid materials for removing arsenic and method thereof

    Science.gov (United States)

    Coronado, Paul R.; Coleman, Sabre J.; Sanner, Robert D.; Dias, Victoria L.; Reynolds, John G.

    2008-07-01

    Solid materials have been developed to remove arsenic compounds from aqueous media. The arsenic is removed by passing the aqueous phase through the solid materials which can be in molded, granular, or powder form. The solid materials adsorb the arsenic leaving a purified aqueous stream. The materials are aerogels or xerogels and aerogels or xerogels and solid support structure, e.g., granulated activated carbon (GAC), mixtures. The species-specific adsorption occurs through specific chemical modifications of the solids tailored towards arsenic.

  7. Removal of arsenic from aqueous solution using electrocoagulation.

    Science.gov (United States)

    Balasubramanian, N; Kojima, Toshinori; Basha, C Ahmed; Srinivasakannan, C

    2009-08-15

    Removal of arsenic from aqueous solution was carried out using electrocoagulation. Experiments were conducted using mild steel sacrificial anode covering wide range in operating conditions to assess the removal efficiency. The maximum arsenic removal efficiency was recorded as 94% under optimum condition. The electrocoagulation mechanism of arsenic removal has been developed to understand the effect of applied charge and electrolyte pH on arsenic removal efficiency. Further the experimental data were tested with different adsorption isotherm model to describe the electrocoagulation process.

  8. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M., E-mail: kobya@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Gebologlu, U.; Ulu, F.; Oncel, S. [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Demirbas, E. [Gebze Institute of Technology, Department of Chemistry, 41400 Gebze (Turkey)

    2011-05-30

    Highlights: > Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. > Operating costs at the optimum conditions were 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. > Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. > The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m{sup -2}), initial concentration (75-500 {mu}g L{sup -1}) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m{sup -2}, respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 {mu}g L{sup -1} with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  9. Dissolved Air Flotation of arsenic adsorbent particles

    Directory of Open Access Journals (Sweden)

    M. Santander

    2015-04-01

    Full Text Available The removal of arsenic from synthetic effluent was studied using the adsorbent particle flotation technique (APF and dissolved air flotation (DAF. A sample of an iron mineral was used as adsorbent particles of arsenic, ferric chloride as coagulant, cationic polyacrylamide (NALCO 9808 as flocculants, and sodium oleate as collector. Adsorption studies to determine the pH influence, contact time, and adsorbent particles concentration on the adsorption of arsenic were carried out along with flotation studies to determine the removal efficiency of adsorbents particles. The results achieved indicate that the adsorption kinetic of arsenic is very rapid and that in range of pH’s from 2 to 7 the adsorption percentages remain constant. The equilibrium conditions were achieved in 60 minutes and about 95% of arsenic was adsorbed when used an adsorbent concentration of 2 g/L and pH 6.3. The maximum adsorption capacity of adsorbent particles was 4.96 mg/g. The mean free energy of adsorption (E was found to be 2.63 kJ/mol, which suggests physisorption. The results of the flotation studies demonstrated that when synthetic effluents with 8.9 mg/L of arsenic were treated under the following experimental conditions; 2 g/L of adsorbent particles, 120 mg/L of Fe(III, 2 mg/L of Nalco 9808, 20 mg/L of sodium oleate, and 40% of recycle ratio in the DAF, it was possible to reach 98% of arsenic removal and 6.3 NTU of residual turbidity in clarified synthetic effluent.

  10. Arsenic management through well modification and simulation

    Science.gov (United States)

    Halford, Keith J.; Stamos, Christina L.; Nishikawa, Tracy; Martin, Peter

    2010-01-01

    Arsenic concentrations can be managed with a relatively simple strategy of grouting instead of completely destroying a selected interval of well. The strategy of selective grouting was investigated in Antelope Valley, California, where groundwater supplies most of the water demand. Naturally occurring arsenic typically exceeds concentrations of 10 (mu or u)g/L in the water produced from these long-screened wells. The vertical distributions of arsenic concentrations in intervals of the aquifer contributing water to selected supply wells were characterized with depth-dependent water-quality sampling and flow logs. Arsenic primarily entered the lower half of the wells where lacustrine clay deposits and a deeper aquifer occurred. Five wells were modified by grouting from below the top of the lacustrine clay deposits to the bottom of the well, which reduced produced arsenic concentrations to less than 2 (mu or u)g/L in four of the five wells. Long-term viability of well modification and reduction of specific capacity was assessed for well 4-54 with AnalyzeHOLE, which creates and uses axisymmetric, radial MODFLOW models. Two radial models were calibrated to observed borehole flows, drawdowns, and transmissivity by estimating hydraulicconductivity values in the aquifer system and gravel packs of the original and modified wells. Lithology also constrained hydraulic-conductivity estimates as regularization observations. Well encrustations caused as much as 2 (mu or u)g/L increase in simulated arsenic concentration by reducing the contribution of flow from the aquifer system above the lacustrine clay deposits. Simulated arsenic concentrations in the modified well remained less than 3 (mu or u)g/L over a 20-year period.

  11. Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure.

    Science.gov (United States)

    Zhang, Chuanwu; Mao, Guangyun; He, Suxia; Yang, Zuopeng; Yang, Wei; Zhang, Xiaojing; Qiu, Wenting; Ta, Na; Cao, Li; Yang, Hui; Guo, Xiaojuan

    2013-11-15

    Arsenic increases the risk and incidence of cardiovascular disease. To explore the impact of long-term exposure to low-level arsenic in drinking water on blood pressure including pulse pressure (PP) and mean arterial blood pressure (MAP), a cross-sectional study was conducted in 2010 in which the blood pressure of 405 villagers was measured, who had been drinking water with an inorganic arsenic content 63-3.35) increase in the group with >30-50 years of arsenic exposure and a 2.95-fold (95%CI: 1.31-6.67) increase in the group with >50 years exposure. Furthermore, the odds ratio for prevalence of abnormal PP and MAP were 1.06 (95%CI: 0.24-4.66) and 0.87 (95%CI: 0.36-2.14) in the group with >30-50 years of exposure, and were 2.46 (95%CI: 0.87-6.97) and 3.75 (95%CI: 1.61-8.71) for the group with >50 years exposure, compared to the group with arsenic exposure ≤ 30 years respectively. Significant trends for Hypertension (parsenic exposure population, and significantly increases with the duration of arsenic exposure.

  12. Distributional patterns of arsenic concentrations in contaminant plumes offer clues to the source of arsenic in groundwater at landfills

    Science.gov (United States)

    Harte, Philip T.

    2015-01-01

    The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.

  13. IDENTIFYING CRITICAL CYSTEINE RESIDUES IN ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE

    Science.gov (United States)

    Arsenic (+3 oxidation state) methyltransferase (AS3MT) catalyzes methylation of inorganic arsenic to mono, di, and trimethylated arsenicals. Orthologous AS3MT genes in genomes ranging from simple echinoderm to human predict a protein with five conserved cysteine (C) residues. In ...

  14. Effect of thermal treatments on arsenic species contents in food.

    Science.gov (United States)

    Devesa, V; Vélez, D; Montoro, R

    2008-01-01

    In arsenic-endemic and other areas, food is an important path of exposure to this contaminant. Food is generally consumed in processed form, after a preservation treatment or cooking, which may alter the concentrations and chemical forms of arsenic. This article summarizes and discusses the work so far published on the effect that thermal treatment used in the cooking or processing of food, including sterilization and preservation stages, has on total arsenic and arsenic species contents. It also reviews possible transformations in arsenic species. The studies included use model systems or food products of marine or vegetable origin. Processing may cause a considerable increase or decrease in the real arsenic intake from food. For example, traditional washing and soaking of Hizikia fusiforme seaweed, which has very high inorganic arsenic contents, may reduce the contents by up to 60%. On the other hand, all the arsenic present in cooking water may be retained during boiling of rice, increasing the contents of this metalloid to significant levels from a toxicological viewpoint. This calls for modifications in arsenic risk assessment, hitherto based on analysis of the raw product. It is necessary to consider the effect of processing on total arsenic and arsenical species in order to obtain a realistic view of the risk associated with intake in arsenic-endemic and other areas.

  15. 21 CFR 862.3120 - Arsenic test system.

    Science.gov (United States)

    2010-04-01

    ... arsenic, a poisonous heavy metal, in urine, vomitus, stomach contents, nails, hair, and blood. Measurements obtained by this device are used in the diagnosis and treatment of arsenic poisoning. (b... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Arsenic test system. 862.3120 Section...

  16. The Arsenic Project: A multidisciplinary Project in Nicaragua

    NARCIS (Netherlands)

    Admiraal, M.; Couasnon, A.; Huijzenveld, T.; Hutten, R.; Schölvinck, O.; Van Veen, N.

    2015-01-01

    In Nicaragua, active research for arsenic started in 1996, after the first case of arsenic poisoning was reported in a rural community. Arsenic concentrations present in drinking water cause chronic poisoning, which depending on the exposure, lead to several life-threatening long term effects. It i

  17. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Douillet, Christelle [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Currier, Jenna [Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Saunders, Jesse [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States); Bodnar, Wanda M. [Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7431 (United States); Matoušek, Tomáš [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); Stýblo, Miroslav, E-mail: styblo@med.unc.edu [Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461 (United States)

    2013-02-15

    Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs{sup III}) or its methylated trivalent metabolites, methylarsonite (MAs{sup III}) and dimethylarsinite (DMAs{sup III}), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs{sup III}, MAs{sup III} or DMAs{sup III} inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs{sup III} and DMAs{sup III} were more potent than iAs{sup III} as GSIS inhibitors with estimated IC{sub 50} ≤ 0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs{sup III}, MAs{sup III} or DMAs{sup III} could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes. - Highlights: ► Trivalent arsenicals inhibit glucose stimulated insulin secretion by pancreatic islets. ► MAs{sup III} and DMAs{sup III} are more potent inhibitors than arsenite with IC{sub 50} ∼ 0.1 μM. ► The arsenicals have little or no effects on insulin expression in pancreatic islets. ► The inhibition of

  18. Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803.

    Directory of Open Access Journals (Sweden)

    Ana María Sánchez-Riego

    Full Text Available Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [As(III] and arsenate [As(V]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.

  19. Chronic arsenic poisoning in the rat: treatment with combined administration of succimers and an antioxidant.

    Science.gov (United States)

    Kannan, Gurusamy M; Flora, Swaran J S

    2004-05-01

    The influence of the coadministration of vitamin C or vitamin E on the efficacy of two thiol chelators, meso-2,3-dimercaptosuccinic acid (DMSA) or monoisoamyl DMSA, in counteracting chronic arsenic toxicity was investigated in rats. Vitamin C and vitamin E were only mildly effective when given alone or in combination with the above chelators in mobilizing arsenic from the target tissues. However, combined administration of vitamin C plus DMSA and vitamin E plus MiADMSA led to a more pronounced depletion of brain arsenic. The supplementation of vitamins was significantly effective in restoring inhibition of blood delta-aminolevulinic acid dehydratase (ALAD) oxidative stress in liver, kidneys, and brain as reflected by reduced levels of thiobarbituric acid reactive substance and oxidized and reduced glutathione levels. The results thus lead us to suggest that coadministration of vitamin E or vitamin C may be useful in the restoration of altered biochemical variables (particularly the effects on heme biosynthesis and oxidative injury) although it has only a limited role in depleting arsenic burden.

  20. Arsenic enrichment in mangroves, and sediments along Karachi coast, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashida Parveen

    2013-08-01

    Full Text Available Objective: To assess the arsenic (As concentration in different parts of mangroves Avicennia marina and sediments in Karachi coastal area i.e. Korangi Creek , Manora, Kakapir and Sandspit. Methods: Sites are identified for sampling owing to their vicinity to industrial activities. Sandspit is targeted for its being devoid of industries. The hydride generation atomic absorption spectrometry (HG-AAS were used to analyse the concentration of arsenic in mangrove and sediment. Results: The high concentration of As was found in roots and middle aerial part as compared to the upper part of mangroves. The concentrations of As was found higher in sediments as compared to the mangroves. There is a seasonal variation of As enrichment in mangrove and sediments as dry seasons showed higher concentration while in rainy season dilution factors may be attributed to the low level of As. The concentration variation of As in sampling sites of mangroves and sediments following the trend i.e. Korangi Creek >Manora>Kakapir>Sandspit. The statistical analysis (Two way ANOVA of data exhibited no significant difference (P>0.05 for trace metals concentrations in mangrove as well as in sediments. Conclusions: It is obvious to conclude that As should be continuously monitored in different environmental segments. The data must correlate with geographical distribution of As, quantification in different species, their solubility and bioavailability to understand the possible factors responsible for environmental pollution. The present study will be helpful to improve water management resources.

  1. Arsenic enrichment in mangroves, and sediments along Karachi coast, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Rashida Parveen; Erum Zahir; Arshad Fazal Siddiqui

    2013-01-01

    Objective: To assess the arsenic (As) concentration in different parts of mangroves Avicenniamarina and sediments in Karachi coastal area i.e. Korangi Creek , Manora, Kakapir and Sandspit. Methods: Sites are identified for sampling owing to their vicinity to industrial activities. Sandspit is targeted for its being devoid of industries. The hydride generation atomic absorption spectrometry (HG-AAS) were used to analyse the concentration of arsenic in mangrove and sediment.Results:The high concentration of As was found in roots and middle aerial part as compared to the upper part of mangroves. The concentrations of As was found higher in sediments as compared to the mangroves. There is a seasonal variation of As enrichment in mangrove and sediments as dry seasons showed higher concentration while in rainy season dilution factors may be attributed to the low level of As. The concentration variation of As in sampling sites of mangroves and sediments following the trend i.e. Korangi Creek >Manora>Kakapir>Sandspit. The statistical analysis (Two way ANOVA) of data exhibited no significant difference (P>0.05) for trace metals concentrations in mangrove as well as in sediments.Conclusions:It is obvious to conclude that As should be continuously monitored in different environmental segments. The data must correlate with geographical distribution of As, quantification in different species, their solubility and bioavailability to understand the possible factors responsible for environmental pollution. The present study will be helpful to improve water management resources.

  2. Natural arsenic contaminated diets perturb reproduction in fish.

    Science.gov (United States)

    Boyle, David; Brix, Kevin V; Amlund, Heidi; Lundebye, Anne-Katrine; Hogstrand, Christer; Bury, Nic R

    2008-07-15

    The toxicological effect of natural diets elevated in metals on reproduction in fish is poorly understood. The reproductive output of zebrafish fed the polychaete Nereis diversicolor collected from a metal-impacted estuary, Restronguet Creek, Cornwall, UK, was compared to fish fed N. diversicolor collected from a nonmetal impacted estuary, Blackwater, Essex, UK. Fish fed the metal laden N. diversicolorfor 68 days showed reduced reproductive output, characterized by reduced cumulative egg production (47%), cumulative number of spawns (30%), as well as reduced average number of eggs produced per spawn and % hatch rate. The mRNA transcript levels of the egg-yolk protein vitellogenin was also reduced 1.5 fold in the livers of female fish fed metal-laden N. diversicolor. No difference was seen between the lipid, protein, or moisture content of the two diets and no difference in growth was seen between the two fish populations. The Restronguet Creek polychaetes have elevated arsenic, cadmium, copper, zinc, lead, and silver body burdens, but the only element found to accumulate in the tissues of zebrafish fed this diet was As. The As in these N. diversicolor was found to be predominantly potentially toxic inorganic As species, 58% of total As content, which is unusual for aquatic organisms where arsenic is typically biotransformed into less toxic organoarsenical compounds. These results demonstrate that reproduction in fish is a sensitive target of exposure to a natural diet contaminated with As and this exposure route could be of significance to the health of fish populations.

  3. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    OpenAIRE

    Nachman, Keeve E.; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were colle...

  4. Exposure to Inorganic Arsenic Is Associated with Increased Mitochondrial DNA Copy Number and Longer Telomere Length in Peripheral Blood

    Science.gov (United States)

    Ameer, Syeda S.; Xu, YiYi; Engström, Karin; Li, Huiqi; Tallving, Pia; Nermell, Barbro; Boemo, Analia; Parada, Luis A.; Peñaloza, Lidia G.; Concha, Gabriela; Harari, Florencia; Vahter, Marie; Broberg, Karin

    2016-01-01

    Background: Exposure to inorganic arsenic (iAs) through drinking water causes cancer. Alterations in mitochondrial DNA copy number (mtDNAcn) and telomere length in blood have been associated with cancer risk. We elucidated if arsenic exposure alters mtDNAcn and telomere length in individuals with different arsenic metabolizing capacity. Methods: We studied two groups in the Salta province, Argentina, one in the Puna area of the Andes (N = 264, 89% females) and one in Chaco (N = 169, 75% females). We assessed arsenic exposure as the sum of arsenic metabolites [iAs, methylarsonic acid (MMA), dimethylarsinic acid (DMA)] in urine (U-As) using high-performance liquid chromatography coupled with hydride generation and inductively coupled plasma mass spectrometry. Efficiency of arsenic metabolism was expressed as percentage of urinary metabolites. MtDNAcn and telomere length were determined in blood by real-time PCR. Results: Median U-As was 196 (5–95 percentile: 21–537) μg/L in Andes and 80 (5–95 percentile: 15–1637) μg/L in Chaco. The latter study group had less-efficient metabolism, with higher %iAs and %MMA in urine compared with the Andean group. U-As was significantly associated with increased mtDNAcn (log2 transformed to improve linearity) in Chaco (β = 0.027 per 100 μg/L, p = 0.0085; adjusted for age and sex), but not in Andes (β = 0.025, p = 0.24). U-As was also associated with longer telomere length in Chaco (β = 0.016, p = 0.0066) and Andes (β = 0.0075, p = 0.029). In both populations, individuals with above median %iAs showed significantly higher mtDNAcn and telomere length compared with individuals with below median %iAs. Conclusions: Arsenic was associated with increased mtDNAcn and telomere length, particularly in individuals with less-efficient arsenic metabolism, a group who may have increased risk for arsenic-related cancer. PMID:27597942

  5. Exposure to inorganic arsenic is associated with increased mitochondrial DNA copy number and longer telomere length in peripheral blood.

    Directory of Open Access Journals (Sweden)

    Syeda Shegufta Ameer

    2016-08-01

    Full Text Available Background: Exposure to inorganic arsenic (iAs through drinking water causes cancer. Alterations in mitochondrial DNA copy number (mtDNAcn and telomere length in blood have been associated with cancer risk. We elucidated if arsenic exposure alters mtDNAcn and telomere length in individuals with different arsenic metabolizing capacity.Methods: We studied two groups in the Salta province, Argentina, one in the Puna area of the Andes (N=264, 89% females and one in Chaco (N=169, 75% females. We assessed arsenic exposure as the sum of arsenic metabolites [iAs, methylarsonic acid (MMA, dimethylarsinic acid (DMA] in urine (U-As using high-performance liquid chromatography coupled with hydride generation and inductively coupled plasma mass spectrometry. Efficiency of arsenic metabolism was expressed as percentage of urinary metabolites. MtDNAcn and telomere length were determined in blood by real-time PCR. Results: Median U-As was 196 (5 - 95 percentile: 21 - 537 µg/L in Andes and 80 (5 - 95 percentile: 15 - 1637 µg/L in Chaco. The latter study group had less-efficient metabolism, with higher %iAs and %MMA in urine compared with the Andean group. U-As was significantly associated with increased mtDNAcn (log2 transformed to improve linearity in Chaco (β=0.027 per 100 µg/L, p=0.0085; adjusted for age and sex, but not in Andes (β=0.025, p=0.24. U-As was also associated with longer telomere length in Chaco (β=0.016, p=0.0066 and Andes (β=0.0075, p=0.029. In both populations, individuals with above median %iAs showed significantly higher mtDNAcn and telomere length compared with individuals with below median %iAs. Conclusions: Arsenic was associated with increased mtDNAcn and telomere length, particularly in individuals with less-efficient arsenic metabolism, a group who may have increased risk for arsenic-related cancer.

  6. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Ya-Li [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Huang, Chao-Yuan; Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, New Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-09-15

    The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case–control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03–2.75) and 0.66 (0.48–0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas. - Highlights: • The XRCC1 399Gln/Gln genotype was significantly associated with increased OR of UC. • The XRCC1 194 Arg/Trp and Trp/Trp genotype had a significantly decreased OR of UC. • Combined effect of the XRCC1 genotypes and poor arsenic methylation capacity on

  7. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Narukawa, Tomohiro; Chiba, Koichi; Sinaviwat, Savarin; Feldmann, Jörg

    2017-01-06

    A new rapid monitoring method by means of high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) following the heat-assisted extraction was developed for measurement of total inorganic arsenic species in rice flour. As(III) and As(V) eluted at the same retention time and completely separated from organoarsenic species by an isocratic elution program on a reversed phase column. Therefore, neither ambiguous oxidation of arsenite to arsenate nor the integration of two peaks were necessary to determine directly the target analyte inorganic arsenic. Rapid injection allowed measuring 3 replicates within 6min and this combined with a quantitative extraction of all arsenic species from rice flour by a 15min HNO3-H2O2 extraction makes this the fastest laboratory based method for inorganic arsenic in rice flour.

  8. Arsenic in private well water part 3 of 3: Socioeconomic vulnerability to exposure in Maine and New Jersey.

    Science.gov (United States)

    Flanagan, Sara V; Spayd, Steven E; Procopio, Nicholas A; Marvinney, Robert G; Smith, Andrew E; Chillrud, Steven N; Braman, Stuart; Zheng, Yan

    2016-08-15

    Arsenic is a naturally occurring toxic element often concentrated in groundwater at levels unsafe for human consumption. Private well water in the United States is mostly unregulated by federal and state drinking water standards. It is the responsibility of the over 13 million U.S. households regularly depending on private wells for their water to ensure it is safe for drinking. There is a consistent graded association with health outcomes at all levels of socioeconomic status (SES) in the U.S. Differential exposure to environmental risk may be contributing to this persistent SES-health gradient. Environmental justice advocates cite overwhelming evidence that income and other SES measures are consistently inversely correlated with exposure to suboptimal environmental conditions including pollutants, toxins, and their impacts. Here we use private well household surveys from two states to investigate the association between SES and risks for arsenic exposure, examining the potentially cumulative effects of residential location, testing and treatment behavior, and psychological factors influencing behavior. We find that the distribution of natural arsenic hazard in the environment is socioeconomically random. There is no evidence that higher SES households are avoiding areas with arsenic or that lower SES groups are disproportionately residing in areas with arsenic. Instead, disparities in exposure arise from differing rates of protective action, primarily testing well water for arsenic, and secondly treating or avoiding contaminated water. We observe these SES disparities in behavior as well as in the psychological factors that are most favorable to these behaviors. Assessment of risk should not be limited to the spatial occurrence of arsenic alone. It is important that social vulnerability factors are incorporated into risk modeling and identifying priority areas for intervention, which should include strategies that specifically target socioeconomically vulnerable

  9. Traditional Practicing with Arsenic Rich Water in Fish Industries Leads to Health Hazards in West Bengal and North-Eastern States of India

    Science.gov (United States)

    Kashyap, C. A.

    2014-12-01

    The supply of good quality food is main necessity for economic and social health of urban and rural population throughout the globe. This study comes to know the severity of As in the west Bengal and north-eastern states of the India. Over the 75% large population of India lives in villages and associated with farming and its related work. West Bengal is the densest populated area of India, fish and rice is the staple food as well as in north-eastern states. For the fulfil demand of fish large population the area are used fisheries as the business. Arsenic contamination in ground water is major growing threat to worldwide drinking water resources. High As contamination in water have been reported in many parts of the world Chandrasekharam et al., 2001; Smedley and Kinniburgh, 2002; Farooq et al., 2010). In context to West Bengal and north-east states of India arsenic is main problem in the food chain. These areas are very rich in arsenic many fold higher concentrations of Arsenic than their respective WHO permissible limits have been reported in the water. Over the 36 million people in Bengal delta are at risk due to drinking of As contaminated water (Nordstrom, 2002). The highest concentration of arsenic (535 μg/L Chandrashekhar et al. 2012) was registered from Ngangkha Lawai Mamang Leikai area of Bishnupur district which is fifty fold of the WHO limit for arsenic and tenfold of Indian permissible limit. With the continuous traditional practicing (As rich water pond) and untreated arsenic rich water in fish industries leads to health hazards. A sustainable development in aquaculture should comprise of various fields including environmental, social, cultural and economic aspects. A scientific study has to be needed for the overcome on this problem and rain harvested water may be used for reduce the arsenic problems in fisheries.

  10. Knockout of arsenic (+3 oxidation state) methyltransferase results in sex-dependent changes in phosphatidylcholine metabolism in mice.

    Science.gov (United States)

    Huang, Madelyn C; Douillet, Christelle C; Stýblo, Miroslav

    2016-12-01

    Arsenic (+3 oxidation state) methyltransferase is the key enzyme in the methylation pathway for inorganic arsenic. We have recently shown that As3mt knockout (KO) has a profound effect on metabolomic profiles in mice. Phosphatidylcholine species (PCs) were the largest group of metabolites altered in both plasma and urine. The present study used targeted analysis to investigate the KO-associated changes in PC profiles in the liver, the site of PC synthesis. Results show that As3mt KO has a systemic effect on PC metabolism and that this effect is sex dependent.

  11. Purification and characterization of thiols in an arsenic hyperaccumulator under arsenic exposure.

    Science.gov (United States)

    Zhang, Weihua; Cai, Yong

    2003-12-15

    Pteris vittata (Chinese brake fern) is the first reported arsenic hyperaccumulator. To investigate the arsenic tolerance mechanism in this plant, reversed-phase HPLC with postcolumn derivatization was used to analyze the thiols induced under arsenic exposure. A major thiol in the plant leaflets was found to be responsive to arsenic exposure. The arsenic-induced compound was purified on a large scale by combining covalent chromatography and preparative reversed-phase HPLC. About 2 mg of this compound was isolated from 1 kg of fresh leaflets. The purified arsenic-induced compound was characterized using electrospray ionization mass spectrometry. A molecular ion (M + 1) of 540 and fragments were obtained, which indicated that the arsenic-induced thiol was a phytochelatin with two subunits (PC(2)). Compared to the classical methods for purification of phytochelatins, this new method is more specific, simple, and rapid and is suitable for purification of PCs in a large scale as well as sample preparation for mass spectrometry analysis.

  12. Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity.

    Science.gov (United States)

    Garla, Roobee; Ganger, Renuka; Mohanty, Biraja P; Verma, Shivcharan; Bansal, Mohinder P; Garg, Mohan L

    2016-07-29

    The major cause of toxicity of trivalent arsenicals is due to their interaction with the sulfhydryl groups in proteins. Because of its high content, Metallothionein (MT) provides one of the most favorable conditions for the binding of As(III) ions to it. MT has long been anticipated for providing resistance in case of arsenic (As) toxicity with similar mechanism as in case of cadmium toxicity. The present study investigates whether the sequestration of As ions by MT is one of the mechanisms in providing protection against acute arsenic toxicity. A rat model study on the metal stoichiometric analysis of MT1 isoform isolated from the liver of arsenic treated, untreated and zinc treated animals has been carried out using the combination of particle induced X-ray emission (PIXE) and electrospray ionisation mass spectrometry (ESI-MS). The results revealed the absence of arsenic bound MT1 in the samples isolated from arsenic treated animals. Although, both Cu and Zn ions were present in MT1 samples isolated from all the treatment groups. Moreover, only partially metallated MT1 with varying number of Zn ions were observed in all the groups. These results suggest that the role of MT during acute arsenic toxicity is different from its already established role in case of cadmium toxicity.

  13. Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population.

    Science.gov (United States)

    Chen, Hsiu-Ling; Lee, Ching-Chang; Huang, Winn-Jung; Huang, Han-Ting; Wu, Yi-Chen; Hsu, Ya-Chen; Kao, Yi-Ting

    2016-03-01

    This study assessed the total arsenic content and arsenic speciation in rice to determine the health risks associated with rice consumption in various age-gender subgroups in Taiwan. The average total arsenic levels in white rice and brown rice were 116.6 ± 39.2 and 215.5 ± 63.5 ng/g weight (n = 51 and 13), respectively. The cumulative cancer risk among males was 10.4/100,000. The highest fraction of inorganic/total arsenic content in white rice ranged from 76.9 to 88.2 % and from 81.0 to 96.5 % in brown rice. The current study found different arsenic speciation of rice in southern Taiwan, where the famous blackfoot disease has been reported compared with arsenic speciation from other Taiwan areas. Therefore, rice and other grains should be further monitored in southern Taiwan to evaluate whether arsenic contamination is well controlled in this area.

  14. Biomonitoring of Occupational Exposure to Total Arsenic and Total Mercury in Urine of Goldmine Workers in Southwestern Ghana

    Directory of Open Access Journals (Sweden)

    Rex Gyeabour Abrefah

    2011-06-01

    Full Text Available Biomonitoring of total arsenic and total mercury in the urine of goldmine workers in south-western Ghana due to occupational exposure was conducted to determine whether occupational exposure substantially contributes to their overall exposure to arsenic and mercury. The urine was collected after 2-day abstinence from sea foods by the workers and from those with no dental amalgam fillings. Total arsenic and total mercury were simultaneously determined by instrumental neutron activation analysis (INAA. After 1-hour irradiation of the urine in Ghana's miniature neutron source reactor (GHARR-1 to induce 76As and 197Hg radionuclides through nuclear reactions 75As(n, γ76As, and 196Hg(n, γ197Hg, the γ-radiation intensity of the induced 76As and 197Hg radionuclides were measured by γ-spectrometry. The validity of the INAA technique for As and Hg determination was checked by analyses of NIST SRM 3103a (As standard solution and NIST SRM 3133 (Hg standard solution, respectively. The mean mass fractions of arsenic in the urine are 6.76 µg/L ± 1.43, 7.78 µg/L ± 1.33, 8.03 µg/L ± 1.75, 10.44 µg/L ± 1.88, and 14.75 µg/L ± 1.62 for workers in offices 10 km from the mine, 2 km from the mine, 0.5 km from the mine, casual mine workers, and gold ore processing workers, respectively. The levels of arsenic in the urine are all within the 5 to 40 µg As L-1 day-1 normal range for excretion of arsenic. The observed mass fraction of As was higher in high exposure workers. The mean mass fraction of Hg in the urine are 0.36 µg/L ± 0.11, 0.47 µg/L ± 0.12, 0.51 µg/L ± 0.16, 0.57 µg/L ± 0.14, and 0.56 µg/L ± 0.21 for workers in offices 10 km from the mine, 2 km from the mine, 0.5 km from the mine, casual mine workers, and gold ore processing workers, respectively. The high Hg exposed workers engage in small scale gold mining using mercury. The exposure of the different categories of workers to both total arsenic and total mercury are safe.

  15. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Directory of Open Access Journals (Sweden)

    Yongfang Li

    2016-01-01

    Full Text Available In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members. Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  16. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household.

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-16

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family's residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure.

  17. Chronic Arsenic Poisoning Probably Caused by Arsenic-Based Pesticides: Findings from an Investigation Study of a Household

    Science.gov (United States)

    Li, Yongfang; Ye, Feng; Wang, Anwei; Wang, Da; Yang, Boyi; Zheng, Quanmei; Sun, Guifan; Gao, Xinghua

    2016-01-01

    In addition to naturally occurring arsenic, man-made arsenic-based compounds are other sources of arsenic exposure. In 2013, our group identified 12 suspected arsenicosis patients in a household (32 living members). Of them, eight members were diagnosed with skin cancer. Interestingly, all of these patients had lived in the household prior to 1989. An investigation revealed that approximately 2 tons of arsenic-based pesticides had been previously placed near a well that had supplied drinking water to the family from 1973 to 1989. The current arsenic level in the well water was 620 μg/L. No other high arsenic wells were found near the family’s residence. Based on these findings, it is possible to infer that the skin lesions exhibited by these family members were caused by long-term exposure to well water contaminated with arsenic-based pesticides. Additionally, biochemical analysis showed that the individuals exposed to arsenic had higher levels of aspartate aminotransferase and γ-glutamyl transpeptidase than those who were not exposed. These findings might indicate the presence of liver dysfunction in the arsenic-exposed individuals. This report elucidates the effects of arsenical compounds on the occurrence of high levels of arsenic in the environment and emphasizes the severe human health impact of arsenic exposure. PMID:26784217

  18. Urinary arsenic speciation and its correlation with 8-OHdG in Chinese residents exposed to arsenic through coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.; Pi, J.B.; Li, B.; Xu, Y.Y.; Jin, Y.P.; Sun, G.F. [China Medical University, Shenyang (China). Dept. for Occupational & Environmental Health

    2008-10-15

    In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

  19. Occurrence of arsenic contamination in Canada: sources, behavior and distribution.

    Science.gov (United States)

    Wang, Suiling; Mulligan, Catherine N

    2006-08-01

    Recently there has been increasing anxieties concerning arsenic related problems. Occurrence of arsenic contamination has been reported worldwide. In Canada, the main natural arsenic sources are weathering and erosion of arsenic-containing rocks and soil, while tailings from historic and recent gold mine operations and wood preservative facilities are the principal anthropogenic sources. Across Canada, the 24-h average concentration of arsenic in the atmosphere is generally less than 0.3 microg/m3. Arsenic concentrations in natural uncontaminated soil and sediments range from 4 to 150 mg/kg. In uncontaminated surface and ground waters, the arsenic concentration ranges from 0.001 to 0.005 mg/L. As a result of anthropogenic inputs, elevated arsenic levels, above ten to thousand times the Interim Maximum Acceptable Concentration (IMAC), have been reported in air, soil and sediment, surface water and groundwater, and biota in several regions. Most arsenic is of toxic inorganic forms. It is critical to recognize that such contamination imposes serious harmful effects on various aquatic and terrestrial organisms and human health ultimately. Serious incidences of acute and chronic arsenic poisonings have been revealed. Through examination of the available literature, screening and selecting existing data, this paper provides an analysis of the currently available information on recognized problem areas, and an overview of current knowledge of the principal hydrogeochemical processes of arsenic transportation and transformation. However, a more detailed understanding of local sources of arsenic and mechanisms of arsenic release is required. More extensive studies will be required for building practical guidance on avoiding and reducing arsenic contamination. Bioremediation and hyperaccumulation are emerging innovative technologies for the remediation of arsenic contaminated sites. Natural attenuation may be utilized as a potential in situ remedial option. Further

  20. Groundwater arsenic contamination in Bangladesh-21 Years of research.

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Mukherjee, Amitava; Alauddin, Mohammad; Hassan, Manzurul; Dutta, Rathindra Nath; Pati, Shymapada; Mukherjee, Subhash Chandra; Roy, Shibtosh; Quamruzzman, Quazi; Rahman, Mahmuder; Morshed, Salim; Islam, Tanzima; Sorif, Shaharir; Selim, Md; Islam, Md Razaul; Hossain, Md Monower

    2015-01-01

    Department of Public Health Engineering (DPHE), Bangladesh first identified their groundwater arsenic contamination in 1993. But before the international arsenic conference in Dhaka in February 1998, the problem was not widely accepted. Even in the international arsenic conference in West-Bengal, India in February, 1995, representatives of international agencies in Bangladesh and Bangladesh government attended the conference but they denied the groundwater arsenic contamination in Bangladesh. School of Environmental Studies (SOES), Jadavpur University, Kolkata, India first identified arsenic patient in Bangladesh in 1992 and informed WHO, UNICEF of Bangladesh and Govt. of Bangladesh from April 1994 to August 1995. British Geological Survey (BGS) dug hand tube-wells in Bangladesh in 1980s and early 1990s but they did not test the water for arsenic. Again BGS came back to Bangladesh in 1992 to assess the quality of the water of the tube-wells they installed but they still did not test for arsenic when groundwater arsenic contamination and its health effects in West Bengal in Bengal delta was already published in WHO Bulletin in 1988. From December 1996, SOES in collaboration with Dhaka Community Hospital (DCH), Bangladesh started analyzing hand tube-wells for arsenic from all 64 districts in four geomorphologic regions of Bangladesh. So far over 54,000 tube-well water samples had been analyzed by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). From SOES water analysis data at present we could assess status of arsenic groundwater contamination in four geo-morphological regions of Bangladesh and location of possible arsenic safe groundwater. SOES and DCH also made some preliminary work with their medical team to identify patients suffering from arsenic related diseases. SOES further analyzed few thousands biological samples (hair, nail, urine and skin scales) and foodstuffs for arsenic to know arsenic body burden and people sub

  1. Arsenic Exposure and the Induction of Human Cancers

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.

  2. ARSENIC DEGRADATION BY Pseudomonas aeruginosa FOR WATER BIOREMEDIATION. PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    Esther E. Pellizzari

    2015-03-01

    Full Text Available The aim of this study was to investigate the arsenic resistance in pure cultivations of Pseudomonas aeruginosa isolated from Presidencia Roque Sáenz Peña groundwater (Chaco province, and evaluate the possibility of its use to remove arsenic from groundwater. Strains were immobilized in natural stone and cultivated in salts broth and 1 mgAs/L. The arsenic resistance and biofilm formation were observed, obtaining interaction between cells, rock and arsenic. Arsenic removal was evaluated during 3 months and its final percentage of the experiment was 60%.

  3. Resistance mechanisms to arsenicals and antimonials.

    Science.gov (United States)

    Rosen, B P

    1995-01-01

    Salts and organic derivatives of arsenic and antimony are quite toxic. Living organisms have adapted to this toxicity by the evolution of resistance mechanisms. Both prokaryotic and eukaryotic cells develop resistance when exposed to arsenicals or antimonials. In the case of bacteria resistance is conferred by plasmid-encoded arsenical resistance (ars) operons. The genes and gene products of the ars operon of the clinically-isolated conjugative R-factor R773 have been identified and their mechanism of action elucidated. The operon encodes an ATP-driven pump that extrudes arsenite and antimonite from the cells. The lowering of their intracellular concentration results in resistance. Arsenate resistance results from the action of the plasmid-encoded arsenate reductase that reduces arsenate to arsenite, which is then pumped out of the cell.

  4. Speciation of arsenic in sulfidic waters

    Directory of Open Access Journals (Sweden)

    Ford Robert G

    2003-03-01

    Full Text Available Formation constants for thioarsenite species have been determined in dilute solutions at 25°C, ΣH2S from 10-7.5 to 10-3.0 M, ΣAs from 10-5.6 to 10-4.8 M, and pH 7 and 10. The principal inorganic arsenic species in anoxic aquatic systems are arsenite, As(OH30, and a mononuclear thioarsenite with an S/As ratio of 3:1. Thioarsenic species with S/As ratios of 1 : 1,2 : 1, and 4 : 1 are lesser components in sulfidic solutions that might be encountered in natural aquatic environments. Thioarsenites dominate arsenic speciation at sulfide concentrations > 10-4.3 M at neutral pH. Conversion from neutral As(OH30 to anionic thioarsenite species may regulate the transport and fate of arsenic in sulfate-reducing environments by governing sorption and mineral precipitation reactions.

  5. Current developments in toxicological research on arsenic.

    Science.gov (United States)

    Bolt, Hermann M

    2013-01-01

    There is a plethora of recent publications on all aspects relevant to the toxicology of arsenic (As). Over centuries exposures to arsenic continue to be a major public health problem in many countries. In particular, the occurrence of high As concentrations in groundwater of Southeast Asia receives now much attention. Therefore, arsenic is a high-priority matter for toxicological research. Key exposure to As are (traditional) medicines, combustion of As-rich coal, presence of As in groundwater, and pollution due to mining activities. As-induced cardiovascular disorders and carcinogenesis present themselves as a major research focus. The high priority of this issue is now recognized politically in a number of countries, research funds have been made available. Also experimental research on toxicokinetics and toxicodynamics and on modes of toxic action is moving very rapidly. The matter is of high regulatory concern, and effective preventive measures are required in a number of countries.

  6. Family aggregation in a population of chronic arsenic poisoning associated with high arsenic coal burning

    Institute of Scientific and Technical Information of China (English)

    LinGF; ChenJG

    2002-01-01

    About 2600 cases of chronic arsenic poisoning (CAP) in Southwest China-Guizhou Povince represent a unique case of CAP in the world associated with indoor high As coal burning.An epidemiological investigation in 4 clans (694 subjects,male 299,female 395) was launched in one Cun(village) in JL area(21000 residents,about 2000 CAP cases).(1)Clan G(possible Hanized Yi origin).The ancestors,a couple settled here in Qing dynasty.CAP prevalence was 43.3%(93/215).It was found that in 9 of 25 brotherhood groups all the members suffered with CAP.(2) An non-consanguinous branch of family G.The ancestor,a boy was adopted by family G in 1890s.The incidence rate was 20.8%(11/53) which was lower than that in clan G(consanguineous)(P=0.00261,r=0.344),though both clans have been living in the same family for 4 generations.(3)Clan B(Han origin).The ancestor moved the family from Nanjing in Ming dynasty.The CAP prevalence is 45.5%(75/165).(4)Clan P(ethnic Miao).The CAP prevalence is 3.9(9/232),far less than other ethnic clans,for example,less than clan G (consanguineous)(P=3.706E=23,r=0.052944).The observation suggests possible family aggregation of CAP in high As coal using area.further work is required.

  7. Arsenic in the environment: enrichments in the Slovenian soils

    Directory of Open Access Journals (Sweden)

    Mateja Gosar

    2005-12-01

    Full Text Available Arsenic, a toxic element with metalloid properties, is found in detectable concentrations in environmental samples. In nature it is enriched in metal (sulphide ore deposits, mainly as arsenides of Cu, Ni and Fe. Arsenic compounds are used mainly in agricultureand forestry as pesticides and herbicides. The ecosystem can be contaminated with arsenic via both natural and anthropogenic sources. Uses of arsenic contaminated water present so far the greatest health hazard. Occurrences of mining related arsenic problems havealso been recorded in many parts of the world.The impact of mining and metallurgic industry with regard to arsenic contents in soils in some potentially contaminated areas in Slovenia is discussed. Enriched contents of arsenic were found in Mežica. Arsenic correlates very well with lead, zinc and other heavymetals which are enriched as a result of long lasting lead production in the area. Also in Celje and Jesenice arsenic has the same distribution pattern as other anthropogenically introduced pollutants. In Idrija there are some slightly arsenic enriched areas, but there is no correlation with mercury, so the origin of arsenic in not clear yet.

  8. The Case for Visual Analytics of Arsenic Concentrations in Foods

    Directory of Open Access Journals (Sweden)

    Omotayo R. Awofolu

    2010-04-01

    Full Text Available Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i metabolism of arsenic in the human body; (ii arsenic concentrations in various foods; (ii factors affecting arsenic uptake in plants; (ii introduction to visual analytics; and (iv benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.

  9. Establishment of Groundwater Arsenic Potential Distribution and Discrimination in Taiwan

    Science.gov (United States)

    Tsai, Kuo Sheng; Chen, Yu Ying; Chung Liu, Chih; Lin, Chien Wen

    2016-04-01

    According to the last 10 years groundwater monitoring data in Taiwan, Arsenic concentration increase rapidly in some areas, similar to Bengal and India, the main source of Arsenic-polluted groundwater is geological sediments, through reducing reactions. There are many researches indicate that high concentration of Arsenic in groundwater poses the risk to water safety, for example, the farm lands irrigation water contains Arsenic cause the concentration of Arsenic increase in soil and crops. Based on the management of water usage instead of remediation in the situation of insufficient water. Taiwan EPA has been developed the procedures of Arsenic contamination potential area establishment and source discriminated process. Taiwan EPA use the procedures to determine the management of using groundwater, and the proposing usage of Arsenic groundwater accordance with different objects. Agencies could cooperate with the water quality standard or water needs, studying appropriate water purification methods and the groundwater depth, water consumption, thus achieve the goal of water safety and environmental protection, as a reference of policy to control total Arsenic concentration in groundwater. Keywords: Arsenic; Distribution; Discrimination; Pollution potential area of Arsenic; Origin evaluation of groundwater Arsenic

  10. ARSENIC CONTAMINATION IN DRINKING WATER: AN ASSESSMENT FOR TURKEY

    Directory of Open Access Journals (Sweden)

    Meltem BİLİCİ ÇALIŞKAN

    2009-01-01

    Full Text Available Arsenic is one of the most abundant elements in the earth's crust and classified as a non-metal or a metalloid. Arsenic is toxic and carcinogen and in the environment occurs from both natural and anthropogenic sources. In the aqueous environment inorganic arsenic appears commonly in forms of arsenite (As(III and arsenate (As(V. pH, redox potential, and the presence of complexing ions such as ions of sulfur, iron, and calcium determine the arsenic valence and speciation. Because of the naturally occurring arsenic contamination in groundwater in many parts of the world many people have faced with risk of arsenic poisoning. In Turkey especially in the west regions, natural water sources contained much higher levels of arsenic than maximum contaminated level (MCL set (10 ?g/L were determined. In this study, arsenic problem and its reasons in Turkey were investigated. For this purpose, arsenic analyses were carried out and higher levels of arsenic than MCL was detected in some regions of Izmir. High levels of arsenic in these natural waters were considered to be associated with the dissolution of some minerals and rock formation.

  11. Coping with arsenic-based pesticides on Dine (Navajo) textiles

    Science.gov (United States)

    Anderson, Jae R.

    Arsenic-based pesticide residues have been detected on Arizona State Museum's (ASM) Dine (Navajo) textile collection using a handheld portable X-ray (pXRF) spectrometer. The removal of this toxic pesticide from historic textiles in museums collections is necessary to reduce potential health risks to Native American communities, museum professionals, and visitors. The research objective was divided into three interconnected stages: (1) empirically calibrate the pXRF instrument for arsenic contaminated cotton and wool textiles; (2) engineer an aqueous washing treatment exploring the effects of time, temperature, agitation, and pH conditions to efficiently remove arsenic from wool textiles while minimizing damage to the structure and properties of the textile; (3) demonstrate the devised aqueous washing treatment method on three historic Navajo textiles known to have arsenic-based pesticide residues. The preliminary results removed 96% of arsenic from a high arsenic concentration (~1000 ppm) textile opposed to minimal change for low arsenic concentration textiles (<100 ppm).

  12. Arsenic detection in water: YPO4:Eu3+ nanoparticles

    Science.gov (United States)

    Ghosh, Debasish; Luwang, Meitram Niraj

    2015-12-01

    This work reports on the novel technique of detection of arsenic in aqueous solution utilising the luminescence properties of lanthanide doped nanomaterials. Eu3+ (5%) doped YPO4nanorodswere utilised for the said experiment. Co-precipitation method was used for the synthesis of the materials and characterised them with different instrumental techniques like X-ray diffraction (XRD), Infra-red (IR), UV-absorption, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and photoluminescence studies. This nanoparticle can adsorb both arsenic and arsenious acids. We studied the effect of arsenic adsorption on the luminescence behaviour of the nanoparticles. Arsenic acid enhanced the luminescence intensity whereas arsenious acid quenched the luminescence. This luminescence enhancement or quenching is related with arsenic concentration. This relation of luminescence property with concentration of arsenic can be used to detect arsenic in industrial waste.

  13. Thermodynamic Modeling of Arsenic in Copper Smelting Processes

    Science.gov (United States)

    Chen, Chunlin; Zhang, Ling; Jahanshahi, Sharif

    2010-12-01

    Published data on the activity coefficients of arsenic in liquid copper, matte and, slag have been reviewed, assessed, and used in the development of thermodynamic databases for solution models of melts. The databases were validated against the literature data on the equilibrium distribution of arsenic between the matte and the slag. The models and databases were used in investigating the effects of matte grade, slag chemistry, SO2 partial pressure, arsenic loading, and temperature on the equilibrium distribution of arsenic between the melts and gas phase during copper smelting and converting. The results obtained show that the continuous smelting processes operates close to equilibrium between condensed phases with most arsenic reporting to the gas phase. A comparison of the batch and continuous converting processes showed a considerable difference with respect to the elimination of the arsenic from condensed phases. These results indicate batch processes to be more efficient in the removal of arsenic through the gas stream.

  14. Arsenic: a beneficial therapeutic poison - a historical overview.

    Science.gov (United States)

    Thomas, Xavier; Troncy, Jacques

    2009-06-01

    Arsenicals have been used since ancient Greek and Roman civilizations and in the Far East as part of traditional Chinese medicine. In Western countries, they became a therapeutic mainstay for various ailments and malignancies in the 19th and early 20th centuries. Fowler's potassium bicarbonate-based solution of arsenic trioxide (As2O3)solution was the main treatment of chronic myeloid leukaemia until the 1930s. After a decline in the use of arsenic during the mid-20th century, arsenic trioxide was reintroduced as an anticancer agent after reports emerged from China of the success of an arsenic trioxide-containing herbal mixture for the treatment of acute promyelocytic leukaemia. Arsenic trioxide was first purified and used in controlled studies in China in the 1970s.Subsequently, randomised clinical trials performed in the United States led to FDA approval of arsenic trioxide in the treatment of patients with relapsed or refractory acute promyelocytic leukaemia.

  15. Method development for arsenic analysis by modification in spectrophotometric technique

    Directory of Open Access Journals (Sweden)

    M. A. Tahir

    2012-01-01

    Full Text Available Arsenic is a non-metallic constituent, present naturally in groundwater due to some minerals and rocks. Arsenic is not geologically uncommon and occurs in natural water as arsenate and arsenite. Additionally, arsenic may occur from industrial discharges or insecticide application. World Health Organization (WHO and Pakistan Standard Quality Control Authority have recommended a permissible limit of 10 ppb for arsenic in drinking water. Arsenic at lower concentrations can be determined in water by using high tech instruments like the Atomic Absorption Spectrometer (hydride generation. Because arsenic concentration at low limits of 1 ppb can not be determined easily with simple spectrophotometric technique, the spectrophotometric technique using silver diethyldithiocarbamate was modified to achieve better results, up to the extent of 1 ppb arsenic concentration.

  16. Induction of Human Squamous Cell-Type Carcinomas by Arsenic

    Directory of Open Access Journals (Sweden)

    Victor D. Martinez

    2011-01-01

    Full Text Available Arsenic is a potent human carcinogen. Around one hundred million people worldwide have potentially been exposed to this metalloid at concentrations considered unsafe. Exposure occurs generally through drinking water from natural geological sources, making it difficult to control this contamination. Arsenic biotransformation is suspected to have a role in arsenic-related health effects ranging from acute toxicities to development of malignancies associated with chronic exposure. It has been demonstrated that arsenic exhibits preference for induction of squamous cell carcinomas in the human, especially skin and lung cancer. Interestingly, keratins emerge as a relevant factor in this arsenic-related squamous cell-type preference. Additionally, both genomic and epigenomic alterations have been associated with arsenic-driven neoplastic process. Some of these aberrations, as well as changes in other factors such as keratins, could explain the association between arsenic and squamous cell carcinomas in humans.

  17. A global health problem caused by arsenic from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Ng, J.C.; Wang, J.P.; Shraim, A. [University of Queensland, Brisbane, Qld. (Australia). National Research Center for Environmental Toxicology

    2003-09-01

    Arsenic is a carcinogen to both humans and animals. Arsenicals have been associated with cancers of the skin, lung, and bladder. Clinical manifestations of chronic arsenic poisoning include non-cancer end point of hyper- and hypo-pigmentation, keratosis, hypertension, cardiovascular diseases and diabetes. Epidemiological evidence indicates that arsenic concentration exceeding 50 {mu}g l{sup -1} in the drinking water is not public health protective. The current WHO recommended guideline value for arsenic in drinking water is 10 {mu}g l{sup -1}, whereas many developing countries are still having a value of 50 {mu}g 1{sup -1}. It has been estimated that tens of millions of people are at risk exposing to excessive levels of arsenic from both contaminated water and arsenic-bearing coal from natural sources. The global health implication and possible intervention strategies were also discussed in this review article.

  18. Arsenic species and chemistry in groundwater of southeast Michigan

    Science.gov (United States)

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2002-01-01

    Groundwater samples, taken from 73 wells in 10 counties of southeast Michigan in 1997 had arsenic concentrations in the range of 0.5 to 278 ??g/l, the average being 29 ??g/l. About 12% of these wells had arsenic concentrations that exceeded the current USEPA's maximum contaminant level of 50 ??g/l. Most (53-98%) of the arsenic detected was arsenite [As(III)] and other observations supported the arsenic species distribution (low redox potential and DO). In shallow groundwater (15 m), the concentration of arsenic is possibly controlled by reductive dissolution of arsenic-rich iron hydroxide/oxyhydroxide and dissolution of arsenic sulfide minerals. ?? 2002 Elsevier Science Ltd. All rights reserved.

  19. Arsenic in the soils of Zimapán, Mexico.

    Science.gov (United States)

    Ongley, Lois K; Sherman, Leslie; Armienta, Aurora; Concilio, Amy; Salinas, Carrie Ferguson

    2007-02-01

    Arsenic concentrations of 73 soil samples collected in the semi-arid Zimapán Valley range from 4 to 14 700 mg As kg(-1). Soil arsenic concentrations decrease with distance from mines and tailings and slag heaps and exceed 400 mg kg(-1) only within 500 m of these arsenic sources. Soil arsenic concentrations correlate positively with Cu, Pb, and Zn concentrations, suggesting a strong association with ore minerals known to exist in the region. Some As was associated with Fe and Mn oxyhydroxides, this association is less for contaminated than for uncontaminated samples. Very little As was found in the mobile water-soluble or exchangeable fractions. The soils are not arsenic contaminated at depths greater than 100 cm below the surface. Although much of the arsenic in the soils is associated with relatively immobile solid phases, this represents a long-term source of arsenic to the environment.

  20. Biosensors for Inorganic and Organic Arsenicals

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2014-11-01

    Full Text Available Arsenic is a natural environmental contaminant to which humans are routinely exposed and is strongly associated with human health problems, including cancer, cardiovascular and neurological diseases. To date, a number of biosensors for the detection of arsenic involving the coupling of biological engineering and electrochemical techniques has been developed. The properties of whole-cell bacterial or cell-free biosensors are summarized in the present review with emphasis on their sensitivity and selectivity. Their limitations and future challenges are highlighted.

  1. Removal of Arsenic from Drinking Water by Adsorption and Coagulation

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Hara, J.; Takahashi, S.

    2013-12-01

    Removal of arsenic from drinking water has been an important issue worldwide, which has attracted greater attentions in recent years especially for supplying safe drinking water in developing countries. Although many kinds of treatment approaches that are available or applicable both in principle and practice, such as adsorption, coagulation, membrane filtration, ion exchange, biological process, electrocoagulation and so on, the first 2 approaches (i.e., adsorption and coagulation) are most promising due to the low-cost, high-efficiency, simplicity of treating systems, and thus can be practically used in developing countries. In this study, a literature survey on water quality in Bangladesh was performed to understand the ranges of arsenic concentration and pH of groundwater in Bangladesh. A series of tests were then organized and performed to investigate the effects of arsenic concentration, arsenic forms, pH, chemical compositions of the materials used for adsorption and coagulation, particle size distribution and treatment time on quality of treated water. The experimental results obtained in the study illustrated that both adsorption and coagulation can be used to effectively reduce the concentrations of either arsenic (V) or arsenic (III) from the contaminated water. Coagulation of arsenic with a magnesium-based material developed in this study can be very effective to remove arsenic, especially arsenic (V), from contaminated water with a concentration of 10 ppm to an undetectable level of 0.002 ppm by ICP analyses. Compared to arsenic (III), arsenic (V) is easier to be removed. The materials used for adsorption and coagulation in this study can remove arsenic (V) up to 9 mg/g and 6 mg/g, and arsenic (III) up to 4 mg/g and 3 mg/g, respectively, depending on test conditions and compositions of the materials being used. The control of pH during treatment can be a challenging technical issue for developing both adsorbent and coagulant. Keywords: Water Treatment

  2. Arsenic speciation in Chinese Herbal Medicines and human health implication for inorganic arsenic.

    Science.gov (United States)

    Liu, Xiao-Juan; Zhao, Quan-Li; Sun, Guo-Xin; Williams, Paul; Lu, Xiu-Jun; Cai, Jing-Zhu; Liu, Wen-Ju

    2013-01-01

    Rice and drinking water are recognized as the dominant sources of arsenic (As) for human intake, while little is known about As accumulation and speciation in Chinese Herbal Medicines (CHMs), which have been available for many hundreds of years for the treatment of diseases in both eastern and western cultures. Inorganic arsenic was the predominant species in all of CHMs samples. The levels of inorganic arsenic in CHMs from fields and markets or pharmacies ranged from 63 to 550 ng/g with a mean of 208 ng/g and 94 to 8683 ng/g with a mean of 1092 ng/g, respectively. The highest concentration was found in the Chrysanthemum from pharmacies. It indicates that the risk of inorganic As in CHMs to human health is higher in medicines from markets or pharmacies than that collected directly from fields. Some CHMs may make a considerable contribution to the human intake of inorganic arsenic.

  3. Outbreak of chronic arsenic poisoning among retired workers from an arsenic mine in Japan.

    Science.gov (United States)

    Ishinishi, N; Kodama, Y; Nobutomo, K; Inamasu, T; Kunitake, E; Suenaga, Y

    1977-01-01

    Retired former workers of Matsuo Arsenic Mine of Miyazaki prefecture in Japan were subjected to extensive medical examination. The number of retired workers subjected to examination were 61 of 208 workers who were engaged in the works of the mine and were tracked down by the work rolls. These workers left the mine more than 15 years prior to the time of the examination. The main works in the mine were classified as mining, dressing of ores, refining, and clerical work. Several findings such as arsenodermatitis, depigmentation, performation of nasal septum, hyposmia, anosmia, and peripheral nervous disturbance attributed to exposure to arsenic were observed in 9 of 21 roasters who often worked in the arsenic kitchen. No characteristic findings of arsenic poisoning, that is, gastrointestinal disturbance, disorder of the cardiovascular system, hematopoietic disorders, or liver disturbance were observed in the retired workers. Another notable finding was that 8 cases diagnosed as pneumoconiosis were found in 18 miners. PMID:908287

  4. Arsenic concentrations, related environmental factors, and the predicted probability of elevated arsenic in groundwater in Pennsylvania

    Science.gov (United States)

    Gross, Eliza L.; Low, Dennis J.

    2013-01-01

    Analytical results for arsenic in water samples from 5,023 wells obtained during 1969–2007 across Pennsylvania were compiled and related to other associated groundwater-quality and environmental factors and used to predict the probability of elevated arsenic concentrations, defined as greater than or equal to 4.0 micrograms per liter (µg/L), in groundwater. Arsenic concentrations of 4.0 µg/L or greater (elevated concentrations) were detected in 18 percent of samples across Pennsylvania; 8 percent of samples had concentrations that equaled or exceeded the U.S. Environmental Protection Agency’s drinking-water maximum contaminant level of 10.0 µg/L. The highest arsenic concentration was 490.0 µg/L.

  5. Whole-house arsenic water treatment provided more effective arsenic exposure reduction than point-of-use water treatment at New Jersey homes with arsenic in well water

    Science.gov (United States)

    Spayd, Steven E.; Robson, Mark G.; Buckley, Brian T.

    2014-01-01

    A comparison of the effectiveness of whole house (point-of-entry) and point-of-use arsenic water treatment systems in reducing arsenic exposure from well water was conducted. The non-randomized observational study recruited 49 subjects having elevated arsenic in their residential home well water in New Jersey. The subjects obtained either point-of-entry or point-of-use arsenic water treatment. Prior ingestion exposure to arsenic in well water was calculated by measuring arsenic concentrations in the well water and obtaining water-use histories for each subject, including years of residence with the current well and amount of water consumed from the well per day. A series of urine samples were collected from the subjects, some starting before water treatment was installed and continuing for at least nine months after treatment had begun. Urine samples were analyzed and speciated for inorganic-related arsenic concentrations. A two-phase clearance of inorganic-related arsenic from urine and the likelihood of a significant body burden from chronic exposure to arsenic in drinking water were identified. After nine months of water treatment the adjusted mean of the urinary inorganic-related arsenic concentrations were significantly lower (p < 0.0005) in the point-of-entry treatment group (2.5 μg/g creatinine) than in the point-of-use treatment group (7.2 μg/g creatinine). The results suggest that whole house arsenic water treatment systems provide a more effective reduction of arsenic exposure from well water than that obtained by point-of-use treatment. PMID:24975493

  6. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    丁振华; 郑宝山; 张杰; H.; E.; Belkin; R.; B.; Finkelman; 赵峰华; 周代兴; 周运书; 陈朝刚

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer ( EMPA) , scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX) , X-ray diffraction analysis (XRD) , low temperature ashing (LTA) , transmission electron microscopy (TEM) , X-ray absorption fine structure (XAFS) , instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+ , combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  7. Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258.

    OpenAIRE

    Bröer, S; Ji, G.; Bröer, A; Silver, S

    1993-01-01

    The arsenic resistance operon of Staphylococcus aureus plasmid pI258 determined lowered net cellular uptake of 73As by an active efflux mechanism. Arsenite was exported from the cells; intracellular arsenate was first reduced to arsenite and then transported out of the cells. Resistant cells showed lower accumulation of 73As originating from both arsenate and arsenite. Active efflux from cells loaded with arsenite required the presence of the plasmid-determined arsB gene. Efflux of arsenic or...

  8. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    OpenAIRE

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hai...

  9. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nandita [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India); Ma, Lena Q., E-mail: lqma@ufl.ed [Soil and Water Science Department, University of Florida, Gainesville, Fl 32611-0290 (United States); Vu, Joseph C. [Chemistry Research Unit, CMAVE, USDA-ARS, Gainesville, FL 32608-1069 and Agronomy Department, University of Florida, Gainesville, FL 32611-0500 (United States); Raj, Anshita [Eco-Auditing group, National Botanical Research Institute, Rana Pratap Marg, Lucknow 226 001 (India)

    2009-08-15

    This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic - hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 muM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO{sub 3}{sup -} concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO{sub 3}{sup -} uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic. - Arsenic reduced the activity of nitrate and nitrite reductase more in Pteris ensiformis than Pteris vittata.

  10. Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni.

    Science.gov (United States)

    Wang, Liping; Jeon, Byeonghwa; Sahin, Orhan; Zhang, Qijing

    2009-08-01

    Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility of Campylobacter spp. to other antimicrobials. In this study, we identified a four-gene operon that contributes to arsenic resistance in Campylobacter. This operon encodes a putative membrane permease (ArsP), a transcriptional repressor (ArsR), an arsenate reductase (ArsC), and an efflux protein (Acr3). PCR analysis of various clinical C. jejuni isolates indicated a significant association of this operon with elevated resistance to arsenite and arsenate. Gene-specific mutagenesis confirmed the role of the ars operon in conferring arsenic resistance. It was further shown that this operon is subject to regulation by ArsR, which directly binds to the ars promoter and inhibits the transcription of the operon. Arsenite inhibits the binding of ArsR to the ars promoter DNA and induces the expression of the ars genes. Mutation of the ars genes did not affect the susceptibility of C. jejuni to commonly used antibiotics. These results identify the ars operon as an important mechanism for arsenic resistance and sensing in Campylobacter.

  11. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  12. The Role of Oxidative Stress in Gastrointestinal Tract Tissues Induced by Arsenic Toxicity in Cocks.

    Science.gov (United States)

    Guo, Ying; Zhao, Panpan; Guo, Guangyang; Hu, Zhibo; Tian, Li; Zhang, Kexin; Zhang, Wen; Xing, Mingwei

    2015-12-01

    Arsenic (As) is a widely distributed trace element which is known to be associated with numerous adverse effects on human beings and animals. Arsenic trioxide (As2O3) is an inorganic arsenical-containing toxic compound. The effect of excessive amounts of As2O3 exposure on gastrointestinal tract tissue damage in cocks is still unknown. This study was conducted to investigate the effect of As2O3 exposure on gastrointestinal tract tissue damage in cocks. In total, 72 1-day-old male Hyline cocks were randomly divided into four groups and fed either a commercial diet or an As2O3 supplement diet containing 7.5, 15, and 30 mg/kg As2O3. The experiment lasted for 90 days and gastrointestinal tract tissue samples (gizzard, glandular stomach, duodenum, jejunum, ileum, cecum, and rectum) were collected at 30, 60, and 90 days. Catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) activities; malondialdehyde (MDA) contents; and hydroxyl radical (OH·)-mediated inhibition were examined. Furthermore, the results demonstrated that MDA content in the gastrointestinal tract was increased, while the activities of CAT, GSH, and GSH-Px and the ability to resist OH· was decreased in the As2O3 treatment groups. Extensive damage was observed in the gastrointestinal tract. These findings indicated that As2O3 exposure caused oxidative damage in the gastrointestinal tract of cocks due to alterations in antioxidant enzyme activities and elevation of free radicals.

  13. Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Pajuelo, Eloisa [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain); Rodriguez-Llorente, Ignacio D. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)], E-mail: irodri@us.es; Dary, Mohammed; Palomares, Antonio J. [Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville (Spain)

    2008-07-15

    Recently, the Rhizobium-legume symbiotic interaction has been proposed as an interesting tool in bioremediation. However, little is known about the effect of most common contaminants on this process. The phytotoxic effects of arsenic on nodulation of Medicago sativa have been examined in vitro using the highly arsenic resistant and symbiotically effective Sinorhizobium sp. strain MA11. The bacteria were able to grow on plates containing As concentrations as high as 10 mM. Nevertheless, as little as 25-35 {mu}M arsenite produced a 75% decrease in the total number of nodules, due to a 90% reduction in the number of rhizobial infections, as could be determined using the strain MA11 carrying a lacZ reporter gene. This effect was associated to root hair damage and a shorter infective root zone. However, once nodulation was established nodule development seemed to continue normally, although earlier senescence could be observed in nodules of arsenic-grown plants. - First steps of nodulation of alfalfa, in particular infection thread formation, are more sensitive to As than nitrogen fixation due to plant effects.

  14. Sequential extraction of inorganic arsenic compounds and methyl arsenate in human urine using mixed-mode monolithic silica spin column coupled with gas chromatography-mass spectrometry.

    Science.gov (United States)

    Namera, Akira; Takeuchi, Akito; Saito, Takeshi; Miyazaki, Shota; Oikawa, Hiroshi; Saruwatari, Tatsuro; Nagao, Masataka

    2012-09-01

    A sequential analytical method was developed for the detection of arsenite, arsenate, and methylarsenate in human urine by gas chromatography-mass spectrometry (GC-MS). The combination of a derivatization of trivalent arsenic compounds by 2,3-dithio-1-propanol (British antilewisite; BAL) and a reduction of pentavalent arsenic compounds (arsenate and methylarsenate) were accomplished to carry out the analysis of arsenic compounds in urine. The arsenic derivatives obtained using BAL were extracted in a stepwise manner using a monolithic spin column and analyzed by GC-MS. A linear curve was observed for concentrations of arsenic compounds of 2.0 to 200 ng/mL, where the correlation coefficients of calibration curves were greater than 0.996 (for a signal-to-noise (S/N) ratio >10). The detection limits were 1 ng/mL (S/N > 3). Recoveries of the targets in urine were in the range 91.9-106.5%, and RSDs of the intra- and interday assay for urine samples containing 5, 50, and 150 ng/mL of arsenic compounds varied between 2.95 and 13.4%. The results from real samples obtained from a patient suspected of having ingested As containing medications using this proposed method were in good agreement with those obtained using high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

  15. Arsenic immobilization of Teniente furnace dust

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, R. [Japan Oil, Gas, and Metals National Corp., Kawasaki (Japan); Tateiwa, H. [Mitsui Mining and Smelting Co. Ltd., Saitama (Japan); Almendares, C. [Centro de Investigacion Minera y Metalurgica, Santiago (Chile); Sanchez, G. [CODELCO, Santiago (Chile). Division Ventanas

    2007-07-01

    A 5-year joint Japanese-Chilean project to modify the treatment of furnace dust from a converter in Chile producing harmful amounts of arsenic and lead was described. A pilot plant was constructed to evaluate the method's commercialization potential. Flue dust was recovered by a dust collector installed to capture suspended dust generated by the smelting furnace. Arsenic content was approximately 15 per cent. Ninety per cent of the arsenic was then liquidated to lixivia and dissolved by leaching flue dust with sulphuric acid. The leaching rate decreased when flue dust had a high content of residual sulfide ore. A flotation device was then incorporated in the treatment process in order to increase the copper recovery rate. A solvent recovery process was then adopted to recover the copper and zinc contained in the solution after the arsenic recovery. An economic evaluation of the process indicated that efforts should be made to improve the efficiency of the dust treatment method. 5 refs., 6 tabs., 10 figs.

  16. Grain Unloading Of Arsenic Species In Rice

    Science.gov (United States)

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dim...

  17. Arsenic Pollution Study at Nitra-Krška Ny Location as an Example of Line Contamination

    Directory of Open Access Journals (Sweden)

    Varga Michal

    2016-05-01

    Full Text Available The aim of this article was to identify the level of arsenic in soils and water as a type of line contamination with widespread environmental impact. For this purpose, as the “model locality” was chosen the Nitra River (Krškany location situated around 80 km from the original source of contamination - Zemianske Kostoľany. EcaFlow 150 analyzer was used to identify the content of arsenic in water and soil samples, SEM and EDS were used to characterize morphology, surface area, and chemical composition of primary substrate. In Nitra-Krškany, significant values of arsenic concentrations were observed for surface water, 14.75 μg l-1, which exceeded the WHO international A limit 1.5 times, for filtered water from the sediment, 149.9 μg l-1, with the present exceedance in all categories (WHO international A limit 15 times, and for soil samples, 26.6 mg kg-1, which exceeded 2.6 times the Slovak soil legal limit (10 mg kg-1. Detection of arsenic confirmed line contamination in Nitra - Krškany. As the main source responsible for contamination there was evaluated coal combustion residuals that consist of spherical aggregates from 2 μm to 1 mm dimension, non-linear topography. This type of contamination has a long-term impact due to hazardous materials and non-stable reactive surface area.

  18. Arsenic mobilization from sediments in microcosms under sulfate reduction.

    Science.gov (United States)

    Sun, Jing; Quicksall, Andrew N; Chillrud, Steven N; Mailloux, Brian J; Bostick, Benjamin C

    2016-06-01

    Arsenic is often assumed to be immobile in sulfidic environments. Here, laboratory-scale microcosms were conducted to investigate whether microbial sulfate reduction could control dissolved arsenic concentrations sufficiently for use in groundwater remediation. Sediments from the Vineland Superfund site and the Coeur d'Alene mining district were amended with different combination of lactate and sulfate and incubated for 30-40 days. In general, sulfate reduction in Vineland sediments resulted in transient and incomplete arsenic removal, or arsenic release from sediments. Sulfate reduction in the Coeur d'Alene sediments was more effective at removing arsenic from solution than the Vineland sediments, probably by arsenic substitution and adsorption within iron sulfides. X-ray absorption spectroscopy indicated that the Vineland sediments initially contained abundant reactive ferrihydrite, and underwent extensive sulfur cycling during incubation. As a result, arsenic in the Vineland sediments could not be effectively converted to immobile arsenic-bearing sulfides, but instead a part of the arsenic was probably converted to soluble thioarsenates. These results suggest that coupling between the iron and sulfur redox cycles must be fully understood for in situ arsenic immobilization by sulfate reduction to be successful.

  19. Arsenic efflux from Microcystis aeruginosa under different phosphate regimes.

    Directory of Open Access Journals (Sweden)

    Changzhou Yan

    Full Text Available Phytoplankton plays an important role in arsenic speciation, distribution, and cycling in freshwater environments. Little information, however, is available on arsenic efflux from the cyanobacteria Microcystis aeruginosa under different phosphate regimes. This study investigated M. aeruginosa arsenic efflux and speciation by pre-exposing it to 10 µM arsenate or arsenite for 24 h during limited (12 h and extended (13 d depuration periods under phosphate enriched (+P and phosphate depleted (-P treatments. Arsenate was the predominant species detected in algal cells throughout the depuration period while arsenite only accounted for no greater than 45% of intracellular arsenic. During the limited depuration period, arsenic efflux occurred rapidly and only arsenate was detected in solutions. During the extended depuration period, however, arsenate and dimethylarsinic acid (DMA were found to be the two predominant arsenic species detected in solutions under -P treatments, but arsenate was the only species detected under +P treatments. Experimental results also suggest that phosphorus has a significant effect in accelerating arsenic efflux and promoting arsenite bio-oxidation in M. aeruginosa. Furthermore, phosphorus depletion can reduce arsenic efflux from algal cells as well as accelerate arsenic reduction and methylation. These findings can contribute to our understanding of arsenic biogeochemistry in aquatic environments and its potential environmental risks under different phosphorus levels.

  20. Arsenic Speciation in Honeysuckle (Lonicera japonica Thunb.) from China.

    Science.gov (United States)

    Tang, Fubin; Ni, Zhanglin; Liu, Yihua; Yu, Qing; Wang, Zhikun; Mo, Runhong

    2015-11-01

    In this study, honeysuckle, a common Chinese herbal medicine, produced from different areas was investigated for total arsenic and arsenic species concentration. The total arsenic concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS) and ranged from 275 to 635 μg kg(-1). A microwave-assisted procedure with 1 % phosphoric acid (v/v) was used for the extraction of arsenic species in honeysuckle. The total arsenic species concentration found by liquid chromatography-inductively coupled plasma mass spectrometry (LC-ICP-MS) was in agreement with the total arsenic concentration determined by the ICP-MS analysis after the microwave digestion. Arsenate (As(V)) with an average proportion of 54.3 % was the predominant arsenic species in honeysuckle. The order of concentration is as follows: As(V) > arsenite (As(III)) > dimethylarsinic acid (DMA) > arsenobetaine (AsB) > monomethylarsonic acid (MMA). The proportion of organic arsenic (24.7 %) was higher than that in most terrestrial plants. Moreover, the distributions of arsenic species in the honeysuckle from different producing areas were significantly different. This study provides useful information for better understanding of the distribution of arsenic species in terrestrial plants.

  1. An Investigation of Bioaccessibility of Arsenic in Rice using IC-ICP-MS

    Science.gov (United States)

    Arsenic exposure occurs mainly through drinking water and food; therefore, both aspects should be incorporated into any aggregate exposure assessment. Drinking water exposures are predominately inorganic arsenic while dietary exposures are made up of a diverse set of arsenicals w...

  2. Metabolism and toxicity of arsenicals in mammals.

    Science.gov (United States)

    Sattar, Adeel; Xie, Shuyu; Hafeez, Mian Abdul; Wang, Xu; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Pan, Yuanhu; Iqbal, Mujahid; Shabbir, Muhammad Abubakr; Yuan, Zonghui

    2016-12-01

    Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world.

  3. Arsenic | Cancer Trends Progress Report

    Science.gov (United States)

    The Cancer Trends Progress Report, first issued in 2001, summarizes our nation's advances against cancer in relation to Healthy People targets set forth by the Department of Health and Human Services.

  4. Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China.

    Science.gov (United States)

    Guo, X; Fujino, Y; Kaneko, S; Wu, K; Xia, Y; Yoshimura, T

    2001-06-01

    An investigation was carried out on arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain of Inner Mongolia Autonomous Region, China. Based on the screening of water samples from 96 randomly selected wells in this Region, two areas (Wuyuan and Alashan) were chosen as highly contaminated areas because arsenic in the water samples was higher than 50 microg/l. Arsenic was measured using an arsenic silver diethyl dithiocarbamate method for 326 water samples from all the wells in these areas. The results show arsenic contaminated groundwater from tubule-type wells of depths about 15-30 m was serious compared with open-type wells where depth is about 3-5 m. In the Wuyuan area, 96.2% of water samples from tubule-type wells contained arsenic above 50 microg/l and 69.3% in Alashan area; the highest value was 1354 microg/l and 1088 microg/l, respectively. In these two areas, a health survey was carried out for arsenical dermatosis. The results show the prevalence of arsenical dermatosis in the Wuyuan area was 44.8%, higher than 37.1% prevalence of arsenical dermatosis in the Alashan area. The prevalence of arsenical dermatosis was highest in the over 40-year-old age group. There was no sex difference in the prevalence. Further investigation is needed to clarify the actual situation of arsenic pollution of groundwater in Inner Mongolia, China in order to reduce the adverse health effect among residents exposed to arsenic.

  5. Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning.

    Science.gov (United States)

    Roychowdhury, Tarit

    2010-11-01

    A somewhat detailed study was carried out in Gaighata, one of the 107 arsenic-affected blocks in West Bengal, India, to determine the degree of groundwater contamination with arsenic, its depth wise distribution, correlation with iron, arsenical health effects to the inhabitants and the factors responsible for arsenic poisoning. Groundwater in all the 107 mouzas over 13 gram-panchayets in Gaighata block contains arsenic above 0.01mgl(-1) and in 91 mouzas, arsenic concentration has been found above 0.05mgl(-1). About 59.2 and 40.3% of the tubewell water samples contain arsenic above 0.01 and 0.05mgl(-1), respectively. The approximate population drinking arsenic-contaminated water above 0.01 and 0.05mgl(-1) are 106,560 and 72,540, respectively. The tubewells that were installed within the depth range of 15.4-30.3m are mostly arsenic-contaminated. Even the shallow groundwater level (7.87-15.1m) is arsenic-contaminated. Both arsenic and iron concentrations in groundwater gradually increase from lower depth to higher depth up to 39.4m, and then decrease with increasing depth. About 58% of the deep tubewell water samples (depth range 122-182m, n=31) contain arsenic ≥0.05mgl(-1). About 72% of the arsenic-contaminated deep tubewells (n=18) were safe when surveyed first time. But within a span of 2-5 years, they became contaminated with arsenic. The linear regression shows direct correlation between arsenic and iron concentrations in groundwater (r(2)=0.8114, p<0.0001, n=912). Intakes of inorganic arsenic from water by an adult male and female in the surveyed areas are 11.7 and 13.1μg/kg body wt./day, respectively and these values are higher than the WHO recommended PTDI value of inorganic arsenic (2.1μg/kg body wt./day). Mean arsenic concentrations in urine, hair and nail samples, collected from the inhabitants of Gutri mouza are higher than their normal level and the values are 292μgl(-1) (range: 8.35-1024μg l(-1), n=193), 2.50mgkg(-1) (range: 0.17-5.99mgkg(-1), n

  6. Groundwater arsenic concentrations in Vietnam controlled by sediment age

    DEFF Research Database (Denmark)

    Postma, Dieke; Larsen, Flemming; Thai, Nguyen Thi

    2012-01-01

    Arsenic contamination of groundwater continues to threaten the health of millions of people in southeast Asia. The oxidation of organic carbon, coupled to the reductive dissolution of arsenic-bearing iron oxides, is thought to control the release of sediment-bound arsenic into groundwater. However......, the cause of the high spatial variability in groundwater arsenic concentrations—which can range from 5 to 500 μg l−1 within distances of a few kilometres—has been uncertain. Here, we combine measurements of sediment age, organic-matter reactivity and water chemistry at four locations along a cross......-section of the arsenic-contaminated Red River floodplain in Vietnam to determine the origin of variations in groundwater arsenic concentrations. The burial age of the aquifer sediments, determined using optical stimulated luminescence, ranged from 460 years near the course of the present-day river to 5,900 years...

  7. Arsenic waste management: a critical review of testing and disposal of arsenic-bearing solid wastes generated during arsenic removal from drinking water.

    Science.gov (United States)

    Clancy, Tara M; Hayes, Kim F; Raskin, Lutgarde

    2013-10-01

    Water treatment technologies for arsenic removal from groundwater have been extensively studied due to widespread arsenic contamination of drinking water sources. Central to the successful application of arsenic water treatment systems is the consideration of appropriate disposal methods for arsenic-bearing wastes generated during treatment. However, specific recommendations for arsenic waste disposal are often lacking or mentioned as an area for future research and the proper disposal and stabilization of arsenic-bearing waste remains a barrier to the successful implementation of arsenic removal technologies. This review summarizes current disposal options for arsenic-bearing wastes, including landfilling, stabilization, cow dung mixing, passive aeration, pond disposal, and soil disposal. The findings from studies that simulate these disposal conditions are included and compared to results from shorter, regulatory tests. In many instances, short-term leaching tests do not adequately address the range of conditions encountered in disposal environments. Future research directions are highlighted and include establishing regulatory test conditions that align with actual disposal conditions and evaluating nonlandfill disposal options for developing countries.

  8. Preconcentration determination of arsenic species by sorption of As(V) on Amberlite IRA-410 coupled with fluorescence quenching of L-cysteine capped CdS nanoparticles.

    Science.gov (United States)

    Hosseini, Mohammad Saeid; Nazemi, Sahar

    2013-10-07

    A simple and accurate method for arsenic speciation analysis in natural and drinking water samples is described in which preconcentration of arsenic as As(V) was coupled with spectrofluorometric determination. The extracted As(V) species with a column containing Amberlite IRA-410 were subjected to L-cysteine capped CdS quantum dots (QDs) and the fluorescence quenching of the QDs due to reduction of As(V) by L-cysteine was considered as a signal relevant to As(V) concentration. The As(III) species were also determined after oxidation of As(III) ions to As(V) with H2O2 and measurement of the total arsenic content. In treatment with 400 mL portions of water samples containing 30 μg L(-1) As(V), the relative standard deviation was 2.8%. The detection limit of arsenic was also found to be 0.75 μg L(-1) (1 × 10(-8) M). The reliability of proposed method was confirmed using certified reference materials. The trace amounts of arsenic species were then determined in different water samples, satisfactorily.

  9. Atypical non-fatal arsenic poisoning in cattle

    Energy Technology Data Exchange (ETDEWEB)

    Prentice, M.W.M.

    1969-06-07

    Arsenic poisoning was found to be the cause of a herd of dairy cows suddenly becoming ill, developing pyrexia and diarrhea, with a gradual deterioration in health. There was also a reduction in the yield of milk. It was proven that the feed bins were strongly positive for arsenic. When the source of the arsenic was removed, the cows showed a rapid recovery in most cases.

  10. Alternative technology for arsenic removal from drinking water

    OpenAIRE

    Purenović Milovan

    2007-01-01

    Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in wat...

  11. Reduction and coordination of arsenic in Indian mustard.

    Science.gov (United States)

    Pickering, I J; Prince, R C; George, M J; Smith, R D; George, G N; Salt, D E

    2000-04-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an As(III)-tris-thiolate complex. The majority of the arsenic remains in the roots as an As(III)-tris-thiolate complex, which is indistinguishable from that found in the shoots and from As(III)-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element.

  12. Arsenical keratoses in Bangladesh--update and prevention strategies.

    Science.gov (United States)

    Ruiz de Luzuriaga, Arlene M; Ahsan, Habibul; Shea, Christopher R

    2011-01-01

    Arsenic is considered a Class I human carcinogen by the International Agency for Research on Cancer because of its increased risk for skin cancer, as well as internal cancers, such as lung and bladder cancer. Arsenic contamination of drinking water in Bangladesh has been called the "largest mass poisoning of a population in history." This inorganic arsenic contamination is of natural origin, with arsenic thought to be released to the groundwater from the surrounding sediment. Arsenicosis and its risk factors and prevention and management are discussed in this article.

  13. The revival of the ancient drug-arsenic

    Institute of Scientific and Technical Information of China (English)

    黄晓军

    2003-01-01

    Arsenic, a natural substance, has been used as a traditional Chinese medicine for more than a thousand years. However, this medicine fell into disuse in the 1930s following the advent of radiotherapy and conventional cytotoxic drugs and reports about arsenic poisoning from its long-term low-dose ingestion. Until the late 1970s, it had its rebirth when a series of research papers from China described the successful application of AiLing-1,1 a traditional Chinese compound, containing arsenic trioxide (ATO) and other ingredients. Research into the molecular mechanisms of arsenic action has furthered clinical application of this drug.

  14. Hepatoprotective efficacy of curcumin against arsenic trioxide toxicity

    Institute of Scientific and Technical Information of China (English)

    VV Mathews; P Binu; MV Sauganth Paul; M Abhilash; Alex Manju; R Harikumaran Nair

    2012-01-01

    Objective: To evaluate the efficacy of curcumin in combating arsenic induced hepatic oxidative stress, histopathological changes and the hepatic arsenic accumulation in rat model. Methods:Oxidative stress was induced by oral administration 4 mg/kg b.wt of arsenic trioxide (As2O3,) for 45 days in experimental rats. The level of liver arsenic concentration, lipid peroxidation, reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) were determined in adult male Wistar rats. Hepatotoxicity was assessed by quantifying the aspartate transaminase (AST), alanine transaminase (ALT) and alkaline phophatase (ALP). Hepatoprotective efficacy of curcumin (15 mg/kg b.wt) was evaluated by combination treatment with As2O3. Results: As2O3 administration leads to the generation of reactive oxygen species (ROS), arsenic accumulation, serum marker enzymes release and decrease in antioxidant enzymes in liver. Retention of arsenic in liver caused increased level of lipid peroxidation with a concomitant decline in the glutathione dependant antioxidant enzymes and antiperoxidative enzymes. Curcumin treatment protected the liver from arsenic induced deterioration of antioxidant levels as well as oxidative stress. And also a significant decrease in hepatic arsenic accumulation and serum marker enzymes was observed. Histopathological examination revealed a curative improvement in liver tissue. Conclusions:These findings lead to the conclusion that curcumin may have the potential to protect the liver from arsenic-induced toxic effects.

  15. GLI3 Links Environmental Arsenic Exposure and Human Fetal Growth

    Directory of Open Access Journals (Sweden)

    Emily F. Winterbottom

    2015-06-01

    Full Text Available Although considerable evidence suggests that in utero arsenic exposure affects children's health, these data are mainly from areas of the world where groundwater arsenic levels far exceed the World Health Organization limit of 10 μg/L. We, and others, have found that more common levels of in utero arsenic exposure may also impact children's health. However, the underlying molecular mechanisms are poorly understood. To address this issue, we analyzed the expression of key developmental genes in fetal placenta in a birth cohort of women using unregulated water supplies in a US region with elevated groundwater arsenic. We identified several genes whose expression associated with maternal arsenic exposure in a fetal sex-specific manner. In particular, expression of the HEDGEHOG pathway component, GLI3, in female placentae was both negatively associated with arsenic exposure and positively associated with infant birth weight. This suggests that modulation of GLI3 in the fetal placenta, and perhaps in other fetal tissues, contributes to arsenic's detrimental effects on fetal growth. We showed previously that arsenic-exposed NIH3T3 cells have reduced GLI3 repressor protein. Together, these studies identify GLI3 as a key signaling node that is affected by arsenic, mediating a subset of its effects on developmental signaling and fetal health.

  16. Application of geostatistics with Indicator Kriging for analyzing spatial variability of groundwater arsenic concentrations in Southwest Bangladesh.

    Science.gov (United States)

    Hassan, M Manzurul; Atkins, Peter J

    2011-01-01

    This article seeks to explore the spatial variability of groundwater arsenic (As) concentrations in Southwestern Bangladesh. Facts about spatial pattern of As are important to understand the complex processes of As concentrations and its spatial predictions in the unsampled areas of the study site. The relevant As data for this study were collected from Southwest Bangladesh and were analyzed with Flow Injection Hydride Generation Atomic Absorption Spectrometry (FI-HG-AAS). A geostatistical analysis with Indicator Kriging (IK) was employed to investigate the regionalized variation of As concentration. The IK prediction map shows a highly uneven spatial pattern of arsenic concentrations. The safe zones are mainly concentrated in the north, central and south part of the study area in a scattered manner, while the contamination zones are found to be concentrated in the west and northeast parts of the study area. The southwest part of the study area is contaminated with a highly irregular pattern. A Generalized Linear Model (GLM) was also used to investigate the relationship between As concentrations and aquifer depths. A negligible negative correlation between aquifer depth and arsenic concentrations was found in the study area. The fitted value with 95 % confidence interval shows a decreasing tendency of arsenic concentrations with the increase of aquifer depth. The adjusted mean smoothed lowess curve with a bandwidth of 0.8 shows an increasing trend of arsenic concentration up to a depth of 75 m, with some erratic fluctuations and regional variations at the depth between 30 m and 60 m. The borehole lithology was considered to analyze and map the pattern of As variability with aquifer depths. The study has performed an investigation of spatial pattern and variation of As concentrations.

  17. Urinary arsenic speciation profile in ethnic group of the Atacama desert (Chile) exposed to variable arsenic levels in drinking water.

    Science.gov (United States)

    Yáñez, Jorge; Mansilla, Héctor D; Santander, I Paola; Fierro, Vladimir; Cornejo, Lorena; Barnes, Ramón M; Amarasiriwardena, Dulasiri

    2015-01-01

    Ethnic groups from the Atacama Desert (known as Atacameños) have been exposed to natural arsenic pollution for over 5000 years. This work presents an integral study that characterizes arsenic species in water used for human consumption. It also describes the metabolism and arsenic elimination through urine in a chronically exposed population in northern Chile. In this region, water contained total arsenic concentrations up to 1250 μg L(-1), which was almost exclusively As(V). It is also important that this water was ingested directly from natural water sources without any treatment. The ingested arsenic was extensively methylated. In urine 93% of the arsenic was found as methylated arsenic species, such as monomethylarsonic acid [MMA(V)] and dimethylarsinic acid [DMA(V)]. The original ingested inorganic species [As(V)], represent less than 1% of the total urinary arsenic. Methylation activity among individuals can be assessed by measuring primary [inorganic As/methylated As] and secondary methylation [MMA/DMA] indexes. Both methylation indexes were 0.06, indicating a high biological converting capability of As(V) into MMA and then MMA into DMA, compared with the control population and other arsenic exposed populations previously reported.

  18. Enhanced phytoremediation of arsenic contaminated land.

    Science.gov (United States)

    Jankong, P; Visoottiviseth, P; Khokiattiwong, S

    2007-08-01

    In an attempt to clean up arsenic (As) contaminated soil, the effects of phosphorus (P) fertilizer and rhizosphere microbes on arsenic accumulation by the silverback fern, Pityrogramma calomelanos, were investigated in both greenhouse and field experiments. Field experiments were conducted in Ron Phibun District, an As-contaminated area in Thailand. Soil (136-269 microg As g(-1)) was collected there and used in the greenhouse experiment. Rhizosphere microbes (bacteria and fungi) were isolated from roots of P. calomelanos growing in Ron Phibun District. The results showed that P-fertilizer significantly increased plant biomass and As accumulation of the experimental P. calomelanos. Rhizobacteria increased significantly the biomass and As content of the test plants. Thus, P-fertilizer and rhizosphere bacteria enhanced As-phytoextraction. In contrast, rhizofungi reduced significantly As concentration in plants but increased plant biomass. Therefore, rhizosphere fungi exerted their effects on phytostabilization.

  19. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Science.gov (United States)

    Pandey, Piyush Kant; Yadav, Sushma; Pandey, Madhurima

    2007-01-01

    The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations. PMID:17431310

  20. Human Arsenic Poisoning Issues in Central-East Indian Locations: Biomarkers and Biochemical Monitoring

    Directory of Open Access Journals (Sweden)

    Madhurima Pandey

    2007-03-01

    Full Text Available The study reports the use of three biomarkers i.e. total arsenic in hair and nails, total arsenic in blood, and total arsenic in urine to identify or quantify arsenic exposure and concomitant health effects. The main source of arsenic was inorganic exposure through drinking water. The arsenic levels and the health effects were analyzed closely in a family having maximum symptoms of arsenic. Based on the result of this study it is reported that there exist a correlation between the clinically observable symptoms, the blood and urine arsenic level, and the arsenic intake through drinking water. An intensive study on the urinary arsenic levels was carried out in which the urine levels of arsenic and the urine sufficiency tests were performed. A composite picture of body burden of arsenic has been obtained by carrying out a complete biochemical analysis of a maximum affected family. This confirms pronounced chronic exposure of the arsenic to these people. A combined correlation study on the arsenic levels measured in whole blood, urine, hair, nails and age present a remarkable outcome. Accordingly, the arsenic levels in blood are negatively correlated with the urine arsenic levels, which indicate either the inadequacy of the renal system in cleaning the blood arsenic or a continuous recirculation of the accumulated arsenic. This is an important conclusion about arsenical metabolism in humans. The study also raises the issues of the prospects of complete elimination of the accumulated arsenic and the reversibility of the health effects. Based on the work in Kourikasa village we report that there are very remote chances of complete purging of arsenic and thus reversibility of the health effects owing to various factors. The paper also discusses the various issues concerning the chronic arsenic poisoning management in the affected locations.

  1. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ... Republic of China: Postponement of Final Determination of Sales at Less Than Fair Value, 75 FR 73041... Sales at Less Than Fair Value, and Preliminary Determination of Targeted Dumping, 75 FR 69403, November... Affirmative Countervailing Duty Determination, 75 FR 54302, September 7, 2010, and Aluminum Extrusions...

  2. [Peripheral neuropathy caused by acute arsenic poisoning].

    Science.gov (United States)

    Ramírez-Campos, J; Ramos-Peek, J; Martínez-Barros, M; Zamora-Peralta, M; Martínez-Cerrato, J

    1998-01-01

    Although peripheral neuropathy is a fairly common finding in chronic arsenic poisoning, little is known about the acute effects of this metal on peripheral nerves. This report shows clinical and electrophysiological findings in a patient who developed peripheral neuropathy only three days after a high-dose ingestion of this metal due to a failed suicide attempt. We speculate that peripheral nerves and some cranial nerves can show not only clinical but also subclinical involvement that can only be detected by neurophysiological studies.

  3. Arsenic trioxide: safety issues and their management

    Institute of Scientific and Technical Information of China (English)

    Wing-Yan AU; Yok-Lam KWONG

    2008-01-01

    Arsenic trioxide (As2O3) has been used medicinally for thousands of years.Its therapeutic use in leukaemia was described a century ago.Recent rekindling in the interest of As2O3 is due to its high efficacy in acute promyelocytic leukaemia (APL).As2O3 has also been tested clinically in other blood and solid cancers.Most studies have used intravenous As2O3,although an oral As2O3 is equally efficacious.Side effects of As2O3 are usually minor,including skin reactions,gastrointestinal upset,and hepatitis.These respond to symptomatic treatment or temporary drug cessation,and do not compromise subsequent treatment with As2O3.During induction therapy in APL,a leucocytosis may occasionally occur,which can be associated with fluid accumulation and pulmonary infiltration.The condition is similar to the APL differentiation syndrome during treatment with all-trans retinoic acid,and responds to cytoreductive treatment and corticosteroids.Intravenous As2O3 treatment leads to QT prolongation.In the presence of under-lying cardiopulmonary diseases or electrolyte disturbances,particularly hypokalaemia and hypomagnesaemia,serious arrhythmias may develop,with torsades du pointes reported in 1% of cases.This may be related to a dose-dependent arsenic-mediated inhibition of potassium ion channels that compro-mises cardiac repolarization.Because of slow intestinal absorption,oral-As2O3 gives a lower plasma arsenic concentration,which is associated with lesser QT prolongation and hence a more favorable cardiac safety profile.As2O3 does not appear to enter the central nervous system.However,if the blood brain barrier is breached,elemental arsenic may enter the cerebrospinal fluid.As2O3 is predomi-nantly excreted in the kidneys,and dose adjustment is required when renal func-tion is impaired.

  4. Chronic arsenic trioxide exposure leads to enhanced aggressiveness via Met oncogene addiction in cancer cells

    Science.gov (United States)

    Kryeziu, Kushtrim; Pirker, Christine; Englinger, Bernhard; van Schoonhoven, Sushilla; Spitzwieser, Melanie; Mohr, Thomas; Körner, Wilfried; Weinmüllner, Regina; Tav, Koray; Grillari, Johannes; Cichna-Markl, Margit; Berger, Walter; Heffeter, Petra

    2016-01-01

    As an environmental poison, arsenic is responsible for many cancer deaths. Paradoxically, arsenic trioxide (ATO) presents also a powerful therapy used to treat refractory acute promyelocytic leukemia (APL) and is intensively investigated for treatment of other cancer types. Noteworthy, cancer therapy is frequently hampered by drug resistance, which is also often associated with enhancement of tumor aggressiveness. In this study, we analyzed ATO-selected cancer cells (A2780ATO) for the mechanisms underlying their enhanced tumorigenicity and aggressiveness. These cells were characterized by enhanced proliferation and spheroid growth as well as increased tumorigenicity of xenografts in SCID mice. Noteworthy, subsequent studies revealed that overexpression of Met receptor was the underlying oncogenic driver of these effects, as A2780ATO cells were characterized by collateral sensitivity against Met inhibitors. This finding was also confirmed by array comparative genomic hybridization (array CGH) and whole genome gene expression arrays, which revealed that Met overexpression by chronic ATO exposure was based on the transcriptional regulation via activation of AP-1. Finally, it was shown that treatment with the Met inhibitor crizotinib was also effective against A2780ATO cell xenografts in vivo, indicating that targeting of Met presents a promising strategy for the treatment of Met-overexpressing tumors after either arsenic exposure or failure to ATO treatment. PMID:27036042

  5. Online preconcentration of arsenic compounds by dynamic pH junction-capillary electrophoresis.

    Science.gov (United States)

    Jaafar, Jafariah; Irwan, Zildawarni; Ahamad, Rahmalan; Terabe, Shigeru; Ikegami, Tohru; Tanaka, Nobuo

    2007-02-01

    An online preconcentration technique by dynamic pH junction was studied to improve the detection limit for anionic arsenic compounds by CE. The main target compound is roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid, which is being used as an animal feed additive. The other inorganic and organoarsenic compounds studied are the possible biotransformation products of roxarsone. The arsenic species were separated by a dynamic pH junction in a fused-silica capillary using 15 mM phosphate buffer (pH 10.6) as the BGE and 15 mM acetic acid as the sample matrix. CE with UV detection was monitored at a wavelength of 192 nm. The influence of buffer pH and concentration on dynamic pH junction were investigated. The arsenic species focusing resulted in LOD improvement by a factor of 100-800. The combined use of C18 and anion exchange SPE and dynamic pH junction to CE analysis of chicken litter and soils helps to increase the detection sensitivity. Recoveries of spiked samples ranged between 70 and 72%.

  6. Construction of a modular arsenic resistance operon in E. coli and the production of arsenic nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthew Charles Edmundson

    2015-10-01

    Full Text Available Arsenic is a widespread contaminant of both land and water around the world. Current methods of decontamination such as phytoremediation and chemical adsorbents can be resource and time intensive, and may not be suitable for some areas such as remote communities where cost and transportation are major issues. Bacterial decontamination, with strict controls preventing environmental release, may offer a cost-effective alternative or provide a financial incentive when used in combination with other remediation techniques. In this study we have produced E. coli strains containing arsenic resistance genes from a number of sources, overexpressing them and testing their effects on arsenic resistance. While the lab E. coli strain JM109 (the wild-type is resistant up to 20 mM sodium arsenate the strain containing our plasmid pEC20 is resistant up to 80 mM. When combined with our construct pArsRBCC arsenic-containing nanoparticles were observed at the cell surface; the elements of pEC20 and pArsRBCC were therefore combined in a modular construct, pArs, in order to evaluate the roles and synergistic effects of the components of the original plasmids in arsenic resistance and nanoparticle formation. We also investigated the use of introducing the lac operator in order to more tightly control expression from pArs. We demonstrate that our strains are able to reduce toxic forms of arsenic into stable, insoluble metallic As(0, providing one way to remove arsenate contamination, and which may also be of benefit for other heavy metals.

  7. Assessment of environmental arsenic levels in Prievidza district

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, T.; Hong, B.; Thornton, I.; Farago, M.; Jakubis, P.; Jakubis, M.; Pesch, B.; Ranft, U.; Nieuwenhuijsen, M.J.

    2002-07-01

    A coal-burning power station in the Nitra Valley in central Slovakia annually emitted large quantities of arsenic (up to 200 tonnes) between 1953 and 1989. Since then, pollution-control measures have reduced arsenic emissions to less than 2 tonnes a year. However, the power station was still a source of airborne arsenic pollution. As part of an EU-funded study on exposure to arsenic and cancer risk in central and Eastern Europe the authors carried out a study of environmental levels of arsenic in the homes and gardens of residents of the district. Garden soil samples (n=210), house dust samples (n=210) and composite house dust samples (n=109) were collected and analysed using inductively coupled plasma atomic absorption spectroscopy (ICP-AES) at Imperial College, London. The mean arsenic content of coal and ash in samples taken from the plant was 5 19 {mu}g/g (n=19) and 863 {mu}g/g (n=22), respectively. The geometric mean (GM) arsenic concentration of garden soils was 26 {mu}g/g (range 8.8-139.0 {mu}g/g), for house dust 11.6 {mu}g/g (range 2.1-170 {mu}g/g) and for composite house dust 9.4 {mu}g/g (range 2.3-61.5 mug/g). The correlation between the arsenic levels in soil and in house dust was 0.3 (P {lt} 0.01), in soil and composite house dust 0.4 and house dust and composite house dust 0.4 (P{lt} 0.01 for both), i.e., were moderate. Arsenic levels in both house dust and soil decreased with distance from the power station. Overall, levels in both fell by half 5 km from the point source. Weak correlations were seen between the total urinary arsenic concentrations and arsenic concentrations in composite house dust.

  8. Arsenic metabolites in humans after ingestion of wakame seaweed

    Directory of Open Access Journals (Sweden)

    Hata A.

    2013-04-01

    Full Text Available Seaweed contains large amounts of various arsenic compounds such as arsenosugars (AsSugs, but their relative toxicities have not yet been fully evaluated. A risk evaluation of dietary arsenic would be necessary. After developing an arsenic speciation analysis of wakame seaweed (Undaria pinnatifida, we conducted a wakame ingestion experiment using volunteers. Five volunteers ingested 300 g of commercial wakame after refraining from seafood for 5 days. Arsenic metabolites in the urine were monitored over a 5-day period after ingestion. Total arsenic concentration of the wakame seaweed was 34.3 ± 2.1 mg arsenic/kg (dry weight, n = 3. Two AsSugs, 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β-ribofuranosyloxy]-propylene glycol (AsSug328 and 3-[5′-deoxy-5′-(dimethyl-arsinoyl-β- ribofuranosyl-oxy]-2-hydroxypropyl-2,3-dihydroxy-propyl phosphate (AsSug482 were detected, but arsenobetaine, dimethylarsinic acid (DMA, monomethylarsonic acid, and inorganic arsenics (iAs were not detected. The major peak was AsSug328, which comprised 89% of the total arsenic. Approximately 30% of the total arsenic ingested was excreted in the urine during the 5-day observation. Five arsenic compounds were detected in the urine after ingestion, the major one being DMA, which comprised 58.1 ± 5.0% of the total urinary arsenic excreted over the 5 days. DMA was believed to be metabolized not from iAs but from AsSugs, and its biological half-time was approximately 13 h.

  9. Arsenic speciation of geothermal waters in New Zealand.

    Science.gov (United States)

    Lord, Gillian; Kim, Nick; Ward, Neil I

    2012-12-01

    Total arsenic and four arsenic species; arsenite (iAs(III)), arsenate (iAs(V)), dimethylarsinic acid (DMA(V)) and monomethylarsonic acid (MA(V)), are reported in 28 geothermal features from the Taupo Volcanic Zone (TVZ) and Waikato region of New Zealand. Samples were collected for arsenic speciation analysis via a solid phase extraction (SPE) kit allowing the separation, stabilisation and pre-concentration of the species at the time of sample collection in the field. This is the first research to present data for arsenic species collected by this technique in geothermal waters from New Zealand. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), ranged from 0.008 to 9.08 mg l⁻¹ As. The highest levels were discovered in three features in Tokaanu (Taumatapuhipuhi, Takarea #5 and #6), with arsenic concentrations of 8.59, 8.70 and 9.08 mg l⁻¹ As, respectively. Inorganic arsenic species were predominant in the geothermal waters, with arsenite contributing to more than 70% of the total arsenic in the majority of samples. Organic species were also determined in all samples, indicating the presence of microbial activity. A potential risk to human health was highlighted due to the high levels of arsenic, mainly as arsenite, in geothermal features linked to bathing pools. Further research is needed into dermal absorption as a potential route of arsenic exposure whilst bathing in these hot pools, as it may contribute to an occurrence of acute arsenic-related health problems.

  10. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils

    Directory of Open Access Journals (Sweden)

    Wang Gejiao

    2009-01-01

    Full Text Available Abstract Background Arsenic is known as a toxic metalloid, which primarily exists in inorganic form [As(III and As(V] and can be transformed by microbial redox processes in the natural environment. As(III is much more toxic and mobile than As(V, hence microbial arsenic redox transformation has a major impact on arsenic toxicity and mobility which can greatly influence the human health. Our main purpose was to investigate the distribution and diversity of microbial arsenite-resistant species in three different arsenic-contaminated soils, and further study the As(III resistance levels and related functional genes of these species. Results A total of 58 arsenite-resistant bacteria were identified from soils with three different arsenic-contaminated levels. Highly arsenite-resistant bacteria (MIC > 20 mM were only isolated from the highly arsenic-contaminated site and belonged to Acinetobacter, Agrobacterium, Arthrobacter, Comamonas, Rhodococcus, Stenotrophomonas and Pseudomonas. Five arsenite-oxidizing bacteria that belonged to Achromobacter, Agrobacterium and Pseudomonas were identified and displayed a higher average arsenite resistance level than the non-arsenite oxidizers. 5 aoxB genes encoding arsenite oxidase and 51 arsenite transporter genes [18 arsB, 12 ACR3(1 and 21 ACR3(2] were successfully amplified from these strains using PCR with degenerate primers. The aoxB genes were specific for the arsenite-oxidizing bacteria. Strains containing both an arsenite oxidase gene (aoxB and an arsenite transporter gene (ACR3 or arsB displayed a higher average arsenite resistance level than those possessing an arsenite transporter gene only. Horizontal transfer of ACR3(2 and arsB appeared to have occurred in strains that were primarily isolated from the highly arsenic-contaminated soil. Conclusion Soils with long-term arsenic contamination may result in the evolution of highly diverse arsenite-resistant bacteria and such diversity was probably caused in

  11. Arsenic speciation in arsenic-rich Brazilian soils from gold mining sites under anaerobic incubation

    Science.gov (United States)

    De Mello, J. W. V.; Talbott, J.L.; Scott, J.; Roy, W.R.; Stucki, J.W.

    2007-01-01

    Background. Arsenic speciation in environmental samples is essential for studying toxicity, mobility and bio-transformation of As in aquatic and terrestrial environments. Although the inorganic species As(III) and As(V) have been considered dominant in soils and sediments, organisms are able to metabolize inorganic forms of arsenic into organo-arsenic compounds. Arsenosugars and methylated As compounds can be found in terrestrial organisms, but they generally occur only as minor constituents. We investigated the dynamics of arsenic species under anaerobic conditions in soils surrounding gold mining areas from Minas Gerais State, Brazil to elucidate the arsenic biogeochemical cycle and water contamination mechanisms. Methods. Surface soil samples were collected at those sites, namely Paracatu Formation, Banded Iron Formation and Riacho dos Machados Sequence, and incubated in CaCl2 2.5 mmol L-1 suspensions under anaerobic conditions for 1, 28, 56 and 112 days. After that, suspensions were centrifuged and supernatants analyzed for soluble As species by IC-ICPMS and HPLC-ICPMS. Results. Easily exchangeable As was mainly arsenite, except when reducible manganese was present. Arsenate was mainly responsible for the increase in soluble arsenic due to the reductive dissolution of either iron or manganese in samples from the Paracatu Formation and Riacho dos Machados Sequence. On the other hand, organic species of As dominated in samples from the Banded Iron Formation during anaerobic incubation. Discussion. Results are contrary to the expectation that, in anaerobic environments, As release due to the reductive dissolution of Fe is followed by As(V) reduction to As(III). The occurrence of organo-arsenic species was also found to be significant to the dynamics of soluble arsenic, mainly in soils from the Banded Iron Formation (BIF), under our experimental conditions. Conclusions. In general, As(V) and organic As were the dominant species in solution, which is surprising

  12. Molecular mechanisms of the antileukemia activities of retinoid and arsenic.

    Science.gov (United States)

    Nitto, Takeaki; Sawaki, Kohei

    2014-01-01

    Acute promyelocytic leukemia (APL) is characterized by the occurrence of translocations between chromosomes 15 and 17, resulting in generation of a fusion protein of promyelocytic leukemia (PML) and retinoid A receptor (RAR) α. APL cells are unable to differentiate into mature granulocytes since PML-RARα functions as a strong transcriptional repressor for a gene involved in granulocyte differentiation. All-trans retinoic acid (ATRA) is the first agent that has been developed to target specific disease-causing molecules, i.e., ATRA suppresses abnormal functions of oncogenic proteins. Moreover, ATRA facilitates the differentiation of APL cells toward mature granulocytes by changing epigenetic modifiers from corepressor complexes to co-activator complexes on target genes after binding to the ligand-binding domain at the RARα moiety of the PML-RARα oncoprotein. On the other hand, arsenic trioxide (ATO), another promising agent used to treat APL, directly binds to the PML moiety of the PML-RARα protein, causing oxidation and multimerization. ATO enhances the conjugation of small ubiquitin-like modifiers to PML-RARα, followed by ubiquitination and degradation, relieving the genes associated with granulocytic differentiation from suppressive restraint by the oncoprotein. Recent clinical studies have demonstrated that combination therapy with both ATRA and ATO is useful to achieve remission.

  13. Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy.

    Science.gov (United States)

    Sounderajan, Suvarna; Udas, A C; Venkataramani, B

    2007-10-01

    Arsenic (V) is known to form heteropolyacid with ammonium molybdate in acidic aqueous solutions, which can be quantitatively extracted into certain organic solvents. In the present work, 12-molybdoarsenic acid extracted in butan-1-ol is used for quantification of As (V). Total arsenic is estimated by converting arsenic (III) to arsenic (V) by digesting samples with concentrated nitric acid before extraction. Concentration of As (III) in the sample solutions could be calculated by the difference in total arsenic and arsenic (V). The characterization of arsenic was carried out by GFAAS using Pd as modifier. Optimization of the experimental conditions and instrumental parameters was investigated in detail. Recoveries of (90-110%) were obtained in the spiked samples. The detection limit was 0.2 microg l(-1). The proposed method was successfully applied for the determination of trace amount of arsenic (III) and arsenic (V) in process water samples.

  14. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium

    Directory of Open Access Journals (Sweden)

    Fry Rebecca C

    2011-04-01

    Full Text Available Abstract Background Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. Results In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. Conclusions This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.

  15. Sedimentology and arsenic pollution in the Bengal Basin: insight into arsenic occurrence and subsurface geology.

    Science.gov (United States)

    Hills, Andrew; McArthur, John

    2014-05-01

    The Bengal delta system is a geologically recent feature overlying a deeply incised palaeo-surface formed during the Last Glacial Maximum. This surface is a series of terraces and valleys created by river incision (Goodbred & Kuehl 2003). The terraces were weathered, forming a thin, indurated laterite deposit (Goodbred & Kuehl 2000) at depths greater than 50 m. McArthur et al. (2008) define this as a palaeosol and have identified it at depths greater than 30 m though out Bangladesh and West Bengal. It has been observed that arsenic concentrations at these sites are lower than the rest of the delta. It has been assumed that the surface morphology at sites where there is a palaeosol are similar and can therefore be characterised by remote sensing, in the form of Google Earth images. Sites were selected in Bangladesh and West Bengal, from work by McArthur et al. (2011); Hoque et al. (2012), where groundwater chemistry and sedimentology data are available making it possible to determine if the subsurface is a palaeo-channel or palaeo-interfluve. Arsenic concentration data have been inputted into Google Earth and the palaeo-channels marked where the arsenic concentration is greater than 10 µg/L, and palaeo-interfluves where arsenic concentration is less than 10 µg/L. The surface morphologies in these domains have been examined for similarities, and it was shown that avulsion scars and abandoned river channels are found where arsenic concentrations are greater than 10 µg/L. Conversely the surrounding areas that are devoid of channel scars have arsenic concentrations less than 10 µg/L. Using the correlation between avulsion features being representative of palaeo-channels and high arsenic concentrations, sites were selected that had a similar surface morphology to the type localities. A comparison of these images and arsenic concentrations showed that the postulate is valid for over 80 percent of cases. Where this is not valid, this could indicate that the subsurface

  16. Subsurface iron and arsenic removal for drinking water treatment in Bangladesh

    NARCIS (Netherlands)

    Van Halem, D.

    2011-01-01

    Arsenic contamination of shallow tube well drinking water is an urgent health problem in Bangladesh. Current arsenic mitigation solutions, including (household) arsenic removal options, do not always provide a sustainable alternative for safe drinking water. A novel technology, Subsurface Arsenic Re

  17. Arsenic speciation and fucoxanthin analysis from seaweed dietary supplements using LC-MS

    Science.gov (United States)

    Inorganic species are considered more toxic to humans than organic arsenic and total arsenic. Analysis of total arsenic in metallic form, organic and inorganic arsenic species from seaweeds and dietary supplements using LC-ICP-MS was developed. Solvent extraction with sonication and microwave extr...

  18. BIOACCESSIBILITY OF ARSENIC BOUND TO CORUNDUM USING A SIMULATED GASTROINTESTINAL SYSTEM

    Science.gov (United States)

    Ingestion of soil contaminated with arsenic is an important pathway for human exposure to arsenic. The risk posed by ingestion of arsenic-contaminated soil depends on how much arsenic is dissolved in the gastrointestinal tract. Aluminum oxides are common components in the soil a...

  19. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lu [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Yan Xiulan [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Liao Xiaoyong, E-mail: liaoxy@igsnrr.ac.cn [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China); Wen Yi; Chong Zhongyi; Liang Tao [Beijing Key Lab of Industrial Land Contamination and Remediation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101 (China)

    2011-12-15

    The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots, demonstrating the suppression of arsenic translocation compared to the corresponding treatment without phenanthrene. Under the co-exposure, As(III) concentrations in fronds deceased by 12-73%, and at higher arsenic exposure level ({>=}10 mg/L), As(V) in fronds and As(III) in roots increased compared to the single arsenic treatment. Arsenic exposure elevated phenanthrene concentrations in root by 39-164%. The co-existence of arsenic and phenanthrene had little impact on plant arsenic accumulation, although synergistic effect on antioxidants was observed, suggesting the special physiological process of P. vitatta in the co-exposure and application potential of P. vitatta in phytoremediation of arsenic and PAHs co-contamination. - Highlights: > Pteris vitatta L. show tolerance to the arsenic and phenanthrene co-exposure. > P. vitatta efficiently accumulate arsenic and simultaneously enhance phenanthrene dissipation. > Phenanthrene suppresses arsenic translocation from roots to fronds. > Phenanthrene causes As(III) elevation in roots while reduction in fronds. > Synergistic effect potentiates the toxicity and antioxidants in plant. - Pteris vitatta L. not only efficiently accumulate arsenic but also enhance phenanthrene dissipation under the arsenic and phenanthrene co-exposure.

  20. Analytical approaches for arsenic determination in air: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Rodas, Daniel, E-mail: rodas@uhu.es [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Chemistry and Materials Science, University of Huelva, 21071 Huelva (Spain); Sánchez de la Campa, Ana M. [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain); Department of Mining, Mechanic and Energetic Engineering, ETSI, University of Huelva, 21071 Huelva (Spain); Alsioufi, Louay [Centre for Research in Sustainable Chemistry-CIQSO, Associated Unit CSIC-University of Huelva “Atmospheric Pollution”, Campus El Carmen, University of Huelva, 21071 Huelva (Spain)

    2015-10-22

    This review describes the different steps involved in the determination of arsenic in air, considering the particulate matter (PM) and the gaseous phase. The review focuses on sampling, sample preparation and instrumental analytical techniques for both total arsenic determination and speciation analysis. The origin, concentration and legislation concerning arsenic in ambient air are also considered. The review intends to describe the procedures for sample collection of total suspended particles (TSP) or particles with a certain diameter expressed in microns (e.g. PM10 and PM2.5), or the collection of the gaseous phase containing gaseous arsenic species. Sample digestion of the collecting media for PM is described, indicating proposed and established procedures that use acids or mixtures of acids aided with different heating procedures. The detection techniques are summarized and compared (ICP-MS, ICP-OES and ET-AAS), as well those techniques capable of direct analysis of the solid sample (PIXE, INAA and XRF). The studies about speciation in PM are also discussed, considering the initial works that employed a cold trap in combination with atomic spectroscopy detectors, or the more recent studies based on chromatography (GC or HPLC) combined with atomic or mass detectors (AFS, ICP-MS and MS). Further trends and challenges about determination of As in air are also addressed. - Highlights: • Review about arsenic in the air. • Sampling, sample treatment and analysis of arsenic in particulate matter and gaseous phase. • Total arsenic determination and arsenic speciation analysis.

  1. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.;

    2012-01-01

    of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography–ICP-MS following microwave...

  2. History of Arsenic as a Poison and Medicinal

    Science.gov (United States)

    Since ancient times, human exposure to the metalloid arsenic has been both intentional and unintentional. The intentional exposure to arsenic has been to inflict harm on others as well as to be a curative agent for those who are ill. The unintentional exposure has either been f...

  3. Arsenic in Drinking Water--The Silent Killer

    Science.gov (United States)

    Wajrak, Magdalena

    2011-01-01

    Natural arsenic salts are present in all waters, with natural concentrations of less than 10 parts per billion (ppb). Unfortunately, there is an increasing number of countries where toxic arsenic compounds in groundwater, which is used for drinking and irrigation, have been detected at concentrations above the World Health Organization's…

  4. Estimation of arsenic in nail using silver diethyldithiocarbamate method

    Directory of Open Access Journals (Sweden)

    Habiba Akhter Bhuiyan

    2015-08-01

    Full Text Available Spectrophotometric method of arsenic estimation in nails has four steps: a washing of nails, b digestion of nails, c arsenic generation, and finally d reading absorbance using spectrophotometer. Although the method is a cheapest one, widely used and effective, it is time consuming, laborious and need caution while using four acids.

  5. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    Science.gov (United States)

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  6. Instrumental neutron activation analysis of sectioned hair strands for arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Guinn, V.P. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Instrumental neutron activation analysis (INAA) is a valuable and proven method for the quantitative analysis of sectioned human head hair specimens for arsenic - and, if arsenic is found to be present at high concentrations, the approximate times when it was ingested. Reactor-flux thermal-neutron activation of the hair samples produces 26.3-h {sup 76}As, which is then detected by germanium gamma-ray spectrometry, measuring the 559.1-keV gamma-ray peak of {sup 76}As. Even normal levels of arsenic in hair, in the range of <1 ppm up to a few parts per million of arsenic can be measured - and the far higher levels associated with large internal doses of arsenic, levels approaching or exceeding 100 ppm arsenic, are readily and accurately measurable. However, all phases of forensic investigations of possible chronic (or in some cases, acute) arsenic poisoning are important, i.e., not just the analysis phase. All of these phases are discussed in this paper, based on the author`s experience and the experience of others, in criminal cases. Cases of chronic arsenic poisoning often reveal a series of two to four doses, perhaps a few months apart, with increasing doses.

  7. Poisoned Playgrounds: Arsenic in "Pressure-Treated" Wood.

    Science.gov (United States)

    Sharp, Renee; Walker, Bill

    This study of 180 pressure-treated wood samples shows that treated wood is a much greater source of arsenic exposure for children than arsenic-contaminated drinking water. The report determines that an average 5-year-old, playing less than 2 weeks on a chromated-copper-arsenate-treated (CCA) wood play set would exceed the lifetime cancer risk…

  8. In vitro toxicological characterisation of three arsenic-containing hydrocarbons.

    Science.gov (United States)

    Meyer, S; Matissek, M; Müller, S M; Taleshi, M S; Ebert, F; Francesconi, K A; Schwerdtle, T

    2014-05-01

    Arsenic-containing hydrocarbons are one group of fat-soluble organic arsenic compounds (arsenolipids) found in marine fish and other seafood. A risk assessment of arsenolipids is urgently needed, but has not been possible because of the total lack of toxicological data. In this study the cellular toxicity of three arsenic-containing hydrocarbons was investigated in cultured human bladder (UROtsa) and liver (HepG2) cells. Cytotoxicity of the arsenic-containing hydrocarbons was comparable to that of arsenite, which was applied as the toxic reference arsenical. A large cellular accumulation of arsenic, as measured by ICP-MS/MS, was observed after incubation of both cell lines with the arsenolipids. Moreover, the toxic mode of action shown by the three arsenic-containing hydrocarbons seemed to differ from that observed for arsenite. Evidence suggests that the high cytotoxic potential of the lipophilic arsenicals results from a decrease in the cellular energy level. This first in vitro based risk assessment cannot exclude a risk to human health related to the presence of arsenolipids in seafood, and indicates the urgent need for further toxicity studies in experimental animals to fully assess this possible risk.

  9. Arsenic drinking water regulations in developing countries with extensive exposure.

    Science.gov (United States)

    Smith, Allan H; Smith, Meera M Hira

    2004-05-20

    The United States Public Health Service set an interim standard of 50 microg/l in 1942, but as early as 1962 the US Public Health Service had identified 10 microg/l as a goal which later became the World Health Organization Guideline for drinking water in 1992. Epidemiological studies have shown that about one in 10 people drinking water containing 500 microg/l of arsenic over many years may die from internal cancers attributable to arsenic, with lung cancer being the surprising main contributor. A prudent public health response is to reduce the permissible drinking water arsenic concentrations. However, the appropriate regulatory response in those developing countries with large populations with much higher concentrations of arsenic in drinking water, often exceeding 100 microg/l, is more complex. Malnutrition may increase risks from arsenic. There is mounting evidence that smoking and arsenic act synergistically in causing lung cancer, and smoking raises issues of public health priorities in developing countries that face massive mortality from this product. Also, setting stringent drinking water standards will impede short term solutions such as shallow dugwells. Developing countries with large populations exposed to arsenic in water might reasonably be advised to keep their arsenic drinking water standards at 50 microg/l.

  10. Characterization of Roseomonas and Nocardioides spp. for arsenic transformation.

    Science.gov (United States)

    Bagade, Aditi V; Bachate, Sachin P; Dholakia, Bhushan B; Giri, Ashok P; Kodam, Kisan M

    2016-11-15

    The metalloid arsenic predominantly exists in the arsenite [As(III)] and arsenate [As(V)]. These two forms are respectively oxidized and reduced by microbial redox processes. This study was designed to bioprospect arsenic tolerating bacteria from Lonar lake and to characterize their arsenic redoxing ability. Screening of sixty-nine bacterial species isolated from Lonar lake led to identification of three arsenic-oxidizing and seven arsenic-reducing species. Arsenite oxidizing isolate Roseomonas sp. L-159a being closely related to Roseomonas cervicalis ATCC 49957 oxidized 2mM As(III) in 60h. Gene expression of large and small subunits of arsenite oxidase respectively showed 15- and 17-fold higher expression. Another isolate Nocardioides sp. L-37a formed a clade with Nocardioides ghangwensis JC2055, exhibited normal growth with different carbon sources and pH ranges. It reduced 2mM As(V) in 36h and showed constitutive expression of arsenate reductase which increased over 4-fold upon As(V) exposure. Genetic markers related to arsenic transformation were identified and characterized from the two isolates. Moderate resistance against the arsenicals was exhibited by the two isolates in the range of 1-5mM for As(III) and 1-200mM for As(V). Altogether we provide multiple evidences to indicate that Roseomonas sp. and Nocardioides sp. exhibited arsenic transformation ability.

  11. Arsenic in Ground Water of the United States

    Science.gov (United States)

    ... found in the West, the Midwest, parts of Texas, and the Northeast. See Ryker (2001) for more information. See Focazio and others (2000) for the use of available data for characterizing arsenic concentrations in public-water supply systems. See Gronberg (2011) for updated arsenic ...

  12. European GEMAS mapping of agricultural soils: Arsenic results

    Science.gov (United States)

    Tarvainen, Timo; Reimann, Clemens; Albanese, Stefano; Birke, Manfred; Poňavič, Michal; Ladenberger, Anna

    2014-05-01

    The GEMAS data set provides a homogenised overview of arsenic distribution in agricultural (Ap horizon, 0-20 cm) and grazing land soil (Gr, 0-10 cm) of Europe. The GEMAS mapping project covers western Europe at a sample density of 1 site/2500 km2. Arsenic concentrations are reported for the

  13. Rapid biotransformation of arsenic by a model protozoan Tetrahymena thermophila

    Energy Technology Data Exchange (ETDEWEB)

    Yin Xixiang [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhang Yongyu; Yang Jun [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Zhu Yongguan, E-mail: ygzhu@rcees.ac.cn [Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2011-04-15

    Arsenic biomethylation and biovolatilization are thought to be two important metabolic pathways in aquatic and soil environments. Tetrahymena thermophila is a genus of free-living ciliated protozoan that is widely distributed in freshwater environments around the world. In this study, we studied arsenic accumulation, speciation, efflux, methylation and volatilization in this unicellular eukaryote exposed to various concentrations of arsenate. Our results show that T. thermophila accumulated 187 mg.kg{sup -1} dry weight of arsenic when exposed to 40 {mu}M for 48 h, with MMAs(V) (monomethylarsenate) and DMAs(V) (dimethylarsenate) as the dominant species, accounting for 66% of the total arsenic. Meanwhile, arsenate, arsenite, MMAs(V) and DMAs(V) were detected in the culture medium; the last three were released by the cells. The production of volatile arsenic increased with increasing external As(V) concentrations and exposure time. To our knowledge, this is the first study on arsenic metabolism, particularly biomethylation and biovolatilization, in protozoa. - Tetrahymena thermophila can rapidly methylate arsenic, and produce volatile arsenicals.

  14. Spatial modeling for groundwater arsenic levels in North Carolina.

    Science.gov (United States)

    Kim, Dohyeong; Miranda, Marie Lynn; Tootoo, Joshua; Bradley, Phil; Gelfand, Alan E

    2011-06-01

    To examine environmental and geologic determinants of arsenic in groundwater, detailed geologic data were integrated with well water arsenic concentration data and well construction data for 471 private wells in Orange County, NC, via a geographic information system. For the statistical analysis, the geologic units were simplified into four generalized categories based on rock type and interpreted mode of deposition/emplacement. The geologic transitions from rocks of a primary pyroclastic origin to rocks of volcaniclastic sedimentary origin were designated as polylines. The data were fitted to a left-censored regression model to identify key determinants of arsenic levels in groundwater. A Bayesian spatial random effects model was then developed to capture any spatial patterns in groundwater arsenic residuals into model estimation. Statistical model results indicate (1) wells close to a transition zone or fault are more likely to contain detectible arsenic; (2) welded tuffs and hydrothermal quartz bodies are associated with relatively higher groundwater arsenic concentrations and even higher for those proximal to a pluton; and (3) wells of greater depth are more likely to contain elevated arsenic. This modeling effort informs policy intervention by creating three-dimensional maps of predicted arsenic levels in groundwater for any location and depth in the area.

  15. CHURCHILL COUNTY, NEVADA ARSENIC STUDY: WATER CONSUMPTION AND EXPOSURE BIOMARKERS

    Science.gov (United States)

    The US Environmental Protection Agency is required to reevaluate the Maximum Contaminant Level (MCL) for arsenic in 2006. To provide data for reducing uncertainties in assessing health risks associated with exposure to low levels (<200 g/l) of arsenic, a large scale biomarker st...

  16. Arsenic and Environmental Health: State of the Science and ...

    Science.gov (United States)

    Background: Exposure to inorganic and organic arsenic compounds is a major public health problem that affects hundreds of millions of people worldwide. Exposure to arsenic is associated with cancer and noncancer effects in nearly every organ in the body, and evidence is mounting for health effects at lower levels of arsenic exposure than previously thought. Building from a tremendous knowledge base with > 1,000 scientific papers published annually with “arsenic” in the title, the question becomes, what questions would best drive future research directions? Objectives: The objective is to discuss emerging issues in arsenic research and identify data gaps across disciplines. Methods: The National Institutes of Health’s National Institute of Environmental Health Sciences Superfund Research Program convened a workshop to identify emerging issues and research needs to address the multi-faceted challenges related to arsenic and environmental health. This review summarizes information captured during the workshop. Discussion: More information about aggregate exposure to arsenic is needed, including the amount and forms of arsenic found in foods. New strategies for mitigating arsenic exposures and related health effects range from engineered filtering systems to phytogenetics and nutritional interventions. Furthermore, integration of omics data with mechanistic and epidemiological data is a key step toward the goal of linking biomarkers of exposure and suscepti

  17. Arsenic from community water fluoridation: quantifying the effect.

    Science.gov (United States)

    Peterson, Emily; Shapiro, Howard; Li, Ye; Minnery, John G; Copes, Ray

    2016-04-01

    Community water fluoridation is a WHO recommended strategy to prevent dental carries. One debated concern is that hydrofluorosilicic acid, used to fluoridate water, contains arsenic and poses a health risk. This study was undertaken to determine if fluoridation contributes to arsenic in drinking water, to estimate the amount of additional arsenic associated with fluoridation, and compare this to the National Sanitation Foundation/American National Standards Institute (NSF/ANSI) standard and estimates from other researchers. Using surveillance data from Ontario drinking water systems, mixed effects linear regression was performed to examine the effect of fluoridation status on the difference in arsenic concentration between raw water and treated water samples. On average, drinking water treatment was found to reduce arsenic levels in water in both fluoridated and non-fluoridated systems by 0.2 μg/L. However, fluoridated systems were associated with an additional 0.078 μg/L (95% CI 0.021, 0.136) of arsenic in water when compared to non-fluoridated systems (P = 0.008) while controlling for raw water arsenic concentrations, types of treatment processes, and source water type. Our estimate is consistent with concentrations expected from other research and is less than 10% of the NSF/ANSI standard of 1 μg/L arsenic in water. This study provides further information to inform decision-making regarding community water fluoridation.

  18. An attempt to electrically enhance phytoremediation of arsenic contaminated water

    NARCIS (Netherlands)

    Kubiak, J.J.; Khankhane, P.J.; Kleingeld, P.J.; Lima, A.T.

    2012-01-01

    Water polluted with arsenic presents a challenge for remediation. A combination of phyto- and electro-remediation was attempted in this study. Four tanks were setup in order to assess the arsenic removal ability of the two methods separately and in combination. Lemna minor was chosen for As remediat

  19. POU/POE TREATMENT OF ARSENIC IN GROUND WATER

    Science.gov (United States)

    Point-of-use/Point-of-entry (POU/POE) arsenic removal systems were installed in seventeen homes that were found to have high levels of arsenic (50-480ug/L) in their well water. This presetation will describe the process and the problems encountered in selecting the treatment syst...

  20. A novel method to remove arsenic from water

    Science.gov (United States)

    McDonald, Kyle J.

    Arsenic is a toxic metalloid that is found ubiquitously in earth's crust. The release of arsenic into the aqueous environment and the subsequent contamination in drinking water supplies is a worldwide health crisis. Arsenic is the culprit of the largest mass poisoning of a population in history and the number one contaminant of concern in the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Priority List of Hazardous Substances. Practical, affordable, and reliable treatment technologies have yet to be developed due to the difficulty in overcoming many socioeconomic and geochemical barriers. Recent studies have reported that cupric oxide (CuO) nanoparticles have shown promising characteristics as a sorbent to remove arsenic from water. However, these studies were conducted in controlled environments and have yet to test the efficacy of this treatment technology in the field. In this manuscript, a flow through adsorption column containing CuO nanoparticles was developed for lab based studies to remove arsenic from water. These studies were expanded to include a field demonstration of the CuO nanoparticle flow through adsorption column to remove naturally occurring arsenic from groundwater associated with agriculture, domestic groundwater, and in situ recovery (ISR) uranium production process water. A major limitation for many treatment technologies is the difficulties presented in the disposal of waste byproducts such as sludge and spent media. In the research contained in this manuscript, we investigate the processes of regenerating the CuO nanoparticles using sodium hydroxide (NaOH). The use of the regenerated CuO nanoparticles was examined in batch experiments and implemented in the flow through column studies. The ability to regenerate and reuse a sorbent drastically reduces costs involved in manufacturing and disposal of spent media. Also, the CuO nanoparticles were evaluated in batch experiments for the removal of naturally

  1. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  2. Speciation of arsenic and mercury in feed: why and how?

    Directory of Open Access Journals (Sweden)

    Hedegaard, RV.

    2011-01-01

    Full Text Available The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area of toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic mercury. In the present paper an overview of the current knowledge on arsenic and mercury speciation in feed and analytical methodologies for arsenic and mercury speciation analysis are given. Additionally the current status and expected future developments within legislation for trace element speciation in feed as well as initiatives for the establishment of standardized methods for determination of inorganic arsenic and methylmercury are presented.

  3. Outbreak of fatal arsenic poisoning caused by contaminated drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, C.W.; Stroube, R.B.; Rubio, T.; Siudyla, E.A.; Miller, G.B. Jr.

    An outbreak of subacute poisoning occurred among nine members of a family; eight were ill with gastrointestinal symptoms, four developed encephalopathy, and two died. Abnormal liver function tests and leukopenia were common laboratory findings. Epidemiologic and environmental investigations traced the source of arsenic exposure to a farm well with water containing 108 ppm arsenic. The soil adjacent to the well was also contaminated with arsenic, possibly from waste pesticide. Presumably, arsenic gained access to the well through obvious leaks in the well's casing. To our knowledge, this is only the second reported outbreak of fatal arsenic poisoning from contaminated drinking water and one of few instances where illness followed exposure to a toxic substance which was disposed of, or possibly disposed of, in an indiscriminate manner.

  4. Oral arsenic trioxide poisoning and secondary hazard from gastric content.

    Science.gov (United States)

    Kinoshita, Hidenori; Hirose, Yasuo; Tanaka, Toshiharu; Yamazaki, Yoshihiko

    2004-12-01

    In a suicide attempt, a 54-year-old man ingested arsenic trioxide. Gastric lavage was performed, but most of the poison remained as a mass in his stomach. A total gastrectomy was also performed to avoid intestinal perforation and arsenic poisoning. After the operation, he developed ventricular fibrillation. At one point, his circulation recovered spontaneously, but he later died from refractory circulatory failure. Many medical staff members were exposed to fumes from the patient's stomach. Some of the staff were diagnosed with corneal erosion or laryngitis. Because arsenic trioxide reacts with acid to produce arsine, the symptoms experienced by medical staff are directly attributable to arsine produced as a result of the reaction of arsenic trioxide with gastric acid. This case highlights the need for the introduction of protective measures to safeguard medical staff from exposure to arsine gas during the treatment of patients poisoned from ingested arsenic trioxide.

  5. Behavior of arsenic in hydrometallurgical zinc production and environmental impact

    Directory of Open Access Journals (Sweden)

    Peltekov A.B.

    2014-12-01

    Full Text Available The presence of arsenic in zinc sulphide concentrates is particularly harmful, because it creates problems in zinc electrolysis. The main source of arsenic in non-ferrous metallurgy is arsenopyrite (FeAsS. In oxidative roasting of zinc concentrates, FeAsS oxidizes to arsenic oxides (As2O3, As2O5. In this connection a natural FeAsS was examined, and also the distribution of arsenic in the products of the roasting process, the cycle of sulphuric acid obtaining and the leaching of zinc calcine were studied. The arsenic contamination of soils in the vicinity of nonferrous metals smelter KCM SA, Plovdiv, Bulgaria as a result of zinc and lead productions has been studied.

  6. Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli.

    Science.gov (United States)

    Singh, Shailendra; Kang, Seung Hyun; Lee, Wonkyu; Mulchandani, Ashok; Chen, Wilfred

    2010-03-01

    Phytochelatin (PC) is a naturally occurring peptide with high affinity towards arsenic (As). In this article, we demonstrated the systematic engineering of PC-producing E. coli for As accumulation by addressing different bottlenecks in PC synthesis as well as As transport. Phytochelatin synthase from Schizosaccharomyces pombe (SpPCS) was expressed in E. coli resulting in 18 times higher As accumulation. PC production was further increased by co-expressing a feedback desensitized gamma-glutamylcysteine synthetase (GshI*), resulting in 30-fold higher PC levels and additional 2-fold higher As accumulation. The significantly increased PC levels were exploited further by co-expressing an arsenic transporter GlpF, leading to an additional 1.5-fold higher As accumulation. These engineering steps were finally combined in an arsenic efflux deletion E. coli strain to achieve an arsenic accumulation level of 16.8 micromol/g DCW, a 80-fold improvement when compared to a control strain not producing phytochelatins.

  7. Arsenic Species in Drinking Water Wells in the USA with High Arsenic Concentrations

    Science.gov (United States)

    As part of the United States Environmental Protection Agency (USEPA) arsenic treatment demonstration program, 65 five well waters scattered across the US were speciated for As(III) and As(V). The speciation test data showed that most (60) well waters had one dominant species, but...

  8. Accumulation of arsenic in leaves and grain are affected by variety and soil arsenic

    Science.gov (United States)

    The arsenic (As) levels in rice grains and food products can reach toxic levels when produced under certain growing conditions found mostly in Asia. The World Health Organization (WHO) recently set a CODEX limit of 0.2 ppm inorganic As in milled white rice, and lower limits are expected to be set f...

  9. Biological removal of arsenic pollution by soil fungi.

    Science.gov (United States)

    Srivastava, Pankaj Kumar; Vaish, Aradhana; Dwivedi, Sanjay; Chakrabarty, Debasis; Singh, Nandita; Tripathi, Rudra Deo

    2011-05-15

    Fifteen fungal strains were isolated from arsenic contaminated (range 9.45-15.63 mg kg(-1)) agricultural soils from the state of West Bengal, India. Five fungal strains were belonged to the Aspergillus and Trichoderma group each, however, remaining five were identified as the Neocosmospora, Sordaria, Rhizopus, Penicillium and sterile mycelial strain. All these fungal strains were cultivated on medium supplemented with 100, 500, 1000, 5000 and 10,000 mg l(-1) of sodium arsenate. After 30-day cultivation under laboratory conditions, radial growth of these strains was determined and compared with control. Toxicity and tolerance of these strains to arsenate were evaluated on the basis of tolerance index. Out of fifteen, only five fungal strains were found resistant and survived with tolerance index pattern as 0.956 (sterile mycelial strain)>0.311 (Rhizopus sp.)>0.306 (Neocosmospora sp.)>0.212 (Penicillium sp.)>0.189 (Aspergillus sp.) at 10,000 mg l(-1) of arsenate. The arsenic removal efficacy of ten fungal strains, tolerant to 5000 mg l(-1) arsenate, was also assayed under laboratory conditions for 21 days. All these strains were cultivated individually on mycological broth enriched with 10 mg l(-1) of arsenic. The initial and final pH of cultivating medium, fungal biomass and removal of arsenic by each fungal strain were evaluated. Fungal biomass of ten strains removed arsenic biologically from the medium which were ranged from 10.92 to 65.81% depending on fungal species. The flux of biovolatilized arsenic was determined indirectly by estimating the sum of arsenic content in fungal biomass and medium. The mean percent removal as flux of biovolatilized arsenic ranged from 3.71 to 29.86%. The most effective removal of arsenic was observed in the Trichoderma sp., sterile mycelial strain, Neocosmospora sp. and Rhizopus sp. fungal strains. These fungal strains can be effectively used for the bioremediation of arsenic-contaminated agricultural soils.

  10. [Mixture Leaching Remediation Technology of Arsenic Contaminated Soil].

    Science.gov (United States)

    Chen, Xun-feng; Li, Xiao-ming; Chen, Can; Yang, Qi; Deng, Lin-jing; Xie, Wei-qiang; Zhong, Yui; Huang, Bin; Yang, Wei-qiang; Zhang, Zhi-bei

    2016-03-15

    Soil contamination of arsenic pollution has become a severely environmental issue, while soil leaching is an efficient method for remediation of arsenic-contaminated soil. In this study, batch tests were primarily conducted to select optimal mixture leaching combination. Firstly, five conventional reagents were selected and combined with each other. Secondly, the fractions were analyzed before and after the tests. Finally, to explore the feasibility of mixed leaching, three soils with different arsenic pollution levels were used to compare the leaching effect. Comparing with one-step washing, the two-step sequential washing with different reagents increased the arsenic removal efficiency. These results showed that the mixture of 4 h 0.5 mol · L⁻¹ NaOH + 4 h 0.1 mol · L⁻¹ EDTA was found to be practicable, which could enhance the removal rate of arsenic from 66.67% to 91.83%, and the concentration of arsenic in soil was decreased from 186 mg · kg⁻¹ to 15.2 mg · kg⁻¹. Furthermore, the results indicated that the distribution of fractions of arsenic in soil changed apparently after mixture leaching. Leaching process could significantly reduce the available contents of arsenic in soil. Moreover, the mixture of 0.5 mol · L⁻¹ NaOH + 0.1 mol L⁻¹ EDTA could well decrease the arsenic concentration in aluminum-type soils, while the mixture of 0.5 mol · L⁻¹ OX + 0.5 mol · L⁻¹ NaOH could well decrease the arsenic concentration in iron-type soils.

  11. Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides

    OpenAIRE

    Bahadar, Haji; Mostafalou, Sara; Abdollahi, Mohammad

    2014-01-01

    This review is undertaken to address the possible role of arsenic and pesticides in the prevalence of diabetes in Pakistan and to highlight a resourceful targeted research in this area. A bibliographic search of scientific databases was conducted with key words of “epidemics of diabetes in Pakistan”, “diabetes in Asia”, “diabetes mellitus and environmental pollutants”, “diabetes mellitus and heavy metals”, “diabetes mellitus and pesticides”, “prevalence of pesticides in Pakistan”, and “heavy ...

  12. Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009

    OpenAIRE

    Zhao, Chungui; Zhang, Yi; Chan, Zhuhua; Chen, Shicheng; YANG, SUPING

    2015-01-01

    Arsenic (As) is widespread in the environment and causes numerous health problems. Rhodopseudomonas palustris has been regarded as a good model organism for studying arsenic detoxification since it was first demonstrated to methylate environmental arsenic by conversion to soluble or gaseous methylated species. However, the detailed arsenic resistance mechanisms remain unknown though there are at least three arsenic-resistance operons (ars1, ars2, and ars3) in R. palustris. In this study, we i...

  13. Arsenic occurrence in drinking water supply systems in ten municipalities in Vojvodina Region, Serbia.

    Science.gov (United States)

    Jovanovic, Dragana; Jakovljević, Branko; Rašić-Milutinović, Zorica; Paunović, Katarina; Peković, Gordana; Knezević, Tanja

    2011-02-01

    Vojvodina, a northern region of Serbia, belongs to the Pannonian Basin, whose aquifers contain high concentrations of arsenic. This study represents arsenic levels in drinking water in ten municipalities in Serbia. Around 63% of all water samples exceeded Serbian and European standards for arsenic in drinking water. Large variations in arsenic were observed among supply systems. Arsenic concentrations in public water supply systems in Vojvodina were much higher than in other countries in the Pannonian Basin.

  14. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    Directory of Open Access Journals (Sweden)

    Drewniak Lukasz

    2014-01-01

    Full Text Available The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i produced siderophores that promote dissolution of minerals, (ii were resistant to dissolved arsenic compounds, (iii were able to use the dissolved arsenates as the terminal electron acceptor, and (iii were able to use copper minerals containing arsenic minerals (e.g., enargite as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  15. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  16. Arsenic(III) and arsenic(V) speciation during transformation of lepidocrocite to magnetite.

    Science.gov (United States)

    Wang, Yuheng; Morin, Guillaume; Ona-Nguema, Georges; Brown, Gordon E

    2014-12-16

    Bioreduction of As(V) and As-bearing iron oxides is considered to be one of the key processes leading to arsenic pollution in groundwaters in South and Southeast Asia. Recent laboratory studies with simple aqueous media showed that secondary Fe(II)-bearing phases (e.g., magnetite and green rust), which commonly precipitate during bioreduction of iron oxides, captured arsenic species. The aim of the present study was to follow arsenic speciation during the abiotic Fe(II)-induced transformation of As(III)- and As(V)-doped lepidocrocite to magnetite, and to evaluate the influence of arsenic on the transformation kinetics and pathway. We found green rust formation is an intermediate phase in the transformation. Both As(III) and As(V) slowed the transformation, with the effect being greater for As(III) than for As(V). Prior to the formation of magnetite, As(III) adsorbed on both lepidocrocite and green rust, whereas As(V) associated exclusively with green rust, When magnetite precipitated, As(III) formed surface complexes on magnetite nanoparticles and As(V) is thought to have been incorporated into the magnetite structure. These processes dramatically lowered the availability of As in the anoxic systems studied. These results provide insights into the behavior of arsenic during magnetite precipitation in reducing environments. We also found that As(V) removal from solution was higher than As(III) removal following magnetite formation, which suggests that conversion of As(III) to As(V) is preferred when using As-magnetite precipitation to treat As-contaminated groundwaters.

  17. The Co-Evolution of Asian Aquifers and Arsenic: How Understanding Sedimentary History can Help Predict Patterns of Arsenic Heterogeneity

    Science.gov (United States)

    Weinman, B. A.; Goodbred, S. L.; Savage, K.; Zheng, Y.; Radloff, K.; Singhvi, A.; Charlet, L.; Berg, M.; Eiche, E.; Cribb, W.; van Geen, A.

    2008-12-01

    After a decade of research, there is still no broad-scale understanding of why Asian aquifers support such heterogeneous distributions of groundwater arsenic. In countries like Bangladesh, Nepal, and Vietnam, it is often the case that wells spaced a few meters apart and drilled to the same depth have vastly different concentrations of dissolved arsenic (i.e., 100μg/L). While there is a general consensus that older Pleistocene sediments are typically depleted in arsenic relative to younger aquifer sediments, little is known about either the geological and geochemical evolution of these aquifers with time or the exact nature of their 3-dimensional stratigraphy. To better, and more broadly, understand why local groundwater arsenic patterns exhibit such heterogeneity, sedimentological investigations were undertaken in three arsenic-contaminated Asian villages, including: (1) a hyper-avulsive floodplain in Nepal's Terai, (2) an abandoned portion of the Brahmaputra River in Bangladesh, and (3) a meander bend along Vietnam's stable, fault-controlled Red River complex. Stratigraphic cross-sections, facies determinations, and luminescence dating of the aquifer sands along transects (~1 km long and ~15 m deep) from each of these villages indicate that the aquifer deposits are not uniform, that they vary in the subsurface, and that their depositional ages correspond to concentrations of arsenic dissolved in the groundwater. Comparisons of arsenic concentrations with aquifer age show that there is an inverse relationship, indicating that the age of the sediment does play a role in arsenic's availability and distribution. While there is still much to be learned about the exact mechanism(s) and rate(s) by which arsenic is being liberated, our investigations overall support a geologic model where much of the arsenic variance is explainable by stratigraphic variations over small distances (~10 meters) that results from the dynamic depositional conditions created by these active

  18. Digital Data Set of Orchards Where Arsenical Pesticides Were Likely Used in Clarke and Frederick Counties, Virginia, and Berkeley and Jefferson Counties, West Virginia

    Science.gov (United States)

    Reed, Bradley W.; Larkins, Peter; Robinson,, Gilpin R.

    2006-01-01

    of this past arsenical pesticide use is not known in the region. Based on estimates from other areas (D'Angelo et al., 1996), cumulate application over the period of arsenical pesticide use may have been as much as 22.4 g/m2 of arsenic and 100 g/m2 of lead in orchard areas. In minimally disturbed orchard soils, arsenic and lead are largely retained in the top few centimeters of the soil horizon; intra-soil redistribution of these metals occurs but appears to be limited (Veneman et al. 1983; Peryea, 1998). Surface concentrations of arsenic and lead in undisturbed orchard soils where arsenical pesticides were used commonly exceed 20 mg/kg As and 100 mg/kg Pb (Veneman et al., 1983; Jones and Hatch, 1937). The digital data set of orchard locations was used to aid assessment of the likely occurrence and distribution of arsenical pesticide residues in surface soils. Most areas of orchard cultivation were sited in areas overlying carbonate bedrock in the Valley and Ridge province. This data set needed to be created since there was no reliable and complete land cover data set identifying areas under orchard cultivation during the time period of extensive use of arsenical pesticides in the study area as of the time of the study. The spatial database of orchard areas was compiled using twenty-seven USGS 7.5 minute series topographical maps covering the study area of Clarke and Frederick Counties, Virginia, and Berkeley and Jefferson Counties, West Virginia. These maps were published between 1943 and 1972 at 1:24,000 scale, with the oldest topographic map available from the US Geological Survey map archive for each area being chosen, going back only as far as the 1920s when use of arsenical pesticides started. Orchard areas on the topographic maps were traced in order to aid in the digitization of the sites. The topographic maps were then scanned and geographically referenced using ERDAS Imagine version 8.7, a raster editing program, turning them into rectifi

  19. Arsenic absorption by members of the Brassicacea family, analysed by neutron activation, k{sub 0}-method - preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Uemura, George; Matos, Ludmila Vieira da Silva; Silva, Maria Aparecida da; Ferreira, Alexandre Santos Martorano; Menezes, Maria Angela de Barros Correia [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN/MG), Belo Horizonte, MG (Brazil)], e-mail: george@cdtn.br, e-mail: menezes@cdtn.br

    2009-07-01

    Natural arsenic contamination is a cause for concern in many countries of the world including Argentina, Bangladesh, Chile, China, India, Mexico, Thailand and the United States of America and also in Brazil, specially in the Iron Quadrangle area, where mining activities has been contributing to aggravate natural contamination. Brassicacea is a plant family with edible species (arugula, cabbage, cauliflower, cress, kale, mustard, radish), ornamental ones (alysssum, field pennycress, ornamental cabbages and kales) and some species are known as metal and metalloid accumulators (Indian mustard, field pennycress), like chromium, nickel, and arsenic. The present work aimed at studying other taxa of the Brassicaceae family to verify their capability in absorbing arsenic, under controlled conditions, for possible utilisation in remediation activities. The analytical method chosen was neutron activation analysis, k{sub 0} method, a routine technique at CDTN, and also very appropriate for arsenic studies. To avoid possible interference from solid substrates, like sand or vermiculite, attempts were carried out to keep the specimens in 1/4 Murashige and Skoog basal salt solution (M and S). Growth was stumped, plants withered and perished, showing that modifications in M and S had to be done. The addition of nickel and silicon allowed normal growth of the plant specimens, for periods longer than usually achieved (more than two months); yielding samples large enough for further studies with other techniques, like ICP-MS, and other targets, like speciation studies. The results of arsenic absorption are presented here and the need of nickel and silicon in the composition of M and S is discussed. (author)

  20. Removal of arsenic from Janghang smelter site and energy crops-grown soil with soil washing using magnetic iron oxide

    Science.gov (United States)

    Han, Jaemaro; Zhao, Xin; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Arsenic compounds are considered carcinogen and easily enter drinking water supplies with their natural abundance. US Environmental Protection Agency is finalizing a regulation to reduce the public health risks from arsenic in drinking water by revising the current drinking water standard for arsenic from 50 ppb to 10 ppb in 2001 (USEPA, 2001). Therefore, soil remediation is also growing field to prevent contamination of groundwater as well as crop cultivation. Soil washing is adjusted as ex-situ soil remediation technique which reduces volume of the contaminated soil. The technique is composed of physical separation and chemical extraction to extract target metal contamination in the soil. Chemical extraction methods have been developed solubilizing contaminants containing reagents such as acids or chelating agents. And acid extraction is proven as the most commonly used technology to treat heavy metals in soil, sediment, and sludge (FRTR, 2007). Due to the unique physical and chemical properties, magnetic iron oxide have been used in diverse areas including information technology and biomedicine. Magnetic iron oxides also can be used as adsorbent to heavy metal enhancing removal efficiency of arsenic concentration. In this study, magnetite is used as the washing agent with acid extraction condition so that the injected oxide can be separated by magnetic field. Soil samples were collected from three separate areas in the Janghang smelter site and energy crops-grown soil to have synergy effect with phytoremediation. Each sample was air-dried and sieved (2mm). Soil washing condition was adjusted on pH in the range of 0-12 with hydrogen chloride and sodium hydroxide. After performing soil washing procedure, arsenic-extracted samples were analyzed for arsenic concentration by inductively coupled plasma optical emission spectrometer (ICP-OES). All the soils have exceeded worrisome level of soil contamination for region 1 (25mg/kg) so the soil remediation techniques are

  1. Status of groundwater arsenic contamination in Bangladesh: a 14-year study report.

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Das, Bhaskar; Murrill, Matthew; Dey, Sankar; Chandra Mukherjee, Subhas; Dhar, Ratan Kumar; Biswas, Bhajan Kumar; Chowdhury, Uttam Kumar; Roy, Shibtosh; Sorif, Shahariar; Selim, Mohammad; Rahman, Mahmuder; Quamruzzaman, Quazi

    2010-11-01

    Since 1996, 52,202 water samples from hand tubewells were analyzed for arsenic (As) by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) from all 64 districts of Bangladesh; 27.2% and 42.1% of the tubewells had As above 50 and 10 μg/l, respectively; 7.5% contained As above 300 μg/l, the concentration predicting overt arsenical skin lesions. The groundwater of 50 districts contained As above the Bangladesh standard for As in drinking water (50 μg/l), and 59 districts had As above the WHO guideline value (10 μg/l). Water analyses from the four principal geomorphological regions of Bangladesh showed that hand tubewells of the Tableland and Hill tract regions are primarily free from As contamination, while the Flood plain and Deltaic region, including the Coastal region, are highly As-contaminated. Arsenic concentration was usually observed to decrease with increasing tubewell depth; however, 16% of tubewells deeper than 100 m, which is often considered to be a safe depth, contained As above 50 μg/l. In tubewells deeper than 350 m, As >50 μg/l has not been found. The estimated number of tubewells in 50 As-affected districts was 4.3 million. Based on the analysis of 52,202 hand tubewell water samples during the last 14 years, we estimate that around 36 million and 22 million people could be drinking As-contaminated water above 10 and 50 μg/l, respectively. However for roughly the last 5 years due to mitigation efforts by the government, non-governmental organizations and international aid agencies, many individuals living in these contaminated areas have been drinking As-safe water. From 50 contaminated districts with tubewell As concentrations >50 μg/l, 52% of sampled hand tubewells contained As poisoning and to prevent this disaster from continuing to plague individuals in the future.

  2. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    Science.gov (United States)

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.

  3. Investigation of biomethylation of arsenic and tellurium during composting

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Bone, Roland A., E-mail: roland.diaz@uni-due.de [Microbiology I and Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 3-5, 45141 Essen (Germany); Raabe, Maren [Municipal Water and Waste Engineering, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Awissus, Simone; Keuter, Bianca; Menzel, Bernd [Institute for Environmental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 3-5, 45141 Essen (Germany); Kueppers, Klaus [Institute of Applied Botany, University of Duisburg-Essen, Universitaetstrasse 3-5, 45141 Essen (Germany); Widmann, Renatus [Municipal Water and Waste Engineering, University of Duisburg-Essen, Universitaetsstrasse 15, 45141 Essen (Germany); Hirner, Alfred V. [Institute for Environmental Analytical Chemistry, University of Duisburg-Essen, Universitaetsstrasse 3-5, 45141 Essen (Germany)

    2011-05-30

    Though the process of composting features a high microbiological activity, its potential to methylate metals and metalloids has been little investigated so far in spite of the high impact of this process on metal(loid) toxicity and mobility. Here, we studied the biotransformation of arsenic, tellurium, antimony, tin and germanium during composting. Time resolved investigation revealed a highly dynamic process during self-heated composting with markedly differing time patterns for arsenic and tellurium species. Extraordinary high concentrations of up to 150 mg kg{sup -1} methylated arsenic species as well as conversion rates up to 50% for arsenic and 5% for tellurium were observed. In contrast, little to no conversion was observed for antimony, tin and germanium. In addition to experiments with metal(loid) salts, composting of arsenic hyperaccumulating ferns Pteris vittata and P. cretica grown on As-amended soils was studied. Arsenic accumulated in the fronds was efficiently methylated resulting in up to 8 mg kg{sup -1} methylated arsenic species. Overall, these studies indicate that metal(loid)s can undergo intensive biomethylation during composting. Due to the high mobility of methylated species this process needs to be considered in organic waste treatment of metal(loid) contaminated waste materials.

  4. Arsenic rich iron plaque on macrophyte roots - an ecotoxicological risk?

    Energy Technology Data Exchange (ETDEWEB)

    Taggart, M.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom); Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain)], E-mail: mark.taggart@uclm.es; Mateo, R. [Instituto de Investigacion en Recursos Cinegeticos, IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real (Spain); Charnock, J.M.; Bahrami, F. [Synchrotron Radiation Department, CCLRC Daresbury Laboratory, Warrington, Cheshire, WA4 4AD (United Kingdom); Green, A.J. [Department of Wetland Ecology, Estacion Biologica de Donana, CSIC, Pabellon del Peru, Avenida Maria Luisa s/n, 41013 Seville (Spain); Meharg, A.A. [School of Biological Sciences, University of Aberdeen, Cruickshank Bld, St Machar Drive, Aberdeen, AB24 3UU (United Kingdom)

    2009-03-15

    Arsenic is known to accumulate with iron plaque on macrophyte roots. Three to four years after the Aznalcollar mine spill (Spain), residual arsenic contamination left in seasonal wetland habitats has been identified in this form by scanning electron microscopy. Total digestion has determined arsenic concentrations in thoroughly washed 'root + plaque' material in excess of 1000 mg kg{sup -1}, and further analysis using X-ray absorption spectroscopy suggests arsenic exists as both arsenate and arsenite. Certain herbivorous species feed on rhizomes and bulbs of macrophytes in a wide range of global environments, and the ecotoxicological impact of consuming arsenic rich iron plaque associated with such food items remains to be quantified. Here, greylag geese which feed on Scirpus maritimus rhizome and bulb material in areas affected by the Aznalcollar spill are shown to have elevated levels of arsenic in their feces, which may originate from arsenic rich iron plaque. - Accumulation of metals with iron plaque on macrophyte roots in wetlands poses an ecotoxicological risk to certain herbivores.

  5. Stabilization of arsenic sludge with mechanochemically modified zero valent iron.

    Science.gov (United States)

    Liang, Yanjie; Min, Xiaobo; Chai, Liyuan; Wang, Mi; Liyang, Wenjun; Pan, Qinglin; Okido, Masazumi

    2017-02-01

    Modified zero valent iron (ZVI) is obtained from commercial iron powder co-ground with manganese dioxide (MnO2) in intensive mechanical stress. The result indicates that the modified ZVI is very effective in arsenic sludge stabilization with a declination of arsenic leaching contraction from 72.50 mg/L to 0.62 mg/L, much lower than that of ordinary ZVI (10.48 mg/L). The involved process, including mechanochemical activation, corrosion and arsenic adsorption, is characterized explicitly to verify the improved arsenic stabilization mechanism. It shows that the mechanically formed Fe-Mn binary oxides layer results in an intensive corrosion extent, generating a mass of corrosion products. Moreover, as the emergence of Mn will restrain the process of iron (hydr)oxides crystallization, the ultimate corrosion products of the modified ZVI predominates in amorphous iron (hydr)oxides, performing much better in arsenic absorption. According to the BCR analysis, unstable arsenic in sludge is easily transformed to residual fraction by the help of amorphous iron (hydr)oxides, resulting in a restrained environmental availability of arsenic sludge after the modified ZVI stabilization.

  6. Removal of Arsenic with Oyster Shell: Experimental Measurements

    Directory of Open Access Journals (Sweden)

    Md. Atiqur Rahman, , and

    2008-12-01

    Full Text Available Oyster shell has tremendous potential as a remediation material for the removal of arsenic from groundwater. A single arsenic removal system was developed with oyster shell for tube well water containing arsenic. The system removes arsenic from water by adsorption through fine oyster shell. Various conditions that affect the adsorption/desorption of arsenic were investigated. Adsorption column methods showed the removal of As(III under the following conditions: initial As concentration, 100 µg /L; oyster shell amount, 6 g; particle size, <355µm ; treatment flow rate, 1.7 mL/min; and pH 6.5. Arsenic concentration of the treated water were below the Bangladesh drinking water standard of 50 µg/L for As. The desorption efficiencies with 2M of KOH after the treatment of groundwater were in the range of 80-83%. A combination of techniques was used to measure the pH, conductivity, cations and anions. The average concentrations of other inorganic constituents of health concern (Na, K, Ca, Mg and Fe in treated water were below their respective WHO guideline for drinking. The present study might provide new avenues to achieve the arsenic concentrations required for drinking water recommended by Bangladesh and the World Health Organization (WHO.

  7. Environmental arsenic exposure, selenium and sputum alpha-1 antitrypsin

    DEFF Research Database (Denmark)

    Burgess, Jefferey L; Kurzius-Spencer, Margaret; Poplin, Gerald S;

    2014-01-01

    Exposure to arsenic in drinking water is associated with increased respiratory disease. Alpha-1 antitrypsin (AAT) protects the lung against tissue destruction. The objective of this study was to determine whether arsenic exposure is associated with changes in airway AAT concentration and whether...... this relationship is modified by selenium. A total of 55 subjects were evaluated in Ajo and Tucson, Arizona. Tap water and first morning void urine were analyzed for arsenic species, induced sputum for AAT and toenails for selenium and arsenic. Household tap-water arsenic, toenail arsenic and urinary inorganic...... arsenic and metabolites were significantly higher in Ajo (20.6±3.5 μg/l, 0.54±0.77 μg/g and 27.7±21.2 μg/l, respectively) than in Tucson (3.9±2.5 μg/l, 0.16±0.20 μg/g and 13.0±13.8 μg/l, respectively). In multivariable models, urinary monomethylarsonic acid (MMA) was negatively, and toenail selenium...

  8. Ground Water Arsenic Contamination: A Local Survey in India

    Science.gov (United States)

    Kumar, Arun; Rahman, Md. Samiur; Iqubal, Md. Asif; Ali, Mohammad; Niraj, Pintoo Kumar; Anand, Gautam; Kumar, Prabhat; Abhinav; Ghosh, Ashok Kumar

    2016-01-01

    Background: In the present times, arsenic poisoning contamination in the ground water has caused lots of health-related problems in the village population residing in middle Gangetic plain. In Bihar, about 16 districts have been reported to be affected with arsenic poisoning. For the ground water and health assessment, Simri village of Buxar district was undertaken which is a flood plain region of river Ganga. Methods: In this study, 322 water samples were collected for arsenic estimation, and their results were analyzed. Furthermore, the correlation between arsenic contamination in ground water with depth and its distance from river Ganga were analyzed. Results are presented as mean ± standard deviation and total variation present in a set of data was analyzed through one-way analysis of variance. The difference among mean values has been analyzed by applying Dunnett's test. The criterion for statistical significance was set at P arsenic concentration in hand pumps. Furthermore, a correlation between the arsenic concentration with the depth of the hand pumps and the distance from the river Ganga was also a significant study. Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem. PMID:27625765

  9. Investigating groundwater arsenic contamination using aquifer push-pull test

    Science.gov (United States)

    Daigle, A. R.; Jin, Q.

    2009-12-01

    The groundwater of the Southern Willamette Basin, OR is contaminated with arsenic at concentrations as high as several ppm. A single-well push-pull test was conducted to investigate how microbial metabolisms control arsenic occurrence and levels in the bedrock aquifer of the area. During the experiments, a test solution containing ethanol was first injected into the aquifer. As the experiment progressed, dissolved gasses, groundwater, and sediment were sampled to monitor the variations in the chemical parameters, including the speciation of iron, sulfur, and arsenic, in the aquifer. Ethanol amendment stimulated a series of microbial metabolisms, including arsenate reduction, iron reduction, and sulfate reduction. Iron reduction released arsenic sorbed onto the aquifer sediments, increasing groundwater arsenic levels. Arsenate reduction converted arsenate to arsenite and, as a result, most arsenic occurred as arsenite in the groundwater. Results of the experiments demonstrate how different microbial functional groups influenced arsenic contamination in the area. These results also shed new light on potential bioremediation strategies in the area.

  10. ARSENICAL COMPOUNDS IN AYURVEDA MEDICINE: A PROSPECTIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Panda

    2012-12-01

    Full Text Available Haritala (Orpiment, Manashila (Realgar and Gouripasana (White arsenic are the three commonly used Arsenicals in Ayurveda and other codified traditional medicine of India for wide range diseases after Sodhana (Purification and Marana (Calcification. Gouripasana (White arsenic is now accepted in western medicine as first line chemotherapeutic agent against certain hematopoietic cancer. Malla sindura and Rasa Manikya are two derivatives of White arsenic and Orpiment respectively used in certain cases of cancer and solid tumor by the contemporary Ayurveda Practitioners and traditional healers of Northeast India. A systematic study on arsenical compounds in Ayurveda is not found as like Chinese traditional medicine , therefore a prospective study to analyze the different arsenicals used in Ayurveda, their purification, properties, formulation, pharmacology and therapeutics, toxicology as described in Ayurveda with modern understanding of biological responses, toxicology and detailed pharmacological studies were undertaken. The indications of Arsenicals in Ayurveda medicine are still remaining to be justified in the light of modern pharmacology. This study throws an idea where an Ayurveda clinician and patient can presume the risk in light of benefit.

  11. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  12. Arsenic and Associated Trace Metals in Texas Groundwater

    Science.gov (United States)

    Lee, L.; Herbert, B. E.

    2002-12-01

    The value of groundwater has increased substantially worldwide due to expanding human consumption. Both the quantity and quality of groundwater are important considerations when constructing policies on natural resource conservation. This study is focused on evaluating groundwater quality in the state of Texas. Historical data from the Texas Water Development Board and the National Uranium Resource Evaluation were collected into a GIS database for spatial and temporal analyses. Specific attentions were placed on arsenic and other trace metals in groundwater. Recent studies in the United States have focused on isolated incidences of high arsenic occurrence, ignoring possible connections between arsenic and other trace metals. Descriptive statistics revealed strong correlations in groundwater between arsenic and other oxyanions including vanadium, selenium and molybdenum. Arsenic and associated trace metals were clustered at three physiographic hotspots, the Southern High Plains, the Gulf Coastal Plains of Texas, and West Texas. A geologic survey showed that arsenic and other trace metals in Texas groundwater follow local geologic trends. Uranium deposits and associated mineralization were found to occur in the same physiographic locations. Uranium mineralization may be a significant natural source of arsenic and other trace metals in Texas groundwater. Recharge, evaporative concentration, and aquifer characteristics were also contributing factors to the occurrence of trace metals in Texas groundwater. Spatial statistics were used to delineate natural sources from anthropogenic inputs. Similarly, the natural background was estimated from the spatial distribution of trace metal observations in Texas groundwater.

  13. Poisoning by coal smoke containing arsenic and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    An, D.; He, Y.G.; Hu, Q.X. [Guizhou Sanitary and Epidemiological Station, Guiyang (China)

    1997-02-01

    An investigation was made into a disease involving skin pigmentation, keratosis of the hands and feet, dental discoloration, and generalized bone and joint pain, stiffness and rigidity, in the village of Bazhi, Zhijin County, Ghizhou Province, People`s Republic of China. Measurements were made of the arsenic and fluoride levels of coal, water, air, food, urine and hair in Bazhi and a control village, Xinzhai, in which coal with a low arsenic content was used. Up to 188 people, including children, in Bazhi and 752 in Xinzhai, were examined for the presence of chronic arsenium, skeletal fluorosis, dental fluorosis and electrocardiogram abnormalities. The coal in Bazhi was found to contain high levels of arsenic and fluoride resulting, after burning in homes without an adequate chimney systems, in pollution of air and food with arsenic and fluoride. The coal in Xinzhai did not cause arsenic pollution but did produce a higher level of fluoride pollution. It was concluded that the endemic disease in Bazhi was caused by pollution by coal smoke containing arsenic and fluoride. It is suggested that arsenic may act synergistically with fluoride so that a lower level of fluoride may produce fluoride toxicity with dental and skeletal fluorosis.

  14. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    Science.gov (United States)

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended.

  15. Groundwater arsenic contamination and its health effects in India

    Science.gov (United States)

    Chakraborti, Dipankar; Rahman, Mohammad Mahmudur; Das, Bhaskar; Chatterjee, Amit; Das, Dipankar; Nayak, Biswajit; Pal, Arup; Chowdhury, Uttam Kumar; Ahmed, Sad; Biswas, Bhajan Kumar; Sengupta, Mrinal Kumar; Hossain, Md. Amir; Samanta, Gautam; Roy, M. M.; Dutta, Rathindra Nath; Saha, Khitish Chandra; Mukherjee, Subhas Chandra; Pati, Shyamapada; Kar, Probir Bijoy; Mukherjee, Adreesh; Kumar, Manoj

    2017-03-01

    During a 28-year field survey in India (1988-2016), groundwater arsenic contamination and its health effects were registered in the states of West Bengal, Jharkhand, Bihar and Uttar Pradesh in the Ganga River flood plain, and the states of Assam and Manipur in the flood plain of Brahamaputra and Imphal rivers. Groundwater of Rajnandgaon village in Chhattisgarh state, which is not in a flood plain, is also arsenic contaminated. More than 170,000 tubewell water samples from the affected states were analyzed and half of the samples had arsenic >10 μg/L (maximum concentration 3,700 μg/L). Chronic exposure to arsenic through drinking water causes various health problems, like dermal, neurological, reproductive and pregnancy effects, cardiovascular effects, diabetes mellitus, diseases of the respiratory and gastrointestinal systems, and cancers, typically involving the skin, lungs, liver, bladder, etc. About 4.5% of the 8,000 children from arsenic-affected villages of affected states were registered with mild to moderate arsenical skin lesions. In the preliminary survey, more than 10,000 patients were registered with different types of arsenic-related signs and symptoms, out of more than 100,000 people screened from affected states. Elevated levels of arsenic were also found in biological samples (urine, hair, nails) of the people living in affected states. The study reveals that the population who had severe arsenical skin lesions may suffer from multiple Bowens/cancers in the long term. Some unusual symptoms, such as burning sensation, skin itching and watering of eyes in the presence of sun light, were also noticed in arsenicosis patients.

  16. 海带中有害元素As的研究现状及展望%Research Status and Prospects for Arsenic in Saccharina japonica Aresch

    Institute of Scientific and Technical Information of China (English)

    杨庆; 樊亚鸣; 曾源; 关灼斌; 何芝洲; 杨宜婷; 吴晓童; 陈怡莎

    2015-01-01

    This review focuses on five aspects issues, namely, the arsenic content in Chinese kelp, the presence form and toxicity of arsenic, as well as the arsenic limit content, the method of detection arsenic, and the technology of removing arsenic in standards at home and abroad. The limit of inorganic arsenic in S. japonica is over the national standards for dried algae (≤1.5 mg/kg). In fact, inorganic arsenic is also accumulated while extracting target substance. Therefore, the limits of inorganic arsenic in the kelp extract should be referred to the international standards for food additives (≤3 mg/kg) due to lack of the standards on inorganic arsenic limit for extract of algae.%就我国近海海带中砷含量、砷的存在形态及其毒性、国内外相关标准中砷的限量、砷检测方法及脱砷技术等5方面的问题,综合阐述并分析前人对海带中有害元素砷的研究状况。据此,并结合我们的工作,提出关于海带脱砷研究的现状、面临的问题及可能的前景:根据砷的价态、形态及毒性机理,海带中具有毒性的砷的形态为无机砷;我国国标(2005版)对干海藻无机砷的限量(≤1.5 mg/kg),而国产海带无机砷含量已超国标;提取分离技术是海带深加工产业的基石,此过程实际上富集了提取物中的砷,在国内外少有海藻提取物砷限量的背景下,建议参照国际食品添加剂标准中特定海带提取物中无机砷限量(≤3 mg/kg)。

  17. Measurements of Arsenic in the Urine and Nails of Individuals Exposed to Low Concentrations of Arsenic in Drinking Water From Private Wells in a Rural Region of Québec, Canada.

    Science.gov (United States)

    Gagnon, Fabien; Lampron-Goulet, Eric; Normandin, Louise; Langlois, Marie-France

    2016-01-01

    Chronic exposure to inorganic arsenic leads to an increased risk of cancer. A biological measurement was conducted in 153 private well owners and their families consuming water contaminated by inorganic arsenic at concentrations that straddle 10 μg/L. The relationship between the external dose indicators (concentration of inorganic arsenic in wells and daily well water inorganic arsenic intake) and the internal doses (urinary arsenic--sum of As(III), DMA, and MMA, adjusted for creatinine--and total arsenic in toenails) was evaluated using multiple linear regressions, controlling for age, gender, dietary sources of arsenic, and number of cigarettes smoked. It showed that urinary arsenic was associated with concentration of inorganic arsenic in wells (p arsenic intake (p arsenic intake (p = .017) and rice consumption (p = .022) in children (n = 43). The authors' study reinforces the drinking-water quality guidelines for inorganic arsenic.

  18. Distribution and hosts of arsenic in a sediment core from the Chianan Plain in SW Taiwan: Implications on arsenic primary source and release mechanisms.

    Science.gov (United States)

    Yang, Huai-Jen; Lee, Chi-Yu; Chiang, Yu-Ju; Jean, Jiin-Shuh; Shau, Yen-Hong; Takazawa, Eiichi; Jiang, Wei-Teh

    2016-11-01

    High arsenic abundance of 50-700μg/L in the groundwater from the Chianan Plain in southwestern Taiwan is a well-known environmental hazard. The groundwater-associated sediments, however, have not been geochemically characterized, thus hindering a comprehensive understanding of arsenic cycling in this region. In this study, samples collected from a 250m sediment core at the centre of the Chianan Plain were analyzed for arsenic and TOC concentrations (N=158), constituent minerals (N=25), major element abundances (N=105), and sequential arsenic extraction (N=23). The arsenic data show a prevalence of >10mg/kg with higher concentrations of 20-50mg/kg concentrated at 60-80 and 195-210m. Arsenic was extracted mainly as an adsorbate on clay minerals, as a co-precipitate in amorphous iron oxyhydroxide, and as a structural component in clay minerals. Since the sediments consist mainly of quartz, chlorite, and illite, the correlations between arsenic concentration and abundances of K2O and MgO pinpoint illite and chlorite as the major arsenic hosts. The arsenic-total iron correlation reflects the role of chlorite along with the contribution from amorphous iron oxyhydroxide as indicated by arsenic extraction data. Organic matter is not the dominant arsenic host for low TOC content, low arsenic abundance extracted from it, and a relatively low R(2) of the arsenic-TOC correlation. The major constituent minerals in the sediments are the same as those of the upriver metapelites, establishing a sink-source relationship. Composition data from two deep groundwater samples near the sediment core show Eh values and As(V)/As(III) ratios of reducing environments and high arsenic, K, Mg, and Fe contents necessary for deriving arsenic from sediments by desorption from clay and dissolution of iron oxyhydroxide. Therefore, groundwater arsenic was mainly derived from groundwater-associated sediments with limited contributions from other sources, such as mud volcanoes.

  19. Arsenic in industrial waste water from copper production technological process

    Directory of Open Access Journals (Sweden)

    Biljana Jovanović

    2013-12-01

    Full Text Available Investigation of arsenic in industrial waste water is of a great importance for environment. Discharge of untreated waste water from a copper production process results in serious pollution of surface water, which directly affects flora and fauna, as well as humans. There is a need for efficient and environmentally acceptable treament of waste waters containing heavy metals and arsenic. The paper presents an analyisis of the waste water from The Copper Smelter which is discharged into the Bor river. The expected arsenic content in treated waste water after using HDS procedure is also presented.

  20. Arsenic, GSTO2 Asp142 polymorphism, health and treatment

    OpenAIRE

    Masoudi, Mohammad; Saadat, Mostafa

    2008-01-01

    Arsenic is a natural metallic element found in low concentrations in virtually every part of the environment, including waters and foods. The ingestion of arsenic by humans can cause a variety of disorders. Glutathione S-transferase omega (GSTO) is a member of phase II xenobiotic metabolizing enzymes. GSTO2 (a member of GST omega) participates in detoxification of inorganic arsenic. In human, the A>G transition at nucleotide position 424 of GSTO2 was reported. This variation causes an Asn142A...

  1. Effect of arsenic on p53 mutation and occurrence of teratogenic salamanders: their potential as ecological indicators for arsenic contamination.

    Science.gov (United States)

    Chang, Jin-Soo; Gu, Man Bock; Kim, Kyoung-Woong

    2009-05-01

    The p53 mutation in salamanders can be used as an indicator of arsenic contamination. The influence of arsenic exposure was studied on mutation of tumor suppressor gene in salamanders collected from several As-contaminated mine areas in Korea. Salamander eggs and larvae were exposed to arsenic in a toxicity test, and teratogenic salamanders found in heavy metal- and As-contaminated water from As-Bi mines were evaluated using PCR-SSCP to determine if they would be useful as an ecological indicator species. Changes in amino acids were shown to have occurred as a result of an arsenic-accumulating event that occurred after the DNA damage. In addition, both of the Hynobius leechii exposed groups were primarily affected by forms of skin damage, changes in the lateral tail/dorsal flexure and/or abnormality teratogenesis. Single-base sense mutation in codons 346 (AAG: Lys to ATG: Met), 224 (TTT: Phe to TTA: Leu), 211 (ATG: Met to AAG: Lys), 244 (TTT: Phe to TTTG: insertion), 245 (Glu GAG to Gln CAG) and 249 (TGT Cys to TGA stop) of the p53 gene were simultaneously found in mutated salamanders. Based on the results of our data illustrating the effect of arsenic exposure on the p53 mutation of salamanders in arsenic-contaminated mine areas, these mutated salamanders can be used as potential ecological indicators in the arsenic-contaminated ecosystems.

  2. Arsenic uptake and metabolism in plants.

    Science.gov (United States)

    Zhao, F J; Ma, J F; Meharg, A A; McGrath, S P

    2009-03-01

    Arsenic (As) is an element that is nonessential for and toxic to plants. Arsenic contamination in the environment occurs in many regions, and, depending on environmental factors, its accumulation in food crops may pose a health risk to humans.Recent progress in understanding the mechanisms of As uptake and metabolism in plants is reviewed here. Arsenate is taken up by phosphate transporters. A number of the aquaporin nodulin26-like intrinsic proteins (NIPs) are able to transport arsenite,the predominant form of As in reducing environments. In rice (Oryza sativa), arsenite uptake shares the highly efficient silicon (Si) pathway of entry to root cells and efflux towards the xylem. In root cells arsenate is rapidly reduced to arsenite, which is effluxed to the external medium, complexed by thiol peptides or translocated to shoots. One type of arsenate reductase has been identified, but its in planta functions remain to be investigated. Some fern species in the Pteridaceae family are able to hyperaccumulate As in above-ground tissues. Hyperaccumulation appears to involve enhanced arsenate uptake, decreased arsenite-thiol complexation and arsenite efflux to the external medium, greatly enhanced xylem translocation of arsenite, and vacuolar sequestration of arsenite in fronds. Current knowledge gaps and future research directions are also identified.

  3. Arsenic trioxide: an ancient drug revived

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jin

    2012-01-01

    Objective To summarize the clinical applications of arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL),as well as non-APL malignancies and to discuss the mechanisms and adverse effects involved in ATO administration.Data sources The data in this article were collected from PubMed and CHKD database with relevant English and Chinese articles published from 1957 to 2011,with key words including acute promyelocytic leukemia,arsenic trioxide,treatment,and mechanism.Study selection Articles including any information about ATO in the treatment of APL were selected.Results APL is a rare subtype of acute myeloid leukemia,with dismal prognosis under treatment with traditional chemotherapy.ATO impressively increases the complete remission rate and prolongs survival of patients with APL,with only mild and transient adverse effects.The advances in the understanding of multiple mechanisms involved in ATO treatment will benefit more cancers in future.Conclusion Deeper understanding of mechanisms involved in ATO treatment may provide rationales for future clinical applications in a number of human malignancies.Chin Med J 2012; 125( 19):3556-3560

  4. Bacterial respiration of arsenic and selenium

    Science.gov (United States)

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  5. Evaluation of chronic toxicity of Kushta Sammulfar (calx of Arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Athar Parvez Ansari

    2013-06-01

    Full Text Available Sammulfar (arsenic trioxide is a notorious poison and has extensively been studied for its toxicity. It is in use for various purposes for centuries and is used even today as a therapeutic agent in the form of kushta (calx in traditional systems of medicine, particularly Unani medicine, but without apparent safety data. The present study, therefore, was conducted to produce data for prolong use of calx of arsenic trioxide. The calx (test drug was prepared by the method described in National Formulary of Unani Medicine. The study was carried in healthy Wistar rats of either sex; weighing 150-250 g; 2-3 months of age, in a dose dependent manner, following the methods of Gupta et al. (2002, Ghosh (2008 and Klaassan (2008. The animals were divided into four groups of 10 animals each. Group I served as control, where as group II, III and IV were used for three dose levels of the test drug i.e. low (8.75 mg–1 kg, medium (17.50 mg–1 kg and higher (26.25 mg–1 kg. Standard parameters usually applied for chronic toxicity studies were considered. The study revealed dose dependent toxicity. Usual signs of chronic toxicity were observed during the study. Low dose of Kushta Sammulfar (KSF did not produce remarkable toxic effects. Mild to moderate toxicity was seen in KSF-II and KSF-III.

  6. [Concentration and speciation of arsenic in greenhouse vegetable soil in Shouguang County of Shandong Province].

    Science.gov (United States)

    Hu, Liu-Jie; Zeng, Xi-Bai; Bai, Ling-Yu; Li, Lian-Fang

    2011-01-01

    A sampling survey was conducted in the typical areas in Shouguang County of Shandong Province to study the characteristics of arsenic (As) concentration and speciation in greenhouse vegetable soil. The total As concentration in the surface (0-20 cm) and subsurface (20-40 cm) soil was averagely 8.27 and 7.93 mg x kg(-1), being 19% and 23% higher than that of the control (open field soil), and the soluble As (AE-As) concentration was 0.13 and 0.06 mg x kg(-1), 63% and 200% higher than that of the control, respectively. The ratio of residual As (O-As) to total arsenic reached more than 63.0%, and the concentrations of different As speciation decreased in the order of O-As > iron-bound As (Fe-As) > calcium bound As (Ca-As) > aluminum bound As (AlAs) > AE-As. With the increasing planting years, the AE-As concentration enhanced significantly, and the Al-As concentration also increased to some degree. After 15 years planting, the AE-As concentration in surface and subsurface soil increased by 75.0% and 150.0%, and Al-As concentration increased by 51.6% and 190.4%, respectively, while the concentrations of Fe-As and Ca-As all decreased to some degree.

  7. Food crop accumulation and bioavailability assessment for antimony (Sb) compared with arsenic (As) in contaminated soils.

    Science.gov (United States)

    Wilson, Susan C; Tighe, Matthew; Paterson, Ewan; Ashley, Paul M

    2014-10-01

    Field samples and a 9-week glasshouse growth trial were used to investigate the accumulation of mining derived arsenic (As) and antimony (Sb) in vegetable crops growing on the Macleay River Floodplain in Northern New South Wales, Australia. The soils were also extracted using EDTA to assess the potential for this extractant to be used as a predictor of As and Sb uptake in vegetables, and a simplified bioaccessibility extraction test (SBET) to understand potential for uptake in the human gut with soil ingestion. Metalloids were not detected in any field vegetables sampled. Antimony was not detected in the growth trial vegetable crops over the 9-week greenhouse trial. Arsenic accumulation in edible vegetable parts was risk of exposure through short-term vegetable crops is low. The data also demonstrate that uptake pathways for Sb and As in the vegetables were different with uptake strongly impacted by soil properties. A fraction of soil-borne metalloid was soluble in the different soils resulting in Sb soil solution concentration (10.75 ± 0.52 μg L(-1)) that could present concern for contamination of water resources. EDTA proved a poor predictor of As and Sb phytoavailability. Oral bioaccessibility, as measured by SBET, was risk from soil borne As and Sb in the floodplain environment.

  8. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. Sanjeev [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India); Goel, Sudha, E-mail: sudhagoel@civil.iitkgp.ernet.in [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India)

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  9. Distribution of Arsenic and Heavy Metals from Mine Tailings dams at Obuasi Municipality of Ghana

    Directory of Open Access Journals (Sweden)

    Crentsil Kofi Bempah

    2013-01-01

    Full Text Available This present study investigated the issue of gold mine tailings dams as a potential source of arsenic and other trace elements contamination and their dissolution into the adjoining environmental media in Obuasi Municipality of Ghana. One active (Sanso tailings dam and two abandoned (Pompora and Dokyiwa mine tailings dams in Obuasi gold mine site, were selected for the collection and analysis of the tailings. The concentrations of As, Fe, Mn, Cu and Zn were determined using an atomic absorption spectrometer (AAS, Varian Models 240FS. The total concentrations of elements in the mine tailings were up to 1752 mg/kg As, 75.16 wt.% Fe, 1848.12 mg/kg Mn, 92.17 mg/kg Cu and 7850 177.56 mg/kg Zn. Sulfate was the dominant anion throughout the leachate, reaching a maximum dissolved concentration of 58.43 mg/L. The mine tailings were contaminated with much higher concentrations of As and heavy metals than the Netherlands soil protection guideline values. Leaching levels of As were in the range of 0.04–0.56 %, presenting high proportions for the total arsenic content in the mine tailings

  10. Arsenic (V) induces a fluidization of algal cell and liposome membranes.

    Science.gov (United States)

    Tuan, Le Quoc; Huong, Tran Thi Thanh; Hong, Pham Thi Anh; Kawakami, Tomonori; Shimanouchi, Toshinori; Umakoshi, Hiroshi; Kuboi, Ryoichi

    2008-09-01

    Arsenate is one of the most poisonous elements for living cells. When cells are exposed to arsenate, their life activities are immediately affected by various biochemical reactions, such as the binding of arsenic to membranes and the substitution of arsenic for phosphate or the choline head of phospholipids in the biological membranes. The effects of arsenate on the life activities of algae Chlorella vulgaris were investigated at various concentrations and exposure times. The results demonstrated that the living activities of algal cells (10(10)cells/L) were seriously affected by arsenate at a concentration of more than 7.5mg As/L within 24h. Algal cells and the artificial membranes (liposomes) were exposed to arsenate to evaluate its effects on the membrane fluidization. In the presence of arsenate, the membranes were fluidized due to the binding and substitution of arsenate groups for phosphates or the choline head on the their membrane surface. This fluidization of the biological membranes was considered to enhance the transport of toxicants across the membrane of algal cells.

  11. Behavioral Determinants of Switching to Arsenic-Safe Water Wells: An Analysis of a Randomized Controlled Trial of Health Education Interventions Coupled With Water Arsenic Testing

    Science.gov (United States)

    George, Christine Marie; Inauen, Jennifer; Perin, Jamie; Tighe, Jennifer; Hasan, Khaled; Zheng, Yan

    2017-01-01

    More than 100 million people globally are estimated to be exposed to arsenic in drinking water that exceeds the World Health Organization guideline of 10 µg/L. In an effort to develop and test a low-cost sustainable approach for water arsenic testing in Bangladesh, we conducted a randomized controlled trial which found arsenic educational…

  12. Management of the Arsenic Groundwater System Lagunera - MEXICO

    Science.gov (United States)

    Boochs, P. W.; Billib, M.; Aparicio, J.; Gutierrez, C.

    2007-05-01

    Arsenic in drinking water is considered one of the most important environmental causes of cancer mortality in the world. Groundwater resources of the Comarca Lagunera region (Northern Mexico), which represents the main source of drinking water for more than 2 million people in the area, show arsenic concentrations ranging from 5 to 750 micro g/l. Large areas have concentrations quite above the Mexican standard of 25 micro g/l for human use and consumption. The aquifer is overexploited and the groundwater levels at the central part of the aquifer are drawn down more than 100 m in less than 50 years. The drawdown provoked the dissolution and migration of the geogenic existing arsenic within the aquifer. The presence of arsenic has been related to several potential sources. It was found out, that the main source is geothermal activity, less mining and the use of arsenical pesticides. The process of the geneses of the arsenic pollution implicates, that the highest content is on the bottom of the aquifer. Data analysis showed, that arsenic concentration is correlated to the age of the groundwater. "Older" water has higher arsenic content than "younger" water and the oldest water can be found at the bottom of the aquifer. Before 1950 the groundwater level in the Comarca Lagunera was close to the surface and there were only dug and shallow wells with low groundwater abstraction. The water was pumped from the upper parts of the aquifer and because this was "young" water it had low arsenic content. Then after 1950 a lot of wells, mainly for irrigation, were built and in 2002 there were 2350 active wells with an abstraction of about 1088 Mio cbm/year. In consequence to this the groundwater level decreased extraordinary. More and more "older" water was pumped and the arsenic content increased. Furthermore at the beginning of 1960 the river Nazas was canalized and lined, so that the natural groundwater recharge by infiltration from the river was stopped. By this way, the

  13. Current status and prevention strategy for coal-arsenic poisoning in Guizhou, China.

    Science.gov (United States)

    Li, Dasheng; An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P

    2006-09-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnosed based on skin lesions and urinary arsenic excretion. Non-cancerous toxicities and malignancies were much more common and severe in these patients than in other arsenic-affected populations around the world. The high incidence of cancer and arsenic-related mortality in this cohort is alarming. Chelation therapy was performed but the long-term therapeutic effects are not satisfactory. The best prevention strategy is to eliminate arsenic exposure. Funds from the Chinese Government are currently available to solve this arsenic exposure problem. Strategies include the installation of vented stoves, the use of marsh gas to replace coal, health education, the improvement of nutritional status, and the use of various therapies to treat arsenic-induced skin and liver diseases.

  14. Protective effects of quercetin against arsenic-induced testicular damage in rats.

    Science.gov (United States)

    Baltaci, B B; Uygur, R; Caglar, V; Aktas, C; Aydin, M; Ozen, O A

    2016-12-01

    This study investigated the effect of quercetin on changes in testes due to arsenic exposure. Twenty-seven male rats were divided into three groups: control (10 ml kg(-1)  day(-1) saline), arsenic (10 mg kg(-1)  day(-1) sodium arsenite) and arsenic + quercetin (arsenic + 50 mg kg(-1)  day(-1) quercetin). The rats were sacrificed at the end of 15-day experiment. There was no difference between control group and arsenic group in body weight gain, testicular weight and serum total testosterone level. Quercetin treatment did not cause a significant difference in these parameters. In the arsenic group rats, we determined deterioration in the structure of seminiferous tubules, a decrease in the number of spermatogenic cells, an increase in the number of apoptotic cells, a decrease in the number of PCNA-positive cells, a decrease in SOD, CAT and GSH-Px activities, and an increase in the MDA level in testicular tissue. In all these changes, arsenic+quercetin group showed an improved compared to arsenic group. The amount of arsenic increased in the arsenic group was compared to the control group, and there was no difference between arsenic group and arsenic + quercetin group in the amount of arsenic. In conclusion, quercetin prevented arsenic-induced testicular damage with its anti-apoptotic and antioxidant effects.

  15. Spatial Variation of Arsenic in Soil, Irrigation Water, and Plant Parts: A Microlevel Study

    Science.gov (United States)

    Kabir, M. S.; Salam, M. A.; Paul, D. N. R.; Hossain, M. I.; Rahman, N. M. F.; Aziz, Abdullah

    2016-01-01

    Arsenic pollution became a great problem in the recent past in different countries including Bangladesh. The microlevel studies were conducted to see the spatial variation of arsenic in soils and plant parts contaminated through ground water irrigation. The study was performed in shallow tube well command areas in Sadar Upazila (subdistrict), Faridpur, Bangladesh, where both soil and irrigation water arsenic are high. Semivariogram models were computed to determine the spatial dependency of soil, water, grain, straw, and husk arsenic (As). An arsenic concentration surface was created spatially to describe the distribution of arsenic in soil, water, grain, straw, and husk. Command area map was digitized using Arcview GIS from the “mouza” map. Both arsenic contaminated irrigation water and the soils were responsible for accumulation of arsenic in rice straw, husk, and grain. The accumulation of arsenic was higher in water followed by soil, straw, husk, and grain. Arsenic concentration varied widely within command areas. The extent and propensity of arsenic concentration were higher in areas where high concentration of arsenic existed in groundwater and soils. Spherical model was a relatively better and appropriate model. Kriging method appeared to be more suitable in creating interpolated surface. The average arsenic content in grain was 0.08–0.45 mg/kg while in groundwater arsenic level it ranged from 138.0 to 191.3 ppb.

  16. Current Status and Prevention Strategy for Coal-arsenic Poisoning in Guizhou, China

    Science.gov (United States)

    An, Dong; Zhou, Yunsu; Liu, Jie; Waalkes, Michael P.

    2006-01-01

    Arsenic exposure from burning coal with high arsenic contents occurs in southwest Guizhou, China. Coal in this region contains extremely high concentrations of inorganic arsenic. Arsenic exposure from coal-burning is much higher than exposure from arsenic-contaminated water in other areas of China. The current status and prevention strategies for arsenic poisoning from burning high-arsenic coal in southwest Guizhou, China, is reported here. Over 3,000 arsenic-intoxicated patients were diagnosed based on skin lesions and urinary arsenic excretion. Non-cancerous toxicities and malignancies were much more common and severe in these patients than in other arsenic-affected populations around the world. The high incidence of cancer and arsenic-related mortality in this cohort is alarming. Chelation therapy was performed but the long-term therapeutic effects are not satisfactory. The best prevention strategy is to eliminate arsenic exposure. Funds from the Chinese Government are currently available to solve this arsenic exposure problem. Strategies include the installation of vented stoves, the use of marsh gas to replace coal, health education, the improvement of nutritional status, and the use of various therapies to treat arsenic-induced skin and liver diseases. PMID:17366768

  17. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs. Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-, SO4(2-/total sulfur ratio, and Fe(2+ were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  18. Inhibition factors of arsenic trioxide therapeutic effects in patients with acute promyelocytic leukemia

    Institute of Scientific and Technical Information of China (English)

    Sui Meijuan; Zhang Zhuo; Zhou Jin

    2014-01-01

    Objective To summarize limitations involved in arsenic trioxide therapeutic effects in acute promyelocytic leukemia,because current studies show that some individuals of acute promyelocytic leukemia have relatively poor outcomes during treatment with arsenic trioxide.Data sources Most relevant articles were included in the PubMed database between 2000 and 2013 with the keywords "acute promyelocytic leukemia","arsenic trioxide","thiol" or "methylation".In addition,a few older articles were also reviewed.Study selection Data and articles related to arsenic trioxide effect in acute promyelocytic leukemia treatment were selected and reviewed.We developed an overview of limitations associated with arsenic trioxide therapeutic effect.Results This review focuses on the researches about the arsenic trioxide therapeutic effect in acute promyelocytic leukemia and summarizes three mainly limitations which can influence the arsenic trioxide therapeutic effect to different degrees.First,with the combination of arsenic and glutathione the therapeutic effect and cytotoxicity decrease when glutathione concentration increases; second,arsenic methylation,stable arsenic methylation products weaken the apoptosis effect of arsenic trioxide in leukemia cells; third,gene mutations affect the sensitivity of tumor cells to arsenic trioxide and increase the resistance of leukemia cells to arsenic trioxide.Conclusions The chief limitations are listed in the review.If we can exclude all of them,we can obtain a better therapeutic effect of arsenic trioxide in patients with acute promyelocytic leukemia.

  19. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China.

    Science.gov (United States)

    Li, Ping; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Zhou; Jiang, Dawei; Wang, Shang; Jiang, Hongchen; Wang, Yanxin; Dong, Hailiang

    2015-01-01

    A survey was carried out on the microbial community of 20 groundwater samples (4 low and 16 high arsenic groundwater) and 19 sediments from three boreholes (two high arsenic and one low arsenic boreholes) in a high arsenic groundwater system located in Hetao Basin, Inner Mongolia, using the 454 pyrosequencing approach. A total of 233,704 sequence reads were obtained and classified into 12-267 operational taxonomic units (OTUs). Groundwater and sediment samples were divided into low and high arsenic groups based on measured geochemical parameters and microbial communities, by hierarchical clustering and principal coordinates analysis. Richness and diversity of the microbial communities in high arsenic sediments are higher than those in high arsenic groundwater. Microbial community structure was significantly different either between low and high arsenic samples or between groundwater and sediments. Acinetobacter, Pseudomonas, Psychrobacter and Alishewanella were the top four genera in high arsenic groundwater, while Thiobacillus, Pseudomonas, Hydrogenophaga, Enterobacteriaceae, Sulfuricurvum and Arthrobacter dominated high arsenic sediments. Archaeal sequences in high arsenic groundwater were mostly related to methanogens. Biota-environment matching and co-inertia analyses showed that arsenic, total organic carbon, SO4(2-), SO4(2-)/total sulfur ratio, and Fe(2+) were important environmental factors shaping the observed microbial communities. The results of this study expand our current understanding of microbial ecology in high arsenic groundwater aquifers and emphasize the potential importance of microbes in arsenic transformation in the Hetao Basin, Inner Mongolia.

  20. Urinary total arsenic and 8-hydroxydeoxyguanosine are associated with renal cell carcinoma in an area without obvious arsenic exposure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chao-Yuan [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Chung, Chi-Jung [Department of Health Risk Management, College of Public Health, China Medical University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Chu, Jan-Show [Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Yang, Hsiu-Yuan [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China)

    2012-08-01

    8-Hydroxydeoxyguanosine (8-OHdG) is one of the most reliable and abundant markers of DNA damage. The study was designed to explore the relationship between urinary 8-OHdG and renal cell carcinoma (RCC) and to investigate whether individuals with a high level of 8-OHdG would have a modified odds ratio (OR) of arsenic-related RCC. This case–control study was conducted with 132 RCC patients and 245 age- and sex-matched controls from a hospital-based pool between November 2006 and May 2009. Pathological verification of RCC was completed by image-guided biopsy or surgical resection of renal tumors. Urinary 8-OHdG levels were determined using liquid chromatography with tandem mass spectrometry (LC–MS/MS). Concentrations of urinary arsenic species, including inorganic arsenic, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), were determined by a high performance liquid chromatography-linked hydride generator and atomic absorption spectrometry. Level of urinary 8-OHdG was significantly associated with the OR of RCC in a dose–response relationship after multivariate adjustment. Urinary 8-OHdG was significantly related to urinary total arsenic. The greatest OR (3.50) was seen in the individuals with high urinary 8-OHdG and high urinary total arsenic. A trend test indicated that the OR of RCC was increased with one of these factors and was further increased with both (p = 0.002). In conclusion, higher urinary 8-OHdG was a strong predictor of the RCC. High levels of 8-OHdG combined with urinary total arsenic might be indicative of arsenic-induced RCC. -- Highlights: ► Urinary 8-OHdG was significantly related to urinary total arsenic. ► Higher urinary 8-OHdG was a strong predictor of RCC risk. ► Urinary 8-OHdG may modify arsenic related RCC risk.

  1. Use of ion-molecule reactions and methanol addition to improve arsenic determination in high chlorine food samples by DRC-ICP-MS.

    Science.gov (United States)

    Guo, Wei; Hu, Shenghong; Li, Xiaofang; Zhao, Jian; Jin, Shesheng; Liu, Wenjuan; Zhang, Hongfei

    2011-05-15

    Direct determination of trace arsenic in high chlorine food samples by ICP-MS is complicated by the presence of ArCl(+) interferences, and the high first ionization energy of As (9.81 eV) also results in low analytical sensitivity in ICP-MS. In this work, two strategies based on ion-molecule reactions were successfully used to eliminate ArCl spectral interference in a dynamic reaction cell (DRC). The interference ion ((40)Ar(35)Cl(+)) was directly removed by the reaction with methane gas, and the background signal was reduced by up to 100-fold at m/z 75. Alternatively, by using molecule oxygen as the reaction gas, (75)As(+) was effectively converted to (75)As(16)O(+) that could be detected at m/z 91 where the background is low. The poor signal intensity of As or AsO was improved 3-4 times by addition of 4% methanol in the analyzed solutions. The limit of quantitation (LOQ) for (75)As (CH(4)-DRC method) and (75)As(16)O (O(2)-DRC method) was 0.8 and 0.3 ng g(-1) and the analytical results of seaweed and yellow croaker standard reference materials were in good agreement with the certified values. As the routine arsenic monitoring method in our laboratory, it was applied to the accuracy determination of 119 high chlorine food samples from eight different markets of Beijing.

  2. Clicking the Arsenic-Carbon Triple Bond: An Entry into a New Class of Arsenic Heterocycles.

    Science.gov (United States)

    Pfeifer, Gregor; Papke, Martin; Frost, Daniel; Sklorz, Julian A W; Habicht, Marija; Müller, Christian

    2016-09-19

    Arsaalkynes can undergo regioselective and quantitative [3+2] cycloaddition reactions with organic azides to give hitherto unknown 3H-1,2,3,4-triazaarsole derivatives. The reaction product was obtained as a white, air- and moisture-stable solid, and the presence of a planar, five-membered arsenic heterocycle was unambiguously verified by means of X-ray crystallography. DFT calculations gave insight into the electronic structure of these novel compounds compared to tetrazoles and triazaphospholes. The coordination chemistry towards Re(I) was investigated and compared with the structurally related phosphorus-containing ligand. These preliminary investigations pave the way for a new class of arsenic heterocycles and fill the gap between the azaarsoles already known.

  3. Urinary arsenic profiles reveal exposures to inorganic arsenic from private drinking water supplies in Cornwall, UK

    Science.gov (United States)

    Middleton, D. R. S.; Watts, M. J.; Hamilton, E. M.; Ander, E. L.; Close, R. M.; Exley, K. S.; Crabbe, H.; Leonardi, G. S.; Fletcher, T.; Polya, D. A.

    2016-05-01

    Private water supplies (PWS) in Cornwall, South West England exceeded the current WHO guidance value and UK prescribed concentration or value (PCV) for arsenic of 10 μg/L in 5% of properties surveyed (n = 497). In this follow-up study, the first of its kind in the UK, volunteers (n = 207) from 127 households who used their PWS for drinking, provided urine and drinking water samples for total As determination by inductively coupled plasma mass spectrometry (ICP-MS) and urinary As speciation by high performance liquid chromatography ICP-MS (HPLC-ICP-MS). Arsenic concentrations exceeding 10 μg/L were found in the PWS of 10% of the volunteers. Unadjusted total urinary As concentrations were poorly correlated (Spearman’s ρ = 0.36 (P private water supplies as the dominant source of inorganic As exposure in the study population of PWS users.

  4. Association of Arsenic and Phosphorus with Iron Nanoparticles between Streams and Aquifers: Implications for Arsenic Mobility.

    Science.gov (United States)

    Hartland, Adam; Larsen, Joshua R; Andersen, Martin S; Baalousha, Mohammed; O'Carroll, Denis

    2015-12-15

    The microbial oxidation of organic matter coupled to reductive iron oxide dissolution is widely recognized as the dominant mechanism driving elevated arsenic (As) concentrations in aquifers. This paper considers the potential of nanoparticles to increase the mobility of As in aquifers, thereby accounting for discrepancies between predicted and observed As transport reported elsewhere. Arsenic, phosphorus, and iron size distributions and natural organic matter association were examined along a flow path from surface water via the hyporheic zone to shallow groundwater. Our analysis demonstrates that the colloidal Fe concentration (>1 kDa) correlates with both colloidal P and colloidal As concentrations. Importantly, increases in the concentration of colloidal P (>1 kDa) were positively correlated with increases in the concentration of nominally dissolved As (aquifer matrix. Dynamic redox fronts at the interface between streams and aquifers may therefore provide globally widespread conditions for the generation of Fe nanoparticles, a mobile phase for As adsorption currently not a part of reactive transport models.

  5. Arsenic immunotoxicity and immunomodulation by phytochemicals: potential relations to develop chemopreventive approaches.

    Science.gov (United States)

    Ramos Elizagaray, Sabina I; Soria, Elio A

    2014-01-01

    Arsenic (As) contaminates drinking water worldwide, and As exposure, hypersensitivity and deficiency are involved in the immunopathogenesis of various health problems. Its chemoprevention thus has a high health impact. Given its oxidative potential, antioxidant compounds are good candidates to counteract arsenic's deleterious effects on humans. Phytochemicals (e.g., phenolics, carotenoids, etc.) act through free radical chelation activity and regulation of cellular targets. Consequently, they are appropriate for developing anti-As strategies derived from plants, and Argentinean flora is rich in useful species. Several molecular pathways involved in immune regulation are at the same time targets of exogenous agents, and oxidative stress itself is a modulating phenomenon of immunity. Since xenohormesis has been described as the organic enhancement of resistance to stress conditions (e.g., oxidation, pollution, etc.) by consuming xenobiotics, immunoxenohormesis implies also defense improvement. This review focuses on recent patents on the development of vegetable redox-related immunomodulating agents, which might be applied in As-induced dysfunctions, with their scientific basis being reviewed.

  6. Mineral sources and transport pathways for arsenic release in a coastal watershed, USA

    Science.gov (United States)

    Foley, Nora K.; Ayuso, Robert A.

    2008-01-01

    Metasedimentary bedrock of coastal Maine contains a diverse suite of As-bearing minerals that act as significant sources of elements found in ground and surface waters in the region. Arsenic sources in the Penobscot Formation include, in order of decreasing As content by weight: löllingite and realgar (c.70%), arsenopyrite, cobaltite, glaucodot, and gersdorffite (in the range of 34–45%), arsenian pyrite ( glaucodot, arsenopyrite-cobaltian > arsenopyrite, cobaltite, gersdorffite, fine-grained pyrite, Ni-pyrite > coarse-grained pyrite. Reactions illustrate that oxidation of Fe-As disulphide group and As-sulphide minerals is the primary release process for As. Liberation of As by carbonation of realgar and orpiment in contact with high-pH groundwaters may contribute locally to elevated contents of As in groundwater, especially where As is decoupled from Fe. Released metals are sequestered in secondary minerals by sorption or by incorporation in crystal structures. Secondary minerals acting as intermediate As reservoirs include claudetite (c.75%), orpiment (61%), scorodite (c. 45%), secondary arsenopyrite (c. 46%), goethite (<4490 ppm), natrojarosite (<42 ppm), rosenite, melanterite, ferrihydrite, and Mn-hydroxide coatings. Some soils also contain Fe-Co-Ni-arsenate, Ca-arsenate, and carbonate minerals. Reductive dissolution of Fe-oxide minerals may govern the ultimate release of iron and arsenic – especially As(V) – to groundwater; however, dissolution of claudetite (arsenic trioxide) may directly contribute As(III). Processes thought to explain the release of As from minerals in bedrock include oxidation of arsenian pyrite or arsenopyrite, or carbonation of As-sulphides, and most models based on these generally rely on discrete minerals or on a fairly limited series of minerals. In contrast, in the Penobscot Formation and other metasedimentary rocks of coastal Maine, oxidation of As-bearing Fe-cobalt-nickel-sulphide minerals, dissolution (by reduction) of

  7. Arsenic in air and soil in the vicinity of the central gas station Molve, Croatia.

    Science.gov (United States)

    Žužul, Silva; Zgorelec, Željka; Bašić, Ferdo; Kisić, Ivica; Mesić, Milan; Vađić, Vladimira; Orct, Tatjana

    2011-05-01

    Spatial and temporal distribution of arsenic levels in soil during the 9 year monitoring period was investigated on four different soil types in the area of the gas borehole system Podravina in Croatia. Arsenic levels in the PM(10) particle fraction were measured periodically at the same locations for 3 years. Arsenic levels in soil significantly depended on soil types. Elevated levels were found on gleysol vertic, at two sampling sites, with values exceeding 30 mg/kg of arsenic in soil. Arsenic levels in air were low and they were not significantly different between sampling sites, suggesting that gas borehole activities have no influence on arsenic levels in the environment.

  8. Arsenic distribution in soils and plants of an arsenic impacted former mining area

    Energy Technology Data Exchange (ETDEWEB)

    Otones, V. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Alvarez-Ayuso, E., E-mail: esther.alvarez@irnasa.csic.es [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Garcia-Sanchez, A.; Santa Regina, I. [Department of Environmental Geochemistry, IRNASA (CSIC), Apdo. 257, 37071 Salamanca (Spain); Murciego, A. [Department of Geology, Plza. de los Caidos s/n., Salamanca University, 37008 Salamanca (Spain)

    2011-10-15

    A mining area affected by the abandoned exploitation of an arsenical tungsten deposit was studied in order to assess its arsenic pollution level and the feasibility of native plants for being used in phytoremediation approaches. Soil and plant samples were collected at different distances from the polluting sources and analysed for their As content and distribution. Critical soil total concentrations of As were found, with values in the range 70-5330 mg kg{sup -1} in the uppermost layer. The plant community develops As tolerance by exclusion strategies. Of the plant species growing in the most polluted site, the shrubs Salix atrocinerea Brot. and Genista scorpius (L.) DC. exhibit the lowest bioaccumulation factor (BF) values for their aerial parts, suggesting their suitability to be used with revegetation purposes. The species Scirpus holoschoenus L. highlights for its important potential to stabilise As at root level, accumulating As contents up to 3164 mg kg{sup -1}. - Highlights: > Environmental assessment of an abandoned arsenical tungsten mining exploitation. > Under the present soils conditions As mobility is relatively low, with [As]{sub soluble}/[As]{sub total} {<=} 2%. > The highest risk of As mobilisation would take place under reducing conditions. > The shrubs Salix atrocinerea and Genista scorpius are suitable for revegetation. > The species Scirpus holoschoenus accumulates high As contents at root level. - The plants Salix atrocinerea, Genista scorpius and Scirpus holoschoenus are suitable for revegetation or phytostabilisation approaches of As-polluted soils.

  9. Treatment of arsenic-contaminated water using akaganeite adsorption

    Science.gov (United States)

    Cadena C., Fernando; Johnson, Michael D.

    2008-01-01

    The present invention comprises a method and composition using akaganeite, an iron oxide, as an ion adsorption medium for the removal of arsenic from water and affixing it onto carrier media so that it can be used in filtration systems.

  10. Cancer excess after arsenic exposure from contaminated milk powder

    DEFF Research Database (Denmark)

    Yorifuji, Takashi; Tsuda, Toshihide; Doi, Hiroyuki;

    2011-01-01

    Long-term exposure to inorganic arsenic is related to increased risk of cancer in the lung, skin, bladder, and, possibly, other sites. However, little is known about the consequences of developmental exposures in regard to cancer risk. During early summer in 1955, mass arsenic poisoning of infant...... occurred in the western part of Japan because of contaminated milk powder. Okayama Prefecture was most severely affected. We examined whether the affected birth cohorts in this prefecture experienced increased cancer mortality.......Long-term exposure to inorganic arsenic is related to increased risk of cancer in the lung, skin, bladder, and, possibly, other sites. However, little is known about the consequences of developmental exposures in regard to cancer risk. During early summer in 1955, mass arsenic poisoning of infants...

  11. Mode of occurrence of arsenic in four US coals

    Science.gov (United States)

    Kolker, A.; Huggins, Frank E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B.

    2000-01-01

    An integrated analytical approach has been used to determine the mode of occurrence of arsenic in samples of four widely used US coals: the Pittsburgh, Illinois #6, Elkhorn/Hazard, and Wyodak. Results from selective leaching, X-ray absorption fine structure (XAFS) spectroscopy, and electron microprobe analysis show that pyrite is the principal source of arsenic in the three bituminous coals, but the concentration of As in pyrite varies widely. The Wyodak sample contains very little pyrite; its arsenic appears to be primarily associated with organics, as As3+, or as arsenate. Significant (10-40%) fractions of arsenate, derived from pyrite oxidation, are also present in the three bituminous coal samples. This information is essential in developing predictive models for arsenic behavior during coal combustion and in other environmental settings.

  12. Advances in arsenic biosensor development--a comprehensive review.

    Science.gov (United States)

    Kaur, Hardeep; Kumar, Rabindra; Babu, J Nagendra; Mittal, Sunil

    2015-01-15

    Biosensors are analytical devices having high sensitivity, portability, small sample requirement and ease of use for qualitative and quantitative monitoring of various analytes of human importance. Arsenic (As), owing to its widespread presence in nature and high toxicity to living creatures, requires frequent determination in water, soil, agricultural and food samples. The present review is an effort to highlight the various advancements made so far in the development of arsenic biosensors based either on recombinant whole cells or on certain arsenic-binding oligonucleotides or proteins. The role of futuristic approaches like surface plasmon resonance (SPR) and aptamer technology has also been discussed. The biomethods employed and their general mechanisms, advantages and limitations in relevance to arsenic biosensors developed so far are intended to be discussed in this review.

  13. Detection of Arsenic in the Atmospheres of Dying Stars

    Science.gov (United States)

    Chayer, Pierre; Dupuis, Jean; Kruk, Jeffrey W.

    2015-06-01

    We report the detection of As V resonance lines observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of three hot DA white dwarfs: G191-B2B, WD 0621-376, and WD 2211-495. The stars have effective temperatures ranging from 60,000 K to 64,000 K and are among the most metal-rich white dwarfs known. We measured the arsenic abundances not only in these stars, but also in three DO stars in which As has been detected before: HD 149499 B, HZ 21, and RE 0503-289. The arsenic abundances observed in the DA stars are very similar. This suggests that radiative levitation may be the mechanism that supports arsenic. The arsenic abundance in HZ 21 is significantly lower than that observed in HD 149499 B, even though the stars have similar atmospheric parameters. An additional mechanism may be at play in the atmospheres of these two DO stars.

  14. Thallium and arsenic poisoning in a small midwestern town.

    Science.gov (United States)

    Rusyniak, Daniel E; Furbee, R Brent; Kirk, Mark A

    2002-03-01

    Thallium and arsenic have been used as a means of criminal poisoning. Although both manifest characteristically with peripheral neuropathies, thallium is associated with alopecia and arsenic with gastrointestinal symptoms. We describe the symptoms, physical findings, diagnostic test results, and outcomes in a group of men poisoned with thallium and arsenic. Seven patients had evidence of elevated thallium levels, and 2 patients had elevated arsenic and thallium levels. The most commonly reported symptoms included myalgias, arthralgias, paresthesias, and dysesthesias. Five patients developed alopecia. All patients with symptoms and peripheral neuropathies had characteristic blackening of their hair roots. Initially treated with dimercaptosuccinic acid, patients were switched to multiple-dose activated charcoal after testing revealed thallium poisoning. By 6 months, all patients' symptoms and peripheral neuropathies improved, but 5 patients had ongoing psychiatric problems. Thallium remains a means of criminal poisoning and should be considered in any patient with a rapidly progressing peripheral neuropathy with or without alopecia.

  15. Epidemiology and toxicology of arsenic poisoning in domestic animals

    Energy Technology Data Exchange (ETDEWEB)

    Selby, L.A.; Case, A.A.; Osweiler, G.D.; Hayes, H.M. Jr.

    1977-08-01

    Arsenic poisoning is one of the more important causes of heavy metal poisoning in domestic animals; yet sporadic instances of poisoning have been observed in cats, horses, and pigs. Cases observed by veterinary clinicians are either peracute, acute, or chronic intoxications. Frequently the initial and only indication that a severe problem exists with peracute poisoning in a cattle herd is dead animals. Chronic intoxications are also observed in cattle. Acute intoxication is the most common form of arsenic poisoning observed and documented in the dog. Also intoxicated dogs were younger, i.e., 2-6 months of age. Arsenic is a severe alimentary tract irritant in domestic animals, and treatment in most instances consists mainly of symptomatic and supportive treatment. The source of intoxication, when it can be determined, is usually dips, sprays, powders, or vegetation contaminated by pesticides containing arsenic.

  16. Epidemiology and toxicology of arsenic poisoning in domestic animals.

    Science.gov (United States)

    Selby, L A; Case, A A; Osweiler, G D; Hayes, H M

    1977-01-01

    Arsenic poisoning is one of the more important causes of heavy metal poisoning in domestic animals. Two species--dogs and cattle--are intoxicated more frequently than other animals; yet sporadic instances of poisoning have been observed in cats, horses, and pigs. Cases observed by veterinary clinicians are either peracute, acute, or chronic intoxications. Frequently the initial and only indication that a severe problem exists with peracute poisoning in a cattle herd is dead animals. Chronic intoxications are also observed in cattle. Acute intoxication is the most common form of arsenic poisoning observed and documented in the dog. Also intoxicated dogs were younger, i.e., 2-6 months of age. Arsenic is a severe alimentary tract irritant in domestic animals, and treatment in most instances consists mainly of symptomatic and supportive treatment. The source of intoxication, when it can be determined, is usually dips, sprays, powders, or vegetation contaminated by pesticides containing arsenic. PMID:908297

  17. Detection of Arsenic in the Atmospheres of Dying Stars

    CERN Document Server

    Chayer, Pierre; Kruk, Jeffrey W

    2014-01-01

    We report the detection of As V resonance lines observed in the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of three hot DA white dwarfs: G191-B2B, WD0621-376, and WD2211-495. The stars have effective temperatures ranging from 60,000 K to 64,000 K and are among the most metal-rich white dwarfs known. We measured the arsenic abundances not only in these stars, but also in three DO stars in which As has been detected before: HD149499B, HZ21, and RE0503-289. The arsenic abundances observed in the DA stars are very similar. This suggests that radiative levitation may be the mechanism that supports arsenic. The arsenic abundance in HZ21 is significantly lower than that observed in HD149499B, even though the stars have similar atmospheric parameters. An additional mechanism may be at play in the atmospheres of these two DO stars.

  18. Speciation of arsenic and mercury in feed: why and how?

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Sloth, Jens Jørgen

    2011-01-01

    The understanding of the mechanisms of biological activities and biotransformation of trace elements such as arsenic and mercury has improved during recent years with the help of chemical speciation studies. However, the most important practical application of elemental speciation is in the area...... of toxicology. Toxicological knowledge on the individual trace element species can lead to more specific legislation of hazardous substances found in feed. Examples here are arsenic, where the inorganic forms are the most toxic, and mercury, where the organic form methylmercury is more toxic than inorganic...... mercury. In the present paper an overview of the current knowledge on arsenic and mercury speciation in feed and analytical methodologies for arsenic and mercury speciation analysis are given. Additionally the current status and expected future developments within legislation for trace element speciation...

  19. Arsenic in Ground Water of the United States - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This image shows national-scale patterns of naturally occurring arsenic in potable ground-water resources of the continental United States. The image was generated...

  20. Plants as Useful Vectors to Reduce Environmental Toxic Arsenic Content

    Directory of Open Access Journals (Sweden)

    Nosheen Mirza

    2014-01-01

    Full Text Available Arsenic (As toxicity in soil and water is an increasing menace around the globe. Its concentration both in soil and environment is due to natural and anthropogenic activities. Rising arsenic concentrations in groundwater is alarming due to the health risks to plants, animals, and human beings. Anthropogenic As contamination of soil may result from mining, milling, and smelting of copper, lead, zinc sulfide ores, hide tanning waste, dyes, chemical weapons, electroplating, gas exhaust, application of municipal sludge on land, combustion of fossil fuels, As additives to livestock feed, coal fly ash, and use of arsenical pesticides in agricultural sector. Phytoremediation can be viewed as biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system that enhances the natural ecosystems for subsequent productive use. The present review presents recent scientific developments regarding phytoremediation of arsenic contaminated environments and its possible detoxification mechanisms in plants.

  1. Case reports: arsenic pollution in Thailand, Bangladesh, and Hungary.

    Science.gov (United States)

    Jones, Huw; Visoottiviseth, Pornsawan; Bux, M Khoda; Födényi, Rita; Kováts, Nora; Borbély, Gábor; Galbács, Zoltán

    2008-01-01

    Although arsenic contamination in the three countries described herein differs, a number of common themes emerge. In each country, the presence of arsenic is both long term and of geological origin. Moreover, in each of these countries, arsenic was only recently discovered to be a potential public health problem, having been first formally recognized in the 1980s or 1990s. In Bangledesh, exposure of the public to arsenic arose as a result of the search for microbially safe drinking water; this search resulted in the sinking of tube wells into aquifers. In Hungary, the natural bedrock geology was responsible for contamination of aquifer water. The genesis of arsenic contamination in Thailand arose primarily from small-scale alluvial mining activities, which mobilized geologically bound arsenic. Because of the complex chemistry of arsenic, and variability in where it is found and how it is bound, multiple mitigation methods must be considered for mitigating episode