WorldWideScience

Sample records for array finely tuned

  1. Fine-Tuning Corrective Feedback.

    Science.gov (United States)

    Han, ZhaoHong

    2001-01-01

    Explores the notion of "fine-tuning" in connection with the corrective feedback process. Describes a longitudinal case study, conducted in the context of Norwegian as a second a language, that shows how fine-tuning and lack thereof in the provision of written corrective feedback differentially affects a second language learner's restructuring of…

  2. Automated Camera Array Fine Calibration

    Science.gov (United States)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  3. The Fine-Tuning Argument

    CERN Document Server

    Landsman, Klaas

    2015-01-01

    Our laws of nature and our cosmos appear to be delicately fine-tuned for life to emerge, in way that seems hard to attribute to chance. In view of this, some have taken the opportunity to revive the scholastic Argument from Design, whereas others have felt the need to explain this apparent fine-tuning of the clockwork of the Universe by proposing the existence of a `Multiverse'. We analyze this issue from a sober perspective. Having reviewed the literature and having added several observations of our own, we conclude that cosmic fine-tuning supports neither Design nor a Multiverse, since both of these fail at an explanatory level as well as in a more quantitative context of Bayesian confirmation theory (although there might be other reasons to believe in these ideas, to be found in religion and in inflation and/or string theory, respectively). In fact, fine-tuning and Design even seem to be at odds with each other, whereas the inference from fine-tuning to a Multiverse only works if the latter is underwritten...

  4. Minimal fine tuning in supersymmetric Higgs inflation

    International Nuclear Information System (INIS)

    We investigate characteristic features of a realistic parameter choice for primordial inflation with the supersymmetric Higgs inflaton as an example of a particle physics inflation model. We discuss constraints from observational results and analyze the degree of fine tuning needed to induce slow-roll inflation for a wide range of soft supersymmetry-breaking scales. The observed amplitude of density fluctuations implies that the minimal fine tuning for the combined electroweak scale and inflaton flatness predicts a spectral index of ns=0.950−0.965, which includes the central value from observational data

  5. Understanding the Fine Tuning in Our Universe

    Science.gov (United States)

    Cohen, Bernard L.

    2008-01-01

    It is often stated that the physical properties of our universe are "fine tuned"--that is, they must be almost exactly as they are to make the development of intelligent life possible. The implications of this statement, called the "anthropic principle," have been widely discussed in a philosophical context, but the scientific basis for the…

  6. Fine-tuning in DBI inflationary mechanism

    International Nuclear Information System (INIS)

    We show a model-independent fine-tuning issue in the DBI inflationary mechanism. DBI inflation requires a warp factor h small enough to sufficiently slow down the inflation. On the other hand, the Einstein equation in extra dimensions under the inflationary background deforms the warp space on the IR side. Generically these two locations coincide with each other, spoiling the DBI inflation. The origin and tuning of this 'h problem' is closely related, through the AdS/CFT duality, to those of the well-known 'η problem' in the slow-roll inflationary mechanism

  7. Fine Tuning May Not Be Enough

    CERN Document Server

    Miao, S P

    2015-01-01

    We argue that the fine tuning problems of scalar-driven inflation may be worse than is commonly believed. The reason is that reheating requires the inflaton to be coupled to other matter fields whose vacuum fluctuations alter the inflaton potential. The usual response has been that even more fine-tuning of the classical potential $V(\\varphi)$ can repair any damage done in this way. We point out that the effective potential in de Sitter background actually depends in a complicated way upon the dimensionless combination of $\\varphi/H$. We also show that the factors of $H$ which occur in de Sitter do not even correspond to local functionals of the metric for general geometries, nor are they Planck-suppressed.

  8. Resistive Fine Tuning of Resonant Circuit

    Science.gov (United States)

    Mclyman, C. W.

    1985-01-01

    Simple fixed-inductance/fixed-capacitance tank circuit modified for fine adjustment of resonant frequency by addition of small inductance with potentiometer across it. Additional winding built into full winding as integral part or added externally. Technique provides quick way of tuning reactance out of power-transformer circuit to maximize power transfer or to adjust frequency of oscillator. Applications include rotary transformers, servo amplifiers, and analog computer modules.

  9. Defending The Fallacy of Fine-Tuning

    CERN Document Server

    Stenger, Victor J

    2012-01-01

    In 2011, I published a popular-level book, The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. It investigated a common claim found in contemporary religious literature that the parameters of physics and cosmology are so delicately balanced, so "fine-tuned," that any slight change and life in the universe would have been impossible. I concluded that while the precise form of life we find on Earth would not exist with slight changes in these parameters, some form of life could have evolved over a parameter range that is not infinitesimal, as often claimed. Postdoctoral fellow Luke Barnes has written a lengthy, highly technical review [arXiv:1112.4647] of the scientific literature on the fine-tuning problem. I have no significant disagreement with that literature and no prominent physicist or cosmologist has disputed my basic conclusions. Barnes does not invalidate these conclusions and misunderstands and misrepresents much of what is in the book.

  10. A Cyclic Universe Approach to Fine Tuning

    CERN Document Server

    Alexander, Stephon; Gleiser, Marcelo

    2015-01-01

    We present a closed bouncing universe model where the value of coupling constants is set by the dynamics of a ghost-like dilatonic scalar field. We show that adding a periodic potential for the scalar field leads to a cyclic Friedmann universe where the values of the couplings vary randomly from one cycle to the next. While the shuffling of values for the couplings happens during the bounce, within each cycle their time-dependence remains safely within present observational bounds for physically-motivated values of the model parameters. Our model presents an alternative to solutions of the fine tuning problem based on string landscape scenarios.

  11. Nonsingular multidimensional cosmologies without fine tuning

    CERN Document Server

    Bronnikov, K A

    2002-01-01

    Exact cosmological solutions for effective actions in D dimensions inspired by the tree-level superstring action are studied. For a certain range of free parameters existing in the model, nonsingular bouncing solutions are found. Among them, of particular interest can be open hyperbolic models, in which, without any fine tuning, the internal scale factor and the dilaton field (connected with string coupling in string theories) tend to constant values at late times. A cosmological singularity is avoided due to nonminimal dilaton-gravity coupling and, for D > 11, due to pure imaginary nature of the dilaton, which conforms to currently discussed unification models. The existence of such and similar solutions supports the opinion that the Universe had never undergone a stage driven by full-scale quantum gravity.

  12. Nonsingular multidimensional cosmologies without fine tuning

    International Nuclear Information System (INIS)

    Exact cosmological solutions for effective actions in D dimensions inspired by the tree-level superstring action are studied. For a certain range of free parameters existing in the model, nonsingular bouncing solutions are found. Among them, of particular interest can be open hyperbolic models, in which, without any fine tuning, the internal scale factor and the dilaton field (connected with string coupling in string theories) tend to constant values at late times. A cosmological singularity is avoided due to nonminimal dilaton-gravity coupling and, for D>11, due to pure imaginary nature of the dilaton, which conforms to currently discussed unification models. The existence of such and similar solutions supports the opinion that the Universe had never undergone a stage driven by full-scale quantum gravity. (author)

  13. The fine-tuning of the generalised NMSSM

    International Nuclear Information System (INIS)

    We determine the degree of fine-tuning needed in a generalised version of the NMSSM that follows from an underlying Z4 or Z8R-symmetry. We find that it is significantly less than is found in the MSSM or NMSSM and extends the range of Higgs mass that have acceptable fine-tuning. Remarkably the minimal fine-tuning is achieved for Higgs masses of around 130 GeV.

  14. A Local Contingency Analysis of the Fine-Tuning Hypothesis.

    Science.gov (United States)

    Sokolov, Jeffrey L.

    1993-01-01

    Tested the fine-tuning hypothesis of language acquisition, which postulates that parents fine-tune their speech to their children's language level, by examining local patterns of interaction within the conversations of three parent-child dyads. The high positive correlations between parent-child dyads for the different interactional patterns…

  15. Fine tuning power diodes with irradiation

    International Nuclear Information System (INIS)

    Diodes of a particular type are fine tuned with irradiation to optimize the reverse recovery time while minimizing forward voltage drop and providing more uniform electrical characcteristics. The initial and desired minority carrier lifetimes in the anode region of the type are determined as a function of forward voltage drop and reverse recovery time, and the minority carrier radiation damage factor is determined for a desired type of diode and radiation source. The radiation dosage to achieve the desired carrier lifetime with the radiation source is thereafter determined from the function 1/tau = 1/tau0 + K phi, where tau is the desired minority carrier lifetime, tau0 is the initial minority carrier lifetime, K is the determined minority carrier radiation damage factor and phi is the radiation dosage. A major surface and preferably the major surface adjoining the anode region of the diodes is then irradiated with the radiation source to the determined radiation dosage. Preferably, the radiation dosage is between about 1 X 1012 and 5 X 1013 e/cm2, with electron radiation of intensity between 1 and 3 MeV

  16. The apparent fine-tuning of the cosmological, gravitational and fine structure constants

    Science.gov (United States)

    Eaves, Laurence

    2016-02-01

    A numerical coincidence relating the values of the cosmological, gravitational and electromagnetic fine structure constants is presented and discussed in relation to the apparent anthropic fine-tuning of these three fundamental constants of nature.

  17. Haggling over the fine-tuning price of LEP

    International Nuclear Information System (INIS)

    We amplify previous discussions of the fine-tuning price to be paid by supersymmetric models in the light of LEP data. The whole range of tan β is discussed, including large values. In the minimal supergravity model with universal gaugino and scalar masses, a small fine-tuning price is possible only for intermediate values of tan β and for a small range of superpartner masses. Moreover, the fine-tuning price in this region is significantly higher if we require β-τ Yukawa-coupling unification. We interpret the significant increase after LEP of the fine-tuning price in the minimal supergravity model as a message for theory and not for the experiment. For possible choices of low-energy parameters in the MSSM consistent with present experimental constraints and, optionally, with some other theoretical assumptions such as ifb-τ Yukawa-coupling unification, a measure of the amount of fine tuning becomes an interesting criterion for the naturalness of various theoretical models for mass terms in the MSSM Lagrangian. In particular, we emphasize that the fine-tuning price will depend on the actual solution to the μ problem. We illustrate the relevance of this fact by considering a simple ansatz of linear dependence of μ on M((1)/(2)) or A0, showing that big price reductions are obtained in such cases. Significant price reductions are also obtained for large tan β if non-universal soft Higgs mass parameters are allowed. We also study input relations between MSSM parameters suggested in some interpretations of string theory: the price may depend significantly on these inputs, potentially providing guidance for building string models. However, in the available models the fine-tuning price may not be reduced significantly

  18. The Fine-Tuning of the Universe for Intelligent Life

    OpenAIRE

    Barnes, Luke A.

    2011-01-01

    The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more r...

  19. On the MSSM Higgsino mass and fine tuning

    OpenAIRE

    Ross, Graham G; Kai Schmidt-Hoberg(Theory Division, CERN, 1211 Geneva 23, Switzerland); Florian Staub

    2016-01-01

    It is often argued that low fine tuning in the MSSM necessarily requires a rather light Higgsino. In this note we show that this need not be the case when a more complete set of soft SUSY breaking mass terms are included. In particular an Higgsino mass term, that correlates the μ-term contribution with the soft SUSY-breaking Higgsino masses, significantly reduces the fine tuning even for Higgsinos in the TeV mass range where its relic abundance means it can make up all the dark matter.

  20. Quintessence without the fine tuning problem of the potential

    International Nuclear Information System (INIS)

    An imitation of the present cosmological constant by the slowly-rolling scalar field oe (quintessence) requires an extreme fine tuning of the potential U(oe), that is the problems appear related to the cosmological constant problem and flatness conditions. The field theory is presented which gives rise to the quintessence potential without any fine tuning in the very wide class of models. At the same time the models reproduce equations of Einstein's GR and allow for possibility of inflation in the very early universe

  1. On the MSSM Higgsino mass and fine tuning

    CERN Document Server

    Ross, Graham G; Staub, Florian

    2016-01-01

    It is often argued that low fine tuning in the MSSM necessarily requires a rather light Higgsino. In this note we show that this need not be the case when a more complete set of soft SUSY breaking mass terms are included. In particular an Higgsino mass term, that correlates the $\\mu-$term contribution with the soft SUSY-breaking Higgsino masses, significantly reduces the fine tuning even for Higgsinos in the TeV mass range where its relic abundance means it can make up all the dark matter.

  2. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  3. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  4. Thymidine kinase 1 regulatory fine-tuning through tetramer formation

    DEFF Research Database (Denmark)

    Mutahir, Zeeshan; Clausen, Anders R.; Andersson, Karl-Magnus; Wisen, Sofia M; Munch-Petersen, Birgitte; Piskur, Jure

    2013-01-01

    concentration-dependent transition of TK1 from a dimer with low catalytic efficiency to a tetramer with high catalytic efficiency. This regulatory fine-tuning serves as an additional control to provide a balanced pool of nucleic acid precursors in the cell. We subcloned and over-expressed 10 different TK1s...

  5. Fine-tuning of the cosmological constant in brane worlds

    International Nuclear Information System (INIS)

    We discuss how the fine-tuning of the cosmological constant enters brane world setups. After presenting the Randall Sundrum model as a prototype case, we focus on single brane models with curvature singularities which are separated from the brane in the additional dimension. Finally, the issue of the existence of nearby curved solutions is addressed. (orig.)

  6. Stop on Top: SUSY Parameter Regions, Fine-Tuning Constraints

    CERN Document Server

    Demir, Durmus Ali

    2014-01-01

    We analyze common supersymmetric models in order to determine in what parameter regions with what amount of fine-tuning they are capable of accomodating the LHC-allowed top-stop degeneracy window. The stops must be light enough to enable Higgs naturalness yet heavy enough to induce a 125 GeV Higgs boson mass. These two constraints require the two stops to have a large mass splitting. We find that, compared to the usual neutralino-LSP CMSSM, the NUHM and gravitino-LSP CMSSM models possess relatively wide regions in which the light stop weighs close to the top quark. The fine-tuning involved lies in 10^3-10^4 range.

  7. Cosmologically Safe QCD Axion without Fine-Tuning.

    Science.gov (United States)

    Yamada, Masaki; Yanagida, Tsutomu T; Yonekura, Kazuya

    2016-02-01

    Although QCD axion models are widely studied as solutions to the strong CP problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory. PMID:26894701

  8. Cosmologically Safe QCD Axion without Fine-Tuning

    Science.gov (United States)

    Yamada, Masaki; Yanagida, Tsutomu T.; Yonekura, Kazuya

    2016-02-01

    Although QCD axion models are widely studied as solutions to the strong C P problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  9. NMC and the Fine-Tuning Problem on the Brane

    International Nuclear Information System (INIS)

    We propose a new solution to the fine-tuning problem related to coupling constant λ of the potential. We study a quartic potential of the form λϕ4 in the framework of the Randall-Sundrum type II braneworld model in the presence of a Higgs field which interacts nonminimally with gravity via a possible interaction term of the form -(ξ/2)ϕ2R. Using the conformal transformation techniques, the slow-roll parameters in high energy limit are reformulated in the case of a nonminimally coupled scalar field. We show that, for some value of a coupling parameter ξ and brane tension T, we can eliminate the fine-tuning problem. Finally, we present graphically the solutions of several values of the free parameters of the model

  10. A Note on Fine-Tuning in Mirage Mediation

    OpenAIRE

    Lebedev, Oleg; Nilles, Hans Peter; Ratz, Michael

    2005-01-01

    Recent progress in string theory moduli stabilization has motivated a mixed modulus-anomaly mediated supersymmetry breaking scenario, also dubbed `mirage mediation'. This scenario has a number of phenomenologically attractive features, in particular with respect to the cosmological gravitino/moduli problem. In this note, we investigate the issues of fine-tuning associated with obtaining the correct electroweak symmetry breaking scale in the mirage mediation scenario. We find that, due to ligh...

  11. Fine tuning in the standard model and beyond

    CERN Document Server

    Andianov, A A

    1996-01-01

    The fine-tuning principles are examined to predict the top-quark and Higgs-boson masses. The modification of the Veltman condition based on the compensation of vacuum energies is developed. It is implemented in the Standard Model and in its minimal extension with two Higgs doublets and Left-Right symmetric Model. The top-quark and Higgs-boson couplings are fitted in the SM for the lowest ultraviolet scale where the fine-tuning can be stable under rescaling. It yields the low-energy values m_t \\simeq 175 GeV;\\quad m_H \\simeq 210 GeV. For the Two-Higgs and Left-Right Symmetric Models the fine-tuning principles yield the interval for top-quark mass, compatible with the modern experimental data. For the Left-Right Model the FT principles demand the existence of the right-handed Majorana neitrinos with masses of order of right-handed gauge bosons.

  12. A precision study of the fine tuning in the DiracNMSSM

    International Nuclear Information System (INIS)

    Recently the DiracNMSSM has been proposed as a possible solution to reduce the fine tuning in supersymmetry. We determine the degree of fine tuning needed in the DiracNMSSM with and without non-universal gaugino masses and compare it with the fine tuning in the GNMSSM. To apply reasonable cuts on the allowed parameter regions we perform a precise calculation of the Higgs mass. In addition, we include the limits from direct SUSY searches and dark matter abundance. We find that both models are comparable in terms of fine tuning, with the minimal fine tuning in the GNMSSM slightly smaller.

  13. The Seveso II directive: guidance and fine-tuning

    International Nuclear Information System (INIS)

    This paper discusses two activities connected with the Seveso II Directive: 'fine-tuning', or the further consideration of topics which could not be not definitively resolved in the course of agreeing to the Directive; and 'guidance', or the preparation of non-binding suggestions and interpretations in technical domains where the Directive's provisions require further development. Both activities are carried out primarily in EU Technical Working Groups ('TWGs'). The paper finishes with some personal conclusions about the nature of the process and its results. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Fine Tuning in the Holographic Minimal Composite Higgs Model

    CERN Document Server

    Archer, Paul R

    2014-01-01

    In the minimal composite Higgs model (MCHM), the size of the Higgs mass and vacuum expectation value is determined, via the Higgs potential, by the size of operators that violate the global SO(5) symmetry. In 5D holographic realisations of this model, this translates into the inclusion of brane localised operators. However, the inclusion of all such operators results in a large and under-constrained parameter space. In this paper we study the level of fine-tuning involved in such a parameter space, focusing on the MCHM${}_5$. It is demonstrated that the gauge contribution to the Higgs potential can be suppressed by brane localised kinetic terms, but this is correlated with an enhancement to the S parameter. The fermion contribution, on the other hand, can be enhanced or suppressed. However this does not significantly improve the level of fine tunings, since the Higgs squared term, in the potential, requires a cancellation between the fermion and gauge contributions. Although we focus on the MCHM${}_5$, the fe...

  15. Soflty broken supersymmetry and the fine-tuning problem

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1984-02-20

    The supersymmetry of the simple Wess-Zumino model is broken, in the tree-approximation, by adding all possible parity-even(mass)-dimension 2 and 3 terms. The model is then renormalized using BPHZ and the normal product algorithm, such that supersymmetry is only softly broken (in the original sense of Schroer and Symanzik). We show that, within the above renormalization scheme, none of the added breaking terms give rise to technical fine-tuning problems (defined in the sense of Gildener) in larger models, with scalar multiplets and hierarchy of mass scales, which is in contrast to what we obtain via analytic schemes such as dimensional renormalization, or supersymmetry extension of which. The discrepancy (which can be shown to persist in more general models) originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Emphasizing that the issue is purely technical (as opposed to physical) in origin, and that all physical properties are scheme-independent (as they should be), we conclude that the technical fine-tuning problem, in the specific sense used in this paper, being scheme dependent, is not a well-defined issue within the context of renormalized perturbation theory. 30 references.

  16. Modern Cosmology and Anthropic Fine-Tuning: Three approaches

    Science.gov (United States)

    Collins, Robin

    The anthropic fine-tuning of the cosmos refers to the claim that the laws of nature, the constants of physics, and the initial conditions of the universe must be set to an enormous degree of precision for embodied conscious agents to exist. Three major responses have been offered to this fine-tuning: the multiverse explanation; theism; and the claim that it is just a brute fact that requires no further explanation. In this chapter, I will consider each explanation in turn, and provide some novel arguments for the superiority of a theistic or related explanation. In the last section, I will show how whether or not one adopts a theistic or related explanation can significantly influence what features of the universe one considers in need of further scientific explanation, and the type of scientific explanation that one should find satisfactory. In particular, I will argue that in some cases atheism, not theism, serves as a science stopper in discouraging a search for deeper scientific explanations of phenomena.

  17. Possible explanations for fine-tuning of the universe

    CERN Document Server

    Kawana, Kiyoharu

    2016-01-01

    The Froggatt-Nielsen mechanism and the multi-local field theory are interesting and promising candidates for solving the naturalness problem in the universe. These theories are based on the different physical principles: The former assumes the micro-canonical partition function $\\int {\\cal{D}}\\phi\\ \\prod_i \\delta (S_i^{}-I_i^{})$, and the latter assumes the partition function $\\int {\\cal{D}}\\phi\\ \\exp\\left(iS_M^{}\\right)$ where $S_M^{}$ is the multi-local action $\\sum_i c_i^{}S_i^{}+\\sum_{i,j}c_{i,j}^{}S_i^{}S_j^{}+\\cdots $. Our main purpose is to show that they are equivalent in the sense that they predict the same fine-tuning mechanism. In order to clarify our argument, we first study (review) the similarity between the Froggatt-Nielsen mechanism and statistical mechanics in detail, and show that the dynamical fine-tuning in the former picture can be understood completely in the same way as the determination of the temperature in the latter picture. Afterward, we discuss the multi-local theory and the equiv...

  18. Soflty broken supersymmetry and the fine-tuning problem

    International Nuclear Information System (INIS)

    The supersymmetry of the simple Wess-Zumino model is broken, in the tree-approximation, by adding all possible parity-even[mass]-dimension 2 and 3 terms. The model is then renormalized using BPHZ and the normal product algorithm, such that supersymmetry is only softly broken (in the original sense of Schroer and Symanzik). We show that, within the above renormalization scheme, none of the added breaking terms give rise to technical fine-tuning problems (defined in the sense of Gildener) in larger models, with scalar multiplets and hierarchy of mass scales, which is in contrast to what we obtain via analytic schemes such as dimensional renormalization, or supersymmetry extension of which. The discrepancy (which can be shown to persist in more general models) originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Emphasizing that the issue is purely technical (as opposed to physical) in origin, and that all physical properties are scheme-independent (as they should be), we conclude that the technical fine-tuning problem, in the specific sense used in this paper, being scheme dependent, is not a well-defined issue within the context of renormalized perturbation theory. (orig.)

  19. Polarity Categorization with Fine Tuned Pipeline Process of Online Reviews

    Directory of Open Access Journals (Sweden)

    Prabha Natarajan

    2013-06-01

    Full Text Available The development of Web 2.0 concept increased the web storage by offering information sharing from anywhere in the world. But how to use this content effectively and efficiently is the challenging taskwhich is the important research in the field of Sentiment Analysis and Opinion Mining. This paper focus on these online data to process the web content using a pipeline processing which is applied to onlinereviews about products and generating a polarity checking tool for the user to provide them decision support information. Most of the research focuses on classification of polarities instead of pre-processing of data. But our idea is fine tuned pipeline processing will help us give better categorization. Classificationhas been achieved with many techniques, mainly depends on Machine Learning. This study also focuses on ranking using different classification techniques.

  20. Relaxion Cosmology and the Price of Fine-Tuning

    CERN Document Server

    Di Chiara, Stefano; Marzola, Luca; Racioppi, Antonio; Raidal, Martti; Spethmann, Christian

    2015-01-01

    The relaxion scenario presents an intriguing extension of the standard model in which the particle introduced to solve to the strong CP problem, the axion, also achieves the dynamical relaxation of the Higgs boson mass term. In this work we complete this framework by proposing a scenario of inflationary cosmology that is consistent with all the observational constraints: the relaxion hybrid inflation with an asymmetric waterfall. In our scheme, the vacuum energy of the inflaton drives inflation in a natural way while the relaxion slow-rolls. The constraints on the present inflationary observables are then matched through a subsequent inflationary epoch driven by the inflaton. We quantify the amount of fine-tuning of the proposed inflation scenario, concluding that the inflaton sector severely decreases the naturalness of the theory.

  1. Fine tuning in quintessence models with exponential potentials

    International Nuclear Information System (INIS)

    We explore regions of parameter space in a simple exponential model of the form V=V0e-λ(Q/Mp) that are allowed by observational constraints. We find that the level of fine tuning in these models is not different from more sophisticated models of dark energy. We study a transient regime where the parameter λ has to be less than √3 and the fixed point ΩQ=1 has not been reached. All values of the parameter λ that lead to this transient regime are permitted. We also point out that this model can accelerate the universe today even for λ>√2, leading to a halt of the present acceleration of the universe in the future thus avoiding the horizon problem. We conclude that this model can not be discarded by current observations. (author)

  2. Fine-tuning tomato agronomic properties by computational genome redesign.

    Directory of Open Access Journals (Sweden)

    Javier Carrera

    Full Text Available Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites.

  3. Math Ontological Basis of Quasi Fine-Tuning in Ghc Cosmologies

    OpenAIRE

    Thomas, Mark

    2015-01-01

    The subject of fine tuning in physics is a long contentious issue especially now as it has hitched a ride on the Multiverse bandwagon. The mathematics of quadratic forms are predominately featured and relate the physics parameters G h c, which in turn are weighted during the Planck Era(s) determined by relative Planck time clocking. This simplifies the search to these three values as being the important apparent fine-tuned parameters (quasi fine tuning) for determining the gravitational build...

  4. SUSY models under siege: LHC constraints and electroweak fine-tuning

    CERN Document Server

    Baer, Howard; Mickelson, Dan; Padeffke-Kirkland, Maren

    2014-01-01

    Recent null results from LHC8 SUSY searches along with the discovery of a SM-like Higgs boson with mass m(h)~ 125.5 GeV indicates sparticle masses in the TeV range, causing tension with conventional measures of electroweak fine-tuning. We propose a simple Fine-tuning Rule which should be followed under any credible evaluation of fine-tuning. We believe that overestimates of electroweak fine-tuning by conventional measures all arise from violations of this rule. We show that to gain accord with the Fine-tuning Rule, then both Higgs mass and the traditional \\Delta_{BG} fine-tuning measures reduce to the model-independent electroweak fine-tuning measure \\Delta_{EW}. This occurs by combining dependent contributions to m(Z) or m(h) into independent units. Then, using \\Delta_{EW}, we evaluate EW fine-tuning for a variety of SUSY models including mSUGRA, NUHM1, NUHM2, mGMSB, mAMSB, hyper-charged AMSB and nine cases of mixed moduli-anomaly (mirage) mediated SUSY breaking models (MMAMSB) whilst respecting LHC Higgs ma...

  5. Triplet Extended MSSM: Fine Tuning vs Perturbativity and Experiment

    CERN Document Server

    Bandyopadhyay, Priyotosh; Huitu, Katri; Keçeli, Aslı Sabancı

    2014-01-01

    In this study we investigate the phenomenological viability of the $Y=0$ Triplet Extended Supersymmetric Standard Model (TESSM) by comparing its predictions with the current Higgs data from ATLAS, CMS, and Tevatron, as well as the measured value of the $B_s\\to X_s \\gamma$ branching ratio. We scan numerically the parameter space for data points generating the measured particle mass spectrum and also satisfying current direct search constraints on new particles. We require all the couplings to be perturbative up to the scale $\\Lambda_{\\rm UV}=10^4$ TeV, by running them with newly calculated two loop beta functions, and find that TESSM retains perturbativity as long as $\\lambda$, the triplet coupling to the two Higgs doublets, is smaller than 1.34 in absolute value. For $|\\lambda|\\gtrsim 0.8$ we show that the fine-tuning associated to each viable data point can be greatly reduced as compared to values attainable in MSSM. Finally, we perform a fit by taking into account 58 Higgs physics observables along with $\\m...

  6. Competitive binding of antagonistic peptides fine-tunes stomatal patterning.

    Science.gov (United States)

    Lee, Jin Suk; Hnilova, Marketa; Maes, Michal; Lin, Ya-Chen Lisa; Putarjunan, Aarthi; Han, Soon-Ki; Avila, Julian; Torii, Keiko U

    2015-06-25

    During development, cells interpret complex and often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues, which include a family of secreted peptides called epidermal patterning factors (EPFs). How these signalling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report in Arabidopsis that Stomagen (also called EPF-LIKE9) peptide, which promotes stomatal development, requires ERECTA (ER)-family receptor kinases and interferes with the inhibition of stomatal development by the EPIDERMAL PATTERNING FACTOR 2 (EPF2)-ER module. Both EPF2 and Stomagen directly bind to ER and its co-receptor TOO MANY MOUTHS. Stomagen peptide competitively replaced EPF2 binding to ER. Furthermore, application of EPF2, but not Stomagen, elicited rapid phosphorylation of downstream signalling components in vivo. Our findings demonstrate how a plant receptor agonist and antagonist define inhibitory and inductive cues to fine-tune tissue patterning on the plant epidermis. PMID:26083750

  7. Fine tuning points of generating function construction for linear recursions

    Science.gov (United States)

    Yolcu, Bahar; Demiralp, Metin

    2014-10-01

    Recursions are quite important mathematical tools since many systems are mathematically modelled to ultimately take us to these equations because of their rather easy algebraic natures. They fit computer programming needs quite well in many circumstances to produce solutions. However, it is generally desired to find the asymptotic behaviour of the general term in the relevant sequence for convergence and therefore practicality issues. One of the general tendencies to find the general term asymptotic behaviour, when its ordering number grows unboundedly, is the integral representation over a generating function which does not depend on individual sequence elements. This is tried to be done almost for all types of recursions, even though the linear cases gain more importance than the others because they can be more effectively investigated by using many linear algebraic tools. Despite this may seem somehow to be rather trivial, there are a lot of theoretical fine tuning issues in the construction of true integral representations over true intervals on real axis or paths in complex domains. This work is devoted to focus on this issue starting from scratch for better understanding of the matter. The example cases are chosen to best illuminate the situations to get information for future generalization even though the work can be considered at somehow introductory level.

  8. Confronting electroweak fine-tuning with No-Scale Supergravity

    Directory of Open Access Journals (Sweden)

    Tristan Leggett

    2015-01-01

    Full Text Available Applying No-Scale Supergravity boundary conditions at a heavy unification scale to the Flipped SU(5 grand unified theory with extra TeV-scale vector-like multiplets, i.e. No-Scale F-SU(5, we express the Z-boson mass MZ as an explicit function of the boundary gaugino mass M1/2, MZ2=MZ2(M1/22, with implicit dependence upon a dimensionless ratio c of the supersymmetric Higgs mixing parameter μ and M1/2. Setting the top Yukawa coupling consistent with mt=174.3 GeV at MZ=91.2 GeV, the value of c naturally tends toward c≃1, which indirectly suggests underlying action of the Giudice–Masiero mechanism. Proportional dependence of all model scales upon the unified gaugino mass M1/2 in the No-Scale F-SU(5 model suggests one possible mechanism of confronting the electroweak fine-tuning problem.

  9. Confronting electroweak fine-tuning with No-Scale Supergravity

    International Nuclear Information System (INIS)

    Applying No-Scale Supergravity boundary conditions at a heavy unification scale to the Flipped SU(5) grand unified theory with extra TeV-scale vector-like multiplets, i.e. No-Scale F-SU(5), we express the Z-boson mass MZ as an explicit function of the boundary gaugino mass M1/2, MZ2=MZ2(M1/22), with implicit dependence upon a dimensionless ratio c of the supersymmetric Higgs mixing parameter μ and M1/2. Setting the top Yukawa coupling consistent with mt=174.3 GeV at MZ=91.2 GeV, the value of c naturally tends toward c≃1, which indirectly suggests underlying action of the Giudice–Masiero mechanism. Proportional dependence of all model scales upon the unified gaugino mass M1/2 in the No-Scale F-SU(5) model suggests one possible mechanism of confronting the electroweak fine-tuning problem

  10. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  11. Inflection point inflation: WMAP constraints and a solution to the fine-tuning problem

    OpenAIRE

    Hotchkiss, Shaun; mazumdar, Anupam; Nadathur, Seshadri

    2011-01-01

    We consider observational constraints and fine-tuning issues in a renormalizable model of inflection point inflation, with two independent parameters. We derive constraints on the parameter space of this model arising from the WMAP 7-year power spectrum. It has previously been shown that it is possible to successfully embed this potential in the MSSM. Unfortunately, to do this requires severe fine-tuning. We address this issue by introducing a hybrid field to dynamically uplift the potential ...

  12. Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    OpenAIRE

    Vidal, Clement

    2010-01-01

    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This pa...

  13. Multi-Objective Synthesis of Filtering Dipole Array Based on Tuning-Space Mapping

    Directory of Open Access Journals (Sweden)

    P. Vsetula

    2015-09-01

    Full Text Available In the paper, we apply tuning-space mapping to multi-objective synthesis of a filtering antenna. The antenna is going to be implemented as a planar dipole array with serial feeding. Thanks to the multi-objective approach, we can deal with conflicting requirements on gain, impedance matching, side-lobe level, and main-lobe direction. MOSOMA algorithm is applied to compute Pareto front of optimal solutions by changing lengths of dipoles and parameters of transmission lines connecting them into a serial array. Exploitation of tuning space mapping significantly reduces CPU-time demands of the multi-objective synthesis: a coarse optimization evaluates objectives using a wire model of the filtering array (4NEC2, method of moments, and a fine optimization exploits a realistic planar model of the array (CST Microwave Studio, finite integration technique. The synthesized filtering antenna was manufactured, and its parameters were measured to be compared with objectives. The number of dipoles in the array is shown to influence the match of measured parameters and objectives.

  14. Tuning the Spring Constant of Cantilever-free Probe Arrays

    Science.gov (United States)

    Eichelsdoerfer, Daniel J.; Brown, Keith A.; Boya, Radha; Shim, Wooyoung; Mirkin, Chad A.

    2013-03-01

    The versatility of atomic force microscope (AFM) based techniques such as scanning probe lithography is due in part to the utilization of a cantilever that can be fabricated to match a desired application. In contrast, cantilever-free scanning probe lithography utilizes a low cost array of probes on a compliant backing layer that allows for high throughput nanofabrication but lacks the tailorability afforded by the cantilever in traditional AFM. Here, we present a method to measure and tune the spring constant of probes in a cantilever-free array by adjusting the mechanical properties of the underlying elastomeric layer. Using this technique, we are able to fabricate large-area silicon probe arrays with spring constants that can be tuned in the range from 7 to 150 N/m. This technique offers an advantage in that the spring constant depends linearly on the geometry of the probe, which is in contrast to traditional cantilever-based lithography where the spring constant varies as the cube of the beam width and thickness. To illustrate the benefit of utilizing a probe array with a lower spring constant, we pattern a block copolymer on a delicate 50 nm thick silicon nitride window.

  15. Tuning the 3D plasmon field of nanohole arrays

    Science.gov (United States)

    Couture, Maxime; Liang, Yuzhang; Poirier Richard, Hugo-Pierre; Faid, Rita; Peng, Wei; Masson, Jean-Francois

    2013-11-01

    Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been characterized using hexagonal nanohole arrays. An equation for nanohole arrays was derived to demonstrate the strong influence of incidence and rotation angle on optical properties of 2D plasmonic crystals such as nanohole arrays. Consequently, we report experimental data that are in strong agreement with finite difference time-domain (FDTD) simulations that clearly demonstrate the influence of the grating coupling conditions on the optical properties (such as plasmon degeneracy and bandwidth), and on the distribution of the plasmon field around nanohole arrays (including tuneable penetration depths and highly localized fields). The tuneable 3D plasmon field allowed for controlled sensing properties and by increasing the angle of incidence to 30 degrees, the resonance wavelength was tuned from 1000 to 600 nm, and the sensitivity was enhanced by nearly 300% for a protein assay using surface plasmon resonance (SPR) and by 40% with surface-enhanced Raman scattering (SERS) sensors.Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been

  16. The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts

    DEFF Research Database (Denmark)

    Eskildsen, Tilde V; Schneider, Mikael; Sandberg, Maria B; Skov, Vibe; Jensen, Hasse Brønnum; Thomassen, Mads; Kruse, Torben A; Andersen, Ditte Caroline; Sheikh, Søren P

    2015-01-01

    INTRODUCTION: MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease; however, the cardiac miRNA target molecules are not well understood. We and others have described the Angiotensin II (AngII)-induced miR-132/212 family as novel regulators of cardiovascular ...... pathways that fine-tuned by miR-132/212, suggesting a role for this miRNA family as master signalling switches in cardiac fibroblasts. Our data underscore the potential for miRNA tools to manipulate a large array of molecules and thereby control biological function....

  17. Softly Fine-Tuned Standard Model and the Scale of Inflation

    CERN Document Server

    Korutlu, Beste

    2015-01-01

    The direct coupling between the Higgs field and the spacetime curvature, if finely tuned, is known to stabilize the Higgs boson mass. The fine-tuning is soft because the Standard Model (SM) parameters are subject to no fine-tuning thanks to their independence from the Higgs-curvature coupling. This soft fine-tuning leaves behind a large vacuum energy $\\propto \\Lambda_{\\rm UV}^4$ which inflates the Universe with a Hubble rate $\\propto \\Lambda_{\\rm UV}$, $\\Lambda_{\\rm UV}$ being the SM ultraviolet boundary. This means that the tensor-to-scalar ratio inferred from cosmic microwave background polarization measurements by BICEP2, Planck and others lead to the determination of $\\Lambda_{\\rm UV}$. The exit from the inflationary phase, as usual, is accomplished via decays of the vacuum energy. Here we show that, identification of $\\Lambda_{\\rm UV}$ with the inflaton, as a sliding UV scale upon the SM, respects the soft fine-tuning constraint and does not disrupt the stability of the SM Higgs boson.

  18. Inflection point inflation: WMAP constraints and a solution to the fine tuning problem

    International Nuclear Information System (INIS)

    We consider observational constraints and fine-tuning issues in a renormalizable model of inflection point inflation, with two independent parameters. We derive constraints on the parameter space of this model arising from the WMAP 7-year power spectrum. It has previously been shown that it is possible to successfully embed this potential in the MSSM. Unfortunately, to do this requires severe fine-tuning. We address this issue by introducing a hybrid field to dynamically uplift the potential with a subsequent smooth phase transition to end inflation at the necessary point. Large parameter regions exist where this drastically reduces the fine-tuning required without ruining the viability of the model. A side effect of this mechanism is that it increases the width of the slow-roll region of the potential, thus also alleviating the problem of the fine-tuning of initial conditions. The MSSM embedding we study has been previously shown to be able to explain the smallness of the neutrino masses. The hybrid transition does not spoil this feature as there exist parameter regions where the fine-tuning parameter is as large as 10−1 and the neutrino masses remain small

  19. Inflection point inflation: WMAP constraints and a solution to the fine tuning problem

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkiss, Shaun [Department of Physics, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland); Mazumdar, Anupam [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Nadathur, Seshadri, E-mail: shaun.hotchkiss@helsinki.fi, E-mail: a.mazumdar@lancaster.ac.uk, E-mail: seshadri@thphys.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom)

    2011-06-01

    We consider observational constraints and fine-tuning issues in a renormalizable model of inflection point inflation, with two independent parameters. We derive constraints on the parameter space of this model arising from the WMAP 7-year power spectrum. It has previously been shown that it is possible to successfully embed this potential in the MSSM. Unfortunately, to do this requires severe fine-tuning. We address this issue by introducing a hybrid field to dynamically uplift the potential with a subsequent smooth phase transition to end inflation at the necessary point. Large parameter regions exist where this drastically reduces the fine-tuning required without ruining the viability of the model. A side effect of this mechanism is that it increases the width of the slow-roll region of the potential, thus also alleviating the problem of the fine-tuning of initial conditions. The MSSM embedding we study has been previously shown to be able to explain the smallness of the neutrino masses. The hybrid transition does not spoil this feature as there exist parameter regions where the fine-tuning parameter is as large as 10{sup −1} and the neutrino masses remain small.

  20. Reducing the Fine-Tuning of Gauge-Mediated SUSY Breaking

    CERN Document Server

    Casas, J Alberto; Robles, Sandra; Rolbiecki, Krzysztof

    2016-01-01

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, $A_t=0$. In this paper, we carefully evaluate such a fine-tuning, showing that is of the order a few per ten thousand in the minimal model. Then, we examine some existing proposals to improve the situation, by incorporating mechanisms to generate the desired $A_t$ term. We find that, although the stops can be made lighter, usually the fine-tuning does not improve (it may be even worse), with the exception of the scenario proposed by Basirnia et al., which involves tree-level generated $A_t$. We explore this scenario, proposing a conceptually simplified version which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. In this model, the fine-tuning can be improved compared to other MSSM constructions. We also explore the so-called "little $A_t^2/m^2$ problem", i...

  1. Self Fine Tuning of LQ Control With Fixed Model

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    Pardubice : Czech Society of Industrial Chemistry, University of Pardubice, 2010 - (Dušek, F.), C056a-1-C056a-7 ISBN 978-80-7399-951-3. [Process Control 2010. Kouty nad Desnou (CZ), 07.06.2010-10.06.2010] R&D Projects: GA MŠk(CZ) 7D09008 Institutional research plan: CEZ:AV0Z10750506 Keywords : LQ control * model-based control * control tuning * stochastic systems Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0343865.pdf

  2. Focus point in gaugino mediation — Reconsideration of the fine-tuning problem

    International Nuclear Information System (INIS)

    We reconsider the fine-tuning problem in SUSY models, motivated by the recent observation of the relatively heavy Higgs boson and non-observation of the SUSY particles at the LHC. Based on this thought, we demonstrate a focus point-like behavior in a gaugino mediation model, and show that the fine-tuning is indeed reduced to about 2% level if the ratio of the gluino mass to wino mass is about 0.4 at the GUT scale. We show that such a mass ratio may arise naturally in a product group unification model without the doublet–triplet splitting problem. This fact suggests that the fine-tuning problem crucially depends on the physics at the high energy scale

  3. A low-phase-noise ring oscillator with coarse and fine tuning in a standard CMOS process

    International Nuclear Information System (INIS)

    A low-phase-noise wideband ring oscillator with coarse and fine tuning techniques implemented in a standard 65 nm CMOS process is presented. Direct frequency modulation in the ring oscillator is analyzed and a switched capacitor array is introduced to produce the lower VCO gain required to suppress this effect. A two-dimensional high-density stacked MOM-capacitor was adopted as the switched capacitor to make the proposed ring VCO compatible with standard CMOS processes. The designed ring VCO exhibits an output frequency from 480 to 1100 MHz, resulting in a tuning range of 78%, and the measured phase noise is −120 dBc/Hz at 1 MHz at 495 MHz output. The VCO core consumes 3.84 mW under a 1.2 V supply voltage and the corresponding FOM is −169 dBc/Hz. (semiconductor integrated circuits)

  4. A low-phase-noise ring oscillator with coarse and fine tuning in a standard CMOS process

    Institute of Scientific and Technical Information of China (English)

    Gao Haijun; Sun Lingling; Kuang Xiaofei; Lou Liheng

    2012-01-01

    A low-phase-noise wideband ring oscillator with coarse and fine tuning techniques implemented in a standard 65 nm CMOS process is presented.Direct frequency modulation in the ring oscillator is analyzed and a switched capacitor array is introduced to produce the lower VCO gain required to suppress this effect.A two-dimensional high-density stacked MOM-capacitor was adopted as the switched capacitor to make the proposed ring VCO compatible with standard CMOS processes,The designed ring VCO exhibits an output frequency from 480 to 1100 MHz,resulting in a tuning range of 78%,and the measured phase noise is -120 dBc/Hz @ 1 MHz at 495 MHz output.The VCO core consumes 3.84 m W under a 1.2 V supply voltage and the corresponding FOM is 169 dBc/Hz.

  5. High-resolving electrostatic charged particles energy analyzer with fine tuning for space investigations

    International Nuclear Information System (INIS)

    The paper presents results of numerical calculations of a high-resolving electrostatic energy analyzer, based on a bounded cylindrical field, for investigations of flows of charged particles in space. The analyzer possesses with ability of fine tuning of focusing characteristics, using an additional tuning potential, applied to one of electrodes. A combination of high energy resolution ability with high transmission, simple design and compactness makes this instrument very promising for space technologies

  6. The fine-tuning cost of the likelihood in SUSY models

    International Nuclear Information System (INIS)

    In SUSY models, the fine-tuning of the electroweak (EW) scale with respect to their parameters γi={m0,m1/2,μ0,A0,B0,…} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Δ of the usual likelihood L and the traditional fine-tuning measure Δ of the EW scale. A similar result is obtained for the integrated likelihood over the set {γi}, that can be written as a surface integral of the ratio L/Δ, with the surface in γi space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Δ or equivalently, a small χnew2=χold2+2lnΔ. This shows the fine-tuning cost to the likelihood (χnew2) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good χnew2/d.o.f.≈1 thus demands SUSY models have a fine-tuning amount Δ≪exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further χ2/d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.

  7. Fine-tuning the activity of oxygen evolution catalysts

    DEFF Research Database (Denmark)

    Paoli, Elisa Antares; Masini, Federico; Frydendal, Rasmus;

    2016-01-01

    Water splitting is hindered by the sluggish kinetics of the oxygen evolution reaction (OER). The choice of materials for this reaction in acid is limited to the platinum group metals; high loading required of these scarce and expensive elements severely limit the scalability of such technology....... Ruthenium oxide is among the best catalysts for OER, however the reported activity and stability can vary tremendously depending on the preparation conditions and pre-treatment. Herein, we investigate the effect of oxidation treatment on mass-selected Ru nanoparticles in the size range between 2 and 10 nm....... The effect of two distinct oxidation pre-treatments on the activity and stability have been investigated: (1) thermal oxidation; and (2) oxidation with an oxygen plasma under vacuum. We report that activity and stability can be tuned by using different oxidation pre-treatments. Thermally oxidized...

  8. Fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)

    1983-04-28

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  9. The fine-tuning problem in renormalized perturbation theory: Spontaneously-broken gauge models

    International Nuclear Information System (INIS)

    We study the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a model with spontaneously-broken gauge symmetries. We confirm previous results indicating that if the model is renormalized using BPHZ, then the tree-level hierarchy is not upset by the radiative corrections. Consequently, no fine-tuning of the initial parameters is required to maintain it, in contrast to the result obtained using Dimensional Renormalization. This verifies the conclusion that the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes. (orig.)

  10. The impact of fine-tuning of optical recognition system on database reliability

    OpenAIRE

    Modesti, P. A.; L. Massetti; Bamoshmoosh, M; M.Baldereschi; G.E. Cambi; Rapi, S

    2012-01-01

    Although optical reading systems (ORS) are useful tools to transfer data from paper forms (PF) to electronic database, clinical researchers may be unaware that the system may represent a direct source of errors in final data base, and the impact of system fine-tuning on the final error rate is not usually considered. Present investigation was performed within the frame of HYDY study to measure error rate introduced in the final data base by an ORS. The impact of fine-tuning, the relationship ...

  11. Effects of curvature-Higgs coupling on electroweak fine-tuning

    International Nuclear Information System (INIS)

    It is shown that nonminimal coupling between the Standard Model (SM) Higgs field and spacetime curvature, present already at the renormalizable level, can be fine-tuned to stabilize the electroweak scale against power-law ultraviolet divergences. The nonminimal coupling acts as an extrinsic stabilizer with no effect on the loop structure of the SM, if gravity is classical. This novel fine-tuning scheme, which could also be interpreted within Sakharov's induced gravity approach, works neatly in extensions of the SM involving additional Higgs fields or singlet scalars.

  12. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays. PMID:23683185

  13. Highly Stable and Finely Tuned Magnetic Fields Generated by Permanent Magnet Assemblies

    Science.gov (United States)

    Danieli, E.; Perlo, J.; Blümich, B.; Casanova, F.

    2013-05-01

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  14. Fine tuning of micropillar cavity modes through repetitive oxidations

    CERN Document Server

    Bakker, Morten P; Snijders, Henk; Truong, Tuan-Ahn; Petroff, Pierre M; Bouwmeester, Dirk; van Exter, Martin P

    2013-01-01

    Repetitive wet thermal oxidations of a tapered oxide aperture in a micropillar structure are demonstrated. After each oxidation step the con?fined optical modes are analyzed at room temperature. Three regimes are identi?fied. First, the optical con?finement increases when the aperture oxidizes towards the center. Then, the cavity modes shift by more than 30 nm, when the taper starts to oxidize through the center, leading to a decrease in the optical path length. Finally, the resonance frequency levels o?f, when the aperture is oxidized all the way through the micropillar, but confi?ned optical modes with a high quality factor remain. This repetitive oxidation technique therefore enables precise control of the optical cavity volume or wavelength.

  15. Fine tuning in small and large tan beta regions in the cE6SSM

    CERN Document Server

    Binjonaid, Maien Y

    2014-01-01

    The Electroweak sector in E6 supersymmetric models is subject to a degree of fine tuning in the percent to permil level. This can be attributed to the experimental limits on both the mass of the Z' boson associated with the extra U(1)' symmetry in the model, as well as the masses of naturalness-related sparticles (which is a general source of tuning in supersymmetric models). The degree of tuning can be smaller than that in the minimal supersymmetric standard model with universal fundamental parameters (the constrained MSSM). We show this by quantifying the fine tuning in regions of the parameter space of the constrained exceptional supersymmetric standard model (cE6SSM) corresponding to values of tan beta below and above 10. It is found that, a Higgs mass m_h ~ 125 GeV, a gluino mass ~ 1.5 TeV, and a Z' boson mass m_Z' ~ 3.8 TeV correspond to fine tuning in the 0.2% (0.1%) level for tan beta = 30 (5).

  16. Fine-Tuning Language Policy in Hong Kong Education: Stakeholders' Perceptions, Practices and Challenges

    Science.gov (United States)

    Chan, Jim Y. H.

    2014-01-01

    The present study evaluates the impact of the fine-tuning medium of instruction (MOI) policy in Hong Kong in the early stages of its implementation. It explores the key stakeholders' perspectives on a school-based policy via a case study, which gathered multiple sources of qualitative data (i.e. focus groups/interviews, open-ended…

  17. Symmetry breaking, duality and fine-tuning in hierarchical spin models

    International Nuclear Information System (INIS)

    We discuss three questions related to the critical behavior of hierarchical spin models: 1) the hyperscaling relations in the broken symmetry phase; 2) the combined use of dual expansions to calculate non-universal quantities; 3) the fine-tuning issue in approximately supersymmetric models

  18. Higher-order Lorentz-invariance violation, quantum gravity and fine-tuning

    Directory of Open Access Journals (Sweden)

    Carlos M. Reyes

    2015-06-01

    Full Text Available The issue of Lorentz fine-tuning in effective theories containing higher-order operators is studied. To this end, we focus on the Myers–Pospelov extension of QED with dimension-five operators in the photon sector and standard fermions. We compute the fermion self-energy at one-loop order considering its even and odd CPT contributions. In the even sector we find small radiative corrections to the usual parameters of QED which also turn to be finite. In the odd sector the axial operator is shown to contain unsuppressed effects of Lorentz violation leading to a possible fine-tuning. We use dimensional regularization to deal with the divergencies and a generic preferred four-vector. Taking the first steps in the renormalization procedure for Lorentz violating theories we arrive to acceptable small corrections allowing to set the bound ξ<6×10−3.

  19. Invariant Set Theory: Violating Measurement Independence without Fine Tuning, Conspiracy, Constraints on Free Will or Retrocausality

    CERN Document Server

    Palmer, T N

    2015-01-01

    Invariant Set (IS) theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe $U$ can be considered a deterministic dynamical system evolving precisely on a (suitably constructed) fractal dynamically invariant set in $U$'s state space. IS theory violates the Bell inequalities by violating Measurement Independence. Despite this, IS theory is not fine tuned, is not conspiratorial, does not constrain experimenter free will and does not invoke retrocausality. The reasons behind these claims are discussed in this paper. These arise from properties not found in conventional ontic models: the invariant set has zero measure in its Euclidean embedding space, has Cantor Set structure homeomorphic to the p-adic integers ($p \\ggg 0$) and is non-computable. In particular, it is shown that the p-adic metric encapulates the physics of the Cosmological Invariant Set postulate, and provides the technical means to demonstrate no fine tuning or conspiracy. Quantum theo...

  20. A systematic approach for fine-tuning of fuzzy controllers applied to WWTPs

    DEFF Research Database (Denmark)

    Ruano, M.V.; Ribes, J.; Sin, Gürkan; Seco, A.; Ferrer, J.

    2010-01-01

    A systematic approach for fine-tuning fuzzy controllers has been developed and evaluated for an aeration control system implemented in a WWTR The challenge with the application of fuzzy controllers to WWTPs is simply that they contain many parameters, which need to be adjusted for different WWTP...... of 33, which improved the quality of the optimization of the control system by a minimization algorithm. Overall the systematic approach considerably improved the performance of the control system as measured by the Integral Absolute Error (deviation between the set-point and the controlled variable...... fine-tune the identifiable parameter subset of the controller. Indeed, the initial location found by Monte-Carlo simulations provided better results than using trial and error approach when identifying parameters of the fuzzy controller. The identifiable subset was reduced to 4 parameters from a total...

  1. Computational and Biological Analogies for Understanding Fine-Tuned Parameters in Physics

    CERN Document Server

    Vidal, Clement

    2010-01-01

    In this philosophical paper, we explore computational and biological analogies to address the fine-tuning problem in cosmology. We first clarify what it means for physical constants or initial conditions to be fine-tuned. We review important distinctions such as the dimensionless and dimensional physical constants, and the classification of constants proposed by Levy-Leblond. Then we explore how two great analogies, computational and biological, can give new insights into our problem. This paper includes a preliminary study to examine the two analogies. Importantly, analogies are both useful and fundamental cognitive tools, but can also be misused or misinterpreted. The idea that our universe might be modelled as a computational entity is analysed, and we discuss the distinction between physical laws and initial conditions using algorithmic information theory. Smolin introduced the theory of "Cosmological Natural Selection" with a biological analogy in mind. We examine an extension of this analogy involving i...

  2. Dynamical fine-tuning of initial conditions for small field inflation

    Science.gov (United States)

    Iso, Satoshi; Kohri, Kazunori; Shimada, Kengo

    2016-04-01

    Small-field inflation (SFI) is widely considered to be unnatural because an extreme fine-tuning of the initial condition is necessary for sufficiently large e -folding. In this paper, we show that the unnaturally looking initial condition can be dynamically realized without any fine-tuning if the SFI occurs after rapid oscillations of the inflaton field and particle creations by preheating. In fact, if the inflaton field ϕ is coupled to another scalar field χ through the interaction g2χ2ϕ2 and the vacuum energy during the small field inflation is given by λ M4, the initial value can be dynamically set at (√{λ }/g )M2/Mpl, which is much smaller than the typical scale of the potential M . This solves the initial condition problem in the new inflation model or some classes of the hilltop inflation models.

  3. Dynamical fine-tuning of initial conditions for small field inflations

    CERN Document Server

    Iso, Satoshi; Shimada, Kengo

    2015-01-01

    Small-field inflation (SFI) is widely considered to be unnatural because an extreme fine-tuning of the initial condition is necessary for sufficiently large e-folding. In this paper, we show that the unnaturally-looking initial condition can be dynamically realised without any fine-tuning if the SFI occurs after rapid oscillations of the inflaton field and particle creations by preheating. In fact, if the inflaton field $\\phi$ is coupled to another scalar field $\\chi$ through the interaction $g^2 \\chi^2 \\phi^2$ and the vacuum energy during the small field inflation is given by $\\lambda M^4$, the initial value can be dynamically set at $(\\sqrt{\\lambda}/g) M^2/M_{\\rm pl}$, which is much smaller than the typical scale of the potential $M.$ This solves the initial condition problem in the new inflation model or some classes of the hilltop inflation models.

  4. Fine-tuning problems in quantum field theory and Lorentz invariance

    CERN Document Server

    Cortes, J L

    2016-01-01

    A model with a scalar and a fermion field is used to show how a Lorentz invariance violating high momentum scale, which eliminates all the divergences of the quantum field theory, can be made compatible with a suppression of Lorentz invariance violations at low momenta. The fine tuning required to get this suppression and to have a light scalar particle in the spectrum is determined at one loop.

  5. Invariant Set Theory: Violating Measurement Independence without Fine Tuning, Conspiracy, Constraints on Free Will or Retrocausality

    OpenAIRE

    Palmer, Tim

    2015-01-01

    Invariant Set (IS) theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe $U$ can be considered a deterministic dynamical system evolving precisely on a (suitably constructed) fractal dynamically invariant set in $U$'s state space. IS theory violates the Bell inequalities by violating Measurement Independence. Despite this, IS theory is not fine tuned, is not conspiratorial, does not constrain experimenter free will and does not ...

  6. An Undecanuclear Ferrimagnetic Cu9Dy2 Single Molecule Magnet Achieved through Ligand Fine-Tuning.

    Science.gov (United States)

    Kühne, Irina A; Kostakis, George E; Anson, Christopher E; Powell, Annie K

    2016-05-01

    We describe the concept of increasing the nuclearity of a previously reported high-spin Cu5Gd2 core using a "fine-tuning" ligand approach. Thus, two Cu9Ln2 coordination clusters, with Ln = Dy (1) and Gd (2), were synthesized with the Gd compound having a ground spin state of (17)/2 and the Dy analogue showing single-molecule-magnet behavior in zero field. PMID:27096219

  7. Inflection point inflation: WMAP constraints and a solution to the fine-tuning problem

    CERN Document Server

    Hotchkiss, Shaun; Nadathur, Seshadri

    2011-01-01

    We consider observational constraints and fine-tuning issues in a very generic model of inflection point inflation with two independent parameters and with quadratic, cubic and quartic self-interactions of the inflaton at sub-Planckian field values. We investigate the constraints on parameter space of this model obtained from WMAP 7-year power spectrum limits and the requirement to generate an appropriate number of e-folds of inflation, which allow inflaton mass to take values over a wide range of scales. At low scales, it is possible to realise this potential in an interesting particle physics model based on the MSSM that can also explain the smallness of the neutrino masses and provide a dark matter candidate as part of the inflaton. It is known that this low scale model of inflation requires severe fine-tuning. We address this issue by dynamically uplifting the potential with a subsequent smooth phase transition which ends inflation to drastically reduce the fine-tuning required. We demonstrate that it is ...

  8. Scalar sector extensions and the Higgs mass fine-tuning problem

    International Nuclear Information System (INIS)

    One of the ways to address the fine-tuning problem in the Standard Model is to assume the existence of some symmetry which keeps the quantum corrections to the Higgs mass to a manageable level. This condition, known after Veltman who first propounded it, is unfortunately not satisfied in the SM, given that we know all the masses. We discuss how one can get back the Veltman Condition if one or more gauge singlet scalars are introduced in the model. We show that the most favored solution is the case where the singlet scalar does not mix with the SM doublet, and thus can act as a viable cold dark matter candidate. Furthermore, the fine-tuning problem of the new scalars necessitates the introduction of vector like fermions. Thus, singlet scalar(s) and vector fermions are minimal enhancements over the Standard Model to alleviate the fine-tuning problem. We also show that the model predicts Landau poles for all the scalar couplings, whose positions depend only on the number of such singlets. Thus, introduction of some new physics at that scale becomes inevitable. We also discuss how the model confronts the LHC constraints and the latest XENON100 data. Some more such extensions, with higher scalar multiplets, are also discussed. (author)

  9. Controlling the fine-tuning problem with a singlet scalar dark matter

    International Nuclear Information System (INIS)

    Assuming that no other new physics is found immediately at the LHC, we investigate how just the existence of dark matter points towards a solution of the hierarchy problem of the Higgs mass. We show that to ameliorate the fine-tuning problem, one needs to introduce more scalar degrees of freedom which may act as the dark matter. The constraints on the scalar potential disfavours any mixing between the new scalar(s) with the SM doublet. Furthermore, the fine-tuning problem of the new scalars necessitates the introduction of vector-like fermions. Such an augmentation of the SM may make the electroweak phase transition a first-order one, and at the same time, if the vector fermions mix with the ordinary fermions, can jack up the Higgs to diphoton rate. We show that the model predicts Landau poles for all the scalar couplings at the order of a few TeV (so that the fine-tuning problem is never very severe), and the introduction of new physics becomes inevitable. (author)

  10. Fine-tuning with Brane-Localized Flux in 6D Supergravity

    CERN Document Server

    Niedermann, Florian

    2015-01-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: First, the cosmological constant only curves the compact bulk geometry into a rugby shape, while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: The only localized flux coupling that leads to a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding nonzero 4D curvat...

  11. Fine-tuning with brane-localized flux in 6D supergravity

    Science.gov (United States)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  12. Fine-tuning and vacuum stability in the Wilsonian effective action

    Science.gov (United States)

    Krajewski, Tomasz; Lalak, Zygmunt

    2015-10-01

    We have computed the Wilsonian effective action in a simple model with a spontaneously broken chiral parity. The Wilsonian running of relevant parameters makes it possible to discuss in a consistent manner the issues of fine-tuning and the stability of the scalar potential. This has been compared with the standard picture based on a Gell-Mann-Low running. Since the Wilsonian running automatically includes integration of heavy degrees of freedom, the running differs markedly from the Gell-Mann-Low version. Similar behavior can be observed: the scalar mass-squared parameter and the quartic coupling can change sign from a positive to a negative one, due to the running which causes a spontaneous symmetry breaking or an instability in the renormalizable part of the potential for a given range of scales. However, care must be taken when drawing conclusions, because of the truncation of higher-dimension operators. Taking the scalar field's amplitude near the cutoff Λ may cancel the suppression due to the scale, and only the suppression due to small couplings partially justifies the truncation in this region. Also, when taking the cutoff higher, to include larger amplitudes of the fields, the higher-order irrelevant operators, whose coefficients grow with the scale, may affect the conclusion about the stability. The Gell-Mann-Low running allows one to resume relatively easily a class of operators corresponding to large logarithms to the form of the renormalization group equation improved effective potential which is valid over a huge range of scales. In the Wilsonian approach this would correspond to following the running of a large number of irrelevant operators, which is technically problematic. As for the issue of the fine-tuning, since in the Wilsonian approach power-law terms are not subtracted, one can clearly observe the quadratic sensitivity of a fine-tuning measure to the change of the cutoff scale. The Wilsonian version of the radiative symmetry

  13. Natural solution to the naturalness problem -- Universe does fine-tuning

    CERN Document Server

    Hamada, Yuta; Kawana, Kiyoharu

    2015-01-01

    We propose a new mechanism to solve the fine-tuning problem. We start from a multi-local action $ S=\\sum_{i}c_{i}S_{i}+\\sum_{i,j}c_{i,j}S_{i}S_{j}+\\sum_{i,j,k}c_{i,j,k}S_{i}S_{j}S_{k}+\\cdots$, where $S_{i}$'s are ordinary local actions. Then, the partition function of this system is given by \\begin{equation} Z=\\int d\\overrightarrow{\\lambda} f(\\overrightarrow{\\lambda})\\langle f|T\\exp\\left(-i\\int_{0}^{+\\infty}dt\\hat{H}(\\overrightarrow{\\lambda};a_{cl}(t))\\right)|i\\rangle,\

  14. Fine-Tuning on the Effective Patch Radius Expression of the Circular Microstrip Patch Antennas

    Directory of Open Access Journals (Sweden)

    A. E. Yilmaz

    2010-09-01

    Full Text Available In this study, the effective patch radius expression for the circular microstrip antennas is improved by means of several manipulations. Departing from previously proposed equations in the literature, one of the most accurate equations is picked up, and this equation is fine-tuned by means of Particle Swarm Optimization technique. Throughout the study, impacts of other parameters (such as the definition of the fitness/objective function, the degree-of-freedom in the proposed effective patch radius expression, the number of measured resonant frequency values are observed in a controlled manner. Finally, about 3% additional improvement is achieved over a very accurate formula, which was proposed earlier.

  15. Statistical-mechanical analysis of pre-training and fine tuning in deep learning

    OpenAIRE

    Ohzeki, Masayuki

    2015-01-01

    In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning---pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied with small amounts of labelled data, as in deep learning. Although we employ a simple single-layer p...

  16. Quantum Big Bang without fine-tuning in a toy-model

    International Nuclear Information System (INIS)

    The question of possible physics before Big Bang (or after Big Crunch) is addressed via a schematic non-covariant simulation of the loss of observability of the Universe. Our model is drastically simplified by the reduction of its degrees of freedom to the mere finite number. The Hilbert space of states is then allowed time-dependent and singular at the critical time t = tc. This option circumvents several traditional theoretical difficulties in a way illustrated via solvable examples. In particular, the unitary evolution of our toy-model quantum Universe is shown interruptible, without any fine-tuning, at the instant of its bang or collapse t = tc.

  17. On the fine-tuning problem in minimal SO(10) SUSY-GUT

    International Nuclear Information System (INIS)

    In grand unified theories (GUT) based on SO(10) all fermions of one generation are embedded in a single representation. As a result, the top quark, the bottom quark, and the τ lepton have the same Yukawa coupling at the GUT scale. This implies a very large ratio of Higgs vacuum expectation values, tanβ≅mt/mb. In this letter we show that GUT threshold correction to the universal Higgs mass parameter can solve the fine-tuning problem associated with such large values of tan β. (orig.)

  18. Fine-tuning and naturalness issues in the two-zero neutrino mass textures

    International Nuclear Information System (INIS)

    In this paper we analyze the compatibility of two-zero neutrino Majorana textures with the recent experimental data. Differently from previous works, we use the experimental data to fix the values of the non-vanishing mass matrix entries and study in detail the correlations and degree of fine-tuning among them, which is also a measure of how naturally a given texture is able to describe all neutrino data. This information is then used to expand the textures in powers of the Cabibbo angle; extracting random O(1) coefficients, we show that only in few cases such textures reproduce the mixing parameters in their 3σ ranges.

  19. Tuning Photoluminescence Energy and Fine Structure Splitting in Single Quantum Dots by Uniaxial Stress

    International Nuclear Information System (INIS)

    We report a photoluminescence (PL) energy red-shift of single quantum dots (QDs) by applying an in-plane compressive uniaxial stress along the [110] direction at a liquid nitrogen temperature. Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift, but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak. This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs

  20. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    Science.gov (United States)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-08-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  1. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    CERN Document Server

    Wu, Lixiang; Fu, Shaojun

    2016-01-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. We have conducted two experiments. In the experiment on parametric modeling of shielding rate profiles, its result shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. And the experimental result of fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  2. Anthropic Reasoning about Fine-Tuning, and Neoclassical Cosmology: Providence, Omnipresence, and Observation Selection Theory

    Science.gov (United States)

    Walker, Theodore, Jr.

    2011-10-01

    Anthropic reasoning about observation selection effects upon the appearance of cosmic providential fine-tuning (fine-tuning that provides for life) is often motivated by a desire to avoid theological implications (implications favoring the idea of a divine cosmic provider) without appealing to sheer lucky-for-us-cosmic-jackpot happenstance and coincidence. Cosmic coincidence can be rendered less incredible by appealing to a multiverse context. Cosmic providence can be rendered non-theological by appealing to an agent-less providential purpose, or by appealing to less-than-omnipresent/local providers, such as alien intelligences creating life- providing baby universes. Instead of choosing either cosmic coincidence or cosmic providence, as though they were mutually exclusive; it is better to accept both. Neoclassical thought accepts coincidence and providence, plus many local providers and one omnipresent provider. Moreover, fundamental observation selection theory should distinguish the many local observers of some events from the one omnipresent observer of all events. Accepting both coincidence and providence avoids classical theology (providence without coincidence) and classical atheism (coincidence without providence), but not neoclassical theology (providence with coincidence). Cosmology cannot avoid the idea of an all-inclusive omnipresent providential dice-throwing living-creative whole of reality, an idea essential to neoclassical theology, and to neoclassical cosmology.

  3. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass

    CERN Document Server

    Baer, Howard; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2012-01-01

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light higgsinos m_0 leads to automatic cancellations during renormalization group (RG) running, and to radiatively-induced low fine-tuning at the electroweak scale. Coupled with large mixing in the top squark sector, RNS allows for fine-tuning at the 3-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. The model allows for at least a partial solution to the SUSY flavor, CP and gravitino problems since first/second generation scalars (and the gravitino) may exist in the 10-30 TeV regime. We outline some possible signatures for RNS at the LHC and at a linear e^+e^- collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS naturally accommodates mixed axion-higgsino cold dark matter, where the light higgsino-like WIMPS - which in this case make up only a fraction of the measured relic abundance - should be detectable at upcoming WIMP detectors.

  4. How conventional measures overestimate electroweak fine-tuning in supersymmetric theory

    CERN Document Server

    Baer, Howard; Mickelson, Dan

    2013-01-01

    The lack of evidence for superparticles at the CERN LHC, along with the rather high value of the Higgs mass, has sharpened the perception that supersymmetric model parameter space is highly electroweak fine-tuned (EWFT). We compare three measures of fine-tuning in SUSY models. 1. \\Del_HS measures a terms containing large log contributions to m_Z that are inevitable in models defined at scales much higher than the electroweak scale. 2. \\Del_BG measures variation in m_Z against variation of model parameters and allows for correlations among high scale parameters which are not included in \\Del_HS. 3. The model-independent \\Del_EW measures how naturally a model can generate the measured value of m_Z=91.2~GeV in terms of weak scale parameters alone. We hypothesize an overarching Ultimate Theory (UTH) wherein the high scale soft terms are all correlated. The UTH might be contained within the more general effective SUSY theories popular in the literature. For \\Del_HS, EWFT can be overestimated by neglecting addition...

  5. Effects of microwave frequency of fine tuning on the performance of JYFL 14 GHz ECRIS

    International Nuclear Information System (INIS)

    Measurements have been carried out to study the effects of microwave frequency fine tuning on the performance of JYFL 14 GHz electron cyclotron resonance ion source. The frequency was varied within an 85 MHz band around the normal operation frequency of 14.085 GHz. The radial Bremsstrahlung emission was measured for plasma diagnostics purposes and mass separated ion beam currents extracted from the ion source were recorded at the same time. Also, beam quality studies were conducted by measuring the ion beam emittance and shape with and without enhanced space charge compensation achieved by increased neutral gas pressure in the beam line. The studies presented in this article show that microwave frequency fine tuning does produce clear variations to many of the measurable quantities connected to the performance of the JYFL 14 GHz ECRIS. However, the varying input power makes it difficult to separate which effects are caused by the frequency variations and not the power fluctuations. This is the case especially with the beam currents. The beam emittance and profile exhibited clear variations which were further strengthened with the ESCC. These effects on the beam quality were clearly reflected as significant variations in the transmission efficiency. The paper is followed by the associated poster

  6. An intramolecular disulfide bond designed in myoglobin fine-tunes both protein structure and peroxidase activity.

    Science.gov (United States)

    Wu, Lei-Bin; Yuan, Hong; Zhou, Hu; Gao, Shu-Qin; Nie, Chang-Ming; Tan, Xiangshi; Wen, Ge-Bo; Lin, Ying-Wu

    2016-06-15

    Disulfide bond plays crucial roles in stabilization of protein structure and in fine-tuning protein functions. To explore an approach for rational heme protein design, we herein rationally introduced a pair of cysteines (F46C/M55C) into the scaffold of myoglobin (Mb), mimicking those in native neuroglobin. Molecular modeling suggested that it is possible for Cys46 and Cys55 to form an intramolecular disulfide bond, which was confirmed experimentally by ESI-MS analysis, DTNB reaction and CD spectrum. Moreover, it was shown that the spontaneously formed disulfide bond of Cys46-Cys55 fine-tunes not only the heme active site structure, but also the protein functions. The substitution of Phe46 with Ser46 in F46S Mb destabilizes the protein while facilitates H2O2 activation. Remarkably, the formation of an intramolecular disulfide bond of Cys46-Cys55 in F46C/M55C Mb improves the protein stability and regulates the heme site to be more favorable for substrate binding, resulting in enhanced peroxidase activity. This study provides valuable information of structure-function relationship for heme proteins regulated by an intramolecular disulfide bond, and also suggests that construction of such a covalent bond is useful for design of functional heme proteins. PMID:27117233

  7. Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation.

    Science.gov (United States)

    Sen, Rwik; Ferdoush, Jannatul; Kaja, Amala; Bhaumik, Sukesh R

    2016-06-01

    FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome. Enhanced abundance of Spt16 in the absence of San1 impairs transcriptional elongation. Likewise, decreased abundance of Spt16 also reduces transcription. Thus, an optimal level of Spt16 is required for efficient transcriptional elongation, which is maintained by San1 via ubiquitylation and proteasomal degradation. Consistently, San1 associates with the coding sequences of active genes to regulate Spt16's abundance. Further, we found that enhanced abundance of Spt16 in the absence of San1 impairs chromatin reassembly at the coding sequence, similarly to the results seen following inactivation of Spt16. Efficient chromatin reassembly enhances the fidelity of transcriptional elongation. Taken together, our results demonstrate for the first time a fine-tuning of FACT by a ubiquitin proteasome system in promoting chromatin reassembly in the wake of elongating RNA polymerase II and transcriptional elongation, thus revealing novel regulatory mechanisms of gene expression. PMID:27044865

  8. Chiral Symmetry Restoration, Naturalness and the Absence of Fine-Tuning I: Global Theories

    CERN Document Server

    Lynn, Bryan W

    2013-01-01

    The Standard Model (SM), and the scalar sector of its zero-gauge-coupling limit -- the chiral-symmetric limit of the Gell Mann-Levy Model (GML) -- have been shown not to suffer from a Higgs Fine-Tuning (FT) problem. All ultraviolet quadratic divergences (UVQD) are absorbed into the mass-squared of pseudo Nambu-Goldstone (pNGB) bosons, in GML. Since chiral SU(2)_{L-R} symmetry is restored as the pNGB mass-squared or as the Higgs vacuum expectation value (VEV) are taken to 0, small values of these quantities and of the Higgs mass are natural, and therefore not Fine-Tuned. In this letter, we extend our results on the absence of FT to a wide class of high-mass-scale (M_{Heavy}>>m_{Higgs}) extensions to a simplified SO(2) version of GML. We explicitly demonstrate naturalness and no-FT for two examples of heavy physics, both SO(2) singlets: a heavy (M_S >> m_{Higgs}) real scalar field (with or without a VEV); and a right-handed Type 1 See-Saw Majorana neutrino with M_R >> m_{Higgs}. We prove that for |q^2| <<...

  9. Design and fine-tuning redox potentials of metalloproteins involved in electron transfer in bioenergetics.

    Science.gov (United States)

    Hosseinzadeh, Parisa; Lu, Yi

    2016-05-01

    Redox potentials are a major contributor in controlling the electron transfer (ET) rates and thus regulating the ET processes in the bioenergetics. To maximize the efficiency of the ET process, one needs to master the art of tuning the redox potential, especially in metalloproteins, as they represent major classes of ET proteins. In this review, we first describe the importance of tuning the redox potential of ET centers and its role in regulating the ET in bioenergetic processes including photosynthesis and respiration. The main focus of this review is to summarize recent work in designing the ET centers, namely cupredoxins, cytochromes, and iron-sulfur proteins, and examples in design of protein networks involved these ET centers. We then discuss the factors that affect redox potentials of these ET centers including metal ion, the ligands to metal center and interactions beyond the primary ligand, especially non-covalent secondary coordination sphere interactions. We provide examples of strategies to fine-tune the redox potential using both natural and unnatural amino acids and native and nonnative cofactors. Several case studies are used to illustrate recent successes in this area. Outlooks for future endeavors are also provided. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26301482

  10. Non-universal gaugino masses and fine tuning implications for SUSY searches in the MSSM and the GNMSSM

    Energy Technology Data Exchange (ETDEWEB)

    Kaminska, Anna [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ross, Graham G. [Oxford Univ. (United Kingdom). Centre for Theoretical Physics; Schmidt-Hoberg, Kai [European Lab. for Particle Physics (CERN), Geneva (Switzerland)

    2013-08-15

    For the case of the MSSM and the most general form of the NMSSM (GNMSSM) we determine the reduction in the fine tuning that follows from allowing gaugino masses to be non-degenerate at the unification scale, taking account of the LHC8 bounds on SUSY masses, the Higgs mass bound, gauge coupling unification and the requirement of an acceptable dark matter density. We show that low-fine tuned points fall in the region of gaugino mass ratios predicted by specific unified and string models. For the case of the MSSM the minimum fine tuning is still large, approximately 1:60 allowing for a 3 GeV uncertainty in the Higgs mass (1:500 for the central value), but for the GNMSSM it is below 1:20. We find that the spectrum of SUSY states corresponding to the low-fine tuned points in the GNMSSM is often compressed, weakening the LHC bounds on coloured states. The prospect for testing the remaining low-fine-tuned regions at LHC14 is discussed.

  11. Radiative natural supersymmetry: Reconciling electroweak fine-tuning and the Higgs boson mass

    Science.gov (United States)

    Baer, Howard; Barger, Vernon; Huang, Peisi; Mickelson, Dan; Mustafayev, Azar; Tata, Xerxes

    2013-06-01

    Models of natural supersymmetry seek to solve the little hierarchy problem by positing a spectrum of light Higgsinos ≲200-300GeV and light top squarks ≲600GeV along with very heavy squarks and TeV-scale gluinos. Such models have low electroweak fine-tuning and satisfy the LHC constraints. However, in the context of the minimal supersymmetric standard model, they predict too low a value of mh, are frequently in conflict with the measured b→sγ branching fraction, and the relic density of thermally produced Higgsino-like weakly interacting massive particles (WIMPs) falls well below dark matter measurements. We propose a framework dubbed radiative natural supersymmetry (RNS), which can be realized within the minimal supersymmetric standard model (avoiding the addition of extra exotic matter) and which maintains features such as gauge coupling unification and radiative electroweak symmetry breaking. The RNS model can be generated from supersymmetry (SUSY) grand unified theory type models with nonuniversal Higgs masses. Allowing for high-scale soft SUSY breaking Higgs mass mHu>m0 leads to automatic cancellations during renormalization group running and to radiatively-induced low fine-tuning at the electroweak scale. Coupled with large mixing in the top-squark sector, RNS allows for fine-tuning at the 3%-10% level with TeV-scale top squarks and a 125 GeV light Higgs scalar h. The model allows for at least a partial solution to the SUSY flavor, CP, and gravitino problems since first-/second-generation scalars (and the gravitino) may exist in the 10-30 TeV regime. We outline some possible signatures for RNS at the LHC, such as the appearance of low invariant mass opposite-sign isolated dileptons from gluino cascade decays. The smoking gun signature for RNS is the appearance of light Higgsinos at a linear e+e- collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS naturally accommodates mixed axion-Higgsino cold dark matter, where the

  12. A Novel Approach to Fine-Tuned Supersymmetric Standard Models -- Case of Non-Universal Higgs Masses model

    CERN Document Server

    Yamaguchi, Masahiro

    2016-01-01

    Discarding the prejudice about fine tuning, we propose a novel and efficient approach to identify relevant regions of fundamental parameter space in supersymmetric models with some amount of fine tuning. The essential idea is the mapping of experimental constraints at a low energy scale, rather than the parameter sets, to those of the fundamental parameter space. Applying this method to the non-universal Higgs masses model, we identify a new interesting superparticle mass pattern where some of the first two generation squarks are light whilst the stops are kept heavy as 6TeV. Furthermore, as another application of this method, we show that the discrepancy of the muon anomalous magnetic dipole moment can be filled by a supersymmetric contribution within the 1 {\\sigma} level of the experimental and theoretical errors, which was overlooked by the previous studies due to the required terrible fine tuning.

  13. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts

    Science.gov (United States)

    van Wassenbergh, Sam; Heiss, Egon

    2016-07-01

    A unique example of phenotypic flexibility of the oral apparatus is present in newts (Salamandridae) that seasonally change between an aquatic and a terrestrial habitat. Newts grow flaps of skin between their upper and lower jaws, the labial lobes, to partly close the corners of the mouth when they adopt an aquatic lifestyle during their breeding season. Using hydrodynamic simulations based on μCT-scans and cranial kinematics during prey-capture in the smooth newt (Lissotriton vulgaris), we showed that this phenotypic flexibility is an adaptive solution to improve aquatic feeding performance: both suction distance and suction force increase by approximately 15% due to the labial lobes. As the subsequent freeing of the corners of the mouth by resorption of the labial lobes is assumed beneficial for the terrestrial capture of prey by the tongue, this flexibility of the mouth fine-tunes the process of capturing prey throughout the seasonal switching between water and land.

  14. Fine-tuning by strigolactones of root response to low phosphate

    Institute of Scientific and Technical Information of China (English)

    Yoram Kapulnik; Hinanit Koltai

    2016-01-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant–mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.

  15. Fine tuning of the threshold of T cell selection by the Nck adapters.

    Science.gov (United States)

    Roy, Edwige; Togbe, Dieudonnée; Holdorf, Amy; Trubetskoy, Dmitry; Nabti, Sabrina; Küblbeck, Günter; Schmitt, Sabine; Kopp-Schneider, Annette; Leithäuser, Frank; Möller, Peter; Bladt, Friedhelm; Hämmerling, Günter J; Arnold, Bernd; Pawson, Tony; Tafuri, Anna

    2010-12-15

    Thymic selection shapes the T cell repertoire to ensure maximal antigenic coverage against pathogens while preventing autoimmunity. Recognition of self-peptides in the context of peptide-MHC complexes by the TCR is central to this process, which remains partially understood at the molecular level. In this study we provide genetic evidence that the Nck adapter proteins are essential for thymic selection. In vivo Nck deletion resulted in a reduction of the thymic cellularity, defective positive selection of low-avidity T cells, and impaired deletion of thymocytes engaged by low-potency stimuli. Nck-deficient thymocytes were characterized by reduced ERK activation, particularly pronounced in mature single positive thymocytes. Taken together, our findings identify a crucial role for the Nck adapters in enhancing TCR signal strength, thereby fine-tuning the threshold of thymocyte selection and shaping the preimmune T cell repertoire. PMID:21078909

  16. A voltage-dependent chloride channel fine-tunes photosynthesis in plants.

    Science.gov (United States)

    Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K; Pfeil, Bernard E; Johansson, Oskar N; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn

    2016-01-01

    In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl(-)) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl(-) channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227

  17. Local temperature fine-tunes the timing of spring migration in birds

    DEFF Research Database (Denmark)

    Tøttrup, Anders Peter; Rainio, Kalle; Coppack, Timothy;

    2010-01-01

    predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring......Evidence for climate-driven phenological changes is rapidly increasing at all trophic levels. Our current poor knowledge of the detailed control of bird migration from the level of genes and hormonal control to direct physiological and behavioral responses hampers our ability to understand and...... are affected by local conditions and early birds use local conditions to fine-tune the date of their spring arrival while individuals arriving later are driven by other factors than local conditions e.g. endogenous control. Understanding what cues migratory organisms use to arrive at an optimum time...

  18. Enhancement of impact strength of poly (methyl methacrylate) with surface fine-tuned nano-silica

    Science.gov (United States)

    Wen, Bin; Dong, Yixiao; Wu, Lili; Long, Chao; Zhang, Chaocan

    2015-07-01

    Highly dispersible nanoparticles in organic solvent always receive wide interests due to their compatibility with polymer materials. This paper reported a kind of isopropanol alcohol silica dispersion which obtained using a method of azeotropic distillation. The isopropanol alcohol dispersed silica (IPADS) were treated with coupling agents to fine-tune their surface properties. Polymethyl methacrylate (PMMA) was then used as a research object to test the compatibility between IPADS and polymer. UV-vis spectra indicate that IPADS would reach its high compatibility with PMMA if coupling with trimethoxypropylsilane (PTMS). Followed experiments on PMMA proved that the high compatibility can prominently enhance the impact strength about 30%. The results may provide reference both for nano-silica modification and better understanding of nano-enhanced materials.

  19. Fine tuning of cytosolic Ca2+ oscillations [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Geneviève Dupont

    2016-08-01

    Full Text Available Ca2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca2+ are controlled not only by the frequency of Ca2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca2+ oscillations. The main characteristics of the Ca2+ exchange fluxes with these compartments are also reviewed.

  20. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana;

    2015-01-01

    effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP...... and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and...... respond to even low concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic...

  1. Fine-tuning problem in five-dimensional brane world models

    International Nuclear Information System (INIS)

    Fine tuning may be called a main disadvantage of the Randall-sundrum model, being the most popular brane world model, constructed quite artificially in the five-dimensional space-time. It needs a bare multidimensional cosmological constant, which is related strictly to the four-dimensional tension. We try to avoid this problem of naturalness, introducing a perfect fluid with arbitrary linear equations of state in both three-dimensional external and one-dimensional internal spaces. This model represents the direct generalization of the Randall-Sundrum one. We derive equations for background metric coefficients, determining a wide class of new exact solutions, and discuss uselessness of subsequent development of brane world models in view of their unjustified plurality

  2. Heavier fermions and fine-tuning problem in top condensate scheme

    International Nuclear Information System (INIS)

    The analysis in the bubble approximation indicates that a heavier quark-lepton generation with the degenerate mass mU in the range of 163-353 GeV added in the top condensate scheme could make the momentum cut-off Λ come down to 106-5x103 GeV when mt = 160 GeV is taken. This could greatly alleviate the fine-tuning problem. The Higgs boson Φ0s0 will obey the mass constraint 2 mtΦ0sU. The maximal number of the allowed heavy fermion generations is estimated and the possible compositeness origin of the effective four-fermion interactions is discussed. (author). 13 refs, 3 tabs

  3. Natural solution to the naturalness problem: The universe does fine-tuning

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-12-01

    We propose a new mechanism to solve the fine-tuning problem. We start from a multi-local action S=sum iciSi+sum _{i,j}c_{i,j}SiSj+sum _{i,j,k}c_{i,j,k}SiSjSk+\\cdots , where the Si's are ordinary local actions. Then, the partition function of this system is given by Z=int doverrArr {λ } fbig (overrArr {λ }big )< f|Texp left (-iint 0^{+infty }dthat {H} (overrArr {λ };a_{cl}(t))right )|irangle , where overrArr {λ } represents the parameters of the system whose Hamiltonian is given by hat {H}(overrArr {λ };a_{cl}(t)), a_{cl}(t) is the radius of the universe determined by the Friedman equation, and fbig (overrArr {λ }big ), which is determined by S, is a smooth function of overrArr {λ }. If a value of overrArr {λ }, overrArr {λ }0, dominates in the integral, we can interpret that the parameters are dynamically tuned to overrArr {λ }0. We show that this indeed happens in some realistic systems. In particular, we consider the strong CP problem, the multiple point criticality principle, and the cosmological constant problem. It is interesting that these different phenomena can be explained by one mechanism.

  4. Fine frequency tuning of the PHOENIX charge breeder used as a probe for ECRIS plasmas

    International Nuclear Information System (INIS)

    Fine frequency tuning of ECR ion sources is a main issue to optimize the production of multiply charged ion beams. The PHOENIX charge breeder operation has been tested in the range 13.75 - 14.5 GHz with an HF power of about 400 W. The effect of this tuning is analyzed by measuring the multi-ionization efficiency obtained for various characterized injected 1+ ion beams (produced by the 2.45 GHz COMIC source). The 1+/n+ method includes the capture and the multi ionization processes of the 1+ beam and may be considered as a plasma probe. The n+ spectra obtained could be considered, in first approach, as an image of the plasma of the charge breeder. However, in certain conditions it has been observed that the injection of a few hundreds of nA of 1+ ions (i.e.: Xe+) in the plasma of the charge breeder, is able to destroy the charge state distribution of the support gas (i.e.: up to 40 % of O6+ and O7+ disappears). The study of this phenomenon will be presented along with plasma potential measurements for various charge states. This study may help to understand the creation (or destruction) of highly charged ions inside an ECRIS. The paper is followed by the slides of the presentation. (authors)

  5. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters

    Directory of Open Access Journals (Sweden)

    M.V. Fogaça

    2012-04-01

    Full Text Available This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO and endocannabinoids (eCBs play an important role in the regulation of aversive responses in the periaqueductal gray (PAG. Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1 receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1 receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.

  6. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials.

    Science.gov (United States)

    Wang, Qian; Bai, Junfeng; Lu, Zhiyong; Pan, Yi; You, Xiaozeng

    2016-01-11

    CO2 capture science and technology, particularly for the post-combustion CO2 capture, has become one of very important research fields, due to great concern of global warming. Metal-organic frameworks (MOFs) with a unique feature of structural fine-tunability, unlike the traditional porous solid materials, can provide many and powerful platforms to explore high-performance adsorbents for post-combustion CO2 capture. Until now, several strategies for finely tuning MOF structures have been developed, in which either the larger quadrupole moment and polarizability of CO2 are considered: metal ion change (I), functional groups attachment (II) and functional group insertion (III), vary the electronic nature of the pore surface; or targeting the smaller kinetic diameter of CO2 over N2 is focused on: framework interpenetration (IV), ligand shortening (V) and coordination site shifting (VI) contract the pore size of frameworks to improve their CO2 capture properties. In this review, from the viewpoint of synthetic materials scientists/chemists, we would like to introduce and summarize these strategies based upon recent work published by other groups and ourselves. PMID:26512792

  7. Dynamic mode tuning of ultrasonic guided wave using an array transducer

    International Nuclear Information System (INIS)

    Ultrasonic guided waves have been widely employed for the long range inspection of structures such as plates, rods and pipes. In ultrasonic guided waves, however, there are numerous modes with different wave velocities, so that the generation and detection of the appropriate wave mode of the guided wave is one of key techniques in the application of guided waves. In the present work, phase tuning using an array transducer was applied to generate ultrasonic guided waves in a seamless stainless steel pipe. for this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. Eight transducers were fabricated in order to generate guided waves by using an array transducer. The selective tuning of wave mode can be achieved by changing the interval between elements of an array transducer.

  8. Fine tuning of the lactate and diacetyl production through promoter engineering in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Tingting Guo

    Full Text Available Lactococcus lactis is a well-studied bacterium widely used in dairy fermentation and capable of producing metabolites with organoleptic and nutritional characteristics. For fine tuning of the distribution of glycolytic flux at the pyruvate branch from lactate to diacetyl and balancing the production of the two metabolites under aerobic conditions, a constitutive promoter library was constructed by randomizing the promoter sequence of the H(2O-forming NADH oxidase gene in L. lactis. The library consisted of 30 promoters covering a wide range of activities from 7,000 to 380,000 relative fluorescence units using a green fluorescent protein as reporter. Eleven typical promoters of the library were selected for the constitutive expression of the H(2O-forming NADH oxidase gene in L. lactis, and the NADH oxidase activity increased from 9.43 to 58.17-fold of the wild-type strain in small steps of activity change under aerobic conditions. Meanwhile, the lactate yield decreased from 21.15 ± 0.08 mM to 9.94 ± 0.07 mM, and the corresponding diacetyl production increased from 1.07 ± 0.03 mM to 4.16 ± 0.06 mM with the intracellular NADH/NAD(+ ratios varying from 0.711 ± 0.005 to 0.383 ± 0.003. The results indicated that the reduced pyruvate to lactate flux was rerouted to the diacetyl with an almost linear flux variation via altered NADH/NAD(+ ratios. Therefore, we provided a novel strategy to precisely control the pyruvate distribution for fine tuning of the lactate and diacetyl production through promoter engineering in L. lactis. Interestingly, the increased H(2O-forming NADH oxidase activity led to 76.95% lower H(2O(2 concentration in the recombinant strain than that of the wild-type strain after 24 h of aerated cultivation. The viable cells were significantly elevated by four orders of magnitude within 28 days of storage at 4°C, suggesting that the increased enzyme activity could eliminate H(2O(2 accumulation and prolong cell survival.

  9. One-pot synthesis of triangular gold nanoplates allowing broad and fine tuning of edge length

    Science.gov (United States)

    Miranda, Adelaide; Malheiro, Eliana; Skiba, Elżbieta; Quaresma, Pedro; Carvalho, Patrícia A.; Eaton, Peter; de Castro, Baltazar; Shelnutt, John A.; Pereira, Eulália

    2010-10-01

    A photocatalytic approach was used to synthesize triangular nanoplates in aqueous solution. The synthesis is based on the reduction of a gold salt using a tin(iv) porphyrin as photocatalyst, cetyltrimethylammonium bromide (CTAB) as a stabilizing agent, and triethanolamine (TEA) as the final electron donor. The average edge length of the triangular nanoplates can be easily changed in the range 45-250 nm by varying the concentration of photocatalyst, and fine-tuning of the average edge length is achieved by varying the concentration of CTAB. Study of the mechanism of formation of the nanoplates by UV-vis and by transmission electron microscopy (TEM) shows that there is a first stage where formation of 5 nm seeds takes place, further growth is probably by fusion and by direct reduction of gold onto the preformed nanoparticles. The nanoparticles formed during the photocatalytic reduction of the gold precursor show an irregular shape that evolves to regular triangular nanoplates after ripening in solution for 24 h.A photocatalytic approach was used to synthesize triangular nanoplates in aqueous solution. The synthesis is based on the reduction of a gold salt using a tin(iv) porphyrin as photocatalyst, cetyltrimethylammonium bromide (CTAB) as a stabilizing agent, and triethanolamine (TEA) as the final electron donor. The average edge length of the triangular nanoplates can be easily changed in the range 45-250 nm by varying the concentration of photocatalyst, and fine-tuning of the average edge length is achieved by varying the concentration of CTAB. Study of the mechanism of formation of the nanoplates by UV-vis and by transmission electron microscopy (TEM) shows that there is a first stage where formation of 5 nm seeds takes place, further growth is probably by fusion and by direct reduction of gold onto the preformed nanoparticles. The nanoparticles formed during the photocatalytic reduction of the gold precursor show an irregular shape that evolves to regular

  10. Regulation of mesenchymal stromal cells through fine tuning of canonical Wnt signaling

    Directory of Open Access Journals (Sweden)

    Jin-A Kim

    2015-05-01

    Full Text Available Mesenchymal stromal cells (MSCs have been extensively utilized for various cell therapeutic trials, but the signals regulating their stromal function remain largely unclear. Here, we show that canonical Wnt signals distinctively regulate MSCs in a biphasic manner depending on signal intensity, i.e., MSCs exhibit proliferation and progenitor self-renewal under low Wnt/β-catenin signaling, whereas they exhibit enhanced osteogenic differentiation with priming to osteoblast-like lineages under high Wnt/β-catenin signaling. Moreover, low or high levels of β-catenin in MSCs distinctly regulated the hematopoietic support of MSCs to promote proliferation or the undifferentiated state of hematopoietic progenitors, respectively. A gene expression study demonstrated that different intracellular levels of β-catenin in MSCs induce distinct transcriptomic changes in subsets of genes belonging to different gene function categories. Different β-catenin levels also induced differences in intracellular levels of the β-catenin co-factors, Tcf-1 and Lef-1. Moreover, nano-scale mass spectrometry of proteins that co-precipitated with β-catenin revealed distinctive spectra of proteins selectively interacting with β-catenin at specific expression levels. Together, these results show that Wnt/β-catenin signals can coax distinct transcription milieu to induce different transcription profiles in MSCs depending on the signal intensity and that fine-tuning of the canonical Wnt signaling intensity can regulate the phase-specific functionality of MSCs.

  11. Fibroblast Growth Factor 21 Protects against Atherosclerosis via Fine-Tuning the Multiorgan Crosstalk

    Directory of Open Access Journals (Sweden)

    Leigang Jin

    2016-02-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is a metabolic hormone with pleiotropic effects on energy metabolism and insulin sensitivity. Besides its antiobese and antidiabetic activity, FGF21 also possesses the protective effects against atherosclerosis. Circulating levels of FGF21 are elevated in patients with atherosclerosis, macrovascular and microvascular complications of diabetes, possibly due to a compensatory upregulation. In apolipoprotein E-deficient mice, formation of atherosclerotic plaques is exacerbated by genetic depletion of FGF21, but is attenuated upon replenishment with recombinant FGF21. However, the blood vessel is not the direct target of FGF21, and the antiatherosclerotic activity of FGF21 is attributed to its actions in adipose tissues and liver. In adipocytes, FGF21 promotes secretion of adiponectin, which in turn acts directly on blood vessels to reduce endothelial dysfunction, inhibit proliferation of smooth muscle cells and block conversion of macrophages to foam cells. Furthermore, FGF21 suppresses cholesterol biosynthesis and attenuates hypercholesterolemia by inhibiting the transcription factor sterol regulatory element-binding protein-2 in hepatocytes. The effects of FGF21 on elevation of adiponectin and reduction of hypercholesterolemia are also observed in a phase-1b clinical trial in patients with obesity and diabetes. Therefore, FGF21 exerts its protection against atherosclerosis by fine-tuning the interorgan crosstalk between liver, brain, adipose tissue, and blood vessels.

  12. Fine-tuned ATP signals are acute mediators in osteocyte mechanotransduction.

    Science.gov (United States)

    Kringelbach, Tina M; Aslan, Derya; Novak, Ivana; Ellegaard, Maria; Syberg, Susanne; Andersen, Christina K B; Kristiansen, Kim A; Vang, Ole; Schwarz, Peter; Jørgensen, Niklas R

    2015-12-01

    Osteocytes are considered the primary mechanosensors of bone, but the signaling pathways they apply in mechanotransduction are still incompletely investigated and characterized. A growing body of data strongly indicates that P2 receptor signaling among osteoblasts and osteoclasts has regulatory effects on bone remodeling. Therefore, we hypothesized that ATP signaling is also applied by osteocytes in mechanotransduction. We applied a short fluid pulse on MLO-Y4 osteocyte-like cells during real-time detection of ATP and demonstrated that mechanical stimulation activates the acute release of ATP and that these acute ATP signals are fine-tuned according to the magnitude of loading. ATP release was then challenged by pharmacological inhibitors, which indicated a vesicular release pathway for acute ATP signals. Finally, we showed that osteocytes express functional P2X2 and P2X7 receptors and respond to even low concentrations of nucleotides by increasing intracellular calcium concentration. These results indicate that in osteocytes, vesicular ATP release is an acute mediator of mechanical signals and the magnitude of loading. These and previous results, therefore, implicate purinergic signaling as an early signaling pathway in osteocyte mechanotransduction. PMID:26327582

  13. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    Science.gov (United States)

    Citterio, Elisabetta

    2015-01-01

    Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer. PMID:26442100

  14. Dynamically avoiding fine-tuning the cosmological constant: the ''Relaxed Universe''

    International Nuclear Information System (INIS)

    We demonstrate that there exists a large class of F(R,G) action functionals of the scalar curvature and of the Gauß-Bonnet invariant which are able to relax dynamically a large cosmological constant (CC), whatever it be its starting value in the early universe. Hence, it is possible to understand, without fine-tuning, the very small current value Λ0 ∼ H02 of the CC as compared to its theoretically expected large value in quantum field theory and string theory. In our framework, this relaxation appears as a pure gravitational effect, where no ad hoc scalar fields are needed. The action involves a positive power of a characteristic mass parameter, M, whose value can be, interestingly enough, of the order of a typical particle physics mass of the Standard Model of the strong and electroweak interactions or extensions thereof, including the neutrino mass. The model universe emerging from this scenario (the ''Relaxed Universe'') falls within the class of the so-called ΛXCDM models of the cosmic evolution. Therefore, there is a ''cosmon'' entity X (represented by an effective object, not a field), which in this case is generated by the effective functional F(R,G) and is responsible for the dynamical adjustment of the cosmological constant. This model universe successfully mimics the essential past epochs of the standard (or ''concordance'') cosmological model (ΛCDM). Furthermore, it provides interesting clues to the coincidence problem and it may even connect naturally with primordial inflation

  15. Field fine tuning by pole height adjustment for the undulator of the TTF-FEL

    International Nuclear Information System (INIS)

    The field of the undulator for the VUV-FEL at the TESLA Test Facility has to meet very tough tolerances in order to guarantee a close overlap between the electron beam and the laser field. Consequently the undulator was designed to have height-adjustable poles in order to allow for fine tuning of the vertical undulator field in such a way that the trajectory is straightened. The signature of local pole height and gap changes on the field distribution was investigated. It was seen that changes are not restricted to the pole itself. Its effect can be seen up to the next eight neighboring poles. In this contribution we describe an algorithm in detail, which allows the prediction of required pole height changes in order to correct for field errors. As input data field errors deduced from precise magnetic field measurements are used together with the signatures of pole movements. A band diagonal system of linear equations has to be solved to obtain the pole height corrections. For demonstration of the method the field of the 0.9 m long prototype structure was optimized to have a straight trajectory. Since only a sparse band diagonal system of equations has to be solved, the method has the potential to be used in very long undulators having 600 -1000 poles

  16. Quasi Yukawa Unification and Fine-Tuning in U(1) Extended SSM

    CERN Document Server

    Hicyilmaz, Yasar; Altas, Asli; Solmaz, Levent; Un, Cem Salih

    2016-01-01

    We consider the low scale implications in the U(1)' extended MSSM (UMSSM). We restrict the parameter space such that the lightest supersymmetric particle (LSP) is always the lightest neutralino. In addition, we impose quasi Yukawa unification (QYU) at the grand unification scale (M_GUT). QYU strictly requires the ratios among the yukawa couplings as y_t/y_b ~ 1.2, y_tau/y_b ~ 1.4, and y_t/y_tau ~ 0.8. We find that the need of fine-tuning over the fundamental parameter space of QYU is in the acceptable range (Delta_EW ~ 2.5 TeV), gluinos (m_gluino >~ 2 TeV), and squarks from the first two families (m_squarks >~ 4 TeV). Similarly the stau mass is bounded from below at about 1.5 TeV. Despite this heavy spectrum, we find Delta_EW >~ 300, which is much lower than that needed for the minimal supersymmetric models. In addition, UMSSM yield relatively small mu-term, and the LSP neutralio is mostly form by the Higgsinos of mass >~ 700 GeV. We obtain also bino-like dark matter (DM) of mass about 400 GeV. Wino is usuall...

  17. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy.

    Science.gov (United States)

    Li, Zhenfei; Alyamani, Mohammad; Li, Jianneng; Rogacki, Kevin; Abazeed, Mohamed; Upadhyay, Sunil K; Balk, Steven P; Taplin, Mary-Ellen; Auchus, Richard J; Sharifi, Nima

    2016-05-26

    Abiraterone blocks androgen synthesis and prolongs survival in patients with castration-resistant prostate cancer, which is otherwise driven by intratumoral androgen synthesis. Abiraterone is metabolized in patients to Δ(4)-abiraterone (D4A), which has even greater anti-tumour activity and is structurally similar to endogenous steroidal 5α-reductase substrates, such as testosterone. Here, we show that D4A is converted to at least three 5α-reduced and three 5β-reduced metabolites in human serum. The initial 5α-reduced metabolite, 3-keto-5α-abiraterone, is present at higher concentrations than D4A in patients with prostate cancer taking abiraterone, and is an androgen receptor agonist, which promotes prostate cancer progression. In a clinical trial of abiraterone alone, followed by abiraterone plus dutasteride (a 5α-reductase inhibitor), 3-keto-5α-abiraterone and downstream metabolites were depleted by the addition of dutasteride, while D4A concentrations rose, showing that dutasteride effectively blocks production of a tumour-promoting metabolite and permits D4A accumulation. Furthermore, dutasteride did not deplete the three 5β-reduced metabolites, which were also clinically detectable, demonstrating the specific biochemical effects of pharmacological 5α-reductase inhibition on abiraterone metabolism. Our findings suggest a previously unappreciated and biochemically specific method of clinically fine-tuning abiraterone metabolism to optimize therapy. PMID:27225130

  18. Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity.

    Science.gov (United States)

    Guţoaia, Andra; Schuster, Liane; Margutti, Simona; Laufer, Stefan; Schlosshauer, Burkhard; Krastev, Rumen; Stoll, Dieter; Hartmann, Hanna

    2016-06-01

    Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency. PMID:27083340

  19. Dynamic Tuning of Plasmon-Exciton Coupling in Arrays of Nanodisk-J-aggregate Complexes

    KAUST Repository

    Zheng, Yue Bing

    2010-07-21

    Figure Presented Dynamic tuning of plasmon-exclton resonant coupling in arrays of nanodisk-J-aggregate complexes is demonstrated. The angle-resolved spectra of an array of bare gold nanodisks exhibit continuous shifting of localized surface plasmon resonance. This characteristic enables the production of real-time, controllable spectral overlap between molecular resonance and plasmóme resonance. The resonant interaction strength as a function of spectral overlap is explored and the coupling strength changes with the incident angle of a probe light, in accord with simulations based on coupled dipóle approximation method. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Automated tuning of an eight-channel cardiac transceive array at 7 tesla using piezoelectric actuators

    OpenAIRE

    Keith, Graeme A; Rodgers, Christopher T.; Hess, Aaron T.; Snyder, Carl J.; Vaughan, J. Thomas; Robson, Matthew D.

    2014-01-01

    Purpose Ultra-high field (UHF) MR scanning in the body requires novel coil designs due to B1 field inhomogeneities. In the transverse electromagnetic field (TEM) design, maximum B1 transmit power can only be achieved if each individual transmit element is tuned and matched for different coil loads, which requires a considerable amount of valuable scanner time. Methods An integrated system for autotuning a multichannel parallel transmit (pTx) cardiac TEM array was devised, using piezoelectric ...

  1. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    Science.gov (United States)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region

  2. Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity.

    Science.gov (United States)

    Krauson, Aram J; Hall, O Morgan; Fuselier, Taylor; Starr, Charles G; Kauffman, W Berkeley; Wimley, William C

    2015-12-30

    To better understand the sequence-structure-function relationships that control the activity and selectivity of membrane-permeabilizing peptides, we screened a peptide library, based on the archetypal pore-former melittin, for loss-of-function variants. This was accomplished by assaying library members for failure to cause leakage of entrapped contents from synthetic lipid vesicles at a peptide-to-lipid ratio of 1:20, 10-fold higher than the concentration at which melittin efficiently permeabilizes the same vesicles. Surprisingly, about one-third of the library members are inactive under these conditions. In the negative peptides, two changes of hydrophobic residues to glycine were especially abundant. We show that loss-of-function activity can be completely recapitulated by a single-residue change of the leucine at position 16 to glycine. Unlike the potently cytolytic melittin, the loss-of-function peptides, including the single-site variant, are essentially inactive against phosphatidylcholine vesicles and multiple types of eukaryotic cells. Loss of function is shown to result from a shift in the binding-folding equilibrium away from the active, bound, α-helical state toward the inactive, unbound, random-coil state. Accordingly, the addition of anionic lipids to synthetic lipid vesicles restored binding, α-helical secondary structure, and potent activity of the "negative" peptides. While nontoxic to mammalian cells, the single-site variant has potent bactericidal activity, consistent with the anionic nature of bacterial membranes. The results show that conformational fine-tuning of helical pore-forming peptides is a powerful way to modulate their activity and selectivity. PMID:26632653

  3. A versatile apparatus for the fine-tuned synthesis of cluster-based materials.

    Science.gov (United States)

    Fischer, A; Kruk, R; Hahn, H

    2015-02-01

    In this paper, a custom-designed experimental setup for the fine-tuned synthesis of various cluster-based materials is presented. Providing custom-designed deposition stages and special sample holders it offers a high degree of control over the sample characteristics such as the cluster size, cluster amounts, and sample homogeneity in combination with high sample purity. The system is capable of producing thin films of pure clusters and various cluster-matrix combinations with cluster sizes ranging from single atoms up to aggregates of several thousand atoms. Two custom-designed deposition stages are available, one utilizes the full cluster beam, yielding micrograms of pure clusters within a few hours and the second one uses mass-separated clusters (mass-resolution between 2% and 10%), yielding nanograms of pure clusters in the same timescale. Furthermore, at the second deposition stage, a variety of matrix materials can be co-deposited at a controlled sample temperature between 153 K and 673 K. In order to prove the capabilities of the apparatus, a series of experiments with Fe clusters embedded in Ag matrices with different volume fractions of clusters were carried out. Energy dispersive X-ray spectroscopy measurements revealed that the amount of deposited clusters as well as the sample homogeneity can be controlled with an outstanding accuracy of 10%. Additional measurements of the magnetic properties indicated the presence of separated clusters for volume fractions of clusters around 2 volume percent (vol. %), while above this concentration (10 vol. %) a partial aggregation of the clusters was observed. It was also shown that the resulting thin films are nearly oxygen free, which ascertains that oxygen sensitive materials can be safely handled in this newly developed apparatus. PMID:25725833

  4. A versatile apparatus for the fine-tuned synthesis of cluster-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, A., E-mail: arne.fischer@kit.edu; Kruk, R. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Hahn, H. [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt (TUD), 64287 Darmstadt (Germany)

    2015-02-15

    In this paper, a custom-designed experimental setup for the fine-tuned synthesis of various cluster–based materials is presented. Providing custom-designed deposition stages and special sample holders it offers a high degree of control over the sample characteristics such as the cluster size, cluster amounts, and sample homogeneity in combination with high sample purity. The system is capable of producing thin films of pure clusters and various cluster-matrix combinations with cluster sizes ranging from single atoms up to aggregates of several thousand atoms. Two custom-designed deposition stages are available, one utilizes the full cluster beam, yielding micrograms of pure clusters within a few hours and the second one uses mass-separated clusters (mass-resolution between 2% and 10%), yielding nanograms of pure clusters in the same timescale. Furthermore, at the second deposition stage, a variety of matrix materials can be co-deposited at a controlled sample temperature between 153 K and 673 K. In order to prove the capabilities of the apparatus, a series of experiments with Fe clusters embedded in Ag matrices with different volume fractions of clusters were carried out. Energy dispersive X-ray spectroscopy measurements revealed that the amount of deposited clusters as well as the sample homogeneity can be controlled with an outstanding accuracy of 10%. Additional measurements of the magnetic properties indicated the presence of separated clusters for volume fractions of clusters around 2 volume percent (vol. %), while above this concentration (10 vol. %) a partial aggregation of the clusters was observed. It was also shown that the resulting thin films are nearly oxygen free, which ascertains that oxygen sensitive materials can be safely handled in this newly developed apparatus.

  5. Body appendages fine-tune posture and moments in freely manoeuvring fruit flies.

    Science.gov (United States)

    Berthé, Ruben; Lehmann, Fritz-Olaf

    2015-10-01

    The precise control of body posture by turning moments is key to elevated locomotor performance in flying animals. Although elevated moments for body stabilization are typically produced by wing aerodynamics, animals also steer using drag on body appendages, shifting their centre of body mass, and changing moments of inertia caused by active alterations in body shape. To estimate the instantaneous contribution of each of these components for posture control in an insect, we three-dimensionally reconstructed body posture and movements of body appendages in freely manoeuvring fruit flies (Drosophila melanogaster) by high-speed video and experimentally scored drag coefficients of legs and body trunk at low Reynolds number. The results show that the sum of leg- and abdomen-induced yaw moments dominates wing-induced moments during 17% of total flight time but is, on average, 7.2-times (roll, 3.4-times) smaller during manoeuvring. Our data reject a previous hypothesis on synergistic moment support, indicating that drag on body appendages and mass-shift inhibit rather than support turning moments produced by the wings. Numerical modelling further shows that hind leg extension alters the moments of inertia around the three main body axes of the animal by not more than 6% during manoeuvring, which is significantly less than previously reported for other insects. In sum, yaw, pitch and roll steering by body appendages probably fine-tune turning behaviour and body posture, without providing a significant advantage for posture stability and moment support. Motion control of appendages might thus be part of the insect's trimming reflexes, which reduce imbalances in moment generation caused by unilateral wing damage and abnormal asymmetries of the flight apparatus. PMID:26347566

  6. A versatile apparatus for the fine-tuned synthesis of cluster-based materials

    International Nuclear Information System (INIS)

    In this paper, a custom-designed experimental setup for the fine-tuned synthesis of various cluster–based materials is presented. Providing custom-designed deposition stages and special sample holders it offers a high degree of control over the sample characteristics such as the cluster size, cluster amounts, and sample homogeneity in combination with high sample purity. The system is capable of producing thin films of pure clusters and various cluster-matrix combinations with cluster sizes ranging from single atoms up to aggregates of several thousand atoms. Two custom-designed deposition stages are available, one utilizes the full cluster beam, yielding micrograms of pure clusters within a few hours and the second one uses mass-separated clusters (mass-resolution between 2% and 10%), yielding nanograms of pure clusters in the same timescale. Furthermore, at the second deposition stage, a variety of matrix materials can be co-deposited at a controlled sample temperature between 153 K and 673 K. In order to prove the capabilities of the apparatus, a series of experiments with Fe clusters embedded in Ag matrices with different volume fractions of clusters were carried out. Energy dispersive X-ray spectroscopy measurements revealed that the amount of deposited clusters as well as the sample homogeneity can be controlled with an outstanding accuracy of 10%. Additional measurements of the magnetic properties indicated the presence of separated clusters for volume fractions of clusters around 2 volume percent (vol. %), while above this concentration (10 vol. %) a partial aggregation of the clusters was observed. It was also shown that the resulting thin films are nearly oxygen free, which ascertains that oxygen sensitive materials can be safely handled in this newly developed apparatus

  7. Tuning of Kilopixel Transition Edge Sensor Bolometer Arrays with a Digital Frequency Multiplexed Readout System

    CERN Document Server

    MacDermid, K; Aubin, F; Bissonnette, E; Dobbs, M; Hubmayr, J; Smecher, G; Warraich, S

    2009-01-01

    A digital frequency multiplexing (DfMUX) system has been developed and used to tune large arrays of transition edge sensor (TES) bolometers read out with SQUID arrays for mm-wavelength cosmology telescopes. The DfMUX system multiplexes the input bias voltages and output currents for several bolometers on a single set of cryogenic wires. Multiplexing reduces the heat load on the camera's sub-Kelvin cryogenic detector stage. In this paper we describe the algorithms and software used to set up and optimize the operation of the bolometric camera. The algorithms are implemented on soft processors embedded within FPGA devices operating on each backend readout board. The result is a fully parallelized implementation for which the setup time is independent of the array size.

  8. Chemically Tuning the Localized Surface Plasmon Resonances of Gold Nanostructure Arrays

    KAUST Repository

    Zheng, Yue Bing

    2009-04-30

    We report on chemical etching of ordered Au nanostructure arrays to continuously tune their localized surface plasmon resonances (LSPR). Real-time extinction spectra were recorded from both Au nanodisks and nanospheres immobilized on glass substrates when immersed in Au etchant. The time-dependent LSPR frequencies, intensities, and bandwidths were studied theoretically with discrete dipole approximations and the Mie solution, and they were correlated with the evolution of the etched Au nanostructures\\' morphology (as examined by atomic force microscopy). Since this chemical etching method can conveniently and accurately tune LSPR, it offers precise control of plasmonic properties and can be useful in applications such as surfaceenhanced Raman spectroscopy and molecular resonance spectroscopy. © 2009 American Chemical Society.

  9. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in [Department of Mechanical and Aerospace Engineering, IIT Hyderabad, Yeddumailaram 502205 (India); Buks, Eyal [Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Gottlieb, Oded [Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.

  10. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    International Nuclear Information System (INIS)

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V

  11. Fourier-Bessel Field Calculation and Tuning of a CW Annular Array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Cheng, Jiqi; Lu, Jian-yu

    2002-01-01

    A 1-D Fourier-Bessel series method for computing and tuning the linear lossless field of flat continuous wave (CW) annular arrays is given and discussed with both numerical simulation and experimental verification. The technique provides a new method for modelling and manipulating the propagated...... field by linking the quantized surface pressure profile to a set of limited diffraction Bessel beams propagating into the medium. In the limit, these become a known set of nondiffracting Bessel beams satisfying the lossless linear wave equation, which allow us to derive a linear matrix formulation for...

  12. Tuning exciton energy and fine-structure splitting in single InAs quantum dots by applying uniaxial stress

    Science.gov (United States)

    Su, Dan; Dou, Xiuming; Wu, Xuefei; Liao, Yongping; Zhou, Pengyu; Ding, Kun; Ni, Haiqiao; Niu, Zhichuan; Zhu, Haijun; Jiang, Desheng; Sun, Baoquan

    2016-04-01

    Exciton and biexciton emission energies as well as excitonic fine-structure splitting (FSS) in single InAs/GaAs quantum dots (QDs) have been continuously tuned in situ in an optical cryostat using a developed uniaxial stress device. With increasing tensile stress, the red shift of excitonic emission is up to 5 nm; FSS decreases firstly and then increases monotonically, reaching a minimum value of approximately 10 μeV; biexciton binding energy decreases from 460 to 106 μeV. This technique provides a simple and convenient means to tune QD structural symmetry, exciton energy and biexciton binding energy and can be used for generating entangled and indistinguishable photons.

  13. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    Science.gov (United States)

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-07-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting.

  14. Cosmological solutions in D=6, N=2 Kaluza-Klein supergravity. Friedmann universe without fine-tuning

    International Nuclear Information System (INIS)

    Two families of cosmological solutions are presented in D=6, N=2 Kaluza-Klein supergravity theories. One family, which is in the case that the universe is in a vacuum state, includes (Minkowski space-time) x (constant sphere S2) - solution. The case with 4-dimensional radiation is the other family, which contains (Friedmann universe) x (constant sphere S2) - solution. All solutions in the latter family approach the Friedmann universe asymptotically. Four-dimensional cosmological constant vanishes automatically without fine-tuning in both families of solutions. (author)

  15. Two-dimensional diced scintillator array for innovative, fine-resolution gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T., E-mail: t_fujita@fuji.waseda.jp [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kataoka, J.; Nishiyama, T. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Ohsuka, S. [Central Research Laboratory, Hamamatsu Photonics K.K., 5000, Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka (Japan); Nakamura, S. [Solid State Division, Hamamatsu Photonics K.K., 1126-1, Ichino-cho, Higashi-ku, Hamamatsu, Shizuoka (Japan); Yamamoto, S. [Nagoya University Graduate School of Medicine, 1-1-20, Daikominami, Higashi-ku, Nagoya-shi, Aichi 461-8673 (Japan)

    2014-11-21

    We are developing a technique to fabricate fine spatial resolution (FWHM<0.5mm) and cost-effective photon counting detectors, by using silicon photomultipliers (SiPMs) coupled with a finely pixelated scintillator plate. Unlike traditional X-ray imagers that use a micro-columnar CsI(Tl) plate, we can pixelate various scintillation crystal plates more than 1 mm thick, and easily develop large-area, fine-pitch scintillator arrays with high precision. Coupling a fine pitch scintillator array with a SiPM array results in a compact, fast-response detector that is ideal for X-ray, gamma-ray, and charged particle detection as used in autoradiography, gamma cameras, and photon counting CTs. As the first step, we fabricated a 2-D, cerium-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (Ce:GAGG) scintillator array of 0.25 mm pitch, by using a dicing saw to cut micro-grooves 50μm wide into a 1.0 mm thick Ce:GAGG plate. The scintillator plate is optically coupled with a 3.0×3.0mm pixel 4×4 SiPM array and read-out via the resistive charge-division network. Even when using this simple system as a gamma camera, we obtained excellent spatial resolution of 0.48 mm (FWHM) for 122 keV gamma-rays. We will present our plans to further improve the signal-to-noise ratio in the image, and also discuss a variety of possible applications in the near future.

  16. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.; Božović, I. [Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2015-06-01

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  17. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    Directory of Open Access Journals (Sweden)

    J. Wu

    2015-06-01

    Full Text Available Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  18. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition

  19. In situ fine tuning of bendable soft x-ray mirrors using a lateral shearing interferometer

    International Nuclear Information System (INIS)

    Broadly applicable, in situ at-wavelength metrology methods for x-ray optics are currently under development at the Advanced Light Source. We demonstrate the use of quantitative wavefront feedback from a lateral shearing interferometer for the suppression of aberrations. With the high sensitivity provided by the interferometer we were able to optimally tune the bending couples of a single elliptical mirror (NA=2.7 mrad) in order to focus a beam of soft x-rays (1.24 keV) to a nearly diffraction-limited beam waist size of 156(±10)nm

  20. A new humanlike facial attractiveness predictor with cascaded fine-tuning deep learning model

    OpenAIRE

    Xu, Jie; Jin, Lianwen; Liang, Lingyu; Feng, Ziyong; Xie, Duorui

    2015-01-01

    This paper proposes a deep leaning method to address the challenging facial attractiveness prediction problem. The method constructs a convolutional neural network of facial beauty prediction using a new deep cascaded fine-turning scheme with various face inputting channels, such as the original RGB face image, the detail layer image, and the lighting layer image. With a carefully designed CNN model of deep structure, large input size and small convolutional kernels, we have achieved a high p...

  1. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    Science.gov (United States)

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  2. 3'-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli.

    Science.gov (United States)

    Song, Ji-Won; Woo, Ji-Min; Jung, Gyoo Yeol; Bornscheuer, Uwe T; Park, Jin-Byung

    2016-01-01

    3'-Untranslated region (3'UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3'UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3'UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3'UTR. In summary, 3'UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells. PMID:27406241

  3. Single Heteroatom Fine-Tuning of the Emissive Properties in Organoboron Complexes with 7-(Azaheteroaryl)indole Systems.

    Science.gov (United States)

    Más-Montoya, Miriam; Usea, Laura; Espinosa Ferao, Arturo; Montenegro, María F; Ramírez de Arellano, Carmen; Tárraga, Alberto; Rodríguez-López, José N; Curiel, David

    2016-04-15

    The application of organoboron compounds as light-absorbing or light-emitting species in areas as relevant as organic electronics or biomedicine has motivated the search for new materials which contribute to the progress of those applications. This article reports the synthesis of four-coordinate boron complexes based on the unexplored 7-(azaheteroaryl)indole ligands. An easy synthetic approach has enabled the fine-tuning of the electronic structure of the organoboron species by modifying a heteroaromatic component in the conjugated system. Furthermore, a comprehensive characterization by X-ray diffraction, absorption and emission spectroscopy, both in solution and in the solid state, cyclic voltammetry, and computational methods has evidenced the utility of this simple strategy. Large Stokes shifts have been achieved in solid thin-films which show a range of emitted light from blue to orange. The synthesized compounds have been used as biocompatible fluorophores in cell bioimaging. PMID:26991893

  4. Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    Science.gov (United States)

    Ray, Asit K.

    1990-01-01

    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.

  5. Semiempirical fine-tuning for Hartree–Fock ionization potentials of atomic ions with non-integral atomic number

    International Nuclear Information System (INIS)

    Amovilli and March (2006) [8] used diffusion quantum Monte Carlo techniques to calculate the non-relativistic ionization potential I(Z) in He-like atomic ions for the range of (fractional) nuclear charges Z lying between the known critical value Zc=0.911 at which I(Z) tends to zero and Z=2. They showed that it is possible to fit I(Z) to a simple quadratic expression. Following that idea, we present here a semiempirical fine-tuning of Hartree–Fock ionization potentials for the isoelectronic series of He, Be, Ne, Mg and Ar-like atomic ions that leads to excellent estimations of Zc for these series. The empirical information involved is experimental ionization and electron affinity data. It is clearly demonstrated that Hartree–Fock theory provides an excellent starting point for determining I(Z) for these series

  6. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer

    Directory of Open Access Journals (Sweden)

    Philippe Daubas

    2015-12-01

    Full Text Available Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at −57/−58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development.

  7. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development.

    Directory of Open Access Journals (Sweden)

    Lijun Chi

    Full Text Available The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1 fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.

  8. Element-sensitive computed tomography by fine tuning of PXR-based X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y., E-mail: yahayak@lebra.nihon-u.ac.jp [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Hayakawa, K.; Inagaki, M. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Kaneda, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Nakao, K.; Nogami, K. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Sakae, T.; Sakai, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Sato, I. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-8501 (Japan); Tanaka, T. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan)

    2015-07-15

    Element-sensitive computed tomography (CT) experiments were carried out based on the absorption edge of a specific element using a finely tunable X-ray beam generated by parametric X-ray radiation (PXR). Tomographic images of specimens containing strontium were measured at energies both lower and higher than that of the Sr absorption edge. The difference between the images of the two energies successfully reveals the three-dimensional distributions of Sr. The results demonstrate that this method is effective for elemental analysis of considerably thick samples and could complement X-ray fluorescence analysis.

  9. Element-sensitive computed tomography by fine tuning of PXR-based X-ray source

    International Nuclear Information System (INIS)

    Element-sensitive computed tomography (CT) experiments were carried out based on the absorption edge of a specific element using a finely tunable X-ray beam generated by parametric X-ray radiation (PXR). Tomographic images of specimens containing strontium were measured at energies both lower and higher than that of the Sr absorption edge. The difference between the images of the two energies successfully reveals the three-dimensional distributions of Sr. The results demonstrate that this method is effective for elemental analysis of considerably thick samples and could complement X-ray fluorescence analysis

  10. Fine frequency tuning in sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual-wavelength enhancement.

    Science.gov (United States)

    Kumagai, Hiroshi

    2007-01-01

    Fine frequency tuning of the deep-ultraviolet single-mode coherent light at 252 nm was conducted through the PID feedback system automatically by changing the temperature of a beta-BaB(2)O(4) (BBO) crystal in a doubly resonant external cavity for the sum-frequency mixing of 373 and 780 nm light. The temperature-dependent frequency tuning rate is 19.3 MHzK(-1), which is sufficiently fine to realize the laser cooling of neutral silicon atoms because the natural width of the laser cooling transition is 28.8 MHz. PMID:17167584

  11. Fine-tuning longitudinal plasmon resonances of nanorods by thermal reshaping in aqueous media

    International Nuclear Information System (INIS)

    Metallic nanoparticles that support surface plasmons are potential building units for future nanophotonic circuits, metamaterials, high-density optical data storage, etc. Many of these applications require the ability to ‘dial-up’ the desired plasmonic resonance modes and frequencies with high precision. Here, we demonstrate a thermal reshaping route that can be used to tailor longitudinal plasmon resonance energies of gold nanorods almost continuously from ∼800 to ∼560 nm. The longitudinal plasmon resonance wavelength exhibits an exponential decay function of the thermal annealing time at a given temperature. This correlates with the transmission electron microscopy characterization (TEM) which showed that the nanorod aspect ratio decreases exponentially with time, accompanying a gradual shape transformation from rod to sphere. The exponential decay half-time decreases with increasing annealing temperatures, with a value of 1.43 × 105 s at 50 °C down to 0.02 × 105 s at 100 °C. Our experimental results show that the shape transformation could be attributed to desorption of silver ions and side facet-binding Ag–Br–CTA ligands, which therefore promote the side growth leading to nanorod fattening. Compared to other synthetic methodologies to tune plasmonics, our thermal reshaping approach presents a straightforward paradigm for precisely tailoring plasmon resonance energy with a single parameter. (paper)

  12. Dark energy from dark radiation in strongly coupled cosmologies with no fine tuning

    International Nuclear Information System (INIS)

    A dual component made of non-relativistic particles and a scalar field, exchanging energy, naturally falls onto an attractor solution, making them a (sub)dominant part of the cosmic energy during the radiation dominated era, provided that the constant β, measuring the coupling, is strong enough. The density parameters of both components are then constant, as they expand as a−4. If the field energy is then prevalently kinetic, as is expected, its energy is exactly half of the pressureless component; the dual component as a whole, then, has a density parameter Ωcd = 3/4β2 (e.g., for β ≅ 2.5, Ωcd ≅ 0.1, in accordance with Dark Radiation expectations). The stationary evolution can only be broken by the rising of other component(s), expanding as a−3. In a realistic scenario, this happens when z ∼ 3–5 × 103. When such extra component(s) become(s) dominant, the densities of the dual components also rise above radiation. The scalar field behavior can be easily tuned to fit Dark Energy data, while the coupled DM density parameter becomes O(10−3). This model however requires that, at present, two different DM components exist. The one responsible for the break of the stationary regime could be made, e.g., by thermally distributed particles with mass even >> 1–2 keV (or non-thermal particles with analogous average speed) so accounting for the size of observed galactic cores; in fact, a fair amount of small scale objects is however produced by fluctuation re-generated by the coupled DM component, in spite of its small density parameter, after the warm component has become non-relativistic

  13. Strain-tuning of the excitonic fine structure splitting in semiconductor quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Plumhof, Johannes D.; Ding, Fei; Herklotz, Andreas; Doerr, Kathrin; Rastelli, Armando; Schmidt, Oliver G. [IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Krapek, Vlastimil; Klenovsky, Petr [Institute of Condensed Matter Physics, Masaryk University, Kotlarska 2, 61137 Brno (Czech Republic); Joens, Klaus D.; Hafenbrak, Robert; Michler, Peter [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, University of Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2011-07-01

    For the creation of polarization entangled photon pairs from semiconductor quantum dots (QDs) it is important to decrease the fine structure splitting (FSS) of the neutral exciton to energies comparable to the emission linewidth. We employ a piezoelectric actuator (PMN-PT) to manipulate the excitonic emission of GaAs/AlGaAs as well as InGaAs/GaAs QDs embedded in {approx}200 nm thick (Al)GaAs membranes. By attaching the membranes on the PMN-PT we can apply anisotropic strain to the nanostructures. Polarization resolved {mu}-photoluminescence spectroscopy is used to estimate the excitonic FSS as well as the orientation of the linear polarization of the emitted light. The strain makes it possible to manipulate the FSS in a range of 70 {mu} eV. We also observe rotations of up to 70 of the linear polarization of the light emitted by neutral excitons. These effects can be explained as an strain-induced anticrossing of the bright excitonic states.

  14. Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array

    DEFF Research Database (Denmark)

    Fox, Paul D.; Jiqi, Cheng; Jian-yu, Lu

    2003-01-01

    A one-dimensional (1D) Fourier-Bessel series method for computing and tuning (beamforming) the linear lossless field of flat pulsed wave annular arrays is developed and supported with both numerical simulation and experimental verification. The technique represents a new method for modeling and...... tuning the propagated field by linking the quantized surface pressure profile to a known set of limited diffraction Bessel beams propagating into the medium. This enables derivation of an analytic expression for the field at any point in space and time in terms of the transducer surface pressure profile...

  15. A Goldstone "Miracle": The Absence of a Higgs Fine Tuning Problem in the Spontaneously Broken O(4) Linear Sigma Model

    CERN Document Server

    Lynn, Bryan W; Freese, Katherine; Podolsky, Dmitry I

    2011-01-01

    More than four decades ago, B.W. Lee and K. Symanzik proved that, in a generic set of O(4) linear sigma models (LSM) in the f-pi vs. mpi-squared-by-lambda-squared half-plane, Ward-Takahashi identities, along with tadpole renormalization, i.e. a Higgs Vacuum Stability Condition, force all S-matrix ultra-violet quadratic divergences (UV-QD) to be absorbed into the physical renormalized pseudo-scalar pion mass squared. We show that all such UV-QD, together with any finite remnants, therefore vanish identically in the "Goldstone-mode" limit, where pions are Nambu-Goldstone Bosons (NGB) and axial-vector current conservation is restored (i.e. when Lee and Symanzik's Goldstone Symmetry Restoration Condition is enforced, as required by Goldstone's theorem for the spontaneously broken theory). The scalar "Higgs" mass is therefore not "quadratically fine-tuned" in the spontaneously broken theory. Hence Goldstone-mode O(4) LSM symmetries are sufficient to ensure that any finite remnant, after UV-QD cancellation, does no...

  16. Fine tuning the color-transition temperature of thermoreversible polydiacetylene/zinc oxide nanocomposites: The effect of photopolymerization time.

    Science.gov (United States)

    Traiphol, Nisanart; Faisadcha, Kunruethai; Potai, Ruttayapon; Traiphol, Rakchart

    2015-02-01

    An ability to control the thermochromic behaviors of polydiacetylene (PDA)-based materials is very important for their utilization. Recently, our group has developed the PDA/zinc oxide (ZnO) nanocomposites, which exhibit reversible thermochromism (Traiphol et al., 2011). In this study, we present our continuation work demonstrating a rather simple method for fine tuning their color-transition temperature. The PDA/ZnO nanocomposites are prepared by varying photopolymerization time, which in turn affects the length of PDA conjugated backbone. We have found that the increase of photopolymerization time from 1 to 120min results in systematically decrease of the color-transition temperature from about 85 to 40°C. These PDA/ZnO nanocomposites still exhibit reversible thermochromism. The PDA/ZnO nanocomposites embedded in polyvinyl alcohol films show two-step color-transition processes, the reversible blue to purple and then irreversible purple to orange. Interestingly, the increase of photopolymerization time causes an increase of the irreversible color-transition temperature. Our method is quite simple and cheap, which can provide a library of PDA-based materials with controllable color-transition temperature. PMID:25463181

  17. Fine-tuning of k in a K-fold Multicast Network with Finite Queue using Markovian Model

    Directory of Open Access Journals (Sweden)

    Mahmudul Hasan

    2013-04-01

    Full Text Available Multicast has brought a drastic change in the field of networking by offering bandwidth effectivetechnology that leads to reduce tariff. It is popular for optimizing network performances. This paperevaluated a model for fine tuning the value of a k in a K-fold multicast network under different traffic loadsunder poisson traffic with finite queue at each node. Stationary distribution has been derived for thenetwork states and various expressions have been developed for the network to determine throughput andthe blocking probability of the network. It has been established from this research work that by increasingthe fold number, the network throughput can be increased very fast. However, it has been also observedthat after increasing the fold number up to a certain value, the blocking probability stops to increase andbecomes constant. We have also noticed that the throughput increases with the increase of the offeredtraffic and the blocking probability decreases when the system parameter k is increased. Moreover, anoptimum value of k ceases the blocking probability for a particular value of the offered traffic for finetuningthe outcome of the network.

  18. 5-Azacytidine-induced protein 2 (AZI2) regulates bone mass by fine-tuning osteoclast survival.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M; Akira, Shizuo

    2015-04-10

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  19. 5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival*

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M.; Akira, Shizuo

    2015-01-01

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  20. miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth.

    Science.gov (United States)

    Mihailovich, Marija; Bremang, Michael; Spadotto, Valeria; Musiani, Daniele; Vitale, Elena; Varano, Gabriele; Zambelli, Federico; Mancuso, Francesco M; Cairns, David A; Pavesi, Giulio; Casola, Stefano; Bonaldi, Tiziana

    2015-01-01

    The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 3' untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c-MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 3' UTR shortening at different stages of tumorigenesis. PMID:26555894

  1. The crystal structure of the global anaerobic transcriptional regulator FNR explains its extremely fine-tuned monomer-dimer equilibrium.

    Science.gov (United States)

    Volbeda, Anne; Darnault, Claudine; Renoux, Oriane; Nicolet, Yvain; Fontecilla-Camps, Juan C

    2015-12-01

    The structure of the dimeric holo-fumarate and nitrate reduction regulator (FNR) from Aliivibrio fischeri has been solved at 2.65 Å resolution. FNR globally controls the transition between anaerobic and aerobic respiration in facultative anaerobes through the assembly/degradation of its oxygen-sensitive [4Fe-4S] cluster. In the absence of O2, FNR forms a dimer and specifically binds to DNA, whereas in its presence, the cluster is degraded causing FNR monomerization and DNA dissociation. We have used our crystal structure and the information previously gathered from numerous FNR variants to propose that this process is governed by extremely fine-tuned interactions, mediated by two salt bridges near the amino-terminal cluster-binding domain and an "imperfect" coiled-coil dimer interface. [4Fe-4S] to [2Fe-2S] cluster degradation propagates a conformational signal that indirectly causes monomerization by disrupting the first of these interactions and unleashing the "unzipping" of the FNR dimer in the direction of the carboxyl-terminal DNA binding domain. PMID:26665177

  2. Resistin reinforces interferon λ-3 to eliminate hepatitis C virus with fine-tuning from RETN single-nucleotide polymorphisms

    Science.gov (United States)

    Chang, Ming-Ling; Liang, Kung-Hao; Ku, Cheng-Lung; Lo, Chia-Chi; Cheng, Ya-Ting; Hsu, Chen-Ming; Yeh, Chau-Ting; Chiu, Cheng-Tang

    2016-01-01

    The effect of resistin (RETN) on the response to anti-HCV therapy remains unclear. A prospective cohort study was performed using 655 consecutive HCV patients, of whom 513 had completed a course of interferon-based therapy. Multivariate and GEE analyses revealed four RETN single-nucleotide polymorphisms (SNPs), rs34861192, rs3219175, rs3745367 and rs1423096, to be synergistically associated with resistin levels. After adjusting for co-factors such as interferon λ-3 (IFNL3)-rs12979860, the resistin level and the hyper-resistinemic genotype at the 4 RETN SNPs were positively and negatively associated with a sustained virological response (SVR), respectively. RETN-rs3745367 was in linkage disequilibrium with IFNL3-rs12979860. Compared to non-SVR patients, SVR patients had higher levels of pre-therapy resistin, primarily originating from intrahepatic lymphocytes, stellate cells, Kupffer cells, hepatic progenitor cells and hepatocytes. This difference diminished over the course of therapy, as only SVR patients exhibited a 24-week post-therapy decrease in resistin. Both resistin and IFNL3 mRNAs were upregulated, but only resistin mRNA was upregulated by recombinant resistin in peripheral blood mononuclear cells with and without hyper-resistinemic genotypes of the 4 RETN SNPs, respectively. Fine-tuned by RETN SNPs, intrahepatic, multi-cellular resistin reinforced IFNL3 in eliminating HCV via immunomodulation to counteract pro-inflammation. These results encourage the development of novel resistin-targeted anti-viral agents. PMID:27477870

  3. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  4. Fine Tuning Your Lease

    Science.gov (United States)

    What is the optimum lease arrangement for the no-till farmer? No-till farmers will many times have more "up front" chemical input costs than a conventional till farmer. Do these differences warrant a different lease arrangement? An easy to use spreadsheet tool was developed to enable a farmer to ...

  5. Evaluation of heart tissue viability under redox-magnetohydrodynamics conditions: toward fine-tuning flow in biological microfluidics applications.

    Science.gov (United States)

    Cheah, Lih Tyng; Fritsch, Ingrid; Haswell, Stephen J; Greenman, John

    2012-07-01

    A microfluidic system containing a chamber for heart tissue biopsies, perfused with Krebs-Henseleit buffer containing glucose and antibiotic (KHGB) using peristaltic pumps and continuously stimulated, was used to evaluate tissue viability under redox-magnetohydrodynamics (redox-MHD) conditions. Redox-MHD possesses unique capabilities to control fluid flow using ionic current from oxidation and reduction processes at electrodes in a magnetic field, making it attractive to fine-tune fluid flow around tissues for "tissue-on-a-chip" applications. The manuscript describes a parallel setup to study two tissue samples simultaneously, and 6-min static incubation with Triton X100. Tissue viability was subsequently determined by assaying perfusate for lactate dehydrogenase (LDH) activity, where LDH serves as an injury marker. Incubation with KHGB containing 5 mM hexaammineruthenium(III) (ruhex) redox species with and without a pair of NdFeB magnets (∼ 0.39 T, placed parallel to the chamber) exhibited no additional tissue insult. MHD fluid flow, viewed by tracking microbeads with microscopy, occurred only when the magnet was present and stimulating electrodes were activated. Pulsating MHD flow with a frequency similar to the stimulating waveform was superimposed over thermal convection (from a hotplate) for Triton-KHGB, but fluid speed was up to twice as fast for ruhex-Triton-KHGB. A large transient ionic current, achieved when switching on the stimulating electrodes, generates MHD perturbations visible over varying peristaltic flow. The well-controlled flow methodology of redox-MHD is applicable to any tissue type, being useful in various drug uptake and toxicity studies, and can be combined equally with on- or off-device analysis modalities. PMID:22271160

  6. SOTB Implementation of a Field Programmable Gate Array with Fine-Grained Vt Programmability

    Directory of Open Access Journals (Sweden)

    Masakazu Hioki

    2014-07-01

    Full Text Available Field programmable gate arrays (FPGAs are one of the most widespread reconfigurable devices in which various functions can be implemented by storing circuit connection information and logic values into configuration memories. One of the most important issues in the modern FPGA is the reduction of its static leakage power consumption. Flex Power FPGA, which has been proposed to overcome this problem, uses a body biasing technique to implement the fine-grained threshold voltage (Vt programmability in the FPGA. A low-Vt state can be assigned only to the component circuits along the critical path of the application design mapped on the FPGA, so that the static leakage power consumption can be reduced drastically. Flex Power FPGA is an important application target for the SOTB (silicon on thin buried oxide device, which features a wide-range body biasing ability and the high sensitivity of Vt variation by body biasing, resulting in a drastic subthreshold leakage current reduction caused by static leakage power. In this paper, the Flex Power FPGA test chip is fabricated in SOTB technology, and the functional test and performance evaluation of a mapped 32-bit binary counter circuit are performed successfully. As a result, a three orders of magnitude static leakage reduction with a bias range of 2.1 V demonstrates the excellent Vt controllability of the SOTB transistors, and the 1.2 V bias difference achieves a 50× leakage reduction without degrading speed.

  7. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    International Nuclear Information System (INIS)

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-melt ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 μm of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.

  8. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications

    Science.gov (United States)

    Shrama, Satinder K.; Saurakhiya, Neelam; Barthwal, Sumit; Kumar, Rudra; Sharma, Ashutosh

    2014-03-01

    One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and ([InlineEquation not available: see fulltext.]) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with a = 3.24 Å, c = 5.20 Å, and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45 × 10-3 to 8.10 × 10-3 emu/g and approximately 2.22 × 10-7 to 2.190 × 10-7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has important

  9. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    Energy Technology Data Exchange (ETDEWEB)

    S., Juan Manuel Franco [Center of Investigation (CIO) (Mexico); Cywiak, Moises [Center of Investigation (CIO) (Mexico); Cywiak, David [National Metrology Center (Mexico); Mourad, Idir [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the field through an optical system.

  10. Experimental profiling of a non-truncated focused Gaussian beam and fine-tuning of the quadratic phase in the Fresnel Gaussian shape invariant

    Science.gov (United States)

    Franco S, Juan Manuel; Cywiak, Moisés; Cywiak, David; Mourad, Idir

    2015-11-01

    An especially dedicated homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He-Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. We give analytical expressions to calculate adequately the propagation of the field through an optical system.

  11. Two- and three-particle states in a nonrelativistic four-fermion model in the fine-tuning renormalization scheme: Goldstone mode versus extension theory

    International Nuclear Information System (INIS)

    In a nonrelativistic contact four-fermion model we show that simple regularization prescriptions together with a definite fine-tuning of the cut-off parameter dependence of 'bare' quantities give the exact solutions for the two-particle sector and Goldstone modes. Their correspondence with the self-adjoint extension into Pontryagin space is established leading to self-adjoint semi-bounded Hamiltonians in three-particle sectors as well. Renormalized Faddeev equations for the bound states with Fredholm properties are obtained and analyzed. (author)

  12. Detection of Regional Infrasound Signals Using Array Data - Testing, Tuning, and Physical Interpretation

    Science.gov (United States)

    Park, J.; Stump, B. W.; Hayward, C.; Arrowsmith, S.; Che, I. Y.; Drob, D. P.

    2015-12-01

    In order to understand the impact environmental conditions have on infrasound detection, an automated detector that accounts for both correlated and uncorrelated noise is run on data from a number of infrasonic arrays, all in a regional context. Data from six seismo-acoustic arrays in South Korea (BRDAR, CHNAR, KMPAR, KSGAR, TJIAR, and YPDAR), which are cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU), were used. An adaptive F-detector (AFD) (Arrowsmith et al., 2009) is applied that utilizes the F-statistic (Blandford, 1974) with an adaptive procedure that assesses variations in coherent noise in order to reduce false alarms. The adaptive procedure is characterized by the time dependent C-value that is found to depend on the weather conditions and local site effects. Arrays located on islands or near the coast produce noise power densities that are higher, consistent with both higher wind speeds as well as ocean wave contributions that vary seasonally. These results suggest that optimal detection processing requires careful characterization of background noise level and its relationship to enviornmental measures at individual arrays. This study also documents significant seasonal variations in infrasound detections including daily time of occurrence, total number of detections, and phase velocity/azimuth estimates. These time-dependent effects in most part explained by atmospheric models across the Korean peninsula as described by Drob et al. (2003).

  13. Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.

    Science.gov (United States)

    Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N

    2016-06-01

    The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920  ps) together with a compact footprint (4.15  mm2) and optical loss synthetic aperture radar has been designed. PMID:27411185

  14. Optical sorting in holographic trap arrays by tuning the inter-trap separation

    International Nuclear Information System (INIS)

    Particle motion through a holographic trap array has been investigated theoretically and experimentally, and it is shown that a change in inter-trap separation can be used to selectively control the motion of particles of different sizes. By an appropriate choice of inter-trap separation in a holographically generated two-dimensional trap array, optical potential channels can be created in orthogonal directions such that, from a suspension having a mixture of two different particle sizes, the particles can be sorted in the two orthogonal channels. The use of the approach to sort 3 and 5 μm silica spherical particles in the two orthogonal channels, from a mixed suspension of these, has also been demonstrated. (paper)

  15. Detection of regional infrasound signals using array data: Testing, tuning, and physical interpretation.

    Science.gov (United States)

    Park, Junghyun; Stump, Brian W; Hayward, Chris; Arrowsmith, Stephen J; Che, Il-Young; Drob, Douglas P

    2016-07-01

    This work quantifies the physical characteristics of infrasound signal and noise, assesses their temporal variations, and determines the degree to which these effects can be predicted by time-varying atmospheric models to estimate array and network performance. An automated detector that accounts for both correlated and uncorrelated noise is applied to infrasound data from three seismo-acoustic arrays in South Korea (BRDAR, CHNAR, and KSGAR), cooperatively operated by Korea Institute of Geoscience and Mineral Resources (KIGAM) and Southern Methodist University (SMU). Arrays located on an island and near the coast have higher noise power, consistent with both higher wind speeds and seasonably variable ocean wave contributions. On the basis of the adaptive F-detector quantification of time variable environmental effects, the time-dependent scaling variable is shown to be dependent on both weather conditions and local site effects. Significant seasonal variations in infrasound detections including daily time of occurrence, detection numbers, and phase velocity/azimuth estimates are documented. These time-dependent effects are strongly correlated with atmospheric winds and temperatures and are predicted by available atmospheric specifications. This suggests that commonly available atmospheric specifications can be used to predict both station and network detection performance, and an appropriate forward model improves location capabilities as a function of time. PMID:27475150

  16. Advanced closed-loop trimmer control system for fine tuning the RF Cavity of K500 superconducting cyclotron

    International Nuclear Information System (INIS)

    The RF system of superconducting cyclotron operates between 9-27 MHz. The RF cavities are consisting of three numbers of half wave (λ/2) coaxial sections. RF power from the tuned RF amplifier is capacitively coupled to the dee (accelerating electrode) of the main resonant cavity through Coupler (Coupling capacitor). The coupler is used to match the high shunt impedance of the main resonant cavity to the 50 Ohm output impedance of final RF power amplifier. Owing to RF thermal instability the volume inside the cavity changes as results there is a shift in frequency of resonance, consequently sharp fall in Dee voltages. Hydraulic drive based Trimmer capacitor operates in closed loop for the adjustment of a small variation in tuned frequency due to thermal effect and beam loading of the cavity. The impedance matching during the close loop operation is maintained by trimmer movement system. The precise movement of trimmer is necessary to compensate the change in volume of the cavity due to thermal expansion and maintain impedance matching between RF amplifier and RF cavity. Phase detector is used to detect the cavity de-tuning angle by comparing the phase difference between the cavity pickup (Dee pick-up) signal and cavity driven signal. This signal is fed to the PLC based digital P.I. controller to control the movement of trimmer capacitor. The control system has been modelled, analyzed, optimized and is operating round-the-clock with the K-500 SC Cyclotron system successfully. (author)

  17. Capability for Fine Tuning of the Refractive Index Sensing Properties of Long-Period Gratings by Atomic Layer Deposited Al2O3 Overlays

    Directory of Open Access Journals (Sweden)

    Mateusz Śmietana

    2013-11-01

    Full Text Available This work presents an application of thin aluminum oxide (Al2O3 films obtained using atomic layer deposition (ALD for fine tuning the spectral response and refractive-index (RI sensitivity of long-period gratings (LPGs induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ~ 0.12 nm of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device’s RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.

  18. Critical head, thickness of fine-grained deposit, and skeletal elastic storage arrays of the SUB package of the Central Valley Hydrologic Model

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This digital dataset defines the SUB package arrays for the model grid, critical head, thickness of fine-grained deposits, and skeletal-elastic-storage used in the...

  19. Correlations in light nuclei and their relation to fine tuning and uncertainty quantifications of many body forces in low-energy nuclear physics

    CERN Document Server

    Lupu, Sergiu; Gazit, Doron

    2015-01-01

    The large nucleon-nucleon scattering length, and the isospin approximate symmetry, are low energy properties of quantum chromodynamics (QCD). These entail correlations in the binding energies of light nuclei, e.g., the A=3 iso-multiplet, and Tjon's correlation between the binding energy of three and four body nuclei. Using a new representation of these, we establish that they translate into a correlation between different short-range contributions to three body forces in chiral effective field theory of low-energy nuclear physics. We demonstrate that these correlations should be taken into account in order to avoid fine-tuning in the calibration of three body forces. We relate this to the role of correlations in uncertainty quantification of non-renormalizable effective field theories of the nuclear regime. In addition, we show that correlations can be useful in assessing the importance of forces induced by renormalization group (RG) transformations. We give numerical evidence that such RG transformations can...

  20. Fine-Tuning of Polymeric Resins and their Interfaces with Amorphous Calcium Phosphate. A Strategy for Designing Effective Remineralizing Dental Composites

    Directory of Open Access Journals (Sweden)

    Drago Skrtic

    2010-09-01

    Full Text Available For over a decade our group has been designing, preparing and evaluating bioactive, remineralizing composites based on amorphous calcium phosphate (ACP fillers embedded in polymerized methacrylate resin matrices. In these studies a major focus has been on exploring structure-property relationships of the matrix phase of these composites on their anti-cariogenic potential. The main challenges were to gain a better understanding of polymer matrix/filler interfacial properties through controlling the surface properties of the fillers or through fine-tuning of the resin matrix. In this work, we describe the effect of chemical structure and composition of the resin matrices on some of the critical physicochemical properties of the copolymers and their ACP composites. Such structure-property studies are essential in formulating clinically effective products, and this knowledge base is likely to have strong impact on the future design of therapeutic materials, appropriate for mineral restoration in defective tooth structures.

  1. Formation of semi-IPN membrane composed of crosslinked SPS-[PVdF-co-HFP/Nafion] for application in DMFC: A fine tuning between crosslinker and initiator

    International Nuclear Information System (INIS)

    The semi-interpenetrating (semi-IPN) membrane composed of crosslinked sulfonated polystyrene (SPS) within the host blend of PVdF-co-HFP (Polyvinylidenefluoride-co-hexafluoropropylene) and Nafion has already been tested as a promising polymer electrolyte membrane (PEM) in terms of improved water uptake, proton conductivity and electrical efficiency for application in the direct methanol fuel cell (DMFC). These desired results have generated further curiosity about a fine tuning between the contents of divinyl benzene (DVB) as a crosslinker and azobisisobutyronitrile (AIBN) as an initiator for the optimization of PEM characteristics. It has been observed that an increase in AIBN content leads to an acceptable degree of water uptake, swelling ratio and proton conductivity in PEM, while higher DVB content causes declined methanol crossover, leading to higher membrane selectivity. These two opposing effects are optimized in terms of proton conductivity, tensile strength and membrane selectivity for the membrane consisting of 0.4 wt% of AIBN and 1.2 wt% of DVB. Moreover, the maximum power density obtained for the membrane having optimum selectivity is 56 mW cm−2, when analyzed at 90 °C. These results indicate that one can achieve a high power density in comparison to Nafion by fine tuning the contents of initiator and cross-linker during the synthesis of the semi-IPN membrane. - Graphical abstract: Display Omitted - Highlights: • PEM composed of 0.4/1.2 wt% of AIBN/DVB produced best result. • Lower methanol crossover (1.02 × 10−6 cm2 s−1) compare to Nafion-117. • Higher membrane selectivity i.e 3.05 × 104 Ss cm−3 was obtained. • A maximum power density of 56 mW cm−2 was obtained at 90 °C

  2. Formation of semi-IPN membrane composed of crosslinked SPS-[PVdF-co-HFP/Nafion] for application in DMFC: A fine tuning between crosslinker and initiator

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush; Kundu, Patit Paban, E-mail: ppk923@yahoo.com

    2015-08-15

    The semi-interpenetrating (semi-IPN) membrane composed of crosslinked sulfonated polystyrene (SPS) within the host blend of PVdF-co-HFP (Polyvinylidenefluoride-co-hexafluoropropylene) and Nafion has already been tested as a promising polymer electrolyte membrane (PEM) in terms of improved water uptake, proton conductivity and electrical efficiency for application in the direct methanol fuel cell (DMFC). These desired results have generated further curiosity about a fine tuning between the contents of divinyl benzene (DVB) as a crosslinker and azobisisobutyronitrile (AIBN) as an initiator for the optimization of PEM characteristics. It has been observed that an increase in AIBN content leads to an acceptable degree of water uptake, swelling ratio and proton conductivity in PEM, while higher DVB content causes declined methanol crossover, leading to higher membrane selectivity. These two opposing effects are optimized in terms of proton conductivity, tensile strength and membrane selectivity for the membrane consisting of 0.4 wt% of AIBN and 1.2 wt% of DVB. Moreover, the maximum power density obtained for the membrane having optimum selectivity is 56 mW cm{sup −2}, when analyzed at 90 °C. These results indicate that one can achieve a high power density in comparison to Nafion by fine tuning the contents of initiator and cross-linker during the synthesis of the semi-IPN membrane. - Graphical abstract: Display Omitted - Highlights: • PEM composed of 0.4/1.2 wt% of AIBN/DVB produced best result. • Lower methanol crossover (1.02 × 10{sup −6} cm{sup 2} s{sup −1}) compare to Nafion-117. • Higher membrane selectivity i.e 3.05 × 10{sup 4} Ss cm{sup −3} was obtained. • A maximum power density of 56 mW cm{sup −2} was obtained at 90 °C.

  3. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Li, Zhao-Qian; Ding, Yong; Mo, Li-E; Hu, Lin-Hua; Wu, Ji-Huai; Dai, Song-Yuan

    2015-10-14

    In general, the properties and performance of mesoporous TiO2 are greatly dependent on its crystal size, crystallinity, porosity, surface area, and morphology; in this regard, design and fine-tuning the crystal and pore sizes of the TiO2 submicrospheres and investigating the effect of these factors on the properties and photoelectric performance of dye-sensitized solar cells (DSSCs) is essential. In this work, uniform TiO2 submicrospheres were synthesized by a two-step procedure containing hydrolysis and solvothermal process. The crystal and pore sizes of the TiO2 submicrospheres were fine-tuned and controlled in a narrow range by adjusting the quantity of NH4OH during the solvothermal process. The effect of crystal and pore size of TiO2 submicrosphere on the performance of the DSSCs and their properties including dye-loading capacity, light scattering effect, power conversion efficiency (PCE), incident photon-to-electron conversion efficiencies (IPCEs), and electron recombination were compared and analyzed. The results show that increasing pore size plays a more significant role in improving the dye-loading capacity and PCE than increasing surface area, and an overall PCE value of 8.62% was obtained for the device with a 7.0 μm film thickness based on the TiO2 submicrospheres treated with 0.6 mL of NH4OH. Finally, the best TiO2 submicrosphere based photoanode film was optimized by TiCl4 treatment, and increasing film thickness and a remarkable PCE up to 11.11% were achieved. PMID:26393366

  4. Making oxidation potentials predictable: Coordination of additives applied to the electronic fine tuning of an iron(II) complex

    KAUST Repository

    Haslinger, Stefan

    2014-11-03

    This work examines the impact of axially coordinating additives on the electronic structure of a bioinspired octahedral low-spin iron(II) N-heterocyclic carbene (Fe-NHC) complex. Bearing two labile trans-acetonitrile ligands, the Fe-NHC complex, which is also an excellent oxidation catalyst, is prone to axial ligand exchange. Phosphine- and pyridine-based additives are used for substitution of the acetonitrile ligands. On the basis of the resulting defined complexes, predictability of the oxidation potentials is demonstrated, based on a correlation between cyclic voltammetry experiments and density functional theory calculated molecular orbital energies. Fundamental insights into changes of the electronic properties upon axial ligand exchange and the impact on related attributes will finally lead to target-oriented manipulation of the electronic properties and consequently to the effective tuning of the reactivity of bioinspired systems.

  5. Fine tuning of emission property of white light-emitting diodes by quantum-dot-coating on YAG:Ce nanophosphors

    Science.gov (United States)

    Kong, Dal Sung; Kim, Min Jeong; Song, Hee Jo; Cho, In Sun; Jeong, Sohee; Shin, Hyunjung; Lee, Sangwook; Jung, Hyun Suk

    2016-08-01

    We report fine tuning of emission color of Ce-doped yttrium aluminum garnet (Y3Al5O12:Ce3+, YAG:Ce) nanophosphor-based white light-emitting diodes (WLED), by coating CdSe/CdS/ZnS quantum dots (QDs) onto the surface of the YAG:Ce nanoparticles via surface functionalization of both the QDs and the YAG:Ce. Mixture of bromo-functionalized QDs and amino-functionalized YAG:Ce nanoparticles results in conformal coating of the QDs onto the YAG:Ce nanoparticles (QD@YAG:Ce). By varying the QD to YAG:Ce weight ratios, the luminescence spectra of the QD@YAG:Ce are tuned. A high-quality warm-white-light emission is achieved by appropriate combination of the yellow and red emissions from the QD@YAG:Ce, and the blue emission from InGaN LED chip. However, without surface functionalization, irregular mixtures of YAG:Ce and QDs are formed, which consequently make it hard to control the emission spectra. This study demonstrates a promising way to prepare uniformly QD-coated nanophosphors and an approach to control the emission spectra the nanophosphors.

  6. Fine Tuning Free Paradigm of Two Measures Field Theory: K-Essence, Inevitable Dynamical Protection from Initial Singularity and Inflation with Graceful Exit to Lambda =0 State

    CERN Document Server

    Guendelman, E I

    2006-01-01

    The dilaton-gravity sector of the Two Measures Field Theory (TMT)is explored in detail in the context of cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The effective model represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the fundamental action. Depending of the choice of regions in the parameter space, TMT exhibits different possible outputs for cosmological dynamics: a)Dynamical protection from the initial singularity without any tuning of parameters and initial conditions. Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space (but without fine tuning) the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field phi with a quintessence-like potential. b) Possibility of resolution of the old CC problem. From the point...

  7. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    Science.gov (United States)

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5. PMID:27451618

  8. CX3CL1, a chemokine finely tuned to adhesion: critical roles of the stalk glycosylation and the membrane domain

    Directory of Open Access Journals (Sweden)

    Mariano A. Ostuni

    2014-11-01

    Full Text Available The multi-domain CX3CL1 transmembrane chemokine triggers leukocyte adherence without rolling and migration by presenting its chemokine domain (CD to its receptor CX3CR1. Through the combination of functional adhesion assays with structural analysis using FRAP, we investigated the functional role of the other domains of CX3CL1, i.e., its mucin stalk, transmembrane domain, and cytosolic domain. Our results indicate that the CX3CL1 molecular structure is finely adapted to capture CX3CR1 in circulating cells and that each domain has a specific purpose: the mucin stalk is stiffened by its high glycosylation to present the CD away from the membrane, the transmembrane domain generates the permanent aggregation of an adequate amount of monomers to guarantee adhesion and prevent rolling, and the cytosolic domain ensures adhesive robustness by interacting with the cytoskeleton. We propose a model in which quasi-immobile CX3CL1 bundles are organized to quickly generate adhesive patches with sufficiently high strength to capture CX3CR1+ leukocytes but with sufficiently low strength to allow their patrolling behavior.

  9. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.

    KAUST Repository

    Bhatt, Prashant M.

    2016-07-08

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, from con-fined spaces (<0.5 %) and particularly from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the proper pore system (size, shape and functionality), ideal for efficient and effective traces carbon dioxide removal. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm3.cm-3) for physical adsorbents at 400 ppm CO2 and 298 K. Practically, the NbOFFIVE-1-Ni affords the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in reference physical adsorbents but considerably lower than the conventional chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2-selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on the NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2-selectivity under practical carbon capture conditions. Pertinently, the no-table hydrolytic stability positions the NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  10. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors.

    Science.gov (United States)

    Li, Wei; Li, Jinfeng; Gao, Jie; Li, Bohua; Xia, Yu; Meng, Yanchun; Yu, Yongsheng; Chen, Huaiwen; Dai, Jianxin; Wang, Hao; Guo, Yajun

    2011-05-01

    Focusing on high temperature and low pH of tumor tissue, we prepared temperature and pH responsive poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide-b-lacitde) (PID(118)-b-PLA(59)) and poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide-b-ε-caprolactone) (PID(118)-b-PCL(60)) diblock copolymers with symmetric hydrophobic blocks by the reversible addition-fragmentation chain transfer (RAFT). The corresponding dual functional polymeric micelles were fabricated by dialysis methods. Their well-defined core-shell structure was characterized by (1)H NMR in D(2)O and further confirmed by TEM. Their structural and physical chemistry properties such as diameters (D), core corona dimension (R(core), R(shell)), distribution (PDI), M(w), aggregation number (N(agg)), second virial coefficient (A(2)), critical micellization concentration (CMC) and z-potential were firstly systemically investigated by dynamic and static laser light scattering. The volume phase transition temperature (VPTT) was around 40 °C above which the intracellular uptake of adriamycin (ADR) was significantly enhanced. Both flow cytometry and fluorescent microscopy showed that the ADR transported by these micelles was about 4 times higher than that by the commercial ADR formulation Taxotere®. In vitro cytotoxicity assay against N-87 cancer cell and confocal laser scanning microscopy (CLSM) also confirmed such promoting efficiency. In addition, it was interesting to find that cell surviving bounced back as T = 42 °C due to the inter-micellar aggregation. The well clarified mechanism strongly support that our finely tailored dual functional core-shell micelles are potent in enhancing cellular uptake and drug release. PMID:21377724

  11. Time-resolved in silico modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation

    Directory of Open Access Journals (Sweden)

    Dandekar Thomas

    2011-10-01

    Full Text Available Abstract Background Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (cAMP, cGMP elevation and subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG activation. In turn, platelet phosphodiesterases (PDEs and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics allows understanding this intricate signaling and supports the precise description of these pivotal targets for pharmacological modulation. Results We modeled dynamically concentration-dependent responses of pathway effectors (inhibitors, activators, drug combinations to cyclic nucleotide signaling as well as to downstream signaling events and verified resulting model predictions by experimental data. Experiments with various cAMP affecting compounds including anti-platelet drugs and their combinations revealed a high fidelity, fine-tuned cAMP signaling in platelets without cross-talk to the cGMP pathway. The model and the data provide evidence for two independent feedback loops: PKA, which is activated by elevated cAMP levels in the platelet, subsequently inhibits adenylyl cyclase (AC but as well activates PDE3. By multi-experiment fitting, we established a comprehensive dynamic model with one predictive, optimized and validated set of parameters. Different pharmacological conditions (inhibition, activation, drug combinations, permanent and transient perturbations are successfully tested and simulated, including statistical validation and sensitivity analysis

  12. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  13. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    Science.gov (United States)

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation. PMID:24286029

  14. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    International Nuclear Information System (INIS)

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4′-N,N′-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N′)iridium(III) (Ir(2-phq)3) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m2. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED

  15. Fine-tuning methodologies to determine phosphorus fractions in plant- and soil samples labelled with radioisotope 32P and/or 33P

    International Nuclear Information System (INIS)

    Full text: In preparation for the 32P/ 33P work in the laboratory and greenhouse, selected methods for the determination of P fractions in plant and soil were tested and fine-tuned with non-labelled materials. Selected materials were validated against certified reference materials (NIST1547, NIST 1646, NIST 2709) where available or compared to analytical results provided by national soil-testing laboratories on an internal standard soil and/or tested soil samples. The tested methods were applied to fractionate the low -P soil, which has been selected for future 32P experiments in the newly refurbished greenhouse experiments. The following methods have been identified and validated: Total P in plant samples by wet digestion with concentrated sulphuric acid; Total P in soil samples by perchloric acid digestion; Available P in soil samples by the Bray-P2 extraction method; Fractionated extraction of Ca-P, Fe-P and Al-P in low P soils (pH 5.9) by acetic acid, ammonia fluoride and sodium hydroxide extractants, respectively. The next step will be to use 32P labelled plant and soil- samples for the tests. (author)

  16. The cell-specific activity of the estrogen receptor α may be fine-tuned by phosphorylation-induced structural gymnastics

    Science.gov (United States)

    Gburcik, Valentina; Picard, Didier

    2006-01-01

    The estrogen receptor α (ERα) regulates the transcription of target genes by recruiting coregulator proteins through several domains including the two activation functions AF1 and AF2. The contribution of the N-terminally located AF1 activity is particularly important in differentiated cells, and for ERα to integrate inputs from other signaling pathways. However, how the phosphorylation of key residues influences AF1 activity has long remained mysterious, in part because the naturally disordered AF1 domain has resisted a structural characterization. The recent discovery of two coregulators that are specific for a phosphorylated form of AF1 suggests that phosphorylation, possibly in conjunction with the subsequent binding of these coregulators, may enforce a stable structure. The binding of the "pioneer" coregulators might facilitate the subsequent recruitment of yet other coregulators. Different AF1 folds may be enabled by the combinatorial action of posttranslational modifications and coregulator binding thereby fine-tuning ERα activities in a cell- and promoter-specific fashion. PMID:16604168

  17. Fine-Tuning of β-Substitution to Modulate the Lowest Triplet Excited States: A Bioinspired Approach to Design Phosphorescent Metalloporphyrinoids.

    Science.gov (United States)

    Ke, Xian-Sheng; Zhao, Hongmei; Zou, Xiaoran; Ning, Yingying; Cheng, Xin; Su, Hongmei; Zhang, Jun-Long

    2015-08-26

    Learning nature's approach to modulate photophysical properties of NIR porphyrinoids by fine-tuning β-substituents including the number and position, in a manner similar to naturally occurring chlorophylls, has the potential to circumvent the disadvantages of traditional "extended π-conjugation" strategy such as stability, molecular size, solubility, and undesirable π-π stacking. Here we show that such subtle structural changes in Pt(II) or Pd(II) cis/trans-porphodilactones (termed by cis/trans-Pt/Pd) influence photophysical properties of the lowest triplet excited states including phosphorescence, Stokes shifts, and even photosensitization ability in triplet-triplet annihilation reactions with rubrene. Prominently, the overall upconversion capability (η, η = ε·Φ(UC)) of Pd or Pt trans-complex is 10(4) times higher than that of cis-analogue. Nanosecond time-resolved infrared (TR-IR) spectroscopy experiments showed larger frequency shift of ν(C═O) bands (ca. 10 cm(-1)) of cis-complexes than those of trans-complexes in the triplet excited states. These spectral features, combining with TD-DFT calculations, suggest the strong electronic coupling between the lactone moieties and the main porphyrin chromophores and thus the importance of precisely positioning β-substituents by mimicking chlorophylls, as an alternative to "extended π-conjugation", in designing NIR active porphyrinoids. PMID:26247480

  18. Fine-Tuning of CD8(+) T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus.

    Science.gov (United States)

    Champagne, Devin P; Hatle, Ketki M; Fortner, Karen A; D'Alessandro, Angelo; Thornton, Tina M; Yang, Rui; Torralba, Daniel; Tomás-Cortázar, Julen; Jun, Yong Woong; Ahn, Kyo Han; Hansen, Kirk C; Haynes, Laura; Anguita, Juan; Rincon, Mercedes

    2016-06-21

    Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells. Increased oxidative phosphorylation and subcellular ATP accumulation caused by MCJ deficiency selectively increased the secretion, but not expression, of interferon-γ. MCJ also adapted effector CD8(+) T cell metabolism during the contraction phase. Consequently, memory CD8(+) T cells lacking MCJ provided superior protection against influenza virus infection. Thus, MCJ offers a mechanism for fine-tuning CD8(+) T cell mitochondrial metabolism as an alternative to modulating mitochondrial mass, an energetically expensive process. MCJ could be a therapeutic target to enhance CD8(+) T cell responses. PMID:27234056

  19. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zemtsova, Elena G., E-mail: ezimtsova@yandex.ru; Arbenin, Andrei Yu.; Plotnikov, Alexander F.; Smirnov, Vladimir M. [Institute of Chemistry, Saint Petersburg State University, Universitetskii Pr. 26, Saint Petersburg 198504 (Russian Federation)

    2015-03-15

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable to the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al{sub 2}O{sub 3} nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3.

  20. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    International Nuclear Information System (INIS)

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable to the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al2O3 nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3

  1. Fine-tuning of catalytic tin nanoparticles by the reverse micelle method for direct deposition of silicon nanowires by a plasma-enhanced chemical vapour technique.

    Science.gov (United States)

    Poinern, Gérrard E J; Ng, Yan-Jing; Fawcett, Derek

    2010-12-15

    The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW's were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications. PMID:20887996

  2. Molecular assembly of highly symmetric molecules under a hydrogen bond framework controlled by alkyl building blocks: a simple approach to fine-tune nanoscale structures.

    Science.gov (United States)

    Tanphibal, Pimsai; Tashiro, Kohji; Chirachanchai, Suwabun

    2016-01-14

    To date, molecular assemblies under the contribution of hydrogen bond in combination with weak interactions and their consequent morphologies have been variously reported; however, how the systematic variation of the structure can fine-tune the morphologies has not yet been answered. The present work finds an answer through highly symmetric molecules, i.e. diamine-based benzoxazine dimers. This type of molecule develops unique molecular assemblies with their networks formed by hydrogen bonds at the terminal, while, at the same time, their hydrogen bonded frameworks are further controlled by the hydrophobic segment at the center of the molecule. When this happens, slight differences in hydrophobic alkyl chain lengths (, , and ) bring a significant change to the molecular assemblies, thus resulting in tunable morphologies, i.e. spheres, needles and dendrites. The superimposition between the crystal lattice obtained from X-ray single crystal analysis and the electron diffraction pattern obtained from transmission electron microscopy allows us to identify the molecular alignment from single molecules to self-assembly until the morphologies developed. The present work, for the first time, shows the case of symmetric molecules, where the hydrophobic building block controls the hydrogen bond patterns, leading to the variation of molecular assemblies with tunable morphologies. PMID:26482133

  3. 3′-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli

    Science.gov (United States)

    Song, Ji-Won; Woo, Ji-Min; Jung, Gyoo Yeol; Bornscheuer, Uwe T.; Park, Jin-Byung

    2016-01-01

    3′-Untranslated region (3′UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3′UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3′UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3′UTR. In summary, 3′UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells. PMID:27406241

  4. Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations

    KAUST Repository

    Swaidan, Raja

    2015-08-20

    Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain “rigidity”, the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O2/N2) and hydrogen recovery (e.g., H2/N2, H2/CH4) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity “upper bounds” for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger’s base) in both ladder and semiladder (e.g., polyimide) structures.

  5. Near Edge X-ray Absorption Fine Structure Spectroscopy Studies of Single-Crystalline V2O5 Nanowire Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, J.; Jaye, C; Fischer, D; Banerjee, S

    2009-01-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to precisely probe the alignment, uniformity in crystal growth direction, and electronic structure of single-crystalline V2O5 nanowire arrays prepared by a cobalt-catalyzed vapor transport process. The dipole selection rules operational for core-level electron spectroscopy enable angle-dependent NEXAFS spectroscopy to be used as a sensitive probe of the anisotropy of these systems and provides detailed insight into bond orientation and the symmetry of the frontier orbital states. The experimental spectra are matched to previous theoretical predictions and allow experimental verification of features such as the origin of the split-off conduction band responsible for the semiconducting properties of V2O5 and the strongly anisotropic nature of vanadyl-oxygen-derived (VO) states thought to be involved in catalysis. The strong anisotropy observed across thousands of nanowires in the NEXAFS measurements clearly demonstrates the uniformity of crystal growth direction in these nanowire arrays.

  6. Fine tuning brings noteworthy success.

    Science.gov (United States)

    Baillie, Jonathan

    2009-11-01

    Over the past year the estates and facilities team at London's UCLH NHS Foundation Trust and Interserve Consulting have jointly analysed energy consumption at University College Hospital to identify saving opportunities and potential carbon footprint reduction measures. The project, under which measures proposed could see electrical energy demand cut by 25%, is just part of a wider drive to reduce carbon emissions and cut energy bills at one of London's largest hospitals. Jonathan Baillie reports. PMID:19998839

  7. Baby universes, fine tuning problems

    International Nuclear Information System (INIS)

    We review the recently popular 'theory of baby universes' put forward by Banks, Coleman and Hawking. We then derive the strong CP breaking coefficient θ-bar to be very small, in a similar manner to the derivation of the cosmological constant being zero. A solution for an old controversy concerning the entropy creation in black holes is also discussed. We finally confront the baby universe theory with random dynamics. We conclude that the theory of baby universes is so successful that the essential features are likely true and might have to go into a right theory even if with some troubles at first. (author)

  8. Fine-Tuning Bilateral Ties

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Chinese Vice Premier’s visit to Africa continues to emphasize the mutual cooperation,with a focus on agriculture FOR many years,the Chinese Government has dispatched the minister of foreign affairs to Africa for the first official visit of a year.This year,however,that rule was broken when Hui Liangyu,Chinese Vice Premier,made the 14-day trip. On January 6-19,Hui paid official visits to Mauritius,Zambia,the Democratic Republic of Congo(DRC),Cameroon and Senegal,focusing on economic and agri-

  9. Fine-tuning Metabolic Switches

    OpenAIRE

    Breckenridge, Ross A.; Piotrowska, Izabela; Ng, Keat-Eng; Ragan, Timothy J.; West, James A.; Kotecha, Surendra; Towers, Norma; Bennett, Michael; Kienesberger, Petra C.; Smolenski, Ryszard T.; Siddall, Hillary K.; Offer, John L.; Mocanu, Mihaela M.; Yelon, Derek M.; Dyck, Jason R.B.

    2013-01-01

    Cardiomyocytes are vulnerable to hypoxia in the adult, but adapted to hypoxia in utero. Current understanding of endogenous cardiac oxygen sensing pathways is limited. Myocardial oxygen consumption is determined by regulation of energy metabolism, which shifts from glycolysis to lipid oxidation soon after birth, and is reversed in failing adult hearts, accompanying re-expression of several “fetal” genes whose role in disease phenotypes remains unknown. Here we show that hypoxia-controlled exp...

  10. Fine-Tuning Teacher Evaluation

    Science.gov (United States)

    Marshall, Kim

    2012-01-01

    As many states and districts rethink teacher supervision and evaluation, the team at the Measures of Effective Teaching (MET) Project, funded by the Bill and Melinda Gates Foundation, has analyzed thousands of lesson videotapes and studied the shortcomings of current practices. The tentative conclusion: Teachers should be evaluated on three…

  11. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1M and soluble DLK1S are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1M protein while it increases the amount of DLK1S supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1S. Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.

  12. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.

    Science.gov (United States)

    Viumdal, Håkon; Mylvaganam, Saba

    2014-03-01

    Buffer rods (BR) as waveguides in ultrasonic time domain reflectometry (TDR) can somewhat extend the range of industrial applications of ultrasonics. Level, temperature and flow measurements involving elevated temperatures, corrosive fluids and generally harsh environments are some of the applications in which conventional ultrasonic transducers cannot be used directly in contact with the media. In such cases, BRs with some design modifications can make ultrasonic TDR measurements possible with limited success. This paper deals with TDR in conjunction with distance measurements in extremely hot fluids, using conventional ultrasonic transducers in combination with BRs. When using BRs in the ultrasonic measurement systems in extreme temperatures, problems associated with size and the material of the buffer, have to be addressed. The resonant frequency of the transducer and the relative size of the transducer with respect to the diameter of BR are also important parameters influencing the signal to noise ratio (SNR) of the signal processing system used in the ultrasonic TDR. This paper gives an overview of design aspects related to the BRs with special emphasis on tapers and cladding used on BRs. As protective cladding, zirconium oxide-yttrium oxide composite was used, with its proven thermal stability in withstanding temperatures in rocket and jet engines up to 1650 °C. In general a BR should guide the signals through to the medium and from and back to the transducer without excessive attenuation and at the same time not exacerbate the noise in the measurement system. The SNR is the decisive performance indicator to consider in the design of BR based ultrasonic TDR, along with appropriate transducer, with suitable size and operating frequency. This work presents and analyses results from extensive experiments related to fine-tuning both geometry of and signals in cladded/uncladded BRs used in high temperature ultrasonic TDR with focus on overall performance based on

  13. A multi-step method with signal quality assessment and fine-tuning procedure to locate maternal and fetal QRS complexes from abdominal ECG recordings

    International Nuclear Information System (INIS)

    Non-invasive monitoring of fetal electrocardiogram (fECG) plays an important role in detecting and diagnosing fetal diseases. This study aimed to develop a multi-step method for locating both maternal and fetal QRS complexes from abdominal ECG (aECG) recordings. The proposed method included four major steps: abdominal ECG pre-processing, maternal QRS complex locating, maternal ECG cancellation and fetal QRS complex locating. Signal quality assessment (SQA) and fine-tuning for maternal ECG (FTM) were implemented in the first and third steps, respectively. The method was then evaluated using 75 non-invasive 4-channel aECG recordings provided by the PhysioNet/Computing in Cardiology Challenge 2013. The F1 measure, which is a new index introduced by Behar et al (2013 Proc. Comput. Cardiol. 40 297–300), was used to assess the locating accuracy. The other two indices, mean squared error of heart rate (MSEHR) between the fetal HR signals estimated from the reference and our method (MSEHR in bpm2) and root mean squared difference between the corresponding fetal RR intervals (MSERR in ms) were also used to assess the locating accuracy. Overall, for the maternal QRS complex, the F1 measure was 98.4% from the method without the implementation of SQA, and it was improved to 99.8% with SQA. For the fetal QRS complex, the F1 measure, MSEHR and MSERR were 84.9%, 185.6 bpm2 and 19.4 ms for the method without both SQA and FTM procedures. They were improved to 93.9%, 47.5 bpm2 and 7.6 ms with both SQA and FTM procedures. These improvements were observed from each individual subject. It can be concluded that implementing both SQA and FTM procedures could achieve better performance for locating both maternal and fetal QRS complexes. (paper)

  14. Tuning a nano-pillar array for enhancing the photoluminescence extraction efficiency of GaN-based light-emitting diodes

    International Nuclear Information System (INIS)

    We demonstrate the fabrication of hexagonal nano-pillar arrays at the surface of GaN-based light-emitting diodes (LEDs) by nanosphere lithography. By varying the oxygen plasma etching time, we could tune the size and shape of the pillar. The nano-pillar has a truncated cone shape. The nano-pillar array serves as a gradual effective refractive index matcher, which reduces the reflection and increases light cone. It is found that the patterned surface absorbs more pumping light. To compare extraction efficiencies of LEDs, it is necessary to normalize the photoluminescence power spectrum with total absorption rate under fixed pumping power, then we could obtain the correct enhancement factor of the photoluminescence extraction efficiency and optimized structure. The highest enhancement factor of the extraction efficiency is 10.6. (interdisciplinary physics and related areas of science and technology)

  15. Fine-tuning free paradigm of two-measures theory: k-essence, absence of initial singularity of the curvature, and inflation with graceful exit to the zero cosmological constant state

    International Nuclear Information System (INIS)

    The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton φ dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective φ-Lagrangian p(φ,X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intended for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field φ with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration √(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/ρ<-1; w asymptotically (as t→∞) approaches -1 from below;

  16. Functional Characterization of MODY2 Mutations Highlights the Importance of the Fine-Tuning of Glucokinase and Its Role in Glucose Sensing

    Science.gov (United States)

    García-Herrero, Carmen-María; Rubio-Cabezas, Oscar; Azriel, Sharona; Gutierrez-Nogués, Angel; Aragonés, Angel; Vincent, Olivier; Campos-Barros, Angel; Argente, Jesús; Navas, María-Angeles

    2012-01-01

    Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing. PMID:22291974

  17. Theoretical Investigation on an Array of Dual Tuned Staggered Dipole Apertures by the Method of Moment and Comparison with Experimental Results

    Directory of Open Access Journals (Sweden)

    Arup Ray

    2012-08-01

    Full Text Available A frequency selective surface (FSS comprising of a two dimensional array of dipole apertures, resonant at two frequencies, within a metallic screen is proposed. A computationally efficient method for analyzing this FSS is used. The formulation is carried out in the spectral domain where the convolution form of the integral equation for the induced current reduces to an algebraic one and the Spectral-Galerkin technique is used to solve the resulting equation. Entire- domain basis function that satisfies the edge condition is introduced to expand the unknown induced current on the complementary structure i.e. an array of printed dipoles. Using Babinet’s principle for complementary screen, the transmitted electric field for the structure of an array of aperture dipoles has been calculated. The theoretical practical data indicate that this structure can be used as a highly selective tuned bandpass filter for GPS and Wi-Max applications which is very resistant to variations of RF incidence angle of 90° (degree rotations about any vertical axis, perpendicular to the FSS plane and passing through its centre.

  18. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications

    OpenAIRE

    Shrama, Satinder K; Saurakhiya, Neelam; Barthwal, Sumit; Kumar, Rudra; Sharma, Ashutosh

    2014-01-01

    One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and ( 000 1 ¯ ) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs ...

  19. Cellular prion protein is required for neuritogenesis: fine-tuning of multiple signaling pathways involved in focal adhesions and actin cytoskeleton dynamics

    Directory of Open Access Journals (Sweden)

    Alleaume-Butaux A

    2013-07-01

    Full Text Available Aurélie Alleaume-Butaux,1,2 Caroline Dakowski,1,2 Mathéa Pietri,1,2 Sophie Mouillet-Richard,1,2 Jean-Marie Launay,3,4 Odile Kellermann,1,2 Benoit Schneider1,2 1INSERM, UMR-S 747, 2Paris Descartes University, Sorbonne Paris Cité, UMR-S 747, 3Public Hospital of Paris, Department of Biochemistry, INSERM UMR-S 942, Lariboisière Hospital, Paris, France; 4Pharma Research Department, Hoffmann La Roche Ltd, Basel, Switzerland Abstract: Neuritogenesis is a dynamic phenomenon associated with neuronal differentiation that allows a rather spherical neuronal stem cell to develop dendrites and axon, a prerequisite for the integration and transmission of signals. The acquisition of neuronal polarity occurs in three steps: (1 neurite sprouting, which consists of the formation of buds emerging from the postmitotic neuronal soma; (2 neurite outgrowth, which represents the conversion of buds into neurites, their elongation and evolution into axon or dendrites; and (3 the stability and plasticity of neuronal polarity. In neuronal stem cells, remodeling and activation of focal adhesions (FAs associated with deep modifications of the actin cytoskeleton is a prerequisite for neurite sprouting and subsequent neurite outgrowth. A multiple set of growth factors and interactors located in the extracellular matrix and the plasma membrane orchestrate neuritogenesis by acting on intracellular signaling effectors, notably small G proteins such as RhoA, Rac, and Cdc42, which are involved in actin turnover and the dynamics of FAs. The cellular prion protein (PrPC, a glycosylphosphatidylinositol (GPI-anchored membrane protein mainly known for its role in a group of fatal neurodegenerative diseases, has emerged as a central player in neuritogenesis. Here, we review the contribution of PrPC to neuronal polarization and detail the current knowledge on the signaling pathways fine-tuned by PrPC to promote neurite sprouting, outgrowth, and maintenance. We emphasize that Pr

  20. Fine tuning of cascaded d-q axis controller for AC-DC-AC converter without DC link capacitor using artificial neural network

    OpenAIRE

    Padmanaban Sanjeevikumar; Balakrishnan GeethaLakshmi; Perumal Danajayan

    2008-01-01

    This paper presents an artificial neural network (ANN) based approach to tune the parameters of the cascaded d-q axis controller for an AC-DC-AC converter without dc link capacitor. The proposed converter uses the cascaded d-q axis controller on the rectifier side and space vector pulse width modulation on the inverter side. The feed-forward ANN with the error back-propagation training is employed to tune the parameters of the cascaded d-q axis controller. The converter topology provides simp...

  1. Three dimensional ZnO nanotube arrays and their optical tuning through formation of type-II heterostructures

    OpenAIRE

    Wang, L.; Huang, X.(Tsinghua University, Beijing, 100084, China); Xia, J.; Zhu, D.; Li, X; Meng, X

    2016-01-01

    In this paper, we report on the first successful attempt of chemical vapor deposition (CVD) synthesis of well-aligned single-crystalline ZnO nanotube arrays on Mo wire mesh. According to detailed morphology and composition analyses, a rational growth model is proposed to illustrate the growth process of the hollow ZnO nanotubes. Metastable Zn-rich ZnOx nanorods formed in the early stage are believed to play a vital role towards the formation of nanotube configuration. In addition, we also suc...

  2. Evaluation of the metabochip genotyping array in African Americans and implications for fine mapping of GWAS-identified loci: the PAGE study.

    Directory of Open Access Journals (Sweden)

    Steven Buyske

    Full Text Available The Metabochip is a custom genotyping array designed for replication and fine mapping of metabolic, cardiovascular, and anthropometric trait loci and includes low frequency variation content identified from the 1000 Genomes Project. It has 196,725 SNPs concentrated in 257 genomic regions. We evaluated the Metabochip in 5,863 African Americans; 89% of all SNPs passed rigorous quality control with a call rate of 99.9%. Two examples illustrate the value of fine mapping with the Metabochip in African-ancestry populations. At CELSR2/PSRC1/SORT1, we found the strongest associated SNP for LDL-C to be rs12740374 (p = 3.5 × 10(-11, a SNP indistinguishable from multiple SNPs in European ancestry samples due to high correlation. Its distinct signal supports functional studies elsewhere suggesting a causal role in LDL-C. At CETP we found rs17231520, with risk allele frequency 0.07 in African Americans, to be associated with HDL-C (p = 7.2 × 10(-36. This variant is very rare in Europeans and not tagged in common GWAS arrays, but was identified as associated with HDL-C in African Americans in a single-gene study. Our results, one narrowing the risk interval and the other revealing an associated variant not found in Europeans, demonstrate the advantages of high-density genotyping of common and rare variation for fine mapping of trait loci in African American samples.

  3. Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response

    Science.gov (United States)

    Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)

    2014-01-01

    A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.

  4. Fine tuning of cascaded d-q axis controller for AC-DC-AC converter without DC link capacitor using artificial neural network

    Directory of Open Access Journals (Sweden)

    Padmanaban Sanjeevikumar

    2008-01-01

    Full Text Available This paper presents an artificial neural network (ANN based approach to tune the parameters of the cascaded d-q axis controller for an AC-DC-AC converter without dc link capacitor. The proposed converter uses the cascaded d-q axis controller on the rectifier side and space vector pulse width modulation on the inverter side. The feed-forward ANN with the error back-propagation training is employed to tune the parameters of the cascaded d-q axis controller. The converter topology provides simple commutation procedure with reduced number of switches and has additional advantages such as good voltage transfer ratio, four quadrant operation, unity power factor, no DC link capacitor and less THD in both the line and load sides. Simulation results closely match with theoretical analysis.

  5. Intratumor genetic heterogeneity of breast carcinomas as determined by fine needle aspiration and TaqMan low density array

    DEFF Research Database (Denmark)

    Lyng, Maria B.; Laenkholm, Anne-Vibeke; Pallisgaard, Niels;

    2007-01-01

    BACKGROUND: Gene expression profiling is thought to be an important tool in determining treatment strategies for breast cancer patients. Tissues for such analysis may at a preoperative stage be obtained, by fine needle aspiration (FNA) allowing initiation of neoadjuvant treatment. To evaluate the...

  6. Java performance tuning

    CERN Document Server

    Shirazi, Jack

    2003-01-01

    Performance has been an important issue for Java developers ever since the first version hit the streets. Over the years, Java performance has improved dramatically, but tuning is essential to get the best results, especially for J2EE applications. You can never have code that runs too fast. Java Peformance Tuning, 2nd edition provides a comprehensive and indispensable guide to eliminating all types of performance problems. Using many real-life examples to work through the tuning process in detail, JPT shows how tricks such as minimizing object creation and replacing strings with arrays can

  7. Thermoelectric properties of fine-grained FeVSb half-Heusler alloys tuned to p-type by substituting vanadium with titanium

    International Nuclear Information System (INIS)

    Fine-grained Ti-doped FeVSb half-Heusler alloys were synthesized by combining mechanical alloying and spark plasma sintering and their thermoelectric properties were investigated with an emphasis on the influences of Ti doping and phase purity. It was found that substituting V with Ti can change the electrical transport behavior from n-type to p-type due to one less valence electron of Ti than V, and the sample with nominal composition FeV0.8Ti0.4Sb exhibits the largest Seebeck coefficient and the maximum power factor. By optimizing the sintering temperature and applying annealing treatment, the power factor is significantly improved and the thermal conductivity is reduced simultaneously, resulting in a ZT value of 0.43 at 500 °C, which is relatively high as for p-type half-Heusler alloys containing earth-abundant elements. - Graphical abstract: Fine-grained Ti-doped FeVSb alloys were prepared by the MA-SPS method. The maximum ZT value reaches 0.43 at 500 °C, which is relatively high for p-type half-Heusler alloys. Highlights: ► Ti-doped FeVSb half-Heusler alloys were synthesized by combining MA and SPS. ► Substituting V with Ti changes the electrical behavior from n-type to p-type. ► Thermoelectric properties are improved by optimizing sintering temperature. ► Thermoelectric properties are further improved by applying annealing treatment. ► A high ZT value of 0.43 is obtained at 500 °C for p-type Ti-doped FeVSb alloys.

  8. Aberration modeling of thermo-optical effects applied to wavefront fine-tuning and thermal compensation of Sodern UV and LWIR optical systems

    Science.gov (United States)

    Battarel, D.; Fuss, P.; Durieux, A.; Martaud, E.

    2015-09-01

    As a manufacturer of optical systems for space applications, Sodern is faced with the necessity to design optical systems which image quality remains stable while the environment temperature changes. Two functions can be implemented: either a wavefront control or the athermalization of the optical system. In both cases, the mechanical deformations and thermal gradients are calculated by finite-element modeling with the IDEAS NX7 software. The data is then used in CODE V models for wavefront and image quality evaluation purposes. Two cases are presented: one is a UV beam expander in which a wavefront control is implemented and the other is an athermalized IR camera. The beam expander has a wavefront-tuning capability by thermal control. In order to perform the thermo-optical analysis in parallel with the opto-mechanical development, the thermo-optical modeling is done step by step in order to start before the mechanical design is completed. Each step then includes a new modeling stage leading to progressive improvements in accuracy. The IR camera athermalization is achieved through interaction between the mechanical CAD software and the optical design software to simulate the axial thermal gradients, radial gradients and all other thermal variations. The purpose of this paper is to present the steps that have led to the final STOP (Structural, Thermal Optical) analysis. Using incremental accuracy in modeling the thermo-optical effects enables to take them into account very early in the development process to devise all adjustment and test procedures to apply when assembling and testing the optical system.

  9. Tuning of Fuzzy PID Controllers

    DEFF Research Database (Denmark)

    Jantzen, Jan

    1998-01-01

    Since fuzzy controllers are nonlinear, it is more difficult to set the controller gains compared to proportional-integral-derivative (PID) controllers. This research paper proposes a design procedure and a tuning procedure that carries tuning rules from the PID domain over to fuzzy single......-loop controllers. The idea is to start with a tuned, conventional PID controller, replace it with an equivalent linear fuzzy controller, make the fuzzy controller nonlinear, and eventually fine-tune the nonlinear fuzzy controller. This is relevant whenever a PID controller is possible or already implemented....

  10. Linking landscape characteristics to mineral site use by band-tailed pigeons in Western Oregon: Coarse-filter conservation with fine-filter tuning

    Science.gov (United States)

    Overton, C.T.; Schmitz, R.A.; Casazza, M.L.

    2006-01-01

    Mineral sites are scarce resources of high ion concentration used heavily by the Pacific Coast subpopulation of band-tailed pigeons. Over 20% of all known mineral sites used by band-tailed pigeons in western Oregon, including all hot springs, have been abandoned. Prior investigations have not analyzed stand or landscape level habitat composition in relation to band-tailed pigeon use of mineral sites. We used logistic regression models to evaluate the influence of habitat types, identified from Gap Analysis Program (GAP) products at two spatial scales, on the odds of mineral site use in Oregon (n = 69 currently used and 20 historically used). Our results indicated that the odds of current use were negatively associated with non-forested terrestrial and private land area around mineral sites. Similarly, the odds of current mineral site use were positively associated with forested and special status (GAP stewardship codes 1 and 2) land area. The most important variable associated with the odds of mineral site use was the amount of non-forested land cover at either spatial scale. Our results demonstrate the utility of meso-scale geographic information designed for regional, coarse-filter approaches to conservation in fine-filter investigation of wildlife-habitat relationships. Adjacent landcover and ownership status explain the pattern of use for known mineral sites in western Oregon. In order for conservation and management activities for band-tailed pigeons to be successful, mineral sites need to be addressed as important and vulnerable resources. Management of band-tailed pigeons should incorporate the potential for forest management activities and land ownership patterns to influence the risk of mineral site abandonment.

  11. Investigation on Harmonic Tuning for Active Ku-Band Rectangular Dielectric Resonator Antennas

    Directory of Open Access Journals (Sweden)

    Anda Guraliuc

    2008-01-01

    Full Text Available A slot-coupled rectangular dielectric resonator antenna (DRA operating in the 14–14.5 GHz frequency band is investigated as a possible radiating element for an active integrated antenna of a transmitting phased array. The effectiveness of the resonator shape factor on achieving harmonic tuning is addressed. Simulation results show that the DRA shape factor can be used to provide a fine tuning of the DRA input impedance both at the fundamental frequency and its first harmonics, so synthesizing the proper load for the optimization of the microwave amplifier power-added efficiency (PAE.

  12. Hidden $U(1)_Y$ Ward-Takahashi identities, absence of Brout-Englert-Higgs fine-tuning, decoupling of certain heavy particles, due to spontaneous symmetry breaking II: The Abelian Higgs model (AHM), extended-AHM, derivations and examples

    CERN Document Server

    Lynn, Bryan W

    2015-01-01

    This work is dedicated to the memory of R. Stora. The spontaneously broken (SSB) $U(1)_Y$ Abelian Higgs model (AHM) (the gauge theory of a scalar $\\phi \\propto (H+i\\pi)= {\\tilde H}e^{i{\\tilde \\pi}/}$ and a transverse vector A) has a massless pseudo-scalar $\\pi$ in Lorenz gauge. Physical states have a conserved global current and Goldstone theorem (GT). $\\tilde \\pi$ becomes a Nambu-Goldstone boson (NGB). Slavnov-Taylor identities keep on-shell T-matrix elements of physical states independent of anomaly-free gauge, and global, transformations, yielding towers of $\\phi$-sector Ward-Takahashi Identities (WTI), and constraining external $\\phi$ dynamics. Ultraviolet quadratic divergences (UVQD) contribute only to $m_\\pi^2$, forced by the GT to 0, so all UVQD vanish. Weak-scale renormalized gauge-independent Higgs pole-mass and VEV are therefore not fine-tuned. The NGB is "eaten" and decouples, hiding the $U(1)_Y$ WTI from observable particle physics. Our regularization-scheme-independent results are unchanged by th...

  13. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    Science.gov (United States)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  14. Tuning of resonances in photonic crystal photodetectors

    International Nuclear Information System (INIS)

    Full text: Photonic crystal slabs (PCS) have shown capabilities for detectivity enhancement of photodetectors in the mid-infrared region (MIR). The increased photon lifetime at the PCS resonance peaks leads to a higher photon absorption. For tuning of the resonances of a PCS quantum well infrared photodetector we used a device structure, that allows PCS heating by a lateral current flow. It was additionally designed for resonance tuning by postprocessing the PCS thickness. The combination of postprocessing and thermal tuning allows coarse and fine shifting of the photonic crystal resonances. Peakshifts up to 4 cm-1 were achieved by thermal fine tuning at a design wavelength of 8 μm. (author)

  15. Inflation and the Fine-Tuning Problem

    OpenAIRE

    Matacz, Andrew

    1996-01-01

    I describe a recently derived stochastic approach to inflaton dynamics which can address some serious problems associated with conventional inflationary theory. Using this theory I derive an exact solution to the stochastic dynamics for the case of a $\\lambda\\phi^4$ potential and use it to study the generated primordial density fluctuations. It is found that on both sub and super-horizon scales the theory predicts gaussian fluctuations to a very high accuracy along with a near scale-invariant...

  16. Dark Interactions and Cosmological Fine-Tuning

    CERN Document Server

    Quartin, Miguel; Joras, Sergio E; Reis, Ribamar R R; Waga, Ioav

    2008-01-01

    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the $\\Lambda$CDM model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light as to whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.

  17. "Fine-tuning" durch interkulturelles Coaching

    OpenAIRE

    Steixner, Margret

    2009-01-01

    Margret Steixner plädiert in ihrem Beitrag für eine Integration des interkulturellen Coachings in andere Bereiche des Coachings. Basierend auf einer Coaching-Fallstudie entwickelt die Autorin einen hilfreichen Fragenkatalog für das interkulturelle Coaching.

  18. Intrauterine insemination: Fine-tuning a treatment

    NARCIS (Netherlands)

    I.M. Custers

    2013-01-01

    De kans op een zwangerschap na een intra-uteriene inseminatie (IUI) neemt met vijftig procent toe als de vrouw na het inbrengen van het zaad vijftien minuten blijft liggen. Dat blijkt uit onderzoek van Inge Custers. IUI is een behandeling waarbij, in geval van verminderde vruchtbaarheid bij een kopp

  19. Dark interactions and cosmological fine-tuning

    International Nuclear Information System (INIS)

    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the ΛCDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way

  20. Cِircular Antenna Array Synthesis Using Fuzzy Genetic Algorithm

    OpenAIRE

    M. Bousahla; Kadri, B; F. T. Bendimerad

    2007-01-01

    This paper presents a rigorous synthesis of circular arrays of printed antennas using a hybrid fuzzy-genetic algorithm. Fuzzy logic based controllers are applied to fine-tune dynamically the crossover and mutation probability in the genetic algorithms, in an attempt to improve the algorithm performance. The FGA approach is compared with the Standard Genetic Algorithm(SGA). Included synthesis example clearly demonstrates that while the SGA approach gives satisfactory solutions for the probl...

  1. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions.

    Science.gov (United States)

    Kashif, Muhammad K; Axelson, Jordan C; Duffy, Noel W; Forsyth, Craig M; Chang, Christopher J; Long, Jeffrey R; Spiccia, Leone; Bach, Udo

    2012-10-10

    Dye-sensitized solar cells (DSCs) are an attractive renewable energy technology currently under intense investigation. In recent years, one area of major interest has been the exploration of alternatives to the classical iodide/triiodide redox shuttle, with particular attention focused on cobalt complexes with the general formula [Co(L)(n)](2+/3+). We introduce a new approach to designing redox mediators that involves the application of [Co(PY5Me(2))(MeCN)](2+/3+) complexes, where PY5Me(2) is the pentadentate ligand, 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine. It is shown, by X-ray crystallography, that the axial acetonitrile (MeCN) ligand can be replaced by more strongly coordinating Lewis bases (B) to give complexes with the general formula [Co(PY5Me(2))(B)](2+/3+), where B = 4-tert-butylpyridine (tBP) or N-methylbenzimidazole (NMBI). These commonly applied DSC electrolyte components are used for the first time to fine-tune the potential of the redox couple to the requirements of the dye through coordinative interactions with the Co(II/III) centers. Application of electrolytes based on the [Co(PY5Me(2))(NMBI)](2+/3+) complex in combination with a commercially available organic sensitizer has enabled us to attain DSC efficiencies of 8.4% and 9.2% at a simulated light intensity of 100% sun (1000 W m(-2) AM1.5 G) and at 10% sun, respectively, higher than analogous devices applying the [Co(bpy)(3)](2+/3+) redox couple, and an open circuit voltage (V(oc)) of almost 1.0 V at 100% sun for devices constructed with the tBP complex. PMID:22967268

  2. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection.

    Directory of Open Access Journals (Sweden)

    Laura Miozzi

    Full Text Available Tomato yellow leaf curl Sardinia virus (TYLCSV, a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.

  3. TUNE: Compiler-Directed Automatic Performance Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Mary [University of Utah

    2014-09-18

    This project has developed compiler-directed performance tuning technology targeting the Cray XT4 Jaguar system at Oak Ridge, which has multi-core Opteron nodes with SSE-3 SIMD extensions, and the Cray XE6 Hopper system at NERSC. To achieve this goal, we combined compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation, which have been developed by the PIs over the past several years. We examined DOE Office of Science applications to identify performance bottlenecks and apply our system to computational kernels that operate on dense arrays. Our goal for this performance-tuning technology has been to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, we aim to make our technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  4. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  5. Embodied Tuning

    DEFF Research Database (Denmark)

    Mortensen, Christian Hviid; Vestergaard, Vitus

    bodies as a metaphorical radio tuning dial. We tested the concept in a public exhibition at the Media Museum in Denmark. A small qualitative user study conducted in the exhibition shows promise for this type of immersive experience. The users however tend to perceive it as a unique and finite experience...

  6. SQL Tuning

    CERN Document Server

    Tow, Dan

    2003-01-01

    A poorly performing database application not only costs users time, but also has an impact on other applications running on the same computer or the same network. SQL Tuning provides an essential next step for SQL developers and database administrators who want to extend their SQL tuning expertise and get the most from their database applications.There are two basic issues to focus on when tuning SQL: how to find and interpret the execution plan of an SQL statement and how to change SQL to get a specific alternate execution plan. SQL Tuning provides answers to these questions and addresses a third issue that's even more important: how to find the optimal execution plan for the query to use.Author Dan Tow outlines a timesaving method he's developed for finding the optimum execution plan--rapidly and systematically--regardless of the complexity of the SQL or the database platform being used. You'll learn how to understand and control SQL execution plans and how to diagram SQL queries to deduce the best executio...

  7. A simple procedure for routine RNA extraction and miRNA array analyses from a single thyroid in vivo fine needle aspirate

    DEFF Research Database (Denmark)

    Rossing, Maria; Kaczkowski, Bogumil; Futoma-Kazmierczak, Ewa; Glud, Martin; Klausen, Mikkel; Faber, Jens Oscar; Nygaard, Birte; Kiss, Katalin; Sørensen, Christian H; Nielsen, Finn C; Bennedbæk, Finn N; Friis-Hansen, Lennart

    2010-01-01

    microRNA (miRNA) expression profiling and classification of tissue obtained from fine-needle aspirates (FNA) could be a major improvement of the preoperative diagnosis of thyroid nodules.......microRNA (miRNA) expression profiling and classification of tissue obtained from fine-needle aspirates (FNA) could be a major improvement of the preoperative diagnosis of thyroid nodules....

  8. 3D Ta/TaO x /TiO2/Ti synaptic array and linearity tuning of weight update for hardware neural network applications

    Science.gov (United States)

    Wang, I.-Ting; Chang, Chih-Cheng; Chiu, Li-Wen; Chou, Teyuh; Hou, Tuo-Hung

    2016-09-01

    The implementation of highly anticipated hardware neural networks (HNNs) hinges largely on the successful development of a low-power, high-density, and reliable analog electronic synaptic array. In this study, we demonstrate a two-layer Ta/TaO x /TiO2/Ti cross-point synaptic array that emulates the high-density three-dimensional network architecture of human brains. Excellent uniformity and reproducibility among intralayer and interlayer cells were realized. Moreover, at least 50 analog synaptic weight states could be precisely controlled with minimal drifting during a cycling endurance test of 5000 training pulses at an operating voltage of 3 V. We also propose a new state-independent bipolar-pulse-training scheme to improve the linearity of weight updates. The improved linearity considerably enhances the fault tolerance of HNNs, thus improving the training accuracy.

  9. Substitutional nitrogen-doped tin oxide single crystalline submicrorod arrays: Vertical growth, band gap tuning and visible light-driven photocatalysis

    International Nuclear Information System (INIS)

    High-density substitutional N-doped SnO2 submicrorod arrays were grown on Si and quartz substrates by catalysts-free reactive sputtering. Scanning electron microscope and high-resolution transmission electron microscopy results show that the submicrorods are vertically aligned single crystal with quasi-tetrahedral pyramid shape nanotip at the top end. The density and the shape of the submicrorods can be modulated by the nitrogen partial pressure. Ellipsometry and optical absorption characterization show that after substitutional N-doping, the band gap of N-doped SnO2 submicrorod shifts toward visible light region (up to 624 nm), and the visible light absorption are significantly enhanced due to the band gap narrowing. The photodegradation of methylene blue by N-doped SnO2 submicrorod under visible light illumination is demonstrated, and it was found that the surface-to-volume ratio plays an important role in achieving high photocatalytic reactivity. The SnO2:N submicrorod arrays with visible light band gap may have potential applications in solar cells electrode and visible light sensitive photocatalyst.

  10. Characterizing a Tune-all bandstop filter

    OpenAIRE

    Musoll, Carles; Llamas Garro, Ignacio; Brito Brito, Zabdiel; Pradell i Cara, Lluís; Corona, Alfonso

    2009-01-01

    In this paper a reconfigurable bandstop filter able to reconfigure central frequency, bandwidth and selectivity for fine tuning applications is presented. The reconfigurable filter topology has four poles and a quasielliptic bandstop filter response. The filter is tuned by varactor diodes placed at different locations on the filter topology. The varactors are voltage controlled in pairs due to filter symmetry for central frequency and bandwidth control. An additional v...

  11. Structure tuning and its effect on higher order modes

    International Nuclear Information System (INIS)

    Coarse tuning of multi-cell linac structures is required to achieve the correct accelerator mode frequency and a flat field profile at room temperature. Fine tuning is required to adjust the frequency during operation at low temperatures. Our newly fabricated 1300 MHz CERN/DESY type structures incorporate longitudinal stiffening bars for reduction of microphonic effects. In this paper we evaluate the use of longitudinal rods as a means of coarse tuning and achieving a flat field profile, and report the effect of fine tuning by end cell deformation on high order modes. (Author) 5 figs., 3 refs

  12. Fabrication of highly ordered metallic nanowire arrays by electrodeposition

    International Nuclear Information System (INIS)

    Highly ordered hexagonal arrays of parallel metallic nanowires (Ni, Bi) with diameters of about 50 nm and lengths up to 50 μm were synthesized by electrodeposition. Hexagonal-close-packed nanochannel anodized aluminum oxide film was used as the deposition template. The deposition was performed in an organic bath of dimethylsulfoxide with metal chloride as the electrolyte. A high degree of ordering and uniformity in these arrays can be obtained with this technique by fine-tuning the electrodeposition parameters. Moreover, an unprecedentedly high level of uniformity and control of the wire length was achieved. The arrays are unique platforms for explorations of collective behavior in coupled mesoscopic systems, and are useful for applications in high-density data storage, field emission displays, and sensors. Copyright 2001 American Institute of Physics

  13. Self-assembled arrays of peptide nanotubes by vapour deposition.

    Science.gov (United States)

    Adler-Abramovich, Lihi; Aronov, Daniel; Beker, Peter; Yevnin, Maya; Stempler, Shiri; Buzhansky, Ludmila; Rosenman, Gil; Gazit, Ehud

    2009-12-01

    The use of bionanostructures in real-world applications will require precise control over biomolecular self-assembly and the ability to scale up production of these materials. A significant challenge is to control the formation of large, homogeneous arrays of bionanostructures on macroscopic surfaces. Previously, bionanostructure formation has been based on the spontaneous growth of heterogenic populations in bulk solution. Here, we demonstrate the self-assembly of large arrays of aromatic peptide nanotubes using vapour deposition methods. This approach allows the length and density of the nanotubes to be fine-tuned by carefully controlling the supply of the building blocks from the gas phase. Furthermore, we show that the nanotube arrays can be used to develop high-surface-area electrodes for energy storage applications, highly hydrophobic self-cleaning surfaces and microfluidic chips. PMID:19893524

  14. Active array design for FAME: Freeform Active Mirror Experiment

    Science.gov (United States)

    Jaskó, Attila; Aitink-Kroes, Gabby; Agócs, Tibor; Venema, Lars; Hugot, Emmanuel; Schnetler, Hermine; Bányai, Evelin

    2014-07-01

    In this paper a status report is given on the development of the FAME (Freeform Active Mirror Experiment) active array. Further information regarding this project can be found in the paper by Venema et al. (this conference). Freeform optics provide the opportunity to drastically reduce the complexity of the future optical instruments. In order to produce these non-axisymmetric freeform optics with up to 1 mm deviation from the best fit sphere, it is necessary to come up with new design and manufacturing methods. The way we would like to create novel freeform optics is by fine tuning a preformed high surface-quality thin mirror using an array which is actively controlled by actuators. In the following we introduce the tools deployed to create and assess the individual designs. The result is an active array having optimal number and lay-out of actuators.

  15. Gaussian process optimization for self-tuning control

    OpenAIRE

    Marco Valle, Alonso

    2015-01-01

    Robotic setups often need fine-tuned controller parameters both at low- and task-levels. Finding an appropriate set of parameters through simplistic protocols, such as manual tuning or grid search, can be highly time-consuming. This thesis proposes an automatic controller tuning framework based on linear optimal control combined with Bayesian optimization. With this framework, an initial set of controller gains is automatically improved according to the performance observed in ...

  16. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material.Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005.Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  17. Practical tuning for Oracle

    International Nuclear Information System (INIS)

    This book deals with tuning for oracle application, which consists of twenty two chapters. These are the contents of this book : what is tuning?, procedure of tuning, collection of performance data using stats pack, collection of performance data in real time, disk IO dispersion, architecture on Index, partition and IOT, optimization of cluster Factor, optimizer, analysis on plan of operation, selection of Index, tuning of Index, parallel processing architecture, DML, analytic function join method, join type, analysis of application, Lock architecture, SGA architecture and wait event and segment tuning.

  18. TUNE FEEDBACK AT RHIC

    International Nuclear Information System (INIS)

    Preliminary phase-locked loop betatron tune measurement results were obtained during RHIC 2000 with a resonant Beam Position Monitor. These results suggested the possibility of incorporating PLL tune measurement into a tune feedback system for RHIC 2001. Tune feedback is useful in a superconducting accelerator, where the machine cycle time is long and inefficient acceleration due to resonance crossing is not comfortably tolerated. This is particularly true with the higher beam intensities planned for RHIC 2001. We present descriptions of a PLL tune measurement system implemented in the DSP/FPGA environment of a RHIC BPM electronics module and the feedback system into which the measurement is incorporated to regulate tune. In addition, we present results from the commissioning of this system during RHIC 2001

  19. Global $SU(3)_C x SU(2)_L x U(1)_Y$ linear sigma model with Standard Model fermions: axial-vector Ward Takahashi identities, the absence of Higgs mass fine tuning, and the decoupling of certain heavy particles, due to the Goldstone theorem

    CERN Document Server

    Lynn, Bryan W

    2015-01-01

    This work is dedicated to the memory of R. Stora. In the Linear Sigma Model (LSM), towers of Ward-Takahashi Identities (WTI) relate both 1-Scalar-Particle-Irreducible Green's functions and I-SP-Reducible T-Matrix elements for external scalars (a doublet: H and 3 pseudoscalars, $\\pi$). We extend these WTI to the $SU(3)_CxSU(2)_LxU(1)_Y$ LSM including Standard Model (SM) fermions -- the ungauged Standard Model -- supplemented with right-handed neutrinos -- to extract powerful constraints on the effective Lagrangian. The crucial observation is that ultraviolet quadratic divergences (UVQD) and all other relevant operators, contribute only to mpi, a pseudo-Nambu-Goldstone boson (NGB) mass appearing in intermediate calculations. The Goldstone Theorem enforces m=0 exactly for the true NGB in the theory's spontaneous symmetry breaking (SSB) mode, causing all relevant operator contributions, to vanish identically to all loop orders! A weak-scale renormalized H pole mass and are therefore not fine-tuned (FT) -- they a...

  20. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  1. PERI auto-tuning

    International Nuclear Information System (INIS)

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications

  2. Self-Tuned Deep Super Resolution

    OpenAIRE

    Wang, Zhangyang; Yang, Yingzhen; Wang, Zhaowen; Chang, Shiyu; Han, Wei; Yang, Jianchao; Huang, Thomas S.

    2015-01-01

    Deep learning has been successfully applied to image super resolution (SR). In this paper, we propose a deep joint super resolution (DJSR) model to exploit both external and self similarities for SR. A Stacked Denoising Convolutional Auto Encoder (SDCAE) is first pre-trained on external examples with proper data augmentations. It is then fine-tuned with multi-scale self examples from each input, where the reliability of self examples is explicitly taken into account. We also enhance the model...

  3. Fine chemistry

    International Nuclear Information System (INIS)

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included

  4. Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping

    Science.gov (United States)

    Chanteloup, J.-C.; Albach, D.; Assémat, F.; Bahbah, S.; Bourdet, G.; Piatti, P.; Pluvinage, M.; Vincent, B.; LeTouzé, G.; Mattern, T.; Biesenbach, J.; Müntz, H.; Noeske, A.; Venohr, R.

    2008-05-01

    The Lucia [1,2] Laser program, under development at the LULI laboratory, aims at delivering a 1030 nm, 100J, 10 Hz, 10 ns pulse train. The two laser heads used in the amplification stage relies on water-cooled mm-thick Yb:YAG disks, each of them pumped by a 34×13 cm2 Laser Diode Array (LDA). For each LDA, the 88 QCW diodes stacks manufactured by DILAS GmbH will be tiled in an 8×11 arrangement. Fine wavelength tuning is performed through bias current adjustment, water temperature control and conductivity adjustment. Wavelength homogeneity experimental verification has been validated.

  5. Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping

    Energy Technology Data Exchange (ETDEWEB)

    Chanteloup, J-C; Albach, D; Assemat, F; Bahbah, S; Bourdet, G; Piatti, P; Pluvinage, M; Vincent, B; Touze, G Le [LULI, Ecole Polytechnique, CNRS, CEA, UPMC, Route de Saclay, 91128 Palaiseau (France); Mattern, T; Biesenbach, J; Muentz, H; Noeske, A; Venohr, R [DILAS Diodenlaser GmbH, Galileo-Galilei-Str.10, 55129 Mainz (Germany)], E-mail: jean-christophe.chanteloup@polytechnique.fr

    2008-05-15

    The Lucia Laser program, under development at the LULI laboratory, aims at delivering a 1030 nm, 100J, 10 Hz, 10 ns pulse train. The two laser heads used in the amplification stage relies on water-cooled mm-thick Yb:YAG disks, each of them pumped by a 34x13 cm{sup 2} Laser Diode Array (LDA). For each LDA, the 88 QCW diodes stacks manufactured by DILAS GmbH will be tiled in an 8x11 arrangement. Fine wavelength tuning is performed through bias current adjustment, water temperature control and conductivity adjustment. Wavelength homogeneity experimental verification has been validated.

  6. Wavelength tunable, 264 J laser diode array for 10 Hz/1ms Yb:YAG pumping

    International Nuclear Information System (INIS)

    The Lucia Laser program, under development at the LULI laboratory, aims at delivering a 1030 nm, 100J, 10 Hz, 10 ns pulse train. The two laser heads used in the amplification stage relies on water-cooled mm-thick Yb:YAG disks, each of them pumped by a 34x13 cm2 Laser Diode Array (LDA). For each LDA, the 88 QCW diodes stacks manufactured by DILAS GmbH will be tiled in an 8x11 arrangement. Fine wavelength tuning is performed through bias current adjustment, water temperature control and conductivity adjustment. Wavelength homogeneity experimental verification has been validated

  7. Fine tuning consensus optimization for distributed radio interferometric calibration

    CERN Document Server

    Yatawatta, Sarod

    2016-01-01

    We recently proposed the use of consensus optimization as a viable and effective way to improve the quality of calibration of radio interferometric data. We showed that it is possible to obtain far more accurate calibration solutions and also to distribute the compute load across a network of computers by using this technique. A crucial aspect in any consensus optimization problem is the selection of the penalty parameter used in the alternating direction method of multipliers (ADMM) iterations. This affects the convergence speed as well as the accuracy. In this paper, we use the Hessian of the cost function used in calibration to appropriately select this penalty. We extend our results to a multi-directional calibration setting, where we propose to use a penalty scaled by the squared intensity of each direction.

  8. Fine-Tuning Covalent Inhibition of Bacterial Quorum Sensing.

    Science.gov (United States)

    Amara, Neri; Gregor, Rachel; Rayo, Josep; Dandela, Rambabu; Daniel, Erik; Liubin, Nina; Willems, H Marjo E; Ben-Zvi, Anat; Krom, Bastiaan P; Meijler, Michael M

    2016-05-01

    Emerging antibiotic resistance among human pathogens has galvanized efforts to find alternative routes to combat bacterial virulence. One new approach entails interfering with the ability of bacteria to coordinate population-wide gene expression, or quorum sensing (QS), thus inhibiting the production of virulence factors and biofilm formation. We have recently developed such a strategy by targeting LasR, the master regulator of QS in the opportunistic human pathogen Pseudomonas aeruginosa, through the rational design of covalent inhibitors closely based on the core structure of the native ligand. We now report several groups of new inhibitors, one of which, fluoro-substituted ITC-12, displayed complete covalent modification of LasR, as well as effective QS inhibition in vitro and promising in vivo results. In addition to their potential clinical relevance, this series of synthetic QS modulators can be used as a tool to further unravel the complicated QS regulation in P. aeruginosa. PMID:26840534

  9. Fine-Tuning Next-Generation Genome Editing Tools.

    Science.gov (United States)

    Kanchiswamy, Chidananda Nagamangala; Maffei, Massimo; Malnoy, Mickael; Velasco, Riccardo; Kim, Jin-Soo

    2016-07-01

    The availability of genome sequences of numerous organisms and the revolution brought about by genome editing tools (e.g., ZFNs, TALENs, and CRISPR/Cas9 or RGENs) has provided a breakthrough in introducing targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. However, the wider application of these tools in biology, agriculture, medicine, and biotechnology is limited by off-target mutation effects. In this review, we compare available methods for detecting, measuring, and analyzing off-target mutations. Furthermore, we particularly focus on CRISPR/Cas9 regarding various methods, tweaks, and software tools available to nullify off-target effects. PMID:27167723

  10. Prediction of fine-tuned promoter activity from DNA sequence

    Science.gov (United States)

    Siwo, Geoffrey; Rider, Andrew; Tan, Asako; Pinapati, Richard; Emrich, Scott; Chawla, Nitesh; Ferdig, Michael

    2016-01-01

    The quantitative prediction of transcriptional activity of genes using promoter sequence is fundamental to the engineering of biological systems for industrial purposes and understanding the natural variation in gene expression. To catalyze the development of new algorithms for this purpose, the Dialogue on Reverse Engineering Assessment and Methods (DREAM) organized a community challenge seeking predictive models of promoter activity given normalized promoter activity data for 90 ribosomal protein promoters driving expression of a fluorescent reporter gene. By developing an unbiased modeling approach that performs an iterative search for predictive DNA sequence features using the frequencies of various k-mers, inferred DNA mechanical properties and spatial positions of promoter sequences, we achieved the best performer status in this challenge. The specific predictive features used in the model included the frequency of the nucleotide G, the length of polymeric tracts of T and TA, the frequencies of 6 distinct trinucleotides and 12 tetranucleotides, and the predicted protein deformability of the DNA sequence. Our method accurately predicted the activity of 20 natural variants of ribosomal protein promoters (Spearman correlation r = 0.73) as compared to 33 laboratory-mutated variants of the promoters (r = 0.57) in a test set that was hidden from participants. Notably, our model differed substantially from the rest in 2 main ways: i) it did not explicitly utilize transcription factor binding information implying that subtle DNA sequence features are highly associated with gene expression, and ii) it was entirely based on features extracted exclusively from the 100 bp region upstream from the translational start site demonstrating that this region encodes much of the overall promoter activity. The findings from this study have important implications for the engineering of predictable gene expression systems and the evolution of gene expression in naturally occurring biological systems.

  11. Fine-tuning structural RNA alignments in the twilight zone

    Directory of Open Access Journals (Sweden)

    Schirmer Stefanie

    2010-04-01

    Full Text Available Abstract Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.

  12. Silicon quantum dots: fine-tuning to maturity.

    Science.gov (United States)

    Morello, Andrea

    2015-12-18

    Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotechnology the fabrication of a novel Si/SiGe double quantum dot device, which combines an ultra-low disorder Si/SiGe accumulation-mode heterostructure with a stack of overlapping control gates, ensuring tight confining potentials and exquisite tunability. This work signals the technological maturity of silicon quantum dots, and their readiness to be applied to challenging projects in quantum information science. PMID:26584678

  13. Fine-tuning molecular energy levels by nonresonant laser pulses

    CERN Document Server

    Lemeshko, Mikhail

    2010-01-01

    We evaluate the shifts imparted to vibrational and rotational levels of a linear molecule by a nonresonant laser field at intensities of up to 10^12 W/cm^2. Both types of shift are found to be either positive or negative, depending on the initial rotational state acted upon by the field. An adiabatic field-molecule interaction imparts a rotational energy shift which is negative and exceeds the concomitant positive vibrational shift by a few orders of magnitude. The rovibrational states are thus pushed downward in such a field. A nonresonant pulsed laser field that interacts nonadiabatically with the molecule is found to impart rotational and vibrational shifts of the same order of magnitude. The nonadiabatic energy transfer occurs most readily at a pulse duration which amounts to about a tenth of the molecule's rotational period, and vanishes when the sudden regime is attained for shorter pulses. We applied our treatment to the much studied 87Rb_2 molecule in the last bound vibrational levels of its lowest si...

  14. The fine-tuning price of the early LHC

    CERN Document Server

    Strumia, Alessandro

    2011-01-01

    LHC already probed and excluded half of the parameter space of the Constrained Minimal Supersymmetric Standard Model allowed by previous experiments. Only about 1% of the CMSSM parameter space survives. This fraction rises to about 4% if the bound on the Higgs mass can be circumvented.

  15. Fine tuning by miRNAs in development

    Science.gov (United States)

    McHale, Peter; Levine, Erel; Levine, Herbert

    2007-03-01

    The unique role played by microRNA in a developing embryo is a topic of much current research interest. One possibility is that microRNA diffuse within a developing tissue, acting as communicators between different cells. Here we pursue this possibility in two different contexts. The first case occurs when the transcription profiles of the microRNA and its target are spatially anticorrelated, as for example is the case in the iab4-Ubx system in fly. Conversely, in the second context the two transcription profiles are correlated in space, as may be the case for the mir10-Hoxb4 system in mouse. In each context we identify a major function for a mobile miRNA. In the first, miRNA serve to induce an all-or-nothing response of the mRNA profile to its morphogen by generating a sharp boundary between domains of high and (ultimately) low target expression. In the second, miRNA amplify polarity in the target expression pattern by removing residual mRNAs. Importantly, our model predicts that these two functions require very different type of diffusion. While our results are highly quantitative, we propose ways of realizing them in experiments, taking into account limitations of standard experimental techniques.

  16. Novel players fine-tune plant trade-offs.

    Science.gov (United States)

    Gimenez-Ibanez, Selena; Boter, Marta; Solano, Roberto

    2015-01-01

    Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival. PMID:26374889

  17. NEW FEATURES OF EXPERIMENTAL MACHINE HYDRAULIC DRIVE FINE TUNING

    Directory of Open Access Journals (Sweden)

    M. I. Zhylevich

    2014-11-01

    Full Text Available The paper considers new methods for  honing and functional testing of machine hydraulic drives: a method for evaluation of friction surface running-in ability and a functional test method for an unsteady temperature regime. Possibilities of their experimental realization are described in the paper

  18. Silicon quantum dots: fine-tuning to maturity

    Science.gov (United States)

    Morello, Andrea

    2015-12-01

    Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotechnology the fabrication of a novel Si/SiGe double quantum dot device, which combines an ultra-low disorder Si/SiGe accumulation-mode heterostructure with a stack of overlapping control gates, ensuring tight confining potentials and exquisite tunability. This work signals the technological maturity of silicon quantum dots, and their readiness to be applied to challenging projects in quantum information science.

  19. Competitive binding of antagonistic peptides fine-tunes stomatal patterning

    OpenAIRE

    Lee, Jin Suk; Hnilova, Marketa; Maes, Michal; Lin, Ya-Chen Lisa; Putarjunan, Aarthi; Han, Soon-Ki; Avila, Julian; U.Torii, Keiko

    2015-01-01

    During development, cells interpret complex, often conflicting signals to make optimal decisions. Plant stomata, the cellular interface between a plant and the atmosphere, develop according to positional cues including a family of secreted peptides, EPIDERMAL PATTERNING FACTORS (EPFs). How these signaling peptides orchestrate pattern formation at a molecular level remains unclear. Here we report that Stomagen/EPF-LIKE9 peptide, which promotes stomatal development, requires ERECTA (ER)-family ...

  20. Fine tuning of graphene properties by modification with aryl halogens.

    Science.gov (United States)

    Bouša, D; Pumera, M; Sedmidubský, D; Šturala, J; Luxa, J; Mazánek, V; Sofer, Z

    2016-01-21

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. PMID:26676958

  1. ESP Needs Washback and the Fine Tuning of Driving Instruction

    Science.gov (United States)

    Freiermuth, Mark R.

    2007-01-01

    Workplace needs are often difficult for English for Specific Purposes (ESP) teachers to assess due to a variety of obstacles that can restrict opportunities to analyze the existing needs. Nevertheless, the workers' needs may be recognized by employing techniques aimed at extracting information from the workers themselves. Japanese university…

  2. Fine tuning GPS clock estimation in the MCS

    Science.gov (United States)

    Hutsell, Steven T.

    1995-01-01

    With the completion of a 24 operational satellite constellation, GPS is fast approaching the critical milestone, Full Operational Capability (FOC). Although GPS is well capable of providing the timing accuracy and stability figures required by system specifications, the GPS community will continue to strive for further improvements in performance. The GPS Master Control Station (MCS) recently demonstrated that timing improvements are always composite Clock, and hence, Kalman Filter state estimation, providing a small improvement to user accuracy.

  3. GNSS-R concept extended by a fine orbit tuning

    Czech Academy of Sciences Publication Activity Database

    Klokočník, Jaroslav; Bezděk, Aleš; Kostelecký, J.

    2012-01-01

    Roč. 49, č. 5 (2012), s. 957-965. ISSN 0273-1177 Institutional support: RVO:67985815 Keywords : bistatic altimetry * PARIS concept * orbit resonances Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.183, year: 2012

  4. Fine-Tuning the Craft of Teaching by Discussion

    Science.gov (United States)

    Huang, Li-Shih

    2005-01-01

    Extensive research in cognitive psychology and education shows that discussion facilitates "depth of processing" (Craik & Lockhart, 1972), which in turn promotes thinking, understanding, and retaining information. It is also well recognized that an effectively facilitated discussion is one of the most valuable vehicles for learning. In MBA…

  5. iTunes music

    CERN Document Server

    Katz, Bob

    2013-01-01

    Apple's exciting new Mastered for iTunes (MFiT) initiative, introduced in early 2012, introduces new possibilities for delivering high-quality audio. For the first time, record labels and program producers are encouraged to deliver audio materials to iTunes in a high resolution format, which can produce better-sounding masters. In iTunes Music, author and world-class mastering engineer Bob Katz starts out with the basics, surveys the recent past, and brings you quickly up to the present-where the current state of digital audio is bleak. Katz explains the evolution of

  6. Optimal tuning for a classical wind turbine controller

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2014-01-01

    optimization is developed and tested. To have a better understanding of the problem a parametric analysis of the wind turbine performances due to changes in the controller parameters is first performed. Thereafter results obtained with the automatic tuning show that is possible to identify a finer controller......Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical...

  7. Active impedance metasurface with full 360° reflection phase tuning

    Science.gov (United States)

    Zhu, Bo O.; Zhao, Junming; Feng, Yijun

    2013-01-01

    Impedance metasurface is composed of electrical small scatters in two dimensional plane, of which the surface impedance can be designed to produce desired reflection phase. Tunable reflection phase can be achieved by incorporating active element into the scatters, but the tuning range of the reflection phase is limited. In this paper, an active impedance metasurface with full 360° reflection phase control is presented to remove the phase tuning deficiency in conventional approach. The unit cell of the metasurface is a multiple resonance structure with two resonance poles and one resonance zero, capable of providing 360° reflection phase variation and active tuning within a finite frequency band. Linear reflection phase tuning can also be obtained. Theoretical analysis and simulation are presented and validated by experiment at microwave frequency. The proposed approach can be applied to many cases where fine and full phase tuning is needed, such as beam steering in reflectarray antennas. PMID:24162366

  8. Betatron tune measurement

    International Nuclear Information System (INIS)

    On the basis of the comparative review of the methods for the betatron tune measurement in cyclic accelerators of synchrotrons type, the research of these methods is carried out from the point of view of their applicability to Nuclotron. Both methods using measurement of the statistical fluctuations of the beam current (Schottky noise) and methods using coherent beam excitation have been discussed. The emphasis is on the final results of importance for the tune measurement practice. Signal processing is briefly discussed too

  9. Reviews Book: At Home: A Short History of Private Life Book: The Story of Mathematics Book: Time Travel: A Writer's Guide to the Real Science of Plausible Time Travel Equipment: Rotational Inertial Wands DVD: Planets Book: The Fallacy of Fine-Tuning Equipment: Scale with Dial Equipment: Infrared Thermometers Book: 300 Science and History Projects Book: The Nature of Light and Colour in the Open Air Equipment: Red Tide Spectrometer Web Watch

    Science.gov (United States)

    2011-09-01

    WE RECOMMEND The Story of Mathematics Book shows the link between maths and physics Time Travel: A Writer's Guide to the Real Science of Plausible Time Travel Book explains how to write good time-travelling science fiction Rotational Inertial Wands Wands can help explore the theory of inertia Infrared Thermometers Kit measures temperature differences Red Tide Spectrometer Spectrometer gives colour spectra WORTH A LOOK At Home: A Short History of Private Life Bryson explores the history of home life The Fallacy of Fine-Tuning Book wades into the science/religion debate Scale with Dial Cheap scales can be turned into Newton measuring scales 300 Science History Projects Fun science projects for kids to enjoy The Nature of Light and Colour in the Open Air Text looks at fascinating optical effects HANDLE WITH CARE Planets DVD takes a trip through the solar system WEB WATCH Websites offer representations of nuclear chain reactions

  10. Controlled coupling of photonic crystal cavities using photochromic tuning

    CERN Document Server

    Cai, Tao; Solomon, Glenn S; Waks, Edo

    2013-01-01

    We present a method to control the resonant coupling interaction in a coupled-cavity photonic crystal molecule by using a local and reversible photochromic tuning technique. We demonstrate the ability to tune both a two-cavity and a three-cavity photonic crystal molecule through the resonance condition by selectively tuning the individual cavities. Using this technique, we can quantitatively determine important parameters of the coupled-cavity system such as the photon tunneling rate. This method can be scaled to photonic crystal molecules with larger numbers of cavities, which provides a versatile method for studying strong interactions in coupled resonator arrays.

  11. Tuning the SMS spectrum based on UV radiation

    Science.gov (United States)

    Zhong, Di; Tian, Ye; Zhang, Jianzhong; Sun, Weimin; Yuan, Libo

    2014-05-01

    We propose a fine spectrum-tuning scheme of the single-multi-single mode fiber (SMS) structure, realised by using UV radiation to modify the propagation constants of different modes in Multi-mode fiber of SMS. The primary experiments also demonstrated. It expect to have applications in the design of SMS based optical filters and sensors.

  12. How the sequence of a gene can tune its translation

    DEFF Research Database (Denmark)

    Fredrick, Kurt; Ibba, Michael

    2010-01-01

    Sixty-one codons specify 20 amino acids, offering cells many options for encoding a polypeptide sequence. Two new studies (Cannarrozzi et al., 2010; Tuller et al., 2010) now foster the idea that patterns of codon usage can control ribosome speed, fine-tuning translation to increase the efficiency...

  13. Phase and amplitude tuning procedures for the Fermilab linac

    International Nuclear Information System (INIS)

    Procedures for both coarse and fine tuning of phase and amplitude of the Fermilab linear accelerator cavities are described. Coarse tuning is accomplished by measuring the change in energy as the phase of an individual accelerator cavity is adjusted. Proper field level occurs when the peak energy change equals the design value. Phase is initially set to calculated values relative to the phase at which the energy peak is measured. Fine tuning is accomplished using the delta-t procedure developed at the Los Alamos National Laboratory. Preliminary tests of the delta-t procedure on the existing 200 MeV linac show qualitative trends in agreement with theory. The procedures described in this report have been proposed for use on the upgraded linac under construction at Fermilab. 6 refs., 9 figs., 1 tab

  14. 'Tuning' for high resolution

    International Nuclear Information System (INIS)

    A review is given of some 'tuning' methods where the goal is to optimise energy resolution of particle spectra in two-body reactions. With a system consisting of an accelerator, beam analyser, beam transport system and magnetic spectrograph, its potential for high resolution, its limitations and the possibilities of optimising the resolution are investigated. The physics of matching to the spectrograph is considered, adjustments and diagnostics with the spectrograph at 00 are discussed and some on-line tuning methods are examined. (U.K.)

  15. Tuned MSSM Higgses as an inflaton

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Arindam [Physikalisches Institut der Universität Bonn, Nußallee 12, Bonn, 53115 (Germany); Mazumdar, Anupam, E-mail: arindam@th.physik.uni-bonn.de, E-mail: a.mazumdar@lancaster.ac.uk [Physics Department, Lancaster University, Lancaster, LA1 4YB (United Kingdom)

    2011-09-01

    We consider the possibility that the vacuum energy density of the MSSM (Minimal Supersymmetric Standard Model) flat direction condensate involving the Higgses H{sub 1} and H{sub 2} is responsible for inflation. We also discuss how the finely tuned Higgs potential at high vacuum expectation values can realize cosmologically flat direction along which it can generate the observed density perturbations, and after the end of inflation — the coherent oscillations of the Higgses reheat the universe with all the observed degrees of freedom, without causing any problem for the electroweak phase transition.

  16. Complier-Directed Automatic Performance Tuning (TUNE) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chame, Jacqueline [USC-ISI

    2013-06-07

    TUNE was created to develop compiler-directed performance tuning technology targeting the Cray XT4 system at Oak Ridge. TUNE combines compiler technology for model-guided empirical optimization for memory hierarchies with SIMD code generation. The goal of this performance-tuning technology is to yield hand-tuned levels of performance on DOE Office of Science computational kernels, while allowing application programmers to specify their computations at a high level without requiring manual optimization. Overall, TUNE aims to make compiler technology for SIMD code generation and memory hierarchy optimization a crucial component of high-productivity Petaflops computing through a close collaboration with the scientists in national laboratories.

  17. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  18. SC tuning fork

    CERN Multimedia

    The tuning fork used to modulate the radiofrequency system of the synchro cyclotron (SC) from 1957 to 1973. This piece is an unused spare part. The SC was the 1st accelerator built at CERN. It operated from August 1957 until it was closed down at the end of 1990. In the SC the magnetic field did not change with time, and the particles were accelerated in successive pulses by a radiofrequency voltage of some 20kV which varied in frequency as they spiraled outwards towards the extraction radius. The frequency varied from 30MHz to about 17Mz in each pulse. The tuning fork vibrated at 55MHz in vacuum in an enclosure which formed a variable capacitor in the tuning circuit of the RF system, allowing the RF to vary over the appropriate range to accelerate protons from the centre of the macine up to 600Mev at extraction radius. In operation the tips of the tuning fork blade had an amplitude of movement of over 1 cm. The SC accelerator underwent extensive improvements from 1973 to 1975, including the installation of a...

  19. Planck-LFI radiometers tuning

    Science.gov (United States)

    Cuttaia, F.; Mennella, A.; Stringhetti, L.; Maris, M.; Terenzi, L.; Tomasi, M.; Villa, F.; Bersanelli, M.; Butler, R. C.; Cappellini, B.; Cuevas, L. P.; D'Arcangelo, O.; Davis, R.; Frailis, M.; Franceschet, C.; Franceschi, E.; Gregorio, A.; Hoyland, R.; Leonardi, R.; Lowe, S.; Mandolesi, N.; Meinhold, P.; Mendes, L.; Roddis, N.; Sandri, M.; Valenziano, L.; Wilkinson, A.; Zacchei, A.; Zonca, A.; Battaglia, P.; De Nardo, S.; Grassi, S.; Lapolla, M.; Leutenegger, P.; Miccolis, M.; Silvestri, R.

    2009-12-01

    This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.

  20. Planck-LFI radiometers tuning

    Energy Technology Data Exchange (ETDEWEB)

    Cuttaia, F; Stringhetti, L; Terenzi, L; Villa, F; Butler, R C; Franceschi, E [Istituto di Astrofisica Spaziale e Fisica Cosmica, INAF, via P. Gobetti 101, 40129 Bologna (Italy); Mennella, A; Tomasi, M; Bersanelli, M; Cappellini, B; Franceschet, C; Hoyland, R [Universita degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Maris, M; Frailis, M [INAF / OATS, via Tiepolo 11, 34143 Trieste (Italy); Cuevas, L P [Research and Scientific Support Department of ESA, ESTEC, Noordwijk (Netherlands); D' Arcangelo, O [IFP-CNR, via Cozzi 53, 20013 Milano (Italy); Davis, R; Lowe, S [Jodrell Bank Centre for Astrophysics, Alan Turing Building, The University of Manchester, Manchester, M13 9PL (United Kingdom); Gregorio, A [University of Trieste, Department of Physics, via Valerio 2, 34127 Trieste (Italy); Leonardi, R, E-mail: cuttaia@iasfbo.inaf.i [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

    2009-12-15

    This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.

  1. Planck-LFI radiometers tuning

    International Nuclear Information System (INIS)

    This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.

  2. Optimal tuning for a classical wind turbine controller

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Hansen, Morten Hartvig; Henriksen, Lars Christian

    2012-01-01

    Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical...... optimization is developed and tested. To have a better understanding of the problem a parametric analysis of the wind turbine performances due to changes in the controller parameters is rst performed. Thereafter results obtained with the automatic tuning show that is possible to identify a ner controller...... tuning that improves the wind turbine performances. For the case study selected in this work, a 2% cost of energy reduction is achieved with seven iterations....

  3. Optimal tuning for a classical wind turbine controller

    International Nuclear Information System (INIS)

    Fine tuning of controllers for pitch-torque regulated wind turbines is an opportunity to improve the wind turbine performances and reduce the cost of energy without applying any changes to the design. For this purpose, a method for automatically tune a classical controller based on numerical optimization is developed and tested. To have a better understanding of the problem a parametric analysis of the wind turbine performances due to changes in the controller parameters is first performed. Thereafter results obtained with the automatic tuning show that is possible to identify a finer controller tuning that improves the wind turbine performances. For the case study selected in this work, a 2% cost function reduction is achieved with seven iterations

  4. No go theorem for self tuning solutions with Gauss-Bonnet terms

    International Nuclear Information System (INIS)

    We consider self tuning solutions for a brane embedded in an anti de Sitter spacetime. We include the higher derivative Gauss-Bonnet terms in the action and study singularity free solutions with finite effective Newton's constant. Using the methods of Csaki et al, we prove that such solutions, when exist, always require a fine tuning among the brane parameters. We then present a new method of analysis in which the qualitative features of the solutions can be seen easily without obtaining the solutions explicitly. Also, the origin of the fine tuning is transparent in this method. (author)

  5. Planck-LFI radiometers tuning

    OpenAIRE

    Cuttaia, F.; Mennella, A.; Stringhetti, L.; Maris, M.; Terenzi, L.; Tomasi, M.; Villa, F.; Bersanelli, M.; Butler, R. C.; Cappellini, B.; Cuevas, L. P.; O. D’Arcangelo; Davis, R.; Frailis, M.; Franceschet, C.

    2010-01-01

    "This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst" This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests...

  6. Geometrical and fluidic tuning of periodically modulated thin metal films

    DEFF Research Database (Denmark)

    Gilardi, Giovanni; Xiao, Sanshui; Beccherelli, Romeo; d’Alessandro, Antonio; Mortensen, N. Asger

    2012-01-01

    We numerically demonstrate near-zero transmission of light through two-dimensional arrays of isolated gold rings. The analysis of the device as an optofluidic sensor is presented to demonstrate the tuning of the device in relation to variations of volume and refractive index of an isotropic fluid...

  7. Adaptive Tuning Algorithm for Performance tuning of Database Management System

    CERN Document Server

    Rodd, S F

    2010-01-01

    Performance tuning of Database Management Systems(DBMS) is both complex and challenging as it involves identifying and altering several key performance tuning parameters. The quality of tuning and the extent of performance enhancement achieved greatly depends on the skill and experience of the Database Administrator (DBA). As neural networks have the ability to adapt to dynamically changing inputs and also their ability to learn makes them ideal candidates for employing them for tuning purpose. In this paper, a novel tuning algorithm based on neural network estimated tuning parameters is presented. The key performance indicators are proactively monitored and fed as input to the Neural Network and the trained network estimates the suitable size of the buffer cache, shared pool and redo log buffer size. The tuner alters these tuning parameters using the estimated values using a rate change computing algorithm. The preliminary results show that the proposed method is effective in improving the query response tim...

  8. Fine motor control

    Science.gov (United States)

    ... figure out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To have fine motor control, children need: Awareness and planning Coordination ...

  9. Impedance Controller Tuned by Particle Swarm Optimization for Robotic Arms

    Directory of Open Access Journals (Sweden)

    Haifa Mehdi

    2011-11-01

    Full Text Available This paper presents an efficient and fast method for fine tuning the controller parameters of robot manipulators in constrained motion. The stability of the robotic system is proved using a Lyapunov‐based impedance approach whereas the optimal design of the controller parameters are tuned, in offline, by a Particle Swarm Optimization (PSO algorithm. For designing the PSOmethod,differentindexperformancesare considered in both joint and Cartesian spaces. A 3DOF manipulator constrained to a circular trajectory is finally used to validate the performances of the proposed approach. The simulation results show the stability and the performances of the proposed approach.

  10. Elastomeric composites with tuned electromagnetic characteristics

    International Nuclear Information System (INIS)

    This paper presents a novel elastomeric composite that exhibits a deformation-induced change in chirality. Previous efforts primarily dealt with a coil array in air without chiral tuning. Here, a composite is created that consists of an array of parallel, metallic helices of the same handedness embedded in a polymer matrix. The chiral response of the composite depends on pitch, coil diameter, wire thickness and coil spacing; however, pitch has the greatest effect on electromagnetic performance. The present study explores this effect by using helical elements to construct a chiral medium that can be mechanically stretched to adjust pitch. This adjustment directly affects the overall chirality of the composite. A prototype sample of the composite, fabricated for operation between 5.5–12.5 GHz, demonstrates repeatable elastic deformation. Using a transmit/receive measurement setup, the composite scattering response is measured over the frequency interval. The results indicate substantial tuning of chirality through deformation. An increase in axial strain of up to 30% yields a ∼18% change in axial chirality. (paper)

  11. Elastomeric composites with tuned electromagnetic characteristics

    Science.gov (United States)

    Wheeland, Sara; Bayatpur, Farhad; Amirkhizi, Alireza V.; Nemat-Nasser, Sia

    2013-01-01

    This paper presents a novel elastomeric composite that exhibits a deformation-induced change in chirality. Previous efforts primarily dealt with a coil array in air without chiral tuning. Here, a composite is created that consists of an array of parallel, metallic helices of the same handedness embedded in a polymer matrix. The chiral response of the composite depends on pitch, coil diameter, wire thickness and coil spacing; however, pitch has the greatest effect on electromagnetic performance. The present study explores this effect by using helical elements to construct a chiral medium that can be mechanically stretched to adjust pitch. This adjustment directly affects the overall chirality of the composite. A prototype sample of the composite, fabricated for operation between 5.5-12.5 GHz, demonstrates repeatable elastic deformation. Using a transmit/receive measurement setup, the composite scattering response is measured over the frequency interval. The results indicate substantial tuning of chirality through deformation. An increase in axial strain of up to 30% yields a ˜18% change in axial chirality.

  12. A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters.

    Science.gov (United States)

    Huang, He; Crouch, Dustin L; Liu, Ming; Sawicki, Gregory S; Wang, Ding

    2016-05-01

    Typically impedance control parameters (e.g., stiffness and damping) in powered lower limb prostheses are fine-tuned by human experts (HMEs), which is time and resource intensive. Automated tuning procedures would make powered prostheses more practical for clinical use. In this study, we developed a novel cyber expert system (CES) that encoded HME tuning decisions as computer rules to auto-tune control parameters for a powered knee (passive ankle) prosthesis. The tuning performance of CES was preliminarily quantified on two able-bodied subjects and two transfemoral amputees. After CES and HME tuning, we observed normative prosthetic knee kinematics and improved or slightly improved gait symmetry and step width within each subject. Compared to HME, the CES tuning procedure required less time and no human intervention. Hence, using CES for auto-tuning prosthesis control was a sound concept, promising to enhance the practical value of powered prosthetic legs. However, the tuning goals of CES might not fully capture those of the HME. This was because we observed that HME tuning reduced trunk sway, while CES sometimes led to slightly increased trunk motion. Additional research is still needed to identify more appropriate tuning objectives for powered prosthetic legs to improve amputees' walking function. PMID:26407703

  13. Planck-LFI radiometers tuning

    CERN Document Server

    Cuttaia, Francesco; Stringhetti, Luca; Maris, Michele; Terenzi, Luca; Tomasi, Maurizio; Villa, Fabrizio; Bersanelli, Marco; Butler, Christopher Reginald; Cappellini, Benedetta; Cuevas, Leticia Perez; D'Arcangelo, Ocleto; Davis, Richard; Frailis, Marco; Franceschet, Cristian; Franceschi, Enrico; Gregorio, Anna; Hoyland, Roger; Leonardi, Rodrigo; Lowe, Stuart; Mandolesi, Nazzareno; Meinhold, Peter; Mendes, Luis; Roddis, Neil; Sandri, Maura; Valenziano, Luca; Wilkinson, Althea; Zacchei, Andrea; Zonca, Andrea; Battaglia, Paola; De Nardo, Stefania; Grassi, Stefano; Lapolla, Marco; Leutenegger, Paolo; Miccolis, Maurizio; Silvestri, Roberto; 10.1088/1748-0221/4/12/T12013

    2010-01-01

    "This paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jinst" This paper describes the Planck Low Frequency Instrument tuning activities performed through the ground test campaigns, from Unit to Satellite Levels. Tuning is key to achieve the best possible instrument performance and tuning parameters strongly depend on thermal and electrical conditions. For this reason tuning has been repeated several times during ground tests and it has been repeated in flight before starting nominal operations. The paper discusses the tuning philosophy, the activities and the obtained results, highlighting developments and changes occurred during test campaigns. The paper concludes with an overview of tuning performed during the satellite cryogenic test campaign (Summer 2008) and of the plans for the just started in-flight calibration.

  14. Nanoplasmonics tuned ``click chemistry''

    Science.gov (United States)

    Tijunelyte, I.; Guenin, E.; Lidgi-Guigui, N.; Colas, F.; Ibrahim, J.; Toury, T.; Lamy de La Chapelle, M.

    2016-03-01

    Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry.Nanoplasmonics is a growing field of optical condensed matter science dedicated to optical phenomena at the nanoscale level in metal systems. Extensive research on noble metallic nanoparticles (NPs) has emerged within the last two decades due to their ability to keep the optical energy concentrated in the vicinity of NPs, in particular, the ability to create optical near-field enhancement followed by heat generation. We have exploited these properties in order to induce a localised ``click'' reaction in the vicinity of gold nanostructures under unfavourable experimental conditions. We demonstrate that this reaction can be controlled by the plasmonic properties of the nanostructures and we propose two physical mechanisms to interpret the observed plasmonic tuning of the ``click'' chemistry. Electronic supplementary information (ESI) available: NMR study on reaction initiation, SERS spectra and temperature calculations. See DOI: 10.1039/c5nr09018k

  15. Size tuning in the absence of spatial frequency tuning in object recognition.

    Science.gov (United States)

    Fiser, J; Subramaniam, S; Biederman, I

    2001-07-01

    How do we attend to objects at a variety of sizes as we view our visual world? Because of an advantage in identification of lowpass over highpass filtered patterns, as well as large over small images, a number of theorists have assumed that size-independent recognition is achieved by spatial frequency (SF) based coarse-to-fine tuning. We found that the advantage of large sizes or low SFs was lost when participants attempted to identify a target object (specified verbally) somewhere in the middle of a sequence of 40 images of objects, each shown for only 72 ms, as long as the target and distractors were the same size or spatial frequency (unfiltered or low or high bandpassed). When targets were of a different size or scale than the distractors, a marked advantage (pop out) was observed for large (unfiltered) and low SF targets against small (unfiltered) and high SF distractors, respectively, and a marked decrement for the complementary conditions. Importantly, this pattern of results for large and small images was unaffected by holding absolute or relative SF content constant over the different sizes and it could not be explained by simple luminance- or contrast-based pattern masking. These results suggest that size/scale tuning in object recognition was accomplished over the first several images (<576 ms) in the sequence and that the size tuning was implemented by a mechanism sensitive to spatial extent rather than to variations in spatial frequency. PMID:11412885

  16. Balanced Tuning of PI Controllers

    Czech Academy of Sciences Publication Activity Database

    Klán, Petr; Gorez, R.

    2000-01-01

    Roč. 6, č. 6 (2000), s. 541-550. ISSN 0947-3580 Institutional research plan: AV0Z1030915 Keywords : control ler design * integral criteria * PI control * self-tuning control ler * tuning methods Subject RIV: BA - General Mathematics

  17. Self-tuning and de Sitter brane intersections in 6-dimensional brane models

    International Nuclear Information System (INIS)

    We study the self-tuning of general brane junctions and brane networks on 6-dimensional space-time. For general brane junctions, there may exist one fine-tuning among the brane tensions. For the brane networks, similar to the 5-dimensional self-tuning brane models, the brane tensions can be set arbitrarily and there exists a singularity for the metric and bulk scalar. If we want to regularize the singularity, we will introduce fine-tuning among the brane tensions. In addition, because the 4-dimensional cosmological constant we observe may be positive and very small, we discuss the brane network with de Sitter brane intersections by introducing a bulk scalar. (orig.)

  18. Nature-inspired Cuckoo Search Algorithm for Side Lobe Suppression in a Symmetric Linear Antenna Array

    Directory of Open Access Journals (Sweden)

    K. N. Abdul Rani

    2012-09-01

    Full Text Available In this paper, we proposed a newly modified cuckoo search (MCS algorithm integrated with the Roulette wheel selection operator and the inertia weight controlling the search ability towards synthesizing symmetric linear array geometry with minimum side lobe level (SLL and/or nulls control. The basic cuckoo search (CS algorithm is primarily based on the natural obligate brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior of some birds and fruit flies. The CS metaheuristic approach is straightforward and capable of solving effectively general N-dimensional, linear and nonlinear optimization problems. The array geometry synthesis is first formulated as an optimization problem with the goal of SLL suppression and/or null prescribed placement in certain directions, and then solved by the newly MCS algorithm for the optimum element or isotropic radiator locations in the azimuth-plane or xy-plane. The study also focuses on the four internal parameters of MCS algorithm specifically on their implicit effects in the array synthesis. The optimal inter-element spacing solutions obtained by the MCS-optimizer are validated through comparisons with the standard CS-optimizer and the conventional array within the uniform and the Dolph-Chebyshev envelope patterns using MATLABTM. Finally, we also compared the fine-tuned MCS algorithm with two popular evolutionary algorithm (EA techniques include particle swarm optimization (PSO and genetic algorithms (GA.

  19. Pressure-driven assembly of nanoparticle arrays and nanostructures

    Science.gov (United States)

    Fan, Hongyou

    2011-06-01

    Due to the size- and shape-dependent properties, nanoparticles have been successfully used as functional building blocks to fabricate multi-dimensional (D) ordered assemblies for applications in nanoelectronic and optic devices. To date, fabrications of ordered nanoparticle assemblies have been performed only at ambient pressure through specific interparticle chemical or physical interactions such as van der Waals interactions, dipole-dipole interaction, chemical reactions, etc. Recently we have discovered that an external pressure can be utilized to engineer nanoparticle assembly and to fabricate new nanoparticle architectures without relying on specific nanoparticle interactions. We show that under a hydrostatic pressure field, the unit cell dimension of a 3D ordered nanoparticle arrays can be manipulated to reversibly shrink, allowing fine-tuning of interparticle separation distance. Moreover, under a uniaxial pressure field, nanoparticles are forced to contact and coalesce, forming 1D nanostructures (nanorods or nanowires) and ordered ultrahigh density arrays. This mechanical compression process opens up a new pathway to the engineering and fabrication of nanoparticle architectures. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. AC Electrochemical Deposition of CdS Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    QIN; DongHuan

    2001-01-01

    Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.  ……

  1. AC Electrochemical Deposition of CdS Nanowire Arrays

    Institute of Scientific and Technical Information of China (English)

    QIN DongHuan; LI HuLin

    2001-01-01

    @@ Since the successful growth of carbon nanotubes, one-dimensional materials have been a focused research field both because of their fundamental importance and the wide-ranging potential applications in nano devices. Many approaches are used to fabricate nanowires, such as crystal growth. In order to obtain nanowires whose growth is more easily controlled, electrochemical synthesis in a template is taken as one of the most efficient methods. To date, Co, Fe, Ni, CuCo1-3 and other nanowire arrays have been fabricated successfully by electrodepositing corresponding metal ion into the porous aluminum oxide (PAO) membrane or other non-magnetic materials. Cadmium sulfide(CdS), as one of the most important semiconductor material, is a n-type semiconductor. The ability to fine tune their fundamental electronic and optical properties by simply varying the cruster size, rather than composition, makes them highly attractive for a variety of possible application. In this paper, we report our work of fabricating CdS nanowire arrays based on AC electrolysis into the pores of an anodic aluminum oxide(AAO), the structure and morphology were characterized by XRD and TEM.

  2. SOA Direct Modulation in Wavelength-Selectable Laser Array Light Sources

    Institute of Scientific and Technical Information of China (English)

    Kazuo; Kasaya; Ken; Tsuzuki; Hiroaki; Sanjoh; Yasuo; Shibata; Yuichi; Tohmori

    2003-01-01

    We demonstrated, for the first time, 2.5-Gb/s SOA direct modulation in the wavelength-selectable DFB laser array. The SOA direct modulation was achieved in the wide tuning range of 22.7nm by selecting arrayed laser and tuning the temperature. 40-km transmission was also confirmed..

  3. QUERY TUNING IN ORACLE DATABASE

    Directory of Open Access Journals (Sweden)

    Kamsuriah Ahmad

    2012-01-01

    Full Text Available Oracle database is well suited to use for managing and exchanging of corporate data, especially for companies that have large-scale databases. Even though Oracle can work best, however, there are conditions where Oracle does not perform well and consume more time to perform the query transaction. This is when the database tuning process is needed. This process will solve the problems of low performance and high execution time when accessing data in the database. This study aims to propose an improvement process of query tuning that can reduce queries execution time. The cause of the problems can be discovered by reviewing the source code, List of Value (LOV and view on the current system. To enhance the query, existing query scripts need to be modified to fit the tuning process. As an evaluation on the effectiveness of the proposed query tuning process, a comparison of study is done. The result of the study shows that before the tuning process, a system takes 156 milliseconds to execute the query and after implementing the proposed query tuning process, the execution time decreases to less than one millisecond. It means hundred times performance improvement on the query execution. The outcome of the study proved that the query execution time decreased after implementing the proposed query tuning process in the system.

  4. Chemical and biological sensing using tuning forks

    Science.gov (United States)

    Tao, Nongjian; Boussaad, Salah

    2012-07-10

    A device for sensing a chemical analyte is disclosed. The device is comprised of a vibrating structure having first and second surfaces and having an associated resonant frequency and a wire coupled between the first and second surfaces of the vibrating structure, wherein the analyte interacts with the wire and causes a change in the resonant frequency of the vibrating structure. The vibrating structure can include a tuning fork. The vibrating structure can be comprised of quartz. The wire can be comprised of polymer. A plurality of vibrating structures are arranged in an array to increase confidence by promoting a redundancy of measurement or to detect a plurality of chemical analytes. A method of making a device for sensing a chemical analyte is also disclosed.

  5. Active resonance tuning of stretchable plasmonic structures

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Xiao, Sanshui; Mortensen, N. Asger

    2012-01-01

    Active resonance tuning is highly desired for the applications of plasmonic structures, such as optical switches and surface enhanced Raman substrates. In this paper, we demonstrate the active tunable plasmonic structures, which composed of monolayer arrays of metallic semishells with dielectric...... cores on stretchable elastic substrates. These composite structures support Bragg-type surface plasmon resonances whose frequencies are sensitive to the arrangement of the metallic semishells. Under uniaxial stretching, the lattice symmetry of these plasmonic structures can be reconfigured from...... hexagonal to monoclinic lattice, leading to not only large but also polarization-dependent shifts of the resonance frequency. The experimental results are supported by the numerical simulations. Our structures fabricated using simple and inexpensive self-assembly and lift-transfer techniques can open up...

  6. Tuning The Laser Heater Undulator

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Zackary

    2010-12-03

    The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

  7. Broadband tuning of optomechanical cavities

    Science.gov (United States)

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2011-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  8. Broadband Tuning of Optomechanical Cavities

    OpenAIRE

    Wiederhecker, Gustavo S.; Manipatruni, Sasikanth; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from ...

  9. Broadband Tuning of Optomechanical Cavities

    CERN Document Server

    Wiederhecker, Gustavo S; Lee, Sunwoo; Lipson, Michal

    2010-01-01

    We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 $\\mu$W/nm. By choosing a relatively low optical Q resonance ($\\approx$18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.

  10. Fine Arts Database (FAD)

    Data.gov (United States)

    General Services Administration — The Fine Arts Database records information on federally owned art in the control of the GSA; this includes the location, current condition and information on artists.

  11. ZIF-8 gate tuning via terminal group modification: a computational study

    KAUST Repository

    Zheng, Bin

    2016-06-24

    Tuning the pore structure of zeolitic imidazolate frameworks (ZIFs) enables unique control of their material properties. In this work, we used computational methods to examine the gate structure of ZIF-8 tuned by substitution terminal groups. The substitution position and electron affinity of the added groups were shown to be key factors in gate size. Electrostatic interactions are responsible for the variation in gate opening. These results suggest that the post-modification of terminal group in ZIFs can be used to finely tune the pore gate, opening up new strategies in the design of ZIFs with desired properties.

  12. ZIF-8 gate tuning via terminal group modification: A computational study

    Science.gov (United States)

    Zheng, Bin; Wang, Lian Li; Du, Lifei; Huang, Kuo-Wei; Du, Huiling

    2016-08-01

    Tuning the pore structure of zeolitic imidazolate frameworks (ZIFs) enables unique control of their material properties. In this work, we used computational methods to examine the gate structure of ZIF-8 tuned by substitution terminal groups. The substitution position and electron affinity of the added groups were shown to be key factors in gate size. Electrostatic interactions are responsible for the variation in gate opening. These results suggest that the post-modification of terminal group in ZIFs can be used to finely tune the pore gate, opening up new strategies in the design of ZIFs with desired properties.

  13. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...... dispersion equation in modeling the transport and the deposition of reservoir fines. It successfully predicts the unsymmetrical concentration profiles and the hyperexponential deposition in experiments....

  14. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  15. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  16. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

    Science.gov (United States)

    Lee, Chia-Hui; Cheng, Ya-Wen; Huang, G. Steven

    2014-05-01

    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.

  17. Bottom-Up Nanofabrication of Supported Noble Metal Alloy Nanoparticle Arrays for Plasmonics

    DEFF Research Database (Denmark)

    Nugroho, Ferry A. A.; Iandolo, Beniamino; Wagner, Jakob Birkedal; Langhammer, Christoph

    2016-01-01

    concept, we focus on Au-based binary and ternary alloy systems with Ag, Cu, and Pd, due to their high relevance for nanoplasmonics and complete miscibility, and characterize their optical properties. Moreover, as an example for the relevance of the obtained materials for integration in devices, we......Mixing different elements at the nanoscale to obtain alloy nanostructures with fine-tuned physical and chemical properties offers appealing opportunities for nanotechnology and nanoscience. However, despite widespread successful application of alloy nanoparticles made by colloidal synthesis in...... optimization of the surface density. These cannot be fulfilled even using state-of-the-art self -assembly strategies of colloids. As a solution, we present here a generic bottom-up nanolithography-compatible fabrication approach for large-area arrays of alloy nanoparticles on surfaces. To illustrate the...

  18. Full-mesh T- and O-band wavelength router based on arrayed waveguide gratings.

    Science.gov (United States)

    Idris, Nazirul A; Yoshizawa, Katsumi; Tomomatsu, Yasunori; Sudo, Makoto; Hajikano, Tadashi; Kubo, Ryogo; Zervas, Georgios; Tsuda, Hiroyuki

    2016-01-11

    We propose an ultra-broadband full-mesh wavelength router supporting the T- and O-bands using 3 stages of cascaded arrayed waveguide gratings (AWGs). The router architecture is based on a combination of waveband and channel routing by coarse and fine AWGs, respectively. We fabricated several T-band-specific silica-based AWGs and quantum dot semiconductor optical ampliers as part of the router, and demonstrated 10 Gbps data transmission for several wavelengths throughout a range of 7.4 THz. The power penalties were below 1 dB. Wavelength routing was also demonstrated, where tuning time within a 9.4-nm-wide waveband was below 400 ms. PMID:26832297

  19. Cochlear microphonic broad tuning curves

    Science.gov (United States)

    Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani

    2015-12-01

    It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the

  20. Tuning of a prototype 352 NHz RFQ structure

    International Nuclear Information System (INIS)

    RRCAT has taken up R and D activities for the development of a superconducting proton linear accelerator. Front end of linac consists of an Ion Source, Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ). Design and developmental activity has been taken up for a RFQ to accelerate H- ions from 50 keV to 3 MeV. A prototype full scale RFQ structure; fabricated in aluminium has been assembled using three segments of ∼ 1150 mm length each for low power RF characterization. It is a four vane type structure having sixteen stub tuners per segment. Before assembly of all segments; individual segment was tuned. For this; a Vector Network Analyzer (VNA) was connected to RFQ to study the frequency spectrum. Dipole, quadrupole and their higher order modes were identified with the use of phase measurement technique. Bead pull measurements were carried out to measure and record electric field near RFQ vane tip of each segment. Manual stub tuners were used to tune the segment to a target frequency. Simultaneously electric fields were adjusted in such a way that it is equal in all the quadrants. A program in LabVIEW was developed to measure and plot electric field pattern along the length of RFQ segment. After tuning of individual segments; all the tuned segments were aligned and assembled to make full length structure. Fine tuning of full length RFQ structure was carried out to eliminate assembly errors. The paper will describe the experience gained during tuning of an actual fabricated full length RFQ structure and its present status. (author)

  1. Practical approach to tuning MPC.

    Science.gov (United States)

    Wojsznis, Willy; Gudaz, John; Blevins, Terry; Mehta, Ashish

    2003-01-01

    This paper presents the results of a heuristic approach for developing model predictive control (MPC) tuning rules. The tuning has been applied and tested in easy-to-use MPC. Process modeling in this MPC uses normalized input/ output range. As a result there is no need for tuning outputs, a procedure known as adjusting equal concern error. Penalties on moves are set as a function of process dead time as the primary factor, with some correction from process gain. The default calculation delivers robust control, which tolerates up to triple increase in process static gain. If control is too aggressive, further on-line adjustment can be done by set point reference trajectory. Test results show that this tuning is robust for process gain change, however, it is much less efficient in compensating for process dead-time changes. It was found that dead-time mismatch is much better compensated with the model correction filter. Combining the three handles, i.e., penalties on moves, reference trajectory, and model filter, easy and intuitively understandable MPC tuning was achieved. The findings are illustrated by numerous MPC simulated tests. PMID:12546476

  2. Tuning the optical properties of dilute nitride site controlled quantum dots

    International Nuclear Information System (INIS)

    We show that deterministic control of the properties of pyramidal site-controlled quantum dots (QD) could be achieved by exposing the QD layer to nitrogen precursor unsymmetrical dimethylhydrazine (UDMHy). The properties that could be tuned include an expected emission reduction in dilute nitride materials, excitonic pattern (biexciton binding energy) and improved carrier confinement potential symmetry (reduced fine-structure splitting)

  3. Angular tuning of the magnetic birefringence in rippled cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A., E-mail: MiguelAngel.Arranz@uclm.es [Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, José M. [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain)

    2015-06-22

    We report the measurement of magnetically induced birefringence in rippled Co films. For this purpose, the magneto-optical properties of ion beam eroded ferromagnetic films were studied using Kerr magnetometry and magnetic birefringence in the transmitted light intensity. Upon sufficient ion sculpting, these ripple surface nanostructures developed a defined uniaxial anisotropy in the in-plane magnetization, finely tuning the magnetic birefringence effect. We have studied its dependence on the relative orientation between the ripple direction and the magnetic field, and found this effect to be dramatically correlated with the capability to neatly distinguish the mechanisms for the in-plane magnetization reversal, i.e., rotation and nucleation. This double refraction corresponds univocally to the two magnetization axes, parallel and perpendicular to the ripples direction. We have also observed that tuned birefringence in stack assemblies of rippled Co films, which enables us to technically manipulate the number and direction of refraction axes.

  4. Resonance spectra of diabolo optical antenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong; Guo, Junpeng, E-mail: guoj@uah.edu [Department of Electrical and Computer Engineering, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Simpkins, Blake; Caldwell, Joshua D. [Naval Research Laboratory, 4555 Overlook Ave., SW Washington, DC 20375 (United States)

    2015-10-15

    A complete set of diabolo optical antenna arrays with different waist widths and periods was fabricated on a sapphire substrate by using a standard e-beam lithography and lift-off process. Fabricated diabolo optical antenna arrays were characterized by measuring the transmittance and reflectance with a microscope-coupled FTIR spectrometer. It was found experimentally that reducing the waist width significantly shifts the resonance to longer wavelength and narrowing the waist of the antennas is more effective than increasing the period of the array for tuning the resonance wavelength. Also it is found that the magnetic field enhancement near the antenna waist is correlated to the shift of the resonance wavelength.

  5. Fine 5 lavastab Venemaal

    Index Scriptorium Estoniae

    2013-01-01

    Tantsuteatru Fine 5 koreograafid Tiina Ollesk ja Rene Nõmmik toovad Jekaterinburgis välja lavastuse "... and Red", esitajaks Venemaa nimekas nüüdistantsutrupp Provintsialnõje Tantsõ. Lavastuses kõlab Taavo Remmeli kontrabassiimprovisatsioon "12.12.2006"

  6. Betatron Tune Determination: Interpolation Formulas

    CERN Document Server

    Fabre, Ignacio

    2015-01-01

    In order to obtain accurate estimations of the betatron tune, interpolation formulas have been derived that give estimates that approaches the real tune as $1/N^2$ and $1/N^4$ for signals of constant amplitude. In this document interpolation formulas for signals with exponential decaying amplitudes are derived, and its errors are analyzed as a function of the input signal size and the decay constant. We obtain the same scaling law of $1/N^2$ for the case of constant amplitude, and an improvement over the previous methods in the case of decaying amplitude. Lower boundaries for the errors were observed, and methods for surpass this were analyzed.

  7. Method of tuning a strain gauge full bridge

    International Nuclear Information System (INIS)

    In the strain gauge full bridge consisting of four narrow bridge branches acting as strain gauges a change in cross section of the broadened conductor area between the strain gauges is made. This is achieved by means of a focused laser beam, preferably by using it to cut a gap in the conductor area. This allows the bridge to be tuned extremely finely because the development of the gap can be controlled as a function of the bridge output signal during the cutting procedure. Hence, small changes in resistivity of the broadened conductor area can be achieved in this way. (DG)

  8. Tuning the Cosmological Constant, Broken Scale Invariance, Unitarity

    CERN Document Server

    Forste, Stefan

    2016-01-01

    We study gravity coupled to a cosmological constant and a scale but not conformally invariant sector. In Minkowski vacuum, scale invariance is spontaneously broken. We consider small fluctuations around the Minkowski vacuum. At the linearised level we find that the trace of metric perturbations receives a positive or negative mass squared contribution. However, only for the Fierz-Pauli combination the theory is free of ghosts. The mass term for the trace of metric perturbations can be cancelled by explicitly breaking scale invariance. This reintroduces fine-tuning. Models based on four form field strength show similarities with explicit scale symmetry breaking due to quantisation conditions.

  9. Tuning the orchestra: transcriptional pathways controlling axon regeneration

    Directory of Open Access Journals (Sweden)

    Andrea Tedeschi

    2012-01-01

    Full Text Available Trauma in the adult mammalian central nervous system leads to irreversible structural and functional impairment due to failed regeneration attempts. In contrast, neurons in the peripheral nervous system exhibit a greater regenerative ability. It has been proposed that an orchestrated sequence of transcriptional events controlling the expression of specific sets of genes may be the underlying basis of an early cell-autonomous regenerative response. Understanding whether transcriptional fine tuning, in parallel with strategies aimed at counteracting extrinsic impediments promotes axon re-growth following central nervous system injuries represents an exciting challenge for future studies. Transcriptional pathways controlling axon regeneration are presented and discussed in this review.

  10. Array tomography: imaging stained arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are imaged using conventional wide-field fluorescence microscopy. Images can be captured manually or, with the appropriate software and hardware, the process can be automated. PMID:21041399

  11. Array tomography: production of arrays.

    Science.gov (United States)

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time consuming and require some practice to perfect. This protocol describes the sectioning of embedded tissues and the mounting of the serial arrays. The procedures require some familiarity with the techniques used for ultramicrotome sectioning for electron microscopy. PMID:21041397

  12. Remote tuning of NMR probe circuits.

    Science.gov (United States)

    Kodibagkar, V D; Conradi, M S

    2000-05-01

    There are many circumstances in which the probe tuning adjustments cannot be located near the rf NMR coil. These may occur in high-temperature NMR, low-temperature NMR, and in the use of magnets with small diameter access bores. We address here circuitry for connecting a fixed-tuned probe circuit by a transmission line to a remotely located tuning network. In particular, the bandwidth over which the probe may be remotely tuned while keeping the losses in the transmission line acceptably low is considered. The results show that for all resonant circuit geometries (series, parallel, series-parallel), overcoupling of the line to the tuned circuit is key to obtaining a large tuning bandwidth. At equivalent extents of overcoupling, all resonant circuit geometries have nearly equal remote tuning bandwidths. Particularly for the case of low-loss transmission line, the tuning bandwidth can be many times the tuned circuit's bandwidth, f(o)/Q. PMID:10783273

  13. Apparatuses and methods for tuning center frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowski, Kenneth; Olsson, Roy H.

    2016-02-23

    Apparatuses and methods for tuning center frequencies are described herein. Examples of tuning described herein including tuning using feedback from the resonator. Variable gain feedback for tuning of acoustic wave resonators is provided in some examples. An example apparatus may include a resonator and a feedback loop. The resonator may be configured to receive a tuning signal and to provide a feedback signal. The feedback signal may be based on the tuning signal. The feedback loop may be configured to receive the feedback signal from the resonator. The feedback loop further may be configured to provide the tuning signal to actively tune a center frequency of the resonator. The tuning signal may be based on the feedback signal.

  14. Tuned City: The Space Acoustic

    OpenAIRE

    Niessen, BM

    2008-01-01

    The article is an in-depth interview with Derek Holzer, performance director of the Berlinese sound art festival Tuned City. The interview focuses on the transformations of sound art and on the role of media festivals in the contemporary city.

  15. Towards an autonomous self-tuning vibration energy harvesting device for wireless sensor network applications

    International Nuclear Information System (INIS)

    Future deployment of wireless sensor networks will ultimately require a self-sustainable local power source for each sensor, and vibration energy harvesting is a promising approach for such applications. A requirement for efficient vibration energy harvesting is to match the device and source frequencies. While techniques to tune the resonance frequency of an energy harvesting device have recently been described, in many applications optimization of such systems will require the energy harvesting device to be able to autonomously tune its resonance frequency. In this work a vibration energy harvesting device with autonomous resonance frequency tunability utilizing a magnetic stiffness technique is presented. Here a piezoelectric cantilever beam array is employed with magnets attached to the free ends of cantilever beams to enable magnetic force resonance frequency tuning. The device is successfully tuned from − 27% to + 22% of its untuned resonance frequency while outputting a peak power of approximately 1 mW. Since the magnetic force tuning technique is semi-active, energy is only consumed during the tuning process. The developed prototype consumed maximum energies of 3.3 and 3.9 J to tune to the farthest source frequencies with respect to the untuned resonance frequency of the device. The time necessary for this prototype device to harvest the energy expended during its most energy-intensive (largest resonant frequency adjustment) tuning operation is 88 min in a low amplitude 0.1g vibration environment, which could be further optimized using higher efficiency piezoelectric materials and system components

  16. Development of laser technology (Development of the wavelength tuning and the output stabilization technology)

    International Nuclear Information System (INIS)

    Various types of the dye laser are developed and investigated for the wavelength tuning and the output stabilization. And a Ti:sapphire laser system was developed to expand the lasing frequency and the injection seeding was executed in this Ti:sapphire laser. New frequency tuning mechanism using a wedge prism was developed and it was proved that better fine frequency tuning can be achieved by rotating the wedge prism instead of the tuning mirror. Efficiency and the parameters of the high power dye laser amplifier system were calculated by the computer simulation. The characteristics of the dye nozzle were examined for the stabilization of the high power, high repetition rate dye laser system and the output characteristics of the dye laser using the nozzle are investigated. (Author)

  17. Development of laser technology (Development of the wavelength tuning and the output stabilization technology)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Cha, Hyung Ki; Kim, Sung Ho; Cha, Byung Hun; Rhee, Yong Joo; Lim, Chang Hwan; Yoo, Byung Duk; Song, Kyu Seok; Choe, An Seong; Baik, Dae Hyun; Kim, Jung Bog; Jeong, Do Young; Jung, Euo Chang; Han, Jae Min; Ko, Do Kyeong; Lee, Byung Cheol; Kim, Sun Kook; Nam, Sung Mo; Rho, Si Pyo; Yi, Jong Hoon; Choi, Hwa Rim; Lee, Yong Bum; Kim, Woong Ki [Korea Atomic Energy Res. Inst., Taejon (Korea, Republic of)

    1992-12-01

    Various types of the dye laser are developed and investigated for the wavelength tuning and the output stabilization. And a Ti:sapphire laser system was developed to expand the lasing frequency and the injection seeding was executed in this Ti:sapphire laser. New frequency tuning mechanism using a wedge prism was developed and it was proved that better fine frequency tuning can be achieved by rotating the wedge prism instead of the tuning mirror. Efficiency and the parameters of the high power dye laser amplifier system were calculated by the computer simulation. The characteristics of the dye nozzle were examined for the stabilization of the high power, high repetition rate dye laser system and the output characteristics of the dye laser using the nozzle are investigated. (Author).

  18. Arrayed Continuous-wave THz Photomixers

    CERN Document Server

    Bauerschmidt, S T; Döhler, G H; Lu, H; Gossard, A C; Preu, S

    2013-01-01

    We present both chip-scale and free space coherent arrays of continuous-wave THz photomixers. By altering the relative phases of the exciting laser signals, the relative THz phase between the array elements can be tuned, allowing for beam steering. The constructive interference of the emission of N elements leads to an increase of the focal intensity by a factor of NxN while reducing the beam width by ~1/N, below the diffraction limit of a single source. Such array architectures strongly improve the THz power distribution for stand-off spectroscopy and imaging systems while providing a huge bandwidth at the same time. We demonstrate this by beam profiles generated by a free space 2x2 and a 4x1 array for a transmission distance of 4.2 meters. Spectra between 70 GHz and 1.1 THz have been recorded with these arrays.

  19. CHARACTERIZATION OF FINE PARTICULATE MATTER

    Science.gov (United States)

    Size distribution data processing and fitting Ultrafine, very fine and fine PM were collected nearly continuously from December 2000 through March 2003 at a Washington State Department of Ecology site on Beacon Hill in Seattle. Particle size distributio...

  20. Development of spatial coarse-to-fine processing in the visual pathway

    OpenAIRE

    Nirody, Jasmine A.

    2012-01-01

    The sequential analysis of information in a coarse-to-fine manner is a fundamental mode of processing in the visual pathway. Spatial frequency (SF) tuning, arguably the most fundamental feature of spatial vision, provides particular intuition within the coarse-to-fine framework: low spatial frequencies convey global information about an image (e.g., general orientation), while high spatial frequencies carry more detailed information (e.g., edges). In this paper, we study the development of co...

  1. The Anthropic Principle and numerical coincidences involving the cosmological, gravitational and fine structure constants

    CERN Document Server

    Eaves, Laurence

    2014-01-01

    Christian Beck has proposed a set of Shannon-Khinchin axioms to derive a formula for the cosmological constant, {\\Lambda}. We discuss this result in relation to numerical coincidences involving the measured values of {\\Lambda} and the gravitational and fine structure constants, G and {\\alpha}. The empirical formulae that inter-relate the three constants suggest that the measured values of G and {\\Lambda} are consistent with the apparent anthropic fine-tuning of {\\alpha}.

  2. Bayesian optimization for tuning chaotic systems

    Directory of Open Access Journals (Sweden)

    M. Abbas

    2014-08-01

    Full Text Available In this work, we consider the Bayesian optimization (BO approach for tuning parameters of complex chaotic systems. Such problems arise, for instance, in tuning the sub-grid scale parameterizations in weather and climate models. For such problems, the tuning procedure is generally based on a performance metric which measures how well the tuned model fits the data. This tuning is often a computationally expensive task. We show that BO, as a tool for finding the extrema of computationally expensive objective functions, is suitable for such tuning tasks. In the experiments, we consider tuning parameters of two systems: a simplified atmospheric model and a low-dimensional chaotic system. We show that BO is able to tune parameters of both the systems with a low number of objective function evaluations and without the need of any gradient information.

  3. Data Driven Tuning of Inventory Controllers

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Santacoloma, Paloma Andrade; Poulsen, Niels Kjølstad;

    2007-01-01

    A systematic method for criterion based tuning of inventory controllers based on data-driven iterative feedback tuning is presented. This tuning method circumvent problems with modeling bias. The process model used for the design of the inventory control is utilized in the tuning as an...... approximation to reduce time required on experiments. The method is illustrated in an application with a multivariable inventory control implementation on a four tank system....

  4. Tuning Properties in Silver Clusters

    KAUST Repository

    Joshi, Chakra P

    2015-07-09

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements.

  5. Distributed Tuning of Boundary Resources

    DEFF Research Database (Denmark)

    Eaton, Ben; Elaluf-Calderwood, Silvia; Sørensen, Carsten;

    2015-01-01

    The digital age has seen the rise of service systems involving highly distributed, heterogeneous, and resource-integrating actors whose relationships are governed by shared institutional logics, standards, and digital technology. The cocreation of service within these service systems takes place...... in the context of a paradoxical tension between the logic of generative and democratic innovations and the logic of infrastructural control. Boundary resources play a critical role in managing the tension as a firm that owns the infrastructure can secure its control over the service system while independent...... firms can participate in the service system. In this study, we explore the evolution of boundary resources. Drawing on Pickering’s (1993) and Barrett et al.’s (2012) conceptualizations of tuning, the paper seeks to forward our understanding of how heterogeneous actors engage in the tuning of boundary...

  6. Tuning Properties in Silver Clusters.

    Science.gov (United States)

    Joshi, Chakra P; Bootharaju, Megalamane S; Bakr, Osman M

    2015-08-01

    The properties of Ag nanoclusters are not as well understood as those of their more precious Au cousins. However, a recent surge in the exploration of strategies to tune the physicochemical characteristics of Ag clusters addresses this imbalance, leading to new insights into their optical, luminescence, crystal habit, metal-core, ligand-shell, and environmental properties. In this Perspective, we provide an overview of the latest strategies along with a brief introduction of the theoretical framework necessary to understand the properties of silver nanoclusters and the basis for their tuning. The advances in cluster research and the future prospects presented in this Perspective will eventually guide the next large systematic study of nanoclusters, resulting in a single collection of data similar to the periodic table of elements. PMID:26267198

  7. Multicolor photonic crystal laser array

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jeremy B; Brener, Igal; Subramania, Ganapathi S; Wang, George T; Li, Qiming

    2015-04-28

    A multicolor photonic crystal laser array comprises pixels of monolithically grown gain sections each with a different emission center wavelength. As an example, two-dimensional surface-emitting photonic crystal lasers comprising broad gain-bandwidth III-nitride multiple quantum well axial heterostructures were fabricated using a novel top-down nanowire fabrication method. Single-mode lasing was obtained in the blue-violet spectral region with 60 nm of tuning (or 16% of the nominal center wavelength) that was determined purely by the photonic crystal geometry. This approach can be extended to cover the entire visible spectrum.

  8. Multiobjectivization for Classifier Parameter Tuning

    Czech Academy of Sciences Publication Activity Database

    Pilát, M.; Neruda, Roman

    New York: ACM, 2013 - (Blum, C.), s. 97-98 ISBN 978-1-4503-1964-5. [GECCO 2013. Genetic and Evolutionary Computation Conference. Amsterdam (NL), 06.07.2013-10.07.2013] R&D Projects: GA ČR GAP202/11/1368 Grant ostatní: GA UK(CZ) 345511 Institutional support: RVO:67985807 Keywords : multiobjective optimization * classification * machine learning * evolutionary algorithm * multiobjectivization * parameter tuning Subject RIV: IN - Informatics, Computer Science

  9. Fine target of deuterium

    International Nuclear Information System (INIS)

    A fine target of deuterium on a tantalum plate by the absorption method is obtained. In order to obtain the de gasification temperature an induction generator of high frequency is used and the deuterium pass is regulated by means of a palladium valve. Two vacuum measures are available, one to measure the high vacuum in the de gasification process of the tantalum plate and the other, for low vacuum, to measure the deuterium inlet in the installation and the deuterium pressure change in the installation after the absorption in the tantalum plate. A target of 48 μ gr/cm2 thick is obtained. (Author) 1 refs

  10. Finessing fuel fineness

    Energy Technology Data Exchange (ETDEWEB)

    Storm, R.F. [Storm Technologies Inc. (United States)

    2008-10-15

    Most of today's operating coal plants began service at least a generation ago and were designed to burn eastern bituminous coal. A switch to Powder River Basin coal can stress those plants' boiler systems, especially the pulverisers, beyond their design limits and cause no end of operational and maintenance problems. Many of those problems are caused by failing to maintain good fuel fineness when increasing fuel throughput. This article concerns the proper management of the fuel component of the combustion equation in an eight step plan. 8 figs.

  11. Reversible band gap tuning of metal oxide films using hydrogen and oxygen plasmas

    International Nuclear Information System (INIS)

    We report an approach to the reversible tuning of the band gaps of metal oxide (MO) films. ZnO and CuO, synthesized by hydrothermal methods, were treated with hydrogen and oxygen plasmas. From UV–visible transmittance spectra, we have found that the optical band gaps of MO films blue-shifted with hydrogen plasma treatment, but red-shifted with oxygen plasma treatment. By alternating the treatment sequences of hydrogen and oxygen plasmas, the MO optical band gap values can be reversibly fine-tuned with the tunable ranges of 80 and 550 meV for ZnO and CuO, respectively. The mechanism for reversible tuning of optical band gaps is proposed based on the results of optical emission, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy characterization. Compared to conventional metal ion doping and high temperature annealing methods, the use of room temperature hydrogen and oxygen plasmas for tuning band gaps is more environmentally friendly. - Highlights: ► Metal oxide band gap blue-shifts with hydrogen plasma treatment. ► Metal oxide band gap red-shifts with oxygen plasma treatment. ► Metal oxide band gap can be reversibly fine-tuned

  12. Characterization of DPOAE fine structure

    DEFF Research Database (Denmark)

    Reuter, Karen; Hammershøi, Dorte

    has recently been demonstrated to exist in low level equal-loudness contours. The character of the DPOAE fine structure depends on several parameters, i.e., level, frequencies, and frequency of the two primaries, but also level and character of the noise floor. The prevalence and character of the fine......The distortion product otoacoustic emission (DPOAE) fine structure is revealed, when measuring DPOAE with a very fine frequency resolution. It is characterized by consistent maxima and minima with notches of up to 20 dB depth. The fine structure is known also from absolute hearing thresholds, and...... structures are highly individual, and till now no standardized method has been suggested for a consistent categorization. In the present paper a method developed for the categorization of fine structures is presented. The method has been used in two previous studies on the prevalence of fine structures, 1...

  13. Thermo-Optical Tuning of Whispering Gallery Modes in Er:Yb Doped Glass Microspheres to Arbitrary Probe Wavelengths

    CERN Document Server

    Watkins, Amy; Chormaic, Síle Nic

    2012-01-01

    We present experimental results on an all-optical, thermally-assisted technique for broad range tuning of microsphere cavity resonance modes to arbitrary probe wavelengths. An Er:Yb co-doped phosphate glass (Schott IOG-2) microsphere is pumped at 978 nm via the supporting stem and the heat generated by absorption of the pump light expands the cavity and changes the refractive index. This is a robust tuning method that decouples the pump from the probe and allows fine tuning of the microsphere's whispering gallery modes. Pump/probe experiments were performed to demonstrate thermo-optical tuning to specific probe wavelengths, including the 5S1/2 F = 3 to 5P3/2 F' = 4 laser cooling transition of 85Rb. This is of particular interest for cavity QED-type experiments, while the broad tuning range achievable is useful for integrated photonic devices, including sensors and modulators.

  14. Oracle SQL tuning with Oracle SQLTXPLAIN

    CERN Document Server

    Charalambides, Stelios

    2013-01-01

    Oracle SQL Tuning with SQLTXPLAIN is a practical guide to SQL tuning the way Oracle's own experts do it, using a freely downloadable tool called SQLTXPLAIN. Using this simple tool you'll learn how to tune even the most complex SQL, and you'll learn to do it quickly, without the huge learning curve usually associated with tuning as a whole.  Firmly based in real world problems, this book helps you reclaim system resources and avoid the most common bottleneck in overall performance, badly tuned SQL.  You'll learn how the optimizer works, how to take advantage of its latest features, and when it'

  15. Position sensitivity of MAMA detectors. [Multi-Anode Microchannel Array

    Science.gov (United States)

    Morgan, J. S.; Slater, D. S.; Timothy, J. G.; Jenkins, E. B.

    1988-01-01

    The results of laboratory and telescopic measurements of the position sensitivity of a visible MAMA detector utilizing a 'coarse-fine' array are presented. The photometric accuracy of this detector was determined under point source illumination. It was found that computed centroid positions are accurate across the entire array to within 0.04 pixels.

  16. Controlling Continuous-Variable Quantum Key Distribution with Tuned Linear Optics Cloning Machines

    Science.gov (United States)

    Guo, Ying; Qiu, Deli; Huang, Peng; Zeng, Guihua

    2015-09-01

    We show that the tolerable excess noise can be elegantly controlled while inserting a tunable linear optics cloning machine (LOCM) for continuous-variable key distribution (CVQKD). The LOCM-tuned noise can be stabilized to an optimal value by the reference partner of reconciliation to guarantee the high secret key rate. Simulation results show that there is a considerable improvement of the performance for the LOCM-based CVQKD protocol in terms of the secret rate while making a fine balance between the secret key rate and the transmission distance with the dynamically tuned parameters in suitable ranges.

  17. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huang-Han, E-mail: z10008047@email.ncku.edu.tw; Hsiao, Yu-Chieh, E-mail: s10076221@hotmail.com; Li, Jie-Ren, E-mail: jierenli@mail.ncku.edu.tw; Chen, Shu-Hui, E-mail: shchen@mail.ncku.edu.tw

    2015-03-20

    Highlights: • A novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS). • The first report of peptide synthesis on PDMS. • Use of the PDMS peptide array for developing sensitive chip-based kinase activity bioassays. • The on-chip synthesized peptides can be cleaved for MS detection. - Abstract: Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp{sub 5}, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif

  18. In situ fabrication of cleavable peptide arrays on polydimethylsiloxane and applications for kinase activity assays

    International Nuclear Information System (INIS)

    Highlights: • A novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS). • The first report of peptide synthesis on PDMS. • Use of the PDMS peptide array for developing sensitive chip-based kinase activity bioassays. • The on-chip synthesized peptides can be cleaved for MS detection. - Abstract: Polydimethylsiloxane (PDMS) is widely used for microfabrication and bioanalysis; however, its surface functionalization is limited due to the lack of active functional groups and incompatibility with many solvents. We presented a novel approach for in situ fabrication of cleavable peptide arrays on polydimethylsiloxane (PDMS) viatert-butyloxycarbonyl (t-Boc)/trifluoroacetic acid (TFA) chemistry using gold nanoparticles (AuNPs) as the anchor and a disulfide/amine terminated hetero-polyethylene glycol as the cleavable linker. The method was fine tuned to use reagents compatible with the PDMS. Using 5-mer pentapeptide, Trp5, as a model, step-by-step covalent coupling during the reaction cycles was monitored by Attenuated total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), or atomic force microscopy (AFM), and further confirmed by mass spectrometry (MS) detection of the cleaved peptides. Using such a method, heptapeptides of the PKA substrate, LRRASLG (Kemptide), and its point mutated analogs were fabricated in an array format for comparative studies of cAMP-dependent protein kinase (PKA) activity. Based on on-chip detection, Kemptide sequence exhibited the highest phosphorylation activity, which was detected to a 1.5-time lesser extent for the point mutated sequence (LRRGSLG) containing the recognition motif (RRXS), and was nearly undetectable for another point mutated sequence (LRLASLG) that lacked the recognition motif. These results indicate that the reported fabrication method is able to yield highly specific peptide sequences on PDMS, leading to a highly motif

  19. Granulation of fine powder

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  20. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    Science.gov (United States)

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range. PMID:24753623

  1. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    International Nuclear Information System (INIS)

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range

  2. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Lani, Shane W., E-mail: shane.w.lani@gmail.com, E-mail: karim.sabra@me.gatech.edu, E-mail: levent.degertekin@me.gatech.edu; Sabra, Karim G. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); Wasequr Rashid, M.; Hasler, Jennifer [School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States); Levent Degertekin, F. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801Ferst Drive, Georgia 30332-0405 (United States); School of Electrical and Computer Engineering, Georgia Institute of Technology, Van Leer Electrical Engineering Building, 777 Atlantic Drive NW, Atlanta, Georgia 30332-0250 (United States)

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  3. Dynamic tuning of lattice plasmon lasers with long coherence characteristics

    Science.gov (United States)

    Hoang, Thang; Yang, Ankun; Schatz, George; Odom, Teri; Mikkelsen, Maiken

    Here, we experimentally demonstrate dynamic tuning of an optically-pumped lattice plasmon laser based on arrays of gold nanoparticles and liquid gain materials [A. Yang, T.B. Hoang et al., Nature Communications 6, 6939 (2015)]. The structure consists of an array of 120 nm diameter gold disks with a height of 50 nm and 600 nm spacing. A liquid gain material composed of IR-140 dye molecules dissolved in a variety of organic solvents is placed on top of the disks and held in place by a thin glass coverslip. At a lasing wavelength of 860 nm, time-resolved measurements show a dramatic reduction of the decay time from 1 ns to less than 20 ps when the optical excitation power density increases from below to above the lasing threshold, indicating the transition from spontaneous to stimulated emission. By changing the dielectric environment surrounding the gold disks in real time, the lasing wavelength can be dynamically tuned over a 55 nm range. Finally, we will discuss recent experiments where we probe both the temporal and spatial coherence properties of the lattice plasmon laser. This advance of tunable plasmon lasers offer prospects to enhance and detect weak physical and chemical processes on the nanoscale in real time.

  4. Engineering Fano resonances in discrete arrays

    International Nuclear Information System (INIS)

    We study transmission properties of discrete arrays composed of a linear waveguide coupled to a system of N side defect states. This simple system can be used to model discrete networks of coupled defect modes in photonic crystals, complex waveguide arrays in two-dimensional nonlinear lattices, and ring-resonator structures. We demonstrate the basic principles of the resonant scattering management through engineering Fano resonances and find exact results for the wave transmission coefficient. We reveal conditions for perfect reflections and transmissions due to either destructive or constructive interferences, and associate them with Fano resonances, also demonstrating how these resonances can be tuned by nonlinear defects

  5. Tuning magnetofluidic spreading in microchannels

    Science.gov (United States)

    Wang, Zhaomeng; Varma, V. B.; Wang, Z. P.; Ramanujan, R. V.

    2015-12-01

    Magnetofluidic spreading (MFS) is a phenomenon in which a uniform magnetic field is used to induce spreading of a ferrofluid core cladded by diamagnetic fluidic streams in a three-stream channel. Applications of MFS include micromixing, cell sorting and novel microfluidic lab-on-a-chip design. However, the relative importance of the parameters which govern MFS is still unclear, leading to non-optimal control of MFS. Hence, in this work, the effect of various key parameters on MFS was experimentally and numerically studied. Our multi-physics model, which combines magnetic and fluidic analysis, showed excellent agreement between theory and experiment. It was found that spreading was mainly due to cross-sectional convection induced by magnetic forces, and can be enhanced by tuning various parameters. Smaller flow rate ratio, higher magnetic field, higher core stream or lower cladding stream dynamic viscosity, and larger magnetic particle size can increase MFS. These results can be used to tune magnetofluidic spreading in microchannels.

  6. Continuous fine ash depressurization system

    Science.gov (United States)

    Liu, Guohai; Peng, Wan Wang; Vimalchand, Pannalal

    2011-11-29

    A system for depressurizing and cooling a high pressure, high temperature fine solid particles stream having entrained gas therein. In one aspect, the system has an apparatus for cooling the high pressure, high temperature fine solid particles stream having entrained gas therein and a pressure letdown device for depressurization by separating the cooled fine solid particles from a portion of the fine solid particles stream having entrained gas therein, resulting in a lower temperature, lower pressure outlet of solid particles for disposal or handling by downstream equipment.

  7. Analysis of the electric field and improvement of the fine tuner for FT cavity in the ring cyclotron in RCNP

    International Nuclear Information System (INIS)

    Flat-Top(FT) cavity in the ring cyclotron at RCNP was improved in March, 2014. The fine tuning system was changed from the system with a cylindrical block (compensator) to the one with the shorting panels. Its purpose was to make it easy to modify the frequency and to decrease the influence on the electric field and the impedance of the cavity when the fine tuning works. The shorting panels not only change the resonant frequency but also modulate the frequency and keep an impedance phase. The cylindrical block was also improved to be used in modifying the accelerating electric field. The electric field in FT cavity was studied to design the improvement plan by the simulation before this work. The new fine tuning system worked for a time but it is necessary to be optimized. The examination of the electric field by the modified cylindrical block is in the planning stage. (author)

  8. A novel coarse-to-fine method for registration of multispectral images

    Science.gov (United States)

    Jin, Hongbin; Fan, Chunxiao; Li, Yong; Xu, Liangpeng

    2016-07-01

    Due to non-linear intensity changes between multispectral images, the existed descriptors often yield low matching performance. In order to build reliable keypoint mappings on multispectral images, a novel coarse-to-fine method is designed using projective transformation and the information of edge overlap. The method consists of a coarse process and a fine-tuning process. In the coarse process, initial keypoint mappings are built with the descriptors associated with keypoints and the relative distance constraints are employed on them to remove outliers. In the fine-tuning process, the edge overlap information is utilized as similarity metric and an iterative framework is applied to search correct keypoint mappings. The performance of the proposed is investigated with keypoints extracted by speeded-up robust features. The experiment results show that the proposed method can build more reliable keypoint mappings on multispectral images than existed methods.

  9. POET: Parameterized Optimization for Empirical Tuning

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Q; Seymour, K; You, H; Vuduc, R; Quinlan, D

    2007-01-29

    The excessive complexity of both machine architectures and applications have made it difficult for compilers to statically model and predict application behavior. This observation motivates the recent interest in performance tuning using empirical techniques. We present a new embedded scripting language, POET (Parameterized Optimization for Empirical Tuning), for parameterizing complex code transformations so that they can be empirically tuned. The POET language aims to significantly improve the generality, flexibility, and efficiency of existing empirical tuning systems. We have used the language to parameterize and to empirically tune three loop optimizations-interchange, blocking, and unrolling-for two linear algebra kernels. We show experimentally that the time required to tune these optimizations using POET, which does not require any program analysis, is significantly shorter than that when using a full compiler-based source-code optimizer which performs sophisticated program analysis and optimizations.

  10. Mechanical Tuning of Substrate Integrated Waveguide Filters

    OpenAIRE

    Mira, Fermín; Mateu, Jordi; Collado, Carlos

    2015-01-01

    This paper presents a novel approach for tuning substrate integrated waveguide resonators, realized by placing an additional metallized via-hole on the waveguide cavity. The approach presented here can be applied as a trimming technique, as well as to develop filter designs with tunable center frequencies and tunable bandwidths. Three different filters are designed and implemented, demonstrating excellent trimming, 10% tuning of the center frequency, and 100% tuning of the bandwidth, respecti...

  11. Adaptive Neuro-Fuzzy Model Tuning for Early-Warning of Financial Crises

    OpenAIRE

    Erika SZTOJANOV; Stamatescu, Grigore

    2015-01-01

    The paper introduces an early-warning method using multiple financial crises indicators which outputs relevant alerts compared to a precise indication of crisis inception, serving as an effective tool for decision makers. By leveraging fuzzy logic techniques, we design a multi-level fuzzy decision support system based on the evolution of credit growth, housing prices and GDP gap. A neuro-fuzzy approach allows fine tuning of the individual fuzzy sub-systems towards adaptive structures which ca...

  12. Realization and tuning of superconducting closed cavities at a given millimeter wavelength

    International Nuclear Information System (INIS)

    A high Q niobium cylindrical millimeter wave cavity needed for maser experiments using Rydberg atoms has been realized. After machining and electron beam welding, the internal dimensions are adjusted by chemical polishing. Fine tuning is obtained by plastic deformation. Each step is controlled by microwave transmission. The obtained Q0 in the TE121 mode at 68.415 GHz ranges from 3 x 107 to 3 x 108 at 1.7 K. 12 references, 6 figures, 1 table

  13. Mechanism for Tuning the Hydrophobicity of Microfibrillated Cellulose Films by Controlled Thermal Release of Encapsulated Wax

    OpenAIRE

    Vibhore Kumar Rastogi; Dirk Stanssens; Pieter Samyn

    2014-01-01

    Although films of microfibrillated cellulose (MFC) have good oxygen barrier properties due to its fine network structure, properties strongly deteriorate after absorption of water. In this work, a new approach has been followed for actively tuning the water resistance of a MFC fiber network by the inclusion of dispersed organic nanoparticles with encapsulated plant wax. The modified pulp suspensions have been casted into films and were subsequently cured at 40 to 220 °C. As such, static water...

  14. A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response

    Science.gov (United States)

    Ferguson, Michael I.; MacDonald, Eric; Foor, David

    2005-01-01

    We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  15. Incident-angle dependent color tuning from a single plasmonic chip

    International Nuclear Information System (INIS)

    We report on a broad color tuning effect covering the visible range from a single plasmonic chip. By simply tilting the orientation of the designed plasmonic chip within a certain range, the photon–plasmon coupling interactions between the incident light and the plasmonic nanostructures on the chip can be finely tuned, resulting in an angle-dependent continuous color filtering effect. The physical mechanism of the device is investigated through the full-wave calculations, which provide important guidance for the design and optimization of the proposed devices. The broad color tuning from the demonstrated single chip will potentially benefit visualization and display technologies, and is particularly useful for the construction of reflection-based spatial light modulators. (paper)

  16. Tune Your Brown Clustering, Please

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden

    2015-01-01

    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly...... unexplored. Accordingly, we present information for practitioners on the behaviour of Brown clustering in order to assist hyper-parametre tuning, in the form of a theoretical model of Brown clustering utility. This model is then evaluated empirically in two sequence labelling tasks over two text types. We...... explore the dynamic between the input corpus size, chosen number of classes, and quality of the resulting clusters, which has an impact for any approach using Brown clustering. In every scenario that we examine, our results reveal that the values most commonly used for the clustering are sub-optimal....

  17. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    connection with sloshing has used cumbersome, computationally expensive and somewhat outdated numerical solution schemes. We compare a state of the art, high order, shock capturing method with a simpler low order scheme and find that the simple scheme is adequate for simulating shallow water sloshing. The...... TLDs studied in this thesis essentially consist of a rectangular container partially filled with liquid in the form of plain tap water. The frequency of the liquid sloshing motion, which is adjusted by varying the length of the tank and the depth of the wa- ter, is tuned to the structural frequency of...... interaction between a structure and fluid sloshing forces. A mathematical model describing liquid sloshing in shallow water is formulated by simplifying the full Navier-Stokes equations expressed in a moving frame of reference. The resulting set of equations are known as the Nonlinear Shallow Water (NSW...

  18. Saccade Preparation Reshapes Sensory Tuning.

    Science.gov (United States)

    Li, Hsin-Hung; Barbot, Antoine; Carrasco, Marisa

    2016-06-20

    Human observers make large rapid eye movements-saccades-to bring behaviorally relevant information into the fovea, where spatial resolution is high. In some visual tasks [1-4], performance at the location of a saccade target improves before the eyes move. Although these findings provide evidence that extra-retinal signals evoked by saccades can enhance visual perception, it remains unknown whether and how presaccadic modulations change the processing of feature information and thus modulate visual representations. To answer this question, one must go beyond the use of methods that only probe performance accuracy (d') in different tasks. Here, using a psychophysical reverse correlation approach [5-8], we investigated how saccade preparation influences the processing of orientation and spatial frequency-two building blocks of early vision. We found that saccade preparation selectively enhanced the gain of high spatial frequency information and narrowed orientation tuning at the upcoming saccade landing position. These modulations were time locked to saccade onset, peaking right before the eyes moved (-50-0 ms). Moreover, merely deploying covert attention within the same temporal interval without preparing a saccade did not alter performance. The observed presaccadic tuning changes may correspond to the presaccadic enhancement [9-11] and receptive field shifts reported in neurophysiological studies [12-14]. Saccade preparation may support transaccadic integration by reshaping the representation of the saccade target to be more fovea-like just before the eyes move. The presaccadic modulations on spatial frequency and orientation processing illustrate a strong perception-action coupling by revealing that the visual system dynamically reshapes feature selectivity contingent upon eye movements. PMID:27265397

  19. Topological order in the insulating Josephson junction array

    OpenAIRE

    Douçot, B.; Feigel'Man, M.V.; Ioffe, L. B.

    2002-01-01

    We propose a Josephson junction array which can be tuned into an unconventional insulating state by varying external magnetic field. This insulating state retains a gap to half vortices; as a consequence, such array with non-trivial global geometry exhibits a ground state degeneracy. This degeneracy is protected from the effects of external noise. We compute the gaps separating higher energy states from the degenerate ground state and we discuss experiments probing the unusual properties of t...

  20. A planar parasitic array antenna for tunable radiation pattern

    OpenAIRE

    Seongheon, Jeong; Dohyuk, Ha; Chappell, W. J.

    2009-01-01

    In this paper, a cross-type parasitic array antenna is designed to tune the radiation pattern which attenuates incoming interference and improve packet reception. Using only a 5-element planar array allows full 2-dimensional beam steering. The measurement shows that approximately 30 degrees of beam steering can be achieved by terminating parasitic elements with commercial Si-based varactors allowing rapid and auto...

  1. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    OpenAIRE

    Lani, Shane W.; Wasequr Rashid, M.; Hasler, Jennifer; Sabra, Karim G.; Levent Degertekin, F.

    2014-01-01

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally ...

  2. Mechanical Control of Graphene on Engineered Pyramidal Strain Arrays

    OpenAIRE

    Gill, Stephen T.; Hinnefeld, John H.; Zhu, Shuze; Swanson, William T.; Li, Teng; Mason, Nadya

    2015-01-01

    Strain can tune desirable electronic behavior in graphene, but there has been limited progress in controlling strain in graphene devices. In this paper, we study the mechanical response of graphene on substrates patterned with arrays of mesoscale pyramids. Using atomic force microscopy, we demonstrate that the morphology of graphene can be controlled from conformal to suspended depending on the arrangement of pyramids and the aspect ratio of the array. Non-uniform strains in graphene suspende...

  3. Longitudinal-mode control in integrated semiconductor laser phased arrays by phase velocity matching

    Science.gov (United States)

    Kapon, E.; Margalit, S.; Yariv, A.; Katz, J.

    1984-01-01

    The spectrum of semiconductor-laser arrays with separate contacts is investigated. It is demonstrated that the individual laser currents can be selected such that the array operates in a single longitudinal mode, in contrast to the multimode nature of its individual constituents. Moreover, it is possible to tune the lasing frequency by varying the laser currents. Wavelength tuning range of about 50 A, with tuning rate of about 5 A per milliampere, is demonstrated. It is suggested that these spectral features, characteristic of lasers which are coupled in parallel, result from the strong frequency dependence of their spatial mode pattern near the phase-matching frequency of their coupled waveguides.

  4. Tuning upconversion through energy migration in core-shell nanoparticles

    KAUST Repository

    Wang, Feng

    2011-10-23

    Photon upconversion is promising for applications such as biological imaging, data storage or solar cells. Here, we have investigated upconversion processes in a broad range of gadolinium-based nanoparticles of varying composition. We show that by rational design of a core-shell structure with a set of lanthanide ions incorporated into separated layers at precisely defined concentrations, efficient upconversion emission can be realized through gadolinium sublattice-mediated energy migration for a wide range of lanthanide activators without long-lived intermediary energy states. Furthermore, the use of the core-shell structure allows the elimination of deleterious cross-relaxation. This effect enables fine-tuning of upconversion emission through trapping of the migrating energy by the activators. Indeed, the findings described here suggest a general approach to constructing a new class of luminescent materials with tunable upconversion emissions by controlled manipulation of energy transfer within a nanoscopic region. © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Effect of Tuned Parameters on a LSA MCQ Answering Model

    CERN Document Server

    Lifchitz, Alain; Denhière, Guy

    2008-01-01

    This paper presents the current state of a work in progress, whose objective is to better understand the effects of factors that significantly influence the performance of the Latent Semantic Analysis (LSA). A difficult task, which is answering to biology MCQ, was used to test the semantic properties of truncated singular space and to study the relative influence of several parameters. An original and dedicated software eLSA1 has been used to fine tune the LSA semantic space for MCQ purpose. With the parameters of best configuration, the performances of our model were equal or superior to 7th and 8th grades students. Besides, global entropy weighting of answers was an important factor in the model's success.

  6. Integration of spintronic interface for nanomagnetic arrays

    Directory of Open Access Journals (Sweden)

    Andrew Lyle

    2011-12-01

    Full Text Available An experimental demonstration utilizing a spintronic input/output (I/O interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors.

  7. Human milk oligosaccharides: The role in the fine-tuning of innate immune responses.

    Science.gov (United States)

    Kulinich, Anna; Liu, Li

    2016-09-01

    In order to secure the health of newborns over the period of immune immaturity during the first months of life, a mother provides her offspring with passive protection: bioactive molecules transferred through the placenta and breast milk. It is well known that human milk contains immunoglobulins (Ig), immune cells and diverse cytokines, which affect newborn directly or indirectly and contribute to the maturation of the immune system. However, in addition to the above-stated molecules, human milk oligosaccharides (HMOs), a complex mixture of free indigestible carbohydrates with multiple functions, play exceptional roles in the functioning of the infants' immune system. These biological molecules have been studied over decades, however, interest in HMOs does not seem to have abated. Although biological activities of oligosaccharides from human milk have been explicitly reviewed, information regarding the role of HMOs in inflammation remains rather fragmented. The purpose of this review is to compile existing knowledge about the role of certain species of HMOs, including fucosylated, galactosylated and sialylated oligosaccharides, and their signaling pathways in immunity and inflammation. The advances in applying this information to the treatment of diseases in infants as well as adults were also reviewed here. PMID:27448325

  8. An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment

    Science.gov (United States)

    Amraoui, M.; DaCamara, C. C.; Ermida, S. L.

    2012-04-01

    Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding contextual tests in the time domain are discussed. The study lays the grounds to the development of improved quality flags that will be integrated in the FD&M product in the nearby future.

  9. Fine tuning of PPAR ligands for type 2 diabetes and metabolic syndrome.

    Science.gov (United States)

    Ramachandran, Uma; Kumar, Rakesh; Mittal, Amit

    2006-05-01

    Type 2 diabetes mellitus (T2DM) is highly prevalent chronic disease. Recently, many biological targets are discovered for treatment of this disease. The identification of the nuclear hormone receptor peroxisome proliferator activated receptors (PPAR) and their subtypes alpha, gamma and delta or beta as targets for controlling lipid, glucose and energy homeostasis has proved to be exciting. As hyperlipidaemia, obesity and insulin resistance are independent risk factors for coronary heart disease and macrovascular complications of diabetes; new agents that increase insulin sensitivity as well as decrease hyperlipidaemia by distinct yet complementary mechanism are being studied as they may provide improved therapy for T2DM and related disorders. In this article, we review highly potent PPARgamma agonists, PPARalpha/gamma dual agonists, PPAR pan agonists, alternative PPAR ligands like partial agonists or selective PPAR modulators (SPPARMs) and antagonists from a chemist point of view. PMID:16719831

  10. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    International Nuclear Information System (INIS)

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry

  11. The Yaa locus and IFNα fine tune germinal center B cell selection in murine SLE

    OpenAIRE

    Moisini, Ioana; Huang, Weiqing; Bethunaickan, Ramalingam; Sahu, Ranjit; Ricketts, Peta-Gay; Akerman, Meredith; Marion, Tony; Lesser, Martin; DAVIDSON, ANNE

    2012-01-01

    Male NZW/BXSB.Yaa (W/B) mice express two copies of TLR7 and develop pathogenic autoantibodies whereas females with only one copy of TLR7 have attenuated disease. Our goal was to analyze the regulation of the autoantibody response in male and female W/B mice bearing the autoreactive site-directed heavy chain transgene 3H9. Serum anti-dsDNA antibodies appeared in males at 12 weeks and most had high titer IgG anti-dsDNA and anti-cardiolipin antibodies and developed >300mg/dl proteinuria by 8 mon...

  12. Stellar Helium Burning in Other Universes: A solution to the triple alpha fine-tuning problem

    CERN Document Server

    Adams, Fred C

    2016-01-01

    Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where $^8$Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known $^{12}$C resonance at 7.6 MeV. This resonance is necessary because $^8$Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200 -- 300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium ($\\sim100$ keV) would allow $^8$Be to be stable. A stable isotope with $A=8$ would obviate the need for the triple alpha process in general, and the $^{12}$C resonance in particular, for carbon production. This paper explores the possibility that $^8$Be can be stable in other universes. Simple nuclear considerat...

  13. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sayantan, E-mail: sayantan_bose@hms.harvard.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Jardetzky, Theodore S. [Department of Structural Biology and Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Lamb, Robert A., E-mail: ralamb@northwestern.edu [Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500 (United States); Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500 (United States)

    2015-05-15

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.

  14. From Rare to Dominant: a Fine-Tuned Soil Bacterial Bloom during Petroleum Hydrocarbon Bioremediation.

    Science.gov (United States)

    Fuentes, Sebastián; Barra, Bárbara; Caporaso, J Gregory; Seeger, Michael

    2016-02-01

    Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all diesel-polluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ∼ 0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints. PMID:26590285

  15. Fine-tuning of choline metabolism is important for pneumococcal colonization.

    Science.gov (United States)

    Johnston, Calum; Hauser, Christoph; Hermans, Peter W M; Martin, Bernard; Polard, Patrice; Bootsma, Hester J; Claverys, Jean-Pierre

    2016-06-01

    The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce. PMID:26919406

  16. Finely tuned fiber-based porous structures for bone tissue engineering applications

    OpenAIRE

    Ribeiro, Viviana Pinto; Silva-Correia, Joana; Morais, Alain José Silva; Correlo, V.M.; Marques, A.P.; Ribeiro, A. S.; Silva, Carla; Durães, Nelson; Bonifácio, Graça; Sousa, Rui Pedro Romero Amandi; Oliveira, J. M.; Oliveira, Ana Leite Almeida Monteiro; Reis, R. L.

    2016-01-01

    Scaffolds developed for bone tissue engineering (TE) must possess specific structural properties to allow neo-tissue formation and integration within the material[1]. Several polymeric systems and processing methodologies have been proposed to develop bone TE scaffolds. Nevertheless, the so far proposed strategies do not fulfil all the requirements for effective bone regeneration. Textile technologies have recently emerged as an industrial route for producing more complex fibre-based porous ...

  17. Fine-tuning the space, time, and host distribution of mycobacteria in wildlife

    Directory of Open Access Journals (Sweden)

    de la Fuente Jose

    2011-02-01

    Full Text Available Abstract Background We describe the diversity of two kinds of mycobacteria isolates, environmental mycobacteria and Mycobacterium bovis collected from wild boar, fallow deer, red deer and cattle in Doñana National Park (DNP, Spain, analyzing their association with temporal, spatial and environmental factors. Results High diversity of environmental mycobacteria species and M. bovis typing patterns (TPs were found. When assessing the factors underlying the presence of the most common types of both environmental mycobacteria and M. bovis TPs in DNP, we evidenced (i host species differences in the occurrence, (ii spatial structuration and (iii differences in the degree of spatial association of specific types between host species. Co-infection of a single host by two M. bovis TPs occurred in all three wild ungulate species. In wild boar and red deer, isolation of one group of mycobacteria occurred more frequently in individuals not infected by the other group. While only three TPs were detected in wildlife between 1998 and 2003, up to 8 different ones were found during 2006-2007. The opposite was observed in cattle. Belonging to an M. bovis-infected social group was a significant risk factor for mycobacterial infection in red deer and wild boar, but not for fallow deer. M. bovis TPs were usually found closer to water marshland than MOTT. Conclusions The diversity of mycobacteria described herein is indicative of multiple introduction events and a complex multi-host and multi-pathogen epidemiology in DNP. Significant changes in the mycobacterial isolate community may have taken place, even in a short time period (1998 to 2007. Aspects of host social organization should be taken into account in wildlife epidemiology. Wildlife in DNP is frequently exposed to different species of non-tuberculous, environmental mycobacteria, which could interact with the immune response to pathogenic mycobacteria, although the effects are unknown. This research highlights the suitability of molecular typing for surveys at small spatial and temporal scales.

  18. Fine tuning gene expression through short DNA-protein binding cycles.

    Science.gov (United States)

    Michel, Denis

    2009-07-01

    Certain transcription factors have recently been shown to interact with DNA in living cells, through very short binding cycles, contrasting with the data previously obtained in vitro, and with the view of a stepwise building of transcription initiation complexes. These short cycles are triggered by active dissociation mechanisms, suggesting that they ensure important biological functions. Various interpretations of these observations have been proposed, including a mechanism allowing the cell to switch off gene expression after removal of the inducer, or increasing the availability of free transcription factors. The interpretation examined here is that the brevity of the transcription factor turnovers favors the determinism of gene expression. For the genes with open chromatin and subject to this mode of interaction, the differential dynamics between promoter occupancy and the following processes mediating protein accumulation, can be essential for the dosage of gene expression. Biological activities and quantitative conditions allowing to increase the frequency of DNA-protein binding cycles are proposed. The unexpected dynamics of certain DNA-protein interactions can provide a concrete example of the notion of apparent gradation of single-site occupancy, which is a general solution allowing to extend the mass action determinism to low copy number molecules. PMID:19376190

  19. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1H-15N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1H-15N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  20. WNT signaling : activation, repression and fine-tuning of TCF transcription factors

    OpenAIRE

    Brantjes, H.M.

    2003-01-01

    In the absence of a Wnt signal ß-catenin is phosphorylated by GSK3-ß, in a complex also containing Axin and APC. Upon phosphorylation, ß-catenin is primed for ubiquitination and subsequent degradation by the proteasome. In the nucleus, Tcf proteins bind Groucho family members and repress target genes. When a Wnt protein reaches the cell, it associates with the transmembrane receptors Frizzled and LRP. The destruction complex of GSK3-?, APC and Axin is subsequently inactivated via Dishevelled,...

  1. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    OpenAIRE

    Iryna Bohovych; Fernandez, Mario R.; Rahn, Jennifer J.; Stackley, Krista D.; Bestman, Jennifer E.; Annadurai Anandhan; Rodrigo Franco; Claypool, Steven M.; Robert E. Lewis; Chan, Sherine S. L.; Oleh Khalimonchuk

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the res...

  2. SRC-2 orchestrates polygenic inputs for fine-tuning glucose homeostasis.

    Science.gov (United States)

    Fleet, Tiffany; Zhang, Bin; Lin, Fumin; Zhu, Bokai; Dasgupta, Subhamoy; Stashi, Erin; Tackett, Bryan; Thevananther, Sundararajah; Rajapakshe, Kimal I; Gonzales, Naomi; Dean, Adam; Mao, Jianqiang; Timchenko, Nikolai; Malovannaya, Anna; Qin, Jun; Coarfa, Cristian; DeMayo, Francesco; Dacso, Clifford C; Foulds, Charles E; O'Malley, Bert W; York, Brian

    2015-11-01

    Despite extensive efforts to understand the monogenic contributions to perturbed glucose homeostasis, the complexity of genetic events that fractionally contribute to the spectrum of this pathology remain poorly understood. Proper maintenance of glucose homeostasis is the central feature of a constellation of comorbidities that define the metabolic syndrome. The ability of the liver to balance carbohydrate uptake and release during the feeding-to-fasting transition is essential to the regulation of peripheral glucose availability. The liver coordinates the expression of gene programs that control glucose absorption, storage, and secretion. Herein, we demonstrate that Steroid Receptor Coactivator 2 (SRC-2) orchestrates a hierarchy of nutritionally responsive transcriptional complexes to precisely modulate plasma glucose availability. Using DNA pull-down technology coupled with mass spectrometry, we have identified SRC-2 as an indispensable integrator of transcriptional complexes that control the rate-limiting steps of hepatic glucose release and accretion. Collectively, these findings position SRC-2 as a major regulator of polygenic inputs to metabolic gene regulation and perhaps identify a previously unappreciated model that helps to explain the clinical spectrum of glucose dysregulation. PMID:26487680

  3. Synthesis and characterization of nitroaromatic peptoids: fine tuning peptoid secondary structure through monomer position and functionality.

    Science.gov (United States)

    Fowler, Sarah A; Luechapanichkul, Rinrada; Blackwell, Helen E

    2009-02-20

    N-substituted glycine oligomers, or peptoids, have emerged as an important class of foldamers for the study of biomolecular interactions and for potential use as therapeutic agents. However, the design of peptoids with well-defined conformations a priori remains a formidable challenge. New approaches are required to address this problem, and the systematic study of the role of individual monomer units in the global peptoid folding process represents one strategy. Here, we report our efforts toward this approach through the design, synthesis, and characterization of peptoids containing nitroaromatic monomer units. This work required the synthesis of a new chiral amine building block, (S)-1-(2-nitrophenyl)ethanamine (s2ne), which could be readily installed into peptoids using standard solid-phase peptoid synthesis techniques. We designed a series of peptoid nonamers that allowed us to probe the effects of this relatively electron-deficient and sterically encumbered alpha-chiral side chain on peptoid structure, namely, the peptoid threaded loop and helix. Circular dichroism spectroscopy of the peptoids revealed that the nitroaromatic monomer has a significant effect on peptoid secondary structure. Specifically, the threaded loop structure was disrupted in a nonamer containing alternating N-(S)-1-phenylethylglycine (Nspe) and Ns2ne monomers, and the major conformation was helical instead. Indeed, placement of a single Ns2ne at the N-terminal position of (Nspe)(9) resulted in a destabilized form of the threaded loop structure relative to the homononamer (Nspe)(9). Conversely, we observed that incorporation of N-(S)-1-(4-nitrophenyl)ethylglycine (Nsnp, a p-nitro monomer) at the N-terminal position stabilized the threaded loop structure relative to (Nspe)(9). Additional experiments revealed that nitroaromatic side chains can influence peptoid nonamer folding by modulating the strength of key intramolecular hydrogen bonds in the peptoid threaded loop structure. Steric interactions were also implicated for the Ns2ne monomer. Overall, this study provides further evidence that aromatic side-chain structure, even if perturbed in a single monomer unit, can strongly influence local peptoid backbone conformation. PMID:19159244

  4. Spelling Development: Fine-Tuning Strategy-Use and Capitalising on the Connections between Words

    Science.gov (United States)

    Devonshire, Victoria; Fluck, Michael

    2010-01-01

    English spelling, as well as in many other languages, consists of three elements: morphology, etymology and phonology. Spelling instruction, however, focuses primarily on phonology and there is a dearth of intervention studies that examine the effect of explicitly teaching all three elements to children. We report two studies, which examined 5- to…

  5. Intracellular accommodation of rhizobia in legume host cell: the fine-tuning of the endomembrane system

    NARCIS (Netherlands)

    Gavrin, A.Y.

    2015-01-01

    The symbiosis of legumes with rhizobia leads to the formation of root nodules. Rhizobia which are hosted inside specialized infected cells are surrounded by hostderived membranes, forming symbiosomes. Although it is known that symbiosome formation involves proliferation of membranes and changing of

  6. Fine tuning of a measurement control program at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper suggests a revised measurement control program (MCP) for balance at the Los Alamos National Laboratory plutonium facility. The revised MCP is based on an analysis of data taken from June 1981 through August 1983. The most important finding is that significant measurement bias occurs in nearly every balance. An important cause of this bias has been traced to truncation errors, and a detailed discussion of the effects of truncation errors is presented. We also discuss other sources of bias and their resolution, and finally, we suggest methods for determining accuracy, precision, and randomness of measurements of weights and the response to failures of statistical tests

  7. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps.

    Science.gov (United States)

    Mitra, Suman; Ring, Aaron M; Amarnath, Shoba; Spangler, Jamie B; Li, Peng; Ju, Wei; Fischer, Suzanne; Oh, Jangsuk; Spolski, Rosanne; Weiskopf, Kipp; Kohrt, Holbrook; Foley, Jason E; Rajagopalan, Sumati; Long, Eric O; Fowler, Daniel H; Waldmann, Thomas A; Garcia, K Christopher; Leonard, Warren J

    2015-05-19

    Interleukin-2 (IL-2) regulates lymphocyte function by signaling through heterodimerization of the IL-2Rβ and γc receptor subunits. IL-2 is of considerable therapeutic interest, but harnessing its actions in a controllable manner remains a challenge. Previously, we have engineered an IL-2 "superkine" with enhanced affinity for IL-2Rβ. Here, we describe next-generation IL-2 variants that function as "receptor signaling clamps." They retained high affinity for IL-2Rβ, inhibiting binding of endogenous IL-2, but their interaction with γc was weakened, attenuating IL-2Rβ-γc heterodimerization. These IL-2 analogs acted as partial agonists and differentially affected lymphocytes poised at distinct activation thresholds. Moreover, one variant, H9-RETR, antagonized IL-2 and IL-15 better than blocking antibodies against IL-2Rα or IL-2Rβ. Furthermore, this mutein prolonged survival in a model of graft-versus-host disease and blocked spontaneous proliferation of smoldering adult T cell leukemia (ATL) T cells. This receptor-clamping approach might be a general mechanism-based strategy for engineering cytokine partial agonists for therapeutic immunomodulation. PMID:25992859

  8. Fine-tuning Central Banks Web Communications: Usability Tests & Content Management

    Directory of Open Access Journals (Sweden)

    Christian A. Bolu

    2012-10-01

    Full Text Available Business processes especially in the Central Banks are more fully integrated and streamlined than ever before. Also, realistic system landscapes often consist of many systems. Disconnected silos of unstructured information continue to pile up for each organizational function and different interfaces are often implemented using the technology that is considered to be ideal for the respective interface. There appears to be lack of Enterprise Content Management strategy thus leading to significant business challenges such as untrustworthy business information due to inaccurate, outdated, conflicting information, longer financial cycles and generally inefficient processes, system performance degradations and poor data organization, inconsistent, confusing user interface as well as frequent context switching.There is therefore the need for an effective enterprise content management strategy. Web content management systems are often used for storing, controlling, versioning, and publishing industry-specific documentations. Usability testing of web sites is an essential element of quality assurance and a true test of how people actually use Central Banks’ web site. It is a test of whether outsiders can successfully use the Banks’ Web site. Although formal usability tests are expensive, time-consuming and often prohibitive, periodic user testing is an important element in developing and maintaining a reader-friendly Website. Usability should emphasise clarity of communication, accessibility, consistency, navigation design, maintenance and good visual presentation.A solution to corporate intranet/internet chaos are Enterprise Portals. An enterprise portal is the gateway to the end user. It offers a central point of access to information, applications and services in an enterprise. It is a one-stop shopping for knowledge workers; the portal is both a gateway to and a destination on the enterprise network that provides transparent, tailored access to distributed digital resource. An Enterprise Portal provides numerous benefits to users, allowing them to interact with relevant information and application, both internal and external to the company, collaborate with others both inside and outside the Central Banks through self-service publishing customise-and-tailor a Web page with information that is easily found.This paper discusses the issue of Usability Tests and Web Content Management that enhance user productivity. Drawing from some award winning intranets some areas for best practices for the financial services such as the African Central Banks are high-lightened vis-à-vis the infrastructural problems facing the African Continent.

  9. Fine-tuning Central Banks Web Communications: Usability Tests & Content Management

    OpenAIRE

    Christian A. Bolu; Rajiv Sharma; Rishi Malik

    2012-01-01

    Business processes especially in the Central Banks are more fully integrated and streamlined than ever before. Also, realistic system landscapes often consist of many systems. Disconnected silos of unstructured information continue to pile up for each organizational function and different interfaces are often implemented using the technology that is considered to be ideal for the respective interface. There appears to be lack of Enterprise Content Management strategy thus leading to significa...

  10. UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes

    DEFF Research Database (Denmark)

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana;

    2014-01-01

    intracellular calcium responses to P2 receptor agonists. These investigations demonstrated that MLO-Y4 osteocytes express functional P2Y2, P2Y4, P2Y12 and P2Y13 receptors in addition to the previously reported P2X receptors. Further, we found that osteocytes respond to nucleotides such as ATP, UTP and ADP by...

  11. UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes

    OpenAIRE

    Kringelbach, Tina M.; Aslan, Derya; Novak, Ivana; Schwarz, Peter; Jørgensen, Niklas R.

    2013-01-01

    Osteocytes reside as a cellular network throughout the mineralised matrix of bone and are considered the primary mechanosensors of this tissue. They sense mechanical stimulation such as fluid flow and are able to regulate osteoblast and osteoclast functions on the bone surface. Previously, we found that ATP is released load-dependently from osteocytes from the onset of mechanical stimulation. Therefore, the aim of the present study was to investigate whether and how ATP release can be evoked ...

  12. UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes.

    Science.gov (United States)

    Kringelbach, Tina M; Aslan, Derya; Novak, Ivana; Schwarz, Peter; Jørgensen, Niklas R

    2014-01-01

    Osteocytes reside as a cellular network throughout the mineralised matrix of bone and are considered the primary mechanosensors of this tissue. They sense mechanical stimulation such as fluid flow and are able to regulate osteoblast and osteoclast functions on the bone surface. Previously, we found that ATP is released load-dependently from osteocytes from the onset of mechanical stimulation. Therefore, the aim of the present study was to investigate whether and how ATP release can be evoked in osteocytes via purinergic receptor activation. ATP release was quantified by real-time determination using the luciferin-luciferase assay and the release pathway was investigated using pharmacological inhibition. The P2Y receptor profile was analysed using gene expression analysis by reverse transcription polymerase chain reaction, while functional testing was performed using measurements of intracellular calcium responses to P2 receptor agonists. These investigations demonstrated that MLO-Y4 osteocytes express functional P2Y(2), P2Y(4), P2Y(12) and P2Y(13) receptors in addition to the previously reported P2X receptors. Further, we found that osteocytes respond to nucleotides such as ATP, UTP and ADP by increasing the intracellular calcium concentration and that they release ATP dose-dependently upon stimulation with 1-10 μM UTP. In addition to this, osteocytes release large amounts of ATP upon cell rupture, which might also be a source for other nucleotides, such as UTP. These findings indicate that mechanically induced ATP signals may be propagated by P2 receptor activation and further ATP release in the osteocyte network and implicate purinergic signalling as a central signalling pathway in osteocyte mechanotransduction. PMID:24374572

  13. Fine Tuning the IRIS Education and Outreach Program: Choosing an Optimal Balance of Activities

    Science.gov (United States)

    Taber, J. J.; Hubenthal, M.; Aster, R. C.

    2003-12-01

    The IRIS Education and Outreach (E&O) Program is committed to making significant and lasting contributions to science education, science literacy and the general public's understanding of the Earth, using seismology and the unique resources of the IRIS consortium. The E&O program has activities that span all educational levels from public outreach to K-12 and college education. The activities are designed for a wide range of individual interaction time, from minutes for a museum display to an entire summer for an undergraduate research internship. In general, the longer the interaction time, the smaller the audience. The educational goals for a particular audience, as stated in the E&O Program plan, define whether an activity is focused more on breadth of audience or depth of content. An activity's ability to meet the educational goals of the E&O program is the most important criteria in assessing its value. However, to help determine which activities are most worthy of continued support and to help select new activities to engage in, we have begun estimating the cost of providing each hour of interaction time for an activity. The lower the cost for each person-hour of interaction, the more efficient the activity, assuming maximum effectiveness of each activity. Thus the importance of assessment is magnified, as a more effective activity could cost more per person-hour and still be supported if no equally effective but more efficient activity is viable. As an example of how resources are divided between different activities, two activities that have similar budgets but very different goals, content depth and audience sizes are our museum program and our professional development workshops. The museum program, a partnership between IRIS, the US Geological Survey, and several major museums across the nation, reaches large audiences (up to 16 million people per year) via 1 traveling and 4 permanent exhibits. The exhibits include real-time earthquake location maps and continuous seismograms from multiple global seismograph stations, providing wide exposure to seismology, though for a very limited time per individual. One-day professional development workshops provide content knowledge and classroom activities modeled using inquiry-based instructional practices. Approximately 140 teachers and college faculty attended IRIS-led workshops in the past year. The time spent with a limited number of teachers is leveraged through each teacher's interactions with a much larger number of students. When teacher-student interactions for 1-2 years after attending a workshop are included in the estimation of person-hours of interaction time, the museum and workshop programs generate a similar total interaction with the target audiences. Thus by this simple measure, the two programs are roughly equally efficient uses of E&O program resources, even though the target audiences, level of content depth and number of people engaged are very different. Using this measure, it is possible to assess if the relative cost of different activities matches the relative importance of the goals they are addressing.

  14. Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling

    Czech Academy of Sciences Publication Activity Database

    Charles, C.; Hovořáková, Mária; Ahn, Y.; Lyons, D. B.; Marangoni, P.; Churavá, Svatava; Biehs, B.; Jheon, A.; Lesot, H.; Balooch, G.; Krumlauf, R.; Viriot, L.; Peterková, Renata; Klein, O. D.

    2011-01-01

    Roč. 138, č. 18 (2011), s. 4063-4073. ISSN 0950-1991 R&D Projects: GA ČR GA304/09/1579; GA ČR GA304/07/0223 Grant ostatní: GA MŠk(CZ) MSM0021620843 Institutional research plan: CEZ:AV0Z50390512 Keywords : FGF signaling * Sprouty genes * Incisor Subject RIV: EA - Cell Biology Impact factor: 6.596, year: 2011

  15. Balancing the Stability–Activity Trade-Off by Fine-Tuning Dehalogenase Access Tunnels

    Czech Academy of Sciences Publication Activity Database

    Lišková, V.; Bednář, D.; Prudnikova, Tatyana; Řezáčová, P.; Koudeláková, T.; Šebestová, E.; Kutá-Smatanová, Ivana; Březovský, J.; Chaloupková, R.; Damborský, J.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 648-659. ISSN 1867-3880 Institutional support: RVO:67179843 Keywords : alkanes * enzymes * catalysis * halogenation * molecular dynamics * protein engineering Subject RIV: CE - Biochemistry Impact factor: 4.556, year: 2014

  16. Balancing the Stability-Activity Trade-Off by Fine-Tuning Dehalogenase Access Tunnels

    Czech Academy of Sciences Publication Activity Database

    Liskova, V.; Bednář, D.; Prudníková, T.; Řezáčová, Pavlína; Koudeláková, T.; Šebestová, E.; Smatanová, I.K.; Brezovský, J.; Chaloupková, R.

    2015-01-01

    Roč. 7, č. 4 (2015), s. 648-659. ISSN 1867-3880 Grant ostatní: GA ČR(CZ) GAP207/12/0775; GA MŠk(CZ) LO1214; GA MŠk(CZ) LH14027; European Social Fund(XE) CZ.1.07/2.3.00/30.0037 Institutional support: RVO:68378050 Keywords : alkanes * halogenation * molecular dynamics * enzyme catalysis * protein engineering Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.556, year: 2014

  17. Fine-Tuning Summer Research Programs to Promote Underrepresented Students' Persistence in the STEM Pathway.

    Science.gov (United States)

    Ghee, Medeva; Keels, Micere; Collins, Deborah; Neal-Spence, Cynthia; Baker, Earnestine

    2016-01-01

    Although the importance of undergraduate research experiences in preparing students for graduate study and research careers is well documented, specific examination of program components is needed to assess the impact of these programs on underrepresented (UR) students. The Leadership Alliance, a consortium of leading PhD-granting and minority-serving institutions (MSIs), has leveraged its diverse partnership to place UR students from MSI and non-MSI institutions in competitive research environments through its national Summer Research Early Identification Program. Using longitudinal pre/post data collected from student surveys, we applied social cognitive career theory as a conceptual framework to examine how research engagement, skill development, and mentorship aspects of a summer research program affect students' commitment to pursue research careers. Self-reported knowledge of research skills, time engaged in research activity, and students' understanding of and attitudes toward pursuing graduate study were measured in relation to the classification of students' home undergraduate institution, level of students' pre-existing research experience, and demographic factors. Our results provide evidence of specific programmatic components that are beneficial for UR students from varying academic and cultural backgrounds. This study describes important aspects of summer research programs that will contribute to students' ability to persist in science careers. PMID:27496359

  18. Desalination of masonry structures: Fine tuning of pore size distribution of poultices to substrate properties

    NARCIS (Netherlands)

    Lubelli, B.A.; Hees, R.P.J. van

    2010-01-01

    Desalination is a relatively new intervention in the field of conservation of architectural heritage. Especially the desalination of immovable objects, such as masonry structures, is still a trial-error practice. In the field, different desalination materials and methods are used, sometimes with uns

  19. Reed warbler hosts fine-tune their defenses to track three decades of cuckoo decline.

    Science.gov (United States)

    Thorogood, Rose; Davies, Nicholas B

    2013-12-01

    Interactions between avian hosts and brood parasites can provide a model for how animals adapt to a changing world. Reed warbler (Acrocephalus scirpaceus) hosts employ costly defenses to combat parasitism by common cuckoos (Cuculus canorus). During the past three decades cuckoos have declined markedly across England, reducing parasitism at our study site (Wicken Fen) from 24% of reed warbler nests in 1985 to 1% in 2012. Here we show with experiments that host mobbing and egg rejection defenses have tracked this decline in local parasitism risk: the proportion of reed warbler pairs mobbing adult cuckoos (assessed by responses to cuckoo mounts and models) has declined from 90% to 38%, and the proportion rejecting nonmimetic cuckoo eggs (assessed by responses to model eggs) has declined from 61% to 11%. This is despite no change in response to other nest enemies or mimetic model eggs. Individual variation in both defenses is predicted by parasitism risk during the host's egg-laying period. Furthermore, the response of our study population to temporal variation in parasitism risk can also explain spatial variation in egg rejection behavior in other populations across Europe. We suggest that spatial and temporal variation in parasitism risk has led to the evolution of plasticity in reed warbler defenses. PMID:24299407

  20. Affinity improvement by fine tuning of single-chain variable fragment against aflatoxin B1.

    Science.gov (United States)

    Min, Won-Ki; Na, Kang-In; Yoon, Jung-Hyun; Heo, Yoon-Jee; Lee, Daesang; Kim, Sung-Gun; Seo, Jin-Ho

    2016-10-15

    Aflatoxin B1 (AFB1) produced in Aspergillus flavus is a major hepatocarcinogen found in foods and feed. For effective immunological detection of AFB1 at low concentrations, the development of high affinity antibody for AFB1 is required. Previously, an affinity-maturated single-chain variable fragment containing 6 mutations (scFv-M37) was isolated from an artificial mutagenic library, which showed a 9-fold higher affinity than its wild type scFv. In this study, the effect of the 6 mutated residues on the affinity improvement was characterized using surface plasmon resonance analysis, which identified a deleterious mutation (VH-A110T) located on a framework region of the scFv-M37. The back mutation of VH-A110T resulted in a 3.2-fold affinity improvement, which was attributed to decrease of dissociation rate constant (kd) in interaction between AFB1 and the back mutant scFv. The biophysical analyses using circular dichroism and gel filtration revealed that the back mutation of VH-A110T caused a subtle conformational change of the scFv toward tighter binding to AFB1. PMID:27173568

  1. Fine-tuning a context-aware system application by using user-centred design methods

    OpenAIRE

    Jimenez Garcia, Juan; Boerema, Simone T.; Hermens, Hermie; Havinga, Paul

    2010-01-01

    Context-Aware Systems in the home environment can provide an effective solution for supporting wellbeing and autonomy for the elderly. The definition and implementation of the system architecture for a particular assisted living healthcare application entail both technological and usability challenges. If issues regarding users’ concerns and desires are taken into account in the early stages of the system development users can benefit substantially more from this technology. In this paper, we...

  2. Finely Tuned Regulation of the Aromatic Amine Degradation Pathway in Escherichia coli

    OpenAIRE

    Zeng, Ji; Spiro, Stephen

    2013-01-01

    FeaR is an AraC family regulator that activates transcription of the tynA and feaB genes in Escherichia coli. TynA is a periplasmic topaquinone- and copper-containing amine oxidase, and FeaB is a cytosolic NAD-linked aldehyde dehydrogenase. Phenylethylamine, tyramine, and dopamine are oxidized by TynA to the corresponding aldehydes, releasing one equivalent of H2O2 and NH3. The aldehydes can be oxidized to carboxylic acids by FeaB, and (in the case of phenylacetate) can be further degraded to...

  3. Fine-tuning to minimize emittances of J-PARC RF-driven H- ion source

    Science.gov (United States)

    Ueno, A.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Asano, H.; Oguri, H.

    2016-02-01

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H- ion source has been successfully operated for about one year. By the world's brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. In order to minimize the transverse emittances, the rod-filter-field (RFF) was optimized by changing the triple-gap-lengths of each of pairing five piece rod-filter-magnets. The larger emittance degradation seems to be caused by impurity-gases than the RFF. The smaller beam-hole-diameter of the extraction electrode caused the more than expected improvements on not only the emittances but also the peak beam intensity.

  4. Confinement and condensates without fine tuning in supergravity duals of gauge theories

    International Nuclear Information System (INIS)

    We discuss a solution of the equations of motion of five-dimensional gauged type IIB supergravity that describes confining SU(N) gauge theories at large N and large 't Hooft parameter. We prove confinement by computing the Wilson loop, and we show that our solution is generic, independent of most of the details of the theory. In particular, the Einstein-frame metric near its singularity, and the condensates of scalar, composite operators are universal. Also universal is the discreteness of the glueball mass spectrum and the existence of a mass gap. The metric is also identical to a generically confining solution recently found in type 0B theory. (author)

  5. Quantum Big Bang without fine-tuning in a toy-model

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2012-01-01

    Roč. 343, 012136 (2012), s. 1-20. ISSN 1742-6588. [7th International Conference on Quantum Theory and Symmetries (QTS7). Praha, 07.08.2011-13.08.2011] R&D Projects: GA MŠk LC06002; GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : PT-symmetry * Covariant theory * gravity Subject RIV: BE - Theoretical Physics

  6. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

    DEFF Research Database (Denmark)

    Hedman, Hanna K; Kirpekar, Finn; Elmroth, Sofi K C

    2011-01-01

    Knowledge concerning the molecular mechanisms governing the influence of non-coding RNAs on protein production has emerged rapidly during the past decade. Today, two main research areas can be identified, one oriented toward the use of artificially introduced siRNAs for manipulation of gene expre...

  7. Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Wilhelm Bloch

    2013-03-01

    Full Text Available Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise, additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology.

  8. Fine-tuning of Substrate Affinity Leads to Alternative Roles of Mycobacterium tuberculosis Fe2+-ATPases.

    Science.gov (United States)

    Patel, Sarju J; Lewis, Brianne E; Long, Jarukit E; Nambi, Subhalaxmi; Sassetti, Christopher M; Stemmler, Timothy L; Argüello, José M

    2016-05-27

    Little is known about iron efflux transporters within bacterial systems. Recently, the participation of Bacillus subtilis PfeT, a P1B4-ATPase, in cytoplasmic Fe(2+) efflux has been proposed. We report here the distinct roles of mycobacterial P1B4-ATPases in the homeostasis of Co(2+) and Fe(2+) Mutation of Mycobacterium smegmatis ctpJ affects the homeostasis of both ions. Alternatively, an M. tuberculosis ctpJ mutant is more sensitive to Co(2+) than Fe(2+), whereas mutation of the homologous M. tuberculosis ctpD leads to Fe(2+) sensitivity but no alterations in Co(2+) homeostasis. In vitro, the three enzymes are activated by both Fe(2+) and Co(2+) and bind 1 eq of either ion at their transport site. However, equilibrium binding affinities and activity kinetics show that M. tuberculosis CtpD has higher affinity for Fe(2+) and twice the Fe(2+)-stimulated activity than the CtpJs. These parameters are paralleled by a lower activation and affinity for Co(2+) Analysis of Fe(2+) and Co(2+) binding to CtpD by x-ray absorption spectroscopy shows that both ions are five- to six-coordinate, constrained within oxygen/nitrogen environments with similar geometries. Mutagenesis studies suggest the involvement of invariant Ser, His, and Glu residues in metal coordination. Interestingly, replacement of the conserved Cys at the metal binding pocket leads to a large reduction in Fe(2+) but not Co(2+) binding affinity. We propose that CtpJ ATPases participate in the control of steady state Fe(2+) levels. CtpD, required for M. tuberculosis virulence, is a high affinity Fe(2+) transporter involved in the rapid response to iron dyshomeostasis generated upon redox stress. PMID:27022029

  9. Check Your Gauges: Calibrating Conversations Assist Teachers in Fine-Tuning Instruction

    Science.gov (United States)

    Costa, Arthur L.; Garmston, Robert J.

    2015-01-01

    Coaching is a way to support teachers in assessing and improving their practice. By engaging in rich, rigorous, and reflective professional conversations with colleagues, teachers can continue to develop and grow as they construct meaning, reinvest their cognitive resources, and apply new learning. Calibrating conversations are a way to foster…

  10. Fine-Tuning the Accretion Disk Clock in Hercules X-1

    Science.gov (United States)

    Still, M.; Boyd, P.

    2004-01-01

    RXTE ASM count rates from the X-ray pulsar Her X-1 began falling consistently during the late months of 2003. The source is undergoing another state transition similar to the anomalous low state of 1999. This new event has triggered observations from both space and ground-based observatories. In order to aid data interpretation and telescope scheduling, and to facilitate the phase-connection of cycles before and after the state transition, we have re-calculated the precession ephemeris using cycles over the last 3.5 years. We report that the source has displayed a different precession period since the last anomalous event. Additional archival data from CGRO suggests that each low state is accompanied by a change in precession period and that the subsequent period is correlated with accretion flux. Consequently our analysis reveals long-term accretion disk behaviour which is predicted by theoretical models of radiation-driven warping.

  11. Fine-tuning and the ratio of tensor to scalar density fluctuations from cosmological inflation

    International Nuclear Information System (INIS)

    The form of the inflationary potential is severely restricted if one requires that it be natural in the technical sense, i.e. terms of unrelated origin are not required to be correlated. We determine the constraints on observables that are implied in such natural inflationary models, in particular on r, the ratio of tensor to scalar perturbations. We find that the naturalness constraint does not require r to be large enough to be detectable by the forthcoming searches for B-mode polarization in cosmic microwave background maps. We show also that the value of r is a sensitive discriminator between inflationary models

  12. Fine Tuning the Teaching Methods Used for Second Year University Mathematics

    Science.gov (United States)

    Lim, L. L.; Thiel, D. V.; Searles, Debra J.

    2012-01-01

    Second year mathematics is a compulsory course for all students enrolled in engineering and mathematics programmes at the university, and it is taken by approximately 120 students each year. The pass rate of the course had been below expectations in the past years. In order to improve the predicament, quizzes which provided a mark incentive were…

  13. Fine-tuning to minimize emittances of J-PARC RF-driven H− ion source

    International Nuclear Information System (INIS)

    The Japan Proton Accelerator Research Complex (J-PARC) cesiated RF-driven H− ion source has been successfully operated for about one year. By the world’s brightest level beam, the J-PARC design beam power of 1 MW was successfully demonstrated. In order to minimize the transverse emittances, the rod-filter-field (RFF) was optimized by changing the triple-gap-lengths of each of pairing five piece rod-filter-magnets. The larger emittance degradation seems to be caused by impurity-gases than the RFF. The smaller beam-hole-diameter of the extraction electrode caused the more than expected improvements on not only the emittances but also the peak beam intensity

  14. Fine-tuning of properties of bismacrocyclic dinuclear cyclidene receptors by N-methylation.

    Science.gov (United States)

    Domagała, Sławomir; Wieckowska, Agnieszka; Kowalski, Jarosław; Rogowska, Agnieszka; Szydłowska, Jadwiga; Korybut-Daszkiewicz, Bohdan; Bilewicz, Renata; Woźniak, Krzysztof

    2006-04-01

    N-Methylated bismacrocyclic Cu and Ni complexes were synthesised and structurally characterised in the solid state. Their properties in solution were analysed by using NMR and ESR spectroscopies and electrochemical methods. Face-to-face biscyclidenes linked through polymethylene chains form rectangular boxlike cations. These moieties can host some small guest molecules (water, pi-electron donating compounds) and are stabilised by a shell of neighbouring counterions. For the bismacrocyclic dinuclear complexes containing two nickel or two copper ions, the intramolecular interactions between the metallic centres are strengthened through methylation of the macrocyclic components, as compared with the nonmethylated species. We report the electron coupling created by two unpaired electrons coming from two copper centres observed by ESR spectroscopy. Methylation weakens the electron-acceptor properties of the complexes, which leads to less effective binding of the pi-electron-donating guests. It also increases the stability of the lower oxidation states. In the case of the copper complexes, both Cu(II)/Cu(I) and Cu(II)/Cu(III) reversible one-electron transfers are seen in the voltammograms. These changes in properties are interpreted as the consequences of steric repulsion between the methyl substituents and the macrocyclic ring. PMID:16437539

  15. Photocatalytic Deposition of Hydroxyapatite onto a Titanium Dioxide Nanotubular Layer with Fine Tuning of Layer Nanoarchitecture.

    Science.gov (United States)

    Ulasevich, Sviatlana A; Poznyak, Sergey K; Kulak, Anatoly I; Lisenkov, Aleksey D; Starykevich, Maksim; Skorb, Ekaterina V

    2016-04-26

    A new effective method of photocatalytic deposition of hydroxyapatite (HA) onto semiconductor substrates is proposed. A highly ordered nanotubular TiO2 (TNT) layer formed on titanium via its anodization is chosen as the photoactive substrate. The method is based on photodecomposition of the phosphate anion precursor, triethylphosphate (TEP), on the semiconductor surface with the following reaction of formed phosphate anions with calcium cations presented in the solution. HA can be deposited only on irradiated areas, providing the possibility of photoresist-free HA patterning. It is shown that HA deposition can be controlled via pH, light intensity, and duration of the process. Energy-dispersive X-ray spectroscopy profile analysis and glow discharge optical emission spectroscopy of HA-modified TNT prove that HA deposits over the entire TNT depth. High biocompatibility of the surfaces is proven by protein adsorption and pre-osteoblast cell growth. PMID:26991479

  16. Codon Bias as a Means to Fine-Tune Gene Expression

    NARCIS (Netherlands)

    Quax, T.E.F.; Claassens, N.J.H.P.; Söll, D.; Oost, van der J.

    2015-01-01

    The redundancy of the genetic code implies that most amino acids are encoded by multiple synonymous codons. In all domains of life, a biased frequency of synonymous codons is observed at the genome level, in functionally related genes (e.g., in operons), and within single genes. Other codon bias var

  17. Communication between Discrete Nanostructures Triggered by Fine Tuning of an External Stimulus.

    Science.gov (United States)

    Schilirò, Matteo; Contino, Annalinda; Millesi, Salvatrice; Maccarrone, Giuseppe; Gulino, Antonino

    2016-09-01

    The design of molecular architectures able to transfer mass to each other is a field of extreme importance. In the present study it is shown that two especially designed covalently assembled nanostructures can interchange Cu(2+) ions upon an external OH(-) trigger. The obtained solid interfaces are of interest for signaling, communication, memory storage and optical devices. PMID:27470925

  18. Monitoring pool-tail fines

    Science.gov (United States)

    Bunte, K.; Potyondy, J. P.; Abt, S. R.; Swingle, K. W.

    2010-12-01

    Fine sediment deposited in pool-tail areas of mountain streams is often measured to monitor changes in the supply of fines (e.g., by dam removal, bank erosion, or watershed effects including fires and road building) or to assess the status and trend of aquatic ecosystems. Grid counts, pebble counts, and volumetric bedmaterial samples are typically used to quantify pool-tail fines. Grid-count results exhibit a high degree of variability not only among streams and among operators, but also among crews performing a nearly identical procedure (Roper et al. 2010). Variability is even larger when diverse methods are employed, each of which quantifies fines in a different way: grid counts visually count surface fines on small patches within the pool-tail area, pebble counts pick up and tally surface particles along (riffle) transects, and volumetric samples sieve out fines from small-scale bulk samples; and even when delimited to pool-tail areas, individual methods focus on different sampling locales. Two main questions were analyzed: 1) Do pool-tail fines exhibit patterns of spatial variability and are some grid count schemes more likely to provide accurate results than others. 2) How and why does the percentage of fines vary among grid counts, pebble counts, and volumetric samples. In a field study, grids were placed at 7 locales in two rows across the wetted width of 10 pool tails in a 14-m wide 3rd order coarse gravel-bed mountain stream with banks, sometimes interrupted by a secondary peak of fines within the central half of the wetted width. Among the five sampling schemes tested, grid counts covering the wetted width with 7 locales produced the highest accuracy and the least variability among the pools of the reach. Pebble counts between the two waterlines indicated 2-3 times more fines than grid counts, likely because grid counts did not extend exactly up to the waterline. However, when confined to the central 50% of the wetted width, grid counts indicated 1.2 and

  19. 'RAT' Leaves a Fine Mess

    Science.gov (United States)

    2004-01-01

    This graph shows the light signatures, or spectra, of two sides of the rock dubbed 'Bounce,' located at Meridiani Planum, Mars. The spectra were taken by the miniature thermal emission spectrometer on the Mars Exploration Rover Opportunity. The left side of this rock is covered by fine dust created when the rover drilled into the rock with its rock abrasion tool. These 'fines' produce a layer of pyroxene dust that can be detected here in the top spectrum. The right side of the rock has fewer fines and was used to investigate the composition of this basaltic rock.

  20. Tuned mass absorber on a flexible structure

    DEFF Research Database (Denmark)

    Krenk, Steen; Høgsberg, Jan Becker

    2014-01-01

    The classic design of a tuned mass absorber is based on a simple two-mass analogy in which the tuned mass is connected to the structural mass with a spring and a viscous damper. In a flexible multi-degree-of-freedom structure the tuned mass absorber is typically introduced to provide damping of a...... specific mode. The motion of the point of attachment of the tuned mass absorber to the structure has not only a contribution from the targeted mode, but also a background contribution from other non-resonant modes. Similarly, the force provided by the tuned mass absorber is distributed between the targeted...... mode and the background modes. It is demonstrated how this effect can be included via a non-dimensional dynamic background flexibility coefficient, extracted from a classic modal analysis for the particular frequency of the selected mode. An explicit calibration procedure is developed starting with the...

  1. A complex carotenoid palette tunes avian colour vision.

    Science.gov (United States)

    Toomey, Matthew B; Collins, Aaron M; Frederiksen, Rikard; Cornwall, M Carter; Timlin, Jerilyn A; Corbo, Joseph C

    2015-10-01

    The brilliantly coloured cone oil droplets of the avian retina function as long-pass cut-off filters that tune the spectral sensitivity of the photoreceptors and are hypothesized to enhance colour discrimination and improve colour constancy. Although it has long been known that these droplets are pigmented with carotenoids, their precise composition has remained uncertain owing to the technical challenges of measuring these very small, dense and highly refractile optical organelles. In this study, we integrated results from high-performance liquid chromatography, hyperspectral microscopy and microspectrophotometry to obtain a comprehensive understanding of oil droplet carotenoid pigmentation in the chicken (Gallus gallus). We find that each of the four carotenoid-containing droplet types consists of a complex mixture of carotenoids, with a single predominant carotenoid determining the wavelength of the spectral filtering cut-off. Consistent with previous reports, we find that the predominant carotenoid type in the oil droplets of long-wavelength-sensitive, medium-wavelength-sensitive and short-wavelength-sensitive type 2 cones are astaxanthin, zeaxanthin and galloxanthin, respectively. In addition, the oil droplet of the principal member of the double cone contains a mixture of galloxanthin and two hydroxycarotenoids (lutein and zeaxanthin). Short-wavelength-absorbing apocarotenoids are present in all of the droplet types, providing filtering of light in a region of the spectrum where filtering by hydroxy- and ketocarotenoids may be incomplete. Thus, birds rely on a complex palette of carotenoid pigments within their cone oil droplets to achieve finely tuned spectral filtering. PMID:26446559

  2. Algorithms to Automate LCLS Undulator Tuning

    International Nuclear Information System (INIS)

    Automation of the LCLS undulator tuning offers many advantages to the project. Automation can make a substantial reduction in the amount of time the tuning takes. Undulator tuning is fairly complex and automation can make the final tuning less dependent on the skill of the operator. Also, algorithms are fixed and can be scrutinized and reviewed, as opposed to an individual doing the tuning by hand. This note presents algorithms implemented in a computer program written for LCLS undulator tuning. The LCLS undulators must meet the following specifications. The maximum trajectory walkoff must be less than 5 (micro)m over 10 m. The first field integral must be below 40 x 10-6 Tm. The second field integral must be below 50 x 10-6 Tm2. The phase error between the electron motion and the radiation field must be less than 10 degrees in an undulator. The K parameter must have the value of 3.5000 ± 0.0005. The phase matching from the break regions into the undulator must be accurate to better than 10 degrees. A phase change of 113 x 2π must take place over a distance of 3.656 m centered on the undulator. Achieving these requirements is the goal of the tuning process. Most of the tuning is done with Hall probe measurements. The field integrals are checked using long coil measurements. An analysis program written in Matlab takes the Hall probe measurements and computes the trajectories, phase errors, K value, etc. The analysis program and its calculation techniques were described in a previous note. In this note, a second Matlab program containing tuning algorithms is described. The algorithms to determine the required number and placement of the shims are discussed in detail. This note describes the operation of a computer program which was written to automate LCLS undulator tuning. The algorithms used to compute the shim sizes and locations are discussed.

  3. On the scattering cross section of passive linear arrays

    DEFF Research Database (Denmark)

    Solymar, L.

    1973-01-01

    A general formula is derived for the scattering cross section of a passiven-element linear array consisting of isotropic radiators. When all the reactances are tuned out and scattering in the mirror direction is investigated, it is found thatA_{sr}, the relative scattering cross section is equal to...

  4. The fine art of ‘sourcery’

    CERN Multimedia

    2009-01-01

    The commissioning of the new Linac4 source – first element of the new acceleration chain for the upgrade of the LHC (sLHC) – started at the beginning of July. After years of preparation but after only a few hours of fine-tuning of the numerous parameters involved, the source has delivered its first negative ions. The civil engineering work for the new Linac4 going on near Restaurant 2.While the LHC is preparing for restart, teams of experts involved in the sLHC project are also working on the new facilities that will allow the LHC to run at higher luminosity. The beginning of the new chain of accelerators is Linac4, whose excavation works started October last year. "The particle source that we are commissioning now will be installed at the beginning of the path", explains Maurizio Vretenar, Linac4 project leader. "It is a critical element of the chain as all protons that will circulate in the CERN accelerators will originate from it." The Linac 4 source is differ...

  5. Receptor arrays optimized for natural odor statistics

    CERN Document Server

    Zwicker, David; Brenner, Michael P

    2016-01-01

    Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information-theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction and it also suggests ways to improve artificial sensor...

  6. SWNT array resonant gate MOS transistor

    Science.gov (United States)

    Arun, A.; Campidelli, S.; Filoramo, A.; Derycke, V.; Salet, P.; Ionescu, A. M.; Goffman, M. F.

    2011-02-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  7. SWNT array resonant gate MOS transistor

    International Nuclear Information System (INIS)

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  8. SWNT array resonant gate MOS transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  9. Ionic liquid tunes microemulsion curvature.

    Science.gov (United States)

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems. PMID:19161325

  10. Fine 5 kolib Kumu lavale

    Index Scriptorium Estoniae

    2006-01-01

    Kumu kunstimuuseumi auditooriumis toimub 21. veebruaril Fine 5 kaasaegse tantsu etendus "Panus". Esinevad Tiina Ollesk, Irina Pähn, žonglöör Dimitri Kruus, disainer Rain Saukas ja muusik Mattias Siitan

  11. Finely divided, irradiated tetrafluorethylene polymers

    International Nuclear Information System (INIS)

    Dry non-sticky fine lubricant powders are made by γ-irradiation of unsintered coagulated dispersion grade tetrafluoroethylene polymers. These powders may also be dispersed in an organic medium for lubricating purposes

  12. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  13. Epilepsy and Fine Motor Function

    OpenAIRE

    J Gordon Millichap; Millichap, John J.

    2014-01-01

    Investigators at Kocaeli University, Pediatric Neurology OP Clinic, Turkey, studied the relationship between fine motor skills and seizure and treatment parameters in 44 children with rolandic epilepsy (RE) and compared to 44 healthy controls.

  14. Two-dimensional resonance frequency tuning approach for vibration-based energy harvesting

    Science.gov (United States)

    Dong, Lin; Prasad, M. G.; Fisher, Frank T.

    2016-06-01

    Vibration-based energy harvesting seeks to convert ambient vibrations to electrical energy and is of interest for, among other applications, powering the individual nodes of wireless sensor networks. Generally it is desired to match the resonant frequencies of the device to the ambient vibration source to optimize the energy harvested. This paper presents a two-dimensionally (2D) tunable vibration-based energy harvesting device via the application of magnetic forces in two-dimensional space. These forces are accounted for in the model separately, with the transverse force contributing to the transverse stiffness of the system while the axial force contributes to a change in axial stiffness of the beam. Simulation results from a COMSOL magnetostatic 3D model agree well with the analytical model and are confirmed with a separate experimental study. Furthermore, analysis of the three possible magnetization orientations between the fixed and tuning magnets shows that the transverse parallel magnetization orientation is the most effective with regards to the proposed 2D tuning approach. In all cases the transverse stiffness term is in general significantly larger than the axial stiffness contribution, suggesting that from a tuning perspective it may be possible to use these stiffness contributions for coarse and fine frequency tuning, respectively. This 2D resonant frequency tuning approach extends earlier 1D approaches and may be particularly useful in applications where space constraints impact the available design space of the energy harvester.

  15. Quantum Fine-Grained Entropy

    OpenAIRE

    WANG, DONG-SHENG

    2012-01-01

    Regarding the strange properties of quantum entropy and entanglement, e.g., the negative quantum conditional entropy, we revisited the foundations of quantum entropy, namely, von Neumann entropy, and raised the new method of quantum fine-grained entropy. With the applications in entanglement theory, quantum information processing, and quantum thermodynamics, we demonstrated the capability of quantum fine-grained entropy to resolve some notable confusions and problems, including the measure of...

  16. Renewable Lignosulfonate-Assisted Synthesis of Hierarchical Nanoflake-Array-Flower ZnO Nanomaterials in Mixed Solvents and Their Photocatalytic Performance

    Science.gov (United States)

    Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang

    2016-05-01

    With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m2 · g-1. The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way.

  17. Renewable Lignosulfonate-Assisted Synthesis of Hierarchical Nanoflake-Array-Flower ZnO Nanomaterials in Mixed Solvents and Their Photocatalytic Performance.

    Science.gov (United States)

    Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang

    2016-12-01

    With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m(2) · g(-1). The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way. PMID:27209404

  18. Ultrafast broadband tuning of resonant optical nanostructures using phase change materials

    CERN Document Server

    Rudé, Miquel; Cetin, Arif E; Miller, Timothy A; Carrilero, Albert; Wall, Simon; de Abajo, F Javier García; Altug, Hatice; Pruneri, Valerio

    2015-01-01

    The phenomenon of extraordinary optical transmission {EOT} through arrays of nanoholes patterned in a metallic film has emerged as a promising tool for a wide range of applications, including photovoltaics, nonlinear optics, and sensing. Designs and methods enabling the dynamic tuning of the optical resonances of these structures are essential to build efficient optical devices, including modulators, switches, filters, and biosensors. However, the efficient combination of EOT and dynamic tuning remains a challenge, mainly because of the lack of materials that can induce modulation over a broad spectral range at high speeds. Here, we demonstrate tuneable resonance wavelength shifts as large as 385 nm - an order of magnitude higher than previously reported - through the combination of phase change materials {PCMs}, which exhibit dramatic variations in optical properties upon transitions between amorphous and crystalline phases, with properly designed subwavelength nanohole metallic arrays. We further find throu...

  19. Tune variations in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aquilina, N. [CERN, Geneva (Switzerland); University of Malta, Msida (Malta); Giovannozzi, M.; Lamont, M. [CERN, Geneva (Switzerland); Sammut, N. [University of Malta, Msida (Malta); Steinhagen, R. [CERN, Geneva (Switzerland); Todesco, E., E-mail: ezio.todesco@cern.ch [CERN, Geneva (Switzerland); Wenninger, J. [CERN, Geneva (Switzerland)

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  20. Tune variations in the Large Hadron Collider

    International Nuclear Information System (INIS)

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top