WorldWideScience

Sample records for array current efforts

  1. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  2. rasdaman Array Database: current status

    Science.gov (United States)

    Merticariu, George; Toader, Alexandru

    2015-04-01

    rasdaman (Raster Data Manager) is a Free Open Source Array Database Management System which provides functionality for storing and processing massive amounts of raster data in the form of multidimensional arrays. The user can access, process and delete the data using SQL. The key features of rasdaman are: flexibility (datasets of any dimensionality can be processed with the help of SQL queries), scalability (rasdaman's distributed architecture enables it to seamlessly run on cloud infrastructures while offering an increase in performance with the increase of computation resources), performance (real-time access, processing, mixing and filtering of arrays of any dimensionality) and reliability (legacy communication protocol replaced with a new one based on cutting edge technology - Google Protocol Buffers and ZeroMQ). Among the data with which the system works, we can count 1D time series, 2D remote sensing imagery, 3D image time series, 3D geophysical data, and 4D atmospheric and climate data. Most of these representations cannot be stored only in the form of raw arrays, as the location information of the contents is also important for having a correct geoposition on Earth. This is defined by ISO 19123 as coverage data. rasdaman provides coverage data support through the Petascope service. Extensions were added on top of rasdaman in order to provide support for the Geoscience community. The following OGC standards are currently supported: Web Map Service (WMS), Web Coverage Service (WCS), and Web Coverage Processing Service (WCPS). The Web Map Service is an extension which provides zoom and pan navigation over images provided by a map server. Starting with version 9.1, rasdaman supports WMS version 1.3. The Web Coverage Service provides capabilities for downloading multi-dimensional coverage data. Support is also provided for several extensions of this service: Subsetting Extension, Scaling Extension, and, starting with version 9.1, Transaction Extension, which

  3. Conformable eddy current array delivery

    Science.gov (United States)

    Summan, Rahul; Pierce, Gareth; Macleod, Charles; Mineo, Carmelo; Riise, Jonathan; Morozov, Maxim; Dobie, Gordon; Bolton, Gary; Raude, Angélique; Dalpé, Colombe; Braumann, Johannes

    2016-02-01

    The external surface of stainless steel containers used for the interim storage of nuclear material may be subject to Atmospherically Induced Stress Corrosion Cracking (AISCC). The inspection of such containers poses a significant challenge due to the large quantities involved; therefore, automating the inspection process is of considerable interest. This paper reports upon a proof-of-concept project concerning the automated NDT of a set of test containers containing artificially generated AISCCs. An Eddy current array probe with a conformable padded surface from Eddyfi was used as the NDT sensor and end effector on a KUKA KR5 arc HW robot. A kinematically valid cylindrical raster scan path was designed using the KUKA|PRC path planning software. Custom software was then written to interface measurement acquisition from the Eddyfi hardware with the motion control of the robot. Preliminary results and analysis are presented from scanning two canisters.

  4. Shell Inspection History and Current CMM Inspection Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Montano, Joshua Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-26

    The following report provides a review of past and current CMM Shell Inspection efforts. Calibration of the Sheffield rotary contour gauge has expired and the primary inspector, Matthew Naranjo, has retired. Efforts within the Inspection team are transitioning from maintaining and training new inspectors on Sheffield to off-the-shelf CMM technology. Although inspection of a shell has many requirements, the scope of the data presented in this report focuses on the inner contour, outer contour, radial wall thickness and mass comparisons.

  5. Mixed arrays - problems with current methods and rules

    International Nuclear Information System (INIS)

    Mennerdahl, D.

    1987-01-01

    Simplified methods are used to control the criticality safety of mixed arrays (non-identical units) in storage or in transport. The basis for these methods is that the analyses of arrays of identical units are sufficient for drawing proper conclusions on mixed arrays. In a recent study of the rules for transport, two general flaws in such methods have been identified. One flaw is caused by increased neutron return rate to the central part of the array. The other flaw is caused by increased neutron coupling between two or more fissile units in an array. In both cases, replacement of fissile units with other units, which appear to be less reactive, can lead to criticality. This paper shows that the two flaws are common in also in current methods used for storage of fissile materials. (author)

  6. Surface inspection technique with an eddy current testing array probe

    International Nuclear Information System (INIS)

    Nishimizu, Akira; Endo, Hisashi; Tooma, Masahiro; Otani, Kenichi; Ouchi, Hirofumi; Yoshida, Isao; Nonaka, Yoshio

    2010-01-01

    An eddy current testing (ECT) system has been developed for inspecting weld surfaces of components in the reactor pressure vessel of nuclear plants. The system can be applied to curved surfaces with an ECT array probe, it can discriminate flaws from other signal factors by using a combination of arrayed coils signal-phase. The system is applied to a mock-up of core internal components and the signal discrimination using the signal-phase clearly separated flaw and noise signals. (author)

  7. Current research efforts of EP study in Korea

    International Nuclear Information System (INIS)

    Ryu, C.M.

    2013-01-01

    After the successful demonstration of H mode on KSTAR, the problem of fast-ion driven MHD modes such as Alfven eigenmodes (AEs) and the reverse effects on fast ions of MHD modes is under study in KSTAR. In this paper, I will briefly describe some recent efforts of KSTAR on energetic particle physics study. (J.P.N.)

  8. Current status of the MPEG-4 standardization effort

    Science.gov (United States)

    Anastassiou, Dimitris

    1994-09-01

    The Moving Pictures Experts Group (MPEG) of the International Standardization Organization has initiated a standardization effort, known as MPEG-4, addressing generic audiovisual coding at very low bit-rates (up to 64 kbits/s) with applications in videotelephony, mobile audiovisual communications, video database retrieval, computer games, video over Internet, remote sensing, etc. This paper gives a survey of the status of MPEG-4, including its planned schedule, and initial ideas about requirements and applications. A significant part of this paper is summarizing an incomplete draft version of a `requirements document' which presents specifications of desirable features on the video, audio, and system level of the forthcoming standard. Very low bit-rate coding algorithms are not described, because no endorsement of any particular algorithm, or class of algorithms, has yet been made by MPEG-4, and several seminars held concurrently with MPEG-4 meetings have not so far provided evidence that such high performance coding schemes are achievable.

  9. Cyberbullying Prevention and Intervention Efforts: Current Knowledge and Future Directions

    Science.gov (United States)

    Hong, Jun Sung

    2016-01-01

    Bullying is a serious public health concern that is associated with significant negative mental, social, and physical outcomes. Technological advances have increased adolescents’ use of social media, and online communication platforms have exposed adolescents to another mode of bullying—cyberbullying. Prevention and intervention materials, from websites and tip sheets to classroom curriculum, have been developed to help youth, parents, and teachers address cyberbullying. While youth and parents are willing to disclose their experiences with bullying to their health care providers, these disclosures need to be taken seriously and handled in a caring manner. Health care providers need to include questions about bullying on intake forms to encourage these disclosures. The aim of this article is to examine the current status of cyberbullying prevention and intervention. Research support for several school-based intervention programs is summarised. Recommendations for future research are provided. PMID:28562094

  10. Cyberbullying Prevention and Intervention Efforts: Current Knowledge and Future Directions.

    Science.gov (United States)

    Espelage, Dorothy L; Hong, Jun Sung

    2017-06-01

    Bullying is a serious public health concern that is associated with significant negative mental, social, and physical outcomes. Technological advances have increased adolescents' use of social media, and online communication platforms have exposed adolescents to another mode of bullying- cyberbullying. Prevention and intervention materials, from websites and tip sheets to classroom curriculum, have been developed to help youth, parents, and teachers address cyberbullying. While youth and parents are willing to disclose their experiences with bullying to their health care providers, these disclosures need to be taken seriously and handled in a caring manner. Health care providers need to include questions about bullying on intake forms to encourage these disclosures. The aim of this article is to examine the current status of cyberbullying prevention and intervention. Research support for several school-based intervention programs is summarised. Recommendations for future research are provided.

  11. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  12. LLNL current meter array--concept and system description

    Energy Technology Data Exchange (ETDEWEB)

    Mantrom, D.D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    A measurement capability using a horizontal array of 10 S4 current meters mounted on a stiff floating structure with 35 m aperture has been developed to support interpretation of radar imaging of surface effects associated with internal waves. This system has been fielded three times and most recently, has collected data alongside the sea-surface footprint of a land-fixed radar imaging ship-generated internal waves. The underlying need for this measurement capability is described. The specifications resulting from this need are presented and the engineering design and deployment procedures of the platform and systems that resulted are described The current meter data are multiplexed along with meteorological and system status data on board the floating platform and are telemetered to a shore station and on to a data acquisition system. The raw data are recorded, and are then processed to form space-time images of current and strain rate (a spatial derivative of the current field). Examples of raw and processed data associated with ship-generated internal waves are presented.

  13. Validating eddy current array probes for inspecting steam generator tubes

    International Nuclear Information System (INIS)

    Sullivan, S.P.; Cecco, V.S.; Obrutsky, L.S.

    1997-01-01

    A CANDU nuclear reactor was shut down for over one year because steam generator (SG) tubes had failed with outer diameter stress-corrosion cracking (ODSCC) in the U-bend section. Novel, single-pass eddy current transmit-receive probes, denoted as C3, were successful in detecting all significant cracks so that the cracked tubes could be plugged and the unit restarted. Significant numbers of tubes with SCC were removed from a SG in order to validate the results of the new probe. Results from metallurgical examinations were used to obtain probability-of-detection (POD) and sizing accuracy plots to quantify the performance of this new inspection technique. Though effective, the above approach of relying on tubes removed from a reactor is expensive, in terms of both economic and radiation-exposure costs. This led to a search for more affordable methods to validate inspection techniques and procedures. Methods are presented for calculating POD curves based on signal-to-noise studies using field data. Results of eddy current scans of tubes with laboratory-induced ODSCC are presented with associated POD curves. These studies appear promising in predicting realistic POD curves for new inspection technologies. They are being used to qualify an improved eddy current array probe in preparation for field use. (author)

  14. Tunneling Current Probe for Noncontract Wafer-Level Photodiode Array Testing

    National Research Council Canada - National Science Library

    Verdun, Horacio

    1999-01-01

    The Tunneling Current Probe (TCP) is an automated picometer-sensitive proximity sensor and current measurement system which measures the current through a photodiode detector array element by establishing a tunneling current...

  15. Low dark current InGaAs detector arrays for night vision and astronomy

    Science.gov (United States)

    MacDougal, Michael; Geske, Jon; Wang, Chad; Liao, Shirong; Getty, Jonathan; Holmes, Alan

    2009-05-01

    Aerius Photonics has developed large InGaAs arrays (1K x 1K and greater) with low dark currents for use in night vision applications in the SWIR regime. Aerius will present results of experiments to reduce the dark current density of their InGaAs detector arrays. By varying device designs and passivations, Aerius has achieved a dark current density below 1.0 nA/cm2 at 280K on small-pixel, detector arrays. Data is shown for both test structures and focal plane arrays. In addition, data from cryogenically cooled InGaAs arrays will be shown for astronomy applications.

  16. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  17. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  18. Studies of Polar Current Systems Using the IMS Scandinavian Magnetometer Array

    Science.gov (United States)

    Untiedt, J.; Baumjohann, W.

    1993-09-01

    As a contribution to the International Magnetospheric Study (IMS, 1976 1979) a two-dimensional array of 42 temporary magnetometer stations was run in Scandinavia, supplementary to the permanent observatories and concentrated in the northern part of the region. This effort aimed at the time-dependent (periods above about 100 s) determination of the two-dimensional structure of substorm-related magnetic fields at the Earth's surface with highest reasonable spatial resolution (about 100 km, corresponding to the height of the ionosphere) near the footpoints of field-aligned electric currents that couple the disturbed magnetosphere to the ionosphere at auroral latitudes. It has been of particular advantage for cooperative studies that not only simultaneous data were available from all-sky cameras, riometers, balloons, rockets, and satellites, but also from the STARE radar facility yielding colocated two-dimensional ionospheric electric field distributions. In many cases it therefore was possible to infer the three-dimensional regional structure of substorm-related ionospheric current systems. The first part of this review outlines the basic relationships and methods that have been used or have been developed for such studies. The second short part presents typical equivalent current patterns observed by the magnetometer array in the course of substorms. Finally we review main results of studies that have been based on the magnetometer array observations and on additional data, omitting studies on geomagnetic pulsations. These studies contributed to a clarification of the nature of auroral electrojets including the Harang discontinuity and of ionospheric current systems related to auroral features such as the break-up at midnight, the westward traveling surge, eastward drifting omega bands, and spirals.

  19. Sensor Fusion Techniques for Phased-Array Eddy Current and Phased-Array Ultrasound Data

    Energy Technology Data Exchange (ETDEWEB)

    Arrowood, Lloyd F. [Y-12 National Security Complex, Oak Ridge, TN (United States)

    2018-03-15

    Sensor (or Data) fusion is the process of integrating multiple data sources to produce more consistent, accurate and comprehensive information than is provided by a single data source. Sensor fusion may also be used to combine multiple signals from a single modality to improve the performance of a particular inspection technique. Industrial nondestructive testing may utilize multiple sensors to acquire inspection data depending upon the object under inspection and the anticipated types of defects that can be identified. Sensor fusion can be performed at various levels of signal abstraction with each having its strengths and weaknesses. A multimodal data fusion strategy first proposed by Heideklang and Shokouhi that combines spatially scattered detection locations to improve detection performance of surface-breaking and near-surface cracks in ferromagnetic metals is shown using a surface inspection example and is then extended for volumetric inspections. Utilizing data acquired from an Olympus Omniscan MX2 from both phased array eddy current and ultrasound probes on test phantoms, single and multilevel fusion techniques are employed to integrate signals from the two modalities. Preliminary results demonstrate how confidence in defect identification and interpretation benefit from sensor fusion techniques. Lastly, techniques for integrating data into radiographic and volumetric imagery from computed tomography are described and results are presented.

  20. Fast commutation of high current in double wire array Z-pinch loads

    International Nuclear Information System (INIS)

    Davis, J.; Gondarenko, N.A.; Velikovich, A.L.

    1997-01-01

    A dynamic model of multi-MA current commutation in a double wire array Z-pinch load is proposed and studied theoretically. Initially, the load is configured as nested concentric wire arrays, with the current driven through the outer array and imploding it. Once the outer array or the annular plasma shell formed from it approaches the inner array, the imploded plasma might penetrate through the gaps between the wires, but the azimuthal magnetic field is trapped due to both the high conductivity of the inner wires and the inductive coupling between the two parts of the array, causing a rapid switching of the total current to the inner part of the array. copyright 1997 American Institute of Physics

  1. Design and array signal suggestion of array type pulsed eddy current probe for health monitoring of metal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Kil [Dept. of Electrical Engineering, Kunsan National University, Kunsan (Korea, Republic of)

    2015-10-15

    An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

  2. [Effort-reward imbalance at work and depression: current research evidence].

    Science.gov (United States)

    Siegrist, J

    2013-01-01

    In view of highly prevalent stressful conditions in modern working life, in particular increasing work pressure and job insecurity, it is of interest to know whether specific constellations of an adverse psychosocial work environment increase the risk of depressive disorder among employed people. This contribution gives a short overview of current research evidence based on an internationally established work stress model of effort-reward imbalance. Taken together, results from seven prospective epidemiological investigations demonstrate a two-fold elevated relative risk of incident depressive disorder over a mean observation period of 2.7 years among exposed versus non-exposed employees. Additional findings from experimental and quasi-experimental studies point to robust associations of effort-reward imbalance at work with proinflammatory cytokines and markers of reduced immune competence. These latter markers may indicate potential psychobiological pathways. In conclusion, incorporating this new knowledge into medical treatment and preventive efforts seems well justified.

  3. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    International Nuclear Information System (INIS)

    Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.

    2011-01-01

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  4. Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, C. N.; Volyar, A. V. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Yavorsky, M. A. [Taurida National V.I. Vernadsky University, Vernadsky Prospekt, 4, Simferopol, 95007, Crimea (Ukraine); Universite Bordeaux and CNRS, LOMA, UMR 5798, FR-33400 Talence (France)

    2011-12-15

    We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.

  5. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  6. Enteric disease surveillance under the AFHSC-GEIS: Current efforts, landscape analysis and vision forward

    Directory of Open Access Journals (Sweden)

    Kasper Matthew R

    2011-03-01

    Full Text Available Abstract The mission of the Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System (AFHSC-GEIS is to support global public health and to counter infectious disease threats to the United States Armed Forces, including newly identified agents or those increasing in incidence. Enteric diseases are a growing threat to U.S. forces, which must be ready to deploy to austere environments where the risk of exposure to enteropathogens may be significant and where routine prevention efforts may be impractical. In this report, the authors review the recent activities of AFHSC-GEIS partner laboratories in regards to enteric disease surveillance, prevention and response. Each partner identified recent accomplishments, including support for regional networks. AFHSC/GEIS partners also completed a Strengths, Weaknesses, Opportunities and Threats (SWOT survey as part of a landscape analysis of global enteric surveillance efforts. The current strengths of this network include excellent laboratory infrastructure, equipment and personnel that provide the opportunity for high-quality epidemiological studies and test platforms for point-of-care diagnostics. Weaknesses include inconsistent guidance and a splintered reporting system that hampers the comparison of data across regions or longitudinally. The newly chartered Enterics Surveillance Steering Committee (ESSC is intended to provide clear mission guidance, a structured project review process, and central data management and analysis in support of rationally directed enteric disease surveillance efforts.

  7. Current noise in a vibrating quantum dot array

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, Tomas; Jauho, Antti-Pekka

    2004-01-01

    of extensive numerical calculations for current and current noise (Fano factor), based on a solution of a Markovian generalized master equation. The results for the current and noise are further analyzed in terms of Wigner functions, which help to distinguish different transport regimes (in particular......, shuttling versus cotunneling). In the case of weak interdot coupling, the electron transport proceeds via sequential tunneling between neighboring dots. A simple rate equation with the rates calculated analytically from the P(E) theory is developed and shown to agree with the full numerics....

  8. Overview of the current spectroscopy effort on the Livermore electron beam ion traps

    International Nuclear Information System (INIS)

    Beiersdorfer, P.; Lopez-Urrutia, J.C.; Brown, G.

    1995-01-01

    An overview is given of the current spectroscopic effort on the Livermore electron beam ion trap facilities. The effort focuses on four aspects: spectral line position, line intensity, temporal evolution, and line shape. Examples of line position measurements include studies of the K-shell transitions in heliumlike Kr 34+ and the 2s-2p intrashell transitions in lithiumlike Th 87+ and U 89+ , which provide benchmark values for testing the theory of relativistic and quantum electrodynamical contributions in high-Z ions. Examples of line intensity measurements are provided by measurements of the electron-impact excitation and dielectronic recombination cross sections of heliumlike transition-metal ions Ti 20+ through CO 25+ . A discussion of radiative lifetime measurements of metastable levels in heliumlike ions is given to illustrate the time-resolved spectroscopy techniques in the microsecond range. The authors also present a measurement of the spectral lineshape that illustrates the very low ion temperatures that can be achieved in an EBIT

  9. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  10. The Submillimeter Arraycurrent status and future plans

    Science.gov (United States)

    Blundell, Raymond

    2018-01-01

    The current SMA receiver systems were designed in the mid-1990s and have been operating for more than fifteen years. With regular upgrades to receivers, deployment of the SWARM correlator, expansion of the IF signal transport bandwidth via improvements to the analog IF signal processing hardware, and many other enhancements, the SMA currently greatly outperforms its original specifications in terms of sensitivity, instantaneous bandwidth, and availability of observing modes such as full-Stokes polarization and dual frequency operation.We have recently started to implement a three-year instrument upgrade plan, which we are calling the wSMA. The wSMA will offer even wider bandwidth operation than the current SMA and improved sensitivity. The major subsystems that will form the wSMA include significantly improved, dual polarization receiver cartridges housed in a new cryostat; local oscillator units incorporating modern mm-wave technology; an upgraded signal transmission system; and a further expansion of the SWARM correlator. The cryostat will be cooled by a low-maintenance pulse-tube cryocooler. Two dual-polarization receiver cartridges will cover approximately the same sky frequencies as the current receiver sets; the low-band receiver will be fed by an LO unit covering 210-270 GHz, and the high-band receiver will be fed by an LO covering 280-360 GHz. With a receiver IF band of 4-20 GHz, this will enable continuous sky frequency coverage from 190 GHz to 380 GHz.Details of the upgrade plans will be presented together with a discussion of scientific opportunities afforded by this upgrade, which, once implemented, will enable the SMA to continue to produce the highest quality science throughout the next decade.

  11. A superconducting quadrupole array for transport of multiple high current beams

    International Nuclear Information System (INIS)

    Faltens, A.; Shuman, D.

    1999-01-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them

  12. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    International Nuclear Information System (INIS)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi; Liu Baoting

    2009-01-01

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  13. Diameter- and current-density-dependent growth orientation of hexagonal CdSe nanowire arrays via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongyu; Li Xiaohong; Chen Yan; Guo Defeng; Xie Yanwu; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Liu Baoting, E-mail: xyzh66@ysu.edu.c [College of Physics Science and Technology, Hebei University, Baoding 071002 (China)

    2009-10-21

    Controlling the growth orientation of semiconductor nanowire arrays is of vital importance for their applications in the fields of nanodevices. In the present work, hexagonal CdSe nanowire arrays with various preferential growth orientations have been successfully yielded by employing the electrodeposition technique using porous alumina as templates (PATs). We demonstrate by experimental and theoretical efforts that the growth orientation of the CdSe nanowires can be effectively manipulated by varying either the nanopore diameter of the PATs or the deposited current density, which has significant effects on the optical properties of the CdSe nanowires. The present study provides an alternative approach to tuning the growth direction of electrodeposited nanowires and thus is of importance for the fabrication of nanodevices with controlled functional properties.

  14. A Serviced-based Approach to Connect Seismological Infrastructures: Current Efforts at the IRIS DMC

    Science.gov (United States)

    Ahern, Tim; Trabant, Chad

    2014-05-01

    As part of the COOPEUS initiative to build infrastructure that connects European and US research infrastructures, IRIS has advocated for the development of Federated services based upon internationally recognized standards using web services. By deploying International Federation of Digital Seismograph Networks (FDSN) endorsed web services at multiple data centers in the US and Europe, we have shown that integration within seismological domain can be realized. By deploying identical methods to invoke the web services at multiple centers this approach can significantly ease the methods through which a scientist can access seismic data (time series, metadata, and earthquake catalogs) from distributed federated centers. IRIS has developed an IRIS federator that helps a user identify where seismic data from global seismic networks can be accessed. The web services based federator can build the appropriate URLs and return them to client software running on the scientists own computer. These URLs are then used to directly pull data from the distributed center in a very peer-based fashion. IRIS is also involved in deploying web services across horizontal domains. As part of the US National Science Foundation's (NSF) EarthCube effort, an IRIS led EarthCube Building Block's project is underway. When completed this project will aid in the discovery, access, and usability of data across multiple geoscienece domains. This presentation will summarize current IRIS efforts in building vertical integration infrastructure within seismology working closely with 5 centers in Europe and 2 centers in the US, as well as how we are taking first steps toward horizontal integration of data from 14 different domains in the US, in Europe, and around the world.

  15. Eddy Current Signal Analysis for Transmit-Receive Pancake Coil on ECT Array Probe

    International Nuclear Information System (INIS)

    Lee, Hyang Beom

    2006-01-01

    In this paper, the eddy current signals come from a pair of transmit-receive (T/R) pancake coil on ECT array Probe are analyzed with the variations of the lift-of and of the distance between transmit and receive coils. To obtain the electromagnetic characteristics of the probes, the governing equation describing the eddy current problems is derived from Maxwell's equation and is solved using three-dimensional finite element method. Eddy current signals from T/R coils on ECT array probe have quite different characteristics compared with ones from impedance coil on rotating pancake coil probe. The results in this paper ran be helpful when the field eddy current signals from ECT array probe are evaluated

  16. Prevention of Fetal Alcohol Spectrum Disorder: Current Canadian Efforts and Analysis of Gaps

    Directory of Open Access Journals (Sweden)

    Nancy Poole

    2016-01-01

    Full Text Available Effective prevention of risky alcohol use in pregnancy involves much more than providing information about the risk of potential birth defects and developmental disabilities in children. To categorize the breadth of possible initiatives, Canadian experts have identified a four-part framework for fetal alcohol spectrum disorder (FASD prevention: Level 1, public awareness and broad health promotion; Level 2, conversations about alcohol with women of childbearing age and their partners; Level 3, specialized support for pregnant women; and Level 4, postpartum support for new mothers. In order to describe the level of services across Canada, 50 Canadian service providers, civil servants, and researchers working in the area of FASD prevention were involved in an online Delphi survey process to create a snapshot of current FASD prevention efforts, identify gaps, and provide ideas on how to close these gaps to improve FASD prevention. Promising Canadian practices and key areas for future action are described. Overall, Canadian FASD prevention programming reflects evidence-based practices; however, there are many opportunities to improve scope and availability of these initiatives.

  17. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  18. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  19. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  20. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G.; Ragona, R. [Department of Physics, Università di Torino (Italy); Helou, W.; Goniche, M.; Hillaret, J. [CEA/DSM/IRFM F-13 108 St Paul Les Durance (France)

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  1. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  2. Near-surface current meter array measurements of internal gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H.B.E. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    We have developed various processing algorithms used to estimate the wave forms produced by hydrodynamic Internal Waves. Furthermore, the estimated Internal Waves are used to calculate the Modulation Transfer Function (MTF) which relates the current and strain rate subsurface fields to surface scattering phenomenon imaged by radar. Following a brief discussion of LLNL`s measurement platform (a 10 sensor current meter array) we described the generation of representative current and strain rate space-time images from measured or simulated data. Then, we present how our simulation capability highlighted limitations in estimating strain rate. These limitations spurred the application of beamforming techniques to enhance our estimates, albeit at the expense of collapsing our space-time images to 1-D estimates. Finally, we discuss progress with regard to processing the current meter array data captured during the recent Loch Linnhe field trials.

  3. Current Efforts in European Projects to Facilitate the Sharing of Scientific Observation Data

    Science.gov (United States)

    Bredel, Henning; Rieke, Matthes; Maso, Joan; Jirka, Simon; Stasch, Christoph

    2017-04-01

    This presentation is intended to provide an overview of currently ongoing efforts in European projects to facilitate and promote the interoperable sharing of scientific observation data. This will be illustrated through two examples: a prototypical portal developed in the ConnectinGEO project for matching available (in-situ) data sources to the needs of users and a joint activity of several research projects to harmonise the usage of the OGC Sensor Web Enablement standards for providing access to marine observation data. ENEON is an activity initiated by the European ConnectinGEO project to coordinate in-situ Earth observation networks with the aim to harmonise the access to observations, improve discoverability, and identify/close gaps in European earth observation data resources. In this context, ENEON commons has been developed as a supporting Web portal for facilitating discovery, access, re-use and creation of knowledge about observations, networks, and related activities (e.g. projects). The portal is based on developments resulting from the European WaterInnEU project and has been extended to cover the requirements for handling knowledge about in-situ earth observation networks. A first prototype of the portal was completed in January 2017 which offers functionality for interactive discussion, information exchange and querying information about data delivered by different observation networks. Within this presentation, we will introduce the presented prototype and initiate a discussion about potential future work directions. The second example concerns the harmonisation of data exchange in the marine domain. There are many organisation who operate ocean observatories or data archives. In recent years, the application of the OGC Sensor Web Enablement (SWE) technology has become more and more popular to increase the interoperability between marine observation networks. However, as the SWE standards were intentionally designed in a domain independent manner

  4. A Multichannel Calorimetric Simultaneous Assay Platform Using a Microampere Constant-Current Looped Enthalpy Sensor Array

    Directory of Open Access Journals (Sweden)

    Hsien-Chin Wei

    2017-02-01

    Full Text Available Calorimetric biochemical measurements offer various advantages such as low waste, low cost, low sample consumption, short operating time, and labor-savings. Multichannel calorimeters can enhance the possibility of performing higher-throughput biochemical measurements. An enthalpy sensor (ES array is a key device in multichannel calorimeters. Most ES arrays use Wheatstone bridge amplifiers to condition the sensor signals, but such an approach is only suitable for null detection and low resistance sensors. To overcome these limitations, we have developed a multichannel calorimetric simultaneous assay (MCSA platform. An adjustable microampere constant-current (AMCC source was designed for exciting the ES array using a microampere current loop measurement circuit topology. The MCSA platform comprises a measurement unit, which contains a multichannel calorimeter and an automatic simultaneous injector, and a signal processing unit, which contains multiple ES signal conditioners and a data processor. This study focused on the construction of the MCSA platform; in particular, construction of the measurement circuit and calorimeter array in a single block. The performance of the platform, including current stability, temperature sensitivity and heat sensitivity, was evaluated. The sensor response time and calorimeter constants were given. The capability of the platform to detect relative enzyme activity was also demonstrated. The experimental results show that the proposed MCSA is a flexible and powerful biochemical measurement device with higher throughput than existing alternatives.

  5. Transboundary protected area proposals along the Southern Andes of Chile and Argentina: Status of current efforts

    Science.gov (United States)

    Peter Keller

    2007-01-01

    An evolving network of protected areas along the southern Andes of Chile and Argentina-the heart of Patagonia-are in various stages of evaluation and potential Transboundary Protected Area designations. This paper examines three such efforts. The first proposal is the North Andean-Patagonia Regional Eco-Corridor, which was the subject of a recent bilateral meeting...

  6. The Missouri River Floodplain: History of Oak Forest & Current Restoration Efforts

    Science.gov (United States)

    Daniel C. Dey; Dirk Burhans; John Kabrick; Brain Root; Jennifer Grabner; Mike Gold

    2000-01-01

    Efforts to restore floodplains are complicated by our variable understanding of history and ecology; our lack of knowledge of past environmental and vegetative conditions; and our differing viewpoints of what natural, what the role of humans is in the ecosystem, and what the desirable restored state is. Managers are challenged to decide how to restore native vegetation...

  7. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    International Nuclear Information System (INIS)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan; Yang, Xinsheng; Zhao, Yong

    2015-01-01

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  8. Calibration of Hall sensor array for critical current measurement of YBCO tape with ferromagnetic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunpeng; Wang, Gang; Liu, Liyuan [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Yang, Xinsheng, E-mail: xsyang@swjtu.edu.cn [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Zhao, Yong [Key laboratory of Magnetic levitation Technologies and Maglev Trains (Ministry of Education), Superconductor and New Energy R& D Center, Mail Stop 165#, Southwest Jiaotong University, Chengdu, 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney 2052, NSW (Australia)

    2015-12-15

    Abstract : HAS (Hall sensor array) is a powerful tool to detect the uniformity of HTS (high temperature superconductor) tape through mapping the distribution of remanent or shielding field along the surface of the tape. However, measurement of HTS tape with ferromagnetic parts by HSA is still an issue because the ferromagnetic substrate has influence on the magnetic field around the HTS layer. In this work, a continuous HSA system has been designed to measure the critical current of the YBCO tape with ferromagnetic substrate. The relationship between the remanent field and critical current was calibrated by the finite element method. The result showed that the HSA is an effective method for evaluating the critical current of the HTS tape with ferromagnetic substrate. - Highlight: • A continuous Hall sensor array system has been designed. • The inhomogeneity of YBCO tape with ferromagnetic substrate can be detected by HAS. • Finite element method is an effective method for calibrating the remanent field.

  9. Fatigue Crack Length Sizing Using a Novel Flexible Eddy Current Sensor Array

    Directory of Open Access Journals (Sweden)

    Ruifang Xie

    2015-12-01

    Full Text Available The eddy current probe, which is flexible, array typed, highly sensitive and capable of quantitative inspection is one practical requirement in nondestructive testing and also a research hotspot. A novel flexible planar eddy current sensor array for the inspection of microcrack presentation in critical parts of airplanes is developed in this paper. Both exciting and sensing coils are etched on polyimide films using a flexible printed circuit board technique, thus conforming the sensor to complex geometric structures. In order to serve the needs of condition-based maintenance (CBM, the proposed sensor array is comprised of 64 elements. Its spatial resolution is only 0.8 mm, and it is not only sensitive to shallow microcracks, but also capable of sizing the length of fatigue cracks. The details and advantages of our sensor design are introduced. The working principal and the crack responses are analyzed by finite element simulation, with which a crack length sizing algorithm is proposed. Experiments based on standard specimens are implemented to verify the validity of our simulation and the efficiency of the crack length sizing algorithm. Experimental results show that the sensor array is sensitive to microcracks, and is capable of crack length sizing with an accuracy within ±0.2 mm.

  10. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs

    Science.gov (United States)

    Brady, Gerald J.; Way, Austin J.; Safron, Nathaniel S.; Evensen, Harold T.; Gopalan, Padma; Arnold, Michael S.

    2016-01-01

    Carbon nanotubes (CNTs) are tantalizing candidates for semiconductor electronics because of their exceptional charge transport properties and one-dimensional electrostatics. Ballistic transport approaching the quantum conductance limit of 2G0 = 4e2/h has been achieved in field-effect transistors (FETs) containing one CNT. However, constraints in CNT sorting, processing, alignment, and contacts give rise to nonidealities when CNTs are implemented in densely packed parallel arrays such as those needed for technology, resulting in a conductance per CNT far from 2G0. The consequence has been that, whereas CNTs are ultimately expected to yield FETs that are more conductive than conventional semiconductors, CNTs, instead, have underperformed channel materials, such as Si, by sixfold or more. We report quasi-ballistic CNT array FETs at a density of 47 CNTs μm−1, fabricated through a combination of CNT purification, solution-based assembly, and CNT treatment. The conductance is as high as 0.46 G0 per CNT. In parallel, the conductance of the arrays reaches 1.7 mS μm−1, which is seven times higher than the previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density is as high as 900 μA μm−1 and is similar to or exceeds that of Si FETs when compared at and equivalent gate oxide thickness and at the same off-state current density. The on-state current density exceeds that of GaAs FETs as well. This breakthrough in CNT array performance is a critical advance toward the exploitation of CNTs in logic, high-speed communications, and other semiconductor electronics technologies. PMID:27617293

  11. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  12. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    International Nuclear Information System (INIS)

    Sibatov, R T

    2011-01-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  13. Quality Assessment of Refractory Protective Coatings Using Multi-Frequency Eddy Current MWM-Arrays

    International Nuclear Information System (INIS)

    Zilberstein, Vladimir; Evans, Leslie; Huguenin, Carolene; Grundy, David; Lyons, Robert; Goldfine, Neil; Mulligan, Christopher

    2006-01-01

    Demands for increased range, rate of fire, and muzzle velocity have prompted development of new refractory metal coatings. Nondestructive measurement of coating electrical conductivity and thickness is crucial to the process development and statistical process control. This paper presents absolute property coating characterization results for Ta coatings obtained with a Meandering Winding Magnetometer (MWM registered ) eddy-current sensor and MWM-Array sensor. The measured coating conductivity indicates the ratio of the intended α-Ta to the undesirable β-Ta

  14. Current practice and developmental efforts for leak detection in U.S. reactor primary systems

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.

    1986-01-01

    Current leak detection practices in 74 operating nuclear reactors have been reviewed. Existing leak detection systems are adequate to ensure a leak-before-break scenario in most situations, but no currently available, single method combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Simply tightening current leakage limits may produce an unacceptably large number of unnecessary shutdowns. The use of commercially available acoustic monitoring systems or moisture-sensitive tape may improve leak detection capability at specific sites. However, neither of these methods currently provides source discrimination (e.g., to distinguish between leaks from pipe cracks and valves) or leak-rate information (a small leak may saturate the system). A field-implementable acoustic leak detection system is being developed to address these limitations. 5 refs.

  15. Current practice and developmental efforts for leak detection in US reactor primary systems

    International Nuclear Information System (INIS)

    Kupperman, D.S.; Claytor, T.N.

    1985-07-01

    Current leak detection practices in 74 operating nuclear reactors have been reviewed. Existing leak detection systems are adequate to ensure a leak-before-break scenario in most situations, but no currently available, single method combines optimal leakage detection sensitivity, leak-locating ability, and leakage measurement accuracy. Simply tightening current leakage limits may produce an unacceptably large number of unnecessary shutdowns. The use of commercially available acoustic monitoring systems or moisture-sensitive tape may improve leak detection capability at specific sites. However, neither of these methods currently provides source discrimination (e.g., to distinguish between leaks from pipe cracks and valves) or leak-rate information (a small leak may saturate the system). A field-implementable acoustic leak detection system is being developed to address these limitations. 5 refs., 3 figs

  16. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ∼10 kA and 50 μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse

  17. A Review on Microdialysis Calibration Methods: the Theory and Current Related Efforts.

    Science.gov (United States)

    Kho, Chun Min; Enche Ab Rahim, Siti Kartini; Ahmad, Zainal Arifin; Abdullah, Norazharuddin Shah

    2017-07-01

    Microdialysis is a sampling technique first introduced in the late 1950s. Although this technique was originally designed to study endogenous compounds in animal brain, it is later modified to be used in other organs. Additionally, microdialysis is not only able to collect unbound concentration of compounds from tissue sites; this technique can also be used to deliver exogenous compounds to a designated area. Due to its versatility, microdialysis technique is widely employed in a number of areas, including biomedical research. However, for most in vivo studies, the concentration of substance obtained directly from the microdialysis technique does not accurately describe the concentration of the substance on-site. In order to relate the results collected from microdialysis to the actual in vivo condition, a calibration method is required. To date, various microdialysis calibration methods have been reported, with each method being capable to provide valuable insights of the technique itself and its applications. This paper aims to provide a critical review on various calibration methods used in microdialysis applications, inclusive of a detailed description of the microdialysis technique itself to start with. It is expected that this article shall review in detail, the various calibration methods employed, present examples of work related to each calibration method including clinical efforts, plus the advantages and disadvantages of each of the methods.

  18. Closing the patient-oncologist communication gap: a review of historic and current efforts.

    Science.gov (United States)

    Pham, A Khoa; Bauer, Marianne T; Balan, Stefan

    2014-03-01

    Effective communication is essential in developing any relationship--this is particularly true between oncologists and their patients. The patient-oncologist relationship is one of the most delicate in medicine, and given the strong emotions associated with cancer, successful communication plays a paramount role in the wellbeing of patients and oncologists. Significant advances to close the communication gap have occurred over the past several decades, largely by addressing deficiencies in the various stages of an oncologist's lengthy training: undergraduate medical education, residency and fellowship, and continuing medical education. Stemming from several milestones achieved by highly motivated groups of individuals, including the creation of consensus statements and guidelines by communication education experts, progress has been made to improve patient-oncologist communication. This progress is marked by the development of evidence-based communication skills training programs, such as Oncotalk and Comskil, in addition to the creation of distant-learning modalities, such as the Studying Communication in Oncologist-Patient Encounters trial. This review article outlines the history of communication education during medical education and training, and brings to light more recent efforts to promote competent, communication-minded physicians necessary for effective cancer care.

  19. Current and potential technologies for the detection of radionuclide signatures of proliferation (R and D efforts)

    International Nuclear Information System (INIS)

    Perkins, R.W.; Wogman, N.A.

    1993-03-01

    A country with the goal of developing nuclear weapons could pursue their ambition in several ways. These could range from the purchase or theft of a weapon or of the principal weapons components to a basic development program which may independently produce all the materials and components which are necessary. If the latter approach were pursued, there would be many signatures of such an effort and the more definitive of these include the actual materials which would be produced in each phase of the fuel cycle/weapons production process. By identifying the more definitive signatures and employing appropriate environmental sampling and analysis techniques for their observation, including imaging procedures, it should be possible to detect nuclear proliferation processes. Possible proliferation processes include: uranium acquisition through fuel fabrication; uranium enrichment for weapons production; reactor operation for plutonium production; fuel reprocessing for plutonium extraction; weapons fabrication; and uranium 233 production. Each of these are briefly discussed. The technologies for the detection of proliferation signatures which are in concept or research and development phase are: whole air beta counter; radiokrypton/xenon separator/analyzer; I-129 detector; isotope analyzer; deuterium/tritium analysis by IR/Raman spectroscopy and scintillation counting; noble gas daughter analysis; and airborne radionuclide collector/analyzer

  20. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.

    2016-06-01

    Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives

  1. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    International Nuclear Information System (INIS)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-01-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces. (paper)

  2. Precise on-machine extraction of the surface normal vector using an eddy current sensor array

    Science.gov (United States)

    Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun

    2016-11-01

    To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.

  3. Current design efforts for the gas-cooled fast reactor (GFR)

    International Nuclear Information System (INIS)

    Weaver, K.D.

    2005-01-01

    Current research and development on the Gas-Cooled Fast Reactor (GCFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFC I) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GCFR: a helium-cooled, direct Brayton cycle power conversion system that will operate with an outlet temperature of 850 C at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GCFR. These are EURATOM (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, EURATOM (including the United Kingdom), France, Japan, and Switzerland have active research activities with respect to the GCFR. The research includes GCFR design and safety, and fuels/in-core materials/fuel cycle projects. This paper outlines the current design status of the GCFR, and includes work done in the areas mentioned above. (Author)

  4. Systematic review of current efforts to quantify the impacts of climate change on undernutrition.

    Science.gov (United States)

    Phalkey, Revati K; Aranda-Jan, Clara; Marx, Sabrina; Höfle, Bernhard; Sauerborn, Rainer

    2015-08-18

    Malnutrition is a challenge to the health and productivity of populations and is viewed as one of the five largest adverse health impacts of climate change. Nonetheless, systematic evidence quantifying these impacts is currently limited. Our aim was to assess the scientific evidence base for the impact of climate change on childhood undernutrition (particularly stunting) in subsistence farmers in low- and middle-income countries. A systematic review was conducted to identify peer-reviewed and gray full-text documents in English with no limits for year of publication or study design. Fifteen manuscripts were reviewed. Few studies use primary data to investigate the proportion of stunting that can be attributed to climate/weather variability. Although scattered and limited, current evidence suggests a significant but variable link between weather variables, e.g., rainfall, extreme weather events (floods/droughts), seasonality, and temperature, and childhood stunting at the household level (12 of 15 studies, 80%). In addition, we note that agricultural, socioeconomic, and demographic factors at the household and individual levels also play substantial roles in mediating the nutritional impacts. Comparable interdisciplinary studies based on primary data at a household level are urgently required to guide effective adaptation, particularly for rural subsistence farmers. Systemization of data collection at the global level is indispensable and urgent. We need to assimilate data from long-term, high-quality agricultural, environmental, socioeconomic, health, and demographic surveillance systems and develop robust statistical methods to establish and validate causal links, quantify impacts, and make reliable predictions that can guide evidence-based health interventions in the future.

  5. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    Science.gov (United States)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  6. Prevalence and correlates of metabolic syndrome in pre-crisis Syria: call for current relief efforts.

    Science.gov (United States)

    Ramadan, H; Naja, F; Fouad, F M; Antoun, E; Jaffa, M; Chaaban, R; Haidar, M; Sibai, A M

    2016-12-12

    This study aimed to assess the prevalence, components and correlates of metabolic syndrome (MetS) in adults in pre-crisis Aleppo, Syrian Arab Republic. We used a population-based, 2-stage cluster sampling method in a population of 557 men and 611 women, randomly selected from 83 residential neighbourhoods including many rural settlers. Sociodemographic and lifestyle characteristics, comorbidity, anthropometry and biochemical indices were measured. Prevalence of MetS was estimated at 39.6%, with comparable rates in men and women. Hypertension was the most prevalent component (56.6%), followed by central obesity (51.4%). Among women, education (12 years) was inversely associated with risk of MetS, while family history of obesity and diabetes was associated with an increased risk. The high prevalence of MetS and its components emphasizes the burden of cardiovascular diseases among adults in pre-crisis Aleppo. A system of surveillance and management for cardiovascular diseases needs to be incorporated into the current humanitarian response.

  7. African medicinal plants and their derivatives: Current efforts towards potential anti-cancer drugs.

    Science.gov (United States)

    Mbele, Mzwandile; Hull, Rodney; Dlamini, Zodwa

    2017-10-01

    Cancer is a leading cause of mortality and morbidity worldwide and second only to cardiovascular diseases. Cancer is a challenge in African countries because generally there is limited funding available to deal with the cancer epidemic and awareness and this should be prioritised and all possible resources should be utilized to prevent and treat cancer. The current review reports on the role of African medicinal plants in the treatment of cancer, and also outlines methodologies that can also be used to achieve better outcomes for cancer treatment. This review outlines African medicinal plants, isolated compounds and technologies that can be used to advance cancer research. Chemical structures of isolated compounds have an important role in anti-cancer treatments; new technologies and methods may assist to identify more properties of African medicinal plants and the treatment of cancer. In conclusion, African medicinal plants have shown their potential as enormous resources for novel cytotoxicity compounds. Finally it has been noted that the cytotoxicity depends on the chemical structural arrangements of African medicinal plants compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Linking the oceans to public health: current efforts and future directions.

    Science.gov (United States)

    Kite-Powell, Hauke L; Fleming, Lora E; Backer, Lorraine C; Faustman, Elaine M; Hoagland, Porter; Tsuchiya, Ami; Younglove, Lisa R; Wilcox, Bruce A; Gast, Rebecca J

    2008-11-07

    We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.

  9. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    Science.gov (United States)

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  10. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied

  11. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor

    Directory of Open Access Journals (Sweden)

    Huayu Zhang

    2017-07-01

    Full Text Available To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor, magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  12. Phased-array antenna system for electron Bernstein wave heating and current drive experiments in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Sakaguchi, M.; Kalinnikova, E.I.

    2010-11-01

    The phased-array antenna system for Electron Bernstein Wave Heating and Current Drive (EBWH/CD) experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the EBWH/CD experiments, and was tested at a low power level. The measured two orthogonal fields were in excellent agreements with the fields evaluated by a developed Kirchhoff code. The heat load and thermal stress in CW 200 kW operation were analyzed with finite element codes. The phased array has been fast scanned [∼10 4 degree/s] to control the incident polarization and angle to follow time evolutions of the plasma current and density. The RF startup and sustainment experiments were conducted using the developed antenna system. The plasma current (< ∼15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection. The long pulse discharge of 10 kA was attained for 40 s with the 30 kW injection. (author)

  13. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K.; Martin, P.; Bureau, J.F.

    2006-01-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  14. Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: obrutskyl@aecl.ca; Martin, P. [NB Power, Point Lepreau NGS, Point Lepreau, New Brunswick (Canada)]. E-mail: PMartin@nbpower.com; Bureau, J.F. [Zetec, Quebec, Quebec (Canada)]. E-mail: jean-francois.bureau@zetec.com

    2006-07-01

    A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)

  15. Effects of Wave Energy Converter (WEC) Arrays on Wave, Current, and Sediment Circulation

    Science.gov (United States)

    Ruehl, K.; Roberts, J. D.; Jones, C.; Magalen, J.; James, S. C.

    2012-12-01

    The characterization of the physical environment and commensurate alteration of that environment due to Wave Energy Conversion (WEC) devices, or arrays of devices, must be understood to make informed device-performance predictions, specifications of hydrodynamic loads, and environmental evaluations of eco-system responses (e.g., changes to circulation patterns, sediment dynamics, and water quality). Hydrodynamic and sediment issues associated with performance of wave-energy devices will primarily be nearshore where WEC infrastructure (e.g., anchors, piles) are exposed to large forces from the surface-wave action and currents. Wave-energy devices will be subject to additional corrosion, fouling, and wear of moving parts caused by suspended sediments in the water column. The alteration of the circulation and sediment transport patterns may also alter local ecosystems through changes in benthic habitat, circulation patterns, or other environmental parameters. Sandia National Laboratories is developing tools and performing studies to quantitatively characterize the environments where WEC devices may be installed and to assess potential affects to hydrodynamics and local sediment transport. The primary tools are wave, hydrodynamic, and sediment transport models. To ensure confidence in the resulting evaluation of system-wide effects, the models are appropriately constrained and validated with measured data where available. An extension of the US EPA's EFDC code, SNL-EFDC, provides a suitable platform for modeling the necessary hydrodynamics;it has been modified to directly incorporate output from a SWAN wave model of the region. Model development and results are presented. In this work, a model is exercised for Monterey Bay, near Santa Cruz where a WEC array could be deployed. Santa Cruz is located on the northern coast of Monterey Bay, in Central California, USA. This site was selected for preliminary research due to the readily available historical hydrodynamic data

  16. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition

    International Nuclear Information System (INIS)

    Xie Kunpeng; Sun Lan; Wang Chenglin; Lai Yuekun; Wang Mengye; Chen Hongbo; Lin Changjian

    2010-01-01

    A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO 2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO 2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO 2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO 2 nanotube arrays was 51%, much higher than that of pure TiO 2 nanotube arrays. Ag/TiO 2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO 2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO 2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO 2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.

  17. Calculation of the self-consistent current distribution and coupling of an RF antenna array

    International Nuclear Information System (INIS)

    Ballico, M.; Puri, S.

    1993-10-01

    A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)

  18. Fabrication of multi-emitter array of CNT for enhancement of current density

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, Vijay, E-mail: vchouhan@post.kek.jp [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); Noguchi, Tsuneyuki [High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan); Kato, Shigeki [Department of Accelerator Science, Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki (Japan); High Energy Accelerator Research Organization-KEK, 1-1 Oho, Tsukuba, Ibaraki (Japan)

    2011-11-11

    We studied and compared field emission properties of two kinds of emitters of randomly oriented multi-wall carbon nanotubes (MWNTs), viz. continuous film emitter (CFE) and multi-emitter array (MEA). The CFE has a continuous film of MWNTs while the MEA consists of many equidistant small circular emitters. Both types of emitters were prepared by dispersing MWNTs over a titanium (Ti) film (for CFEs) or Ti circular islands (for MEAs) deposited on tantalum (Ta) followed by rooting of MWNTs into the Ti film or the Ti islands at high temperature. Emission properties of both types of emitters were analyzed with changing their emission areas. In case of the CFEs, current density decreased with an increase in emission area whereas consistent current densities were achieved from MEAs with different emission areas. In other words, the total emission current was achieved in proportion to the emission area in the case of MEAs. Additionally a high current density of 22 A/cm{sup 2} was achieved at an electric field of 8 V/{mu}m from MEAs, which was far better than that obtained from CFEs. The high current density in MEAs was attributed to edge effect, in which higher emission current is achieved from the edge of film emitter. The results indicate that the field emission characteristics can be greatly improved if a cathode contains many small equidistant circular emitters instead of a continuous film. The outstanding stability of the CFE and the MEA has been demonstrated for 2100 and 1007 h, respectively.

  19. On-Line Monitoring of Environment-Assisted Cracking in Nuclear Piping Using Array Probe Direct Current Potential Drop

    OpenAIRE

    Kim, Y.; Choi, S.; Yoon, J. Y.; Nam, W. C.; Hwang, I. S.; Bromberg, Leslie; Stahle, Peter W; Ballinger, Ronald G

    2015-01-01

    A direct current potential drop method utilizing array probes with measurement ends maintaining an equalized potential designated as equi-potential switching array probe direct current potential drop (ESAP-DCPD) technique has been developed earlier at Seoul National University. This paper validates ESAP-DCPD technique by showing consistency among experimental measurements, analytical solution and numerical predictions using finite element analysis (FEA) of electric field changes with crack gr...

  20. Computer programs for the acquisition and analysis of eddy-current array probe data

    International Nuclear Information System (INIS)

    Pate, J.R.; Dodd, C.V.

    1996-07-01

    Objective of the Improved Eddy-Curent ISI (in-service inspection) for Steam Generators Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for ISI of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report documents computer programs that were developed for acquisition of eddy-current data from specially designed 16-coil array probes. Complete code as well as instructions for use are provided

  1. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  2. Efforts Aimed To Reduce Attrition in Antimalarial Drug Discovery: A Systematic Evaluation of the Current Antimalarial Targets Portfolio.

    Science.gov (United States)

    Chaparro, María Jesús; Calderón, Félix; Castañeda, Pablo; Fernández-Alvaro, Elena; Gabarró, Raquel; Gamo, Francisco Javier; Gómez-Lorenzo, María G; Martín, Julio; Fernández, Esther

    2018-04-13

    Malaria remains a major global health problem. In 2015 alone, more than 200 million cases of malaria were reported, and more than 400,000 deaths occurred. Since 2010, emerging resistance to current front-line ACTs (artemisinin combination therapies) has been detected in endemic countries. Therefore, there is an urgency for new therapies based on novel modes of action, able to relieve symptoms as fast as the artemisinins and/or block malaria transmission. During the past few years, the antimalarial community has focused their efforts on phenotypic screening as a pragmatic approach to identify new hits. Optimization efforts on several chemical series have been successful, and clinical candidates have been identified. In addition, recent advances in genetics and proteomics have led to the target deconvolution of phenotypic clinical candidates. New mechanisms of action will also be critical to overcome resistance and reduce attrition. Therefore, a complementary strategy focused on identifying well-validated targets to start hit identification programs is essential to reinforce the clinical pipeline. Leveraging published data, we have assessed the status quo of the current antimalarial target portfolio with a focus on the blood stage clinical disease. From an extensive list of reported Plasmodium targets, we have defined triage criteria. These criteria consider genetic, pharmacological, and chemical validation, as well as tractability/doability, and safety implications. These criteria have provided a quantitative score that has led us to prioritize those targets with the highest probability to deliver successful and differentiated new drugs.

  3. Comparison between SuperDARN flow vectors and equivalent ionospheric currents from ground magnetometer arrays

    DEFF Research Database (Denmark)

    Weygand, J. M.; Amm, O.; Angelopoulos, V.

    2012-01-01

    seasons. This comparison is done over a range of spatial separations, magnetic latitudes, magnetic local times, and auroral electrojet activity to investigate under what conditions the vectors are anti-parallel to one another. Our results show that in general the equivalent ionospheric currents are anti...... that may influence the alignment include ionospheric conductivity gradients and quiet time backgrounds. Our results can be used to approximate the macroscopic (similar to 1000 km) ionospheric convection patterns. The SECS maps represent a value-added product from the raw magnetometer database and can...... be used for contextual interpretation; they can help with our understanding of magnetosphere-ionosphere coupling mechanisms using ground arrays and the magnetospheric spacecraft data, and they can be used as input for other techniques....

  4. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    Science.gov (United States)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  5. The 50th Anniversary of the International Indian Ocean Expedition: An Update on Current Planning Efforts and Progress

    Science.gov (United States)

    Hood, Raleigh; D'Adamo, Nick; Burkill, Peter; Urban, Ed; Bhikajee, Mitrasen

    2014-05-01

    The International Indian Ocean Expedition (IIOE) was one of the greatest international, interdisciplinary oceanographic research efforts of all time. Planning for the IIOE began in 1959 and the project officially continued through 1965, with forty-six research vessels participating under fourteen different flags. The IIOE motivated an unprecedented number of hydrographic surveys (and repeat surveys) over the course of the expedition covering the entire Indian Ocean basin. And it was an interdisciplinary endeavor that embraced physical oceanography, chemical oceanography, meteorology, marine biology, marine geology and geophysics. The end of 2015 will mark the 50th Anniversary of the completion of the IIOE. In the 50 years since the IIOE three fundamental changes have taken place in ocean science. The first is the deployment of a broad suite of oceanographic sensors on satellites that have dramatically improved the characterization of both physical and biological oceanographic variability. The second is the emergence of new components of the ocean observing system, most notably remote sensing and Argo floats. And the third is the development of ocean modeling in all its facets from short-term forecasting to seasonal prediction to climate projections. These advances have revolutionized our understanding of the global oceans, including the Indian Ocean. Compared to the IIOE era, we now have the capacity to provide a much more integrated picture of the Indian Ocean, especially if these new technologies can be combined with targeted and well-coordinated in situ measurements. In this presentation we report on current efforts to motivate an IIOE 50th Anniversary Celebration (IIOE-2). We envision this IIOE-2 as a 5-year expedition and effort beginning in 2015 and continuing through to 2020. An important objective of our planning efforts is assessing ongoing and planned research activities in the Indian Ocean in the 2015 to 2020 time frame, with the goal of embracing and

  6. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A., E-mail: jrogers@illinois.edu [Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wahab, Muhammad A.; Alam, Muhammad A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Li, Yuhang [Institute of Solid Mechanics, Beihang University, Beijing 100191 (China); Tomic, Bojan [Department of Electrical Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Huang, Jiyuan [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Burns, Branden [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Song, Jizhou [Department of Engineering Mechanics and Soft Matter Research Center, Zhejiang University, Hangzhou 310027 (China); Huang, Yonggang [Department of Civil and Environmental Engineering, Department of Mechanical Engineering, Center for Engineering and Health, and Skin Disease Research Center, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  7. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A.; Wahab, Muhammad A.; Alam, Muhammad A.; Li, Yuhang; Tomic, Bojan; Huang, Jiyuan; Burns, Branden; Song, Jizhou; Huang, Yonggang

    2015-01-01

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups

  8. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  9. Anisotrophic currents and flux jumps in high-T-c superconducting films with self-organized arrays of planar defects

    DEFF Research Database (Denmark)

    Yurchenko, V.V.; Qviller, A.J.; Mozhaev, P.B.

    2010-01-01

    Regular arrays of planar defects with a period of a few nanometers can be introduced in superconducting YBa2Cu3O7-delta (YBCO) thin films by depositing them on vicinal (also called miscut or tilted) substrates. This results in the anisotropy of critical currents flowing in the plane of the film. ...

  10. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    Science.gov (United States)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  11. Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    Science.gov (United States)

    Elliott, R. A.; Hartnett, K.

    1987-01-01

    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented.

  12. New insights from direct monitoring of turbidity currents; and a proposal for co-ordinating international efforts at a series of global "turbidity current test sites"

    Science.gov (United States)

    Talling, Peter

    2015-04-01

    Turbidity currents, and other types of submarine sediment density flow, arguably redistribute more sediment across the surface of the Earth than any other flow process. It is now over 60 years since the seminal publication of Kuenen and Migliorini (1950) in which they made the link between sequences of graded bedding and turbidity currents. The deposits of submarine sediment density flows have been described in numerous locations worldwide, and this might lead to the view that these flows are well understood. However, it is sobering to note quite how few direct measurements we have from these submarine flows in action. Sediment concentration is the critical parameter controlling such flows, yet it has never been measured directly for flows that reach and build submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical simulations or analytical models? It is proposed here that international efforts are needed for an initiative to monitor active turbidity currents at a series of 'test sites' where flows occur frequently. The flows evolve significantly, such that source to sink data are needed. We also need to directly monitor flows in different settings with variable triggering factors and flow path morphologies because their character can vary significantly. Such work should integrate numerical and physical modelling with the collection of field observations in order to understand the significance of field observations. Such an international initiative also needs to include coring of deposits to link flow processes to deposit character, because in most global locations flow behaviour must be inferred from deposits alone. Collection of seismic datasets is also crucial for understanding the larger-scale evolution and resulting architecture of these systems, and to link with studies of subsurface reservoirs. Test site datasets should thus include a wide range of data types, not just from direct flow

  13. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    Science.gov (United States)

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  14. Do Changes in Current Flow as a Result of Arrays of Tidal Turbines Have an Effect on Benthic Communities?

    Science.gov (United States)

    Kregting, Louise; Elsaesser, Bjoern; Kennedy, Robert; Smyth, David; O'Carroll, Jack; Savidge, Graham

    2016-01-01

    Arrays of tidal energy converters have the potential to provide clean renewable energy for future generations. Benthic communities may, however, be affected by changes in current speeds resulting from arrays of tidal converters located in areas characterised by strong currents. Current speed, together with bottom type and depth, strongly influence benthic community distributions; however the interaction of these factors in controlling benthic dynamics in high energy environments is poorly understood. The Strangford Lough Narrows, the location of SeaGen, the world's first single full-scale, grid-compliant tidal energy extractor, is characterised by spatially heterogenous high current flows. A hydrodynamic model was used to select a range of benthic community study sites that had median flow velocities between 1.5-2.4 m/s in a depth range of 25-30 m. 25 sites were sampled for macrobenthic community structure using drop down video survey to test the sensitivity of the distribution of benthic communities to changes in the flow field. A diverse range of species were recorded which were consistent with those for high current flow environments and corresponding to very tide-swept faunal communities in the EUNIS classification. However, over the velocity range investigated, no changes in benthic communities were observed. This suggested that the high physical disturbance associated with the high current flows in the Strangford Narrows reflected the opportunistic nature of the benthic species present with individuals being continuously and randomly affected by turbulent forces and physical damage. It is concluded that during operation, the removal of energy by marine tidal energy arrays in the far-field is unlikely to have a significant effect on benthic communities in high flow environments. The results are of major significance to developers and regulators in the tidal energy industry when considering the environmental impacts for site licences.

  15. Flow and flow-induced vibration of a square array of cylinders in steady currents

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ming [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Cheng, Liang; An, Hongwei; Tong, Feifei, E-mail: m.zhao@uws.edu.au [School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2015-08-15

    Flow and flow-induced vibration of a square array of cylinders are investigated by two-dimensional numerical simulations. Flow past 36 cylinders in an inline arranged square array and 33 cylinders in a staggered arranged square array is firstly simulated, for Re = 100 and the spacing ratios of L/D = 1.5, 2, 3, 4, 5. Only one vortex street is observed in the wake of the cylinder array when the spacing ratio is 1.5 in the inline arrangement and 1.5 and 2 in the staggered arrangement, indicating that the critical spacing ratio for the single-vortex street mode in the staggered arrangement is higher than that in the inline arrangement. The vortex shedding from the cylinders is suppressed at L/D = 3 for both inline and staggered arrangements. Vortex shedding from each individual cylinder is observed when L/D = 4. Flow-induced vibration of 36 cylinders in an inline square arrangement is studied for a constant Reynolds number of 100, two spacing ratios of 2 and 5, a constant mass ratio of 2.5 and a wide range of reduced velocities. It is found that for a spacing ratio of 2, the vibration of the cylinders in the four downstream columns does not start until the reduced velocity exceeds 4.5. The vibration of the cylinders progresses downstream with increasing reduced velocity. For a spacing ratio of 5, the vibrations of the cylinders in the most upstream column are similar to that of a single cylinder. The vibration amplitudes of the downstream cylinders peak at higher reduced velocities than that of a single cylinder. The maximum possible response amplitudes occur at the most downstream cylinders. (paper)

  16. Reduced-Rank Array Modes of the California Current Observing System

    Science.gov (United States)

    Moore, Andrew M.; Arango, Hernan G.; Edwards, Christopher A.

    2018-01-01

    The information content of the ocean observing array spanning the U.S. west coast is explored using the reduced-rank array modes (RAMs) derived from a four-dimensional variational (4D-Var) data assimilation system covering a period of three decades. RAMs are an extension of the original formulation of array modes introduced by Bennett (1985) but in the reduced model state-space explored by the 4D-Var system, and reveal the extent to which this space is activated by the observations. The projection of the RAMs onto the empirical orthogonal functions (EOFs) of the 4D-Var background error correlation matrix provides a quantitative measure of the effectiveness of the measurements in observing the circulation. It is found that much of the space spanned by the background error covariance is unconstrained by the present ocean observing system. The RAM spectrum is also used to introduce a new criterion to prevent 4D-Var from overfitting the model to the observations.

  17. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  18. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    Science.gov (United States)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  19. Temperature and pinning strength dependence of the critical current of a superconductor with a square periodic array of pinning sites

    International Nuclear Information System (INIS)

    Benkraouda, M.; Obaidat, I.M.; Al Khawaja, U.

    2006-01-01

    We have conducted extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. In solving the over damped equation of vortex motion we took into account the vortex-vortex repulsion interaction, the attractive vortex-pinning interaction, and the driving Lorentz force at several values of temperature. We have studied the effect of varying the driving Lorentz force and varying the pinning strength on the critical current for several pinning densities, and temperature values. We have found that the pinning strength play an important role in enhancing the critical current over the whole temperature range. At low temperatures, the critical current was found to increase linearly with increasing the pinning strengths for all pinning densities. As the temperature increases, the effect of small pinning strengths diminishes and becomes insignificant at high temperatures

  20. Experimental investigation of localized stress-induced leakage current distribution in gate dielectrics using array test circuit

    Science.gov (United States)

    Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.

  1. Measurements of high-current electron beams from X pinches and wire array Z pinches

    International Nuclear Information System (INIS)

    Shelkovenko, T. A.; Pikuz, S. A.; Blesener, I. C.; McBride, R. D.; Bell, K. S.; Hammer, D. A.; Agafonov, A. V.; Romanova, V. M.; Mingaleev, A. R.

    2008-01-01

    Some issues concerning high-current electron beam transport from the X pinch cross point to the diagnostic system and measurements of the beam current by Faraday cups are discussed. Results of computer simulation of electron beam propagation from the pinch to the Faraday cup give limits for the measured current for beams having different energy spreads. The beam is partially neutralized as it propagates from the X pinch to a diagnostic system, but within a Faraday cup diagnostic, space charge effects can be very important. Experimental results show evidence of such effects.

  2. Case Based Measles Surveillance in Pune: Evidence to Guide Current and Future Measles Control and Elimination Efforts in India

    Science.gov (United States)

    Bose, Anindya Sekhar; Jafari, Hamid; Sosler, Stephen; Narula, Arvinder Pal Singh; Kulkarni, V. M.; Ramamurty, Nalini; Oommen, John; Jadi, Ramesh S.; Banpel, R. V.; Henao-Restrepo, Ana Maria

    2014-01-01

    Background According to WHO estimates, 35% of global measles deaths in 2011 occurred in India. In 2013, India committed to a goal of measles elimination by 2020. Laboratory supported case based measles surveillance is an essential component of measles elimination strategies. Results from a case-based measles surveillance system in Pune district (November 2009 through December 2011) are reported here with wider implications for measles elimination efforts in India. Methods Standard protocols were followed for case identification, investigation and classification. Suspected measles cases were confirmed through serology (IgM) or epidemiological linkage or clinical presentation. Data regarding age, sex, vaccination status were collected and annualized incidence rates for measles and rubella cases calculated. Results Of the 1011 suspected measles cases reported to the surveillance system, 76% were confirmed measles, 6% were confirmed rubella, and 17% were non-measles, non-rubella cases. Of the confirmed measles cases, 95% were less than 15 years of age. Annual measles incidence rate was more than 250 per million persons and nearly half were associated with outbreaks. Thirty-nine per cent of the confirmed measles cases were vaccinated with one dose of measles vaccine (MCV1). Conclusion Surveillance demonstrated high measles incidence and frequent outbreaks in Pune where MCV1 coverage in infants was above 90%. Results indicate that even high coverage with a single dose of measles vaccine was insufficient to provide population protection and prevent measles outbreaks. An effective measles and rubella surveillance system provides essential information to plan, implement and evaluate measles immunization strategies and monitor progress towards measles elimination. PMID:25290339

  3. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    Science.gov (United States)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  4. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    Science.gov (United States)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a

  5. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  6. Anisotrophic currents and flux jumps in high-Tc superconducting films with self-organized arrays of planar defects

    International Nuclear Information System (INIS)

    Yurchenko, V.V.; Qviller, A.J.; Mozhaev, P.B.; Mozhaeva, J.E.; Hansen, J.B.; Jacobsen, C.S.; Kotelyanskii, I.M.; Pan, A.V.; Johansen, T.H.

    2010-01-01

    Regular arrays of planar defects with a period of a few nanometers can be introduced in superconducting YBa 2 Cu 3 O 7-δ (YBCO) thin films by depositing them on vicinal (also called miscut or tilted) substrates. This results in the anisotropy of critical currents flowing in the plane of the film. We present results of real-time magneto-optical imaging (MOI) of magnetic flux distribution and dynamics in a series of YBCO thin films deposited on NdGaO 3 substrates with different miscut angles θ. MOI allows reconstructing the current flow profiles. From the angle formed between domains with different directions of the current flow we determine the anisotropy parameter of the in-plane current, as well as its field and temperature dependences. The artificially introduced defects also have a dramatic effect on the dynamics of the flux propagation: for 10 o o the magnetic flux propagates along the easy channels intermittently, i.e. in a form of flux jumps. This behavior is indicative of thermo-magnetic instability in superconductors, but we argue that this effect can be of a different nature.

  7. Calculating electronic tunnel currents in networks of disordered irregularly shaped nanoparticles by mapping networks to arrays of parallel nonlinear resistors

    Energy Technology Data Exchange (ETDEWEB)

    Aghili Yajadda, Mir Massoud [CSIRO Manufacturing Flagship, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2014-10-21

    We have shown both theoretically and experimentally that tunnel currents in networks of disordered irregularly shaped nanoparticles (NPs) can be calculated by considering the networks as arrays of parallel nonlinear resistors. Each resistor is described by a one-dimensional or a two-dimensional array of equal size nanoparticles that the tunnel junction gaps between nanoparticles in each resistor is assumed to be equal. The number of tunnel junctions between two contact electrodes and the tunnel junction gaps between nanoparticles are found to be functions of Coulomb blockade energies. In addition, the tunnel barriers between nanoparticles were considered to be tilted at high voltages. Furthermore, the role of thermal expansion coefficient of the tunnel junction gaps on the tunnel current is taken into account. The model calculations fit very well to the experimental data of a network of disordered gold nanoparticles, a forest of multi-wall carbon nanotubes, and a network of few-layer graphene nanoplates over a wide temperature range (5-300 K) at low and high DC bias voltages (0.001 mV–50 V). Our investigations indicate, although electron cotunneling in networks of disordered irregularly shaped NPs may occur, non-Arrhenius behavior at low temperatures cannot be described by the cotunneling model due to size distribution in the networks and irregular shape of nanoparticles. Non-Arrhenius behavior of the samples at zero bias voltage limit was attributed to the disorder in the samples. Unlike the electron cotunneling model, we found that the crossover from Arrhenius to non-Arrhenius behavior occurs at two temperatures, one at a high temperature and the other at a low temperature.

  8. First Year Observations of Antarctic Circumpolar Current Variability and Internal Wave Activity from the DIMES Mooring Array

    Science.gov (United States)

    Brearley, J. A.; Sheen, K. L.; Naveira-Garabato, A. C.

    2012-04-01

    A key component of DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) is the deployment of a two-year cross-shaped mooring array in the Antarctic Circumpolar Current to the east of Drake Passage close to 57°W. Motivation for the cluster arises from the need to understand how eddies dissipate in the Southern Ocean, and specifically how much energy is extracted from the mesoscale by breaking internal waves, which in turn leads to turbulent mixing. The location of the mooring cluster was chosen to fulfil these objectives, being situated in a region of pronounced finestructure with high eddy kinetic energy and rough topography. The array, comprising 34 current meters and Microcats and a downward-looking ADCP, was first deployed in December 2009 and serviced in December 2010. Time series of current meter results from the most heavily-instrumented 'C' mooring indicate that a strong (up to 80 cms-1) surface-intensified north-eastward directed ACC occupies the region for most of the year, with over 85% of the variability in current speed being accounted for by equivalent barotropic fluctuations. A strong mean poleward heat flux is observed at the site, which compares favourably in magnitude with literature results from other ACC locations. Interestingly, four episodes of mid-depth (~2000 m) current speed maxima, each of a few days duration, were found during the 360-day time series, a situation also observed by the lowered ADCP during mooring servicing in December 2010. Early results indicate that these episodes, which coincide with time minima in stratification close to 2000 m, could profoundly influence the nature of eddy-internal wave interactions at these times. Quantification of the energy budget at the mooring cluster has been a key priority. When compared with previous moorings located in Drake Passage (Bryden, 1977), a near threefold-increase in mean eddy kinetic energy (EKE) is observed despite a small reduction in the mean kinetic energy

  9. Glass Property Models and Constraints for Estimating the Glass to be Produced at Hanford by Implementing Current Advanced Glass Formulation Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kim, Dong-Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-07-01

    Recent glass formulation and melter testing data have suggested that significant increases in waste loading in HLW and LAW glasses are possible over current system planning estimates. The data (although limited in some cases) were evaluated to determine a set of constraints and models that could be used to estimate the maximum loading of specific waste compositions in glass. It is recommended that these models and constraints be used to estimate the likely HLW and LAW glass volumes that would result if the current glass formulation studies are successfully completed. It is recognized that some of the models are preliminary in nature and will change in the coming years. Plus the models do not currently address the prediction uncertainties that would be needed before they could be used in plant operations. The models and constraints are only meant to give an indication of rough glass volumes and are not intended to be used in plant operation or waste form qualification activities. A current research program is in place to develop the data, models, and uncertainty descriptions for that purpose. A fundamental tenet underlying the research reported in this document is to try to be less conservative than previous studies when developing constraints for estimating the glass to be produced by implementing current advanced glass formulation efforts. The less conservative approach documented herein should allow for the estimate of glass masses that may be realized if the current efforts in advanced glass formulations are completed over the coming years and are as successful as early indications suggest they may be. Because of this approach there is an unquantifiable uncertainty in the ultimate glass volume projections due to model prediction uncertainties that has to be considered along with other system uncertainties such as waste compositions and amounts to be immobilized, split factors between LAW and HLW, etc.

  10. Improved adaptive input voltage control of a solar array interfacing current mode controlled boost power stage

    International Nuclear Information System (INIS)

    Sitbon, Moshe; Schacham, Shmuel; Suntio, Teuvo; Kuperman, Alon

    2015-01-01

    Highlights: • Photovoltaic generator dynamic resistance online estimation method is proposed. • Control method allowing to achieve nominal performance at all time is presented. • The method is suitable for any type of photovoltaic system. - Abstract: Nonlinear characteristics of photovoltaic generators were recently shown to significantly influence the dynamics of interfacing power stages. Moreover, since the dynamic resistance of photovoltaic generators is both operating point and environmental variables dependent, the combined dynamics exhibits these dependencies as well, burdening control challenge. Typically, linear time invariant input voltage loop controllers (e.g. Proportional-Integrative-Derivative) are utilized in photovoltaic applications, designed according to nominal operating conditions. Nevertheless, since actual dynamics is seldom nominal, closed loop performance of such systems varies as well. In this paper, adaptive control method is proposed, allowing to estimate photovoltaic generator resistance online and utilize it to modify the controller parameters such that closed loop performance remains nominal throughout the whole operation range. Unlike previously proposed method, utilizing double-grid-frequency component for estimation purposes and suffering from various drawbacks such as operation point dependence and applicability to single-phase grid connected systems only, the proposed method is based on harmonic current injection and is independent on operating point and system topology

  11. Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers

    International Nuclear Information System (INIS)

    Dinner, Rafael B; Wimbush, Stuart C; MacManus-Driscoll, Judith L; Blamire, Mark G; Robinson, Adam P

    2011-01-01

    Large area arrays of through-thickness nanoscale pores have been milled into superconducting Nb thin films via a process utilizing anodized aluminum oxide thin film templates. These pores act as artificial flux pinning centers, increasing the superconducting critical current, J c , of the Nb films. By optimizing the process conditions including anodization time, pore size and milling time, J c values approaching and in some cases matching the Ginzburg-Landau depairing current of 30 MA cm -2 at 5 K have been achieved-a J c enhancement over as-deposited films of more than 50 times. In the field dependence of J c , a matching field corresponding to the areal pore density has also been clearly observed. The effect of backfilling the pores with magnetic material has then been investigated. While backfilling with Co has been successfully achieved, the effect of the magnetic material on J c has been found to be largely detrimental compared to voids, although a distinct influence of the magnetic material in producing a hysteretic J c versus applied field behavior has been observed. This behavior has been tested for compatibility with currently proposed models of magnetic pinning and found to be most closely explained by a model describing the magnetic attraction between the flux vortices and the magnetic inclusions.

  12. The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array

    International Nuclear Information System (INIS)

    Hu, J. T.; Liu, X. Y.; Liu, J. H.; Xiong, Z. L.; Liu, D. W.; Lu, X. P.; Iza, F.; Kong, M. G.

    2012-01-01

    Here we compare the plasma plume propagation characteristics of a 3-channel pulsed RF plasma jet array and those of the same device operated by a pulsed dc source. For the pulsed-RF jet array, numerous long life time ions and metastables accumulated in the plasma channel make the plasma plume respond quickly to applied electric field. Its structure similar as “plasma bullet” is an anode glow indeed. For the pulsed dc plasma jet array, the strong electric field in the vicinity of the tube is the reason for the growing plasma bullet in the launching period. The repulsive forces between the growing plasma bullets result in the divergence of the pulsed dc plasma jet array. Finally, the comparison of 309 nm and 777 nm emissions between these two jet arrays suggests the high chemical activity of pulsed RF plasma jet array.

  13. The mini-dome Fresnel lens photovoltaic concentrator array - Current status of component and prototype panel testing

    Science.gov (United States)

    Piszczor, M. F.; Swartz, C. K.; O'Neill, M. J.; Mcdanal, A. J.; Fraas, L. M.

    1990-01-01

    NASA Lewis and ENTECH have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The emphasis of the program has shifted to fabrication and testing of the minidome Fresnel lens and other array components. Protototype lenses have been tested for optical efficiency, with results around 90 percent, and tracking error performance. The results of these tests have been very consistent with the predicted analytical performance. Work has also progressed in the fabrication of the array support structure. Recent advances in 30 percent efficient stacked cell technology will have a significant effect on the array performance. It is concluded that near-term array performance goals of 300 W/sq m and 100 W/kg are feasible.

  14. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  15. Effortful echolalia.

    Science.gov (United States)

    Hadano, K; Nakamura, H; Hamanaka, T

    1998-02-01

    We report three cases of effortful echolalia in patients with cerebral infarction. The clinical picture of speech disturbance is associated with Type 1 Transcortical Motor Aphasia (TCMA, Goldstein, 1915). The patients always spoke nonfluently with loss of speech initiative, dysarthria, dysprosody, agrammatism, and increased effort and were unable to repeat sentences longer than those containing four or six words. In conversation, they first repeated a few words spoken to them, and then produced self initiated speech. The initial repetition as well as the subsequent self initiated speech, which were realized equally laboriously, can be regarded as mitigated echolalia (Pick, 1924). They were always aware of their own echolalia and tried to control it without effect. These cases demonstrate that neither the ability to repeat nor fluent speech are always necessary for echolalia. The possibility that a lesion in the left medial frontal lobe, including the supplementary motor area, plays an important role in effortful echolalia is discussed.

  16. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  17. Everglades Ecological Forecasting II: Utilizing NASA Earth Observations to Enhance the Capabilities of Everglades National Park to Monitor & Predict Mangrove Extent to Aid Current Restoration Efforts

    Science.gov (United States)

    Kirk, Donnie; Wolfe, Amy; Ba, Adama; Nyquist, Mckenzie; Rhodes, Tyler; Toner, Caitlin; Cabosky, Rachel; Gotschalk, Emily; Gregory, Brad; Kendall, Candace

    2016-01-01

    Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to make the process replicable for project partners at Everglades National Park, the team was able to conduct a supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current extent map, along with transition maps helped create forecasting models that show mangrove encroachment further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in relation to a changing climate and hydrological changes throughout the park.

  18. Estimation of Acoustic Particle Motion and Source Bearing Using a Drifting Hydrophone Array Near a River Current Turbine to Assess Disturbances to Fish

    Science.gov (United States)

    Murphy, Paul G.

    River hydrokinetic turbines may be an economical alternative to traditional energy sources for small communities on Alaskan rivers. However, there is concern that sound from these turbines could affect sockeye salmon (Oncorhynchus nerka), an important resource for small, subsistence based communities, commercial fisherman, and recreational anglers. The hearing sensitivity of sockeye salmon has not been quantified, but behavioral responses to sounds at frequencies less than a few hundred Hertz have been documented for Atlantic salmon (Salmo salar), and particle motion is thought to be the primary mode of stimulation. Methods of measuring acoustic particle motion are well-established, but have rarely been necessary in energetic areas, such as river and tidal current environments. In this study, the acoustic pressure in the vicinity of an operating river current turbine is measured using a freely drifting hydrophone array. Analysis of turbine sound reveals tones that vary in frequency and magnitude with turbine rotation rate, and that may sockeye salmon may sense. In addition to pressure, the vertical components of particle acceleration and velocity are estimated by calculating the finite difference of the pressure signals from the hydrophone array. A method of determining source bearing using an array of hydrophones is explored. The benefits and challenges of deploying drifting hydrophone arrays for marine renewable energy converter monitoring are discussed.

  19. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    Science.gov (United States)

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  20. Nanofabrication of Arrays of Silicon Field Emitters with Vertical Silicon Nanowire Current Limiters and Self-Aligned Gates

    Science.gov (United States)

    2016-08-19

    limiters, MEMS, NEMS, field emission, cold cathodes (Some figures may appear in colour only in the online journal) 1. Introduction Dense arrays of silicon... attention has been given to densely packed, highly ordered, top-down fabricated, single crystal vertical silicon nanowire devices that are embedded

  1. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  2. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.

    Science.gov (United States)

    Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong

    2010-05-14

    This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

  3. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  4. Traditional scientific data vs. uncoordinated citizen science effort: A review of the current status and comparison of data on avifauna in Southern Brazil.

    Science.gov (United States)

    Klemann-Junior, Louri; Villegas Vallejos, Marcelo Alejandro; Scherer-Neto, Pedro; Vitule, Jean Ricardo Simões

    2017-01-01

    Data generated by citizen science is particularly valuable in ecological research. If used discerningly with data from traditional scientific references, citizen science can directly contribute to biogeography knowledge and conservation policies by increasing the number of species records in large geographic areas. Considering the current level of knowledge on south Brazilian avifauna, the large volume of data produced by uncoordinated citizen science effort (CS), and the growing need for information on changes in abundance and species composition, we have compiled an updated, general list of bird species occurrence within the state of Paraná. We have listed extinct, invasive and recently-colonizing species as well as indicator species of the state's vegetation types. We further assess the degree of knowledge of different regions within the state based on data from traditional scientific references, and the effect of including CS data in the same analysis. We have compiled data on 766 bird species, based on 70,346 individual records from traditional scientific references, and 79,468 from CS. Extinct and invasive species were identified by comparing their occurrence and abundance over a series of three time periods. Indicator species analysis pointed to the existence of three areas with bird communities typically found within the state: the Semideciduous Tropical Forest, the Tropical Rainforest and the junction of Grassland and Araucaria Moist Forest. We used rarefaction to measure sampling sufficiency, and found that rarefaction curves reached stabilization for all vegetation types except in Savanna. We observed differences in the level of knowledge of bird biodiversity among the microregions of the state, but including CS data, these differences were mitigated. The same effect was observed in other exploratory analyzes conducted here, emphasizing the fundamental importance of including CS data in macroecological studies. Production of easily accessible data and

  5. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weicheng [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Cheng, Xiang' ai, E-mail: xiang-ai-cheng@126.com; Wang, Rui [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  6. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.

    Science.gov (United States)

    Petrofsky, J; Suh, H J; Fish, A; Hernandez, V; Abdo, A; Collins, K; Mendoza, E; Yang, T-N

    2008-01-01

    When electrical stimulation is used on wounds, the electrical current has difficulty penetrating areas where there is necrotic tissue. Further, for an irregularly shaped wound, current distribution is poor in some areas of the wound since conventional two-electrode delivery systems provide the greatest current in a line directly between the electrodes. A new stimulator and electrode system is described which uses three electrodes spaced around a wound to disperse current more evenly. The stimulator senses tissue impedance and then redirects current by altering its Thevenin's output impedance for each electrode; each of the three electrodes becomes the active one in sequence while the remaining are the sink electrodes. Eight subjects were examined to test the stimulator. Electrical stimulation was applied to the skin above the quadriceps muscle at currents of 15 mA in six subjects without wounds and in two subjects with wounds. The relationship between electrode position and current dispersion on the skin was examined with a two-electrode vs. a three-electrode system to set stimulation parameters for the computer. The results showed that the three-electrode system could (1) detect areas of the skin with high impedance; (2) compensate by altering the Thevenin's output impedance at each of the three electrodes to shift current to high impedance areas; (3) provide uniform current across the skin as assessed by skin current and blood flow measurements with a laser Doppler flow imager.

  7. Analysis of the current density characteristics in through-mask electrochemical micromachining (TMEMM for fabrication of micro-hole arrays on invar alloy film

    Directory of Open Access Journals (Sweden)

    Da-som JIN

    2017-06-01

    Full Text Available Invar alloy consisting of 64% iron and 36% nickel has been widely used for the production of shadow masks for organic light emitting diodes (OLEDs because of its low thermal expansion coefficient (1.86 × 10−6 cm/°C. To fabricate micro-hole arrays on 30 μm invar alloy film, through-mask electrochemical micromachining (TMEMM was developed and combined with a portion of the photolithography etching process. For precise hole shapes, patterned photoresist (PR film was applied as an insulating mask. To investigate the relationship between the current density and the material removal rate, the principle of the electrochemical machining was studied with a focus on the equation. The finite element method (FEM was used to verify the influence of each parameter on the current density on the invar alloy film surface. The parameters considered were the thickness of the PR mask, inter-electrode gap (IEG, and electrolyte concentration. Design of experiments (DOE was used to figure out the contribution of each parameter. A simulation was conducted with varying parameters to figure out their relationships with the current density. Optimization was conducted to select the suitable conditions. An experiment was carried out to verify the simulation results. It was possible to fabricate micro-hole arrays on invar alloy film using TMEMM, which is a promising method that can be applied to fabrications of OLEDs shadow masks.

  8. Variability at Multiple Scales: Using an Array of Current and Pressure Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  9. Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

    2006-06-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  10. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; US Geological Survey Reports, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J. (US Geological Survey, Columbia River Research Laboratory, Western Fisheries Research Center, Cook, WA)

    2003-12-01

    This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attend to three main objectives of the Rattlesnake Creek project. The first is to characterize stream and riparian habitat conditions. This effort includes measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective is to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective is to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the second year of at least a three-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

  11. Theoretical models of Kapton heating in solar array geometries

    Science.gov (United States)

    Morton, Thomas L.

    1992-01-01

    In an effort to understand pyrolysis of Kapton in solar arrays, a computational heat transfer program was developed. This model allows for the different materials and widely divergent length scales of the problem. The present status of the calculation indicates that thin copper traces surrounded by Kapton and carrying large currents can show large temperature increases, but the other configurations seen on solar arrays have adequate heat sinks to prevent substantial heating of the Kapton. Electron currents from the ambient plasma can also contribute to heating of thin traces. Since Kapton is stable at temperatures as high as 600 C, this indicates that it should be suitable for solar array applications. There are indications that the adhesive sued in solar arrays may be a strong contributor to the pyrolysis problem seen in solar array vacuum chamber tests.

  12. Circulation in the eastern North Pacific: results from a current meter array along 152°W

    Science.gov (United States)

    Hall, Melinda M.; Niiler, Pearn P.; Schmitz, William J.

    1997-07-01

    Data from four, 2-3 year long current meter records, at 28°N, 35°N, 39°N and 42°N, along 152°W in the eastern North Pacific, are used to describe the variability found in mesoscale period ( 200 days) motions. Energy in the mesoscale energy band of 40-200 day periodicity is found in the upper ocean at each location, generally decreasing to the north and with depth. The long period flow is not coherent among these locations. Record length mean velocities at 3-4 separate depths were used to provide estimates of reference level velocities for vertical profiles of geostrophic currents derived from historical hydrographic data. The vertical profile of measured east-west vertical shear agrees well with the geostrophically computed value; the north-south measured vertical shear is not in as good agreement. Assuming a vorticity balance of fwz= βv, and with w( z=0) as the Ekman pumping, the vertical velocity profiles were also calculated at 28°N and 42dgN. Using these three-dimensional referenced vertical profiles of mean currents, an examination of the mean advection of density in the thermocline revealed significant residuals in the net three-dimensional advection of density (or heat and salt) above 850 m at 28°N and above 240 m at 42°N. These results are relatively independent of the reference level velocities.

  13. Importance of investigating epigenetic alterations for industry and regulators: An appraisal of current efforts by the Health and Environmental Sciences Institute

    International Nuclear Information System (INIS)

    Miousse, Isabelle R.; Currie, Richard; Datta, Kaushik; Ellinger-Ziegelbauer, Heidrun; French, John E.; Harrill, Alison H.; Koturbash, Igor; Lawton, Michael; Mann, Derek; Meehan, Richard R.; Moggs, Jonathan G.; O’Lone, Raegan; Rasoulpour, Reza J.

    2015-01-01

    Recent technological advances have led to rapid progress in the characterization of epigenetic modifications that control gene expression in a generally heritable way, and are likely involved in defining cellular phenotypes, developmental stages and disease status from one generation to the next. On November 18, 2013, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) held a symposium entitled “Advances in Assessing Adverse Epigenetic Effects of Drugs and Chemicals” in Washington, D.C. The goal of the symposium was to identify gaps in knowledge and highlight promising areas of progress that represent opportunities to utilize epigenomic profiling for risk assessment of drugs and chemicals. Epigenomic profiling has the potential to provide mechanistic information in toxicological safety assessments; this is especially relevant for the evaluation of carcinogenic or teratogenic potential and also for drugs that directly target epigenetic modifiers, like DNA methyltransferases or histone modifying enzymes. Furthermore, it can serve as an endpoint or marker for hazard characterization in chemical safety assessment. The assessment of epigenetic effects may also be approached with new model systems that could directly assess transgenerational effects or potentially sensitive stem cell populations. These would enhance the range of safety assessment tools for evaluating xenobiotics that perturb the epigenome. Here we provide a brief synopsis of the symposium, update findings since that time and then highlight potential directions for future collaborative efforts to incorporate epigenetic profiling into risk assessment

  14. Anisotrophic currents and flux jumps in high-T{sub c} superconducting films with self-organized arrays of planar defects

    Energy Technology Data Exchange (ETDEWEB)

    Yurchenko, V.V., E-mail: vitaliy.yurchenko@fys.uio.n [Department of Physics, University of Oslo, P.B. 1048, Blindern, 0316 Oslo (Norway); Qviller, A.J. [Department of Physics, University of Oslo, P.B. 1048, Blindern, 0316 Oslo (Norway); Mozhaev, P.B.; Mozhaeva, J.E. [Department of Physics, Technical University of Denmark, Kgs. Lyngby DK-2800 (Denmark); Institute of Physics and Technology RAS, Moscow 117218 (Russian Federation); Hansen, J.B.; Jacobsen, C.S. [Department of Physics, Technical University of Denmark, Kgs. Lyngby DK-2800 (Denmark); Kotelyanskii, I.M. [Institute of Radio Engineering and Electronics RAS, Fryazino, 141190 Moscow District (Russian Federation); Pan, A.V. [Institute for Superconducting and Electronic Materials, University of Wollongong, Northfields Avenue, Wollongong 2522 (Australia); Johansen, T.H. [Department of Physics, University of Oslo, P.B. 1048, Blindern, 0316 Oslo (Norway)

    2010-10-01

    Regular arrays of planar defects with a period of a few nanometers can be introduced in superconducting YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}(YBCO) thin films by depositing them on vicinal (also called miscut or tilted) substrates. This results in the anisotropy of critical currents flowing in the plane of the film. We present results of real-time magneto-optical imaging (MOI) of magnetic flux distribution and dynamics in a series of YBCO thin films deposited on NdGaO{sub 3} substrates with different miscut angles {theta}. MOI allows reconstructing the current flow profiles. From the angle formed between domains with different directions of the current flow we determine the anisotropy parameter of the in-plane current, as well as its field and temperature dependences. The artificially introduced defects also have a dramatic effect on the dynamics of the flux propagation: for 10{sup o}<{theta}<14{sup o} the magnetic flux propagates along the easy channels intermittently, i.e. in a form of flux jumps. This behavior is indicative of thermo-magnetic instability in superconductors, but we argue that this effect can be of a different nature.

  15. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts.

    Science.gov (United States)

    Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei

    2012-06-05

    The current understanding of the global mercury (Hg) cycle remains uncertain because Hg behavior in the environment is very complicated. The special property of Hg causes the atmosphere to be the most important medium for worldwide dispersion and transformation. The source and fate of atmospheric Hg and its interaction with the surface environment are the essential topics in the global Hg cycle. Recent declining measurement trends of Hg in the atmosphere are in apparent conflict with the increasing trends in global anthropogenic Hg emissions. As the single largest country contributor of anthropogenic Hg emission, China's role in the global Hg cycle will become more and more important in the context of the decreasing man-made Hg emission from developed regions. However, much less Hg information in China is available. As a global pollutant which undergoes long-range transport and is persistence in the environment, increasing Hg knowledge in China could not only promote the Hg regulation in this country but also improve the understanding of the fundamental of the global Hg cycle and further push the abatement of this toxin on a global scale. Then the atmospheric Hg research in China may be a breakthrough for improving the current understanding of the global Hg cycle. However, due to the complex behavior of Hg in the atmosphere, a deeper understanding of the atmospheric Hg cycle in China needs greater cooperation across fields.

  16. IFMIF, the European–Japanese efforts under the Broader Approach agreement towards a Li(d,xn neutron source: Current status and future options

    Directory of Open Access Journals (Sweden)

    J. Knaster

    2016-12-01

    Full Text Available The necessity of a neutron source for fusion materials research was identified already in the 70s. Though neutrons induced degradation present similarities on a mechanistic approach, thresholds energies for crucial transmutations are typically above fission neutrons spectrum. The generation of He via 56Fe (n,α 53Cr in future fusion reactors with around 12 appm/dpa will lead to swelling and structural materials embrittlement. Existing neutron sources, namely fission reactors or spallation sources lead to different degradation, attempts for extrapolation are unsuccessful given the absence of experimental observations in the operational ranges of a fusion reactor. Neutrons with a broad peak at 14MeV can be generated with Li(d,xn reactions; the technological efforts that started with FMIT in the early 80s have finally matured with the success of IFMIF/EVEDA under the Broader Approach Agreement. The status today of five technological challenges, perceived in the past as most critical, are addressed. These are: 1. the feasibility of IFMIF accelerators, 2. the long term stability of lithium flow at IFMIF nominal conditions, 3. the potential instabilities in the lithium screen induced by the 2×5 MW impacting deuteron beam, 4. the uniformity of temperature in the specimens during irradiation, and 5. the validity of data provided with small specimens. Other ideas for fusion material testing have been considered, but they possibly are either not technologically feasible if fixed targets are considered or would require the results of a Li(d,xn facility to be reliably designed. In addition, today we know beyond reasonable doubt that the cost of IFMIF, consistently estimated throughout decades, is marginal compared with the cost of a fusion reactor. The less ambitious DEMO reactor performance being considered correlates with a lower need of fusion neutrons flux; thus IFMIF with its two accelerators is possibly not needed since with only one accelerator as

  17. Assessment of the current status of playground safety in the midwestern region of Turkey: an effort to provide a safe environment for children.

    Science.gov (United States)

    Uskun, Ersin; Kişioğlu, Ahmet Nesimi; Altay, Tülin; Cikinlar, Rengül; Kocakaya, Asuman

    2008-01-01

    This study aimed to identify and evaluate the degree of conformity to the playground standards and the level of compliance with current safety specifications of the playgrounds in the midwestern region of Turkey. An observational technique was used at a total of 57 public playgrounds. A playground safety control form was prepared based on the United States National Program for Playground Safety and the Consumer Product Safety Commission security standards, since there is no national law covering playground equipment and safety in Turkey. The study evaluated the surroundings of the playground, arrangement of equipment in the playground, and characteristics of the equipment. The percentage of playgrounds surveyed with inadequate or hard surfacing was 80.7%. Fifty-two percent of the equipment was found to be inappropriate. Equipment was higher than the recommended heights. The results of our study unfortunately point out that playgrounds for children do not meet many of the safety criteria.

  18. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  19. Current research efforts with Bacillus thuringiensis

    Science.gov (United States)

    Normand R. Dubois

    1991-01-01

    The bioassay of 260 strains of Bacillus thuringiensis (Bt) and 70 commercial preparations show that regression coefficient estimates may be as critical as LC5O estimates when evaluating them for future consideration.

  20. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  1. Mapping telemedicine efforts

    DEFF Research Database (Denmark)

    Kierkegaard, Patrick

    2015-01-01

    are being utilized? What medical disciplines are being addressed using telemedicine systems? Methods: All data was surveyed from the "Telemedicinsk Landkort", a newly created database designed to provide a comprehensive and systematic overview of all telemedicine technologies in Denmark. Results......Objectives: The aim of this study is to survey telemedicine services currently in operation across Denmark. The study specifically seeks to answer the following questions: What initiatives are deployed within the different regions? What are the motivations behind the projects? What technologies......: The results of this study suggest that a growing number of telemedicine initiatives are currently in operation across Denmark but that considerable variations existed in terms of regional efforts as the number of operational telemedicine projects varied from region to region. Conclusions: The results...

  2. Performance measurements of hybrid PIN diode arrays

    International Nuclear Information System (INIS)

    Jernigan, J.G.; Arens, J.F.; Collins, T.; Herring, J.; Shapiro, S.L.; Wilburn, C.D.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format having 10 x 64 pixels, each 120 μm square, and the other format having 256 x 256 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 13 figs

  3. Fiscal 1998 research report. Survey on the current trend of private R and D efforts; 1998 nendo chosa hokokusho. Minkan no kenkyu kaihatsu doko no jittai ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For promotion of the R and D system of technologies creating new industries, this survey collected the basic data and information on the trend of private R and D efforts and industries, and arranged every data and information obtained. The data on United States, Germany, France and U.K. in addition to Japan were collected. Survey was made first on the administrative support system for private R and D efforts. The R and D-related budget, R and D support program and private R and D-related fund of Japan, United States and U.K. are mainly outlined. Survey was made next on private R and D activities. The R and D-related fund, researcher and patent of main countries are outlined in international comparison. Survey was also made on the current state of various industries. The industry scale and structure of every Japanese manufacturing industry are outlined. Finally, the industrial statistics are given concerning Japanese 'chemical industry,' 'communication-electronics-electric measuring instrument industry' and 'automobile industry' with a high rate of R and D-related expenditures. (NEDO)

  4. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  5. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  6. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  7. DOE ORDER 435.1, IMPLEMENTATION AND COMPLIANCE DECLARATION AT THE SAVANNAH RIVER SITE AND ACROSS THE DOE COMPLEX IN CONTRAST TO CURRENT PUSHBACK EFFORTS FROM THE ''TOP-TO-BOTTOM'' REVIEW

    International Nuclear Information System (INIS)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV.

    2003-01-01

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the many problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review

  8. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  9. The behavior of the critical current density below and above the first matching field in superconductors with periodic square arrays of pinning sites

    International Nuclear Information System (INIS)

    Obaidat, I.M.; Al Khawaja, U.; Benkraouda, M.; Salmeen, N.

    2006-01-01

    We have studied the effect of the applied magnetic field on critical depinning force at zero and finite temperatures and for several values of pinning strength. This was achieved by conducting extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. We have found that the critical depinning force decreases as the applied magnetic field is increased. We have also observed two distinct behaviors of dependence of the critical depinning force on the applied magnetic field below and above the first matching filed

  10. Supporting Students as Scientists: One Mission's Efforts

    Science.gov (United States)

    Taylor, J.; Chambers, L. H.; Trepte, C. R.

    2012-12-01

    NASA's CALIPSO satellite mission provides an array of opportunities for teachers, students, and the general public. In developing our latest plan for education and public outreach, CALIPSO focused on efforts that would support students as scientists. CALIPSO EPO activities are aimed at inspiring young scientists through multiple avenues of potential contact, including: educator professional development, student-scientist mentoring, curriculum resource development, and public outreach through collaborative mission efforts. In this session, we will explore how these avenues complement one another and take a closer look at the development of the educator professional development activities. As part of CALIPSO's EPO efforts, we have developed the GLOBE Atmosphere Investigations Programs (AIP). The program encourages students to engage in authentic science through research on the atmosphere. The National Research Council (NRC) has emphasized the importance of teaching scientific inquiry in the National Science Education Standards (1996, 2000) and scientific practice in the recent Framework for K-12 Science Education (2011). In order to encourage student-centered science inquiry, teacher training utilizing GLOBE Atmosphere Investigations and GLOBE's Student Research Process are provided to middle and high school teachers to assist them in incorporating real scientific investigations into their classroom. Through participation in the program, teachers become a part of GLOBE (Global Learning and Observations to Benefit the Environment) - an international community of teachers, students, and scientists studying environmental science in over 24,000 schools around the world. The program uses NASA's satellites and the collection of atmosphere data by students to provide an engaging science learning experience for the students, and teachers. The GLOBE Atmosphere Investigations program offers year-long support to both teachers and students through direct involvement with NASA

  11. Estimation of inspection effort

    International Nuclear Information System (INIS)

    Mullen, M.F.; Wincek, M.A.

    1979-06-01

    An overview of IAEA inspection activities is presented, and the problem of evaluating the effectiveness of an inspection is discussed. Two models are described - an effort model and an effectiveness model. The effort model breaks the IAEA's inspection effort into components; the amount of effort required for each component is estimated; and the total effort is determined by summing the effort for each component. The effectiveness model quantifies the effectiveness of inspections in terms of probabilities of detection and quantities of material to be detected, if diverted over a specific period. The method is applied to a 200 metric ton per year low-enriched uranium fuel fabrication facility. A description of the model plant is presented, a safeguards approach is outlined, and sampling plans are calculated. The required inspection effort is estimated and the results are compared to IAEA estimates. Some other applications of the method are discussed briefly. Examples are presented which demonstrate how the method might be useful in formulating guidelines for inspection planning and in establishing technical criteria for safeguards implementation

  12. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays.

    Science.gov (United States)

    Pohmann, Rolf; Speck, Oliver; Scheffler, Klaus

    2016-02-01

    Relaxation times, transmit homogeneity, signal-to-noise ratio (SNR) and parallel imaging g-factor were determined in the human brain at 3T, 7T, and 9.4T, using standard, tight-fitting coil arrays. The same human subjects were scanned at all three field strengths, using identical sequence parameters and similar 31- or 32-channel receive coil arrays. The SNR of three-dimensional (3D) gradient echo images was determined using a multiple replica approach and corrected with measured flip angle and T2 (*) distributions and the T1 of white matter to obtain the intrinsic SNR. The g-factor maps were derived from 3D gradient echo images with several GRAPPA accelerations. As expected, T1 values increased, T2 (*) decreased and the B1 -homogeneity deteriorated with increasing field. The SNR showed a distinctly supralinear increase with field strength by a factor of 3.10 ± 0.20 from 3T to 7T, and 1.76 ± 0.13 from 7T to 9.4T over the entire cerebrum. The g-factors did not show the expected decrease, indicating a dominating role of coil design. In standard experimental conditions, SNR increased supralinearly with field strength (SNR ∼ B0 (1.65) ). To take full advantage of this gain, the deteriorating B1 -homogeneity and the decreasing T2 (*) have to be overcome. © 2015 Wiley Periodicals, Inc.

  13. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    Science.gov (United States)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  14. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  15. Leakage analysis of crossbar memristor arrays

    KAUST Repository

    Zidan, Mohammed A.

    2014-07-01

    Crossbar memristor arrays provide a promising high density alternative for the current memory and storage technologies. These arrays suffer from parasitic current components that significantly increase the power consumption, and could ruin the readout operation. In this work we study the trade-off between the crossbar array density and the power consumption required for its readout. Our analysis is based on simulating full memristor arrays on a SPICE platform.

  16. High current density and nonlinearity combination of selection device based on TaO(x)/TiO2/TaO(x) structure for one selector-one resistor arrays.

    Science.gov (United States)

    Lee, Wootae; Park, Jubong; Kim, Seonghyun; Woo, Jiyong; Shin, Jungho; Choi, Godeuni; Park, Sangsu; Lee, Daeseok; Cha, Euijun; Lee, Byoung Hun; Hwang, Hyunsang

    2012-09-25

    We demonstrate a high-performance selection device by utilizing the concept of crested oxide barrier to suppress the sneak current in bipolar resistive memory arrays. Using a TaO(x)/TiO(2)/TaO(x) structure, high current density over 10(7) A cm(-2) and excellent nonlinear characteristics up to 10(4) were successfully demonstrated. On the basis of the defect chemistry and SIMS depth profile result, we found that some Ta atoms gradually diffused into TiO(2) film, and consequently, the energy band of the TiO(2) film was symmetrically bent at the top and bottom TaO(x)/TiO(2) interfaces and modified as a crested oxide barrier. Furthermore, the one selector-one resistor device exhibited significant suppression of the leakage current, indicating excellent selector characteristics.

  17. SIGMA without effort

    International Nuclear Information System (INIS)

    Hagedorn, R.; Reinfelds, J.

    1978-01-01

    SIGMA (System for Interactive Graphical Analysis) is an interactive computing language with automatic array handling and graphical facilities. It is designed as a tool for mathematical problem solving. The SIGMA language is simple, almost obvious, yet flexible and powerful. This tutorial introduces the beginner to SIGMA. It is supposed to be used at a graphics terminal having access to SIGMA. The user will learn the language in dialogue with the system in sixteen sessions of about one hour. The first session enables him already to compute and display functions of one or two variables. (Auth.)

  18. The ASTRI mini-array within the future Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Vercellone Stefano

    2016-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS. Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily of an end-to-end dual-mirror prototype of the CTA small size telescope (SST and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1–100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10–15%, is well suited to study relatively bright sources (a few × 10−12 erg cm−2 s−1 at 10 TeV at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC and future high-altitude extensive air-shower detectors.

  19. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Science.gov (United States)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  20. Variability at Multiple Scales: Using an Array of Current- and Pressure-Sensor Equipped Inverted Echo Sounders to Measure the Ocean

    Science.gov (United States)

    2016-11-29

    of Current- and Pressure - Sensor Equipped Inverted Echo Sounders to Measure the Ocean 5b. GRANT NUMBER NOOO 14-15-1-2857 5c. PROGRAM ELEMENT NUMBER...inverted echo sounders (lESs) equipped with pressure and current sensors (CPIESs). CPIESs are moored instruments that measure the round-trip acoustic...at a range of spatial and temporal scales. The goals of this project were to enhance the pool of pressure - sensor equipped lESs available at the

  1. Multi-kW solar arrays for Earth orbit applications

    Science.gov (United States)

    1985-01-01

    The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.

  2. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  3. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  4. Cavity syncronisation of underdamped Josephson junction arrays

    DEFF Research Database (Denmark)

    Barbara, P.; Filatrella, G.; Lobb, C.

    2003-01-01

    the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current...

  5. Photovoltaic array: Power conditioner interface characteristics

    Science.gov (United States)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  6. A 80 OBS and 30 Land 3-component seismometers array encompassing the 280 km segment of the Lesser Antilles subduction megathrust seismogenic zone: view of current seismicity

    Science.gov (United States)

    Laigle, Mireille; Sapin, Martine; Ruiz, Mario; Diaz, Jordi; Kissling, Edi; Charvis, Philippe; Flueh, Ernst; Hirn, Alfred

    2010-05-01

    An extensive onshore and offshore seismic station array in the Lesser Antilles subduction zone allows to monitor microearthquake activity for a period of 4 months in a region previously outside of reach for detailed observation. Such a network has been possible thanks to a cluster of 3 seismic surveys (TRAIL - F/S Merian, SISMANTILLESII - N/O Atalante, and OBSANTILLES - N/O Antea) for deploying and recovering the instruments from several pools (Geoazur, INSU-IPGP, IFM-GEOMAR, AWI ). It has been followed by an additional deployment of the 28 GeoAzur OBSs (OBSANTILLES - N/O Antea) during 5 months in the south-western half. These operations have been carried out for the seismic investigation of the Antilles megathrust seismogenic zone in the framework of the THALES WAS RIGHT european project, and with also the financial support of the french ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) and by the EU SALVADOR Programme of IFM-GEOMAR. Onshore, 30 3-components land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) have been temporarily deployed. The deep seismic structure of the whole area has been investigated during these seismic surveys by wide-angle reflection and refraction seismics recorded by these instruments as well as multi-channel reflection seismic imaging (MCS) along a dense grid of crossing profiles at the OBS positions providing excellent velocity information for the upper plate. Both the location and the interpretation of the recorded earthquake activity require constraints on the deep seismic structure, which will be discussed with respect to the 3D geometry of the interplate boundary and oceanic Moho, as well as those of the forearc basement and Moho. Preliminary locations have been obtained within a simple 1D velocity model by taking into account corrections for the variable thickness of the mud- and sediments layers beneath each OBS. The latter are estimated for both P- and S-waves to compensate for the huge structural

  7. The Dow Chemical Company's synchrotron radiation effort - A case history

    International Nuclear Information System (INIS)

    Bubeck, R.A.; Bare, S.R.; DeKoven, B.M.; Heaney, M.D.; Rudolf, P.R.

    1994-01-01

    Synchrotron radiation is used in a broad array of technologies to study everything from molecular orientation at interfaces, through the structure of active catalyst phases. It is also a key to understanding structure-property relationships and providing fundamental information in polymers, ceramics, and other materials. The Dow Synchrotron User group, formed in 1991, has developed a long-term plan for effective utilization of synchrotron technology. The current efforts at Brookhaven National Lab. and Cornell High Energy Synchrotron Source are examined, as will the long-term commitment at the Advanced Photon Source. Current examples included are in-situ studies of polymer processing, surface and interfaces characterization, and real-time deformation studies. The APS is one of only three open-quotes Third Generationclose quotes synchrotron sources that are planned world-wide, the others being in France and Japan. With a scheduled completion date of mid-1995, the APS has remained both on-budget and ahead-of-schedule since ground-breaking in the spring of 1990. The DuPont - Northwestern University - Dow Collaborative Access Team (DND-CAT) is the first CAT to successfully pass all the necessary hurdles before beamline construction can begin. Some of the goals of the DND-CAT program are mentioned, together with the strengths of this unique collaborative effort

  8. Eddy current probe development based on a magnetic sensor array; Developpement d'un imageur magnetique pour le controle non destructif par courants de Foucault

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, F

    2007-06-15

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications.

  9. The Atacama Large Millimeter/Submillimeter Array (ALMA) - A Successful Three-Way International Partnership Without a Majority Stakeholder

    Science.gov (United States)

    Vanden Bout, Paul A.

    2013-04-01

    The Atacama Millimeter/Submillimeter Array (ALMA) is the largest ground-based astronomical facility built to date. It's size and challenging site required an international effort. This talk presents the partnership structure, management challenges, current status, and examples of early scientific successes.

  10. Influence of the plasma profile and the antenna geometry on the matching and current distribution control of the ITER ICRF antenna array. Optimization of the decoupling-matching system

    Energy Technology Data Exchange (ETDEWEB)

    Messiaen, A., E-mail: a.messiaen@fz-juelich.de [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium); Swain, D. [US ITER Team, ORNL (United States); Vervier, M.; Dumortier, P.; Durodié, F.; Grine, D. [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC Partner, CYCLE, B-1000 Brussels (Belgium)

    2013-10-15

    Highlights: ► Analysis of the matching-decoupling system of the ICRF antenna array of ITER. ► Control of the array phasing by the decouplers for the same power of power sources. ► Computation for the 2012 design status of the antenna plug. ► 7 decouplers needed but 10 can be used to decrease the ratings of components. ► Effects of plasma profile and antenna geometry. -- Abstract: The eight triplets of straps of the ITER ICRF antenna array are fed through 8 matching circuits and 4 hybrids to ensure load resilience. Decouplers are used to mitigate the effects of triplet mutual coupling. They also control the array phasing. The electrical constraints on the decouplers for different layouts with heating (H) or current drive (CD) phasing are compared starting from the TOPICA matrix computed for the last antenna plug design and the reference (most pessimistic) plasma profile “2010low” provided by IO. It is shown that this last profile provides a significant decrease of plasma coupling and increase of mutual coupling with respect to the previous reference profile “Sc2short17”. This results in a larger range of decoupler reactance X{sub dec} and voltage V{sub Xdec} needed. This range can be reduced when using 10 decouplers instead of the 7 needed for the same forward power P{sub Gk+} of the 4 power sources. For H phasing only 4 decouplers could be used but with different P{sub Gk+} (P{sub Gk+} ratio up to 1.5–2.5). For CD phasing and same plasma profile the power capability P{sub tot} is increased by 25% with a decoupler layout allowing much smaller poloidal phasing than the 90° provided by the hybrids. A decrease of the distance antenna-plasma profile reduces the normalized decoupler voltage V{sub Xdec}/√P{sub tot} with no significant change of the X{sub dec} range. The recess of the vertical septa between the strap boxes increases the plasma coupling but has the drawback of also increasing the mutual coupling between triplets: the needed range of X

  11. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  12. Analysis Efforts Supporting NSTX Upgrades

    International Nuclear Information System (INIS)

    Zhang, H.; Titus, P.; Rogoff, P.; Zolfaghari, A.; Mangra, D.; Smith, M.

    2010-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio, spherical torus (ST) configuration device which is located at Princeton Plasma Physics Laboratory (PPPL) This device is presently being updated to enhance its physics by doubling the TF field to 1 Tesla and increasing the plasma current to 2 Mega-amperes. The upgrades include a replacement of the centerstack and addition of a second neutral beam. The upgrade analyses have two missions. The first is to support design of new components, principally the centerstack, the second is to qualify existing NSTX components for higher loads, which will increase by a factor of four. Cost efficiency was a design goal for new equipment qualification, and reanalysis of the existing components. Showing that older components can sustain the increased loads has been a challenging effort in which designs had to be developed that would limit loading on weaker components, and would minimize the extent of modifications needed. Two areas representing this effort have been chosen to describe in more details: analysis of the current distribution in the new TF inner legs, and, second, analysis of the out-of-plane support of the existing TF outer legs.

  13. Literality and Cognitive Effort

    DEFF Research Database (Denmark)

    Lacruz, Isabel; Carl, Michael; Yamada, Masaru

    2018-01-01

    We introduce a notion of pause-word ratio computed using ranges of pause lengths rather than lower cutoffs for pause lengths. Standard pause-word ratios are indicators of cognitive effort during different translation modalities.The pause range version allows for the study of how different types...... remoteness. We use data from the CRITT TPR database, comparing translation and post-editing from English to Japanese and from English to Spanish, and study the interaction of pause-word ratio for short pauses ranging between 300 and 500ms with syntactic remoteness, measured by the CrossS feature, semantic...... remoteness, measured by HTra, and syntactic and semantic remoteness, measured by Literality....

  14. Breckinridge Project, initial effort

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1982-09-01

    Report III, Volume 1 contains those specifications numbered A through J, as follows: General Specifications (A); Specifications for Pressure Vessels (C); Specifications for Tanks (D); Specifications for Exchangers (E); Specifications for Fired Heaters (F); Specifications for Pumps and Drivers (G); and Specifications for Instrumentation (J). The standard specifications of Bechtel Petroleum Incorporated have been amended as necessary to reflect the specific requirements of the Breckinridge Project, and the more stringent specifications of Ashland Synthetic Fuels, Inc. These standard specifications are available to the Initial Effort (Phase Zero) work performed by all contractors and subcontractors. Report III, Volume 1 also contains the unique specifications prepared for Plants 8, 15, and 27. These specifications will be substantially reviewed during Phase I of the project, and modified as necessary for use during the engineering, procurement, and construction of this project.

  15. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  16. Proceedings of the Third EPRI Phased Array Ultrasound Seminar

    International Nuclear Information System (INIS)

    2003-01-01

    Phased array technology for ultrasonic examination is providing innovative solutions for nuclear in-service examination applications. EPRI has been a prime mover in the development and deployment of phased array ultrasound applications in the domestic nuclear market over the past decade. As part of this strategic effort, EPRI has hosted a series of seminars on phased array technology and its applications

  17. Swedish nuclear waste efforts

    International Nuclear Information System (INIS)

    Rydberg, J.

    1981-09-01

    After the introduction of a law prohibiting the start-up of any new nuclear power plant until the utility had shown that the waste produced by the plant could be taken care of in an absolutely safe way, the Swedish nuclear utilities in December 1976 embarked on the Nuclear Fuel Safety Project, which in November 1977 presented a first report, Handling of Spent Nuclear Fuel and Final Storage of Vitrified Waste (KBS-I), and in November 1978 a second report, Handling and Final Storage of Unreprocessed Spent Nuclear Fuel (KBS II). These summary reports were supported by 120 technical reports prepared by 450 experts. The project engaged 70 private and governmental institutions at a total cost of US $15 million. The KBS-I and KBS-II reports are summarized in this document, as are also continued waste research efforts carried out by KBS, SKBF, PRAV, ASEA and other Swedish organizations. The KBS reports describe all steps (except reprocessing) in handling chain from removal from a reactor of spent fuel elements until their radioactive waste products are finally disposed of, in canisters, in an underground granite depository. The KBS concept relies on engineered multibarrier systems in combination with final storage in thoroughly investigated stable geologic formations. This report also briefly describes other activities carried out by the nuclear industry, namely, the construction of a central storage facility for spent fuel elements (to be in operation by 1985), a repository for reactor waste (to be in operation by 1988), and an intermediate storage facility for vitrified high-level waste (to be in operation by 1990). The R and D activities are updated to September 1981

  18. Worldwide effort against smoking.

    Science.gov (United States)

    1986-07-01

    The 39th World Health Assembly, which met in May 1986, recognized the escalating health problem of smoking-related diseases and affirmed that tobacco smoking and its use in other forms are incompatible with the attainment of "Health for All by the Year 2000." If properly implemented, antismoking campaigns can decrease the prevalence of smoking. Nations as a whole must work toward changing smoking habits, and governments must support these efforts by officially stating their stand against smoking. Over 60 countries have introduced legislation affecting smoking. The variety of policies range from adopting a health education program designed to increase peoples' awareness of its dangers to increasing taxes to deter smoking by increasing tobacco prices. Each country must adopt an antismoking campaign which works most effectively within the cultural parameters of the society. Other smoking policies include: printed warnings on cigarette packages; health messages via radio, television, mobile teams, pamphlets, health workers, clinic walls, and newspapers; prohibition of smoking in public areas and transportation; prohibition of all advertisement of cigarettes and tobacco; and the establishment of upper limits of tar and nicotine content in cigarettes. The tobacco industry spends about $2000 million annually on worldwide advertising. According to the World Health Organization (WHO), controlling this overabundance of tobacco advertisements is a major priority in preventing the spread of smoking. Cigarette and tobacco advertising can be controlled to varying degrees, e.g., over a dozen countries have enacted a total ban on advertising on television or radio, a mandatory health warning must accompany advertisements in other countries, and tobacco companies often are prohibited from sponsoring sports events. Imposing a substantial tax on cigarettes is one of the most effective means to deter smoking. However, raising taxes and banning advertisements is not enough because

  19. ICRF array module development and optimization for high power density

    International Nuclear Information System (INIS)

    Ryan, P.M.; Swain, D.W.

    1997-02-01

    This report describes the analysis and optimization of the proposed International Thermonuclear Experimental Reactor (ITER) Antenna Array for the ion cyclotron range of frequencies (ICRF). The objectives of this effort were to: (1) minimize the applied radiofrequency rf voltages occurring in vacuum by proper layout and shape of components, limit the component's surface/volumes where the rf voltage is high; (2) study the effects of magnetic insulation, as applied to the current design; (3) provide electrical characteristics of the antenna for the development and analysis of tuning, arc detection/suppression, and systems for discriminating between arcs and edge-localized modes (ELMs); (4) maintain close interface with mechanical design

  20. The Effort Paradox: Effort Is Both Costly and Valued.

    Science.gov (United States)

    Inzlicht, Michael; Shenhav, Amitai; Olivola, Christopher Y

    2018-04-01

    According to prominent models in cognitive psychology, neuroscience, and economics, effort (be it physical or mental) is costly: when given a choice, humans and non-human animals alike tend to avoid effort. Here, we suggest that the opposite is also true and review extensive evidence that effort can also add value. Not only can the same outcomes be more rewarding if we apply more (not less) effort, sometimes we select options precisely because they require effort. Given the increasing recognition of effort's role in motivation, cognitive control, and value-based decision-making, considering this neglected side of effort will not only improve formal computational models, but also provide clues about how to promote sustained mental effort across time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  2. ESPRIT And Uniform Linear Arrays

    Science.gov (United States)

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.

    1989-11-01

    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  3. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  4. Single-electron tunnel junction array

    International Nuclear Information System (INIS)

    Likharev, K.K.; Bakhvalov, N.S.; Kazacha, G.S.; Serdyukova, S.I.

    1989-01-01

    The authors have carried out an analysis of statics and dynamics of uniform one-dimensional arrays of ultrasmall tunnel junctions. The correlated single-electron tunneling in the junctions of the array results in its behavior qualitatively similar to that of the Josephson transmission line. In particular, external electric fields applied to the array edges can inject single-electron-charged solitons into the array interior. Shape of such soliton and character of its interactions with other solitons and the array edges are very similar to those of the Josephson vortices (sine-Gordon solitons) in the Josephson transmission line. Under certain conditions, a coherent motion of the soliton train along the array is possible, resulting in generation of narrowband SET oscillations with frequency f/sub s/ = /e where is the dc current flowing along the array

  5. Integrating Scientific Array Processing into Standard SQL

    Science.gov (United States)

    Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter

    2014-05-01

    We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.

  6. Development of HgCdTe large format MBE arrays and noise-free high speed MOVPE EAPD arrays for ground based NIR astronomy

    Science.gov (United States)

    Finger, G.; Baker, I.; Downing, M.; Alvarez, D.; Ives, D.; Mehrgan, L.; Meyer, M.; Stegmeier, J.; Weller, H. J.

    2017-11-01

    Large format near infrared HgCdTe 2Kx2K and 4Kx4K MBE arrays have reached a level of maturity which meets most of the specifications required for near infrared (NIR) astronomy. The only remaining problem is the persistence effect which is device specific and not yet fully under control. For ground based multi-object spectroscopy on 40 meter class telescopes larger pixels would be advantageous. For high speed near infrared fringe tracking and wavefront sensing the only way to overcome the CMOS noise barrier is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. A readout chip for a 320x256 pixel HgCdTe eAPD array will be presented which has 32 parallel video outputs being arranged in such a way that the full multiplex advantage is also available for small sub-windows. In combination with the high APD gain this allows reducing the readout noise to the subelectron level by applying nondestructive readout schemes with subpixel sampling. Arrays grown by MOVPE achieve subelectron readout noise and operate with superb cosmetic quality at high APD gain. Efforts are made to reduce the dark current of those arrays to make this technology also available for large format focal planes of NIR instruments offering noise free detectors for deep exposures. The dark current of the latest MOVPE eAPD arrays is already at a level adequate for noiseless broad and narrow band imaging in scientific instruments.

  7. Big Data Challenges for Large Radio Arrays

    Science.gov (United States)

    Jones, Dayton L.; Wagstaff, Kiri; Thompson, David; D'Addario, Larry; Navarro, Robert; Mattmann, Chris; Majid, Walid; Lazio, Joseph; Preston, Robert; Rebbapragada, Umaa

    2012-01-01

    Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields.

  8. Configuration Considerations for Low Frequency Arrays

    Science.gov (United States)

    Lonsdale, C. J.

    2005-12-01

    The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.

  9. Workplace High Tech Spurs Retraining Efforts.

    Science.gov (United States)

    Davis, Dwight B.

    1984-01-01

    Discusses who should provide training for displaced workers who need new skills. Areas examined include: (1) the need for retraining; (2) current corporate efforts; (3) agreements in the automotive industry; (4) job quality; (5) the federal government's role; and (6) federal legislation related to the problem. (JN)

  10. Solar array qualification through qualified analysis

    Science.gov (United States)

    Zijdemans, J.; Cruijssen, H. J.; Wijker, J. J.

    1991-04-01

    To achieve qualification is in general a very expensive exercise. For solar arrays this is done by a dedicated test program through which final qualification is achieved. Due to severe competition on the solar array market, cheaper means are looked for to achieve a qualified product for the customers. One of the methods is to drastically limit the environmental test program and to qualify the solar-array structure against its environmental loads by analysis. Qualification by analysis is possible. The benefits are that a significant amount of development effort can be saved in case such a powerful tool is available. Extensive testing can be avoided thus saving time and money.

  11. Shielding in ungated field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J. R. [U.S. Navy Reserve, Navy Operational Support Center New Orleans, New Orleans, Louisiana 70143 (United States); Jensen, K. L. [Code 6854, Naval Research Laboratory, Washington, D.C. 20375 (United States); Shiffler, D. A. [Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, New Mexico 87117 (United States); Petillo, J. J. [Leidos, Billerica, Massachusetts 01821 (United States)

    2015-05-18

    Cathodes consisting of arrays of high aspect ratio field emitters are of great interest as sources of electron beams for vacuum electronic devices. The desire for high currents and current densities drives the cathode designer towards a denser array, but for ungated emitters, denser arrays also lead to increased shielding, in which the field enhancement factor β of each emitter is reduced due to the presence of the other emitters in the array. To facilitate the study of these arrays, we have developed a method for modeling high aspect ratio emitters using tapered dipole line charges. This method can be used to investigate proximity effects from similar emitters an arbitrary distance away and is much less computationally demanding than competing simulation approaches. Here, we introduce this method and use it to study shielding as a function of array geometry. Emitters with aspect ratios of 10{sup 2}–10{sup 4} are modeled, and the shielding-induced reduction in β is considered as a function of tip-to-tip spacing for emitter pairs and for large arrays with triangular and square unit cells. Shielding is found to be negligible when the emitter spacing is greater than the emitter height for the two-emitter array, or about 2.5 times the emitter height in the large arrays, in agreement with previously published results. Because the onset of shielding occurs at virtually the same emitter spacing in the square and triangular arrays, the triangular array is preferred for its higher emitter density at a given emitter spacing. The primary contribution to shielding in large arrays is found to come from emitters within a distance of three times the unit cell spacing for both square and triangular arrays.

  12. Cognitive effort: A neuroeconomic approach

    Science.gov (United States)

    Braver, Todd S.

    2015-01-01

    Cognitive effort has been implicated in numerous theories regarding normal and aberrant behavior and the physiological response to engagement with demanding tasks. Yet, despite broad interest, no unifying, operational definition of cognitive effort itself has been proposed. Here, we argue that the most intuitive and epistemologically valuable treatment is in terms of effort-based decision-making, and advocate a neuroeconomics-focused research strategy. We first outline psychological and neuroscientific theories of cognitive effort. Then we describe the benefits of a neuroeconomic research strategy, highlighting how it affords greater inferential traction than do traditional markers of cognitive effort, including self-reports and physiologic markers of autonomic arousal. Finally, we sketch a future series of studies that can leverage the full potential of the neuroeconomic approach toward understanding the cognitive and neural mechanisms that give rise to phenomenal, subjective cognitive effort. PMID:25673005

  13. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  14. The present gravitational wave detection effort

    International Nuclear Information System (INIS)

    Riles, Keith

    2010-01-01

    Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.

  15. High-speed counter-current chromatography coupled online to high performance liquid chromatography-diode array detector-mass spectrometry for purification, analysis and identification of target compounds from natural products.

    Science.gov (United States)

    Liang, Xuejuan; Zhang, Yuping; Chen, Wei; Cai, Ping; Zhang, Shuihan; Chen, Xiaoqin; Shi, Shuyun

    2015-03-13

    A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-β-D-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Light Trapping with Silicon Light Funnel Arrays

    Directory of Open Access Journals (Sweden)

    Ashish Prajapati

    2018-03-01

    Full Text Available Silicon light funnels are three-dimensional subwavelength structures in the shape of inverted cones with respect to the incoming illumination. Light funnel (LF arrays can serve as efficient absorbing layers on account of their light trapping capabilities, which are associated with the presence of high-density complex Mie modes. Specifically, light funnel arrays exhibit broadband absorption enhancement of the solar spectrum. In the current study, we numerically explore the optical coupling between surface light funnel arrays and the underlying substrates. We show that the absorption in the LF array-substrate complex is higher than the absorption in LF arrays of the same height (~10% increase. This, we suggest, implies that a LF array serves as an efficient surface element that imparts additional momentum components to the impinging illumination, and hence optically excites the substrate by near-field light concentration, excitation of traveling guided modes in the substrate, and mode hybridization.

  17. Multidisciplinary Efforts Driving Translational Theranostics

    Science.gov (United States)

    Hu, Tony Y.

    2014-01-01

    This themed issue summarizes significant efforts aimed at using “biological language” to discern between “friends” and “foes” in the context of theranostics for true clinical application. It is expected that the success of theranostics depends on multidisciplinary efforts, combined to expedite our understanding of host responses to “customized” theranostic agents and formulating individualized therapies. PMID:25285169

  18. Learning Environment and Student Effort

    Science.gov (United States)

    Hopland, Arnt O.; Nyhus, Ole Henning

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between satisfaction with learning environment and student effort, both in class and with homework assignments. Design/methodology/approach: The authors use data from a nationwide and compulsory survey to analyze the relationship between learning environment and student effort. The…

  19. See Also:physica status solidi (a)physica status solidi (c)Copyright © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimGet Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/40001185",""),new Array("Issues","/cgi-bin/jtoc/40001185/",""),new Array("Early View","/cgi-bin/jeview/40001185/",""),new Array("News","/cgi-bin/jabout/40001185/news/index.html",""),new Array("Reviews","/cgi-bin/jabout/40001185/reviews.html",""),new Array("Read Cover Story","/cgi-bin/jabout/40001185/cover/2232/current.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/40001185/2232_info.html",""),new Array("Editorial Board","/cgi-bin/jabout/40001185/edbd.html",""),new Array("For Authors","/cgi-bin/jabout/40001185/authors.html",""),new Array("For Referees","/cgi-bin/jabout/40001185/refserv.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0370-1972",""),new Array("Contact","/cgi-bin/jabout/40001185/contact.html",""),new Array("","","x"));writeJournalLinks("", "40001185");Volume 241, Issue5 (April 2004)Articles in the Current Issue:Cover PictureHorizontal line nodes in superconducting Sr2RuO4

    Science.gov (United States)

    Litak, G.; Annett, J. F.; Györffy, B. L.; Wysokiski, K. I.

    2004-04-01

    Superconductivity in Sr2RuO4 is one of the most interesting phenomena in current condensed matter physics, since it is revealed to be a triplet-pairing state. Our Editor's Choice [1] considers an important problem related to the type of order parameter in this material.The position of line nodes on the Fermi surface, as evident from recent measurements, has been determined for various scenarios shown in the cover picture. Using these models, the temperature dependence of heat capacity and penetration depth has been calculated for easy comparison with experiments.The first author, Grzegorz Litak, is assistant professor at Technical University of Lublin and visiting scientist at the Max Planck Institute in Dresden. He is working on the effect of disorder on correlated and exotic superconductors, nonlinear dynamics, and superconductivity in strontium ruthenate.

  20. Respiratory effort from the photoplethysmogram.

    Science.gov (United States)

    Addison, Paul S

    2017-03-01

    The potential for a simple, non-invasive measure of respiratory effort based on the pulse oximeter signal - the photoplethysmogram or 'pleth' - was investigated in a pilot study. Several parameters were developed based on a variety of manifestations of respiratory effort in the signal, including modulation changes in amplitude, baseline, frequency and pulse transit times, as well as distinct baseline signal shifts. Thirteen candidate parameters were investigated using data from healthy volunteers. Each volunteer underwent a series of controlled respiratory effort maneuvers at various set flow resistances and respiratory rates. Six oximeter probes were tested at various body sites. In all, over three thousand pleth-based effort-airway pressure (EP) curves were generated across the various airway constrictions, respiratory efforts, respiratory rates, subjects, probe sites, and the candidate parameters considered. Regression analysis was performed to determine the existence of positive monotonic relationships between the respiratory effort parameters and resulting airway pressures. Six of the candidate parameters investigated exhibited a distinct positive relationship (poximeter probe and an ECG (P2E-Effort) and the other using two pulse oximeter probes placed at different peripheral body sites (P2-Effort); and baseline shifts in heart rate, (BL-HR-Effort). In conclusion, a clear monotonic relationship was found between several pleth-based parameters and imposed respiratory loadings at the mouth across a range of respiratory rates and flow constrictions. The results suggest that the pleth may provide a measure of changing upper airway dynamics indicative of the effort to breathe. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  1. Effort rights-based management

    DEFF Research Database (Denmark)

    Squires, Dale; Maunder, Mark; Allen, Robin

    2017-01-01

    Effort rights-based fisheries management (RBM) is less widely used than catch rights, whether for groups or individuals. Because RBM on catch or effort necessarily requires a total allowable catch (TAC) or total allowable effort (TAE), RBM is discussed in conjunction with issues in assessing fish...... populations and providing TACs or TAEs. Both approaches have advantages and disadvantages, and there are trade-offs between the two approaches. In a narrow economic sense, catch rights are superior because of the type of incentives created, but once the costs of research to improve stock assessments...

  2. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  3. Pandemic Influenza: Domestic Preparedness Efforts

    National Research Council Canada - National Science Library

    Lister, Sarah A

    2005-01-01

    .... Though influenza pandemics occur with some regularity, and the United States has been involved in specific planning efforts since the early 1990s, the H5N1 situation has created a sense of urgency...

  4. Effort Estimation in BPMS Migration

    OpenAIRE

    Drews, Christopher; Lantow, Birger

    2018-01-01

    Usually Business Process Management Systems (BPMS) are highly integrated in the IT of organizations and are at the core of their business. Thus, migrating from one BPMS solution to another is not a common task. However, there are forces that are pushing organizations to perform this step, e.g. maintenance costs of legacy BPMS or the need for additional functionality. Before the actual migration, the risk and the effort must be evaluated. This work provides a framework for effort estimation re...

  5. Evaluation of Crack and Corrosion Detection Sensitivity Using Piezoelectric Sensor Arrays (Preprint)

    National Research Council Canada - National Science Library

    Blackshire, James L; Martin, Steve; Cooney, Adam

    2006-01-01

    .... In this research effort, a systematic evaluation of the detection sensitivity levels of surface-bonded piezoelectric sensor arrays has been undertaken using experimental studies and analytic modeling...

  6. Designing Flat-Plate Photovoltaic Arrays

    Science.gov (United States)

    Ross, R. G., Jr.

    1984-01-01

    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  7. Effort in Multitasking: Local and Global Assessment of Effort.

    Science.gov (United States)

    Kiesel, Andrea; Dignath, David

    2017-01-01

    When performing multiple tasks in succession, self-organization of task order might be superior compared to external-controlled task schedules, because self-organization allows optimizing processing modes and thus reduces switch costs, and it increases commitment to task goals. However, self-organization is an additional executive control process that is not required if task order is externally specified and as such it is considered as time-consuming and effortful. To compare self-organized and externally controlled task scheduling, we suggest assessing global subjective and objectives measures of effort in addition to local performance measures. In our new experimental approach, we combined characteristics of dual tasking settings and task switching settings and compared local and global measures of effort in a condition with free choice of task sequence and a condition with cued task sequence. In a multi-tasking environment, participants chose the task order while the task requirement of the not-yet-performed task remained the same. This task preview allowed participants to work on the previously non-chosen items in parallel and resulted in faster responses and fewer errors in task switch trials than in task repetition trials. The free-choice group profited more from this task preview than the cued group when considering local performance measures. Nevertheless, the free-choice group invested more effort than the cued group when considering global measures. Thus, self-organization in task scheduling seems to be effortful even in conditions in which it is beneficiary for task processing. In a second experiment, we reduced the possibility of task preview for the not-yet-performed tasks in order to hinder efficient self-organization. Here neither local nor global measures revealed substantial differences between the free-choice and a cued task sequence condition. Based on the results of both experiments, we suggest that global assessment of effort in addition to

  8. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  9. Maximum effort in the minimum-effort game

    Czech Academy of Sciences Publication Activity Database

    Engelmann, Dirk; Normann, H.-T.

    2010-01-01

    Roč. 13, č. 3 (2010), s. 249-259 ISSN 1386-4157 Institutional research plan: CEZ:AV0Z70850503 Keywords : minimum-effort game * coordination game * experiments * social capital Subject RIV: AH - Economics Impact factor: 1.868, year: 2010

  10. A Framework for Speech Enhancement with Ad Hoc Microphone Arrays

    DEFF Research Database (Denmark)

    Tavakoli, Vincent Mohammad; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    Speech enhancement is vital for improved listening practices. Ad hoc microphone arrays are promising assets for this purpose. Most well-established enhancement techniques with conventional arrays can be adapted into ad hoc scenarios. Despite recent efforts to introduce various ad hoc speech...... enhancement apparatus, a common framework for integration of conventional methods into this new scheme is still missing. This paper establishes such an abstraction based on inter and intra sub-array speech coherencies. Along with measures for signal quality at the input of sub-arrays, a measure of coherency...... is proposed both for sub-array selection in local enhancement approaches, and also for selecting a proper global reference when more than one sub-array are used. Proposed methods within this framework are evaluated with regard to quantitative and qualitative measures, including array gains, the speech...

  11. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2012-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  12. ASME Code Efforts Supporting HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    D.K. Morton

    2011-09-01

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  13. Effort Estimation in BPMS Migration

    Directory of Open Access Journals (Sweden)

    Christopher Drews

    2018-04-01

    Full Text Available Usually Business Process Management Systems (BPMS are highly integrated in the IT of organizations and are at the core of their business. Thus, migrating from one BPMS solution to another is not a common task. However, there are forces that are pushing organizations to perform this step, e.g. maintenance costs of legacy BPMS or the need for additional functionality. Before the actual migration, the risk and the effort must be evaluated. This work provides a framework for effort estimation regarding the technical aspects of BPMS migration. The framework provides questions for BPMS comparison and an effort evaluation schema. The applicability of the framework is evaluated based on a simplified BPMS migration scenario.

  14. Progress report on the use of hybrid silicon pin diode arrays in high energy physics

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Jernigan, J.G.; Arens, J.F.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump-bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format has 10 x 64 pixels, each 120 μm square; and the other format has 256 x 156 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 17 figs

  15. The Future of Ground Magnetometer Arrays in Support of Space Weather Monitoring and Research

    Science.gov (United States)

    Engebretson, Mark; Zesta, Eftyhia

    2017-11-01

    A community workshop was held in Greenbelt, Maryland, on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to the National Science Foundation (Engebretson & Zesta, as well as conclusions from two follow-up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community's effort for understanding of Earth's space environment and space weather effects.

  16. Effort problem of chemical pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Okrajni, J.; Ciesla, M.; Mutwil, K. [Silesian Technical University, Katowice (Poland)

    1998-12-31

    The problem of the technical state assessment of the chemical pipelines working under mechanical and thermal loading has been shown in the paper. The pipelines effort after the long time operating period has been analysed. Material geometrical and loading conditions of the crack initiation and crack growth process in the chosen object has been discussed. Areas of the maximal effort have been determined. The material structure charges after the long time operating period have been described. Mechanisms of the crack initiation and crack growth in the pipeline elements have been analysed and mutual relations between the chemical and mechanical influences have been shown. (orig.) 16 refs.

  17. Study of Plasma Flow Modes in Imploding Nested Arrays

    Science.gov (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.

    2018-02-01

    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  18. Arraying proteins by cell-free synthesis.

    Science.gov (United States)

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  19. Reproductive effort in viscous populations

    NARCIS (Netherlands)

    Pen, Ido

    Here I study a kin selection model of reproductive effort, the allocation of resources to fecundity versus survival, in a patch-structured population. Breeding females remain in the same patch for life. Offspring have costly, partial long-distance dispersal and compete for breeding sites, which

  20. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  1. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  2. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  3. The EUROBALL array

    International Nuclear Information System (INIS)

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  4. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  5. Fabrication of close-packed TES microcalorimeter arrays using superconducting molybdenum/gold transition-edge sensors

    Science.gov (United States)

    Finkbeiner, F. M.; Brekosky, R. P.; Chervenak, J. A.; Figueroa-Feliciano, E.; Li, M. J.; Lindeman, M. A.; Stahle, C. K.; Stahle, C. M.; Tralshawala, N.

    2002-02-01

    We present an overview of our efforts in fabricating Transition-Edge Sensor (TES) microcalorimeter arrays for use in astronomical x-ray spectroscopy. Two distinct types of array schemes are currently pursued: 5×5 single pixel TES array where each pixel is a TES microcalorimeter, and Position-Sensing TES (PoST) array. In the latter, a row of 7 or 15 thermally-linked absorber pixels is read out by two TES at its ends. Both schemes employ superconducting Mo/Au bilayers as the TES. The TES are placed on silicon nitride membranes for thermal isolation from the structural frame. The silicon nitride membranes are prepared by a Deep Reactive Ion Etch (DRIE) process into a silicon wafer. In order to achieve the concept of closely packed arrays without decreasing its structural and functional integrity, we have already developed the technology to fabricate arrays of cantilevered pixel-sized absorbers and slit membranes in silicon nitride films. Furthermore, we have started to investigate ultra-low resistance through-wafer micro-vias to bring the electrical contact out to the back of a wafer. .

  6. Analysis of the impacts of Wave Energy Converter arrays on the nearshore wave climate in the Pacific Northwest

    Science.gov (United States)

    O'Dea, A.; Haller, M. C.

    2013-12-01

    As concerns over the use of fossil fuels increase, more and more effort is being put into the search for renewable and reliable sources of energy. Developments in ocean technologies have made the extraction of wave energy a promising alternative. Commercial exploitation of wave energy would require the deployment of arrays of Wave Energy Converters (WECs) that include several to hundreds of individual devices. Interactions between WECs and ocean waves result in both near-field and far-field changes in the incident wave field, including a significant decrease in wave height and a redirection of waves in the lee of the array, referred to as the wave shadow. Nearshore wave height and direction are directly related to the wave radiation stresses that drive longshore currents, rip currents and nearshore sediment transport, which suggests that significant far-field changes in the wave field due to WEC arrays could have an impact on littoral processes. The goal of this study is to investigate the changes in nearshore wave conditions and radiation stress forcing as a result of an offshore array of point-absorber type WECs using a nested SWAN model, and to determine how array size, configuration, spacing and distance from shore influence these changes. The two sites of interest are the Northwest National Marine Renewable Energy Center (NNMREC) test sites off the coast of Newport Oregon, the North Energy Test Site (NETS) and the South Energy Test Site (SETS). NETS and SETS are permitted wave energy test sites located approximately 4 km and 10 km offshore, respectively. Twenty array configurations are simulated, including 5, 10, 25, 50 and 100 devices in two and three staggered rows in both closely spaced (three times the WEC diameter) and widely spaced (ten times the WEC diameter) arrays. Daily offshore wave spectra are obtained from a regional WAVEWATCH III hindcast for 2011, which are then propagated across the continental shelf using SWAN. Arrays are represented in SWAN

  7. Tests Of Array Of Flush Pressure Sensors

    Science.gov (United States)

    Larson, Larry J.; Moes, Timothy R.; Siemers, Paul M., III

    1992-01-01

    Report describes tests of array of pressure sensors connected to small orifices flush with surface of 1/7-scale model of F-14 airplane in wind tunnel. Part of effort to determine whether pressure parameters consisting of various sums, differences, and ratios of measured pressures used to compute accurately free-stream values of stagnation pressure, static pressure, angle of attack, angle of sideslip, and mach number. Such arrays of sensors and associated processing circuitry integrated into advanced aircraft as parts of flight-monitoring and -controlling systems.

  8. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  9. Quantifying commercial catch and effort of monkfish Lophius ...

    African Journals Online (AJOL)

    Catch-per-unit-effort (cpue) data of vessels targeting monkfish and sole (the two ... analysed using two different methods to construct indices of abundance. ... in Namibia to all tail-weight classes is not appropriate for the current fishery and needs ... Keywords: catch per unit effort, Generalized Linear Model, Lophius vaillanti, ...

  10. Private Speech Moderates the Effects of Effortful Control on Emotionality

    Science.gov (United States)

    Day, Kimberly L.; Smith, Cynthia L.; Neal, Amy; Dunsmore, Julie C.

    2018-01-01

    Research Findings: In addition to being a regulatory strategy, children's private speech may enhance or interfere with their effortful control used to regulate emotion. The goal of the current study was to investigate whether children's private speech during a selective attention task moderated the relations of their effortful control to their…

  11. Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.

    Science.gov (United States)

    Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang

    2018-02-14

    Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.

  12. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  13. Reviewing efforts in global forest conservation for sustainable forest ...

    African Journals Online (AJOL)

    Reviewing efforts in global forest conservation for sustainable forest management: The World Wide Fund (WWF) case study. ... Global Journal of Pure and Applied Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current ...

  14. Overview of NASA/OAST efforts related to manufacturing technology

    Science.gov (United States)

    Saunders, N. T.

    1976-01-01

    An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.

  15. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  16. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  17. Phase transition in a modified square Josephson-junction array

    CERN Document Server

    Han, J

    1999-01-01

    We study the phase transition in a modified square proximity-coupled Josephson-junction array with small superconducting islands at the center of each plaquette. We find that the modified square array undergoes a Kosterlitz-Thouless-Berezinskii-like phase transition, but at a lower temperature than the simple square array with the same single-junction critical current. The IV characteristics, as well as the phase transition, resemble qualitatively those of a disordered simple square array. The effects of the presence of the center islands in the modified square array are discussed.

  18. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  19. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  20. Study of Implosion of Twisted Nested Arrays at the Angara-5-1 Facility

    Science.gov (United States)

    Mitrofanov, K. N.; Zukakishvili, G. G.; Aleksandrov, V. V.; Grabovski, E. V.; Frolov, I. N.; Gribov, A. N.

    2018-01-01

    Results are presented from experimental studies of the implosion of twisted nested arrays in which the wires of the outer and inner arrays are twisted about the array axis in opposite directions (clockwise and counterclockwise). Experiments with twisted arrays were carried out at the Angara-5-1 facility at currents of up to 4 MA. The currents through the arrays were switched either simultaneously or the current pulse through the outer array was delayed by 10-15 ns with the help of an anode spark gap. It is shown that, in such arrays, the currents flow along the inclined wires and, accordingly, there are both the azimuthal and axial components of the discharge current. The process of plasma implosion in twisted arrays depends substantially on the value of the axial (longitudinal) magnetic field generated inside the array by the azimuthal currents. Two-dimensional simulations of the magnetic field in twisted nested arrays were performed in the ( r, z) geometry with allowance for the skin effect in the discharge electrodes. It is shown that, depending on the geometry of the discharge electrodes, different configurations of the magnetic field can be implemented inside twisted nested arrays. The calculated magnetic configurations are compared with the results of measurements of the magnetic field inside such arrays. It is shown that the configuration of the axial magnetic field inside a twisted nested array depends substantially on the distribution of the azimuthal currents between the inner and outer arrays.

  1. Voluntary versus Enforced Team Effort

    Directory of Open Access Journals (Sweden)

    Claudia Keser

    2011-08-01

    Full Text Available We present a model where each of two players chooses between remuneration based on either private or team effort. Although at least one of the players has the equilibrium strategy to choose private remuneration, we frequently observe both players to choose team remuneration in a series of laboratory experiments. This allows for high cooperation payoffs but also provides individual free-riding incentives. Due to significant cooperation, we observe that, in team remuneration, participants make higher profits than in private remuneration. We also observe that, when participants are not given the option of private remuneration, they cooperate significantly less.

  2. APS Education and Diversity Efforts

    Science.gov (United States)

    Prestridge, Katherine; Hodapp, Theodore

    2015-11-01

    American Physical Society (APS) has a wide range of education and diversity programs and activities, including programs that improve physics education, increase diversity, provide outreach to the public, and impact public policy. We present the latest programs spearheaded by the Committee on the Status of Women in Physics (CSWP), with highlights from other diversity and education efforts. The CSWP is working to increase the fraction of women in physics, understand and implement solutions for gender-specific issues, enhance professional development opportunities for women in physics, and remedy issues that impact gender inequality in physics. The Conferences for Undergraduate Women in Physics, Professional Skills Development Workshops, and our new Professional Skills program for students and postdocs are all working towards meeting these goals. The CSWP also has site visit and conversation visit programs, where department chairs request that the APS assess the climate for women in their departments or facilitate climate discussions. APS also has two significant programs to increase participation by underrepresented minorities (URM). The newest program, the APS National Mentoring Community, is working to provide mentoring to URM undergraduates, and the APS Bridge Program is an established effort that is dramatically increasing the number of URM PhDs in physics.

  3. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  4. Modeling of a new 2D Acceleration Sensor Array using SystemC-AMS

    International Nuclear Information System (INIS)

    Markert, Erik; Dienel, Marco; Herrmann, Goeran; Mueller, Dietmar; Heinkel, Ulrich

    2006-01-01

    This paper presents an approach for modeling and simulation of a new 2D acceleration sensor array using SystemC-AMS. The sensor array consists of six single acceleration sensors with different detection axes. These single sensors comprise of four capacitive segments and one mass segment, aligned in a semicircle. The redundant sensor information is used for offset correction. Modeling of the single sensors is achieved using sensor structure simplification into 11 points and analytic equations for capacity changes, currents and torques. This model was expanded by a PWM feedback circuit to keep the sensor displacement in a linear region. In this paper the single sensor model is duplicated considering different positions of the seismic mass resulting in different detection axes for the single sensors. The measured accelerations of the sensors are merged with different weights depending on the orientation. This also reduces calculation effort

  5. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  6. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  7. Compensated readout for high-density MOS-gated memristor crossbar array

    KAUST Repository

    Zidan, Mohammed A.

    2015-01-01

    Leakage current is one of the main challenges facing high-density MOS-gated memristor arrays. In this study, we show that leakage current ruins the memory readout process for high-density arrays, and analyze the tradeoff between the array density and its power consumption. We propose a novel readout technique and its underlying circuitry, which is able to compensate for the transistor leakage-current effect in the high-density gated memristor array.

  8. Ferrite LTCC based phased array antennas

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Two phased array antennas realized in multilayer ferrite LTCC technology are presented in this paper. The use of embedded bias windings in these designs allows the negation of external magnets which are conventionally employed with bulk ferrite medium. This reduces the required magnetostatic field strength by 90% as compared to the traditional designs. The phase shifters are implemented using the SIW technology. One of the designs is operated in the half mode waveguide topology while the other design is based on standard full mode waveguide operation. The two phase shifter designs are integrated with two element patch antenna array and slotted SIW array respectively. The array designs demonstrate a beam steering of 30° and ±19° respectively for a current excitation of 200 mA. The designs, due to their small factor can be easily integrated in modern communication systems which is not possible in the case of bulk ferrite based designs.

  9. Termination of prehospital resuscitative efforts

    DEFF Research Database (Denmark)

    Mikkelsen, Søren; Schaffalitzky de Muckadell, Caroline; Binderup, Lars Grassmé

    2017-01-01

    -and-death decision-making in the patient's medical records is required. We suggest that a template be implemented in the prehospital medical records describing the basis for any ethical decisions. This template should contain information regarding the persons involved in the deliberations and notes on ethical......BACKGROUND: Discussions on ethical aspects of life-and-death decisions within the hospital are often made in plenary. The prehospital physician, however, may be faced with ethical dilemmas in life-and-death decisions when time-critical decisions to initiate or refrain from resuscitative efforts...... need to be taken without the possibility to discuss matters with colleagues. Little is known whether these considerations regarding ethical issues in crucial life-and-death decisions are documented prehospitally. This is a review of the ethical considerations documented in the prehospital medical...

  10. Blending of phased array data

    Science.gov (United States)

    Duijster, Arno; van Groenestijn, Gert-Jan; van Neer, Paul; Blacquière, Gerrit; Volker, Arno

    2018-04-01

    The use of phased arrays is growing in the non-destructive testing industry and the trend is towards large 2D arrays, but due to limitations, it is currently not possible to record the signals from all elements, resulting in aliased data. In the past, we have presented a data interpolation scheme `beyond spatial aliasing' to overcome this aliasing. In this paper, we present a different approach: blending and deblending of data. On the hardware side, groups of receivers are blended (grouped) in only a few transmit/recording channels. This allows for transmission and recording with all elements, in a shorter acquisition time and with less channels. On the data processing side, this blended data is deblended (separated) by transforming it to a different domain and applying an iterative filtering and thresholding. Two different filtering methods are compared: f-k filtering and wavefield extrapolation filtering. The deblending and filtering methods are demonstrated on simulated experimental data. The wavefield extrapolation filtering proves to outperform f-k filtering. The wavefield extrapolation method can deal with groups of up to 24 receivers, in a phased array of 48 × 48 elements.

  11. LOFAR, the low frequency array

    Science.gov (United States)

    Vermeulen, R. C.

    2012-09-01

    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  12. Intracavitary ultrasound phased arrays for thermal therapies

    Science.gov (United States)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated

  13. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  14. Study of rectenna array connection

    Energy Technology Data Exchange (ETDEWEB)

    Miura, T.; Shinohara, N.; Matsumoto, H. [Kyoto Univ., Uji (Japan). Engineering Research Inst.

    1997-11-01

    A study was conducted in which a new rectenna working at 2.45 GHz microwave was developed for ground-to-ground microwave power transmission. The new rectenna consists of an antenna section and a rectifying section. The new design is simple and therefore more accurate than a micro-strip type patch antenna. The efficiency of conversion of microwave power to direct current depends on the mutual dependence of antenna elements and circuit conditions of rectifying sections. A series of experiments were conducted to analyze the rectenna characteristics and a method for efficiently connecting rectenna arrays was proposed. 3 refs., 2 tabs., 15 figs.

  15. Minimisation of Power loss from partially shaded solar cell arrays

    Energy Technology Data Exchange (ETDEWEB)

    Maine, Tony; Bell, John [Queensland University of Technology, Brisbane (Australia). Built Environment Engineering; Martin, Stewart [University of South Australia, Mawson Lakes Campus, SA (Australia). School of Electrical and Information Engineering

    2008-07-01

    In conventional wiring schemes the output from a partially shaded solar cell array drops rapidly to that of the fully shaded array even when only a small fraction is shaded. In this paper circuit simulation has been used to show that by dynamically reconfiguring the array, the power losses due to shading can be significantly reduced. Reconfiguration is achieved by using switching microcircuits with on-chip photo detectors to determine which parts of the array are in shade. The currents from the shaded and unshaded sections of the array are separated and then connected in parallel to a maximum power point tracker. It is shown that by using this reconfiguration that the power output from a partially shaded array can be increased by at least 100% compared with that from a conventional series connected array over a range of shading conditions. (orig.)

  16. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    International Nuclear Information System (INIS)

    Kramb, V.A.

    2005-01-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy

  17. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  18. Spatially resolved detection of mutually locked Josephson junctions in arrays

    International Nuclear Information System (INIS)

    Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.

    1997-01-01

    Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics

  19. [Limitation of the therapeutic effort].

    Science.gov (United States)

    Herreros, B; Palacios, G; Pacho, E

    2012-03-01

    The limitation of the therapeutic effort (LTE) consists in not applying extraordinary or disproportionate measures for therapeutic purposes that are proposed for a patient with poor life prognosis and/or poor quality of life. There are two types. The first is to not initiate certain measures or to withdraw them when they are established. A decision of the LTE should be based on some rigorous criteria, so that we make the following proposal. First, it is necessary to know the most relevant details of the case to make a decision: the preferences of the patient, the preferences of the family when pertinent, the prognosis (severity), the quality of life and distribution of the limited resources. After, the decision should be made. In this phase, participatory deliberation should be established to clarify the end of the intervention. Finally, if it is decided to perform an LTE, it should be decided how to do it. Special procedures, disproportionate measures, that are useless and vain should not be initiated for the therapeutic objective designed (withdraw them if they have been established). When it has been decided to treat a condition (interim measures), the treatment should be maintained. This complex phase may need stratification of he measures. Finally, the necessary palliative measures should be established. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  20. Dual-Polarization, Multi-Frequency Antenna Array for use with Hurricane Imaging Radiometer

    Science.gov (United States)

    Little, John

    2013-01-01

    Advancements in common aperture antenna technology were employed to utilize its proprietary genetic algorithmbased modeling tools in an effort to develop, build, and test a dual-polarization array for Hurricane Imaging Radiometer (HIRAD) applications. Final program results demonstrate the ability to achieve a lightweight, thin, higher-gain aperture that covers the desired spectral band. NASA employs various passive microwave and millimeter-wave instruments, such as spectral radiometers, for a range of remote sensing applications, from measurements of the Earth's surface and atmosphere, to cosmic background emission. These instruments such as the HIRAD, SFMR (Stepped Frequency Microwave Radiometer), and LRR (Lightweight Rainfall Radiometer), provide unique data accumulation capabilities for observing sea surface wind, temperature, and rainfall, and significantly enhance the understanding and predictability of hurricane intensity. These microwave instruments require extremely efficient wideband or multiband antennas in order to conserve space on the airborne platform. In addition, the thickness and weight of the antenna arrays is of paramount importance in reducing platform drag, permitting greater time on station. Current sensors are often heavy, single- polarization, or limited in frequency coverage. The ideal wideband antenna will have reduced size, weight, and profile (a conformal construct) without sacrificing optimum performance. The technology applied to this new HIRAD array will allow NASA, NOAA, and other users to gather information related to hurricanes and other tropical storms more cost effectively without sacrificing sensor performance or the aircraft time on station. The results of the initial analysis and numerical design indicated strong potential for an antenna array that would satisfy all of the design requirements for a replacement HIRAD array. Multiple common aperture antenna methodologies were employed to achieve exceptional gain over the entire

  1. Mental and physical effort affect vigilance differently

    NARCIS (Netherlands)

    Smit, A.S.; Eling, P.A.T.M.; Hopman, M.T.E.; Coenen, A.M.L.

    2005-01-01

    Both physical and mental effort are thought to affect vigilance. Mental effort is known for its vigilance declining effects, but the effects of physical effort are less clear. This study investigated whether these two forms of effort affect the EEG and subjective alertness differently. Participants

  2. Mental and physical effort affect vigilance differently.

    NARCIS (Netherlands)

    Smit, A.S.; Eling, P.A.T.M.; Hopman, M.T.E.; Coenen, A.M.L.

    2005-01-01

    Both physical and mental effort are thought to affect vigilance. Mental effort is known for its vigilance declining effects, but the effects of physical effort are less clear. This study investigated whether these two forms of effort affect the EEG and subjective alertness differently. Participants

  3. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan

    2016-11-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  4. Stochastic synaptic plasticity with memristor crossbar arrays

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Neftci, Emre; Cauwenberghs, Gert; Salama, Khaled N.

    2016-01-01

    Memristive devices have been shown to exhibit slow and stochastic resistive switching behavior under low-voltage, low-current operating conditions. Here we explore such mechanisms to emulate stochastic plasticity in memristor crossbar synapse arrays. Interfaced with integrate-and-fire spiking neurons, the memristive synapse arrays are capable of implementing stochastic forms of spike-timing dependent plasticity which parallel mean-rate models of stochastic learning with binary synapses. We present theory and experiments with spike-based stochastic learning in memristor crossbar arrays, including simplified modeling as well as detailed physical simulation of memristor stochastic resistive switching characteristics due to voltage and current induced filament formation and collapse. © 2016 IEEE.

  5. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  6. Peru continues to press privitization efforts

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Peru has again extended the deadline for bids on a 30 year operating contract for state owned Petromar SA's offshore Block Z-2b. The tender is key to efforts to privatize Petromar, a subsidiary of state oil company Petroleos del Peru. The committee charged with implementing Petromar privatization extended the deadline for bids another 70 days Oct. 30, following a 60 day extension made in September. The latest deadline for bids is Feb. 10, with the contract expected to be awarded Feb. 26. A bid package on Block Z-2b is available from Petroperu's Lima headquarters for $20,000. Petromar operates the former Belco Petroleum Corp. offshore assets Peru's government expropriated in 1985. It currently produces 17,600 b/d, compared with 27,000 b/d at the time of expropriation

  7. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  8. Self-regulating the effortful "social dos".

    Science.gov (United States)

    Cortes, Kassandra; Kammrath, Lara K; Scholer, Abigail A; Peetz, Johanna

    2014-03-01

    In the current research, we explored differences in the self-regulation of the personal dos (i.e., engaging in active and effortful behaviors that benefit the self) and in the self-regulation of the social dos (engaging in those same effortful behaviors to benefit someone else). In 6 studies, we examined whether the same trait self-control abilities that predict task persistence on personal dos would also predict task persistence on social dos. That is, would the same behavior, such as persisting through a tedious and attentionally demanding task, show different associations with trait self-control when it is framed as benefitting the self versus someone else? In Studies 1-3, we directly compared the personal and social dos and found that trait self-control predicted self-reported and behavioral personal dos but not social dos, even when the behaviors were identical and when the incentives were matched. Instead, trait agreeableness--a trait linked to successful self-regulation within the social domain--predicted the social dos. Trait self-control did not predict the social dos even when task difficulty increased (Study 4), but it did predict the social don'ts, consistent with past research (Studies 5-6). The current studies provide support for the importance of distinguishing different domains of self-regulated behaviors and suggest that social dos can be successfully performed through routes other than traditional self-control abilities. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  9. See Also:Mechanics of Cohesive-frictional MaterialsCopyright © 2004 John Wiley & Sons, Ltd.Get Sample CopyFree Online Trial -->Recommend to Your LibrarianSave Title to My ProfileSet E-Mail Alert var homepagelinks = new Array(new Array("Journal Home","/cgi-bin/jhome/3312",""),new Array("Issues","/cgi-bin/jtoc/3312/",""),new Array("Early View","/cgi-bin/jeview/3312/",""),new Array("News","/cgi-bin/jabout/3312/News.html","e"),new Array("","","s"),new Array("Product Information","/cgi-bin/jabout/3312/ProductInformation.html",""),new Array("Editorial Board","/cgi-bin/jabout/3312/EditorialBoard.html",""),new Array("For Authors","/cgi-bin/jabout/3312/ForAuthors.html",""),new Array("Subscribe","http://jws-edcv.wiley.com/jcatalog/JournalsCatalogOrder/JournalOrder?PRINT_ISSN=0363-9061",""),new Array("Advertise","/cgi-bin/jabout/3312/Advertise.html",""),new Array("Contact","/cgi-bin/jabout/3312/Contact.html",""),new Array("","","x"));writeJournalLinks("", "3312"); Previous Issue | Next Issue >Volume 29, Issue1 (January 2005)Articles in the Current Issue:Research ArticleHomogenization framework for three-dimensional elastoplastic finite element analysis of a grouted pipe-roofing reinforcement method for tunnelling

    Science.gov (United States)

    Bae, G. J.; Shin, H. S.; Sicilia, C.; Choi, Y. G.; Lim, J. J.

    2005-01-01

    This paper deals with the grouted pipe-roofing reinforcement method that is used in the construction of tunnels through weak grounds. This system consists on installing, prior to the excavation of a length of tunnel, an array of pipes forming a kind of umbrella above the area to be excavated. In some cases, these pipes are later used to inject grout to strengthen the ground and connect the pipes.This system has proven to be very efficient in reducing tunnel convergence and water inflow when tunnelling through weak grounds. However, due to the geometrical and mechanical complexity of the problem, existing finite element frameworks are inappropriate to simulate tunnelling using this method.In this paper, a mathematical framework based on a homogenization technique to simulate grouted pipe-roofing reinforced ground and its implementation into a 3-D finite element programme that can consider stage construction situations are presented. The constitutive model developed allows considering the main design parameters of the problem and only requires geometrical and mechanical properties of the constituents. Additionally, the use of a homogenization approach implies that the generation of the finite element mesh can be easily produced and that re-meshing is not required as basic geometrical parameters such as the orientation of the pipes are changed.The model developed is used to simulate tunnelling with the grouted pipe-roofing reinforcement method. From the analyses, the effects of the main design parameters on the elastic and the elastoplastic analyses are considered. Copyright

  10. Add-drop double bus microresonator array local oscillators for sharp multiple Fano resonance engineering

    Science.gov (United States)

    Li, Jiahua; Qu, Ye; Wu, Ying

    2018-03-01

    Asymmetric resonances are currently the subject of considerable research efforts in photonic nanostructures. Here we propose a feasible method to achieve multiple Fano resonances and their control in an optical compound system consisting of an array of on-chip microresonators without mutual coupling and two parallel fiber waveguides side-coupled to the microresonator array by means of a local oscillator. We derive analytical and transparent expressions for the power transmission function summing over the two light transporting paths within the framework of quantum optics. It is clearly shown that introducing the local oscillator as an additional light propagating path plays an important role in the formation of narrow and multiple Fano resonance lineshapes. The power transmission spectrum through the combination of both the microresonator array and the local oscillator is very sensitive to the system parameters, for example, the intrinsic decay rate of the resonator, the phase shift factor of the local oscillator, the transmission coefficient of the fiber beam splitter, and the total number of the microresonators. Through detailed analysis, we identify the optimums for generating Fano resonance lineshapes. Also, we assess the experimental feasibility of the scheme using currently available technology. The proposed method is relatively straightforward as it requires only one local oscillator as one interferometer arm and it is mostly fiber-based. We believe that our work will help to understand and improve multiple Fano resonance engineering.

  11. Development of FIR arrays with integrating amplifiers

    Science.gov (United States)

    Young, Erick T.

    1988-08-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  12. CHAMP+ : A powerful array receiver for APEX

    NARCIS (Netherlands)

    Kasemann, C.; Güsten, R.; Heyminck, S.; Klein, B.; Klein, T.; Philipp, S.D.; Korn, A.; Schneider, G.; Henseler, A.; Baryshev, A.; Klapwijk, T.M.

    2006-01-01

    CHAMP+, a dual-color 2 × 7 element heterodyne array for operation in the 450 ?m and 350 ?m atmospheric windows is under development. The instrument, which is currently undergoing final evaluation in the laboratories, will be deployed for commissioning at the APEX telescope in August this year. With

  13. CHAMP + : A powerful array receiver for APEX

    NARCIS (Netherlands)

    Kasemann, C.; Güsten, R.; Heyminck, S.; Klein, B.; Klein, T.; Philipp, S. D.; Korn, A.; Schneider, G.; Henseler, A.; Baryshev, A.; Klapwijk, T. M.

    2006-01-01

    CHAMP +, a dual-color 2 × 7 element heterodyne array for operation in the 450 μm and 350 μm atmospheric windows is under development. The instrument, which is currently undergoing final evaluation in the laboratories, will be deployed for commissioning at the APEX telescope in August this year. With

  14. Rectenna array measurement results. [Satellite power transmission and reception

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  15. ICRP new recommendations. Committee 2's efforts

    International Nuclear Information System (INIS)

    Eckerman, K.F.

    2007-01-01

    The International Commission on Radiological Protection (ICRP) may release new primary radiation protection recommendation in 2007. Committee 2 has underway reviews of the dosimetric and biokinetic models and associated data used in calculating dose coefficients for intakes of radionuclides and exposures to external radiation fields. This paper outlines the work plans of Committee 2 during the current term, 2005-2009, in anticipation of the new primary recommendations. The two task groups of Committee 2 responsible for the computations of dose coefficients, INDOS and DOCAL, are reviewing the models and data used in the computations. INDOS is reviewing the lung model and the biokinetic models that describe the behavior of the radionuclides in the body. DOCAL is reviewing its computational formulations with the objective of harmonizing the formulation with those of nuclear medicine, and developing new computational phantoms representing the adult male and female reference individuals of ICRP Publication 89. In addition, DOCAL will issue a publication on nuclear decay data to replace ICRP Publication 38. While the current efforts are focused on updating the dose coefficients for occupational intakes of radionuclides plans are being formulated to address dose coefficients for external radiation fields which include consideration of high energy fields associated with accelerators and space travel and the updating of dose coefficients for members of the public. (author)

  16. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  17. The GPS Laser Retroreflector Array Project

    Science.gov (United States)

    Merkowitz, Stephen M.

    2012-01-01

    Systematic co-location in space through the precision orbit determination of GPS satellites via satellite laser ranging will contribute significantly towards improving the accuracy and stability of the international terrestrial reference frame. NASA recently formed the GPS Laser Retroreflector Array Project to develop and deliver retroreflectors for integration on the next generation of GPS satellites. These retroreflectors will be an important contributor to achieving a global accuracy of 1.0 mm and 0.1 mm/year stability in the international terrestrial reference frame. We report here the current status of the GPS Laser Retroreflector Array Project.

  18. Integrated power conditioning for laser diode arrays

    International Nuclear Information System (INIS)

    Hanks, R.L.; Kirbie, H.C.; Newton, M.A.; Farhoud, M.S.

    1995-01-01

    This compact modulator has demonstated its ability to efficiently and accurately drive a laser diode array. The addition of the crowbar protection circuit is an invaluable addition to the integrated system and is capable of protecting the laser diode array against severe damage. We showed that the correlation between measured data and simulation indicates that our modulator model is valid and can be used as a tool in the design of future systems. The spectrometer measurements that we conducted underline the imprtance of current regulation to stable laser operation

  19. Measuring collections effort improves cash performance.

    Science.gov (United States)

    Shutts, Joe

    2009-09-01

    Having a satisfied work force can lead to an improved collections effort. Hiring the right people and training them ensures employee engagement. Measuring collections effort and offering incentives is key to revenue cycle success.

  20. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  1. Detector array and method

    International Nuclear Information System (INIS)

    Timothy, J.G.; Bybee, R.L.

    1978-01-01

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  2. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  3. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  4. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  5. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    Science.gov (United States)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  6. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  7. Array-based techniques for fingerprinting medicinal herbs

    Directory of Open Access Journals (Sweden)

    Xue Charlie

    2011-05-01

    Full Text Available Abstract Poor quality control of medicinal herbs has led to instances of toxicity, poisoning and even deaths. The fundamental step in quality control of herbal medicine is accurate identification of herbs. Array-based techniques have recently been adapted to authenticate or identify herbal plants. This article reviews the current array-based techniques, eg oligonucleotides microarrays, gene-based probe microarrays, Suppression Subtractive Hybridization (SSH-based arrays, Diversity Array Technology (DArT and Subtracted Diversity Array (SDA. We further compare these techniques according to important parameters such as markers, polymorphism rates, restriction enzymes and sample type. The applicability of the array-based methods for fingerprinting depends on the availability of genomics and genetics of the species to be fingerprinted. For the species with few genome sequence information but high polymorphism rates, SDA techniques are particularly recommended because they require less labour and lower material cost.

  8. Phased antenna arrays for fast wave power generation

    International Nuclear Information System (INIS)

    Bosia, G.; Jacquinot, J.

    1991-01-01

    A method for the generation of travelling waves in the Ion Cyclotron frequency range in JET is presented. The success of the method relies on the control of the array toroidal current, which in turn, is obtained by a coordinated vectorial control of the array power sources and tuning networks. This method has general application to present and future ICRF arrays. For uninterrupted, periodically fed and resonant toroidal arrays, phased operation requires only conventional tuning devices. For localised arrays, phased operation is inefficient at low plasma coupling. This inefficiency can be however removed with the addition of external coupling structures either at the antenna or at the generator ends. The performances of JET A1 antennae in phased operation is presented. The design philosophy for the JET A2 phased arrays is also discussed. These methods are applicable and extensible to Next Step Devices design

  9. ALARA efforts in nordic BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Ingemansson, T.; Lundgren, K.; Elkert, J. [ABB Atom, Vaesteraes (Sweden)

    1995-03-01

    Some ALARA-related ABB Atom projects are currently under investigation. One of the projects has been ordered by the Swedish Radiation Protection Institute, and two others by the Nordic BWR utilities. The ultimate objective of the projects is to identify and develop methods to significantly decrease the future exposure levels in the Nordic BWRS. As 85% to 90% of the gamma radiation field in the Nordic BWRs originates from Co-60, the only way to significantly decrease the radiation doses is to effect Co and Co-60. The strategy to do this is to map the Co sources and estimate the source strength of Co from these sources, and to study the possibility to affect the release of Co-60 from the core surfaces and the uptake on system surfaces. Preliminary results indicate that corrosion/erosion of a relatively small number of Stellite-coated valves and/or dust from grinding of Stellite valves may significantly contribute to the Co input to the reactors. This can be seen from a high measured Co/Ni ratio in the feedwater and in the reactor water. If stainless steel is the only source of Co, the Co/Ni ratio would be less than 0.02 as the Co content in the steel is less than 0.2%. The Co/Ni ratio in the reactor water, however, is higher than 0.1, indicating that the major fraction of the Co originates from Stellite-coated valves. There are also other possible explanations for an increase of the radiation fields. The Co-60 inventory on the core surfaces increases approximately as the square of the burn-up level. If the burn-up is increased from 35 to 5 MWd/kgU, the Co-60 inventory on the core surfaces will be doubled. Also the effect on the behavior of Co-60 of different water chemistry and materials conditions is being investigated. Examples of areas studied are Fe and Zn injection, pH-control, and different forms of surface pre-treatments.

  10. Challenging aspects of contemporary cochlear implant electrode array design.

    Science.gov (United States)

    Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg

    2017-12-01

    A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the

  11. Terabyte IDE RAID-5 Disk Arrays

    Energy Technology Data Exchange (ETDEWEB)

    David A. Sanders et al.

    2003-09-30

    High energy physics experiments are currently recording large amounts of data and in a few years will be recording prodigious quantities of data. New methods must be developed to handle this data and make analysis at universities possible. We examine some techniques that exploit recent developments in commodity hardware. We report on tests of redundant arrays of integrated drive electronics (IDE) disk drives for use in offline high energy physics data analysis. IDE redundant array of inexpensive disks (RAID) prices now are less than the cost per terabyte of million-dollar tape robots! The arrays can be scaled to sizes affordable to institutions without robots and used when fast random access at low cost is important.

  12. Cymbal and BB underwater transducers and arrays

    Energy Technology Data Exchange (ETDEWEB)

    Newnham, R.E.; Zhang, J.; Alkoy, S.; Meyer, R.; Hughes, W.J.; Hladky-Hennion, A.C.; Cochran, J.; Markley, D. [Materials Research Laboratory, Penn State University, University Park, PA 16802 (United States)

    2002-09-01

    The cymbal is a miniaturized class V flextensional transducer that was developed for use as a shallow water sound projector and receiver. Single elements are characterized by high Q, low efficiency, and medium power output capability. Its low cost and thin profile allow the transducer to be assembled into large flexible arrays. Efforts were made to model both single elements and arrays using the ATILA code and the integral equation formulation (EQI).Millimeter size microprobe hydrophones (BBs) have been designed and fabricated from miniature piezoelectric hollow ceramic spheres for underwater applications such as mapping acoustic fields of projectors, and flow noise sensors for complex underwater structures. Green spheres are prepared from soft lead zirconate titanate powders using a coaxial nozzle slurry process. A compact hydrophone with a radially-poled sphere is investigated using inside and outside electrodes. Characterization of these hydrophones is done through measurement of hydrostatic piezoelectric charge coefficients, free field voltage sensitivities and directivity beam patterns. (orig.)

  13. Experimental investigation of the ribbon-array ablation process

    International Nuclear Information System (INIS)

    Li Zhenghong; Xu Rongkun; Chu Yanyun; Yang Jianlun; Xu Zeping; Ye Fan; Chen Faxin; Xue Feibiao; Ning Jiamin; Qin Yi; Meng Shijian; Hu Qingyuan; Si Fenni; Feng Jinghua; Zhang Faqiang; Chen Jinchuan; Li Linbo; Chen Dingyang; Ding Ning; Zhou Xiuwen

    2013-01-01

    Ablation processes of ribbon-array loads, as well as wire-array loads for comparison, were investigated on Qiangguang-1 accelerator. The ultraviolet framing images indicate that the ribbon-array loads have stable passages of currents, which produce axially uniform ablated plasma. The end-on x-ray framing camera observed the azimuthally modulated distribution of the early ablated ribbon-array plasma and the shrink process of the x-ray radiation region. Magnetic probes measured the total and precursor currents of ribbon-array and wire-array loads, and there exists no evident difference between the precursor currents of the two types of loads. The proportion of the precursor current to the total current is 15% to 20%, and the start time of the precursor current is about 25 ns later than that of the total current. The melting time of the load material is about 16 ns, when the inward drift velocity of the ablated plasma is taken to be 1.5 × 10 7 cm/s.

  14. DFB laser array driver circuit controlled by adjustable signal

    Science.gov (United States)

    Du, Weikang; Du, Yinchao; Guo, Yu; Li, Wei; Wang, Hao

    2018-01-01

    In order to achieve the intelligent controlling of DFB laser array, this paper presents the design of an intelligence and high precision numerical controlling electric circuit. The system takes MCU and FPGA as the main control chip, with compact, high-efficiency, no impact, switching protection characteristics. The output of the DFB laser array can be determined by an external adjustable signal. The system transforms the analog control model into a digital control model, which improves the performance of the driver. The system can monitor the temperature and current of DFB laser array in real time. The output precision of the current can reach ± 0.1mA, which ensures the stable and reliable operation of the DFB laser array. Such a driver can benefit the flexible usage of the DFB laser array.

  15. Robust, Highly Scalable Solar Array System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar array systems currently under development are focused on near-term missions with designs optimized for the 30-50 kW power range. However, NASA has a vital...

  16. Memristor based crossbar memory array sneak path estimation

    KAUST Repository

    Naous, Rawan; Zidan, Mohammed A.; Salem, Ahmed Sultan; Salama, Khaled N.

    2014-01-01

    Gateless Memristor Arrays have the advantage of offering high density systems however; their main limitation is the current leakage or the sneak path. Several techniques have been used to address this problem, mainly concentrating on spatial

  17. Trust and Reciprocity: Are Effort and Money Equivalent?

    Science.gov (United States)

    Vilares, Iris; Dam, Gregory; Kording, Konrad

    2011-01-01

    Trust and reciprocity facilitate cooperation and are relevant to virtually all human interactions. They are typically studied using trust games: one subject gives (entrusts) money to another subject, which may return some of the proceeds (reciprocate). Currently, however, it is unclear whether trust and reciprocity in monetary transactions are similar in other settings, such as physical effort. Trust and reciprocity of physical effort are important as many everyday decisions imply an exchange of physical effort, and such exchange is central to labor relations. Here we studied a trust game based on physical effort and compared the results with those of a computationally equivalent monetary trust game. We found no significant difference between effort and money conditions in both the amount trusted and the quantity reciprocated. Moreover, there is a high positive correlation in subjects' behavior across conditions. This suggests that trust and reciprocity may be character traits: subjects that are trustful/trustworthy in monetary settings behave similarly during exchanges of physical effort. Our results validate the use of trust games to study exchanges in physical effort and to characterize inter-subject differences in trust and reciprocity, and also suggest a new behavioral paradigm to study these differences. PMID:21364931

  18. Effort-Based Decision-Making in Schizophrenia.

    Science.gov (United States)

    Culbreth, Adam J; Moran, Erin K; Barch, Deanna M

    2018-08-01

    Motivational impairment has long been associated with schizophrenia but the underlying mechanisms are not clearly understood. Recently, a small but growing literature has suggested that aberrant effort-based decision-making may be a potential contributory mechanism for motivational impairments in psychosis. Specifically, multiple reports have consistently demonstrated that individuals with schizophrenia are less willing than healthy controls to expend effort to obtain rewards. Further, this effort-based decision-making deficit has been shown to correlate with severity of negative symptoms and level of functioning, in many but not all studies. In the current review, we summarize this literature and discuss several factors that may underlie aberrant effort-based decision-making in schizophrenia.

  19. Concurrent array-based queue

    Science.gov (United States)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  20. Motivation and effort in individuals with social anhedonia.

    Science.gov (United States)

    McCarthy, Julie M; Treadway, Michael T; Blanchard, Jack J

    2015-06-01

    It has been proposed that anhedonia may, in part, reflect difficulties in reward processing and effortful decision making. The current study aimed to replicate previous findings of effortful decision making deficits associated with elevated anhedonia and expand upon these findings by investigating whether these decision making deficits are specific to elevated social anhedonia or are also associated with elevated positive schizotypy characteristics. The current study compared controls (n=40) to individuals elevated on social anhedonia (n=30), and individuals elevated on perceptual aberration/magical ideation (n=30) on the Effort Expenditure for Rewards Task (EEfRT). Across groups, participants chose a higher proportion of hard tasks with increasing probability of reward and reward magnitude, demonstrating sensitivity to probability and reward values. Contrary to our expectations, when the probability of reward was most uncertain (50% probability), at low and medium reward values, the social anhedonia group demonstrated more effortful decision making than either individuals high in positive schizotypy or controls. The positive schizotypy group only differed from controls (making less effortful choices than controls) when reward probability was lowest (12%) and the magnitude of reward was the smallest. Our results suggest that social anhedonia is related to intact motivation and effort for monetary rewards, but that individuals with this characteristic display a unique and perhaps inefficient pattern of effort allocation when the probability of reward is most uncertain. Future research is needed to better understand effortful decision making and the processing of reward across a range of individual difference characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Optimizing Power Density and Efficiency of a Double-Halbach Array Permanent-Magnet Ironless Axial-Flux Motor

    Science.gov (United States)

    Duffy, Kirsten P.

    2016-01-01

    NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.

  2. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  3. The Big Optical Array

    International Nuclear Information System (INIS)

    Mozurkewich, D.; Johnston, K.J.; Simon, R.S.

    1990-01-01

    This paper describes the design and the capabilities of the Naval Research Laboratory Big Optical Array (BOA), an interferometric optical array for high-resolution imaging of stars, stellar systems, and other celestial objects. There are four important differences between the BOA design and the design of Mark III Optical Interferometer on Mount Wilson (California). These include a long passive delay line which will be used in BOA to do most of the delay compensation, so that the fast delay line will have a very short travel; the beam combination in BOA will be done in triplets, to allow measurement of closure phase; the same light will be used for both star and fringe tracking; and the fringe tracker will use several wavelength channels

  4. A 4 probe array

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, C E [CEGB, Marchwood Engineering Laboratories, Marchwood, Southampton, Hampshire (United Kingdom)

    1980-11-01

    A NDT system is described which moves away from the present manual method using a single send/receive transducer combination and uses instead an array of four transducers. Four transducers are shown sufficient to define a point reflector with a resolution of m{lambda}z/R where m{lambda} is the minimum detectable path difference in the system (corresponding to a m cycle time resolution), z the range and R the radius of the array. Signal averaging with an input ADC rate of 100 MHz is used with voice output for the range data. Typical resolution measurements in a water tank are presented. We expect a resolution of the order of mm in steel at a range of 80 mm. The system is expected to have applications in automated, high resolution, sizing of defects and in the inspection of austenitic stainless steel welds. (author)

  5. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  6. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  7. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  8. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  9. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  10. Do Haphazard Reviews Provide Sound Directions for Dissemination Efforts?

    Science.gov (United States)

    Gambrill, Eileen; Littell, Julia H.

    2010-01-01

    Comments on The dissemination and implementation of evidence-based psychological treatments: A review of current efforts by Kathryn R. McHugh and David H. Barlow. The lead article in the February-March issue by McHugh and Barlow (2010) emphasized the need for "dissemination and implementation of evidence-based psychological treatments."…

  11. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  12. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  13. Lectin-Array Blotting.

    Science.gov (United States)

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  15. Radiation effects in semiconductor laser diode arrays

    International Nuclear Information System (INIS)

    Carson, R.F.

    1988-01-01

    The effects of radiation events are important for many of the present and future applications that involve optoelectronic components. Laser diodes show a strong resistance to degradation by gamma rays, prompt x-rays and (to a lesser extent), neutrons. This is due to the short carrier lifetime that is associated with stimulated emission and the high current injection conditions that are present in these devices. Radiation-resistant properties should carry over to many of the more recently developed devices such as multi-stripe array and broad area laser diodes. There are, however, additional considerations for radiation tolerance that are introduced by these devices. Arrays and other high power laser diodes have larger active region volumes than lower power single stripe devices. In addition, evanescent field coupling between stripes, the material quality available from newer MOCVD epitaxial growth techniques, and stripe definition methods may all influence the radiation tolerance of the high power laser diode devices. Radiation tests have been conducted on various GaAs-GaAlAs laser diode array and broad area devices. Tests involving total gamma dose have indicated that high power laser diodes and arrays have small degradations in light power output with current input after 4 MRad(Si) of radiation from a Co 60 source. Additional test results involving flash x-rays indicate that high power diode lasers and arrays are tolerant to 10 12 rads(Si)/sec, when observed on microsecond or millisecond time scales. High power diode laser devices were also irradiated with neutrons to a fluence of 10 14 neutrons/cm 2 with some degradation of threshold current level

  16. Comparison of Thrust Characteristics in Pencil Sized Cylinder-type Linear Motors with Different Magnet Arrays

    OpenAIRE

    Nakaiwa, K; Yamada, A; Tashiro, K; Wakiwaka, H

    2009-01-01

    From a strong demand on the miniaturization of a chip mounter or a semiconductor device, the thrust improvement considering the magnets arrangement is studied. We accept a core stator with a Halbach type magnet array for a current linear motor. The thrust characteristics are compared with two kinds of mover, a NS magnet array and a Halbach magnet array.

  17. Towards Development of Microcalorimeter Arrays of Mo/Au Transition-Edge Sensors with Bismuth Absorbers

    Science.gov (United States)

    Tralshawala, Nilesh; Brekosky, Regis; Figueroa-Feliciano, Enectali; Li, Mary; Stahle, Carl; Stahle, Caroline

    2000-01-01

    We report on our progress towards the development of arrays of X-ray microcalorimeters as candidates for the high resolution x-ray spectrometer on the Constellation-X mission. The microcalorimeter arrays (30 x 30) with appropriate pixel sizes (0.25 mm. x 0.25 mm) and high packing fractions (greater than 96%) are being developed. Each individual pixel has a 10 micron thick Bi X-ray absorber that is shaped like a mushroom to increase the packing fraction, and a Mo/Au proximity effect superconducting transition edge sensor (TES). These are deposited on a 0.25 or 0.5 micron thick silicon nitride membrane with slits to provide a controllable weak thermal link to the sink temperature. Studies are underway to model, test and optimize the TES pixel uniformity, critical current, heat capacity and the membrane thermal conductance in the array structure. Fabrication issues and procedures, and results of our efforts based on these optimizations will be provided.

  18. Centralized operations and maintenance planning at the Atacama Large Millimeter/submillimeter Array (ALMA)

    Science.gov (United States)

    Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.

  19. Sorting white blood cells in microfabricated arrays

    Science.gov (United States)

    Castelino, Judith Andrea Rose

    Fractionating white cells in microfabricated arrays presents the potential for detecting cells with abnormal adhesive or deformation properties. A possible application is separating nucleated fetal red blood cells from maternal blood. Since fetal cells are nucleated, it is possible to extract genetic information about the fetus from them. Separating fetal cells from maternal blood would provide a low cost noninvasive prenatal diagnosis for genetic defects, which is not currently available. We present results showing that fetal cells penetrate further into our microfabricated arrays than adult cells, and that it is possible to enrich the fetal cell fraction using the arrays. We discuss modifications to the array which would result in further enrichment. Fetal cells are less adhesive and more deformable than adult white cells. To determine which properties limit penetration, we compared the penetration of granulocytes and lymphocytes in arrays with different etch depths, constriction size, constriction frequency, and with different amounts of metabolic activity. The penetration of lymphocytes and granulocytes into constrained and unconstrained arrays differed qualitatively. In constrained arrays, the cells were activated by repeated shearing, and the number of cells stuck as a function of distance fell superexponentially. In unconstrained arrays the number of cells stuck fell slower than an exponential. We attribute this result to different subpopulations of cells with different sticking parameters. We determined that penetration in unconstrained arrays was limited by metabolic processes, and that when metabolic activity was reduced penetration was limited by deformability. Fetal cells also contain a different form of hemoglobin with a higher oxygen affinity than adult hemoglobin. Deoxygenated cells are paramagnetic and are attracted to high magnetic field gradients. We describe a device which can separate cells using 10 μm magnetic wires to deflect the paramagnetic

  20. Pocket money and child effort at school

    OpenAIRE

    François-Charles Wolff; Christine Barnet-Verzat

    2008-01-01

    In this paper, we study the relationship between the provision of parental pocket and the level of effort undertaken by the child at school. Under altruism, an increased amount of parental transfer should reduce the child's effort. Our empirical analysis is based on a French data set including about 1,400 parent-child pairs. We find that children do not undertake less effort when their parents are more generous.

  1. Incentive Design and Mis-Allocated Effort

    OpenAIRE

    Schnedler, Wendelin

    2013-01-01

    Incentives often distort behavior: they induce agents to exert effort but this effort is not employed optimally. This paper proposes a theory of incentive design allowing for such distorted behavior. At the heart of the theory is a trade-off between getting the agent to exert effort and ensuring that this effort is used well. The theory covers various moral-hazard models, ranging from traditional single-task to multi-task models. It also provides -for the first time- a formalization and proof...

  2. Anticipated emotions and effort allocation in weight goal striving.

    Science.gov (United States)

    Nelissen, Rob M A; de Vet, Emely; Zeelenberg, Marcel

    2011-02-01

    This study aimed to investigate the influence of anticipated emotions on preventive health behaviour if specified at the level of behavioural outcomes. Consistent with predictions from a recently developed model of goal pursuit, we hypothesized that the impact of emotions on effort levels depended on the perceived proximity to the goal. Participants with weight-loss intentions were randomly selected from an Internet panel and completed questionnaires at three points in time, baseline (T1; N= 725), 2 weeks later at T2 (N= 582) and again 2 months later at T3 (N= 528). Questionnaires assessed anticipated emotions (at T1) and experienced emotions (at T2) towards goal attainment and non-attainment. Goal proximity, goal desirability, and effort levels in striving for weight loss were assessed at both T1 and T2. Current and target weights were reported at all three assessments. In line with predictions, we found that negative anticipated emotions towards goal non-attainment resulted in increased effort but only if people perceived themselves in close proximity to their goal. Effort, in turn, predicted weight loss and goal achievement. The current data bear important practical implications as they identify anticipated emotions as targets of behaviour change interventions aimed to stimulate effort in striving for broad, health-related goals like weight loss. ©2010 The British Psychological Society.

  3. Joint Efforts Towards European HF Radar Integration

    Science.gov (United States)

    Rubio, A.; Mader, J.; Griffa, A.; Mantovani, C.; Corgnati, L.; Novellino, A.; Schulz-Stellenfleth, J.; Quentin, C.; Wyatt, L.; Ruiz, M. I.; Lorente, P.; Hartnett, M.; Gorringe, P.

    2016-12-01

    During the past two years, significant steps have been made in Europe for achieving the needed accessibility to High Frequency Radar (HFR) data for a pan-European use. Since 2015, EuroGOOS Ocean Observing Task Teams (TT), such as HFR TT, are operational networks of observing platforms. The main goal is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of HFR data access and tools. Particular attention is being paid by HFR TT to converge from different projects and programs toward those common objectives. First, JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatory - Novel European eXpertise for coastal observaTories, H2020 2015 Programme) will contribute on describing the status of the European network, on seeking harmonization through exchange of best practices and standardization, on developing and giving access to quality control procedures and new products, and finally on demonstrating the use of such technology in the general scientific strategy focused by the Coastal Observatory. Then, EMODnet (European Marine Observation and Data Network) Physics started to assemble HF radar metadata and data products within Europe in a uniform way. This long term program is providing a combined array of services and functionalities to users for obtaining free of charge data, meta-data and data products on the physical conditions of European sea basins and oceans. Additionally, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers from 2015 a core information service to any user related to 4 areas of benefits: Maritime Safety, Coastal and Marine Environment, Marine Resources, and Weather, Seasonal Forecasting and Climate activities. INCREASE (Innovation and Networking for the integration of Coastal Radars into EuropeAn marine SErvices - CMEMS Service Evolution 2016) will set the necessary developments towards the integration of existing European

  4. The influence of music on mental effort and driving performance.

    Science.gov (United States)

    Ünal, Ayça Berfu; Steg, Linda; Epstude, Kai

    2012-09-01

    The current research examined the influence of loud music on driving performance, and whether mental effort mediated this effect. Participants (N=69) drove in a driving simulator either with or without listening to music. In order to test whether music would have similar effects on driving performance in different situations, we manipulated the simulated traffic environment such that the driving context consisted of both complex and monotonous driving situations. In addition, we systematically kept track of drivers' mental load by making the participants verbally report their mental effort at certain moments while driving. We found that listening to music increased mental effort while driving, irrespective of the driving situation being complex or monotonous, providing support to the general assumption that music can be a distracting auditory stimulus while driving. However, drivers who listened to music performed as well as the drivers who did not listen to music, indicating that music did not impair their driving performance. Importantly, the increases in mental effort while listening to music pointed out that drivers try to regulate their mental effort as a cognitive compensatory strategy to deal with task demands. Interestingly, we observed significant improvements in driving performance in two of the driving situations. It seems like mental effort might mediate the effect of music on driving performance in situations requiring sustained attention. Other process variables, such as arousal and boredom, should also be incorporated to study designs in order to reveal more on the nature of how music affects driving. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The RBANS Effort Index: base rates in geriatric samples.

    Science.gov (United States)

    Duff, Kevin; Spering, Cynthia C; O'Bryant, Sid E; Beglinger, Leigh J; Moser, David J; Bayless, John D; Culp, Kennith R; Mold, James W; Adams, Russell L; Scott, James G

    2011-01-01

    The Effort Index (EI) of the RBANS was developed to assist clinicians in discriminating patients who demonstrate good effort from those with poor effort. However, there are concerns that older adults might be unfairly penalized by this index, which uses uncorrected raw scores. Using five independent samples of geriatric patients with a broad range of cognitive functioning (e.g., cognitively intact, nursing home residents, probable Alzheimer's disease), base rates of failure on the EI were calculated. In cognitively intact and mildly impaired samples, few older individuals were classified as demonstrating poor effort (e.g., 3% in cognitively intact). However, in the more severely impaired geriatric patients, over one third had EI scores that fell above suggested cutoff scores (e.g., 37% in nursing home residents, 33% in probable Alzheimer's disease). In the cognitively intact sample, older and less educated patients were more likely to have scores suggestive of poor effort. Education effects were observed in three of the four clinical samples. Overall cognitive functioning was significantly correlated with EI scores, with poorer cognition being associated with greater suspicion of low effort. The current results suggest that age, education, and level of cognitive functioning should be taken into consideration when interpreting EI results and that significant caution is warranted when examining EI scores in elders suspected of having dementia.

  6. Advanced Geophysical Classification with the Marine Towed Array

    Science.gov (United States)

    Steinhurst, D.; Harbaugh, G.; Keiswetter, D.; Bell, T. W.; Massey, G.; Wright, D.

    2017-12-01

    The Marine Towed Array, or MTA, is an underwater dual-mode sensor array that has been successfully deployed at multiple marine venues in support of Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP) demonstrations beginning in 2004. It provided both marine electromagnetic and marine magnetic sensors for detection and mapping of underwater UXO. The EMI sensor array was based on older technology, which in several ESTCP demonstrations has not been able to support advanced geophysical classification (AGC). Under ESTCP funding, the U.S. Naval Research Laboratory is in the process of upgrading the MTA with modern, advanced electromagnetic (EMI) electronics and replacing the sensor array with a modern, multistatic array design. A half-scale version of the proposed array has been built and tested on land. Six tri-axial receiver cubes were placed inside two- and three- transmit coil configurations in equivalent positions to design locations for the MTA wing. The responses of a variety of munitions items and test spheres were measured over a range of target-to-array geometries and in both static and simulated dynamic data collection modes. The multi-transmit coil configuration was shown to provide enhanced single-pass classification performance over the original single coil design, particularly as a function of target location relative to the centerline. The ability to go beyond anomaly detection and additionally classify detected anomalies from survey data would dramatically improve the state of the art for underwater UXO remediation by reducing costs and improving the efficiency of these efforts. The results of our efforts to return the MTA to service and validating the new EMI array's design for UXO detection and classification in the underwater environment will be the focus of this presentation.

  7. Electronic correlations and disorder in transport through one-dimensional nanoparticle arrays

    OpenAIRE

    Bascones, E.; Estevez, V.; Trinidad, J. A.; MacDonald, A. H.

    2007-01-01

    We analyze and clarify the transport properties of a one-dimensional metallic nanoparticle array with interaction between charges restricted to charges placed in the same conductor. We study the threshold voltage, the I-V curves and the potential drop through the array and their dependence on the array parameters including the effect of charge and resistance disorder. We show that very close to threshold the current depends linearly on voltage with a slope independent on the array size. At in...

  8. Detection of suboptimal effort with symbol span: development of a new embedded index.

    Science.gov (United States)

    Young, J Christopher; Caron, Joshua E; Baughman, Brandon C; Sawyer, R John

    2012-03-01

    Developing embedded indicators of suboptimal effort on objective neurocognitive testing is essential for detecting increasingly sophisticated forms of symptom feigning. The current study explored whether Symbol Span, a novel Wechsler Memory Scale-fourth edition measure of supraspan visual attention, could be used to discriminate adequate effort from suboptimal effort. Archival data were collected from 136 veterans classified into Poor Effort (n = 42) and Good Effort (n = 94) groups based on symptom validity test (SVT) performance. The Poor Effort group had significantly lower raw scores (p Span test. A raw score cutoff of Span can effectively differentiate veterans with multiple failures on established free-standing and embedded SVTs.

  9. Efforts in Public Relations on Fusion in Europe

    Science.gov (United States)

    Ongena, J.; van Oost, G.

    2001-10-01

    An overview will be given of different published materials currently in use in Europe for public relations on fusion. We will also present a CD-ROM for individual and classroom use, containing (i) a general background on different energy forms, (ii) general principles of fusion, (iii) current research efforts and (iv) future prospects of fusion. This CD-ROM is currently in English, German, French, Spanish, Portuguese and Italian. Fusion posters developed in collaboration with CPEP in Dutch, French, German, Italian, Spanish and Portuguese will be shown. Several new brochures and leaflets intended to increase the public awareness on fusion in Europe will be on display.

  10. Time preferences, study effort, and academic performance

    NARCIS (Netherlands)

    Non, J.A.; Tempelaar, D.T.

    2014-01-01

    We analyze the relation between time preferences, study effort, and academic performance among first-year Business and Economics students. Time preferences are measured by stated preferences for an immediate payment over larger delayed payments. Data on study efforts are derived from an electronic

  11. Interests, Effort, Achievement and Vocational Preference.

    Science.gov (United States)

    Sjoberg, L.

    1984-01-01

    Relationships between interest in natural sciences and technology and perceived ability, success, and invested effort were studied in Swedish secondary school students. Interests were accounted for by logical orientation and practical value. Interests and grades were strongly correlated, but correlations between interests and effort and vocational…

  12. Dopamine and Effort-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Irma Triasih Kurniawan

    2011-06-01

    Full Text Available Motivational theories of choice focus on the influence of goal values and strength of reinforcement to explain behavior. By contrast relatively little is known concerning how the cost of an action, such as effort expended, contributes to a decision to act. Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. Here we review behavioral and neurobiological data regarding the representation of effort as action cost, and how this impacts on decision making. Although organisms expend effort to obtain a desired reward there is a striking sensitivity to the amount of effort required, such that the net preference for an action decreases as effort cost increases. We discuss the contribution of the neurotransmitter dopamine (DA towards overcoming response costs and in enhancing an animal’s motivation towards effortful actions. We also consider the contribution of brain structures, including the basal ganglia (BG and anterior cingulate cortex (ACC, in the internal generation of action involving a translation of reward expectation into effortful action.

  13. Listening Effort With Cochlear Implant Simulations

    NARCIS (Netherlands)

    Pals, Carina; Sarampalis, Anastasios; Başkent, Deniz

    2013-01-01

    Purpose: Fitting a cochlear implant (CI) for optimal speech perception does not necessarily optimize listening effort. This study aimed to show that listening effort may change between CI processing conditions for which speech intelligibility remains constant. Method: Nineteen normal-hearing

  14. Effort and Selection Effects of Incentive Contracts

    NARCIS (Netherlands)

    Bouwens, J.F.M.G.; van Lent, L.A.G.M.

    2003-01-01

    We show that the improved effort of employees associated with incentive contracts depends on the properties of the performance measures used in the contract.We also find that the power of incentives in the contract is only indirectly related to any improved employee effort.High powered incentive

  15. The Effect of Age on Listening Effort

    Science.gov (United States)

    Degeest, Sofie; Keppler, Hannah; Corthals, Paul

    2015-01-01

    Purpose: The objective of this study was to investigate the effect of age on listening effort. Method: A dual-task paradigm was used to evaluate listening effort in different conditions of background noise. Sixty adults ranging in age from 20 to 77 years were included. A primary speech-recognition task and a secondary memory task were performed…

  16. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  17. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water-reflected (i.e. surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established

  18. Linear-array systems for aerospace NDE

    International Nuclear Information System (INIS)

    Smith, Robert A.; Willsher, Stephen J.; Bending, Jamie M.

    1999-01-01

    Rapid large-area inspection of composite structures for impact damage and multi-layered aluminum skins for corrosion has been a recognized priority for several years in both military and civil aerospace applications. Approaches to this requirement have followed two clearly different routes: the development of novel large-area inspection systems, and the enhancement of current ultrasonic or eddy-current methods to reduce inspection times. Ultrasonic inspection is possible with standard flaw detection equipment but the addition of a linear ultrasonic array could reduce inspection times considerably. In order to investigate their potential, 9-element and 17-element linear ultrasonic arrays for composites, and 64-element arrays for aluminum skins, have been developed to DERA specifications for use with the ANDSCAN area scanning system. A 5 m 2 composite wing surface has been scanned with a scan resolution of approximately 3 mm in 6 hours. With subsequent software and hardware improvements all four composite wing surfaces (top/bottom, left/right) of a military fighter aircraft can potentially be inspected in less than a day. Array technology has been very widely used in the medical ultrasound field although rarely above 10 MHz, whereas lap-joint inspection requires a pulse center-frequency of 12 to 20 MHz in order to resolve the separate interfaces in the lap joint. A 128 mm-long multi-element array of 5 mmx2 mm ultrasonic elements for use with the ANDSCAN scanning software was produced to a DERA specification by an NDT manufacturer with experience in the medical imaging field. This paper analyses the performance of the transducers that have been produced and evaluates their use in scanning systems of different configurations

  19. Low-effort thought promotes political conservatism.

    Science.gov (United States)

    Eidelman, Scott; Crandall, Christian S; Goodman, Jeffrey A; Blanchar, John C

    2012-06-01

    The authors test the hypothesis that low-effort thought promotes political conservatism. In Study 1, alcohol intoxication was measured among bar patrons; as blood alcohol level increased, so did political conservatism (controlling for sex, education, and political identification). In Study 2, participants under cognitive load reported more conservative attitudes than their no-load counterparts. In Study 3, time pressure increased participants' endorsement of conservative terms. In Study 4, participants considering political terms in a cursory manner endorsed conservative terms more than those asked to cogitate; an indicator of effortful thought (recognition memory) partially mediated the relationship between processing effort and conservatism. Together these data suggest that political conservatism may be a process consequence of low-effort thought; when effortful, deliberate thought is disengaged, endorsement of conservative ideology increases.

  20. Micromirror Arrays for Adaptive Optics; TOPICAL

    International Nuclear Information System (INIS)

    Carr, E.J.

    2000-01-01

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ((lambda)/20), high fill factor ( and gt; 95%), large stroke (5-10(micro)m), and pixel size(approx)-200(micro)m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed

  1. Solar panels offer array of hope.

    Science.gov (United States)

    Baillie, Jonathan

    2009-01-01

    The installation of what is believed to be the largest array of solar thermal panels currently in use at a UK NHS hospital has taken place at an ideal time for the facility in question, Harlow's Princess Alexandra Hospital, with the hospital's gas bill alone having risen by 153% over the past nine months thanks to soaring energy prices, and the estates department keen to mitigate the effects in any way possible. Jonathan Baillie reports.

  2. Selecting Sums in Arrays

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund

    2008-01-01

    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  3. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  4. Inpo/industry job and task analysis efforts

    International Nuclear Information System (INIS)

    Wigley, W.W.

    1985-01-01

    One of the goals of INPO is to develop and coordinate industrywide programs to improve the education, training and qualification of nuclear utility personnel. To accomplish this goal, INPO's Training and Education Division: conducts periodic evaluations of industry training programs; provides assistance to the industry in developing training programs; manages the accreditation of utility training programs. These efforts are aimed at satisfying the need for training programs for nuclear utility personnel to be performance-based. Performance-based means that training programs provide an incumbent with the skills and knowledge required to safely perform the job. One of the ways that INPO has provided assistance to the industry is through the industrywide job and task analysis effort. I will discuss the job analysis and task analysis processes, the current status of JTA efforts, JTA products and JTA lessons learned

  5. Visual cues and listening effort: individual variability.

    Science.gov (United States)

    Picou, Erin M; Ricketts, Todd A; Hornsby, Benjamin W Y

    2011-10-01

    To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and 2 presentation modalities (audio only [AO] and auditory-visual [AV]). Signal-to-noise ratios were adjusted to provide matched speech recognition across audio-only and AV noise conditions. Also measured were subjective perceptions of listening effort and 2 predictive variables: (a) lipreading ability and (b) WMC. Objective and subjective results indicated that listening effort increased in the presence of noise, but on average the addition of visual cues did not significantly affect the magnitude of listening effort. Although there was substantial individual variability, on average participants who were better lipreaders or had larger WMCs demonstrated reduced listening effort in noise in AV conditions. Overall, the results support the hypothesis that integrating auditory and visual cues requires cognitive resources in some participants. The data indicate that low lipreading ability or low WMC is associated with relatively effortful integration of auditory and visual information in noise.

  6. Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator

    Institute of Scientific and Technical Information of China (English)

    Gopi RAM; Durbadal MANDAL; Sakti Prasad GHOSHAL; Rajib KAR

    2017-01-01

    In this paper, an optimal design of linear antenna arrays having microstrip patch antenna elements has been carried out. Cat swarm optimization (CSO) has been applied for the optimization of the control parameters of radiation pattern of an antenna array. The optimal radiation patterns of isotropic antenna elements are obtained by optimizing the current excitation weight of each element and the inter-element spacing. The antenna arrays of 12, 16, and 20 elements are taken as examples. The arrays are de-signed by using MATLAB computation and are validated through Computer Simulation Technology-Microwave Studio (CST-MWS). From the simulation results it is evident that CSO is able to yield the optimal design of linear antenna arrays of patch antenna elements.

  7. Programming effort analysis of the ELLPACK language

    Science.gov (United States)

    Rice, J. R.

    1978-01-01

    ELLPACK is a problem statement language and system for elliptic partial differential equations which is implemented by a FORTRAN preprocessor. ELLPACK's principal purpose is as a tool for the performance evaluation of software. However, it is used here as an example with which to study the programming effort required for problem solving. It is obvious that problem statement languages can reduce programming effort tremendously; the goal is to quantify this somewhat. This is done by analyzing the lengths and effort (as measured by Halstead's software science technique) of various approaches to solving these problems.

  8. AlpArray - technical strategies for large-scale European co-operation in broadband seismology

    Science.gov (United States)

    Brisbourne, A.; Clinton, J.; Hetenyi, G.; Pequegnat, C.; Wilde-Piorko, M.; Villasenor, A.; Comelli, P.; AlpArray Working Group

    2012-04-01

    AlpArray is a new initiative to study the greater Alpine area with a large-scale broadband seismological network. The interested parties (currently 32 institutes in 12 countries) plan to combine their existing infrastructures into an all-out transnational effort that includes data acquisition, processing, imaging and interpretation. The experiment will encompass the greater Alpine area, from the Black Forest in the north to the Northern Apennines in the south and from the Pannonian Basin in the east to the French Massif Central in the west. We aim to cover this region with high-quality broadband seismometers by combining the ~400 existing permanent stations with an additional 400+ instruments from mobile pools. In this way, we plan to achieve homogeneous and high resolution coverage while also deploying densely spaced stations along swaths across key parts of the Alpine chain. These efforts on land will be combined with deployments of ocean bottom seismometers in the Mediterranean Sea. Significant progress has already been made in outlining the scientific goals and funding strategy. A brief overview of these aspects of the initiative will be presented here. However, we will concentrate on the technical aspects: How efficient large-scale integration of existing infrastructures can be achieved. Existing permanent station coverage within the greater Alpine area has been collated and assessed for data availability, allowing strategies to be developed for network densification to ensure a robust backbone network: An anticipated deployment strategy has been drawn up to optimise array coverage and data quality. The augmented backbone network will be supplemented by more densely spaced temporary arrays targeting more specific scientific questions. For these temporary arrays, a strategy document has been produced to outline standards for station installation, data acquisition, processing, archival and dissemination. All these operations are of course vital. However, data

  9. Daytime Solar Heating of Photovoltaic Arrays in Low Density Plasmas

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2003-01-01

    The purpose of the current work is to determine the out-gassing rate of H2O molecules for a solar array placed under daytime solar heating (full sunlight) conditions typically encountered in a Low Earth Orbital (LEO) environment. Arc rates are established for individual arrays held at 14 C and are used as a baseline for future comparisons. Radiated thermal solar flux incident to the array is simulated by mounting a stainless steel panel equipped with resistive heating elements several centimeters behind the array. A thermal plot of the heater plate temperature and the array temperature as a function of heating time is then obtained. A mass spectrometer is used to record the levels of partial pressure of water vapor in the test chamber after each of the 5 heating/cooling cycles. Each of the heating cycles was set to time duration of 40 minutes to simulate the daytime solar heat flux to the array over a single orbit. Finally the array is cooled back to ambient temperature after 5 complete cycles and the arc rates of the solar arrays is retested. A comparison of the various data is presented with rather some unexpected results.

  10. CRISPRDetect: A flexible algorithm to define CRISPR arrays.

    Science.gov (United States)

    Biswas, Ambarish; Staals, Raymond H J; Morales, Sergio E; Fineran, Peter C; Brown, Chris M

    2016-05-17

    CRISPR (clustered regularly interspaced short palindromic repeats) RNAs provide the specificity for noncoding RNA-guided adaptive immune defence systems in prokaryotes. CRISPR arrays consist of repeat sequences separated by specific spacer sequences. CRISPR arrays have previously been identified in a large proportion of prokaryotic genomes. However, currently available detection algorithms do not utilise recently discovered features regarding CRISPR loci. We have developed a new approach to automatically detect, predict and interactively refine CRISPR arrays. It is available as a web program and command line from bioanalysis.otago.ac.nz/CRISPRDetect. CRISPRDetect discovers putative arrays, extends the array by detecting additional variant repeats, corrects the direction of arrays, refines the repeat/spacer boundaries, and annotates different types of sequence variations (e.g. insertion/deletion) in near identical repeats. Due to these features, CRISPRDetect has significant advantages when compared to existing identification tools. As well as further support for small medium and large repeats, CRISPRDetect identified a class of arrays with 'extra-large' repeats in bacteria (repeats 44-50 nt). The CRISPRDetect output is integrated with other analysis tools. Notably, the predicted spacers can be directly utilised by CRISPRTarget to predict targets. CRISPRDetect enables more accurate detection of arrays and spacers and its gff output is suitable for inclusion in genome annotation pipelines and visualisation. It has been used to analyse all complete bacterial and archaeal reference genomes.

  11. Friction Stir Weld Inspection Through Conductivity Imaging Using Shaped Field MWM(Registered Trademark) - Arrays

    Science.gov (United States)

    Goldfine, Neil; Grundy, David; Zilberstein, Vladimir; Kinchen, David G.; McCool, Alex (Technical Monitor)

    2002-01-01

    Friction Stir Welds (FSW) of Al 2195-T8 and Al 2219-T8, provided by Lockheed Martin Michoud Operations, were inspected for lack-of-penetration (LOP) defects using a custom designed MWM-Array, a multi-element eddy-current sensor. MWM (registered trademark) electrical conductivity mapping demonstrated high sensitivity to LOP as small as 0.75 mm (0.03 in.), as confirmed by metallographic data that characterized the extent of LOP defects. High sensitivity and high spatial resolution was achieved via a 37-element custom designed MWM-Array allowing LOP detection using the normalized longitudinal component of the MWM measured conductivity. This permitted both LOP detection and correlation of MWM conductivity features with the LOP defect size, as changes in conductivity were apparently associated with metallurgical features within the near-surface layer of the LOP defect zone. MWM conductivity mapping reveals information similar to macro-etching as the MWM-Array is sensitive to small changes in conductivity due to changes in microstructure associated with material thermal processing, in this case welding. The electrical conductivity measured on the root side of FSWs varies across the weld due to microstructural differences introduced by the FSW process, as well as those caused by planar flaws. Weld metal, i.e., dynamically recrystallized zone (DXZ), thermomechanically affected zone (TMZ), heat-affected zone (HAZ), and parent metal (PM) are all evident in the conductivity maps. While prior efforts had met with limited success for NDE (Nondestructive Evaluation) of dissimilar alloy, Al2219 to Al2195 FSW, the new custom designed multi-element MWM-Array achieved detection of all LOP defects even in dissimilar metal welds.

  12. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K., E-mail: bill@xia.com [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Harris, J.T. [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100–2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrayscurrently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I–V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  13. Combinatorial aspects of covering arrays

    Directory of Open Access Journals (Sweden)

    Charles J. Colbourn

    2004-11-01

    Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.

  14. NREL Quickens its Tech Transfer Efforts

    Energy Technology Data Exchange (ETDEWEB)

    Lammers, H.

    2012-02-01

    Innovations and 'aha' movements in renewable energy and energy efficiency, while exciting in the lab, only truly live up to their promise once they find a place in homes or business. Late last year President Obama issued a directive to all federal agencies to increase their efforts to transfer technologies to the private sector in order to achieve greater societal and economic impacts of federal research investments. The president's call to action includes efforts to establish technology transfer goals and to measure progress, to engage in efforts to increase the speed of technology transfer and to enhance local and regional innovation partnerships. But, even before the White House began its initiative to restructure the commercialization process, the National Renewable Energy Laboratory had a major effort underway designed to increase the speed and impact of technology transfer activities and had already made sure its innovations had a streamlined path to the private sector. For the last three years, NREL has been actively setting commercialization goals and tracking progress against those goals. For example, NREL sought to triple the number of innovations over a five-year period that began in 2009. Through best practices associated with inventor engagement, education and collaboration, NREL quadrupled the number of innovations in just three years. Similar progress has been made in patenting, licensing transactions, income generation and rewards to inventors. 'NREL is known nationally for our cutting-edge research and companies know to call us when they are ready to collaborate,' William Farris, vice president for commercialization and technology transfer, said. 'Once a team is ready to dive in, they don't want be mired in paperwork. We've worked to make our process for licensing NREL technology faster; it now takes less than 60 days for us to come to an agreement and start work with a company interested in our research

  15. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  16. Mooring Motion Correction of SYNOP Central Array Current Meter Data

    Science.gov (United States)

    1992-01-01

    GRADUA’FE SCHOOL OF OCEANO (;RAPttY UNIVERSITY OF RHODE ISLAND NARRAGANSETT. HHIiODE ISLAND AD-A262 858 DTICIll 111’rijil ELECTE APR I2 1993 -U...8217 . -4 . A~~- - - - E~ ~ I j 4 1~.~ - ~ ~~~~ -j V QNN -14. C e t - - -. a* :~ tw- -*-- so Wf* op 1.t 11 -. - .0- - - - - - - - U 9o do 0 so sol 00 0-00

  17. Array architectures for iterative algorithms

    Science.gov (United States)

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  18. Effort sharing in ambitious, global climate change mitigation scenarios

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Soimakallio, Sampo; Moltmann, Sara; Hoehne, Niklas; Syri, Sanna; Savolainen, Ilkka

    2010-01-01

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either -10% or -50% from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system.

  19. Effort sharing in ambitious, global climate change mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [TKK Helsinki University of Technology, Espoo (Finland); Soimakallio, Sampo; Syri, Sanna; Savolainen, Ilkka [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); Moltmann, Sara; Hoehne, Niklas [Ecofys Germany GmbH, Cologne (Germany)

    2010-04-15

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either or from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system. (author)

  20. Illinois highway materials sustainability efforts of 2015.

    Science.gov (United States)

    2016-08-01

    This report provides a summary of the sustainability efforts of the Illinois Department of Transportation (IDOT) in recycling : reclaimed materials in highway construction during calendar year 2015. This report meets the requirements of Illinois Publ...

  1. EU grid computing effort takes on malaria

    CERN Multimedia

    Lawrence, Stacy

    2006-01-01

    Malaria is the world's most common parasitic infection, affecting more thatn 500 million people annually and killing more than 1 million. In order to help combat malaria, CERN has launched a grid computing effort (1 page)

  2. Illinois highway materials sustainability efforts of 2014.

    Science.gov (United States)

    2015-08-01

    This report presents the 2014 sustainability efforts of the Illinois Department of Transportation (IDOT) in : recycling reclaimed materials in highway construction. This report meets the requirements of Illinois : Public Act 097-0314 by documenting I...

  3. Illinois highway materials sustainability efforts of 2016.

    Science.gov (United States)

    2017-07-04

    This report provides a summary of the sustainability efforts of the Illinois Department of Transportation (IDOT) in recycling : reclaimed materials in highway construction during calendar year 2016. This report meets the requirements of Illinois Publ...

  4. Illinois highway materials sustainability efforts of 2013.

    Science.gov (United States)

    2014-08-01

    This report presents the sustainability efforts of the Illinois Department of Transportation (IDOT) in : recycling and reclaiming materials for use in highway construction. This report meets the requirements of : Illinois Public Act 097-0314 by docum...

  5. Progress on conformal microwave array applicators for heating chestwall disease

    Science.gov (United States)

    Stauffer, P. R.; Maccarini, P. F.; Juang, T.; Jacobsen, S. K.; Gaeta, C. J.; Schlorff, J. L.; Milligan, A. J.

    2007-02-01

    Previous studies have reported the computer modeling, CAD design, and theoretical performance of single and multiple antenna arrays of Dual Concentric Conductor (DCC) square slot radiators driven at 915 and 433 MHz. Subsequently, practical CAD designs of microstrip antenna arrays constructed on thin and flexible printed circuit board (PCB) material were reported which evolved into large Conformal Microwave Array (CMA) sheets that could wrap around the surface of the human torso for delivering microwave energy to large areas of superficial tissue. Although uniform and adjustable radiation patterns have been demonstrated from multiple element applicators radiating into simple homogeneous phantom loads, the contoured and heterogeneous tissue loads typical of chestwall recurrent breast cancer have required additional design efforts to achieve good coupling and efficient heating from the increasingly larger conformal array applicators used to treat large area contoured patient anatomy. Thus recent work has extended the theoretical optimization of DCC antennas to improve radiation efficiency of each individual aperture and reduce mismatch reflections, radiation losses, noise, and cross coupling of the feedline distribution network of large array configurations. Design improvements have also been incorporated into the supporting bolus structure to maintain effective coupling of DCC antennas into contoured anatomy and to monitor and control surface temperatures under the entire array. New approaches for non-invasive monitoring of surface and sub-surface tissue temperatures under each independent heat source are described that make use of microwave radiometry and flexible sheet grid arrays of thermal sensors. Efforts to optimize the clinical patient interface and move from planar rectangular shapes to contoured vest applicators that accommodate entire disease in a larger number of patients are summarized. By applying heat more uniformly to large areas of contoured anatomy

  6. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  7. Diagnosable structured logic array

    Science.gov (United States)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  8. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  9. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  10. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  11. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  12. Physics Education Research efforts to promote diversity: Challenges and opportunities

    Science.gov (United States)

    Brahmia, Suzanne

    2015-04-01

    We begin this talk with a brief description of the gender and ethnic diversity of the physics community. We then discuss several current efforts within Physics Education Research that have the potential to further our understanding of issues surrounding underrepresentation. These efforts include research into (1) the role of community and strategies for developing effective communities; (2) physics identity and self-efficacy; (3) the affordances that students from underrepresented groups bring to physics learning; (4) socioeconomics and its impact on mathematization. One of the challenges to conducting this research is the relatively small proportion of underrepresented minority students in current physics classes, and the small number of women in physics and engineering majors. In collaboration with Stephen Kanim, New Mexico State University.

  13. Parametric Criticality Safety Calculations for Arrays of TRU Waste Containers

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Sean T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    The Nuclear Criticality Safety Division (NCSD) has performed criticality safety calculations for finite and infinite arrays of transuranic (TRU) waste containers. The results of these analyses may be applied in any technical area onsite (e.g., TA-54, TA-55, etc.), as long as the assumptions herein are met. These calculations are designed to update the existing reference calculations for waste arrays documented in Reference 1, in order to meet current guidance on calculational methodology.

  14. Measurement of blockage in deformed LWR multi-rod arrays

    International Nuclear Information System (INIS)

    Hindle, E.D.; Jones, C.; Whitty, S.

    1983-01-01

    This paper critically reviews the current methods used for measuring blockage in multi-rod arrays and discusses their application. A new definition which overcomes the deficiencies of the previous methods is proposed. Also examples of the application of automatic computerised techniques to directly measure rod strain, blockage, sub-channel blockage and perimeter changes from photographs of sections through deformed arrays are presented. (author)

  15. Matrix phased array (MPA) imaging technology for resistance spot welds

    Science.gov (United States)

    Na, Jeong K.; Gleeson, Sean T.

    2014-02-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  16. Matrix phased array (MPA) imaging technology for resistance spot welds

    International Nuclear Information System (INIS)

    Na, Jeong K.; Gleeson, Sean T.

    2014-01-01

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed

  17. Matrix phased array (MPA) imaging technology for resistance spot welds

    Energy Technology Data Exchange (ETDEWEB)

    Na, Jeong K.; Gleeson, Sean T. [Edison Welding Institute, 1250 Arthur E. Adams Drive, Columbus, OH 43221 (United States)

    2014-02-18

    A three-dimensional MPA probe has been incorporated with a high speed phased array electronic board to visualize nugget images of resistance spot welds. The primary application area of this battery operated portable MPA ultrasonic imaging system is in the automotive industry which a conventional destructive testing process is commonly adopted to check the quality of resistance spot welds in auto bodies. Considering an average of five-thousand spot welds in a medium size passenger vehicle, the amount of time and effort given to popping the welds and measuring nugget size are immeasurable in addition to the millions of dollars' worth of scrap metals recycled per plant per year. This wasteful labor intensive destructive testing process has become less reliable as auto body sheet metal has transitioned from thick and heavy mild steels to thin and light high strength steels. Consequently, the necessity of developing a non-destructive inspection methodology has become inevitable. In this paper, the fundamental aspects of the current 3-D probe design, data acquisition algorithms, and weld nugget imaging process are discussed.

  18. Design and control of phased ICRF antenna arrays

    International Nuclear Information System (INIS)

    Goulding, R.H.; Baity, F.W.; Hoffman, D.J.

    1993-01-01

    Phased antenna arrays operating in the ion cyclotron range of frequencies (ICRF) are used to produce highly directional wave spectra, primarily for use in current drive experiments. RF current drive using phased antennas has been demonstrated in both the JET and DIII-D tokamaks, and both devices are planning to operate new four-element arrays beginning early next year. Features of antenna design that are relevant to phased operation and production of directional spectra are reviewed. Recent advances in the design of the feed circuits and the related control systems for these arrays should substantially improve their performance, by reducing the coupling seen by the matching networks and rf power supplies caused by the mutual impedance of the array elements. The feed circuit designs for the DIII-D and JET phased antenna arrays are compared. The two configurations differ significantly due to the fact that one power amplifier is used for the entire array in the former case, and one per element in the latter. The JET system uses automatic feedback control of matching, phase and amplitude of antenna currents, and the transmitter power balance. The design of this system is discussed, and a time dependent model used to predict its behavior is described

  19. Automated Non-Destructive Testing Array Evaluation System

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Jupperman, D.

    2004-12-31

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes.

  20. Automated Non-Destructive Testing Array Evaluation System

    International Nuclear Information System (INIS)

    Wei, T.; Zavaljevski, N.; Bakhtiari, S.; Miron, A.; Kupperman, D.

    2004-01-01

    Utilities perform eddy current tests on nuclear power plant steam generator (SG) tubes to detect degradation. This report summarizes the status of ongoing research to develop signal processing algorithms that automate analysis of eddy current test data. The research focuses on analyzing array probe data for detecting, classifying, and characterizing degradation in SG tubes

  1. Array display tool ADT reference manual. Version 1.2

    International Nuclear Information System (INIS)

    Evans, K. Jr.

    1995-12-01

    Array Display Tool (ADT) is a Motif program to display arrays of process variables from the Advanced Photon Source control system. A typical use is to display the horizontal and vertical monitor readings. A picture of the ADT interface is here. The screen layout, apart from the menu bar, consists of two types of graphic areas in which the values for the arrays of process variables are shown: Display areas, which display one or more arrays as a function of index, and a zoom area. In the zoom area specified arrays only are displayed as a function of lattice position along with symbols for the major elements of the lattice. There can be several display areas, but at most one zoom area. When the screen is resized these areas change size proportionally. There are a number of options in the View Menu to change the way the values are displayed. It is also possible via the Options Menu to: (1) Store the current values internally. (2) Store the values from a snapshot file internally. (3) Display one of the stored sets of values along with the current values. (4) Display the difference of the current values with one of the stored sets of values. (5) Write the current values to a snapshot file. There are several (currently 5) slots in which you can store values internally. In addition you can display the values with specified reference values subtracted

  2. Magnetic properties of strip-like Josephson-junction arrays

    International Nuclear Information System (INIS)

    Chen, D.-X; Moreno, J.J.; Hernando, A.; Sanchez, A.

    2000-01-01

    Zero-field-cooled (ZFC) and field-cooled (FC) magnetic properties of strip-like Josephson-junction (JJ) arrays with very strong demagnetizing effects are calculated from basic laws. Similar to slab-like JJ arrays without considering demagnetizing effects, a vortex state evolves to a critical state (CS) with increasing maximum JJ currents in the ZFC case, and a vortex state always remains with a negative low-field susceptibility in the FC case. However, the strong demagnetizing effects cause qualitative changes in the CS, where the overall feature of the field and current profiles turns out to be similar to that in type-II superconducting strips, but not like the ordinary Bean CS in slab-like JJ arrays, the CS current profile is never flat and the critical current is no longer a step function of the maximum JJ current as in slab-like JJ arrays. The calculated results of different types of JJ arrays indicate that although the intergranular CS in granular superconductors may have a common origin, the discovered paramagnetic Meissner effect in them is still difficult to explain. (author)

  3. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  4. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  5. The oxidized porous silicon field emission array

    International Nuclear Information System (INIS)

    Smith, D.D.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Trost, H.J.

    1993-01-01

    The goal of developing a highly efficient microwave power source has led the authors to investigate new methods of electron field emission. One method presently under consideration involves the use of oxidized porous silicon thin films. The authors have used this technology to fabricate the first working field emission arrays from this substance. This approach reduces the diameter of an individual emitter to the nanometer scale. Tests of the first samples are encouraging, with extracted electron currents to nearly 1 mA resulting from less than 20 V of pulsed DC gate voltage. Modulated emission at 5 MHz was also observed. Developments of a full-scale emission array capable of delivering an electron beam at 18 GHz of minimum density 100 A/cm 2 is in progress

  6. Transducers and arrays for underwater sound

    CERN Document Server

    Butler, John L

    2016-01-01

    This improved and updated second edition covers the theory, development, and design of electro-acoustic transducers for underwater applications. This highly regarded text discusses the basics of piezoelectric and magnetostrictive transducers that are currently being used as well as promising new designs. It presents the basic acoustics as well as the specific acoustics data needed in transducer design and evaluation. A broad range of designs of projectors and hydrophones are described in detail along with methods of modeling, evaluation, and measurement. Analysis of projector and hydrophone transducer arrays, including the effects of mutual radiation impedance and numerical models for elements and arrays, are also covered. The book includes new advances in transducer design and transducer materials and has been completely reorganized to be suitable for use as a textbook, as well as a reference or handbook. The new edition contains updates to the first edition, end-of-chapter exercises, and solutions to select...

  7. EPOXI Uplink Array Experiment of June 27, 2008

    Science.gov (United States)

    Vilnrotter, V.; Tsao, P. C.; Lee, D. K.; Cornish, T. P.; Paal, L.; Jamnejad, V.

    2008-08-01

    Uplink array technology is currently being developed for NASA's Deep Space Network (DSN) to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper Belt, and beyond. The DSN uplink arrays employ N microwave antennas transmitting at 7.2 GHz (X-band) to produce signals that add coherently at the spacecraft, hence providing a power gain of N^2 over a single antenna. This gain can be traded off directly for an N^2 higher data rate at a given distance such as Mars, providing, for example, high-definition video broadcast from Earth to a future human mission, or it can provide a given data rate for commands and software uploads at a distance N times greater than would be possible with a single antenna. The uplink arraying concept has been recently demonstrated using the three operational 34-m antennas of the Apollo Complex at the Goldstone Deep Space Communications Complex in California, which transmitted arrayed signals to the EPOXI spacecraft (an acronym formed from EPOCh and DIXI: Extrasolar Planetary Observation and Characterization and Deep Impact Extended Investigation). Both two-element and three-element uplink arrays were configured, and the theoretical array gains of 6 dB and 9.5 dB, respectively, were demonstrated experimentally. This required initial phasing of the array elements, the generation of accurate frequency predicts to maintain phase from each antenna despite relative velocity components due to Earth rotation and spacecraft trajectory, and monitoring of the ground-system phase for possible drifts caused by thermal effects over the 16-km fiber-optic signal distribution network. This article provides a description of the equipment and techniques used to demonstrate the uplink arraying concept in a relevant operational environment. Data collected from the EPOXI spacecraft are also analyzed to verify array calibration, array gain, and system stability

  8. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  9. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  10. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  11. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  12. Comparison of polystyrene scintillator fiber array and monolithic polystyrene for neutron imaging and radiography

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, R., E-mail: raspberry@lanl.gov; Cutler, T. E.; Danly, C. R.; Espy, M. A.; Goglio, J. H.; Hunter, J. F.; Madden, A. C.; Mayo, D. R.; Merrill, F. E.; Nelson, R. O.; Swift, A. L.; Wilde, C. H.; Zocco, T. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    The neutron imaging diagnostic at the National Ignition Facility has been operating since 2011 generating neutron images of deuterium-tritium (DT) implosions at peak compression. The current design features a scintillating fiber array, which allows for high imaging resolution to discern small-scale structure within the implosion. In recent years, it has become clear that additional neutron imaging systems need to be constructed in order to provide 3D reconstructions of the DT source and these additional views need to be on a shorter line of sight. As a result, there has been increased effort to identify new image collection techniques that improve upon imaging resolution for these next generation neutron imaging systems, such as monolithic deuterated scintillators. This work details measurements performed at the Weapons Neutron Research Facility at Los Alamos National Laboratory that compares the radiographic abilities of the fiber scintillator with a monolithic scintillator, which may be featured in a future short line of sight neutron imaging systems.

  13. DETECTION OF FAST TRANSIENTS WITH RADIO INTERFEROMETRIC ARRAYS

    International Nuclear Information System (INIS)

    Bhat, N. D. R.; Chengalur, J. N.; Gupta, Y.; Prasad, J.; Roy, J.; Kudale, S. S.; Cox, P. J.; Bailes, M.; Burke-Spolaor, S.; Van Straten, W.

    2013-01-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg 2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  14. Detection of Fast Transients with Radio Interferometric Arrays

    Science.gov (United States)

    Bhat, N. D. R.; Chengalur, J. N.; Cox, P. J.; Gupta, Y.; Prasad, J.; Roy, J.; Bailes, M.; Burke-Spolaor, S.; Kudale, S. S.; van Straten, W.

    2013-05-01

    Next-generation radio arrays, including the Square Kilometre Array (SKA) and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT) presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis software. This survey was conducted at 325 and 610 MHz, and covered 360 deg2 of the sky with short dwell times. It provides large volumes of real data that can be used to test the efficacies of various algorithms and observing strategies applicable for transient detection. We present examples that illustrate the methodologies of detecting short-duration transients, including the use of sub-arrays for higher resilience to spurious events of terrestrial origin, localization of candidate events via imaging, and the use of a phased array for improved signal detection and confirmation. In addition to demonstrating applications of interferometric arrays for fast transient exploration, our efforts mark important steps in the roadmap toward SKA-era science.

  15. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  16. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  17. Ocean array alters view of Atlantic conveyor

    Science.gov (United States)

    Kornei, Katherine

    2018-02-01

    Oceanographers have put a stethoscope on the coursing circulatory system of the Atlantic Ocean, and they have found a skittish pulse that's surprisingly strong in the waters east of Greenland—discoveries that should improve climate models. The powerful currents known as the Atlantic meridional overturning circulation (AMOC) are an engine in Earth's climate. The AMOC's shallower limbs—which include the Gulf Stream—move warm water from the tropics northward, warming Western Europe. In the north, the waters cool and sink, forming deeper limbs that transport the cold water back south—and sequester anthropogenic carbon in the process. Last week, at the American Geophysical Union's Ocean Sciences meeting, scientists presented the first data from an array of instruments moored in the subpolar North Atlantic, a $35 million, seven-nation project known as the Overturning in the Subpolar North Atlantic Program (OSNAP). Since 2004, researchers have gathered data from another array, at 26°N, stretching from Florida to Africa. But OSNAP is the first to monitor the circulation farther north, where a critical aspect of the overturning occurs. The observations reveal unexpected eddies and strong variability in the AMOC currents. They also show that the currents east of Greenland contribute the most to the total AMOC flow. Climate models, on the other hand, have emphasized the currents west of Greenland in the Labrador Sea.

  18. Dependently typed array programs don’t go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2009-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  19. Dependently typed array programs don't go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2008-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  20. Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis

    International Nuclear Information System (INIS)

    Leung, Daniel

    2011-01-01

    A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achieved by on-board microcontroller.

  1. Integration of Antibody Array Technology into Drug Discovery and Development.

    Science.gov (United States)

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  2. Changing reproductive effort within a semelparous reproductive episode.

    Science.gov (United States)

    Hughes, P William; Simons, Andrew M

    2014-08-01

    • Life-history theory predicts a trade-off between current and future reproduction for iteroparous organisms-as individuals age, the expected value of future reproduction declines, and thus reproductive effort is expected to be higher in later clutches than in earlier. In contrast, models explaining the evolution of semelparity treat semelparous reproduction as instantaneous, with no scope for intraindividual variation. However, semelparous reproduction is also extended, but over shorter time scales; whether there are similar age- or stage-specific changes in reproductive effort within a semelparous episode is unclear. In this study, we assessed whether semelparous individuals increase reproductive effort as residual reproductive value declines by comparing the reproductive phenotype of flowers at five different floral positions along a main inflorescence.• Using the herbaceous monocarp Lobelia inflata, we conducted a longitudinal study of 409 individuals including both laboratory and field populations over three seasons. We recorded six reproductive traits-including the length of three phenological intervals as well as fruit size, seed size, and seed number-for all plants across floral positions produced throughout the reproductive episode.• We found that while the rate of flower initiation did not change, flowers at distal (late) floral positions developed more quickly and contained larger seed than flowers at basal (early) floral positions did.• Our results were consistent with the hypothesis that, like iteroparous organisms, L. inflata increases reproductive effort in response to low residual reproductive value. © 2014 Botanical Society of America, Inc.

  3. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  4. Instruction Emphasizing Effort Improves Physics Problem Solving

    Science.gov (United States)

    Li, Daoquan

    2012-01-01

    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  5. Student Effort, Consistency, and Online Performance

    Science.gov (United States)

    Patron, Hilde; Lopez, Salvador

    2011-01-01

    This paper examines how student effort, consistency, motivation, and marginal learning, influence student grades in an online course. We use data from eleven Microeconomics courses taught online for a total of 212 students. Our findings show that consistency, or less time variation, is a statistically significant explanatory variable, whereas…

  6. Net benefits of wildfire prevention education efforts

    Science.gov (United States)

    Jeffrey P. Prestemon; David T. Butry; Karen L. Abt; Ronda Sutphen

    2010-01-01

    Wildfire prevention education efforts involve a variety of methods, including airing public service announcements, distributing brochures, and making presentations, which are intended to reduce the occurrence of certain kinds of wildfires. A Poisson model of preventable Florida wildfires from 2002 to 2007 by fire management region was developed. Controlling for...

  7. Has Malaysia's antidrug effort been effective?

    Science.gov (United States)

    Scorzelli, J F

    1992-01-01

    It is a common belief that a massive effort in law enforcement, preventive education and rehabilitation will result in the elimination of a country's drug problem. Based on this premise. Malaysia in 1983 implemented such a multifaceted anti-drug strategy, and the results of a 1987 study by the author suggested that Malaysia's effort had begun to contribute to a steady decrease in the number of identified drug abusers. Although the number of drug-addicted individuals declined, the country's recidivism rates were still high. Because of this high relapse rate, Malaysia expanded their rehabilitation effort and developed a community transition program. In order to determine the impact of these changes on the country's battle against drug abuse, a follow-up study was conducted in 1990. The results of this study did not clearly demonstrate that the Malaysian effort had been successful in eliminating the problem of drug abuse, and raised some questions concerning the effectiveness of the country's drug treatment programs.

  8. Phase transitions in least-effort communications

    International Nuclear Information System (INIS)

    Prokopenko, Mikhail; Ay, Nihat; Obst, Oliver; Polani, Daniel

    2010-01-01

    We critically examine a model that attempts to explain the emergence of power laws (e.g., Zipf's law) in human language. The model is based on the principle of least effort in communications—specifically, the overall effort is balanced between the speaker effort and listener effort, with some trade-off. It has been shown that an information-theoretic interpretation of this principle is sufficiently rich to explain the emergence of Zipf's law in the vicinity of the transition between referentially useless systems (one signal for all referable objects) and indexical reference systems (one signal per object). The phase transition is defined in the space of communication accuracy (information content) expressed in terms of the trade-off parameter. Our study explicitly solves the continuous optimization problem, subsuming a recent, more specific result obtained within a discrete space. The obtained results contrast Zipf's law found by heuristic search (that attained only local minima) in the vicinity of the transition between referentially useless systems and indexical reference systems, with an inverse-factorial (sub-logarithmic) law found at the transition that corresponds to global minima. The inverse-factorial law is observed to be the most representative frequency distribution among optimal solutions

  9. The Galileo Teacher Training Program Global Efforts

    Science.gov (United States)

    Doran, R.; Pennypacker, C.; Ferlet, R.

    2012-08-01

    The Galileo Teacher Training Program (GTTP) successfully named representatives in nearly 100 nations in 2009, the International Year of Astronomy (IYA2009). The challenge had just begun. The steps ahead are how to reach educators that might benefit from our program and how to help build a more fair and science literate society, a society in which good tools and resources for science education are not the privilege of a few. From 2010 on our efforts have been to strengthen the newly formed network and learn how to equally help educators and students around the globe. New partnerships with other strong programs and institutions are being formed, sponsorship schemes being outlined, new tools and resources being publicized, and on-site and video conference training conducted all over the world. Efforts to officially accredit a GTTP curriculum are on the march and a stronger certification process being outlined. New science topics are being integrated in our effort and we now seek to discuss the path ahead with experts in this field and the community of users, opening the network to all corners of our beautiful blue dot. The main aim of this article is to open the discussion regarding the urgent issue of how to reawaken student interest in science, how to solve the gender inequality in science careers, and how to reach the underprivileged students and open to them the same possibilities. Efforts are in strengthening the newly formed network and learning how to equally help educators and students around the globe.

  10. Effort - Final technical report on task 3

    DEFF Research Database (Denmark)

    Bay, Niels; Henningsen, Poul; Eriksen, Morten

    The present report is documentation for the work carried out at DTU on the Brite/Euram project No. BE96-3340, contract No. BRPR-CT97-0398, with the title Enhanced Framework for forging design using reliable three-dimensional simulation (EFFORTS). The objective of task 3 is to determine data...

  11. Hydrogen economy: a little bit more effort

    International Nuclear Information System (INIS)

    Pauron, M.

    2008-01-01

    In few years, the use of hydrogen in economy has become a credible possibility. Today, billions of euros are invested in the hydrogen industry which is strengthened by technological advances in fuel cells development and by an increasing optimism. However, additional research efforts and more financing will be necessary to make the dream of an hydrogen-based economy a reality

  12. Testosterone and reproductive effort in male primates.

    Science.gov (United States)

    Muller, Martin N

    2017-05-01

    Considerable evidence suggests that the steroid hormone testosterone mediates major life-history trade-offs in vertebrates, promoting mating effort at the expense of parenting effort or survival. Observations from a range of wild primates support the "Challenge Hypothesis," which posits that variation in male testosterone is more closely associated with aggressive mating competition than with reproductive physiology. In both seasonally and non-seasonally breeding species, males increase testosterone production primarily when competing for fecund females. In species where males compete to maintain long-term access to females, testosterone increases when males are threatened with losing access to females, rather than during mating periods. And when male status is linked to mating success, and dependent on aggression, high-ranking males normally maintain higher testosterone levels than subordinates, particularly when dominance hierarchies are unstable. Trade-offs between parenting effort and mating effort appear to be weak in most primates, because direct investment in the form of infant transport and provisioning is rare. Instead, infant protection is the primary form of paternal investment in the order. Testosterone does not inhibit this form of investment, which relies on male aggression. Testosterone has a wide range of effects in primates that plausibly function to support male competitive behavior. These include psychological effects related to dominance striving, analgesic effects, and effects on the development and maintenance of the armaments and adornments that males employ in mating competition. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Reasonable limits to radiation protection efforts

    International Nuclear Information System (INIS)

    Gonen, Y.G.

    1982-01-01

    It is shown that change in life expectancy (ΔLE) is an improved estimate for risks and safety efforts, reflecting the relevant social goal. A cost-effectiveness index, safety investment/ΔLE, is defined. The harm from low level radiation is seen as a reduction of life expectancy instead of an increased probability of contracting cancer. (author)

  14. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  15. Experimental Study of Arcing on High-voltage Solar Arrays

    Science.gov (United States)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale

    2005-01-01

    The main obstacle to the implementation of a high-voltage solar array in space is arcing on the conductor-dielectric junctions exposed to the surrounding plasma. One obvious solution to this problem would be the installation of fully encapsulated solar arrays which were not having exposed conductors at all. However, there are many technological difficulties that must be overcome before the employment of fully encapsulated arrays will turn into reality. An alternative solution to raise arc threshold by modifications of conventionally designed solar arrays looks more appealing, at least in the nearest future. A comprehensive study of arc inception mechanism [1-4] suggests that such modifications can be done in the following directions: i) to insulate conductor-dielectric junction from a plasma environment (wrapthrough interconnects); ii) to change a coverglass geometry (overhang); iii) to increase a coverglass thickness; iiii) to outgas areas of conductor-dielectric junctions. The operation of high-voltage array in LEO produces also the parasitic current power drain on the electrical system. Moreover, the current collected from space plasma by solar arrays determines the spacecraft floating potential that is very important for the design of spacecraft and its scientific apparatus. In order to verify the validity of suggested modifications and to measure current collection five different solar array samples have been tested in large vacuum chamber. Each sample (36 silicon based cells) consists of three strings containing 12 cells connected in series. Thus, arc rate and current collection can be measured on every string independently, or on a whole sample when strings are connected in parallel. The heater installed in the chamber provides the possibility to test samples under temperature as high as 80 C that simulates the LEO operational temperature. The experimental setup is described below.

  16. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  17. Simulating the Sky as Seen by the Square Kilometer Array using the MIT Array Performance Simulator (MAPS)

    Science.gov (United States)

    Matthews, Lynn D.; Cappallo, R. J.; Doeleman, S. S.; Fish, V. L.; Lonsdale, C. J.; Oberoi, D.; Wayth, R. B.

    2009-05-01

    The Square Kilometer Array (SKA) is a proposed next-generation radio telescope that will operate at frequencies of 0.1-30 GHz and be 50-100 times more sensitive than existing radio arrays. Meeting the performance goals of this instrument will require innovative new hardware and software developments, a variety of which are now under consideration. Key to evaluating the performance characteristics of proposed SKA designs and testing the feasibility of new data calibration and processing algorithms is the ability to carry out realistic simulations of radio wavelength arrays under a variety of observing conditions. The MIT Array Performance Simulator (MAPS) (http://www.haystack.mit.edu/ast/arrays/maps/index.html) is an observations simulation package designed to achieve this goal. MAPS accepts an input source list or sky model and generates a model visibility set for a user-defined "virtual observatory'', incorporating such factors as array geometry, primary beam shape, field-of-view, and time and frequency resolution. Optionally, effects such as thermal noise, out-of-beam sources, variable station beams, and time/location-dependent ionospheric effects can be included. We will showcase current capabilities of MAPS for SKA applications by presenting results from an analysis of the effects of realistic sky backgrounds on the achievable image fidelity and dynamic range of SKA-like arrays comprising large numbers of small-diameter antennas.

  18. Cancer Disparities - Cancer Currents Blog

    Science.gov (United States)

    Blog posts on cancer health disparities research—including factors that influence disparities, disparities-related research efforts, and diversity in the cancer research workforce—from NCI Cancer Currents.

  19. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    Science.gov (United States)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  20. Silicon Micromachined Microlens Array for THz Antennas

    Science.gov (United States)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  1. GMR biosensor arrays: a system perspective.

    Science.gov (United States)

    Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X

    2010-05-15

    Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.

  2. Improved photocatalytic activity of highly ordered TiO{sub 2} nanowire arrays for methylene blue degradation

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiaojun, E-mail: xjlv@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU-CAS Joint Laboratory on New Materials, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Hao; Chang, Haixin [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai 980-8578 (Japan)

    2012-10-15

    Although many efforts have been done on the photocatalytic properties of anodic TiO{sub 2} nanotubes, much less work is done on the photocatalytic performance of TiO{sub 2} nanowires. Self-organized anodic TiO{sub 2} nanowire arrays have been fabricated using a simple electrochemical approach and used as photocatalysts in photodegradation of methylene blue (MB) dyes. Here we found for the first time TiO{sub 2} nanowires have better photocatalytic properties and incident photon-to-current efficiency (IPCE) than TiO{sub 2} nanotubes. N doped TiO{sub 2} nanowires showed further enhancement in photodegradation activity and photocurrent response in the visible region. Such TiO{sub 2} nanowires are expected to have great potential in photodegradation of pollutants, photovoltaic solar energy conversion and water splitting for hydrogen generation as well. -- Highlights: Black-Right-Pointing-Pointer TiO{sub 2} nanowire arrays electrode fabricated via anodizing Ti foil. Black-Right-Pointing-Pointer TiO{sub 2} nanowire arrays have higher photodegradation activity. Black-Right-Pointing-Pointer N doped TiO{sub 2} nanowires enhanced visible-light photocatalytic activity.

  3. Innovations in biomedical nanoengineering: nanowell array biosensor

    Science.gov (United States)

    Seo, YoungTae; Jeong, Sunil; Lee, JuKyung; Choi, Hak Soo; Kim, Jonghan; Lee, HeaYeon

    2018-04-01

    Nanostructured biosensors have pioneered biomedical engineering by providing highly sensitive analyses of biomolecules. The nanowell array (NWA)-based biosensing platform is particularly innovative, where the small size of NWs within the array permits extremely profound sensing of a small quantity of biomolecules. Undoubtedly, the NWA geometry of a gently-sloped vertical wall is critical for selective docking of specific proteins without capillary resistances, and nanoprocessing has contributed to the fabrication of NWA electrodes on gold substrate such as molding process, e-beam lithography, and krypton-fluoride (KrF) stepper semiconductor method. The Lee group at the Mara Nanotech has established this NW-based biosensing technology during the past two decades by engineering highly sensitive electrochemical sensors and providing a broad range of detection methods from large molecules (e.g., cells or proteins) to small molecules (e.g., DNA and RNA). Nanosized gold dots in the NWA enhance the detection of electrochemical biosensing to the range of zeptomoles in precision against the complementary target DNA molecules. In this review, we discuss recent innovations in biomedical nanoengineering with a specific focus on novel NWA-based biosensors. We also describe our continuous efforts in achieving a label-free detection without non-specific binding while maintaining the activity and stability of immobilized biomolecules. This research can lay the foundation of a new platform for biomedical nanoengineering systems.

  4. Directed Fluid Transport with Biomimetic ``Silia'' Arrays

    Science.gov (United States)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2008-10-01

    We present results on the long-range, directed fluid transport produced by the collective beating of arrays of biomimetic ``silia.'' Silia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material. With external permanent magnets we actuate our silia such that their motion mimics the beating of biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia and seek to answer open questions about the nature of particle advection in such a system. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the tips of the silia, while between the silia tips and floor particle motion is complicated and suggestive of chaotic advection.

  5. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  6. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  7. Apparatuses and method for converting electromagnetic radiation to direct current

    Science.gov (United States)

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  8. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  9. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  10. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  11. Photovoltaic array sizing for Yemeni electrical needs

    Energy Technology Data Exchange (ETDEWEB)

    Al-Motawakel, M K; McVeigh, J C; Probert, S D; Norton, B

    1986-10-01

    A behavioural model has been developed for correlating the area of the solar array, the capacity of the storage batteries, and the system cost of a roof-top or centralized solar-energy system relative to the average daily electricity demand. The mathematical analysis incorporates pertinent social, economic, climatic and energy-resource factors. The model is employed to predict the average daily electrical needs for any one of the ten common energy uses currently occurring in Yemeni houses, reviews these needs in terms of the available solar energy systems, selects the relevant system components, and suggests the most cost-effective appropriate design of solar photovoltaic system.

  12. Radiation hard solar cell and array

    International Nuclear Information System (INIS)

    Russell, R.L.

    1975-01-01

    A power generating solar cell for a spacecraft solar array is hardened against transient response to nuclear radiation while permitting normal operation of the cell in a solar radiation environment by shunting the cell with a second solar cell whose contacts are reversed relative to the power cell to form a cell module, exposing the power cell only to the solar radiation in a solar radiation environment to produce an electrical output at the module terminals, and exposing both cells to the nuclear radiation in a nuclear radiation environment so that the radiation induced currents generated by the cells suppress one another

  13. An integral field spectrograph utilizing mirrorlet arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  14. An Integral Field Spectrograph Utilizing Mirrorlet Arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-01-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  15. The ASTRI Mini-Array Science Case

    Science.gov (United States)

    Vercellone, Stefano; Catalano, O.; Maccarone, M.; Stamerra, A.; Di Pierro, F.; Vallania, P.; Canestrari, R.; Bonnoli, G.; Pareschi, G.; Tosti, G.; Caraveo, P.; ASTRI Collaboration

    2013-04-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing an end-to-end prototype of the CTA small-size telescope in a dual-mirror configuration (SST-2M) to be tested under field conditions, and scheduled to start data acquisition in 2014. A remarkable improvement in terms of performance could come from the operation, in 2016, of a SST-2M mini-array, composed by a few SST-2M telescopes and to be placed at final CTA Southern Site. The SST mini-array will be able to study in great detail relatively bright sources (a few x10E-12 erg/cm2/s at 10 TeV) with an angular resolution of a few arcmin and an energy resolution of about 10 - 15%. Moreover, thanks to the array approach, it will be possible to verify the wide FoV performance to detect very high energy showers with the core located at a distance up to 500 m, to compare the mini-array performance with the Monte Carlo expectations by means of deep observations of few selected targets, and to perform the first CTA science, with its first solid detections during the first year of operation. Prominent sources such as extreme blazars (1ES 0229+200), nearby well-known BL Lac objects (MKN 501) and radio-galaxies, galactic pulsar wind nebulae (Crab Nebula, Vela-X), supernovae remnants (Vela-junior, RX J1713.7-3946) and microquasars (LS 5039), as well as the Galactic Center can be observed in a previously unexplored energy range, in order to investigate the electron acceleration and cooling, relativistic and non relativistic shocks, the search for cosmic-ray (CR) Pevatrons, the study of the CR propagation, and the impact of the extragalactic background light on the spectra of the sources.

  16. Tests of operating conditions for metrological application of HTS Josephson arrays

    International Nuclear Information System (INIS)

    Sosso, A; Lacquaniti, V; Andreone, D; Cerri, R; Klushin, A M

    2006-01-01

    We report on an experimental study of metrological properties of High Temperature Superconductor arrays, made of shunted bicrystal YBCO Josephson junctions, to assess their accuracy. A detailed analysis of measurement errors is presented, mainly based on a direct comparison of an HTS array against a low temperature array. Owing to the high sensitivity of the comparison, we were able to measure the changes in the HTS array voltage on a step at nanovolt level. A precise estimate of the dependence of the HTS array step width on operating conditions was obtained. Differences were observed with respect to the results provided by the usual, low sensitivity, techniques, confirming that the method we adopted is necessary in the study of HTS arrays for metrology. The high sensitivity analysis was applied in the derivation of the temperature dependence of the critical current as well, providing some insights on the behaviour of the HTS array

  17. Student Effort, Consistency and Online Performance

    Directory of Open Access Journals (Sweden)

    Hilde Patron

    2011-07-01

    Full Text Available This paper examines how student effort, consistency, motivation, and marginal learning, influence student grades in an online course. We use data from eleven Microeconomics courses taught online for a total of 212 students. Our findings show that consistency, or less time variation, is a statistically significant explanatory variable, whereas effort, or total minutes spent online, is not. Other independent variables include GPA and the difference between a pre-test and a post-test. The GPA is used as a measure of motivation, and the difference between a post-test and pre-test as marginal learning. As expected, the level of motivation is found statistically significant at a 99% confidence level, and marginal learning is also significant at a 95% level.

  18. Summary of process research analysis efforts

    Science.gov (United States)

    Burger, D. R.

    1985-01-01

    A summary of solar-cell process research analysis efforts was presented. Process design and cell design are interactive efforts where technology from integrated circuit processes and other processes are blended. The primary factors that control cell efficiency are: (1) the bulk parameters of the available sheet material, (2) the retention and enhancement of these bulk parameters, and (3) the cell design and the cost to produce versus the finished cells performance. The process sequences need to be tailored to be compatible with the sheet form, the cell shape form, and the processing equipment. New process options that require further evaluation and utilization are lasers, robotics, thermal pulse techniques, and new materials. There are numerous process control techniques that can be adapted and used that will improve product uniformity and reduced costs. Two factors that can lead to longer life modules are the use of solar cell diffusion barriers and improved encapsulation.

  19. Non-proliferation efforts in South Asia

    International Nuclear Information System (INIS)

    Chellaney, B.

    1994-01-01

    Southern Asia is one of the most volatile regions in the world because of inter-State and intra-State conflicts. Security in the region highly depends on the rival capabilities of the involved states, Pakistan, India, China. Increased Confidence building and nuclear transparency are becoming more significant issues in attaining stability in the region, although non-proliferation efforts in this region have attained little headway

  20. Some recent efforts toward high density implosions

    International Nuclear Information System (INIS)

    McClellan, G.E.

    1980-01-01

    Some recent Livermore efforts towards achieving high-density implosions are presented. The implosion dynamics necessary to compress DT fuel to 10 to 100 times liquid density are discussed. Methods of diagnosing the maximum DT density for a specific design are presented along with results to date. The dynamics of the double-shelled target with an exploding outer shell are described, and some preliminary experimental results are presented

  1. Evaluative language, cognitive effort and attitude change.

    OpenAIRE

    van der Pligt, J.; van Schie, E.C.M.; Martijn, C.

    1994-01-01

    Tested the hypotheses that evaluatively biased language influences attitudes and that the magnitude and persistence of attitude change depends on the amount of cognitive effort. 132 undergraduates participated in the experiment, which used material focusing on the issue of restricting adolescent driving over the weekends to reduce the number of fatal traffic accidents. Results indicate that evaluatively biased language can affect attitudes. Using words that evaluate the pro-position positivel...

  2. Efforts to identify spore forming bacillus

    Energy Technology Data Exchange (ETDEWEB)

    Zuleiha, M.S.; Hilmy, N. (National Atomic Energy Agency, Jakarta (Indonesia). Pasar Djumat Research Centre)

    1982-04-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans.

  3. Efforts to identify spore forming bacillus

    International Nuclear Information System (INIS)

    Zuleiha, M.S.; Hilmy, Nazly

    1982-01-01

    Efforts to identify 47 species of radioresistant spore forming bacillus sp. isolated from locally produced medical devices have been carried out. The identifications was conducted using 19 kinds of biochemical tests and compared to species to bacillus subtilis W. T.; bacillus pumilus E 601 and bacillus sphaericus Csub(I)A. The results showed that bacillus sp. examined could be divided into 6 groups, i.e. bacillus cereus; bacillus subtilis; bacillus stearothermophylus; bacillus coagulans; bacillus sphaericus and bacillus circulans. (author)

  4. Environmental Determinants of Lexical Processing Effort

    OpenAIRE

    McDonald, Scott

    2000-01-01

    Institute for Adaptive and Neural Computation A central concern of psycholinguistic research is explaining the relative ease or difficulty involved in processing words. In this thesis, we explore the connection between lexical processing effort and measurable properties of the linguistic environment. Distributional information (information about a word’s contexts of use) is easily extracted from large language corpora in the form of co-occurrence statistics. We claim that su...

  5. CMOS gate array characterization procedures

    Science.gov (United States)

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  6. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  7. Vertically Aligned Carbon Nanotube Arrays as Efficient Supports for Faradaic Capacitive Electrodes

    Science.gov (United States)

    Oguntoye, Moses; Holleran, Mary-Kate; Roberts, Katherine; Pesika, Noshir

    Supercapacitors are notable for their ability to deliver energy at higher power (compared to batteries) and store energy at higher density (compared to capacitors) as well as exhibit a long cycle life. In our efforts to further the development of supercapacitors, our focus is on using vertically aligned carbon nanotubes (VACNT) as supports for faradaic capacitive electrode materials. The objective is to develop electrodes functioning in an inexpensive aqueous environment with small potential windows, that store energy at a higher density than carbon materials alone. We describe the different approaches explored to overcome the challenges of non-uniform deposition, poor wetting and array collapse. Materials that are electrochemically anchored to VACNT supports include NiCo2O4, VOx, Fe2O3 and Co-Mn mixed oxides. In each case, the specific capacitance obtained using the VACNT arrays as supports is significantly more than that obtained by direct deposition onto current collectors or by using VACNT alone. The ease of VACNT growth and the degree of coating control achievable using electrodeposition means there is much potential in exploring them as supports for capacitive electrode materials.

  8. Innovation Efforts in Education and School Administration: Views of Turkish School Administrators

    Science.gov (United States)

    Akin, Ugur

    2016-01-01

    Problem Statement: In the current information era, nearly all organizations make efforts to make innovations in the fields of information, communication, technology, etc. Educational organizations are no exception to this trend. Moreover, it can be argued that educational institutions make a particular effort to rapidly keep pace with change. In…

  9. Duke Power's liquid radwaste processing improvement efforts

    International Nuclear Information System (INIS)

    Baker, R.E. Jr.; Bramblett, J.W.

    1995-01-01

    The rising cost of processing liquid radwaste and industry efforts to reduce offsite isotopic contributions has drawn greater attention to the liquid radwaste area. Because of economic pressures to reduce cost and simultaneously improve performance, Duke Power has undertaken a wide ranging effort to cost effectively achieve improvements in the liquid radwaste processing area. Duke Power has achieved significant reductions over recent years in the release of curies to the environment from the Liquid Radwaste Treatmentt systems at its Catawba, McGuire, and Oconee stations. System wide site curie reductions of 78% have been achieved in a 3 year period. These curie reductions have been achieved while simultaneously reducing the amount of media used to accomplish treatment. The curie and media usage reductions have been achieved at low capital cost expenditures. A large number of approaches and projects have been used to achieve these curie and media usage reductions. This paper will describe the various projects and the associated results for Duke Power's processing improvement efforts. The subjects/projects which will be described include: (1) Cooperative philosophy between stations (2) Source Control (3) Processing Improvements (4) Technology Testing

  10. Phased Array Feeds

    Science.gov (United States)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  11. An IBM PC-based math model for space station solar array simulation

    Science.gov (United States)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  12. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    Science.gov (United States)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We

  13. Status of Educational Efforts in National Security Workforce

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-03-31

    This report documents the status of educational efforts for the preparation of a national security workforce as part of the National Security Preparedness Project, being performed by the Arrowhead Center of New Mexico State University under a DOE/NNSA grant. The need to adequately train and educate a national security workforce is at a critical juncture. Even though there are an increasing number of college graduates in the appropriate fields, many of these graduates choose to work in the private sector because of more desirable salary and benefit packages. This report includes an assessment of the current educational situation for the national security workforce.

  14. Plasma wave instability and amplification of terahertz radiation in field-effect-transistor arrays

    International Nuclear Information System (INIS)

    Popov, V V; Tsymbalov, G M; Shur, M S

    2008-01-01

    We show that the strong amplification of terahertz radiation takes place in an array of field-effect transistors at small DC drain currents due to hydrodynamic plasmon instability of the collective plasmon mode. Planar designs compatible with standard integrated circuit fabrication processes and strong coupling of terahertz radiation to plasmon modes in FET arrays make such arrays very attractive for potential applications in solid-state terahertz amplifiers and emitters

  15. Numerical study of self-field effects on dynamics of Josephson-junction arrays

    International Nuclear Information System (INIS)

    Phillips, J.R.; Van der Zant, H.S.J.; White, J.; Orlando, T.P.

    1994-01-01

    We consider the influence of self-induced magnetic fields on dynamic properties of arrays of resistively and capacitively shunted Josephson junctions. Self-field effects are modeled by including mutual inductance interactions between every cell in the array. We find that it is important to include all mutual inductance interactions in order to understand the dynamic properties of the array, in particular subharmonic structure arising under AC current bias. (orig.)

  16. NECTAr0, a new high speed digitizer ASIC for the Cherenkov telescope array

    International Nuclear Information System (INIS)

    Delagnes, E.; Glicenstein, J.F.; Guilloux, F.; Bolmont, J.; Corona, P.; Naumann, C.L.; Nayman, P.; Tavemet, J.P.; Toussenel, F.; Vincent, P.; Dzahini, D.; Rarbi, F.; Feinstein, F.; Vorobiov, S.; Gascon, D.; Sanuy, A.

    2011-01-01

    H.E.S.S. and MAGIC experiments have demonstrated the high level of maturity of Imaging Atmospheric Cherenkov Telescopes (IACTs) dedicated to very-high-energy gamma ray astronomy domain. The astro-particle physics community is preparing the next generation of instruments, with sensitivity improved by an order of magnitude in the 10 GeV to 100 TeV range. To reach this goal, the Cherenkov Telescope Array (CTA) will consist in an array of 50-100 dishes of various sizes and various spacing, each equipped with a camera, made of few thousands fast photo-detectors and its associated front-end electronics. The total number of electronics channels will be larger than 100,000 to be compared to the total of 6,000 channels of the 5-telescopes H.E.S.S.-I H.E.S.S.-II array. To decrease the overall CTA cost, a consequent effort should be done to lower the cost of the electronics while keeping performance at least as good as the one demonstrated on the current experiments and simplifying its maintenance. This will be allowed by mass production, use of standardized modules and integration of front-end functions in ASICs. The 3-year NECTAr program started in 2009 addresses these two topics. Its final aim is to develop and test a demonstrator module of a generic CTA camera. The paper is mainly focused on one of the main components of this module, the NECTAr ASIC which samples the photo-detector signal in a circular analog memory at several GSPS and digitizes it over 12 bits after having received an external trigger. (authors)

  17. Radiation Resistance and Gain of Homogeneous Ring Quasi-Array

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1954-01-01

    In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase that incr......In a previous paper homogeneous ring quasi-arrays of tangential or radial dipoles were introduced, i.e. systems of dipoles arranged equidistantly along a circle, the dipoles being oriented in tangential or radial directions and carrying currents with the same amplitude, but with a phase...... that increases uniformly along the circle. Such quasi-arrays are azimuthally omnidirectional, and the radiated field will be mainly horizontally polarized and concentrated around the plane of the circle. In this paper expressions are obtained for the radiation resistance and the gain of homogeneous ring quasi...

  18. Coded aperture imaging with uniformly redundant arrays

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Cannon, T.M.

    1980-01-01

    A system is described which uses uniformly redundant arrays to image non-focusable radiation. The array is used in conjunction with a balanced correlation technique to provide a system with no artifacts so that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. The array is mosaicked to reduce required detector size over conventional array detectors. 15 claims

  19. Pioneering efforts to control AIDS. Review: IHO.

    Science.gov (United States)

    Chatterji, A; Sehgal, K

    1995-01-01

    The Indian Health Organisation (IHO) is a nongovernmental organization based in Bombay with more than 12 years experience in HIV/AIDS prevention and control efforts. It has attacked ignorance and prejudice via communication efforts. IHO has created a bond with some hospital systems of Bombay. IHO disseminated information about HIV/AIDS in Bombay's red light districts and has bridged the gap between the city's medical establishment and the community most in need. IHO's aggressive street-level fighting in a sector replete with sensitive issues has somewhat isolated it from mainstream national NGOs involved in HIV/AIDS education and control as well as from the medical establishment and potential partners. IHO funds have been reduced, forcing IHO to reduce intervention programs and responses to field demands. It suffers from a high rate of turnover among middle management staff. IHO's chief advantage is its confidence gained over the past 12 years. IHO has clearly delineated the direction it wants to go: care and support programs for persons affected by HIV/AIDS and for commercial sex workers to allow them to quit prostitution, orphan care, and development of training institutions for the education and motivation of medical personnel on HIV/AIDS care and prevention. It plans to build a hospice for AIDS patients and orphans and a training center. Training activities will vary from one-week orientation programs to three-month certificate courses for medical workers, NGOs, and managers from the commercial sector. IHO is prepared to share its experiences in combating HIV/AIDS in Bombay in a team effort. As official and bilateral funding has been decreasing, IHO has targeted industry for funding. Industry has responded, which enables IHO to sustain its core programs and approaches. IHO observations show a decrease in the number of men visiting red-light districts. IHO enjoys a positive relationship with Bombay's media reporting on AIDS.

  20. Economic growth, biodiversity loss and conservation effort.

    Science.gov (United States)

    Dietz, Simon; Adger, W Neil

    2003-05-01

    This paper investigates the relationship between economic growth, biodiversity loss and efforts to conserve biodiversity using a combination of panel and cross section data. If economic growth is a cause of biodiversity loss through habitat transformation and other means, then we would expect an inverse relationship. But if higher levels of income are associated with increasing real demand for biodiversity conservation, then investment to protect remaining diversity should grow and the rate of biodiversity loss should slow with growth. Initially, economic growth and biodiversity loss are examined within the framework of the environmental Kuznets hypothesis. Biodiversity is represented by predicted species richness, generated for tropical terrestrial biodiversity using a species-area relationship. The environmental Kuznets hypothesis is investigated with reference to comparison of fixed and random effects models to allow the relationship to vary for each country. It is concluded that an environmental Kuznets curve between income and rates of loss of habitat and species does not exist in this case. The role of conservation effort in addressing environmental problems is examined through state protection of land and the regulation of trade in endangered species, two important means of biodiversity conservation. This analysis shows that the extent of government environmental policy increases with economic development. We argue that, although the data are problematic, the implications of these models is that conservation effort can only ever result in a partial deceleration of biodiversity decline partly because protected areas serve multiple functions and are not necessarily designated to protect biodiversity. Nevertheless institutional and policy response components of the income biodiversity relationship are important but are not well captured through cross-country regression analysis.

  1. A novel microneedle array for the treatment of hydrocephalus.

    Science.gov (United States)

    Oh, Jonghyun; Liu, Kewei; Medina, Tim; Kralick, Francis; Noh, Hongseok Moses

    2014-06-01

    We present a microfabricated 10 by 10 array of microneedles for the treatment of a neurological disease called communicating hydrocephalus. Together with the previously reported microvalve array, the current implantable microneedle array completes the microfabricated arachnoid granulations (MAGs) that mimic the function of normal arachnoid granulations (AGs). The microneedle array was designed to enable the fixation of the MAGs through dura mater membrane in the brain and thus provide a conduit for the flow of cerebrospinal fluid (CSF). Cone-shaped microneedles with hollow channels were fabricated using a series of microfabrication techniques: SU-8 photolithography for tapered geometry, reactive ion etching for sharpening the microneedles, 248 nm deep UV excimer laser machining for creating through-hole inside the microneedles, and metal sputtering for improved rigidity. Puncture tests were conducted using porcine dura mater and the results showed that the fabricated microneedle array is strong enough to pierce the dura mater. The in-vitro biocompatibility test result showed that none of the 100 outlets of the microneedles exposed to the bloodstream were clogged significantly by blood cells. We believe that these test results demonstrate the potential use of the microneedle array as a new treatment of hydrocephalus.

  2. Dense Array Optimization of Cross-Flow Turbines

    Science.gov (United States)

    Scherl, Isabel; Strom, Benjamin; Brunton, Steven; Polagye, Brian

    2017-11-01

    Cross-flow turbines, where the axis of rotation is perpendicular to the freestream flow, can be used to convert the kinetic energy in wind or water currents to electrical power. By taking advantage of mean and time-resolved wake structures, the optimal density of an array of cross-flow turbines has the potential for higher power output per unit area of land or sea-floor than an equivalent array of axial-flow turbines. In addition, dense arrays in tidal or river channels may be able to further elevate efficiency by exploiting flow confinement and surface proximity. In this work, a two-turbine array is optimized experimentally in a recirculating water channel. The spacing between turbines, as well as individual and coordinated turbine control strategies are optimized. Array efficiency is found to exceed the maximum efficiency for a sparse array (i.e., no interaction between turbines) for stream-wise rotor spacing of less than two diameters. Results are discussed in the context of wake measurements made behind a single rotor.

  3. Examining human resources' efforts to develop a culturally competent workforce.

    Science.gov (United States)

    Whitman, Marilyn V; Valpuesta, Domingo

    2010-01-01

    The increasing diversification of the nation's population poses significant challenges in providing care that meets the needs of culturally diverse patients. Human resource management plays a vital role in developing a more culturally competent workforce. This exploratory study examines current efforts by human resource directors (HRDs) in Alabama's general hospitals to recruit more diverse candidates, train staff, and make language access resources available. A questionnaire was developed based on the Office of Minority Health's Culturally and Linguistically Appropriate Services standards. The HRDs of the 101 Alabama general hospitals served as the study's target population. A sample of 61 responses, or 60.4% of the population, was obtained. The findings indicate that most HRDs are focusing their efforts on recruiting racially/ethnically diverse candidates and training clerical and nursing staff to care for culturally and linguistically diverse patients. Less effort is being focused on recruiting candidates who speak a different language, and only 44.3% have a trained interpreter on the staff. The HRDs who indicated that they work closely with organizations that provide support to diverse groups were more likely to recruit diverse employees and have racially/ethnically and linguistically diverse individuals in leadership positions. It is crucial that health care organizations take the necessary steps to diversify their workforce to broaden access, improve the quality and equity of care, and capture a greater market share.

  4. Educational Outreach Efforts at the NNDC

    International Nuclear Information System (INIS)

    Holden, N.E.

    2014-01-01

    Isotopes and nuclides are important in our everyday life. The general public and most students are never exposed to the concepts of stable and radioactive isotopes/nuclides. The National Nuclear Data Center (NNDC) is involved in an international project to develop a Periodic Table of the Isotopes for the educational community to illustrate the importance of isotopes and nuclides in understanding the world around us. This effort should aid teachers in introducing these concepts to students from the high school to the graduate school level

  5. Effort variation regularization in sound field reproduction

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Jacobsen, Finn; Sarris, Ioannis

    2010-01-01

    In this paper, active control is used in order to reproduce a given sound field in an extended spatial region. A method is proposed which minimizes the reproduction error at a number of control positions with the reproduction sources holding a certain relation within their complex strengths......), and adaptive wave field synthesis (AWFS), both under free-field conditions and in reverberant rooms. It is shown that effort variation regularization overcomes the problems associated with small spaces and with a low ratio of direct to reverberant energy, improving thus the reproduction accuracy...

  6. Multipartite Entanglement Detection with Minimal Effort

    Science.gov (United States)

    Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald

    2016-11-01

    Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.

  7. Weak currents

    International Nuclear Information System (INIS)

    Leite Lopes, J.

    1976-01-01

    A survey of the fundamental ideas on weak currents such as CVC and PCAC and a presentation of the Cabibbo current and the neutral weak currents according to the Salam-Weinberg model and the Glashow-Iliopoulos-Miami model are given [fr

  8. Spin current

    CERN Document Server

    Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi

    2012-01-01

    In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.

  9. Particle sorting by Paramecium cilia arrays.

    Science.gov (United States)

    Mayne, Richard; Whiting, James G H; Wheway, Gabrielle; Melhuish, Chris; Adamatzky, Andrew

    Motile cilia are cell-surface organelles whose purposes, in ciliated protists and certain ciliated metazoan epithelia, include generating fluid flow, sensing and substance uptake. Certain properties of cilia arrays, such as beating synchronisation and manipulation of external proximate particulate matter, are considered emergent, but remain incompletely characterised despite these phenomena having being the subject of extensive modelling. This study constitutes a laboratory experimental characterisation of one of the emergent properties of motile cilia: manipulation of adjacent particulates. The work demonstrates through automated videomicrographic particle tracking that interactions between microparticles and somatic cilia arrays of the ciliated model organism Paramecium caudatum constitute a form of rudimentary 'sorting'. Small particles are drawn into the organism's proximity by cilia-induced fluid currents at all times, whereas larger particles may be held immobile at a distance from the cell margin when the cell generates characteristic feeding currents in the surrounding media. These findings can contribute to the design and fabrication of biomimetic cilia, with potential applications to the study of ciliopathies. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The surface detector array of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  11. The surface detector array of the Telescope Array experiment

    International Nuclear Information System (INIS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  12. Successive Standardization of Rectangular Arrays

    Directory of Open Access Journals (Sweden)

    Richard A. Olshen

    2012-02-01

    Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.

  13. Integrated Array/Metadata Analytics

    Science.gov (United States)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  14. Retrieval of Mir Solar Array

    Science.gov (United States)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  15. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  16. Factors affecting the performance of large-aperture microphone arrays

    Science.gov (United States)

    Silverman, Harvey F.; Patterson, William R.; Sachar, Joshua

    2002-05-01

    Large arrays of microphones have been proposed and studied as a possible means of acquiring data in offices, conference rooms, and auditoria without requiring close-talking microphones. When such an array essentially surrounds all possible sources, it is said to have a large aperture. Large-aperture arrays have attractive properties of spatial resolution and signal-to-noise enhancement. This paper presents a careful comparison of theoretical and measured performance for an array of 256 microphones using simple delay-and-sum beamforming. This is the largest currently functional, all digital-signal-processing array that we know of. The array is wall-mounted in the moderately adverse environment of a general-purpose laboratory (8 m×8 m×3 m). The room has a T60 reverberation time of 550 ms. Reverberation effects in this room severely impact the array's performance. However, the width of the main lobe remains comparable to that of a simplified prediction. Broadband spatial resolution shows a single central peak with 10 dB gain about 0.4 m in diameter at the -3 dB level. Away from that peak, the response is approximately flat over most of the room. Optimal weighting for signal-to-noise enhancement degrades the spatial resolution minimally. Experimentally, we verify that signal-to-noise gain is less than proportional to the square root of the number of microphones probably due to the partial correlation of the noise between channels, to variation of signal intensity with polar angle about the source, and to imperfect correlation of the signal over the array caused by reverberations. We show measurements of the relative importance of each effect in our environment.

  17. DC Control Effort Minimized for Magnetic-Bearing-Supported Shaft

    Science.gov (United States)

    Brown, Gerald V.

    2001-01-01

    A magnetic-bearing-supported shaft may have a number of concentricity and alignment problems. One of these involves the relationship of the position sensors, the centerline of the backup bearings, and the magnetic center of the magnetic bearings. For magnetic bearings with permanent magnet biasing, the average control current for a given control axis that is not bearing the shaft weight will be minimized if the shaft is centered, on average over a revolution, at the magnetic center of the bearings. That position may not yield zero sensor output or center the shaft in the backup bearing clearance. The desired shaft position that gives zero average current can be achieved if a simple additional term is added to the control law. Suppose that the instantaneous control currents from each bearing are available from measurements and can be input into the control computer. If each control current is integrated with a very small rate of accumulation and the result is added to the control output, the shaft will gradually move to a position where the control current averages to zero over many revolutions. This will occur regardless of any offsets of the position sensor inputs. At that position, the average control effort is minimized in comparison to other possible locations of the shaft. Nonlinearities of the magnetic bearing are minimized at that location as well.

  18. International Efforts for the Nuclear Security

    International Nuclear Information System (INIS)

    Yoo, Ho Sik; Kwak, Sung Woo; Lee, Ho Jin; Shim, Hye Won; Lee, Jong Uk

    2005-01-01

    Many concerns have been focused on the nuclear security since the 9.11. With increasing the threat related to nuclear material and nuclear facilities, the demand of strengthening the international physical protection system has been raised. Along with this, the international communities are making their efforts to increase nuclear security. The agreement of revising the 'Convention on Physical Protection of Nuclear Materials'(hereafter, CPPNM), which was held in Vienna on the July of 2005, was one of these efforts. U.N is also preparing the 'International Convention for the Suppression of Acts of Nuclear Terrorism' to show its firm resolution against nuclear terror. It is important to understand what measures should be taken to meet the international standard for establishing national physical protection system. To do this, international trend on the physical protection system such as CPPNM and U.N. convention should be followed. This paper explains about the content of the CPPNM and U.N convention. They will be helpful to consolidate the physical protection system in Korea

  19. Mapping telemedicine efforts: surveying regional initiatives in Denmark.

    Science.gov (United States)

    Kierkegaard, Patrick

    2015-05-01

    The aim of this study is to survey telemedicine services currently in operation across Denmark. The study specifically seeks to answer the following questions: What initiatives are deployed within the different regions? What are the motivations behind the projects? What technologies are being utilized? What medical disciplines are being supported using telemedicine systems? All data were surveyed from the Telemedicinsk Landkort, a newly created database designed to provide a comprehensive and systematic overview of all telemedicine technologies in Denmark. The results of this study suggest that a growing numbers of telemedicine initiatives are currently in operation across Denmark but that considerable variations exist in terms of regional efforts as the number of operational telemedicine projects varied from region to region. The results of this study provide a timely picture of the factors that are shaping the telemedicine landscape of Denmark and suggest potential strategies to help policymakers increase and improve national telemedicine deployment.

  20. Sidoarjo mudflow phenomenon and its mitigation efforts

    Science.gov (United States)

    Wibowo, H. T.; Williams, V.

    2009-12-01

    Hot mud first erupted in Siring village, Porong, Sidoarjo May 29th 2006. The mud first appeared approximately 200 meters from Banjarpanji-1 gas-drilling well. The mud volume increased day by day, from 5000 cubic meters per day on June 2006 to 50,000 cubic meters per day during the last of 2006, and then increased to 100,000-120,000 cubic meters per day during 2007. Flow still continues at a high rate. Moreover, as the water content has gone down, the clast content has gone up. Consequently, there is now the threat of large amounts of solid material being erupted throughout the area. Also, there is the issue of subsurface collapse and ground surface subsidence. The Indonesian government has set up a permanent team to support communities affected by the mudflow that has swamped a number of villages near LUSI. Toll roads, railway tracks and factories also have been submerged and over 35,000 people have been displaced to date. The Sidoarjo Mudflow Mitigation Agency [SMMA, BPLS (Indonesia)] replaces a temporary team called National Team PSLS which was installed for seven months and ended their work on 7 April 2007. BPLS was set up by Presidential Regulation No. 14 / 2007, and it will have to cover the costs related to the social impact of the disaster, especially outside the swamped area. BPLS is the central government institution designated to handle the disaster by coordination with both the drilling company and local (provincial and district) governments. It takes a comprehensive, integrated and holistic approach for its mission and challenges. Those are: 1) How to stop the mudflow, 2) How to mitigate the impacts of the mudflow, and 3) How to minimize the social, economic, environmental impacts, and infrastructure impacts. The mudflow mitigation efforts were constrained by dynamic geology conditions, as well as resistance to certain measures by residents of impacted areas. Giant dykes were built to retain the spreading mud, and the mudflow from the main vent was

  1. Antenna array geometry optimization for a passive coherent localisation system

    Science.gov (United States)

    Knott, Peter; Kuschel, Heiner; O'Hagan, Daniel

    2012-11-01

    Passive Coherent Localisation (PCL), also known as Passive Radar, making use of RF sources of opportunity such as Radio or TV Broadcasting Stations, Cellular Phone Network Base Stations, etc. is an advancing technology for covert operation because no active radar transmitter is required. It is also an attractive addition to existing active radar stations because it has the potential to discover low-flying and low-observable targets. The CORA (Covert Radar) experimental passive radar system currently developed at Fraunhofer-FHR features a multi-channel digital radar receiver and a circular antenna array with separate elements for the VHF- and the UHF-range and is used to exploit alternatively Digital Audio (DAB) or Video Broadcasting (DVB-T) signals. For an extension of the system, a wideband antenna array is being designed for which a new discone antenna element has been developed covering the full DVB-T frequency range. The present paper describes the outline of the system and the numerical modelling and optimisation methods applied to solve the complex task of antenna array design: Electromagnetic full wave analysis is required for the parametric design of the antenna elements while combinatorial optimization methods are applied to find the best array positions and excitation coefficients for a regular omni-directional antenna performance. The different steps are combined in an iterative loop until the optimum array layout is found. Simulation and experimental results for the current system will be shown.

  2. Coupling to the fast wave via a phased waveguide array

    International Nuclear Information System (INIS)

    Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.

    1984-03-01

    A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ω/sup pi/ < ω << ω/sub pe/ approx. ω/sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested

  3. Coupling to the fast wave via a phased waveguide array

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L.; McWilliams, R.; Glanz, J.; Motley, R.W.

    1984-03-01

    A dielectric-loaded waveguide array has been used to launch fast waves into a plasma in which ..omega../sup pi/ < ..omega.. << ..omega../sub pe/ approx. ..omega../sub ce/. The wave propagates when accessibility and cutoff requirements are satisfied. Reflection coefficients as low as 1% have been measured. Use of the fast wave for steady-state current drive is suggested.

  4. Learning from Crickets: Artificial Hair-Sensor Array Developments

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2010-01-01

    We have successfully developed biomimetic flowsensitive hair-sensor arrays taking inspiration from mechanosensory hairs of crickets. Our current generation of sensors achieves sub mm/s threshold air-flow sensitivity for single hairs operating in a bandwidth of a few hundred Hz and is the result of a

  5. On the efforts (man-day) concerned with inspection in uranium fuel fabrication facility

    International Nuclear Information System (INIS)

    Watanabe, T.; Tanaka, T.; Seki, Y.

    1990-01-01

    Taking notice of inspection efforts (man·day) of STA·IAEA and those of MNF concerned with them, their change and various factors affecting the change have been studied. Namely, first, main topics concerning inspection in our Tokai plant are mentioned and secondly the relation between the inspection efforts and such factors as PIV period, number of items, number of DA sampling and NDA measurements, and so forth is studied. According to our study, though efforts of STA·IAEA and MNF required for both routine FLOW inspection and PIT have been nearly unchanged each year, our efforts for PIV have been increasing gradually. The factors relating to this increase of our efforts are the PIV period, inspection efforts of STA·IAEA for PIV and the number of DA sampling and NDA measurements. Finally, a suggestion on the future inspection system has been mentioned and then some items for improvement under the current inspection system have been exemplified. (author)

  6. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  7. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  8. Sensitivity of Pulsar Timing Arrays

    Science.gov (United States)

    Siemens, Xavier

    2015-08-01

    For the better part of the last decade, the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) has been using the Green Bank and Arecibo radio telescopes to monitor millisecond pulsars. NANOGrav, along with similar international collaborations, the European Pulsar Timing Array and the Parkes Pulsar Timing Array in Australia, form a consortium of consortia: the International Pulsar Timing Array (IPTA). The goal of the IPTA is to directly detect low-frequency gravitational waves which cause small changes to the times of arrival of radio pulses from millisecond pulsars. In this talk I will discuss the work of NANOGrav and the IPTA as well as our sensitivity to gravitational waves from astrophysical sources. I will show that a detection is possible by the end of the decade.

  9. Hydrogen Epoch of Reionization Array (HERA)

    Science.gov (United States)

    DeBoer, David R.; HERA

    2015-01-01

    The Hydrogen Epoch of Reionization Arrays (HERA - reionization.org) roadmap uses the unique properties of the neutral hydrogen (HI) 21cm line to probe our cosmic dawn: from the birth of the first stars and black holes, through the full reionization of the primordial intergalactic medium (IGM). HERA is a collaboration between the Precision Array Probing the Epoch of Reionization (PAPER - eor.berkeley.edu), the US-based Murchison Widefield Array (MWA - mwatelescope.org), and MIT Epoch of Reionization (MITEOR) teams along with the South African SKA-SA, University of KwaZulu Natal and the University of Cambridge Cavendish Laborabory. HERA has recently been awarded a National Science Foundation Mid-Scale Innovation Program grant to begin the next phase.HERA leverages the operation of the PAPER and MWA telescopes to explore techniques and designs required to detect the primordial HI signal in the presence of systematics and radio continuum foreground emission some four orders of magnitude brighter. With this understanding, we are now able to remove foregrounds to the limits of our sensitivity, culminating in the first physically meaningful upper limits. A redundant calibration algorithm from MITEOR improves the sensitivity of the approach.Building on this, the next stage of HERA incorporates a 14m diameter antenna element that is optimized both for sensitivity and for minimizing foreground systematics. Arranging these elements in a compact hexagonal grid yields an array that facilitates calibration, leverages proven foreground removal techniques, and is scalable to large collecting areas. HERA will be located in the radio quiet environment of the SKA site in the Karoo region of South Africa (where PAPER is currently located). It will have a sensitivity close to two orders of magnitude better than PAPER and the MWA to ensure a robust detection. With its sensitivity and broader frequency coverage, HERA can paint an uninterrupted picture through reionization, back to the

  10. Mutual-Coupling Based Phased-Array Calibration: A Robust and Versatile Approach

    NARCIS (Netherlands)

    Bekers, D.J.; Dijk, R. van; Vliet, F.E. van

    2013-01-01

    The transmit and receive modules of a large phased array are often calibrated for amplitude and phase variations by an internal calibration network and an offline characterization of the complete array in an anechoic chamber. Such a solution is less obvious in view of current trends towards

  11. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  12. The OncoArray Consortium

    DEFF Research Database (Denmark)

    Amos, Christopher I; Dennis, Joe; Wang, Zhaoming

    2017-01-01

    by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy...... among centers and by ethnic background. RESULTS: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring...

  13. Phased Arrays 1985 Symposium - Proceedings

    Science.gov (United States)

    1985-08-01

    anjl with an1 au~ U lar fy b)eanir. ( mice the 1311 0 ,0 - (a ) ,[ -40.0. -80𔃺 , -90.0 -45.0 0𔃺 45.0 90.0 ANGLE FROM BROADSIDE (DEGREES) aii ia -40,0...Electronic Scanning", RADC-TR-83-128, Dec. 1983. AL) A138808 222 m " ; . . . • " - " - . . . . -" ARRAYS OF COAXIALIY-FED MONOPOLE ELEMENTS IN A PARALLEL...Research Institute Hanscom AFB, MA 01731 Farmingdale, NY 11735 AB ST RAC U Arrays of coaxially-fed monopoles radiating into a parallel plate region

  14. Airborne electronically steerable phased array

    Science.gov (United States)

    1972-01-01

    The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.

  15. Kuwait poised for massive well kill effort

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-08

    This paper reports that full scale efforts to extinguish Kuwait's oil well fires are to begin. The campaign to combat history's worst oil fires, originally expected to begin in mid-March, has been hamstrung by logistical problems, including delays in equipment deliveries caused by damage to Kuwait's infrastructure. Meantime, production from a key field off Kuwait--largely unaffected by the war--is expected to resume in May, but Kuwaiti oil exports will still be hindered by damaged onshore facilities. In addition, Kuwait is lining up equipment and personnel to restore production from its heavily damaged oil fields. Elsewhere in the Persian Gulf, Saudi Arabia reports progress in combating history's worst oil spills but acknowledges a continuing threat.

  16. Directed-energy process technology efforts

    Science.gov (United States)

    Alexander, P.

    1985-01-01

    A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.

  17. The European fusion nuclear technology effort

    International Nuclear Information System (INIS)

    Darvas, J.

    1989-01-01

    The role of fusion technology in the European fusion development strategy is outlined. The main thrust of the present fusion technology programme is responding to development needs of the Next European Torus. A smaller, but important and growing R and D effort is dealing with problems specific to the Demonstration, or Fusion Power, Reactor. The part of the programme falling under the somewhat arbitrarily defined category of 'fusion nuclear technology' is reviewed and an outlook to future activities is given. The review includes tritium technology, blanket technology and breeder materials development, technology and materials for the protection of the first wall and of other plasma facing components, remote handling technology, and safety and environmental impact studies. A few reflections are offered on the future long-term developments in fusion technology. (orig.)

  18. Superconducting cavities developments efforts at RRCAT

    International Nuclear Information System (INIS)

    Puntambekar, A.; Bagre, M.; Dwivedi, J.; Shrivastava, P.; Mundra, G.; Joshi, S.C.; Potukuchi, P.N.

    2011-01-01

    Superconducting RE cavities are the work-horse for many existing and proposed linear accelerators. Raja Ramanna Centre for Advanced Technology (RRCAT) has initiated a comprehensive R and D program for development of Superconducting RF cavities suitable for high energy accelerator application like SNS and ADS. For the initial phase of technology demonstration several prototype 1.3 GHz single cell-cavities have been developed. The work began with development of prototype single cell cavities in aluminum and copper. This helped in development of cavity manufacturing process, proving various tooling and learning on various mechanical and RF qualification processes. The parts manufacturing was done at RRCAT and Electron beam welding was carried out at Indian industry. These cavities further served during commissioning trials for various cavity processing infrastructure being developed at RRCAT and are also a potential candidate for Niobium thin film deposition R and D. Based on the above experience, few single cell cavities were developed in fine grain niobium. The critical technology of forming and machining of niobium and the intermediate RF qualification were developed at RRCAT. The EB welding of bulk niobium cavities was carried out in collaboration with IUAC, New Delhi at their facility. As a next logical step efforts are now on for development of multicell cavities. The prototype dumbbells and end group made of aluminium, comprising of RF and HOM couplers ports have also been developed, with their LB welding done at Indian industry. In this paper we shall present the development efforts towards manufacturing of 1.3 GHz single cell cavities and their initial processing and qualification. (author)

  19. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  20. Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.

    Science.gov (United States)

    Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue

    2017-01-01

    Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.